WO2019153639A1 - 一种照明系统 - Google Patents

一种照明系统 Download PDF

Info

Publication number
WO2019153639A1
WO2019153639A1 PCT/CN2018/094731 CN2018094731W WO2019153639A1 WO 2019153639 A1 WO2019153639 A1 WO 2019153639A1 CN 2018094731 W CN2018094731 W CN 2018094731W WO 2019153639 A1 WO2019153639 A1 WO 2019153639A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization
spatial
polarization state
illumination
Prior art date
Application number
PCT/CN2018/094731
Other languages
English (en)
French (fr)
Inventor
米麟
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019153639A1 publication Critical patent/WO2019153639A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • B60Q1/38Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps
    • B60Q1/381Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps with several light sources activated in sequence, e.g. to create a sweep effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • B60Q1/346Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction with automatic actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • B60Q1/38Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles

Definitions

  • the present invention relates to the field of lighting technologies, and in particular, to a lighting system.
  • the lighting system of high-end cars is developing in an intelligent direction.
  • the control of the light distribution of the headlights of the car and the adaptive headlights gradually become the standard for high-end models.
  • cars that realize personalized lighting by projecting a pattern of light and dark distribution on the road surface For example, some cars cast a left/right turn pattern while turning to inform other traffic participants or remind themselves.
  • the main inventive idea of the present invention is to propose an illumination system that does not change the spatial distribution of the luminous flux/luminance/illuminance of the outgoing light of the illumination system, and only changes the spatial distribution of the polarization state of the outgoing light, thereby enabling different light receivers as needed Receive different light information.
  • the present invention performs partial polarization control on a light source by a spatial polarization distribution modulation device, and generates illumination light having a continuous light intensity distribution and regionalized polarization distribution, which has a simple structure and a low cost.
  • an illumination system includes: a light emitting device, a spatial polarization distribution modulation device, and a lens; the light emitting device is configured to emit light source light, and the light source light includes at least a first polarization state Light; the spatial polarization distribution modulation device receives the first light for at least part of a period of time, and converts at least a portion of the first light of the first polarization state to a first light of a second polarization state, the spatial polarization distribution
  • the modulating device is capable of simultaneously emitting the first light of the first polarization state and the second polarization state, wherein the first polarization state is different from the second polarization state; and the first light emitted by the spatial polarization distribution modulation device constitutes at least Part of the image light used to project the image light to form illumination light.
  • the present invention has the following beneficial effects: at least partially converting the first light of the first polarization state contained in the light source light into the second polarization state by the spatial polarization distribution modulation device, so that the spatial polarization distribution modulation device simultaneously Emulating a first light of a first polarization state and a second polarization state, the first light constituting at least a portion of the image light, the lens projecting the image light to form illumination light, the process being relative to an illumination system without a spatial polarization distribution modulation device,
  • the polarization distribution of the illumination light is patterned without theoretically changing the spatial distribution of the luminous flux/brightness/illuminance of the illumination light, so that the light receivers of different needs can configure the polarization filter to receive different illuminations according to requirements. Information that enhances the user experience.
  • the spatial polarization distribution modulation device includes a liquid crystal modulator that changes a spatial pattern of liquid crystal molecules thereof according to a control signal.
  • the liquid crystal modulator may be an LCD-like device, including liquid crystal molecules distributed in a panel shape, and the polarization direction changes the polarization direction when the polarized light passes through the liquid crystal molecules, so that the polarization distribution of the first light of the incident surface and the exit surface of the liquid crystal modulator is different, forming a pattern. Polarized distribution.
  • the exit side of the liquid crystal modulator does not contain the polarizing filter of the general TV panel or the liquid crystal light valve of the projector, so that the light whose polarization state is changed or the light whose polarization state is not changed is from the liquid crystal. Exit in the modulator.
  • This technical solution facilitates the adjustment of the polarization distribution of the image light, and enables modulation of various polarization distribution images.
  • control signals acquired by the liquid crystal modulator are generated from environmental detection, navigation information, or manual operations.
  • the signal generating device generates a preset or calculated pattern by using environmental information acquired by the environment detecting system, navigation information acquired by the navigation system, or operation of an operator (such as a driver of the vehicle), thereby generating a control signal for controlling the liquid crystal modulator.
  • the liquid crystal modulator is enabled to output light patterned in a polarization state.
  • the spatial polarization distribution modulation device includes a wave plate region and a non-wave plate region, the wave plate region being patterned in a direction non-parallel to the first light incident.
  • the first light is incident on the incident surface of the spatial polarization distribution modulation device, wherein the first light irradiated to the wave plate region is converted into the second polarization state, and the first light irradiated to the non-wave plate region is still emitted in the first polarization state .
  • the wave plate in this embodiment is not adjustable, and the light passing through the spatial polarization distribution modulation device will exhibit a preset fixed polarization pattern, which is more economical and lower in cost.
  • the wave plate of the wave plate region is a half wave plate.
  • the wave plate region includes at least two patterned regions, and the first light passes through different patterned regions to obtain different polarization distributions.
  • the embodiment can obtain different polarization distributions by switching different wave patterning regions simply and economically, thereby satisfying the demand for image light diversification.
  • the patterned region of the waveplate in the optical path can be switched by the motion device.
  • the motion device can be, for example, a rotating wheel, a drum, a translating plate.
  • the first light incident to the spatial polarization distribution modulation device has the same polarization distribution as the first light emitted by the spatial polarization distribution modulation device during another period of time. This embodiment satisfies the general need for not requiring differentiated illumination.
  • the illumination system does not include any polarizing filters from the incident surface of the spatial polarization distribution modulation device to the optical path of the exit surface of the lens.
  • Polarization filters cause changes in the distribution of light flux/brightness/illuminance and cause light loss.
  • the source light further comprises a second light having a different wavelength range and/or a different polarization state than the first light.
  • the second light is different from the first light, specifically, the wavelength may be different, for example, one is blue light, and the other is yellow light; or the polarization state may be different, for example, relative to an incident surface, one is p-polarized light, and the other is s polarized light, or one is polarized light, one is unpolarized light; it can also have different wavelengths and different polarization states.
  • the second light is unpolarized light, and the first light and the second light have an optical path that coincides.
  • the second light passes through the spatial polarization distribution modulation device without changing the spatial distribution of the polarization state, and only the first light realizes the polarization state patterning of the image light, and on the other hand, the optical path structure can be made compact by sharing the optical path. On the other hand, it is also possible to avoid visual fatigue caused by excessive contrast of light and dark images on the light receiving end.
  • a light splitting device is disposed between the light emitting device and the spatial polarization distribution modulation device for directing the first light guide to the spatial polarization distribution modulation device along a first optical path. And the second light guide enters the exit light path along the second optical path, and the second light and the first light emitted by the spatial polarization distribution modulation device together constitute the image light.
  • This embodiment avoids the light loss of the second light passing through the spatial polarization distribution modulation device, and can also avoid the visual fatigue caused by the excessive contrast of the light and dark image on the light receiving end.
  • the spectroscopic device is a polarization splitting device, and the first and second lights are white light.
  • the light incident on the spectroscopic device is also white light, and the white light is split into two different polarization states by the polarization splitting device, and the first A light is spatially patterned by a spatial polarization distribution modulation device, and the second light is non-patterned directly with the polarization-patterned first photosynthetic light, thereby avoiding conversion of the source light into a single polarization using a polarization conversion device such as PCS.
  • the light of the state reduces the cost on the one hand, and reduces the optical expansion damage on the other hand, and the technical solution can also avoid the visual fatigue caused by the excessive contrast of the light and dark images on the light receiving end.
  • the lens includes a first lens and a second lens arranged side by side, the first lens for projecting first light emitted by the spatial polarization distribution modulation device, and the second lens for projecting The second light, the first lens and the light projected by the second lens together constitute the illumination light.
  • the spectroscopic device is a wavelength splitting device or a polarizing beam splitting device
  • the first light is a first wavelength range light
  • the second light is a second wavelength range light.
  • the light receiver can obtain an illumination region including the first wavelength range light and the second wavelength range light, and the second wavelength range light by filtering the light of a certain polarization state. Pattern area.
  • the first wavelength range of light is blue light and the second wavelength range of light is yellow light.
  • the light emitting device includes an excitation light source and a wavelength conversion device, and the excitation light emitted by the excitation light source is converted into a laser light by the wavelength conversion device, and the emitted light of the wavelength conversion device includes excitation light and
  • the laser wherein the excitation light source is a laser light source, the excitation light is a first light, and the laser light is a second light.
  • the laser light source especially the light emitted by the laser semiconductor light source, is approximately linearly polarized light and can be directly used as the first light of the first polarization state, without the need for a polarization conversion device.
  • the laser light emitted by the wavelength conversion device is unpolarized light, and is not suitable for patterning polarization distribution, which may result in an increase in cost and loss of optical expansion.
  • the laser beam may be emitted along the same optical path as the first light, or may be emitted along the optical path different from the first light by the spectroscopic device and form image light with the first photosynthetic light.
  • This embodiment utilizes not only the high luminance characteristics of the laser fluorescence technique but also the polarization characteristics of the laser light source and the polarization characteristics of the laser light source.
  • a phase adjustment device disposed in the optical path is included for adjusting a phase of the illumination light such that the first of the illumination lights does not contain wired polarized light. Since some of the linearly polarized light having different reflection directions have different reflectances, the reflective surface will destroy the polarization distribution pattern of the reflected light, and the embodiment converts the linearly polarized light that may be contained in the original first light. It is non-linearly polarized light, thereby reducing the damage of the reflection surface to the polarization distribution pattern.
