WO2019153126A1 - 反馈信息的指示方法及装置 - Google Patents

反馈信息的指示方法及装置 Download PDF

Info

Publication number
WO2019153126A1
WO2019153126A1 PCT/CN2018/075459 CN2018075459W WO2019153126A1 WO 2019153126 A1 WO2019153126 A1 WO 2019153126A1 CN 2018075459 W CN2018075459 W CN 2018075459W WO 2019153126 A1 WO2019153126 A1 WO 2019153126A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
information
downlink control
feedback information
terminal device
Prior art date
Application number
PCT/CN2018/075459
Other languages
English (en)
French (fr)
Inventor
李铮
吴毅凌
陈刘海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/075459 priority Critical patent/WO2019153126A1/zh
Priority to CN201880088627.3A priority patent/CN111684835B/zh
Publication of WO2019153126A1 publication Critical patent/WO2019153126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for indicating feedback information.
  • a terminal device and a network device In a mobile communication system, such as a long term evolution (LTE) system, a terminal device and a network device often use a hybrid automatic repeat request (HARQ) technique to verify whether the transmitted data is correctly received during communication.
  • HARQ hybrid automatic repeat request
  • the terminal device may send an uplink data packet on a physical uplink shared channel (PUSCH), where the user data is included, and a buffer status report is used to indicate the amount of remaining data that is not sent.
  • PUSCH physical uplink shared channel
  • BSR buffer status report
  • the network device continues to allocate the air interface resource to the terminal device, and indicates the allocated air interface on the physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • the resource is used for the new transmission and the correct answer command (ACK) is fed back on the physical hybrid HARQ indication channel (PHICH), so that the terminal device can use the air interface resource allocated by the network device to send the PUSCH.
  • PHICH physical hybrid HARQ indication channel
  • An upstream packet if the network device fails to correctly receive the uplink data packet carried on the PUSCH, after the air interface resource is allocated to the terminal device, the allocated air interface resource is used for retransmission on the PDCCH and the error response command is fed back on the PHICH (negative Acknowledge, NACK), and the terminal device can retransmit the data packet that the network device fails to receive correctly on the PUSCH by using the air interface resource allocated by the network device.
  • the network device when the network device performs feedback of the uplink data, it is a fixed air interface resource and the uplink data received by the PDCCH and the PHICH feedback. That is to say, each time the terminal device sends an uplink data packet, the base station needs to occupy two channels of PDCCH and PHICH for feedback.
  • the narrowband IoT communication system due to the tight frequency domain resources of the narrowband IoT communication system, the narrowband IoT communication system does not have sufficient time-frequency resources for the feedback of the uplink data packet, so the existing feedback mode for the uplink data packet is for the narrowband object. Not suitable for networked communication systems.
  • the embodiment of the present application provides a method and a device for indicating feedback information, so as to save time-frequency resources as much as possible when performing feedback of uplink data packets.
  • the application provides a method for indicating feedback information.
  • the network device sends the first downlink control information by using the first downlink control channel, where the first downlink control information includes a first time-frequency location of the uplink resource allocated to the terminal device, and the first indication information, where the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a downlink control channel or a physical
  • the hybrid automatic retransmission indication channel is used to indicate whether the network device correctly receives the first uplink data packet sent by the terminal device at the first time-frequency location.
  • the terminal device receives the first downlink control information carried by the first downlink control channel, and after sending the uplink data packet at the first time-frequency position indicated by the first downlink control information, the first Obtaining the first feedback information in a downlink channel indicated by the indication information.
  • the network device before the network device sends the feedback information to the terminal device, the network device can flexibly select the downlink channel for carrying the feedback information, and instruct the terminal device in advance, so that the terminal device can The feedback information is obtained in the corresponding downlink channel.
  • the network device sends the feedback information and the uplink resource allocated to the terminal through the downlink control channel, so that the receiving of the received uplink data packet is fed back while the scheduling of the uplink resource is completed, which not only saves frequency domain resources, It also reduces feedback delay.
  • the coverage performance is better, and the feedback efficiency is higher.
  • two channels are used for feedback of uplink data packets. In this application, one of the two channels is flexibly selected for feedback, which can save time-frequency resources for feeding back uplink data packets.
  • the first indication information indicates that the downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel
  • the first downlink control information is further included.
  • the time-frequency resource information includes at least one of the following information: a first channel index value, where the first channel index value is used to indicate the physical hybrid automatic repeat indication channel that carries the first feedback information.
  • the terminal device can be conveniently obtained by acquiring the first feedback information from the corresponding time-frequency position. Improve feedback efficiency.
  • the network device may monitor the first uplink data packet sent by the terminal device at the first time-frequency location, and further, the network The device may determine whether the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received.
  • the network device determines to correctly receive And sending, by the terminal device, the first feedback information by using the physical hybrid automatic retransmission indication channel, where the first feedback information is used by the terminal device, when the first uplink data packet is sent by using the physical hybrid Characterizing that the first uplink data packet is correctly received; or the network device passes the physical when determining that the first uplink data packet sent by the terminal device at the first time-frequency location is not correctly received.
  • the hybrid automatic retransmission indication channel sends the first feedback information, where the first feedback information is used to indicate that the first uplink data packet is not correctly received.
  • the first hybrid information is sent by using the physical hybrid automatic retransmission indication channel, so that the coverage performance is better, and the amount of data carried by the physical hybrid automatic retransmission indication channel is smaller than that of the downlink control channel. It also makes the feedback more efficient.
  • the network device determines to correctly receive the terminal device. And sending, by the second downlink control channel, the second downlink control information, where the second downlink control information includes the first feedback, when the first uplink data packet is sent by the first time-frequency position. Information, the first feedback information is used to indicate that the first uplink data packet is correctly received; or the network device determines that the terminal device is not correctly received at the first time-frequency location And transmitting, by the second downlink control channel, the second downlink control information, where the second downlink control information includes the first feedback information, where the first feedback information is used to indicate that the data is not correctly received. The first uplink data packet.
  • the second downlink control information may further include a second time-frequency location of the uplink resource that is re-allocated for the terminal device, and second indication information, where the second indication information is used to instruct the network device to send the
  • the downlink channel used by the second feedback information is a downlink control channel or a physical hybrid automatic retransmission indication channel, and the second feedback information is used to indicate whether the network device correctly receives the terminal device at the second time-frequency location.
  • the first feedback information when the first feedback information is sent by using the downlink control channel, information such as uplink resources allocated to the terminal device may be indicated, so that the receiving of the uplink data packet may be fed back while the scheduling of the uplink resource is completed.
  • information such as uplink resources allocated to the terminal device may be indicated, so that the receiving of the uplink data packet may be fed back while the scheduling of the uplink resource is completed.
  • the first feedback information may use the second channel.
  • the index value is represented, and the second channel index value is an invalid value, the second channel index value is used to indicate a carrier resource location in an uplink resource allocated for the terminal device, and the invalid value represents the network The uplink resource allocated by the device for the terminal device is invalid.
  • the invalid second channel index value is used as the first feedback information, indicating that the terminal device does not have available uplink resources for sending the uplink data packet, so that the terminal device may first implicitly indicate that the first uplink data packet has been received. Successfully, there is no need to allocate uplink resources to retransmit the first uplink data packet or newly transmit the next uplink data packet.
  • the invalid second channel index value is used as the first feedback information, and the original field in the downlink control information does not need to be added or changed, and the implementation process is relatively simple.
  • the terminal device may send the uplink data packet at the first time-frequency position indicated by the first downlink control information, and determine A downlink channel carrying the first feedback information that needs to be monitored.
  • the terminal device determines that the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a downlink control channel
  • the terminal device determines that the downlink needs to be monitored.
  • the channel is a downlink control channel; if the terminal device determines that the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel, the terminal device determines that the monitoring device needs to be monitored.
  • the downlink channel is a physical hybrid automatic retransmission indication channel.
  • the terminal device may determine the downlink channel that needs to be monitored according to the downlink channel indicated by the first indication information, so that the downlink channel may be selectively monitored, and the processing pressure of the terminal device is mitigated.
  • the terminal device if the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel, the terminal device is in the When the first feedback information is obtained in the downlink channel indicated by the first indication information, the physical hybrid automatic retransmission indication channel may be determined according to the first channel index value and the delay information indicated in the time-frequency resource information. And acquiring, by the terminal device, the first feedback information carried by the physical hybrid automatic retransmission indication channel after listening to the physical hybrid automatic retransmission indication channel at the determined time-frequency position. .
  • the terminal device acquires the first channel from the downlink channel indicated by the first indication information.
  • the first feedback information carried by the second downlink control channel is obtained after the second downlink control channel is monitored.
  • the terminal device may receive the feedback information of the network device for the uplink data packet from the downlink channel indicated by the first indication information, and subsequently determine whether the heavy data packet needs to be received according to the received result of the uplink data packet fed back in the feedback information. Send upstream packets, etc.
  • the present application provides a communication device, where the communication device is provided with the network device function of the first aspect, and the function may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device includes a processing unit and a transceiver unit, and the functions performed by the sending unit and the processing unit may correspond to the steps performed by the network device involved in the first aspect, and details are not described herein.
  • the communication device includes a processor and a transceiver, and the processor can control the transceiver to send and receive signals to complete the network in any of the foregoing first aspect and the first aspect. The method that the device performs.
  • the apparatus may further include one or more memories for coupling with the processor, which hold necessary computer program instructions necessary to implement the network device functions involved in the first aspect above. And / or data.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the processor may execute the computer program instructions stored by the memory to perform the method of the first aspect and any of the possible implementations of the first aspect of the first aspect.
  • the present application provides a communication device, where the communication device is provided with the terminal device function of the first aspect, and the function may be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device includes a processing unit and a transceiver unit, and the functions performed by the sending unit and the processing unit may correspond to the steps performed by the terminal device involved in the first aspect, and details are not described herein.
  • the communication device includes a processor and a transceiver, and the processor can control the transceiver to transmit and receive signals, and complete the foregoing first aspect and the terminal in any possible implementation manner of the first aspect. The method that the device performs.
  • the apparatus may further include one or more memories for coupling with the processor, which hold necessary computer program instructions necessary to implement the terminal device functions related to the first aspect above. And / or data.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the processor may execute the computer program instructions stored by the memory to perform the method of the first aspect and any of the possible implementations of the first aspect of the first aspect.
