WO2019153333A1 - Pon-can总线架构及机器人系统 - Google Patents

Pon-can总线架构及机器人系统 Download PDF

Info

Publication number
WO2019153333A1
WO2019153333A1 PCT/CN2018/076454 CN2018076454W WO2019153333A1 WO 2019153333 A1 WO2019153333 A1 WO 2019153333A1 CN 2018076454 W CN2018076454 W CN 2018076454W WO 2019153333 A1 WO2019153333 A1 WO 2019153333A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
pon
bus architecture
optical fiber
robot system
Prior art date
Application number
PCT/CN2018/076454
Other languages
English (en)
French (fr)
Inventor
黄晓庆
朱显忠
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to CN201880001052.7A priority Critical patent/CN108702557B/zh
Priority to PCT/CN2018/076454 priority patent/WO2019153333A1/zh
Publication of WO2019153333A1 publication Critical patent/WO2019153333A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects

Definitions

  • the present disclosure relates to the field of communication control, and in particular, to a PON-CAN bus architecture and a robot system.
  • CAN Controller Area Network
  • the characteristic of CAN bus is that data communication has no master-slave. Any node can initiate data communication to any other node(s) without being single. Node corruption causes bus ⁇ effects.
  • the maximum transmission rate of the CAN bus is 1 Mbps, and as the distance between the two nodes increases, the communication speed of the CAN bus will become slower, resulting in a limited number of nodes connected to the CAN bus.
  • the main purpose of the present disclosure is to provide a PON-CAN bus architecture and a robot system to solve the problem that the existing CAN bus has a low transmission rate and a limited number of connection nodes.
  • a first aspect of the present disclosure provides a PON-CAN bus architecture, including a fiber optic bus and a total information device connected to the optical fiber bus, the optical fiber bus being asymmetric Coupler interconnection formed;
  • the asymmetric coupler is configured to branch out of the next level network
  • the total information device is configured to perform communication interaction with the next-level network through the optical fiber bus.
  • a second aspect of the present disclosure provides a robot system including the PON-CAN bus architecture of the first aspect, and respective terminal control systems and terminal sensing devices of the robot connected to the PON-CAN bus architecture .
  • PON Passive Optical Network
  • the PON-CAN bus architecture based on passive optical networking and asymmetric coupler is adopted to avoid electromagnetic interference effects. There is no bandwidth reduction between the levels, which can provide very high bandwidth, which can meet the high-speed transmission requirements even when the connected nodes are increasing, which solves the problem of low communication speed and node connection of the existing CAN bus.
  • the limited problem can also effectively solve the Ethercat relay exchange problem and improve the system electromagnetic compatibility stability.
  • FIG. 1 is a schematic structural diagram of a PON-CAN bus architecture according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a PON-CAN bus architecture of a star network according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a PON-CAN bus architecture of a ring network according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a PON-CAN bus architecture of a linear networking according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an asymmetric coupler according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a robot system based on a PON-CAN bus architecture according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing the connection between the servo systems of the left arm and the PON-CAN bus architecture branched by the asymmetric coupler 4 of FIG. 6;
  • FIG. 8 is a schematic diagram showing the connection between the servo systems of the right arm and the PON-CAN bus architecture branched by the asymmetric coupler 5 of FIG. 6;
  • FIG. 9 is a schematic diagram showing the connection between the servo systems of the left leg and the PON-CAN bus architecture branched by the asymmetric coupler 6 of FIG. 6;
  • FIG. 10 is a schematic diagram showing the connection between the servo systems of the right leg and the PON-CAN bus architecture branched by the asymmetric coupler 7 of FIG. 6;
  • FIG. 11 is a schematic diagram showing the connection between the servo systems of the waist and the PON-CAN bus architecture branched by the asymmetric coupler 8 of FIG. 6;
  • FIG. 12 is a schematic diagram showing the connection between the servo systems of the head and the PON-CAN bus architecture branched by the asymmetric coupler 9 of FIG. 6;
  • FIG. 13 is a schematic structural diagram of a bilinear networking robot system according to an embodiment of the present disclosure.
  • the PON-CAN bus architecture includes a total information device 101, and an optical fiber bus connected to the total information device 101, wherein the optical fiber bus is composed of multiple Symmetric coupler interconnections are formed.
  • the fiber optic bus 102 shown in FIG. 1 includes a plurality of asymmetric couplers 103 interconnected, wherein FIG. 1 is only illustrated by a linear interconnection between asymmetric couplers, and in specific implementations, an asymmetric coupler Other interconnection methods may be used, or a plurality of interconnection methods may be combined to form a fiber bus.
  • the asymmetric coupler in the optical fiber bus is used to branch out of the next-level network, and the total information device is configured to perform communication interaction with the next-level network through the optical fiber bus.
  • the total information device may be served by different devices for different application scenarios.
  • the total information device may be a host computer in a robot system.
  • the PON-CAN bus architecture provided by the embodiments of the present disclosure can also be applied to systems such as automobiles, airplanes, and the like.
  • the next level network connected by the asymmetric coupler includes at least an ONU connected to the asymmetric coupler (Optical A network unit, a control device, and a terminal device connected to the ONU control device.
  • the ONU control device is configured to convert an optical signal transmitted by the asymmetric coupler into an electrical signal, and transmit the electrical signal to the terminal device to implement communication control between the total information device and the terminal device.