  • the first of the illumination lights comprises only light of a circular polarization state or light of an elliptical polarization state.
  • the first polarization state and the second polarization state are a pair of orthogonal polarization states
  • the phase adjustment device is a quarter wave plate.
  • the first polarization state is a linear polarization state
  • the second polarization state is also a linear polarization state
  • the first polarization state and the second polarization state can be converted into a circular polarization state or an elliptical polarization state by a quarter wave plate.
  • the quarter-wave plate can be placed anywhere in the optical path, including within the illumination device, between the illumination device and the spatial polarization distribution modulation device, within the spatial polarization distribution modulation device, between the spatial polarization distribution modulation device and the lens, or between the lenses On the exit path.
  • FIG. 1 is a schematic diagram of functional modules of a lighting system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a light emitting device of an illumination system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a spatial polarization distribution modulation device of an illumination system according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a lighting system according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an illumination system according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a lighting system according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of an illumination system according to Embodiment 4 of the present invention.
  • the illumination system 10 of the present invention includes a light emitting device 100, a spatial polarization distribution modulation device 200, and a lens 300.
  • the light emitting device 100 is configured to emit light source light
  • the light source light includes at least a first light of a first polarization state.
  • the spatial polarization distribution modulation device receives the first light for at least part of the period of time, and converts the first light of the at least part of the first polarization state to the first light of the second polarization state, the second polarization state is different from the first polarization state, spatial polarization
  • the distributed modulation device is capable of simultaneously emitting the first light of the first polarization state and the second polarization state.
  • the first light emitted by the spatial polarization distribution modulation device constitutes at least part of the image light, and the lens projects the image light to form illumination light.
  • the spatial polarization distribution modulation device can simultaneously emit the modulated light and the unmodulated light, thereby ensuring the same luminous flux on the exit side and the incident side (regardless of the inevitable light loss, that is, ideally At the same time, the light on the exit side has a patterned polarization distribution.
  • Such a spatial polarization distribution modulation device cooperates with the illumination device and the lens, thereby enabling the illumination system to receive different illumination information by configuring the polarization green light device according to the needs of different light receivers.
  • the illumination light emitted by the automobile illumination system 10 is irradiated to the ground, reflected and incident on the driver's eyes, and the driver passes through a polarizing filter (such as polarizing filter glasses, polarization) provided on the driver's side. Filtering the windshield or glass film) filters a portion of the polarized light to obtain pattern information that is implicit in the illumination.
  • a polarizing filter such as polarizing filter glasses, polarization
  • the function of the light emitting device 100 is to provide light source light.
  • the source light is matched in wavelength and polarization according to lighting requirements. For example, for general vehicle illumination and searchlight illumination, the source light is usually white light; for stage color illumination and building exterior illumination, the source light may be other colors such as yellow, green, and red.
  • the source light includes at least a first light of a first polarization state.
  • the source light may all be the first light of the first polarization state.
  • the light source light may further include a second light, the second light being different from the first light in the first polarization state, where “different” may mean different wavelength ranges or different polarization states. Both the wavelength range and the polarization state can be different.
  • the wavelength range may be two colors of light (first wavelength range light and second wavelength range light), such as blue light and yellow light, cyan light and red light, or two kinds of metachromatic light, such as two Different white light spectrum.
  • the polarization states may be two different polarized lights, such as different polarization directions, such as p-polarized light, s-polarized light, left-handed polarized light, and right-handed polarized light with respect to an incident surface, and may also be polarized and unpolarized. .
  • the second light When the second light is unpolarized light, the second light can be made to coincide with the optical path of the first light, and then the second light passes through the spatial polarization distribution modulation device does not change the spatial distribution of the polarization state, and the image light is realized only by the first light.
  • the polarization state can be made compact, and on the other hand, the optical path structure can be made compact by sharing the optical path, and on the other hand, visual fatigue caused by excessive contrast of the light-dark image on the light receiving end can be avoided.
  • the second light may be guided through the second optical path into the outgoing optical path through the spectroscopic device, and the first optical guide is incident on the spatially polarized distributed modulation device along the first optical path.
  • the light is finally projected through the lens to a predetermined area to form an illumination.
  • the illumination device can comprise any known light source, such as a halogen lamp, a gas discharge lamp, a solid state light source.
  • the illuminating device comprises a laser light source, and the light emitted by the laser light source has polarization characteristics.
  • the light emitted by the laser semiconductor light source represented by the laser diode is approximately linearly polarized light, and then the laser portion does not need to be polarized. Conversion equipment can reduce costs.
  • a non-polarized light source such as a halogen lamp, a gas discharge lamp or an LED
  • a polarization conversion device or a polarization splitting device may be required to acquire the first light of the first polarization state.
  • the light emitting device 100 includes a light source 110 and a polarization conversion device 120, wherein the light source 110 emits light including at least a first polarization state and a second polarization state, the light undergoes polarization conversion. After device 120, the light is completely converted to the first polarization state.
  • the polarization conversion device 120 is a PCS (Polarizing Conversion System). It can be understood that the combination of polarized light and unpolarized light can also be used as a combination of the light emitted by the light source 110 of FIG. 2, and the light passes through the polarization conversion device 120 to also obtain light of the first polarization state.
  • the light source of the light emitting device may be a pure laser light source or a laser fluorescent light source.
  • the laser fluorescent light source utilizes a laser to excite a wavelength-converting material (such as a phosphor) to obtain a laser, which also has high brightness and high luminous efficiency.
  • a wavelength-converting material such as a phosphor
  • the laser fluorescent light source simultaneously emits the unabsorbed excitation light and the received laser light; for the absorption of the complete wavelength conversion material, the laser fluorescent light source only emits the laser light.
  • the mixed light of the excitation light and the laser light may be converted into the first light of the first polarization state by the polarization conversion device, or may be separated by the wavelength splitting device, and only one of them is converted into the first polarization state.
  • the laser light may be used as the second light, or the first light that is polarized by the laser light into the first polarization state may be divided into the first light and the second light.
  • the wavelength conversion device including the wavelength conversion material may be a fixed structure or a structure disposed on a moving device such as a fluorescent wheel.
  • the light source of the light-emitting device may be a combination of two or more light sources, such as a combination of a laser fluorescent light source and a laser light source, in addition to the above-described light source.
  • the spatial polarization distribution modulation device 200 functions to change the polarization distribution characteristics of light.
  • the spatial polarization distribution modulation device includes a liquid crystal modulator, which may be a liquid crystal panel similar to an LCD, including an array of liquid crystal molecules arranged in a two-dimensional array in a panel shape, and the liquid crystal modulator controls the liquid crystal molecules according to the control signal.
  • the direction of the liquid crystal molecular array is thus changed.
  • the polarization direction is changed, so that the polarization distribution of the first light of the incident surface and the exit surface of the liquid crystal modulator is different to form a patterned polarization distribution.
  • the liquid crystal modulator does not have a polarizing filter of a general television panel or a liquid crystal light valve of a projector, and some of the first light is filtered by the polarizing filter and cannot be emitted.
  • control signals acquired by the liquid crystal modulator are generated from environmental detection, navigation information, or manual operations.
  • the environmental information acquired by the signal generating device through the environmental detection system (such as the preceding vehicle, the opposite vehicle information, the weather condition, etc.), the navigation information acquired by the navigation system (such as highway exit, ramp, speed limit, traffic lights, etc.) or the operator's Operation (such as the driver's knob, button, touch, voice control, etc. control operation) generates a preset or calculated pattern to generate a control signal for controlling the liquid crystal modulator, so that the liquid crystal modulator can output a polarization pattern Light.
  • the liquid crystal modulator changes the rotation angle arrangement of the liquid crystal molecular array so that when the first polarization state is
  • the liquid crystal modulator changes the rotation angle arrangement of the liquid crystal molecular array so that when the first polarization state is
  • a light is incident on the liquid crystal modulator, part of the light is converted into a first light of a second polarization state, the first light of the second polarization state exhibits a "right turn” pattern, and the remaining first polarization state
  • a light presents a pattern that has been hollowed out with a "right turn pattern.”
  • the first light of the first polarization state and the second polarization state is transmitted and projected through a series, and the driver passes through a polarizing filter disposed on the driver's side (eg, polarizing filter glasses, polarizing filter windshield film)
  • a "right turn” message contained in the illumination light is extracted to obtain a reminder.
  • the spatial polarization distribution modulation device may also be a non-liquid crystal device including a wave plate region and a non-wave plate region. Wherein the wave plate region is patterned in a direction non-parallel to the incidence of the first light. Preferably, the first light is incident perpendicular to the wave plate region pattern.
  • the first light of the first polarization state is incident on the incident surface of the spatial polarization distribution modulation device, wherein the first light irradiated to the wave plate region is converted into the second polarization state, and the first light irradiated to the non-wave plate region is still The first polarization state is emitted.
  • the pattern in this embodiment will not be variable corresponding to the pattern that the liquid crystal device can change, but the present embodiment has higher economy and performance stability.
  • the waveplate region includes at least two patterned regions, the first light passing through the different patterned regions resulting in a different polarization distribution.
  • the spatial polarization distribution modulation device 200 includes a tunable wave plate device 220 including four patterned regions 221, 222, 223, 224 (of course, the invention is not limited to four regions, but may be other numbers Area), when the illumination system is in a certain state, the first light illuminates only one of the areas.
  • the patterned region 221 includes a wave plate region 221a and a non-wave plate region 221b.
  • the illumination system can control the motion device to switch different patterned regions in the optical path according to the control signal, and the control signal can refer to the technical solution of the above liquid crystal modulator.
  • the moving device is a rotating wheel that is driven by a motor.