  • the present application provides a communication system including the network device related to the first aspect, and at least one terminal device related to the first aspect.
  • the present application provides a chip, the chip being connectable to a memory for reading and executing program code stored in the memory to implement the first aspect and any possible implementation manner of the first aspect. Any of the methods involved in the network device, or any of the methods related to the terminal device in any of the first aspect and the first aspect of the first aspect.
  • the application provides a computer storage medium for storing a program or an instruction, and when the program or the instruction is run on a computer, the first aspect and the network device in any possible implementation manner of the first aspect may be completed. Any of the methods involved, or any of the methods of the above-described first aspect and any possible implementation of the first aspect of the terminal device.
  • FIG. 1 is a schematic diagram of a possible narrowband Internet of Things communication system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for indicating feedback information of an uplink data packet according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a communication device 300 according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a communication device 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • a network device which may be referred to as a radio access network (RAN) device, is a device that connects a terminal device to a wireless network, including but not limited to: an evolved node B (evolved node B) , eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station ( For example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) access point (AP), transmission point (transmission and receiver point) , TRP or transmission point, TP), Node B (gNB) that continues to evolve, and the like.
  • a radio access network (RAN) device is a device that connects a terminal device to a wireless network, including but not limited to: an evolved node B (evolved node B) , eNB), radio network controller (RNC), node B (node B, NB), base station controller (B
  • a terminal device is a device that provides voice and/or data connectivity to a user, and may include various handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, drones, or connected to Other processing devices of the wireless modem, and various forms of user equipment (UE), mobile station (MS), terminal equipment, transmission and receiver point (TRP or transmission point, TP) )Wait.
  • UE user equipment
  • MS mobile station
  • TRP transmission and receiver point
  • TP transmission point
  • HARQ is a technique that combines forward error correction coding forward error correction (FEC) and automatic repeat request (ARQ).
  • FEC forward error correction coding forward error correction
  • ARQ automatic repeat request
  • the transmitting end transmits the data packet to be sent to the physical layer by FEC encoding and modulation, and then transmits the data packet through the antenna port.
  • the receiving end demodulates and decodes the received data packet at the physical layer, and feeds back the decoding result to the transmitting end. If the receiving end can correctly receive the data packet, the receiving end sends an ACK to the transmitting end, and if the receiving end fails to correctly receive the data packet, the receiving end sends a NACK to the transmitting end.
  • the transmitting end may continue to transmit the next data packet. Otherwise, after receiving the NACK fed back by the receiving end, the transmitting end resends the data packet that the receiving end fails to receive correctly.
  • the embodiment of the present application mainly relates to a process in which a network device feeds back an ACK or a NACK for an uplink data packet sent by a terminal device.
  • the embodiment of the present application can adopt the asynchronous HARQ mode. In this manner, after receiving the NACK fed back by the network device, the terminal device can retransmit the data packet at any time, so that the retransmission scheduling is more flexible.
  • system and “network” in the embodiments of the present application may be used interchangeably; “multiple” refers to two or more. In view of this, in the embodiment of the present application, “multiple” may also be used. “Understanding as “at least two”; “and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone; and, unless otherwise stated, the embodiments of the present application refer to "first", “second” and the like to distinguish between multiple objects, not for defining multiple objects. The order, timing, priority, or importance.
  • FIG. 1 is a schematic diagram showing a possible narrowband Internet of Things communication system provided by an embodiment of the present application, including a terminal device, a base station, and a core network.
  • the terminal device can access the base station, and further implement communication with the core network element through the base station.
  • the embodiments of the present application mainly relate to communication between a terminal device and a base station.
  • the base station can indicate which uplink resources the terminal device is in for each small uplink data packet transmission.
  • the uplink data packet is sent at the time-frequency location, and the terminal device can send the uplink data packet at the time-frequency location indicated by the base station. Further, after the terminal device sends the uplink data packet, the base station can send the uplink data packet to the terminal device for characterization. Whether the feedback information of the uplink data packet sent by the terminal device is correctly received, and indicates the time-frequency location of the uplink resource that is allocated again for the terminal device, so that the terminal device determines that the time-frequency location of the uplink resource that is re-allocated is sent next. The next upstream packet, or the retransmitted uplink packet that the base station failed to receive correctly.
  • the base station can be fixed to indicate the time-frequency resource location allocated by the PDCCH for the terminal device to carry the uplink data packet, and the ACK or NACK is fed back through the PHICH. Whether the base station correctly receives the uplink data packet sent by the terminal device this time.
  • the available licensed spectrum is less and discretized, each channel carrier is only about 25Khz, and the PDCCH and the PHICH need to occupy one carrier respectively, so that the signal coverage is up to standard, and the signal coverage is guaranteed. Signal transmission performance.
  • the embodiment of the present application provides a method and a device for indicating feedback information, which can save time-frequency resources for feeding back uplink data packets.
  • FIG. 2 is a schematic flowchart of an uplink data packet transmission method according to an embodiment of the present application, and particularly relates to a method for indicating feedback information of an uplink data packet.
  • the method is applied to the application scenario shown in FIG. 1 .
  • the process of this method is described as follows:
  • Step 201 The terminal device sends an uplink scheduling request (SR) or a BSR to the base station, and is used to request an uplink resource from the base station.
  • SR uplink scheduling request
  • BSR downlink scheduling request
  • the terminal device may only indicate that the base station terminal device has an uplink data packet to be sent, and does not indicate how many bytes of data the uplink data packet to be sent by the base station terminal device specifically includes.
  • the terminal device may indicate the uplink data packet information that is not sent by the base station terminal device.
  • the BSR may indicate, by using an index value, a byte range of the uplink data packet that is not sent by the terminal device, and different The index value can represent a different range of bytes. Different byte ranges represented by different index values may indicate whether the terminal device has an untransmitted uplink data packet.
  • the base station when the byte range represented by the index value is zero, it indicates that the terminal device does not have an untransmitted uplink data packet, that is, the base station is not required to continue to allocate uplink resources.
  • the byte range represented by the index value is not zero, it indicates that the terminal device still has an untransmitted uplink data packet, that is, the base station needs to continue to allocate the uplink resource.
  • Step 202 The base station allocates an uplink resource to the terminal device, and sends the first downlink control information by using the first PDCCH, where the first downlink control information includes a first time-frequency location of the uplink resource allocated for the terminal device, and An indication message.
  • the base station may only indicate that the terminal device has an uplink data packet to be sent, and does not indicate how many bytes of data the uplink data packet to be sent by the terminal device specifically includes, so the base station After receiving the SR, a part of the uplink resource may be allocated from the schedulable uplink resource to the terminal device, where the terminal device sends the uplink data packet. If the base station receives the BSR sent by the terminal device, the base station allocates an uplink resource to the terminal device according to the uplink data packet information that is not sent by the terminal device and the schedulable uplink resource, and is used by the base station to send the uplink data packet. .
  • the base station may carry uplink grant information (UL grant) in the first downlink control information that is carried by the first PDCCH, where the UL grant includes a first time-frequency location of the uplink resource allocated for the terminal device, so as to indicate the terminal.
  • the device sends the first uplink data packet at the first time-frequency location.
  • the first time-frequency location may specifically refer to a location on a time domain resource corresponding to the PUSCH and a location of the carrier resource.
  • a field may be added to the UL grant, and the first indication information is represented by a newly added field, where the first indication information is used to indicate that the base station sends the first feedback information.
  • the downlink channel used is a PDCCH or a PHICH, and the first feedback information is used to indicate whether the base station correctly receives the first uplink data packet sent by the terminal device at the first time-frequency location.
  • a bit bit may be added to represent the first indication information.
  • the downlink channel used by the base station to send the first feedback information is the PDCCH, and the 1 bit is used.
  • the bit value is 1, the downlink channel used by the base station to send the first feedback information is PHICH.
  • the base station is sent to send the The downlink channel used for the feedback information is the PHICH.
  • the first indication information may be represented by two or more bit numbers, which is not limited in this application.
  • the time-frequency resource information of the PHICH may also be added to the UL grant.
  • the time-frequency resource information may include at least one of the following information: a first channel index value (it is to be understood that, in the narrow-band IoT communication system, the channel index value described in the embodiment of the present application is also The first channel index value is used to indicate the carrier resource location occupied by the PHICH carrying the first feedback information; the transport block size sent by the PHICH; the number of repetitions of the PHICH; and the transmission of the PHICH transmission.
  • the bit occupied by the first feedback information in the block, the delay information, the delay information is used to indicate that the terminal device sends the first uplink data packet, and the network device sends the first feedback information on the PHICH The length of the interval.
  • the terminal device can be informed of which time-frequency resource is used to obtain the first feedback information of the PHICH bearer.
  • the base station may carry the feedback information of the uplink data packet sent by the one or more terminal devices in the PHICH to achieve better feedback efficiency.
  • the bit information occupied by the feedback information of the uplink data packet of the terminal device in the PHICH transmission block may be indicated in the time-frequency resource information of the PHICH, so that the terminal device can accurately obtain the feedback information of the uplink data packet.
  • Step 203 The terminal device receives the first downlink control information that is carried by the first PDCCH, and sends the first uplink data packet at the first time-frequency position, where the first uplink data packet may include a BSR, and the BSR indicates the terminal. Upstream packet information that the device did not send.
  • the time-frequency location corresponding to the first PDCCH may be instructed to the terminal device in advance by the high-layer signaling, so that the terminal device acquires the first downlink control information carried by the first PDCCH at the corresponding time-frequency location.
  • the base station may indicate the time-frequency location corresponding to the first PDCCH by using RRC signaling (eg, msg4) in the process of establishing a radio resource control (RRC) connection with the terminal device.
  • RRC signaling eg, msg4
  • the terminal device may also search for the first PDCCH by using the search space to obtain the first downlink control information that is carried by the first PDCCH.
  • Step 204 The base station determines whether the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received, and sends the first feedback information on the downlink channel indicated by the first indication information, according to the determination result.
  • the downlink channel for carrying the first feedback information indicated by the first indication information is divided into two modes, namely, a PDCCH and a PHICH, where the first feedback information is sent to the base station for the two manners.
  • the process is introduced.
  • the first indication information indicates that the downlink channel used by the base station to send the first feedback information is a PDCCH.
  • Step 204a1 The base station determines whether the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received.
  • steps 204b1 to 204d1 are executed; if the result of the determination is no, step 204e1 is executed.