  • the transmission medium constituting the optical fiber bus can be passive components, thereby avoiding electromagnetic interference, so that the system can be applied in a complicated and harsh environment, thereby improving the versatility of the system.
  • the PON-CAN bus architecture consisting of a passive optical network and an asymmetric coupler, there is no bandwidth reduction between the layers, which can provide very high bandwidth, and thus, as the number of connected nodes increases. It can meet the high-speed transmission requirements, solve the problem that the existing CAN bus communication rate is low, the number of node connections is limited, and the system electromagnetic compatibility stability is improved.
  • the interconnection of asymmetric couplers in the fiber-optic bus in the PON-CAN bus architecture may include star interconnect, ring interconnect, and linear interconnect or hybrid topology.
  • the networking structure formed by the above three interconnection methods is illustrated in FIG. 2, FIG. 3 and FIG.
  • the star network formed by the star-shaped interconnection between the asymmetric couplers is as shown in FIG. 2, and a ring-shaped central network is formed by N asymmetric couplers, and then asymmetrically coupled in the ring network.
  • the branch branches out of the next level to form a star communication network.
  • the asymmetric couplers 1 to N each asymmetric coupler branches out to be connected to another asymmetric coupler, that is, the branched network (indicated by a linear network in Figure 2) Again connected to the various sensing and control devices (illustrated in Figure 2 as terminal devices) by an asymmetrical coupler to form a star-shaped PON-CAN bus system.
  • the number of asymmetric couplers of the ring type node N can be selected as the nth power of 2, for example, the number of asymmetric couplers on the fiber bus 102 (the ring type network shown by the thick solid line in FIG. 2) can be 128. One.
  • the annular network formed by the annular interconnection between the asymmetric couplers is as shown in FIG. 3.
  • the asymmetric couplers 1 to N and the total information device 101 form a ring through a ring connection, and the data is concentrated in the loop. Data information is transmitted to each terminal device through a fiber loop.
  • FIG. 4 A linear network formed by linear interconnection between asymmetric couplers is shown in FIG. 4. Referring to FIG. 3, the asymmetric couplers 1 to N are linearly connected to the total information device 101 in sequence.
  • the PON-CAN bus architecture can have multiple optical fiber buses, and the interconnection manner of each optical fiber bus can be different, and the asymmetric coupling of the same optical fiber bus.
  • the device can be connected in a variety of ways.
  • the next-level networking of each asymmetric coupler branching in the optical fiber bus is only indicated by a linear networking including an ONU controller and a terminal device, and is implemented in a specific implementation.
  • the next-level networking that branches out from each asymmetric coupler in the fiber-optic bus includes a network of a star network, a ring network, and a linear network. This disclosure does not limit this.
  • the asymmetric coupler includes a plurality of ports, and the asymmetric coupler is preset with a corresponding split ratio for each port such that an optical signal entering from a certain port will be in accordance with The split ratio of the port should be split from the other outgoing ports.
  • the asymmetric coupler can transmit a part of the optical signal transmitted on the optical fiber bus to the ONU controller connected to the asymmetric coupler, so that the ONU controller converts the electrical signal into electrical signal transmission.
  • the terminal device another part of the optical signal is split onto the optical fiber bus and continues to be transmitted to the next asymmetric coupler.
  • the split ratio of the asymmetric coupler can be customized according to actual application conditions, which is not limited in this disclosure.
  • the asymmetric coupler 103 includes a first port A1, a second port A2, a third port A3, and a beam splitting device B.
  • the first port A1 and the third port A3 are serially connected in the optical fiber bus, and the second port A2 is connected to the ONU controller. .
  • the optical splitting device B is configured to: when the optical fiber bus 102 inputs an optical signal from the first port A1 of the asymmetric coupler, the optical signal is removed from the second optical signal according to the split ratio corresponding to the first port A1.
  • the port A2 and the third port A3 are divided and transmitted; when the ONU controller inputs the optical signal from the second port A2 of the asymmetric coupler, the optical signal is transmitted from the first port A1 and the first according to the split ratio corresponding to the second port A2.
  • Three-port A3 shunt transmission when the optical bus 102 inputs an optical signal from the third port A3 of the asymmetric coupler, the optical signal is shunted from the second port A2 and the first port A1 according to the split ratio corresponding to the third port A3 transmission.
  • the split ratio of the first port A1 of the asymmetric coupler refers to the split value of the second port A2 than the split value of the third port A3, and the split ratio of the third port A3 refers to the split ratio of the second port A2.
  • the split value of the first port A1, and the values of the split ratios of the first port A1 and the third port A3 are the same.
  • the 127/128 optical signal is directed to the third port A3 and the 1/128 optical signal is directed to the second port A2 by the splitting device according to the splitting ratio 1/127.
  • the 127/128 optical signal is directed to the first port A1 and the 1/128 optical signal to the second port A2 according to the same splitting ratio 1:127.
  • the split ratio 1/127 is only an example.
  • the split ratio of the first port and the second port is determined according to the actual use, and may be a mode of 1: (N-1), and N is a n-th power of 2
  • N is a n-th power of 2