  • the motion device can also be a roller, a translating plate, or the like.
  • the patterned region 223 is not provided with a wave plate.
  • the patterned region 223 is located in the optical path for a period of time, the polarization state of the first light is not changed, and the spatial polarization distribution is incident.
  • the first light of the modulating device has the same polarization distribution as the first light emitted by the spatial polarization distribution modulating device, thereby satisfying the lighting requirement that does not require patterned information.
  • the wave plate region 221a is provided with a half-wave plate
  • the non-wave plate region 221b is provided with a common transmission plate (such as a glass plate).
  • the first light of the first polarization state passes through the wave plate region 221a and becomes the first polarization.
  • the first light of the second polarization state orthogonal to the state, and the polarized light passes through the non-wave plate region 221b.
  • the region corresponding to the arrow 221a is the second polarization state light
  • the blank region corresponding to the arrow is the light of the first polarization state.
  • the lens 300 is used to project image light to a predetermined area to form illumination light.
  • the image light comprises a first light emitted by the spatial polarization distribution modulation device.
  • the image light is equivalent to the first light emitted by the spatial polarization distribution modulation device, and in other embodiments, the image light further includes the second light.
  • the first light and the second light share the optical path, or the first light and the second light are combined in the rear optical path of the spatial polarization distribution modulation device, the first light and the second light can be projected through the same lens.
  • first light and the second light are respectively projected to the predetermined area through the first lens and the second lens, thereby collectively constituting the illumination light.
  • the polarization filter device is not provided in the spatial polarization distribution modulation device to prevent the light of a certain polarization state from being filtered, thereby causing a change in the light flux distribution of the emitted light.
  • the illumination system does not include any polarizing filters from the incident surface of the spatial polarization modulation modulation device to the optical path of the exit surface of the lens (including the surface of the exit surface).
  • the spatial polarization distribution modulation device is replaced with transparent glass, the luminous flux of the outgoing light is substantially unchanged.
  • the illumination system may further include a light splitting device disposed between the light emitting device and the spatial polarization distribution modulation device for injecting the first light guide into the spatial polarization distribution along the first light path
  • the modulating means couples the second light guide along the second optical path into the outgoing light path, and the second light and the first light emitted by the spatial polarization distribution modulating means together constitute image light.
  • the light splitting device is a wavelength splitting device (such as a wavelength filter/film), and the light source light is divided into first light and second light according to different wavelength ranges, and the first light is the first wavelength range light,
  • the two lights are light of the second wavelength range, such as blue light and yellow light as described above.
  • the spatial polarization distribution modulation device changes the polarization distribution of the light of the first wavelength range and does not change the polarization distribution of the light of the second wavelength range, so that when the light receiver receives the illumination light by using the polarization filter device, the light of the second wavelength range is obtained
  • the pattern information for example, the first light is blue light and the second light is yellow light, and the receiver will obtain a yellow pattern on a white background.
  • the invention is not limited to the listed colors, other colors are also possible.
  • the spectroscopic device may also be a polarization splitting device (such as a polarizing filter/film) that splits the source light into first light and second light according to different polarization states.
  • the first light and the second light may be the same color or different.
  • the two light beams can be combined into one light again, for example, the first light is blue light and the second light is yellow light; when the two colors are the same or there are more spectra
  • the two can be respectively projected to a predetermined area through the first lens and the second lens of the lens system, such as both being white light, in particular, two polarization states of white light separated by the same white light.
  • the illumination system further includes phase adjustment means disposed in the optical path for adjusting the phase of the illumination light such that the first of the illumination lights is free of wired polarized light.
  • phase adjustment means disposed in the optical path for adjusting the phase of the illumination light such that the first of the illumination lights is free of wired polarized light.
  • some reflecting surfaces have different reflectivities for incident light of different polarization states, especially linearly polarized light of a specific direction, and the reflectances are largely different, for example, some metals face incident light of the same wavelength s-polarized state.
  • the incident light of the p-polarized state has a different reflectance. This will cause the illumination light containing the linearly polarized light to be more likely to destroy the originally emitted polarization distribution pattern when it is incident on the reflective surface.
  • the present embodiment reduces the destruction of the reflection surface to the polarization distribution pattern by converting linearly polarized light that may be contained in the original first light into non-linearly polarized light.
  • the first light in the illumination light contains only light of a circularly polarized state or an elliptically polarized state by adjustment of the phase adjustment means such that polarization patterning when the first light is reflected is minimized.
  • the specific light receiver can filter the illumination light information through the glasses or film at the receiving end.
  • the phase adjustment device is a quarter wave plate that converts linearly polarized light into circularly polarized light or elliptically polarized light.
  • the quarter-wave plate can be disposed in a variety of positions, such as within a light-emitting device (of course, after the exit surface of the light-emitting element), between the light-emitting device and the spatial polarization-distribution device, within the spatial polarization modulation device, and spatially polarizedly. Between the modulation device and the lens or the exit path of the lens.
  • the first polarization state is a linear polarization state
  • the liquid crystal modulator is configured to change the phase of the first light of the first polarization state of the pattern region by ⁇ /2 (ie, The second polarization state) changes the phase of the first light of the non-pattern area by 3 ⁇ /2, and then the outgoing light of the spatial polarization distribution modulation device will be an orthogonal pair of circularly polarized light or elliptically polarized light.
  • the liquid crystal modulator can also set the phase change to other values, and the two polarization states of the outgoing light are orthogonal.
  • the lighting system of the present invention is primarily directed to automotive lighting systems, particularly smart headlamp lighting systems.
  • the illumination system of the present invention can also be applied in the fields of building illumination, monitoring illumination, etc., and can also be applied to a scene of confidential viewing to hide specific information in a uniform light distribution.
  • the illumination system includes a light emitting device 100, a spatial polarization distribution modulation device 210, and a lens 300.
  • the light-emitting device 100 includes an excitation light source 111, a wavelength conversion device 112, and a collection lens 130.
  • the excitation light source 111 emits a blue light B (indicated by a solid line) of a first polarization state (linear polarization state), is incident on the wavelength conversion device 112, and has a wavelength conversion.
  • the device 112 includes a yellow fluorescent material (for example, may be YAG:Ce phosphor, fluorescent glass, fluorescent ceramic, etc.), and the wavelength converting device 112 converts part of the blue light into yellow light Y (indicated by a broken line), and the wavelength converting device 112 simultaneously emits unabsorbed Blu-ray B.
  • a yellow fluorescent material for example, may be YAG:Ce phosphor, fluorescent glass, fluorescent ceramic, etc.
  • the wavelength converting device 112 converts part of the blue light into yellow light Y (indicated by a broken line), and the wavelength converting device 112 simultaneously emits unabsorbed Blu-ray B.
  • the blue light B emitted from the wavelength conversion device 112 still maintains the polarization characteristic, and the yellow light Y emitted from the illuminating center is unpolarized light.
  • the polarized blue light B and the unpolarized yellow light Y enter the spatial polarization distribution modulation device 210, and the spatial polarization distribution modulation device 210 is a liquid crystal modulator in which the polarized blue light B is modulated into a polarization pattern, and the yellow light Y is still unpolarized through the liquid crystal modulator. Light, without a polarizing pattern. Then, the blue light having the polarization distribution and the yellow light having no polarization pattern are projected through the lens 300 to form illumination light.
  • a light receiver that is not equipped with any device will see a piece of white illumination light; and a receiver configured with a polarization filter device filters out part of the blue polarized light in the illumination light, thus seeing a yellowish white background pattern.
  • the wavelength conversion device is of a transmissive type.
  • the wavelength conversion device can also be reflective, that is, the incident surface and the exit surface of the wavelength conversion device are the same surface, and the technical solution can be realized by a reflector with a small hole, or It is realized by a mirror coated in a partial area, a mirror in which a partial area is bored, and the like.
  • the wavelength conversion device 113 of the second embodiment is a moving device.
  • the wavelength conversion device 113 includes at least two regions, the first region is a yellow fluorescent region, and the second region is a blue light transmitting region. Separating the yellow light from the blue light in time series prevents the blue light from being scattered by the wavelength converting material and losing the polarization characteristic.
  • the fluorescent wheel of this embodiment is a transmissive fluorescent wheel.
  • the fluorescent wheel can also be replaced with a reflective fluorescent wheel, and the second area will be replaced by a polarization-preserving reflective area.
  • the difference from FIG. 4 is that the wavelength conversion device 112 of the third embodiment completely converts the blue light excitation light into the second light yellow light receiving laser, and at the same time, provides the first polarization state by adding the second light source 114. The first light of the blue light. After combining the blue first light and the yellow second light, the light is incident on the spatial polarization distribution modulation device 210.
  • the technical solution of this embodiment avoids that the first light is changed by the wavelength conversion device by making the first light independent.
  • the illumination system includes a light emitting device 100, a spatial polarization distribution modulation device 200, and a lens, wherein the lens is composed of a first lens 310 and a second lens 320.
  • the illumination system further includes a beam splitting device 400.
  • the light emitted by the light emitting device 100 includes at least two polarization states, wherein the first light of the first polarization state (indicated by a two-dot chain line) is transmitted through the light splitting device 400 and guided along the first light path to the spatial polarization distribution modulation device 200. After being modulated, it is incident on the first lens 310, and the second light in the second polarization state (indicated by the dotted line) is reflected by the spectroscopic device 400 and reaches the second lens 320 along the second optical path. The first lens 310 and the second lens 320 respectively project the first light and the second light to the predetermined position 500, thereby obtaining illumination light.
  • the light emitted by the light-emitting device 100 is unpolarized white light
  • the light splitting device 400 divides the light into a first light of a first polarization state and a second light state according to a polarization characteristic. Light.
  • the spatial polarization distribution modulation devices in the first embodiment to the fourth embodiment may be replaced with the tunable wave plate device 220 shown in FIG. 3, and details are not described herein again.
  • the light-emitting device 100 of the above-mentioned first embodiment to the third embodiment can be replaced with the light source device shown in FIG. 2, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Polarising Elements (AREA)