  • Step 204b1 The base station determines whether the uplink resource needs to be allocated to the terminal device, so that the terminal device continues to send the second uplink data packet. If the base station determines that the uplink resource needs to be allocated to the terminal device, step 204c1 is performed. If not, the base station determines not to To allocate uplink resources to the terminal device, go to step 204d1.
  • the base station may determine whether the uplink resource needs to be allocated for the terminal device by using information such as the BSR and the schedulable uplink resource carried in the first uplink data packet. For example, when the byte range represented by the index value corresponding to the BSR carried by the first uplink data packet indicates that the terminal device does not have an untransmitted uplink data packet, the base station may determine that the uplink resource does not need to be allocated to the terminal device.
  • the terminal device may further analyze the information together with other information, such as the current channel condition and the cell load, to determine whether the uplink resource needs to be allocated for the terminal device, which is not listed in this application.
  • Step 204c1 The base station sends the second downlink control information to the terminal device by using the second PDCCH, where the first feedback information included in the second downlink control information is a new data indicator (NDI), and the NDI indicates correct reception.
  • the first uplink data packet is a new data indicator (NDI), and the NDI indicates correct reception.
  • the second downlink control information carries a UL grant, and the UL grant includes first feedback information.
  • the first feedback information may be represented by an NDI.
  • the field value corresponding to the NDI is the first field value, it is characterized that the first uplink data packet is correctly received.
  • the NDI may be represented by a 1-bit bit, and may be set to indicate that the first uplink data packet is correctly received when the value of the NDI corresponding field value is 1, and may indicate that the uplink resource allocated by the base station is used for the terminal device to send the second uplink. data pack.
  • the second uplink data packet is an uplink data packet that is first transmitted by the terminal device, and vice versa, when the first feedback information is not represented.
  • the second uplink data packet is the first uplink data packet retransmitted by the terminal device.
  • the UL grant carried by the second downlink control information may further include a second time-frequency location of the uplink resource that is re-allocated for the terminal device, and second indication information.
  • the re-allocated uplink resource is used by the terminal device to send the second uplink data packet
  • the second indication information is used to indicate that the downlink channel used by the base station to send the second feedback information is the PDCCH or the PHICH, and the second feedback information is used for characterization. Whether the base station correctly receives the second uplink data packet sent by the terminal device at the second time-frequency location.
  • the second time-frequency location of the uplink resource that is re-allocated for the terminal device and the result of receiving the first uplink data packet sent by the terminal device at the first time-frequency location may be directly indicated on the second PDCCH. Therefore, the receiving result of the received uplink data packet is fed back while the scheduling of the uplink resource is completed, which not only saves the frequency domain resource, but also makes the delay of the feedback process low.
  • Step 204d The base station sends the second downlink control information to the terminal device by using the second PDCCH, where the first feedback information included in the second downlink control information is a second channel index value, and the second channel index value is an invalid value. Used to indicate that the first uplink data packet is correctly received.
  • the uplink resource allocated by the base station to the terminal device may include a frequency domain resource, that is, a carrier resource. Since each channel in the narrowband IoT communication system occupies a carrier of 25 Khz, the carrier resource location of the uplink channel for carrying the uplink data packet in the uplink resource allocated by the base station for the terminal device can be indicated by the second channel index value.
  • the terminal device may determine, according to the second channel index value, a carrier resource location in the uplink resource, when the second When the channel index value is an invalid value, it indicates that the uplink resource allocated by the base station for the terminal device is invalid, and the terminal device cannot transmit the uplink data packet at the carrier resource location indicated by the second channel index value.
  • the invalid second channel index value is used as the first feedback information, indicating that the terminal device does not have available uplink resources for sending the uplink data packet, so that the terminal device may be implicitly indicated that the first uplink data packet has been successfully received without allocation.
  • the uplink resource retransmits the first uplink data packet or newly transmits the next uplink data packet.
  • the invalid second channel index value is used as the first feedback information, and the original field in the downlink control information does not need to be added or changed, and the implementation process is relatively simple.
  • Step 204e1 The base station sends the second downlink control information to the terminal device by using the second PDCCH, where the first feedback information included in the second downlink control information is an NDI, and the NDI indicates that the first uplink data packet is not correctly received.
  • the first uplink data packet is not correctly received.
  • the NDI is represented by a 1-bit bit
  • the NDI corresponding field value may be set to 0, and the first uplink data packet is not correctly received, and the uplink resource allocated by the base station may be instructed to be sent by the terminal device.
  • the second uplink data packet where the second uplink data packet is the first uplink data packet retransmitted by the terminal device.
  • the manner in which the field value corresponding to the NDI is used to indicate that the first uplink data packet is correctly received or not correctly received is illustrated by way of example only (step 204c1 and step above).
  • the field may be added to the downlink control information, and the added field is used to represent the ACK or the NACK, etc., which is not limited in this application.
  • the base station can feed back the uplink data packet sent by the terminal device by using the PDCCH to indicate the uplink resource allocated by the terminal device, save the frequency domain resource, and perform uplink uplink through the PDCCH and the PHICH.
  • the feedback of the data packet also makes the delay of the feedback process low.
  • the first indication information indicates that the downlink channel used by the base station to send the first feedback information is PHICH
  • Step 204a2 The base station determines whether the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received.
  • Step 204b2 The base station sends the first feedback information to the terminal device by using the PHICH.
  • the first feedback information includes an ACK.
  • the first feedback information includes a NACK.
  • the PHICH may also carry the feedback information of the uplink data packet sent by the other terminal device, and the bit occupied by the first feedback information in the transport block sent by the PHICH may be indicated in advance by the first PDCCH.
  • the terminal device is configured to obtain, by the terminal device, first feedback information for the uplink data packet sent by itself in the corresponding bit.
  • the amount of data carried by the PHICH is generally several bits to tens of bits, and the amount of data carried by the PDCCH is relatively small. Therefore, when the PHICH is used for feedback of the uplink packet, the coverage performance is better and the feedback efficiency is higher.
  • the flexible selection of the uplink resource according to the actual schedulable uplink resource and the delay requirement of the feedback information can be flexibly selected.
  • the channel is used for feedback of uplink packets.
  • Step 205 The terminal device acquires the first feedback information from the downlink channel indicated by the first indication information.
  • the terminal device may obtain the first indication information by demodulating the first downlink control information, where the first The downlink channel indicated by the indication information is divided into a PDCCH and a PHICH.
  • the terminal device may determine that the first indication information is used to indicate that the downlink channel used by the base station to send the first feedback information is the PDCCH.
  • the monitored downlink channel is the PDCCH, and thus the PDCCH can continue to be monitored, and the PHICH can be monitored without monitoring.
  • the terminal device may determine that the downlink channel that needs to be monitored is the PHICH, and then may listen to the PHICH and pause monitoring the PDCCH.
  • the specific monitoring mode may be adjusted according to actual needs. For example, when the terminal device has strong capability and can simultaneously monitor multiple channels, the process of determining which downlink channel to listen to may not be performed. The PDCCH and PHICH are directly monitored simultaneously.
  • the following describes the process of the terminal acquiring the first feedback information from the PDCCH or the PHICH in the above two cases.
  • the first indication information indicates that the downlink channel used by the base station to send the first feedback information is a PDCCH.
  • Step 205a1 The terminal device acquires the first feedback information carried by the second PDCCH after the second PDCCH is monitored by searching the space search.
  • the terminal device may monitor the PDCCH by means of blind detection, for example, the terminal device may The PDCCH is monitored in the search space, and the second downlink control information carried on the second PDCCH is obtained. Further, the first feedback information is demodulated from the obtained second downlink control information.
  • the terminal device may confirm that the base station has correctly received the first uplink data packet, and determine the NDI correspondence. When the field value is the second field value, it can be confirmed that the base station does not correctly receive the first uplink data packet.
  • the second downlink control information further includes the second time-frequency location of the uplink resource that is re-allocated for the terminal device, and the second indication information, after the terminal device confirms that the base station has correctly received the first uplink data packet, The second uplink data packet may be sent at the second time-frequency location. Subsequently, the terminal device may further obtain second feedback information of the second uplink data packet by the base station by using the downlink channel indicated by the second indication information.
  • the specific transmission process is not described in detail, and can be referred to the above process.
  • the terminal device If the second channel index value is demodulated from the second downlink control information, the terminal device confirms that the base station has correctly received the first uplink data when determining that the second channel index value is an invalid value. Packet, the transmission process of this upstream packet ends.
  • the first downlink control information when the downlink channel indicated by the first indication information is the PHICH, when the base station sends the first downlink control information by using the first PDCCH, the first downlink control information further includes the PHICH.
  • the time-frequency resource information so the terminal device can determine the time-frequency location of the PHICH according to the time-frequency resource information indicated in the first downlink control information, and acquire the first feedback information at the determined time-frequency location.
  • Step 205a2 The terminal device determines the time-frequency position of the PHICH according to the first channel index value and the delay information indicated in the time-frequency resource information included in the first downlink control information.
  • Step 205b2 After the PHICH is monitored by the time-frequency location of the determined PHICH, the terminal device acquires the first feedback information that is carried by the PHICH.
  • the first channel index value is used to indicate a carrier resource location occupied by the PHICH; the delay information is used to indicate that the terminal device sends the first uplink data packet and the base station sends the first feedback information on the PHICH.
  • the length of the interval is used to indicate that the terminal device sends the first uplink data packet and the base station sends the first feedback information on the PHICH.
  • the terminal device may use the bit occupied by the first feedback information in the transport block sent by the PHICH indicated in the time-frequency resource information. Demodulating the first feedback information from corresponding bits.
  • the terminal device may confirm that the base station has correctly received the first uplink data packet. If the first feedback information is demodulated as NACK, the terminal device may confirm that the base station does not correctly receive the first uplink data packet. After the terminal device obtains the uplink resource allocated by the base station, the terminal device may continue to send the second uplink data packet at the time-frequency position of the uplink resource indicated by the base station.
  • the specific transmission process is not described in detail, and can be referred to the above process.
  • the downlink control information carried by the PDCCH is used to indicate the downlink channel used by the base station to send the feedback information to the terminal device, and the feedback information indicates whether the base station correctly receives the uplink data packet sent by the terminal device, so that the base station Before sending the feedback information to the secondary terminal device, the downlink channel for carrying the feedback information can be flexibly selected and indicated to the terminal device in advance, so that the terminal device obtains the feedback information from the corresponding downlink channel. For example, when the frequency domain resource is in short supply, the base station may send the feedback information and the uplink resource allocated to the terminal through the PDCCH, so that the receiving result of the received uplink data packet may be fed back while the scheduling of the uplink resource is completed.