  • a total of 64 ONU devices are connected, and the split ratio of the first port and the second port of the asymmetric coupler may be pre-customized to 1:63, which is not limited in the disclosure.
  • the split ratio of the second port of the asymmetric coupler may be equal to 1, that is, the signal sent by the ONU device may be symmetrically transmitted to both ends of the fiber bus via the ONU controller to implement communication between different terminal devices.
  • the above PON-CAN bus architecture can realize the continuation transmission of the bus through the access of the asymmetric coupler, and realize the bus cascade control between various subsystems and terminal devices in this way.
  • a PON-CAN internal bus control system can be formed by interconnecting as shown in FIG. 2, FIG. 3 or FIG. 4, and each ECU (Electronic Control Unit) of the vehicle is connected. ), such as car network communication module, vehicle central gateway, vehicle controller, power controller, etc.
  • multiple topological terminals can be connected according to the actual needs of the system, and the problem of node limitation can be solved, especially for a system with a large number of nodes, such as a robot system, and the asymmetric coupler can be used as a miniaturized connector in a compact space.
  • Connecting multiple device terminals effectively increases the number of bus node connections.
  • the bus transmission medium is a passive device, it is possible to achieve very good anti-electromagnetic interference, so that it can be applied in a complicated and harsh environment.
  • an embodiment of the present disclosure further provides a robot system including the PON-CAN bus architecture provided by the above embodiment, and each terminal of a robot connected to the PON-CAN bus architecture. Control system and terminal sensing device.
  • the existing robot systems usually use RS-485 bus-based communication control, or CAN bus-based communication control, or Ethernet-based Ethercat technology for communication control.
  • the RS-485 bus theoretical communication rate is 10Mbps, and the communication rate will decrease as the communication distance increases. Only under the 20kbps rate, the longest specified cable length can be used.
  • the CAN bus has a maximum transfer rate of 1 Mbps, and as the CAN Bus two-node distance increases, CAN The bus communication rate will be slower, and the same problem as RS-485, in the case of multi-node control transmission, can not meet the high rate requirements.
  • Ethercat technology is an Ethernet-based open architecture fieldbus system that uses relay switching technology because the repeater regenerates (restores) the received attenuated signal to the state it was transmitting and forwards it. Going out leads to increased latency and is difficult to meet the real-time and efficient communication requirements of high bandwidth rates under multiple devices.
  • the motion control device is the core of the robot, which requires high real-time data acquisition and control, and low-bandwidth data transmission cannot meet the requirements.
  • the control devices and terminals of the robot system can be connected through the PON-CAN bus architecture, thereby improving the transmission rate and realizing high-speed and secure communication within the system.
  • the PON-CAN bus architecture node has strong scalability, it can connect multiple robot topology terminals according to the actual needs of the system, and solve the problem of node limitation in the existing robot bus system, and ensure that the node can be satisfied even when the node is continuously increased. High rate transmission requirements.
  • FIG. 6 is a schematic structural diagram of a robot system based on a PON-CAN bus architecture.
  • the host computer in the robot system serves as a total information device in the PON-CAN bus architecture, and the median in the robot system Machine system (such as the next-level network branched by the asymmetric coupler 2 shown in FIG. 6), power management system (such as the next-level network branched by the asymmetric coupler 1 shown in FIG. 6), lower position
  • the machine control system (such as the lower-level network branched by the asymmetric coupler 3 shown in FIG. 6), the servo system of each limb joint, and the corresponding terminal devices of each limb joint are located respectively with the PON-CAN bus architecture
  • the next level of network connected by the fiber optic bus is located respectively with the PON-CAN bus architecture
  • the next level of network connected by the fiber optic bus is located respectively with the PON-CAN bus architecture
  • FIG. 7 is a schematic diagram of the connection between the servo system of the left arm and the PON-CAN bus architecture branched by the asymmetric coupler 4 of FIG. 6, and FIG. 8 is the servo of the right arm branched by the asymmetric coupler 5 of FIG.
  • FIG. 9 is a schematic diagram of the connection between the servo system of the left leg and the PON-CAN bus architecture branched by the asymmetric coupler 6 in FIG. 6, and
  • FIG. 10 is the asymmetric coupler of FIG.
  • FIG. 7 is a schematic diagram of the connection between the servo system of the right leg and the PON-CAN bus architecture
  • FIG. 11 is a schematic diagram of the connection between the servo systems of the waist and the PON-CAN bus architecture branched by the asymmetric coupler 8 in FIG. 6,
  • FIG. 6 is a schematic diagram showing the connection between the servo systems of the head and the PON-CAN bus architecture branched by the asymmetric coupler 9.
  • the PON-CAN bus architecture may include multiple optical fiber buses, such as a dual-loop, bilinear networking, etc. by using a single complex line.
  • 13 is a schematic diagram of a bilinear networking, in which a robotic system uses a fiber optic bus in a PON-CAN bus architecture as a main fiber bus of the robot system, and when the main fiber bus fails, the PON-CAN bus Any other fiber bus in the architecture switches from the alternate fiber bus to work as the fiber bus.
  • Two optical fiber transceivers are used in each ONU controller to realize two-way communication of the system to ensure the safety and reliability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种PON-CAN总线架构及机器人系统,所述PON-CAN总线架构包括光纤总线以及与所述光纤总线相连的总信息设备,所述光纤总线由多个不对称耦合器互联形成;所述不对称耦合器用于分支出下一级网络;所述总信息设备用于通过所述光纤总线与所述下一级网络进行通信交互。所述机器人系统包括所述PON-CAN总线架构,以及连接到所述PON-CAN总线架构的机器人的各个终端控制系统以及终端传感设备。