Abstract

本发明涉及照明技术领域,公开了一种照明系统,包括:发光装置、空间偏振分布调制装置和镜头;发光装置用于出射光源光,光源光至少包括第一偏振态的第一光;空间偏振分布调制装置在至少部分时段接收第一光,并将至少部分第一偏振态的第一光转换为第二偏振态的第一光,空间偏振分布调制装置能够同时出射第一偏振态和第二偏振态的第一光;空间偏振分布调制装置出射的第一光构成至少部分图像光,镜头用于将所述图像光投射,以形成照明光。本发明在不改变照明光的空间分布的前提下,简单地实现了将照明光的偏振分布图案化,从而使得不同需求的光接收者能够根据需求配置偏振滤光装置以接收不同的照明信息,提高了用户体验。

Description

一种照明系统 技术领域
本发明涉及照明技术领域,尤其涉及一种照明系统。
背景技术
如今,高端汽车的照明系统向智能化方向发展,汽车头灯的出射光光分布控制、自适应大灯渐渐成为高端车型的标配。其中,有汽车通过在路面投射明暗分布的图案,实现个性化照明。例如,有的汽车在转弯时投射左转/右转图案,以告知其他交通参与者,或者提醒自己。
然而,在相关法律法规还不健全的情况下,投射各种图案也会对其他交通参与者造成困扰,甚至引发路怒症。
发明内容
本发明的主要发明构思在于提出一种照明系统,不改变照明系统的出射光的光通量/亮度/照度的空间分布,仅改变出射光的偏振态的空间分布,从而使不同的光接收者根据需要接收不同的光信息。大体上讲,本发明通过空间偏振分布调制装置对光源进行部分偏振控制,产生光强度分布连续,且偏振分布区域化的照明光,结构简单,成本较低。
为实现上述目的,本发明提供的一种照明系统,包括:发光装置、空间偏振分布调制装置和镜头;所述发光装置用于出射光源光,所述光源光至少包括第一偏振态的第一光;所述空间偏振分布调制装置在至少部分时段接收所述第一光,并将至少部分所述第一偏振态的第一光转换为第二偏振态的第一光,所述空间偏振分布调制装置能够同时出射第一偏振态和第二偏振态的第一光,其中,所述第一偏振态不同于所述第二偏振态;所述空间偏振分布调制装置出射的第一光构成至少部分图像光,所述镜头用于将所述图像光投射,以形成照明光。
与现有技术相比,本发明具有如下有益效果:通过空间偏振分布调制装置将光源光包含的第一偏振态的第一光至少部分的转换为第二偏振态,使得空间偏振分布调制装置同时出射第一偏振态与第二偏振态的第一光,该第一 光构成图像光的至少一部分,镜头将该图像光投射形成照明光,该过程相对于没有空间偏振分布调制装置的照明系统,在理论上不改变照明光的光通量/亮度/照度的空间分布的前提下,将照明光的偏振分布图案化,从而使得不同需求的光接收者能够根据需求配置偏振滤光装置以接收不同的照明信息,提高了用户体验。
在一个实施方式中,所述空间偏振分布调制装置包括液晶调制器,所述液晶调制器根据控制信号改变其液晶分子的空间图案。液晶调制器可以是类似LCD的装置,包括呈面板状分布的液晶分子,偏振光经过液晶分子时改变偏振方向,从而使得液晶调制器入射面与出射面的第一光的偏振分布不同,形成图案化的偏振分布。这里需要注意的是,液晶调制器的出射侧不含有一般电视面板或投影机液晶光阀所具有的偏振滤光片,因而无论是偏振态改变的光还是偏振态未改变的光,都从液晶调制器中出射。该技术方案使得图像光的偏振分布调节便利,能够实现各种偏振分布图像的调制。
在一个实施方式中,液晶调制器获取的控制信号产生自环境检测、导航信息或手动操作。信号生成装置通过环境检测系统获取的环境信息、导航系统获取的导航信息或者操作员(如车辆驾驶员)的操作生成预设的或者经计算得到的图案,从而产生控制液晶调制器的控制信号,使得液晶调制器能够输出偏振态图案化的光。
在一个实施方式中,所述空间偏振分布调制装置包括波片区和非波片区,所述波片区在非平行于所述第一光入射的方向上呈图案化。第一光入射到空间偏振分布调制装置的入射面,其中,照射到波片区的第一光被转换为第二偏振态出射,而照射到非波片区的第一光仍以第一偏振态出射。不同于液晶调制器的方案,本实施方式中的波片是不可调的,经过空间偏振分布调制装置的光将呈现预设的固定偏振图案,该实施方式具有更高的经济性,成本较低。在一个实施方式中,优选地,波片区的波片为半波片。
在一个实施方式中,所述波片区包括至少两个图案化区域,所述第一光经过不同的图案化区域后得到不同的偏振分布。相对于单个图案化区域的技术方案,该实施方式可以简单的、经济的通过切换不同的波片图案化区域得到不同的偏振分布,从而满足图像光多样化的需求。
在一个实施方式中,可以通过运动装置切换波片在光路中的图案化区域。 运动装置可以例如是旋转轮盘、滚筒、平移板。
在一个实施方式中,在另一时段内,入射到所述空间偏振分布调制装置的第一光与所述空间偏振分布调制装置出射的第一光的偏振分布相同。该实施方式满足了在不需要差异化照明的一般需求。
在一个实施方式中,从所述空间偏振分布调制装置的入射面到所述镜头的出射面的光路上,该照明系统不包含任何偏振滤光装置。偏振滤光装置会导致光通量/亮度/照度的分布发生变化,并造成光损失。
在一个实施方式中,所述光源光还包括第二光,所述第二光与所述第一光的波长范围不同和/或偏振态不同。第二光不同于第一光,具体地,可以是波长不同,例如一个是蓝光,一个是黄光;还可以是偏振态不同,例如相对于某一入射面,一个是p偏振光、一个是s偏振光,或者一个是偏振光、一个是非偏振光;还可以同时既波长不同,也偏振态不同。
在一个实施方式中,所述第二光为非偏振光,所述第一光与所述第二光的光路重合。该实施方式中,第二光经过空间偏振分布调制装置不会改变偏振态的空间分布,仅由第一光实现图像光的偏振态图案化,一方面能够通过共用光路而使光路结构紧凑化,另一方面还能够避免光接收端明暗图像过大的对比度而造成的视觉疲劳。
在一个实施方式中,包括分光装置,设置在所述发光装置与所述空间偏振分布调制装置之间,用于将所述第一光引导沿第一光路入射到所述空间偏振分布调制装置,并将所述第二光引导沿第二光路进入出射光路,所述第二光与所述空间偏振分布调制装置出射的第一光共同构成所述图像光。该实施方式避免了第二光经过空间偏振分布调制装置的光损失,同样可以避免光接收端明暗图像过大的对比度而造成的视觉疲劳。
在一个实施方式中,所述分光装置为偏振分光装置,所述第一光和第二光为白光。在该实施方式中,由于第一光和第二光都是白光,因此入射到分光装置的光也是白光,该白光经偏振分光装置分光后,分为两个不同偏振态的光,其中的第一光经过空间偏振分布调制装置实现偏振分布图案化,第二光非图案化地直接与偏振分布图案化的第一光合光,避免了使用偏振转换装置(如PCS)将光源光转换为单一偏振态的光,一方面降低了成本,另一方面减少了光学扩展量损伤,此外该技术方案同样可以避免光接收端明暗图像 过大的对比度而造成的视觉疲劳。
在一个实施方式中,所述镜头包括并列设置的第一镜头和第二镜头,所述第一镜头用于投射所述空间偏振分布调制装置出射的第一光,所述第二镜头用于投射所述第二光,所述第一镜头与所述第二镜头投射的光共同构成所述照明光。