  • the feedback information of the uplink data packets of one or more terminal devices can be sent through the PHICH, so that the coverage performance is better and the feedback efficiency is higher.
  • the embodiment of the present application further provides a communication device, which has a corresponding function of implementing a network device (for example, a base station) involved in the foregoing method embodiment.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • FIG. 3 is a schematic structural diagram of a communication device 300 according to an embodiment of the present application.
  • the device 300 may include a processing unit 301 and a transceiver unit 302.
  • the processing unit 301 is configured to control the transceiver unit 302 to send first downlink control information by using a first downlink control channel, where the first downlink control information includes a first time frequency of an uplink resource allocated to the terminal device.
  • the first indication information where the first indication information is used to indicate that the downlink channel used by the apparatus 300 to send the first feedback information is a downlink control channel or is a physical hybrid automatic retransmission indication channel, where the first feedback information is It is used to indicate whether the device 300 correctly receives the first uplink data packet sent by the terminal device at the first time-frequency location.
  • the first indication information indicates that the downlink channel used by the apparatus to send the first feedback information is a physical hybrid automatic retransmission indication channel
  • the first downlink control information is further The time-frequency resource information corresponding to the physical hybrid automatic repeat indication channel is included.
  • the time-frequency resource information includes at least one of the following information: a first channel index value, where the first channel index value is used to indicate the physical hybrid automatic repeat indication channel that carries the first feedback information.
  • the processing unit 301 is at the control station. After the first downlink control information is sent by the transceiver unit 302, the transceiver unit 302 is further configured to:
  • the transceiver unit 302 When the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received, the transceiver unit 302 is controlled to send the first feedback by using the physical hybrid automatic retransmission indication channel. Information, the first feedback information is used to indicate that the first uplink data packet is correctly received; or the first uplink data packet sent by the terminal device at the first time-frequency location is determined to be incorrectly received. And transmitting, by the transceiver unit 302, the first feedback information by using the physical hybrid automatic retransmission indication channel, where the first feedback information is used to indicate that the first uplink data packet is not correctly received.
  • the processing unit 301 is controlling the transceiver unit. After transmitting the first downlink control information by using the first downlink control channel, the method is further configured to:
  • the transceiver unit 302 When the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received, the transceiver unit 302 is controlled to send the second downlink control information by using the second downlink control channel.
  • the second downlink control information includes the first feedback information, where the first feedback information is used to indicate that the first uplink data packet is correctly received; or, after determining that the terminal device is not correctly received, And transmitting, by the transceiver unit 302, the second downlink control information by using the second downlink control channel, where the second downlink control information includes the first a feedback information, the first feedback information is used to indicate that the first uplink data packet is not correctly received.
  • the second downlink control information further includes a second time-frequency location of the uplink resource that is re-allocated for the terminal device, and second indication information; the second indication information is used to indicate The downlink channel used by the device 300 to send the second feedback information is a downlink control channel or a physical hybrid automatic retransmission indication channel, and the second feedback information is used to indicate whether the device 300 correctly receives the terminal device in the The second uplink data packet sent at the second time-frequency location.
  • the first feedback information is a second channel index value
  • the second channel index value is an invalid value, where the second channel index value is used to indicate that the terminal device is allocated.
  • the carrier resource location in the uplink resource, the invalid value indicates that the uplink resource allocated by the device 300 for the terminal device is invalid.
  • FIG. 4 is a schematic structural diagram of a communication device 400 provided by an embodiment of the present application, where the device 400 may include a processor 401 and a transceiver 402.
  • the processor 401 can also be a controller.
  • the processor 401 is configured to support a network device to perform the functions involved in the above method embodiments.
  • the transceiver 402 is configured to support the functionality of the network device to send and receive messages.
  • the apparatus 400 can also include a memory 403 for coupling with the processor 401 that holds computer program instructions and/or data necessary for the network device.
  • the processor 401, the transceiver 402 and the memory 403 are connected, and the memory 403 is used to store necessary computer program instructions for implementing the functions of the network device involved in the foregoing method embodiment, and the processor 401 is configured to execute the memory 403 for storing.
  • the computer program instructions are used to control the transceiver 402 to send and receive signals, and the steps of the network device performing the corresponding functions in the foregoing method embodiment are completed.
  • the processor 401 is configured to control the transceiver 402 to send first downlink control information by using a first downlink control channel, where the first downlink control information includes an uplink resource allocated to the terminal device. a first time frequency information, and first indication information; the first indication information is used to indicate that the downlink channel used by the apparatus 400 to send the first feedback information is a downlink control channel or a physical hybrid automatic retransmission indication channel, where A feedback message is used to indicate whether the device 400 correctly receives the first uplink data packet sent by the terminal device at the first time-frequency location.
  • the first indication information indicates that the downlink channel used by the apparatus 400 to send the first feedback information is a physical hybrid automatic retransmission indication channel
  • the first downlink control information The time-frequency resource information corresponding to the physical hybrid automatic repeat indication channel is further included.
  • the time-frequency resource information includes at least one of the following information: a first channel index value, where the first channel index value is used to indicate the physical hybrid automatic repeat indication channel that carries the first feedback information.
  • the processor 401 is further configured to: determine whether the terminal device is correctly received. And the first uplink data packet sent at the first time-frequency position; when determining that the first uplink data packet sent by the terminal device at the first time-frequency position is correctly received, controlling the The transceiver 402 sends the first feedback information by using the physical hybrid automatic retransmission indication channel, where the first feedback information is used to indicate that the first uplink data packet is correctly received; or, in determining that the terminal is not correctly received When the device sends the first uplink data packet at the first time-frequency position, the transceiver 402 is controlled to send the first feedback information by using the physical hybrid automatic retransmission indication channel, where the first feedback is The information is used to characterize that the first uplink data packet was not received correctly.
  • the processor 401 is controlling the transceiver. After transmitting the first downlink control information by using the first downlink control channel, the method further includes: determining whether the first uplink data packet sent by the terminal device at the first time-frequency location is correctly received; determining correct reception When the terminal device sends the first uplink data packet at the first time-frequency position, the transceiver 402 is configured to send the second downlink control information by using the second downlink control channel, where the The second downlink control information includes the first feedback information, where the first feedback information is used to indicate that the first uplink data packet is correctly received; or, in determining that the terminal device is not correctly received, at the first time-frequency location When the first uplink data packet is sent, the transceiver 402 is controlled to send the second downlink control information by using the second downlink control channel, where the second downlink control information is used. Comprising the first feedback
  • the second downlink control information further includes a second time-frequency location of the uplink resource that is re-allocated for the terminal device, and second indication information; the second indication information is used to indicate The downlink information used by the device 400 to send the second feedback information is a downlink control channel or a physical hybrid automatic retransmission indication channel, and the second feedback information is used to indicate whether the device 400 correctly receives the terminal device in the The second uplink data packet sent at the second time-frequency location.
  • the first feedback information is a second channel index value
  • the second channel index value is an invalid value, where the second channel index value is used to indicate that the terminal device is allocated.
  • the carrier resource location in the uplink resource, the invalid value indicating that the uplink resource allocated by the device 400 for the terminal device is invalid.
  • the embodiment of the present application further provides another communication device, which has a corresponding function for implementing the terminal device involved in the foregoing method embodiment.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • FIG. 5 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the device 500 may include a processing unit 501 and a transceiver unit 502.
  • the transceiver unit 502 is configured to receive first downlink control information that is carried by the first downlink control channel, where the first downlink control information includes a first time-frequency location of the uplink resource allocated by the network device to the device 500.
  • the first indication information where the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a downlink control channel or a physical hybrid automatic retransmission indication channel, where the first feedback information is used.
  • the processing unit 501 is configured to obtain the first feedback information from the downlink channel indicated by the first indication information after the transceiver unit 502 sends the uplink data packet at the first time-frequency position.
  • the processing unit 501 is further configured to: after the transceiver unit 502 receives the first downlink control information that is carried by the first downlink control channel,
  • the processing unit 501 determines that the downlink channel that needs to be monitored is a downlink control channel
  • the processing unit 501 determines that the downlink channel that needs to be monitored is a physical hybrid automatic weight. Pass the indication channel.
  • the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel
  • the first downlink control information is further And including time-frequency resource information corresponding to the physical hybrid automatic retransmission indication channel;
  • the processing unit 501 is configured to: according to the first channel index value indicated by the time-frequency resource information, and the delay, when the first feedback information is obtained from the downlink channel indicated by the first indication information. Determining, by the information, the time-frequency location of the physical hybrid automatic retransmission indication channel; after listening to the physical hybrid automatic retransmission indication channel at the determined time-frequency location, acquiring the physical hybrid automatic retransmission indication channel bearer a first feedback information, where the first channel index value is used to indicate a carrier resource location occupied by the physical hybrid automatic retransmission indication channel; the delay information is used to instruct the device 500 to send the first And a length of time between the uplink data packet and the network device between the physical hybrid automatic retransmission indication channel and the first feedback information.
  • the processing unit 501 if the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a downlink control channel, the processing unit 501, from the first indication When the first feedback information is obtained in the downlink channel indicated by the information, the method is specifically configured to: after the second downlink control channel is monitored by the search space search, obtain the first feedback that is carried by the second downlink control channel information.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the device 600 may include a processor 601 and a transceiver 602.
  • the processor 601 can also be a controller.
  • the processor 601 is configured to support the terminal device to perform the functions involved in the foregoing method embodiments.
  • the transceiver 602 is configured to support the function of the terminal device to send and receive messages.
  • the apparatus 600 can also include a memory 603 for coupling with the processor 601 that holds computer program instructions and/or data necessary for the terminal device.
  • the processor 601, the transceiver 602, and the memory 603 are used to store necessary computer program instructions for implementing the functions of the terminal device involved in the foregoing method embodiment, and the processor 601 is configured to execute the memory 603.
  • the computer program instructions are used to control the transceiver 602 to send and receive signals, and the steps of the terminal device performing the corresponding functions in the foregoing method embodiment are completed.