Description

PON-CAN总线架构及机器人系统 技术领域
本公开涉及通信控制领域,尤其涉及一种PON-CAN总线架构及机器人系统。
背景技术
CAN是控制器局域网络(Controller Area Network)的简称,CAN总线的特点是数据通信没有主从之分,任意一个节点可以向任何其他(一个或多个)节点发起数据通信,同时不会受到单个节点损坏导致总线瘫痪影响。但是,相关技术中,CAN总线最大传输速率为1Mbps,并且随着两节点距离的增大,CAN总线的通信速率将变慢,致使CAN总线连接的节点数量受限。
随着科学科技的发展,控制系统的应用范围不断扩大,受控制的节点越来越多,例如机器人系统,其具有运动量大、传感器多、关节多等特点,因此对节点数、指令响应速度以及传输速率的要求也会越来越高。而现有的CAN总线网络在多节点控制传输的情况下,无法满足高速率的要求。
发明内容
本公开的主要目的是提供一种PON-CAN总线架构及机器人系统,以解决现有CAN总线传输速率低、连接节点数受限的问题。
为了实现上述目的,本公开第一方面提供一种PON-CAN总线架构,所述PON-CAN总线架构包括光纤总线以及与所述光纤总线相连的总信息设备,所述光纤总线由多个不对称耦合器互联形成;
所述不对称耦合器用于分支出下一级网络;
所述总信息设备用于通过所述光纤总线与所述下一级网络进行通信交互。
本公开第二方面提供一种机器人系统,所述机器人系统包括第一方面所述的PON-CAN总线架构,以及连接到所述PON-CAN总线架构的机器人的各个终端控制系统以及终端传感设备。
PON(Passive Optical Network:无源光纤网络)是纯介质网络,采用本公开提供的技术方案,基于无源光纤组网以及不对称耦合器构成的PON-CAN总线架构,避免了电磁干扰影响,并且层级之间不会造成带宽消减,从而可以提供非常高的带宽,进而在所连接的节点不断增加的情况下也可以满足高速率的传输要求,解决了现有CAN总线通信速率低,节点连接数受限的问题,也可以有效解决Ethercat的中继交换问题,且提高了系统电磁兼容稳定性。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种PON-CAN总线架构的结构示意图;
图2为本公开实施例提供的星型组网的一种PON-CAN总线架构的结构示意图;
图3为本公开实施例提供的环形组网的一种PON-CAN总线架构的结构示意图;
图4为本公开实施例提供的线性组网的一种PON-CAN总线架构的结构示意图;
图5为本公开实施例提供的一种不对称耦合器的结构示意图;
图6为本公开实施例提供的基于PON-CAN总线架构的一种机器人系统的结构示意图;
图7是图6中不对称耦合器4分支出的左臂各伺服系统与PON-CAN总线架构的连接示意图;
图8是图6中不对称耦合器5分支出的右臂各伺服系统与PON-CAN总线架构的连接示意图;
图9是图6中不对称耦合器6分支出的左腿各伺服系统与PON-CAN总线架构的连接示意图;
图10是图6中不对称耦合器7分支出的右腿各伺服系统与PON-CAN总线架构的连接示意图;
图11是图6中不对称耦合器8分支出的腰部各伺服系统与PON-CAN总线架构的连接示意图;
图12是图6中不对称耦合器9分支出的头部各伺服系统与PON-CAN总线架构的连接示意图;
图13为本公开实施例提供的一种双线性组网的机器人系统的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本公开实施例提供一种PON-CAN总线架构,如图1所示,PON-CAN总线架构包括总信息设备101,以及该总信息设备101连接的光纤总线,其中,该光纤总线由多个不对称耦合器互联形成。例如,图1中所示的光纤总线102,包括多个不对称耦合器103互联形成,其中,图1只是以不对称耦合器之间的线性互联进行示意,在具体实施时,不对称耦合器之间可以采用其他互联方式,或者采用多种互联方式组合构成光纤总线。
具体地,光纤总线中的不对称耦合器用于分支出下一级网络,该总信息设备用于通过所述光纤总线与该下一级网络进行通信交互。
值得说明的是,针对不同的应用场景,该总信息设备可以由不同的设备担任,例如在机器人系统中,该总信息设备可以是机器人系统中的上位机。示例地,本公开实施例提供的PON-CAN总线架构还可以应用在汽车,飞机等系统中。