在一个实施方式中,所述分光装置为波长分光装置或偏振分光装置,所述第一光为第一波长范围光,所述第二光为第二波长范围光。该实施方式中,通过第一光的偏振分布图案化,光接收者可以通过过滤某一偏振态的光获得包括第一波长范围光和第二波长范围光的照明区域,以及第二波长范围光的图案区域。在一个实施方式中,第一波长范围光为蓝光,第二波长范围光为黄光。
在一个实施方式中,所述发光装置包括激发光源和波长转换装置,所述激发光源发出的激发光被所述波长转换装置转换为受激光,所述波长转换装置的出射光包括激发光和受激光,其中,激发光源为激光光源,激发光为第一光,受激光为第二光。激光光源,尤其是激光半导体光源发出的光为近似线偏振光,可以直接作为第一偏振态的第一光,不需要偏振转换装置。波长转换装置发出的受激光为非偏振光,不适于进行偏振分布图案化,否则会导致成本的增加以及光学扩展量的损失。受激光既可以与第一光沿相同光路出射,也可以通过分光装置沿不同于第一光的光路出射并与第一光合光形成图像光。该实施方式不仅利用了激光荧光技术的高亮度特性,还利用了激光光源的偏振特性与受激光的偏振特性。
在一个实施方式中,包括一设置在光路中的相位调节装置,用于调节所述照明光的相位,使所述照明光中的第一光不含有线偏振光。由于某些反射面对不同偏振方向的线偏振光具有不同的反射率,那么该反射面将会破坏反射光的偏振分布图案,本实施方式通过将原本第一光中可能含有的线偏振光转换为非线偏振光,从而减弱了反射面对偏振分布图案的破坏。
在一个实施方式中,所述照明光中的第一光仅包含圆偏振态的光或椭圆偏振态的光。
在一个实施方式中,第一偏振态与第二偏振态为一对正交偏振态,所述相位调节装置为四分之一波片。当第一偏振态为线偏振态时,第二偏振态也 是线偏振态,通过四分之一波片,能够将第一偏振态和第二偏振态都转换为圆偏振态或椭圆偏振态。四分之一波片可以设置在光路中的任意位置,包括发光装置内、发光装置与空间偏振分布调制装置之间、空间偏振分布调制装置内、空间偏振分布调制装置与镜头之间或者镜头的出射路径上。
附图说明
图1为本发明实施例提供的一种照明系统的功能模块示意图;
图2为本发明一个实施方式中照明系统的发光装置的结构示意图;
图3为本发明一个实施方式中照明系统的空间偏振分布调制装置的结构示意图;
图4为本发明实施例一的照明系统的结构示意图;
图5为本发明实施例二的照明系统的结构示意图;
图6为本发明实施例三的照明系统的结构示意图;
图7为本发明实施例四的照明系统的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
如图1所示,本发明的照明系统10包括发光装置100、空间偏振分布调制装置200和镜头300。其中,发光装置100用于发射光源光,光源光至少包括第一偏振态的第一光。空间偏振分布调制装置在至少部分时段接收第一光,并将至少部分第一偏振态的第一光转换为第二偏振态的第一光,第二偏振态不同于第一偏振态,空间偏振分布调制装置能够同时出射第一偏振态和第二偏振态的第一光。空间偏振分布调制装置出射的第一光构成至少部分图像光,镜头将图像光投射,形成照明光。
本发明的关键点在于,空间偏振分布调制装置能够同时出射被调制的光与未被调制的光,从而确保了出射侧与入射侧的光通量相同(不考虑不可避 免的光损失,即理想状态下),同时使得出射侧的光具有图案化的偏振分布。这样的空间偏振分布调制装置与发光装置和镜头相配合,从而使照明系统能够实现根据不同光接收者的需求,通过配置偏振绿光装置接收不同的照明信息。以汽车照明系统为例,汽车照明系统10发出的照明光照射到地面,经反射后入射到驾驶员的眼中,驾驶员通过设置在驾驶员侧的偏振滤光器(如偏振滤光眼镜、偏振滤光挡风玻璃或玻璃贴膜)将一部分偏振光过滤,从而获得隐含在照明光中的图案信息,与此同时,未装配偏振滤光器的行人将接收所有反射光成分,照明光对其将不具有特殊的图案。
下面对各功能模块逐一进行说明。
<发光装置100>
发光装置100的作用在于提供光源光。该光源光根据照明需求进行波长、偏振态的匹配。例如,对于一般的车辆照明、探照灯照明,光源光通常为白光;对于舞台色彩照明、建筑物外墙照明,光源光可以为黄光、绿光、红光等其他颜色的光。
光源光至少包括第一偏振态的第一光。在一些实施方式中,光源光可以全部为第一偏振态的第一光。在其他实施方式中,光源光还可以包括第二光,第二光与第一偏振态的第一光不同,这里的“不同”既可以是指波长范围不同,也可以是偏振态不同,还可以波长范围与偏振态都不同。波长范围不同可以是两种颜色的光(第一波长范围光和第二波长范围光),如蓝光和黄光、青光和红光,也可以是两种同色异谱的光,如两种波谱不同的白光。偏振态不同可以是两种不同的偏振光,如偏振方向不同,例如相对于某一入射面的p偏振光、s偏振光、左旋偏振光、右旋偏振光,还可以偏振光与非偏振光。
当第二光为非偏振光时,可以使第二光与第一光的光路重合,那么第二光经过空间偏振分布调制装置不会改变偏振态的空间分布,仅由第一光实现图像光的偏振态图案化,一方面能够通过共用光路而使光路结构紧凑化,另一方面还能够避免光接收端明暗图像过大的对比度而造成的视觉疲劳。
此外,无论第二光的偏振特性如何,都可以将第二光通过分光装置引导沿第二光路进入出射光路,而将第一光引导沿第一光路入射到空间偏振分布调制装置,两路光最终通过镜头投射到预定区域形成照明。
发光装置可以包括任何已知的光源,例如卤素灯、气体放电灯、固态光 源。在本发明优选的实施方式中,发光装置包括激光光源,激光光源发出的光具有偏振特性,例如以激光二极管为代表的激光半导体光源发出的光为近似线偏振光,那么这部分激光无需经过偏振转换装置,可以降低成本。如果是卤素灯、气体放电灯或LED之类的非偏振光光源,则可能需要偏振转换装置或偏振分光装置获取第一偏振态的第一光。
如图2所示,为发光装置100的一个实施方式,发光装置100包括光源110和偏振转换装置120,其中光源110发出至少包括第一偏振态和第二偏振态的光,该光经过偏振转换装置120后,完全转换为第一偏振态的光。在该实施方式中,偏振转换装置120为PCS(Polarizing Conversion System)。可以理解,偏振光与非偏振光的组合同样可以作为图2的光源110出射光的组合,该光经过偏振转换装置120后也会得到第一偏振态的光。
发光装置的光源可以为纯激光光源,还可以是激光荧光光源。激光荧光光源利用激光激发波长转换材料(如荧光粉)获取的受激光,同样具有高亮度和高发光效率的特性。对于吸收不完全的波长转换材料,激光荧光光源同时出射未被吸收的激发光与受激光;对于吸收完全的波长转换材料,激光荧光光源仅出射受激光。对于激发光与受激光的混合光,可以通过偏振转换装置全部转换为第一偏振态的第一光,也可以通过波长分光装置分离开,只将其中的一种转换为第一偏振态的第一光;若未被吸收的激发光仍保持偏振特性,则可以直接将其作为第一偏振态的第一光,而将受激光作为第二光。对于只出射受激光的激光荧光光源,可以将受激光作为第二光,或者将受激光偏振转换为第一偏振态的第一光,或者将其分为第一光和第二光。
在激光荧光光源中,包含波长转换材料的波长转换装置可以为固定式结构,也可以为设置在运动装置(如荧光轮)上的结构。