  • the transceiver 602 is configured to receive first downlink control information that is carried by the first downlink control channel, where the first downlink control information includes a first uplink resource allocated by the network device to the device 600. And a first indication information, where the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a downlink control channel or is a physical hybrid automatic retransmission indication channel, where the first The feedback information is used to indicate whether the network device correctly receives the first uplink data packet sent by the device 600 at the first time-frequency location.
  • the processor 601 is configured to obtain the first feedback information from the downlink channel indicated by the first indication information after the transceiver 602 sends the uplink data packet at the first time-frequency position.
  • the processor 601 is further configured to: if the first indication information is determined The downlink channel used by the network device to send the first feedback information is a downlink control channel, and the processor 601 determines that the downlink channel that needs to be monitored is a downlink control channel; if the first indication information is determined to be used to indicate the location The downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel, and the processor 601 determines that the downlink channel to be monitored is a physical hybrid automatic retransmission indication channel.
  • the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel
  • the first downlink control information is used to indicate that the downlink channel used by the network device to send the first feedback information is a physical hybrid automatic retransmission indication channel
  • the processor 601 when acquiring the first feedback information from the downlink channel indicated by the first indication information, is specifically configured to: according to the first channel index value indicated in the time-frequency resource information, and the delay Determining, by the information, the time-frequency location of the physical hybrid automatic retransmission indication channel; after listening to the physical hybrid automatic retransmission indication channel at the determined time-frequency location, acquiring the physical hybrid automatic retransmission indication channel bearer Describe the first feedback information;
  • the first channel index value is used to indicate the carrier resource location occupied by the physical hybrid automatic retransmission indication channel; the delay information is used to instruct the device 600 to send the first uplink data packet and the The duration of the interval between the first feedback information sent by the network device on the physical hybrid automatic retransmission indication channel.
  • the processor 601 if the first indication information is used to indicate that the downlink channel used by the network device to send the first feedback information is a downlink control channel, the processor 601, from the first indication When the first feedback information is obtained in the downlink channel indicated by the information, the method is specifically configured to: after the second downlink control channel is monitored by the search space search, obtain the first feedback that is carried by the second downlink control channel information.
  • the network device and the terminal device are not limited to the above structure, and may further include, for example, an antenna array, a duplexer, and a baseband processing portion.
  • the processor involved in the foregoing embodiments may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory may be integrated in the processor or may be separately provided from the processor.
  • the embodiment of the present application further provides a communication system, including the foregoing network device and at least one terminal device.
  • the embodiment of the present application further provides a chip, and the chip may be connected to a memory for reading and executing program code stored in the memory to implement any one of the foregoing terminal devices or the foregoing network device.
  • the embodiment of the present application further provides a computer storage medium for storing programs or instructions. When the programs or instructions are executed, any method involved in the foregoing terminal device or network device may be completed.
  • the embodiment of the present application further provides a computer program product for storing a computer program, which is used to execute the indication method of the feedback information involved in the foregoing method embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种反馈信息的指示方法及装置,以在进行上行数据包的反馈时尽可能节省时频资源。在该方法中,网络设备通过第一下行控制信道发送第一下行控制信息,第一下行控制信息包括为终端设备分配的上行资源的第一时频位置、以及第一指示信息,第一指示信息用于指示网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,第一反馈信息用于表征所述网络设备是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。进而终端设备接收第一下行控制信道承载的第一下行控制信息,并在第一下行控制信息指示的第一时频位置上发送上行数据包之后,从第一指示信息指示的下行信道中获取第一反馈信息。

Description

反馈信息的指示方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种反馈信息的指示方法及装置。
背景技术
在移动通信系统,如长期演进(long term evolution,LTE)系统中,终端设备和网络设备在通信过程中常采用混合自动重传请求(hybrid automatic repeat request,HARQ)技术来验证传输的数据是否正确接收,以提升数据传输质量。例如,在上行数据传输过程中,终端设备可以在物理上行共享信道(hysical uplink shared channel,PUSCH)上发送上行数据包,其中包含用户数据、以及用于指示未发送的剩余数据量的缓存状态报告(buffer status report,BSR),网络设备若能够正确接收到PUSCH上承载的上行数据包,则继续为终端设备分配空口资源,在物理下行控制信道(physical downlink control channel,PDCCH)上指示分配的空口资源用于新传并在物理混合自动重传请求指示信道(physical HARQ indication channel,PHICH)上反馈正确应答指令(acknowledgement,ACK),进而终端设备可以利用网络设备分配的空口资源在PUSCH上发送下一个上行数据包。反之,网络设备若未能正确接收到PUSCH上承载的上行数据包,则在为终端设备分配空口资源后,在PDCCH上指示分配的空口资源用于重传并在PHICH上反馈错误应答指令(negative acknowledge,NACK),进而终端设备可以利用网络设备分配的空口资源在PUSCH上重新发送网络设备未能正确接收的数据包。
由上述方式可知,移动通信系统的设计中网络设备在进行上行数据的反馈时,是固定的通过PDCCH以及PHICH反馈分配的空口资源以及上行数据的接收情况。也就是说,终端设备每发送一个上行数据包,基站都需要占用PDCCH和PHICH两个信道来进行反馈。然而,因窄带物联网通信系统的频域资源较为紧张,这使得窄带物联网通信系统没有充足的时频资源用于进行上行数据包的反馈,故现有对上行数据包的反馈方式对于窄带物联网通信系统来说并不适用。
发明内容
本申请实施例提供一种反馈信息的指示方法及装置,以在进行上行数据包的反馈时尽可能节省时频资源。