可选地,不对称耦合器连接的下一级网络至少包括与所述不对称耦合器相连的ONU(Optical Network Unit,光网络单元)控制设备,以及与所述ONU控制设备相连的终端设备。该ONU控制设备用于将不对称耦合器传输过来的光信号转化为电信号,并将该电信号传输给终端设备,实现总信息设备与终端设备之间的通信控制。
采用本公开提供的技术方案,构成光纤总线的传输介质可以均为无源器件,从而避免电磁干扰,使得系统可以应用在复杂恶劣的环境中,提升了系统的通用性。并且,基于无源光纤组网以及不对称耦合器构成的PON-CAN总线架构,层级之间不会造成带宽消减,从而可以提供非常高的带宽,进而在所连接的节点不断增加的情况下也可以满足高速率的传输要求,解决了现有CAN总线通信速率低,节点连接数受限的问题,且提高了系统电磁兼容稳定性。
为了使本领域技术人员更加理解本公开实施例提供的技术方案,下面对本公开实施例提供的PON-CAN总线架构进行详细说明。
首先,PON-CAN总线架构中光纤总线中不对称耦合器的互联方式可以包括星型互联,环形互联以及线性互联或者混合拓扑结构方式。下面以图2,图3和图4对采用上述三种互联方式形成的组网结构进行示意。
具体地,不对称耦合器之间采用星型互联形成的星型组网如图2所示,通过N个不对称耦合器组成一个环型中央网,然后在通过环型网中的不对称耦合器,分支出下一级组网,组成星型通信网络。如图2中所示的不对称耦合器1至N,每一不对称耦合器分支出去与另一不对称耦合器相连,也就是说,分支出的网络(图2中是以线性网络示意)再次通过不对称耦合器连接到各个传感和控制设备(图2中是以终端设备示意),形成一个星型的PON-CAN总线系统。其中环型节点不对称耦合器数量N,可选择为2的n次方,例如,光纤总线102(图2中加粗实线所示的环型网)上的不对称耦合器数量可以为128个。
不对称耦合器之间采用环形互联形成的环形组网如图3所示,参照图3,不对称耦合器1至N与总信息设备101通过环形连接构成一个环,数据在环路中汇聚,通过光纤环路把数据信息传输到各个终端设备中。
不对称耦合器之间采用线性互联形成的线性组网如图4所示,参照图3,不对称耦合器1至N与总信息设备101依次线性连接。
上述只是对光纤总线中不对称耦合器互联方式的举例说明,在具体实施中,PON-CAN总线架构可以具备多条光纤总线,每一光纤总线的互联方式可以不同,同一光纤总线的不对称耦合器可以采用多种互联方式。另外,上述图2,图3,图4中,光纤总线中每一不对称耦合器分支出的下一级组网仅是以包括ONU控制器以及终端设备的线性组网进行示意,在具体实施时,光纤总线中每一不对称耦合器分支出的下一级组网包括星型组网,环形组网,线性组网中的任一组网方式的网络。本公开对此不做限定。
下面详细说明不对称耦合器,所述不对称耦合器包括多个端口,并且所述不对称耦合器针对每一端口预置有对应的分光比,使得从某一端口进入的光信号将按照对应该端口的分光比从其他出端口分流。
以图4进行举例说明,不对称耦合器可以将光纤总线上传输的光信号一部分分流传输给与该不对称耦合器相连的ONU控制器,以便该ONU控制器器将其转换为电信号传输给终端设备,另一部分光信号分流到光纤总线上继续传输给下一不对称耦合器。其中,不对称耦合器的分光比可以根据实际的应用情况定制,本公开对此不做限定。
示例地,如图5中的不对称耦合器103所示,不对称耦合器103包括第一端口A1、第二端口A2、第三端口A3以及分光器件B。其中,参照图4中所示的不对称耦合器在光纤总线102中的连接方式,第一端口A1和第三端口A3串行连接在所述光纤总线中,第二端口A2与ONU控制器相连。
这样,在光纤总线102中,分光器件B用于,在光纤总线102从不对称耦合器的第一端口A1输入光信号时,按照第一端口A1对应的分光比将所述光信号从第二端口A2以及第三端口A3分流传输;在ONU控制器从不对称耦合器的第二端口A2输入光信号时,按照第二端口A2对应的分光比将所述光信号从第一端口A1以及第三端口A3分流传输;在光纤总线102从不对称耦合器的第三端口A3输入光信号时,按照第三端口A3对应的分光比将所述光信号从第二端口A2以及第一端口A1分流传输。