发光装置的光源除了可以为上述光源外,还可以是两种或两种以上光源的组合,例如激光荧光光源与激光光源的组合。
<空间偏振分布调制装置200>
空间偏振分布调制装置200的作用在于改变光的偏振分布特性。
在一个实施方式中,空间偏振分布调制装置包括液晶调制器,该液晶调制器可以是类似于LCD的液晶面板,包括呈面板状二维排列的液晶分子阵列,液晶调制器根据控制信号控制液晶分子的方向,从而改变液晶分子阵列的空 间图案。当偏振光经过液晶分子时,会改变偏振方向,从而使得液晶调制器入射面与出射面的第一光的偏振分布不同,形成图案化的偏振分布。在该实施方式中,液晶调制器不具备一般电视面板或投影机液晶光阀所具有的偏振滤光片,否则将有部分第一光被偏振滤光片过滤而无法出射。
在一个实施方式中,液晶调制器获取的控制信号产生自环境检测、导航信息或手动操作。信号生成装置通过环境检测系统获取的环境信息(如前车、对向车信息、天气状况等)、导航系统获取的导航信息(如高速公路出口、匝道、限速、红绿灯等)或者操作员的操作(如车辆驾驶员的旋钮、按钮、触控、声控等控制操作)生成预设的或者经计算得到的图案,从而产生控制液晶调制器的控制信号,使得液晶调制器能够输出偏振态图案化的光。
举例说明,当导航系统显示将要在下一路口右转,生成“右转”的图案数据,输出给液晶调制器,液晶调制器改变液晶分子阵列的转动角度排布,使得当第一偏振态的第一光入射到液晶调制器时,部分光被转换为第二偏振态的第一光,该第二偏振态的第一光呈现出“右转”的图案,而剩余的第一偏振态的第一光呈现出被挖空了“右转图案”的图案。这些第一偏振态和第二偏振态的第一光经过一系列传递并投射出去,驾驶员通过设置在驾驶员侧的偏振滤光器(如偏振滤光眼镜、偏振滤光挡风玻璃膜)提取了包含在照明光中的“右转”信息,从而获得提醒。
在一个实施方式中,空间偏振分布调制装置还可以是非液晶装置,包括波片区和非波片区。其中,波片区在非平行于第一光入射的方向上呈图案化。优选地,第一光垂直于波片区图案入射。第一偏振态的第一光入射到空间偏振分布调制装置的入射面,其中,照射到波片区的第一光被转换为第二偏振态出射,而照射到非波片区的第一光仍以第一偏振态出射。相对应液晶装置可变化的图案,本实施方式中的图案将不可变,但是本实施方式具有更高的经济性和性能稳定性。
在一个实施方式中,波片区包括至少两个图案化区域,第一光经过不同的图案化区域后得到不同的偏振分布。如图3所示,空间偏振分布调制装置200包括可调波片装置220,包括四个图案化区域221、222、223、224(当然,本发明不限于四个区域,也可以是其他数目的区域),当照明系统处于一确定的状态下,第一光只照射其中的一个区域。图案化区域221包括波片区221a 和非波片区221b。照明系统可以根据控制信号控制运动装置切换不同的图案化区域在光路中,控制信号可以参照上述液晶调制器的技术方案。在图3的实施方式中,运动装置为旋转轮盘,通过马达进行驱动。在其他实施方式中,运动装置还可以是滚筒、平移板等。如图3的可调波片装置220中,图案化区域223不设置波片,在一时段内,当图案化区域223位于光路中时,不改变第一光的偏振态,入射到空间偏振分布调制装置的第一光与空间偏振分布调制装置出射的第一光的偏振分布相同,从而满足了不需要图案化信息的照明需求。
在一个具体实施方式中,波片区221a设置有半波片,而非波片区221b设置普通的透射板(如玻璃板),第一偏振态的第一光经过波片区221a后成为与第一偏振态正交的第二偏振态的第一光,而偏振光经过非波片区221b不变。那么,在图案化区域221的出射侧,对应箭头的221a区域为第二偏振态光,对应箭头周围的空白区域为第一偏振态的光。在光接收端,如果过滤掉第二偏振态的光,将得到一个暗箭头的图案;如果过滤掉第一偏振态的光,将得到一个亮箭头的图案。
<镜头300>
镜头300用于将图像光投射到预定区域,形成照明光。其中图像光包括空间偏振分布调制装置出射的第一光。在一些实施方式中,图像光等同于空间偏振分布调制装置出射的第一光,在另一些实施方式中,图像光还包括第二光。
当第一光与第二光共用光路,或者第一光与第二光在空间偏振分布调制装置的后方光路合光的技术方案下,第一光与第二光可以通过同一个镜头投射出去。
在另外的实施方式中,第一光与第二光分别通过第一镜头和第二镜头投射到预定区域,从而共同构成照明光。
<总体>
在本发明的实施方式中,空间偏振分布调制装置内不设置偏振滤光装置,以避免某一偏振态的光被过滤,从而导致出射光的光通量分布发生变化。
优选地,在一实施方式中,从空间偏振分布调制装置的入射面一直到镜头的出射面(包括出射面的表面)的光路上,该照明系统不包含任何偏振滤 光装置。使得当空间偏振分布调制装置被替换为透明玻璃时,出射光的光通量基本不变。
当光源光包括第一光和第二光时,照明系统还可以包括分光装置,设置在发光装置与空间偏振分布调制装置之间,用于将第一光引导沿第一光路入射到空间偏振分布调制装置,并将第二光引导沿第二光路进入出射光路,第二光与空间偏振分布调制装置出射的第一光共同构成图像光。
在一些实施方式中,分光装置为波长分光装置(如波长滤光片/膜),将光源光按照波长范围的不同分成第一光和第二光,第一光为第一波长范围光,第二光为第二波长范围光,如上述的蓝光和黄光。空间偏振分布调制装置改变第一波长范围光的偏振分布,且不改变第二波长范围光的偏振分布,使得当光接收者利用偏振滤光装置接收照明光时,将得到第二波长范围光的图案信息,以第一光为蓝光、第二光为黄光为例,接收者将得到白底的黄色图案。当然,本发明不限于列举的颜色,其他颜色也可以。
在另一些实施方式中,分光装置还可以为偏振分光装置(如偏振滤光片/膜),将光源光按照偏振态的不同分成第一光和第二光。第一光与第二光可以颜色相同,也可以不同。当第一光与第二光颜色不同时,两者可以再次波长合光为一束光,例如第一光为蓝光、第二光为黄光的情形;当两者颜色相同或有较多波谱重叠时,两者可以通过镜头系统的第一镜头和第二镜头分别投射到预定区域,如两者都是白光,特别是由同一束白光分出的两个偏振态的白光。
在一些实施方式中,照明系统还包括设置在光路中的相位调节装置,用于调节照明光的相位,使所述照明光中的第一光不含有线偏振光。通常的,一些反射面对于入射的不同偏振态的光具有不同的反射率,尤其是特定方向的线偏振光,反射率差别较大,例如某些金属面对同波长的s偏振态的入射光和p偏振态的入射光具有不同的反射率。这将导致含有线偏振光的照明光入射到反射面时将更可能破坏原本出射的偏振分布图案。本实施方式通过将原本第一光中可能含有的线偏振光转换为非线偏振光,从而减弱了反射面对偏振分布图案的破坏。
在一些实施方式中,通过相位调节装置的调节,照明光中的第一光仅含有圆偏振态或椭圆偏振态的光,使得第一光被反射时的偏振图案化被破坏的 最小。同时,特定光接收者可以通过接收端的眼镜或贴膜过滤得到照明光信息。