第一方面,本申请提供一种反馈信息的指示方法,在该反馈信息的指示方法中,网络设备通过第一下行控制信道发送第一下行控制信息,所述第一下行控制信息包括为终端设备分配的上行资源的第一时频位置、以及第一指示信息,其中所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述网络设备是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
进一步地,终端设备接收第一下行控制信道承载的第一下行控制信息,并在所述第一下行控制信息指示的第一时频位置上发送上行数据包之后,从所述第一指示信息指示的下行信道中获取所述第一反馈信息。
本申请实施例中,通过上述反馈信息的指示方法,网络设备每次向终端设备发送反馈 信息之前,可以灵活的选取用于承载反馈信息的下行信道,并预先指示给终端设备,以便终端设备从相应的下行信道中获取反馈信息。比如,网络设备通过下行控制信道发送反馈信息、以及指示为终端分配的上行资源,从而可以在完成对上行资源的调度的同时反馈了对接收的上行数据包的接收结果,不仅节省频域资源、还可降低反馈时延。再比如,通过物理混合自动重传指示信道发送反馈信息,可使得覆盖性能较好,同时反馈效率较高。相比现有技术中固定采用两个信道进行上行数据包的反馈,本申请中灵活选取两个信道中的其中一个信道进行反馈的方式,可以节省对上行数据包进行反馈的时频资源。
在一种可能的实施方式中,若所述第一指示信息指示所述网络设备发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息。
其中,所述时频资源信息包括以下信息中的至少一种:第一信道索引值,所述第一信道索引值用于指示承载所述第一反馈信息的所述物理混合自动重传指示信道占用的载波资源位置;所述物理混合自动重传指示信道发送的传输块大小;所述物理混合自动重传指示信道的重复次数;所述物理混合自动重传指示信道发送的传输块中所述第一反馈信息占用的比特位;时延信息,所述时延信息用于指示所述终端设备发送所述第一上行数据包与所述网络设备在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
上述方式中,通过在第一下行控制信息中增加指示物理混合自动重传指示信道的时频资源信息的字段,可以便于终端设备准确地从相应的时频位置上获取第一反馈信息,可提升反馈效率。
进一步地,网络设备通过第一下行控制信道发送第一下行控制信息后,可监听所述终端设备在所述第一时频位置上发送的所述第一上行数据包,进一步地,网络设备可判断是否正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包。
在一种可能的实施方式中,若所述第一指示信息指示所述网络设备发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述网络设备在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征正确接收所述第一上行数据包;或者,所述网络设备在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征未正确接收所述第一上行数据包。
上述方式中,采用物理混合自动重传指示信道发送第一反馈信息,可使得覆盖性能较好,并且,因物理混合自动重传指示信道承载的数据量相对下行控制信道承载的数据量较少,也可使得反馈效率较高。
在一种可能的实现方式中,若所述第一指示信息指示所述网络设备发送所述第一反馈信息采用的下行信道为下行控制信道,则所述网络设备在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示正确接收所述第一上行数据包;或者,所述网络设备在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示未正确接收所述第一上行数据包。
并且,所述第二下行控制信息还可以包括为所述终端设备再次分配的上行资源的第二时频位置、以及第二指示信息;所述第二指示信息用于指示所述网络设备发送第二反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第二反馈信息用于表征所述网络设备是否正确接收所述终端设备在所述第二时频位置上发送的第二上行数据包。
上述方式中,采用下行控制信道发送第一反馈信息的同时,还可指示为终端设备分配的上行资源等信息,从而可以在完成对上行资源的调度的同时反馈了对接收的上行数据包的接收结果,不仅节省了频域资源,还使得反馈过程的时延较低。
在一种可能的实现方式中,当网络设备确定已正确接收所述第二上行数据包,且确定出不需要为所述终端设备分配上行资源时,所述第一反馈信息可以用第二信道索引值来表示、且所述第二信道索引值为无效值,所述第二信道索引值用于指示为所述终端设备分配的上行资源中的载波资源位置,所述无效值表示所述网络设备为所述终端设备分配的上行资源无效。
上述方式中,将无效的第二信道索引值作为第一反馈信息,指示终端设备没有可用的上行资源用于发送上行数据包,从而可以隐式地指示终端设备所述第一上行数据包已接收成功,无需分配上行资源来重传所述第一上行数据包或新传下一个上行数据包。并且,将无效的第二信道索引值作为第一反馈信息,无需增加或改动下行控制信息中原有字段,实现过程较为简便。
对于终端侧而言,终端设备接收第一下行控制信道承载的第一下行控制信息之后,可以在所述第一下行控制信息指示的第一时频位置上发送上行数据包,并确定需要监听的承载所述第一反馈信息的下行信道。
在一种可能的实施方式中,终端设备若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述终端设备确定需要监听的下行信道为下行控制信道;终端设备若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述终端设备确定需要监听的下行信道为物理混合自动重传指示信道。
上述方式中,终端设备可根据第一指示信息指示的下行信道来确定需要监听的下行信道,从而可以有选择性的监听下行信道,减轻终端设备的处理压力。
在一种可能的实施方式中,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述终端设备在从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,可以根据所述时频资源信息中指示的第一信道索引值、以及时延信息,确定所述物理混合自动重传指示信道的时频位置,进一步地,所述终端设备在确定的时频位置上监听到所述物理混合自动重传指示信道后,获取所述物理混合自动重传指示信道承载的所述第一反馈信息。
若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述终端设备在从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,可以通过搜索空间搜索,监听到所述第二下行控制信道后,获取所述第二下行控制信道承载的所述第一反馈信息。
上述方式中,终端设备可以从所述第一指示信息指示的下行信道上接收网络设备针对上行数据包的反馈信息,后续可根据反馈信息中反馈的对上行数据包的接收结果来确定是 否需要重传上行数据包等。
第二方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面涉及的网络设备功能,所述功能可以通过硬件实现,也可通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的实施方式中,所述通信装置包括处理单元和收发单元,发送单元和处理单元执行的功能可以和上述第一方面涉及的网络设备执行的步骤相对应,在此不予赘述。
在另一种可能的实施方式中,所述通信装置包括处理器和收发器,所述处理器可控制所述收发器收发信号,完成上述第一方面以及第一方面任意可能的实施方式中网络设备执行的方法。
在另一种可能的实施方式中,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存实现上述第一方面涉及的网络设备功能的必要的计算机程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。所述处理器可执行所述存储器存储的计算机程序指令,完成上述第一方面以及第一方面任意可能的实施方式中网络设备执行的方法。
第三方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面涉及的终端设备功能,所述功能可以通过硬件实现,也可通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的实施方式中,所述通信装置包括处理单元和收发单元,发送单元和处理单元执行的功能可以和上述第一方面涉及的终端设备执行的步骤相对应,在此不予赘述。
在另一种可能的实施方式中,所述通信装置包括处理器和收发器,所述处理器可控制所述收发器收发信号,完成上述第一方面以及第一方面任意可能的实施方式中终端设备执行的方法。
在另一种可能的实施方式中,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存实现上述第一方面涉及的终端设备功能的必要的计算机程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。所述处理器可执行所述存储器存储的计算机程序指令,完成上述第一方面以及第一方面任意可能的实施方式中终端设备执行的方法。
第四方面,本申请提供一种通信系统,其包括第一方面涉及的网络设备、和至少一个第一方面涉及的终端设备。
第五方面,本申请提供一种芯片,所述芯片可以与存储器相连,用于读取并执行所述存储器中存储的程序代码,以实现上述第一方面以及第一方面任意可能的实施方式中网络设备所涉及的任意一种方法,或者,可以实现上述第一方面以及第一方面任意可能的实施方式中终端设备所涉及的任意一种方法。
第六方面,本申请提供一种计算机存储介质,用于存储程序或指令,当所述程序或指令在计算机上运行时,可以完成上述第一方面以及第一方面任意可能的实施方式中网络设备所涉及的任意一种方法,或可以完成上述第一方面以及第一方面任意可能的实施方式中终端设备所涉及的任意一种方法。
附图说明
图1为本申请实施例提供的一种可能的窄带物联网通信系统的示意图;
图2为本申请实施例提供的对上行数据包的反馈信息的指示方法的流程示意图;
图3为本申请实施例提供的一种通信装置300的结构示意图;
图4为本申请实施例提供的一种通信装置400的结构示意图;
图5为本申请实施例提供的一种通信装置500的结构示意图;
图6为本申请实施例提供的一种通信装置600的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)网络设备,可以称之为无线接入网(radio access network,RAN)设备,是一种将终端设备接入到无线网络的设备,包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、无线保真(wireless fidelity,WIFI)接入点(access point,AP),传输点(transmission and receiver point,TRP或者transmission point,TP)、继续演进的节点B(gNB)等。
(2)终端设备,是一种向用户提供语音和/或数据连通性的设备,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、无人机或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal equipment),传输点(transmission and receiver point,TRP或者transmission point,TP)等。
(3)HARQ,是一种将前向纠错编码前向纠错码(forward error correction,FEC)和自动重传请求(automatic repeat request,ARQ)相结合而形成的技术。具体的,发送端将待发送的数据包在物理层的FEC编码、调制后通过天线端口传输出去。到达接收端后,接收端在物理层对接收的数据包进行解调、解码,并将解码结果反馈给发送端。若接收端能够正确接收到数据包,则接收端向发送端发送ACK,若接收端未能正确接收到数据包,则接收端向发送端发送NACK。相应地,发送端接收到接收端反馈的ACK之后,可以继续传输下一个数据包,反之,发送端接收到接收端反馈的NACK之后,重新发送接收端未能正确接收的数据包。本申请实施例主要涉及网络设备针对终端设备发送的上行数据包反馈ACK或NACK的过程。并且本申请实施例可采用异步HARQ方式,这样,终端设备在接收到网络设备反馈的NACK后,可以在任意时刻重传数据包,使得重传调度更为灵活。
(4)本申请实施例中的术语“系统”和“网络”可被互换使用;“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”;“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况;以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
为了更好地理解本申请实施例提供的技术方案,下面首先介绍本申请实施例的应用场景。
本申请实施例可应用于窄带物联网通信系统,如电力行业的窄带通信系统中。图1示 例性示出了本申请实施例提供的一种可能的窄带物联网通信系统的示意图,包括终端设备、基站和核心网。终端设备可以接入基站,进一步通过基站实现与核心网网元的通信。本申请实施例主要涉及终端设备与基站之间的通信。针对上行传输过程,若终端设备待发送的上行数据包较大,需要切分成一个个小的上行数据包发送时,针对每一个小的上行数据包的发送,基站可以指示终端设备在哪些上行资源的时频位置上发送该上行数据包,进而终端设备可以在基站指示的时频位置上发送该上行数据包,进一步地,终端设备发送该上行数据包之后,基站可以向终端设备发送用于表征是否正确接收到终端设备发送的该上行数据包的反馈信息,并指示为终端设备再次分配的上行资源的时频位置,以便终端设备确定接下来在再次分配的上行资源的时频位置上是发送下一个上行数据包,还是重传基站未能正确接收的上行数据包。