可选地,不对称耦合器第一端口A1的分光比是指第二端口A2的分光值比第三端口A3的分光值,第三端口A3的分光比是指第二端口A2的分光值比第一端口A1的分光值,且第一端口A1与第三端口A3的分光比的数值相同。以图5举例说明,当光信号通过光纤从第一端口A1注入,通过分光器件按照分光比1/127,把127/128光信号导向第三端口A3和1/128光信号导向第二端口A2。当光信号通过光纤从第三端口A3注入,则按照相同的分光比1:127,把127/128光信号导向第一端口A1和1/128光信号导向第二端口A2。
上述分光比1/127只是举例说明,在具体实施时,第一端口和第二端口的分光比根据实际使用情况制定,可以是1:(N-1)等模式,N为2的n次方,例如在车辆控制系统中,总共连接64个ONU设备,则可预先定制不对称耦合器的第一端口和第二端口的分光比为1:63,本公开对此不做限定。
另外,不对称耦合器的第二端口的分光比可以等于1,即ONU设备发出的信号经由ONU控制器器可以对称的向光纤总线两端传输,以实现不同终端设备之间的通信。
上述PON-CAN总线架构通过不对称耦合器的接入可以实现总线的延续传输,以此方式实现各类子系统和终端设备之间的总线级联控制。针对具体的控制系统,例如车辆控制系统,可以通过如图2,图3或者图4所示的互联方式,形成PON-CAN内部总线控制系统,连接车辆的各个ECU(Electronic Control Unit,电子控制单元),如车联网通讯模块、车载中央网关、整车控制器、电源控制器等。这样,可以根据系统实际需要连接多个拓扑终端,解决节点受限问题,特别是针对海量节点的系统,例如机器人系统,将不对称耦合器作为小型化连接器,可以在结构紧凑的空间下,连接多个设备终端,有效提高了总线节点连接数量。并且,由于构成总线传输介质为无源器件,从而能实现非常好的抗电磁干扰,使得可以应用在复杂恶劣的环境中。
基于相同的发明构思,本公开实施例还提供一种机器人系统,所述机器人系统包括上述实施例提供的所述PON-CAN总线架构,以及连接到所述PON-CAN总线架构的机器人的各个终端控制系统以及终端传感设备。
值得说明的是,现有机器人系统通常采用基于RS-485总线的通信控制,或者基于CAN总线的通信控制,或者基于Ethernet的Ethercat技术的通信控制。其中,RS-485总线理论通信最高速率10Mbps,并且随着通信距离增加通信速率也会下降,只有在20kbps速率以下,才可能使用规定最长的电缆长度。而CAN总线最大传输速率1Mbps,并且随着CAN Bus两节点距离的增大,CAN Bus的通信速率将变慢,和RS-485存在同样的问题,在多节点控制传输情况下,无法满足高速率要求。Ethercat技术是一个以以太网为基础的开放架构的现场总线系统,该技术中使用了中继交换技术,由于中继器对收到被衰减的信号再生(恢复)到发送时的状态,并转发出去,导致增加了延时,也难以满足多设备下高带宽速率的实时高效的通信需求。
由上可知,以上通信方式以及接口连接难以满足机器人系统中不断增加的运动控制设备、终端图像采集设备以及未知动态情况控制的实时高速率传输要求。尤其运动控制设备是机器人核心,对实时数据获取与控制要求较高,低带宽数据传输满足不了要求。
而采用本公开实施例提供的机器人系统,机器人系统的各控制设备以及终端可以通过PON-CAN总线架构连接起来,提高了传输速率,实现系统内部高速安全的通信。并且,由于PON-CAN总线架构节点扩展性强,因此可以根据系统实际需要连接多个机器人拓扑终端,解决现有机器人总线系统中节点受限问题,保证了在节点不断增加的情况下也可以满足高速率的传输要求。
图6是基于PON-CAN总线架构的一种机器人系统的结构示意图,如图6所示,机器人系统中的上位机作为PON-CAN总线架构中的总信息设备,所述机器人系统中的中位机系统(如图6中示出的不对称耦合器2分支出的下一级网络)、电源管理系统(如图6中示出的不对称耦合器1分支出的下一级网络)、下位机控制系统(如图6中示出的不对称耦合器3分支出的下一级网络)、各个肢体关节的伺服系统、各个肢体关节相应的终端设备,分别位于与所述PON-CAN总线架构的光纤总线连接的下一级网络。为了方便示意,左臂系统,右臂系统,左腿系统,右腿系统,腰部系统以及头部系统分别以独立的附图示出。具体地,图7是图6中不对称耦合器4分支出的左臂各伺服系统与PON-CAN总线架构的连接示意图,图8是图6中不对称耦合器5分支出的右臂各伺服系统与PON-CAN总线架构的连接示意图,图9是图6中不对称耦合器6分支出的左腿各伺服系统与PON-CAN总线架构的连接示意图,图10是图6中不对称耦合器7分支出的右腿各伺服系统与PON-CAN总线架构的连接示意图,图11是图6中不对称耦合器8分支出的腰部各伺服系统与PON-CAN总线架构的连接示意图,图12是图6中不对称耦合器9分支出的头部各伺服系统与PON-CAN总线架构的连接示意图。