由上述光源的介绍中所述的,很容易通过激光光源的使用得到线偏振光,因此第一偏振态和第二偏振态通常为线偏振光,该方案也符合光学器件的节省。为了得到圆偏振光或椭圆偏振光,在一些实施方式中,相位调节装置为四分之一波片,该波片可以将线偏振光转换为圆偏振光或椭圆偏振光。该四分之一波片可以设置在多种位置,例如发光装置内(当然是发光元件的出射面之后)、发光装置与空间偏振分布调制装置之间、空间偏振分布调制装置内、空间偏振分布调制装置与镜头之间或者镜头的出射路径上。
在一些空间偏振分布调制装置为液晶调制器的实施方式中,第一偏振态为线偏振态,液晶调制器设置为将图案区域的第一偏振态的第一光的相位改变π/2(即第二偏振态),将非图案区域的第一光的相位改变3π/2,那么空间偏振分布调制装置的出射光将是正交的一对圆偏振光或椭圆偏振光。当然,液晶调制器也可以将相位改变设置为其他数值,以出射光的两种偏振态正交为优。
本发明的照明系统主要针对汽车照明系统,特别是智能前照灯照明系统。当然,本发明的照明系统还可以应用在建筑物照明、监控照明等领域,还可以应用在保密观影的场景,以使特定的信息隐藏在均匀的光分布中。
下面列举几个具体实施例进行进一步说明。
实施例一
请参见图4,照明系统包括发光装置100、空间偏振分布调制装置210和镜头300。其中,发光装置100包括激发光源111、波长转换装置112和收集透镜130,激发光源111发出第一偏振态(线偏振态)的蓝光B(实线表示),入射到波长转换装置112,波长转换装置112包括黄色荧光材料(例如可以是YAG:Ce荧光粉、荧光玻璃、荧光陶瓷等),波长转换装置112将部分蓝光转换为黄光Y(虚线表示),波长转换装置112同时出射未被吸收的蓝光B。
在本实施例中,波长转换装置112出射的蓝光B仍保持了偏振特性,而由发光中心发出的黄光Y为非偏振光。
偏振蓝光B与非偏振的黄光Y进入空间偏振分布调制装置210,空间偏振分布调制装置210为液晶调制器,其中偏振蓝光B被调制为偏振图案,而 黄光Y经过液晶调制器仍然是非偏振光,不具有偏振图案。而后,具有偏振分布的蓝光与无偏振图案的黄光经镜头300投射出去形成照明光。
在光接收端,未配置任何装置的光接收者将看到一片白色照明光;而配置了偏振滤光装置的接收者过滤掉了照明光中的部分蓝色偏振光,因而看到白底黄色图案。
本实施例中,波长转换装置为透射式。在本实施例一的变形实施例中,波长转换装置还可以为反射式,即波长转换装置的入射面与出射面为同一表面,该技术方案可以通过带小孔的反射器方式实现,还可以通过部分区域镀膜的反射镜、部分区域挖孔的反射镜等方式实现。
实施例二
请参见图5,与图4的区别在于,本实施例二的波长转换装置113为一运动装置,该运动装置为一荧光轮,通过马达驱动旋转而使不同区域处于激发光的照射路径中。
本实施例中,波长转换装置113至少包括两个区域,第一区域为黄色荧光区域,第二区域为蓝光透射区域。将黄光与蓝光在时序上分离开,可以避免蓝光被波长转换材料散射而丧失偏振特性。
本实施例的荧光轮为透射式荧光轮,同理,在本实施例二的变形实施例中,荧光轮也可以替换为反射式荧光轮,那么第二区域将替换为保偏振的反射区。
实施例三
请参见图6,与图4的区别在于,本实施例三的波长转换装置112完全将蓝光激发光转换为第二光黄色受激光,同时,通过增加设置第二光源114,提供第一偏振态的蓝光第一光。将蓝光第一光与黄光第二光合光后,引导入射至空间偏振分布调制装置210。
该实施例的技术方案通过使第一光独立,避免了第一光被波长转换装置改变偏振特性。
实施例四
请参见图7,照明系统包括发光装置100、空间偏振分布调制装置200和镜头,其中镜头由第一镜头310和第二镜头320组成,此外,照明系统还包括分光装置400。
发光装置100发出的光至少包括两种偏振态,其中,第一偏振态的第一光(双点划线表示)透射过分光装置400,沿第一光路被引导入射到空间偏振分布调制装置200,经调制后入射到第一镜头310,第二偏振态的第二光(点化线表示)则被分光装置400反射,沿第二光路到达第二镜头320。第一镜头310和第二镜头320分别投射第一光和第二光到预定位置500,从而获得照明光。
在实施例四中,按照一个具体的方案,发光装置100发出的光为非偏振的白光,分光装置400按照偏振特性将其分为第一偏振态的第一光和第二偏振态的第二光。
上述实施例一至实施例四中的空间偏振分布调制装置都可以替换为图3所示的可调波片装置220,此处不再赘述。
上述实施例一至实施例三中的发光装置100都可以替换为图2所示的光源装置,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种照明系统,其特征在于,包括:
    发光装置、空间偏振分布调制装置和镜头;
    所述发光装置用于出射光源光,所述光源光至少包括第一偏振态的第一光;
    所述空间偏振分布调制装置在至少部分时段接收所述第一光,并将至少部分所述第一偏振态的第一光转换为第二偏振态的第一光,所述空间偏振分布调制装置能够同时出射第一偏振态和第二偏振态的第一光,其中,所述第一偏振态不同于所述第二偏振态;
    所述空间偏振分布调制装置出射的第一光构成至少部分图像光,所述镜头用于将所述图像光投射,以形成照明光。
  2. 根据权利要求1所述的照明系统,其特征在于,所述空间偏振分布调制装置包括液晶调制器,所述液晶调制器根据控制信号改变其液晶分子的空间图案。
  3. 根据权利要求1所述的照明系统,其特征在于,所述空间偏振分布调制装置包括波片区和非波片区,所述波片区在非平行于所述第一光入射的方向上呈图案化。
  4. 根据权利要求3所述的照明系统,其特征在于,所述波片区包括至少两个图案化区域,所述第一光经过不同的图案化区域后得到不同的偏振分布。
  5. 根据权利要求1所述的照明系统,其特征在于,所述光源光还包括第二光,所述第二光与所述第一光的波长范围不同和/或偏振态不同。
  6. 根据权利要求5所述的照明系统,其特征在于,所述第二光为非偏振光,所述第一光与所述第二光的光路重合。
  7. 根据权利要求5所述的照明系统,其特征在于,包括分光装置,设置在所述发光装置与所述空间偏振分布调制装置之间,用于将所述第一光引导沿第一光路入射到所述空间偏振分布调制装置,并将所述第二光引导沿第二光路进入出射光路,所述第二光与所述空间偏振分布调制装置出射的第一光共同构成所述图像光。
  8. 根据权利要求7所述的照明系统,其特征在于,所述分光装置为偏振 分光装置,所述第一光和第二光为白光。
  9. 根据权利要求7所述的照明系统,其特征在于,所述分光装置为波长分光装置或偏振分光装置,所述第一光为第一波长范围光,所述第二光为第二波长范围光。
  10. 根据权利要求1所述的照明系统,其特征在于,包括一设置在光路中的相位调节装置,用于调节所述照明光的相位,使所述照明光中的第一光不含有线偏振光。
PCT/CN2018/094731 2018-02-12 2018-07-06 一种照明系统 WO2019153639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810143890.X 2018-02-12
CN201810143890.XA CN110160002B (zh) 2018-02-12 2018-02-12 一种照明系统