在现有移动通信系统中,因可使用的频域资源充足,基站可以固定的通过PDCCH指示为终端设备分配的用于承载上行数据包的时频资源位置,并通过PHICH反馈ACK或NACK,指示基站是否正确接收到终端设备本次发送的上行数据包。然而,现有的窄带物联网通信系统中,可利用的授权频谱较少且呈离散化,每个信道载波仅为25Khz左右,PDCCH以及PHICH需要分别占用一个载波,才能使得信号覆盖范围达标,保证信号传输性能。鉴于窄带物联网通信系统的特殊性,若采用现有方式,固定的通过PDCCH以及PHICH两个信道进行上行数据包的反馈,这就意味着每次进行上行数据包的反馈都需要占用两个25Khz的载波,这对于原本频域资源不充足的窄带物联网通信系统来说,无疑是加重了频域资源的紧缺程度。因此,本申请实施例提出了一种反馈信息的指示方法及装置,可以节省对上行数据包进行反馈的时频资源。
可以理解的是,本申请实施例中的方案还可以应用于其他无线通信系统中,例如可应用于未来新无线(new radio,NR)系统、或者其它频谱资源较为紧缺的无线通信系统中。
图2为本申请实施例提供的上行数据包传输方法,尤其涉及对上行数据包的反馈信息的指示方法的流程示意图,在下文的介绍过程中,以该方法应用于图1所示的应用场景为例。该方法的流程描述如下:
步骤201:终端设备向基站发送上行调度请求(scheduling request,SR)或BSR,用于向基站请求上行资源。
具体的,终端设备通过SR向基站请求上行资源时,可以仅指示基站终端设备存在待发送的上行数据包,而不指示基站终端设备待发送的上行数据包具体包含多少字节的数据。终端设备通过BSR向基站请求上行资源时,可以指示基站终端设备未发送的上行数据包信息,具体的,所述BSR可通过索引值来表示终端设备未发送的上行数据包的字节范围,不同的索引值可代表不同的字节范围。通过不同索引值代表的不同的字节范围可以指示终端设备是否存在未发送的上行数据包。举例说明,当索引值代表的字节范围为零时,说明终端设备不存在未发送的上行数据包,即指示基站不需要继续分配上行资源。而当索引值代表的字节范围不为零时,说明终端设备还存在未发送的上行数据包,即指示基站还需继续分配上行资源。
步骤202:基站为终端设备分配上行资源,并通过第一PDCCH发送第一下行控制信息,所述第一下行控制信息中包含为终端设备分配的上行资源的第一时频位置、以及第一指示信息。
具体的,基站若接收到终端设备发送的SR,因SR中可以仅指示终端设备存在待发送 的上行数据包,而不指示终端设备待发送的上行数据包具体包含多少字节的数据,故基站在接收SR后,可以从可调度的上行资源中划分出一部分上行资源分配给终端设备,用于终端设备发送上行数据包。基站若接收到终端设备发送的BSR,可以根据BSR中指示的终端设备未发送的上行数据包信息、以及可调度的上行资源的情况,为终端设备分配上行资源,用于终端设备发送上行数据包。
进一步地,基站可在第一PDCCH承载的第一下行控制信息中携带上行授权信息(UL grant),所述UL grant中包含为终端设备分配的上行资源的第一时频位置,以便指示终端设备在第一时频位置上发送第一上行数据包。其中,第一时频位置具体可以指PUSCH对应的时域资源上的位置以及载波资源的位置。
本申请实施例中,可以在所述UL grant中新增了一个字段,通过新增的字段来表征所述第一指示信息,所述第一指示信息用于指示基站发送所述第一反馈信息采用的下行信道为PDCCH或者为PHICH,所述第一反馈信息用于表征基站是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
例如,可以新增一个比特(bit)位用于表征所述第一指示信息,当该1bit位取值为0时,指示基站发送所述第一反馈信息采用的下行信道为PDCCH,当该1bit位取值为1时,指示基站发送所述第一反馈信息采用的下行信道为PHICH。当然,实际应用时,还可以设定当该1bit位取值为1时,指示基站发送所述反馈信息采用的下行信道为PDCCH,当该1bit位取值为0时,指示基站发送所述第一反馈信息采用的下行信道为PHICH,当然还可以采用两个或以上比特数来表征所述第一指示信息,本申请对此并不限定。
本申请实施例中,当所述第一指示信息指示基站发送所述第一反馈信息采用的下行信道为PHICH时,在所述UL grant中还可以增加PHICH的时频资源信息。具体的,所述时频资源信息可以包括以下信息中的至少一种:第一信道索引值(需要理解的是,在窄带物联网通信系统中,本申请实施例中所述的信道索引值也可称之为载波索引值),所述第一信道索引值用于指示承载所述第一反馈信息的PHICH占用的载波资源位置;PHICH发送的传输块大小;PHICH的重复次数;PHICH发送的传输块中所述第一反馈信息占用的比特位;时延信息,所述时延信息用于指示终端设备发送所述第一上行数据包与所述网络设备在PHICH发送所述第一反馈信息之间间隔的时长。通过在UL grant中指示PHICH的时频资源信息,可以便于终端设备获知在哪个时频资源上获取PHICH承载的第一反馈信息。此外,实际应用时,基站在通过PHICH进行上行数据包的反馈时,可以在PHICH中承载针对一个或多个终端设备发送的上行数据包的反馈信息,以达到更好的反馈效率。并且,可以在PHICH的时频资源信息中指示终端设备针对自身的上行数据包的反馈信息在PHICH发送的传输块中占用的比特位,以便终端设备准确地获取到上行数据包的反馈信息。
步骤203:终端设备接收第一PDCCH承载的第一下行控制信息,在所述第一时频位置上发送第一上行数据包,所述第一上行数据包中可包含BSR,BSR指示了终端设备未发送的上行数据包信息。
本申请实施例中,对于第一PDCCH对应的时频位置,可通过高层信令预先指示给终端设备,以便终端设备在对应的时频位置上获取第一PDCCH承载的第一下行控制信息。例如,基站可在与终端设备建立无线资源控制(radio resource control,RRC)连接的过程中,通过RRC信令(如msg4)指示第一PDCCH对应的时频位置。当然,实际应用时, 终端设备还可以通过搜索空间搜索第一PDCCH,以获取第一PDCCH承载的第一下行控制信息。
步骤204:基站判断是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包,并基于判断结果,在所述第一指示信息指示的下行信道上发送第一反馈信息。
本申请实施例中,所述第一指示信息指示的用于承载第一反馈信息的下行信道分为PDCCH和PHICH这两种方式,下面分别针对这两种方式,对基站发送第一反馈信息的过程进行介绍。
方式一:所述第一指示信息指示基站发送所述第一反馈信息采用的下行信道为PDCCH
步骤204a1:基站判断是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
若判断结果为是,则执行步骤204b1~204d1;若判断结果为否,则执行步骤204e1。
步骤204b1:基站确定是否需要为终端设备分配上行资源,以便终端设备继续发送第二上行数据包,若是,即基站确定需要为终端设备分配上行资源,则执行步骤204c1,若否,即基站确定不需要为终端设备分配上行资源,则执行步骤204d1。
具体的,基站可以通过所述第一上行数据包中携带的BSR、可调度的上行资源等信息来确定是否需要为终端设备分配上行资源。比如,当所述第一上行数据包携带的BSR对应的索引值代表的字节范围指示终端设备不存在未发送的上行数据包时,基站可以确定不需要为终端设备分配上行资源。再比如,当所述第一上行数据包携带的BSR对应的索引值代表的字节范围指示终端设备存在未发送的上行数据包,但基站没有可调度的上行资源分配给终端设备时,基站也可以确定不需要为终端设备分配上行资源。当然,实际应用时,终端设备还可以结合其它信息,如当前的信道状况、小区负载等信息进行综合分析,确定是否需要为终端设备分配上行资源,本申请中不再一一列举出。
步骤204c1:基站通过第二PDCCH向终端设备发送第二下行控制信息,所述第二下行控制信息包含的第一反馈信息为新数据指示(new data indicator,NDI)、且所述NDI指示正确接收所述第一上行数据包。
其中,第二下行控制信息携带UL grant,UL grant包括第一反馈信息。本申请实施例中,第一反馈信息可通过NDI来表示。当NDI对应的字段值为第一字段值时,表征正确接收所述第一上行数据包。例如,NDI可由1bit位来表示,可设置当NDI对应字段值取值为1时,表征正确接收所述第一上行数据包,并可以指示基站再次分配的上行资源用于终端设备发送第二上行数据包。其中,当所述第一反馈信息表征正确接收所述第一上行数据包时,所述第二上行数据包即为终端设备首次传输的上行数据包,反之,当所述第一反馈信息表征未正确接收所述第一上行数据包时,所述第二上行数据包即为终端设备重新传输的所述第一上行数据包。
具体的,第二下行控制信息携带的UL grant中还可以包括为终端设备再次分配的上行资源的第二时频位置、以及第二指示信息。其中,再次分配的上行资源用于终端设备发送第二上行数据包,第二指示信息用于指示基站发送第二反馈信息采用的下行信道为PDCCH或者为PHICH,所述第二反馈信息用于表征基站是否正确接收终端设备在所述第二时频位置上发送的所述第二上行数据包。
本申请实施例,可以直接在第二PDCCH上指示为终端设备再次分配的上行资源的第二时频位置、以及反馈对终端设备在第一时频位置上发送的第一上行数据包的接收结果, 从而可以在完成对上行资源的调度的同时反馈了对接收的上行数据包的接收结果,不仅节省了频域资源,还使得反馈过程的时延较低。
步骤204d1:基站通过第二PDCCH向终端设备发送第二下行控制信息,所述第二下行控制信息中包含的第一反馈信息为第二信道索引值、且所述第二信道索引值为无效值,用于指示正确接收所述第一上行数据包。
本申请实施例中,基站为终端设备分配的上行资源中可包括频域资源,也就是载波资源。由于窄带物联网通信系统中每个信道占用了25Khz的载波,故基站为终端设备分配的上行资源中用于承载上行数据包的上行信道的载波资源位置可通过第二信道索引值来指示。当所述第二信道索引值为有效值时,表示基站为终端设备分配的上行资源有效,终端设备可以根据所述第二信道索引值确定出上行资源中的载波资源位置,当所述第二信道索引值为无效值时,表示基站为终端设备分配的上行资源无效,终端设备无法在所述第二信道索引值指示的载波资源位置上传输上行数据包。将无效的第二信道索引值作为第一反馈信息,指示终端设备没有可用的上行资源用于发送上行数据包,从而可以隐式地指示终端设备所述第一上行数据包已接收成功,无需分配上行资源来重传所述第一上行数据包或新传下一个上行数据包。并且,将无效的第二信道索引值作为第一反馈信息,无需增加或改动下行控制信息中原有字段,实现过程较为简便。
步骤204e1:基站通过第二PDCCH向终端设备发送第二下行控制信息,所述第二下行控制信息包含的第一反馈信息为NDI、且NDI指示未正确接收所述第一上行数据包。
具体的,当NDI对应的字段值为第二字段值时,表征未正确接收所述第一上行数据包。例如,当NDI由1bit位来表示时,可设置当NDI对应字段值取值为0时,表征未正确接收所述第一上行数据包,并可以指示基站再次分配的上行资源用于终端设备发送第二上行数据包,这里所述第二上行数据包即为终端设备重新传输的所述第一上行数据包。
需要理解的是,上述流程中通过PDCCH发送第一反馈信息时,采用NDI对应的字段值来指示正确接收或未正确接收所述第一上行数据包的方式仅作为举例说明(上述步骤204c1和步骤204e1),实际应用时,还可以在下行控制信息中增加字段,利用增加的字段表征ACK或NACK等,本申请对此并不限定。
通过上述方式,基站可以通过PDCCH指示为终端设备分配的上行资源的同时,反馈对终端设备上一次发送的上行数据包的接收情况,可以节省频域资源,并且相比通过PDCCH和PHICH共同进行上行数据包的反馈,也使得反馈过程的时延较低。
方式二:所述第一指示信息指示基站发送所述第一反馈信息采用的下行信道为PHICH
步骤204a2:基站判断是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
步骤204b2:基站通过PHICH向终端设备发送第一反馈信息,当判断结果为是时,所述第一反馈信息中包括ACK,当判断结果为否时,所述第一反馈信息中包括NACK。
本申请实施例中,PHICH上还可承载有对其它终端设备发送的上行数据包的反馈信息,PHICH发送的传输块中所述第一反馈信息占用的比特位可通过第一PDCCH预先指示给所述终端设备,以便终端设备在对应的比特位获取针对自身发送的上行数据包的第一反馈信息。因PHICH承载的数据量一般几bit位到数十bit位,相对PDCCH承载的数据量较少,故采用PHICH进行上行数据包的反馈时,也可以使得覆盖性能较好,同时反馈效率较高。
考虑到窄带物联网通信系统的频域资源较为紧缺,在实际对上行数据包进行反馈时,可以根据实际可调度的上行资源的情况、以及对反馈信息的时延要求等需求,灵活地选取合适的信道来进行上行数据包的反馈。
步骤205:终端设备从所述第一指示信息指示的下行信道中获取所述第一反馈信息。
具体的,终端设备在接收到第一PDCCH承载的第一下行控制信息后,可通过解调第一下行控制信息来获取所述第一指示信息,本申请实施例中因所述第一指示信息指示的下行信道分为PDCCH以及PHICH两种情况,其中,终端设备若确定所述第一指示信息用于指示基站发送第一反馈信息采用的下行信道为PDCCH时,则终端设备可以确定需要监听的下行信道为PDCCH,进而可以继续监听PDCCH,并且可以无需监听PHICH。终端设备若确定所述第一指示信息用于指示基站发送第一反馈信息采用下行信道为PHICH,则终端设备可以确定需要监听的下行信道为PHICH,进而可以监听PHICH,暂停监听PDCCH。当然,实际应用时,具体的监听方式还可根据实际需求来进行调整,比如,当终端设备能力较强,可以同时监听多个信道时,也可以不进行上述确定监听哪一个下行信道的过程,直接同时监听PDCCH和PHICH。
下面分别针对上述两种情况下终端从PDCCH或PHICH中获取第一反馈信息的过程进行介绍。