另外,PON-CAN总线架构可以包括多条光纤总线,如通过采用单复线方式进行双环形、双线性组网等。图13是双线性组网的示意图,机器人系统将PON-CAN总线架构中的一路光纤总线作为所述机器人系统的主光纤总线,在所述主光纤总线发生故障时,所述PON-CAN总线架构中其他任一路光纤总线从备用光纤总线切换为主光纤总线进行工作。各ONU控制器中均采用两路光纤收发装置,实现系统双路通信,保证系统的安全可靠。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种PON-CAN总线架构,其特征在于,所述PON-CAN总线架构包括光纤总线以及与所述光纤总线相连的总信息设备,所述光纤总线由多个不对称耦合器互联形成;
    所述不对称耦合器用于分支出下一级网络;
    所述总信息设备用于通过所述光纤总线与所述下一级网络进行通信交互。
  2. 根据权利要求1所述的PON-CAN总线架构,其特征在于,所述不对称耦合器之间通过星型互联方式,环形互联方式,线性互联方式中的至少一种互联方式形成所述光纤总线。
  3. 根据权利要求1所述的PON-CAN总线架构,其特征在于,所述下一级网络包括星型组网,环形组网,线性组网中的任一组网方式的网络。
  4. 根据权利要求1所述的PON-CAN总线架构,其特征在于,所述下一级网络至少包括与所述不对称耦合器相连的ONU控制设备,以及与所述ONU控制设备相连的终端设备。
  5. 根据权利要求1至3中任一项所述的PON-CAN总线架构,其特征在于,所述不对称耦合器包括多个端口,并且所述不对称耦合器针对每一端口预置有对应的分光比,使得从某一端口进入的光信号将按照对应该端口的分光比从其他出端口分流。
  6. 根据权利要求1至3中任一项所述的PON-CAN总线架构,其特征在于,所述光纤总线包括2的n次方个所述不对称耦合器互联形成。
  7. 根据权利要求1至3中任一项所述的PON-CAN总线架构,其特征在于,所述PON-CAN总线架构包括多路所述光纤总线。
  8. 一种机器人系统,其特征在于,所述机器人系统包括如权利要求1至6中任一项所述的PON-CAN总线架构,以及连接到所述PON-CAN总线架构的机器人的各个终端控制系统以及终端传感设备。
  9. 根据权利要求8所述的机器人系统,其特征在于,所述机器人系统中的上位机作为所述总信息设备,所述机器人系统中的中位机系统、电源管理系统、下位机控制系统、各个肢体关节的伺服系统、各个肢体关节相应的终端设备,分别位于与所述PON-CAN总线架构的光纤总线连接的下一级网络。
  10. 根据权利要求8或9所述的机器人系统,其特征在于,所述PON-CAN总线架构中的一路光纤总线作为所述机器人系统的主光纤总线,在所述主光纤总线发生故障时,所述PON-CAN总线架构中其他任一路光纤总线从备用光纤总线切换为主光纤总线进行工作。
PCT/CN2018/076454 2018-02-12 2018-02-12 Pon-can总线架构及机器人系统 WO2019153333A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001052.7A CN108702557B (zh) 2018-02-12 2018-02-12 机器人系统
PCT/CN2018/076454 WO2019153333A1 (zh) 2018-02-12 2018-02-12 Pon-can总线架构及机器人系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076454 WO2019153333A1 (zh) 2018-02-12 2018-02-12 Pon-can总线架构及机器人系统