Publications (1)

Publication Number Publication Date
WO2019153639A1 true WO2019153639A1 (zh) 2019-08-15

Family

ID=67549163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094731 WO2019153639A1 (zh) 2018-02-12 2018-07-06 一种照明系统

Country Status (2)

Country Link
CN (1) CN110160002B (zh)
WO (1) WO2019153639A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780823B (zh) * 2021-07-20 2022-10-11 泓邦科技有限公司 照明系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425274A (zh) * 2007-11-01 2009-05-06 奇美电子股份有限公司 液晶显示装置的驱动方法及液晶显示装置
CN102854731A (zh) * 2012-07-24 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
US20130201084A1 (en) * 2012-02-07 2013-08-08 Wintek Corporation Naked eye type and glasses type switchable stereoscopic display device
CN105182637A (zh) * 2015-10-13 2015-12-23 武汉华星光电技术有限公司 具有防偷窥功能的显示系统及其驱动方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128420B2 (en) * 2001-07-06 2006-10-31 Explay Ltd. Image projecting device and method
US7324280B2 (en) * 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
US20100245771A1 (en) * 2009-03-26 2010-09-30 Jiangsu Lexvu Electronics Co., Ltd. Polarization conversion assembly and single-imager micro projection engine
US8408708B2 (en) * 2009-05-22 2013-04-02 Reald Inc. Polarization modulation wheel
JP6131736B2 (ja) * 2013-06-25 2017-05-24 大日本印刷株式会社 投射装置および投射型表示装置
CN103488025B (zh) * 2013-09-26 2016-01-13 北京空间机电研究所 一种环形滤光片轮

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425274A (zh) * 2007-11-01 2009-05-06 奇美电子股份有限公司 液晶显示装置的驱动方法及液晶显示装置
US20130201084A1 (en) * 2012-02-07 2013-08-08 Wintek Corporation Naked eye type and glasses type switchable stereoscopic display device
CN102854731A (zh) * 2012-07-24 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN105182637A (zh) * 2015-10-13 2015-12-23 武汉华星光电技术有限公司 具有防偷窥功能的显示系统及其驱动方法

Also Published As

Publication number Publication date
CN110160002B (zh) 2022-02-25
CN110160002A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US10473284B2 (en) Apparatus for spatially and spectrally adaptable dichromatic white light source using spatial light modulator
US10174895B2 (en) Vehicle headlamp unit and vehicle headlamp system
US7684007B2 (en) Adaptive and interactive scene illumination
US9152021B2 (en) Light source, wavelength conversion method, wavelength conversion device, and system for light source
JP6564568B2 (ja) 車両用前照灯ユニット、車両用前照灯システム
US10831087B2 (en) Illumination system and projection apparatus
EP3514623B1 (en) Illumination system and projection apparatus
US7101049B2 (en) Projector optics and projector with light source of LEDs
WO2015072039A1 (ja) 固体光源装置とこれを用いた車両用灯具、映像表示装置、及び固体光源装置の駆動方法
EP3021039B1 (en) Headlights having one light source module for a high beam and a low beam
CN209765253U (zh) 偏光旋转装置及投影装置
US9328887B2 (en) Enhanced illumination efficacy of white color from green laser and magenta phosphor
US10845690B2 (en) Illumination system and projection apparatus
US10162253B2 (en) Illumination device and projector
JP6422361B2 (ja) 車両用前照灯ユニット、車両用前照灯システム
WO2016116975A1 (ja) 光源装置、画像表示装置、及び光源モジュール
WO2017208334A1 (ja) 光源装置とそれを利用した電子装置
CN208969415U (zh) 照明系统、控制单元及投影装置
WO2019153639A1 (zh) 一种照明系统
CN109564377A (zh) 投影仪
CN108613110B (zh) 一种光源系统、汽车照明系统及控制方法
CN110908227B (zh) 偏光旋转装置及投影装置
EP3689677A1 (en) Lighting device and method for illumination
US20220113613A1 (en) Projection display system and method
CN111418118B (zh) 用于为交通工具生成激光的激光源单元和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905366

Country of ref document: EP

Kind code of ref document: A1