Publications (1)

Publication Number Publication Date
WO2019153333A1 true WO2019153333A1 (zh) 2019-08-15

Family

ID=63841619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076454 WO2019153333A1 (zh) 2018-02-12 2018-02-12 Pon-can总线架构及机器人系统

Country Status (2)

Country Link
CN (1) CN108702557B (zh)
WO (1) WO2019153333A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510217B (zh) * 2020-04-15 2021-05-28 南京大学 一种应用于高速列车的长距离通信的光电混合总线系统
US11628734B2 (en) 2020-09-22 2023-04-18 Argo AI, LLC Enhanced vehicle connection
CN112468234B (zh) * 2020-12-10 2023-02-21 中国人民解放军陆军工程大学 一种使用耦合器分叉的无中心单纤无源光总线网络系统
WO2022179137A1 (zh) * 2021-02-26 2022-09-01 华为技术有限公司 一种光总线通信方法、系统、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582723A (zh) * 2009-06-29 2009-11-18 蒋涵民 一种基于1×n无源光分路器的can总线物理层构造
JP2011166549A (ja) * 2010-02-11 2011-08-25 Autonetworks Technologies Ltd 通信コネクタ、通信ハーネス、光通信装置及び車載通信システム
CN103676797A (zh) * 2012-09-07 2014-03-26 南京理工大学 模块化分动式多足机器人运动控制器及其控制方法
CN104753597A (zh) * 2014-12-29 2015-07-01 东莞市启鼎光电科技有限公司 一种无源分光rs-485光纤总线接入方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660475B (zh) * 2015-02-05 2017-12-15 广州地铁集团有限公司 不对称无源光纤列车总线拓扑结构及各终端互联方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582723A (zh) * 2009-06-29 2009-11-18 蒋涵民 一种基于1×n无源光分路器的can总线物理层构造
JP2011166549A (ja) * 2010-02-11 2011-08-25 Autonetworks Technologies Ltd 通信コネクタ、通信ハーネス、光通信装置及び車載通信システム
CN103676797A (zh) * 2012-09-07 2014-03-26 南京理工大学 模块化分动式多足机器人运动控制器及其控制方法
CN104753597A (zh) * 2014-12-29 2015-07-01 东莞市启鼎光电科技有限公司 一种无源分光rs-485光纤总线接入方法及系统

Also Published As

Publication number Publication date
CN108702557A (zh) 2018-10-23
CN108702557B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2019153333A1 (zh) Pon-can总线架构及机器人系统
US5400323A (en) Method for controlling the insertion of stations into FDDI network
CN113852529B (zh) 轨旁设备数据通信用背板总线系统及其数据传输方法
CN111262768A (zh) 一种adas域以太网环形网络架构
CN112260760B (zh) 一种基于光环路的核电厂分布式控制系统现场总线系统
US20120066421A1 (en) Network system and node
CN109672598B (zh) 机器人系统
JPH04278739A (ja) モジュール式能動光ファイバカップラユニット及びそのシステム
CN219124214U (zh) 基于分时复用的can通讯架构
JPH01144742A (ja) 簡易ノード
CN101662405B (zh) Can总线的通信电路
JPH0269042A (ja) 再生中継器およびネットワークシステム
CN113711509B (zh) 车载通信系统、光耦合器以及车载装置
CN108833243B (zh) 一种基于无源光总线技术的高速光数据总线
JPS6165637A (ja) 多節点ローカル・エリア・ネツトワーク
CN115580631B (zh) 一种针对动车组的数据传输系统、动车组及方法
JP2004516710A (ja) バス・ネットワークとして設定されるリング・ネットワーク
JP3072933B2 (ja) ブリッジ装置及びネットワーク構築方法
CN115037567B (zh) 液压支架控制器的网络传输装置及系统
JP2930150B2 (ja) 光通信ネットワーク
RU2795451C1 (ru) Универсальная система обмена данными
CN111181828B (zh) 一种实现can总线通讯星型连接的装置
KR100736771B1 (ko) 캔 통신버스 인터페이스 장치
CN103124234A (zh) 专用网中以太网信号的传输系统
CN118118293A (zh) 利用双以太网实现冗余异步串行接口扩展的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905719

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18905719

Country of ref document: EP

Kind code of ref document: A1