第一种情况:所述第一指示信息指示基站发送所述第一反馈信息采用的下行信道为PDCCH
步骤205a1:终端设备通过搜索空间搜索,监听到第二PDCCH后,获取第二PDCCH承载的所述第一反馈信息。
具体的,当基站通过第二PDCCH发送第一反馈信息时,若基站没有通过其他信令来指示终端PDCCH的时频位置,那么,终端设备可通过盲检测的方式来监听PDCCH,比如终端设备可以在搜索空间内监听PDCCH,获取第二PDCCH上承载的第二下行控制信息,进一步,从获取的第二下行控制信息中解调出所述第一反馈信息。
若从所述第二下行控制信息中解调出NDI,则终端设备在确定NDI对应的字段值为第一字段值时,可确认基站已正确接收所述第一上行数据包,在确定NDI对应的字段值为第二字段值时,可确认基站未正确接收所述第一上行数据包。若所述第二下行控制信息中还包含为终端设备再次分配的上行资源的第二时频位置、以及第二指示信息,那么,终端设备在确认基站已正确接收所述第一上行数据包后,可以在所述第二时频位置上发送所述第二上行数据包。后续,终端设备还可通过所述第二指示信息中指示的下行信道中获取基站对所述第二上行数据包的第二反馈信息。具体传输过程不再详述,可参见上述流程。
若从所述第二下行控制信息中解调出为所述第二信道索引值,则终端设备在确定所述第二信道索引值为无效值时,确认基站已正确接收所述第一上行数据包,本次上行数据包的传输流程结束。
第二种情况:所述第一指示信息指示基站发送所述第一反馈信息采用的下行信道为PHICH
由上述步骤202记载的内容可知,若所述第一指示信息指示的下行信道为PHICH时,基站在通过第一PDCCH发送第一下行控制信息时,第一下行控制信息中还包括了PHICH的时频资源信息,因此终端设备可根据第一下行控制信息中指示的时频资源信息,确定PHICH的时频位置,并在确定的时频位置上获取所述第一反馈信息。具体流程如下:
步骤205a2:终端设备根据所述第一下行控制信息中包含的所述时频资源信息中指示的第一信道索引值、以及时延信息,确定PHICH的时频位置。
步骤205b2:终端设备在确定的PHICH的时频位置监听到PHICH后,获取PHICH承载的所述第一反馈信息。
其中,所述第一信道索引值用于指示PHICH占用的载波资源位置;所述时延信息用于指示终端设备发送所述第一上行数据包与基站在PHICH上发送所述第一反馈信息之间间隔的时长。通过上述两个参数,终端设备可以获知在发送所述第一上行数据包间隔多少时间在哪些载波资源位置上获取所述第一反馈信息。
并且,当PHICH中还承载了其它终端设备发送的上行数据包的反馈信息时,终端设备可通过所述时频资源信息中指示的PHICH发送的传输块中所述第一反馈信息占用的比特位,从相应的比特位中解调出所述第一反馈信息。
具体的,若解调出所述第一反馈信息为ACK,则终端设备可确认基站已正确接收所述第一上行数据包。若解调出所述第一反馈信息为NACK,则终端设备可确认基站未正确接收所述第一上行数据包。后续,终端设备在获取到基站为其分配的上行资源后,可继续在基站指示的上行资源的时频位置上发送第二上行数据包。具体传输过程不再详述,可参见上述流程。
本申请实施例中,在PDCCH承载的下行控制信息中,指示了基站向终端设备发送反馈信息时采用的下行信道,反馈信息表征了基站是否正确接收终端设备发送的上行数据包,这样,基站每次向终端设备发送反馈信息之前,可以灵活的选取用于承载反馈信息的下行信道,并预先指示给终端设备,以便终端设备从相应的下行信道中获取反馈信息。比如,当频域资源较为紧缺时,基站可以通过PDCCH发送反馈信息、以及指示为终端分配的上行资源,从而可以在完成对上行资源的调度的同时反馈了对接收的上行数据包的接收结果,不仅节省频域资源、还可降低反馈时延。再比如,当频域资源较为充足时,可通过PHICH发送一个或多个终端设备的上行数据包的反馈信息,可使得覆盖性能较好,同时反馈效率较高。
基于相同的技术构思,本申请实施例还提供一种通信装置,所述装置具有实现上述方法实施例涉及的网络设备(例如,基站)的相应功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
图3示出了本申请实施例提供的一种通信装置300的结构示意图,其中,所述装置300可包括处理单元301、收发单元302。其中,处理单元301,用于控制所述收发单元302通过第一下行控制信道发送第一下行控制信息,所述第一下行控制信息包括为终端设备分配的上行资源的第一时频位置、以及第一指示信息;所述第一指示信息用于指示所述装置300发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述装置300是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
在一种可能的实施方式中,若所述第一指示信息指示所述装置发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息。
其中,所述时频资源信息包括以下信息中的至少一种:第一信道索引值,所述第一信 道索引值用于指示承载所述第一反馈信息的所述物理混合自动重传指示信道占用的载波资源位置;所述物理混合自动重传指示信道发送的传输块大小;所述物理混合自动重传指示信道的重复次数;所述物理混合自动重传指示信道发送的传输块中所述第一反馈信息占用的比特位;时延信息,所述时延信息用于指示所述终端设备发送所述第一上行数据包与所述装置300在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
在一种可能的实施方式中,若所述第一指示信息指示所述装置300发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,所述处理单元301,在控制所述收发单元302通过第一下行控制信道发送第一下行控制信息之后,还用于:
判断是否正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包;
在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发单元302通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征正确接收所述第一上行数据包;或者,在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发单元302通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征未正确接收所述第一上行数据包。
在一种可能的实施方式中,若所述第一指示信息指示所述装置300发送所述第一反馈信息采用的下行信道为下行控制信道,则所述处理单元301,在控制所述收发单元302通过第一下行控制信道发送第一下行控制信息之后,还用于:
判断是否正确接收所述终端设备在所述第一时频位置上发送的第一上行数据包;
在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发单元302通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示正确接收所述第一上行数据包;或者,在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发单元302通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示未正确接收所述第一上行数据包。
在一种可能的实施方式中,所述第二下行控制信息还包括为所述终端设备再次分配的上行资源的第二时频位置、以及第二指示信息;所述第二指示信息用于指示所述装置300发送第二反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第二反馈信息用于表征所述装置300是否正确接收所述终端设备在所述第二时频位置上发送的第二上行数据包。
在一种可能的实现方式中,所述第一反馈信息为第二信道索引值、且所述第二信道索引值为无效值,所述第二信道索引值用于指示为所述终端设备分配的上行资源中的载波资源位置,所述无效值表示所述装置300为所述终端设备分配的上行资源无效。
图4示出了本申请实施例提供的一种通信装置400的结构示意图,其中,所述装置400可包括处理器401、收发器402。其中,处理器401也可以为控制器。所述处理器401被配置为支持网络设备执行上述方法实施例中涉及的功能。所述收发器402被配置为支持网络设备收发消息的功能。所述装置400还可以包括存储器403,所述存储器403用于与处理器401耦合,其保存网络设备必要的计算机程序指令和/或数据。其中,处理器401、收发器402和存储器403相连,该存储器403用于存储实现上述方法实施例中涉及的网络设 备的功能的必要的计算机程序指令,该处理器401用于执行该存储器403存储的计算机程序指令,以控制收发器402收发信号,完成上述方法实施例中网络设备执行相应功能的步骤。
具体的,所述处理器401,用于控制所述收发器402通过第一下行控制信道发送第一下行控制信息,所述第一下行控制信息包括为终端设备分配的上行资源的第一时频位置、以及第一指示信息;所述第一指示信息用于指示所述装置400发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述装置400是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
在一种可能的实施方式中,若所述第一指示信息指示所述装置400发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息。
其中,所述时频资源信息包括以下信息中的至少一种:第一信道索引值,所述第一信道索引值用于指示承载所述第一反馈信息的所述物理混合自动重传指示信道占用的载波资源位置;所述物理混合自动重传指示信道发送的传输块大小;所述物理混合自动重传指示信道的重复次数;所述物理混合自动重传指示信道发送的传输块中所述第一反馈信息占用的比特位;时延信息,所述时延信息用于指示所述终端设备发送所述第一上行数据包与所述装置400在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
在一种可能的实施方式中,所述处理器401,在控制所述收发器402通过第一下行控制信道发送第一下行控制信息之后,还用于:判断是否正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包;在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器402通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征正确接收所述第一上行数据包;或者,在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器402通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征未正确接收所述第一上行数据包。
在一种可能的实施方式中,若所述第一指示信息指示所述装置400发送所述第一反馈信息采用的下行信道为下行控制信道,则所述处理器401,在控制所述收发器402通过第一下行控制信道发送第一下行控制信息之后,还用于:判断是否正确接收所述终端设备在所述第一时频位置上发送的第一上行数据包;在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器402通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示正确接收所述第一上行数据包;或者,在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器402通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示未正确接收所述第一上行数据包。
在一种可能的实施方式中,所述第二下行控制信息还包括为所述终端设备再次分配的上行资源的第二时频位置、以及第二指示信息;所述第二指示信息用于指示所述装置400发送第二反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第二反馈信息用于表征所述装置400是否正确接收所述终端设备在所述第二时频位置上发送的第二上行数据包。
在一种可能的实施方式中,所述第一反馈信息为第二信道索引值、且所述第二信道索引值为无效值,所述第二信道索引值用于指示为所述终端设备分配的上行资源中的载波资源位置,所述无效值表示所述装置400为所述终端设备分配的上行资源无效。
基于相同的技术构思,本申请实施例还提供另一种通信装置,所述装置具有实现上述方法实施例涉及的终端设备的相应功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
图5示出了本申请实施例提供的一种通信装置500的结构示意图,其中,所述装置500可包括处理单元501、收发单元502。其中,收发单元502,用于接收第一下行控制信道承载的第一下行控制信息,所述第一下行控制信息包括网络设备为所述装置500分配的上行资源的第一时频位置、以及第一指示信息;所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述网络设备是否正确接收所述装置500在所述第一时频位置上发送的第一上行数据包。所述处理单元501,用于在所述收发单元502在所述第一时频位置上发送上行数据包之后,从所述第一指示信息指示的下行信道中获取所述第一反馈信息。
在一种可能的实施方式中,所述处理单元501,在所述收发单元502接收第一下行控制信道承载的第一下行控制信息后,还用于:
若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述处理单元501确定需要监听的下行信道为下行控制信道;
若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述处理单元501确定需要监听的下行信道为物理混合自动重传指示信道。
在一种可能实施方式中,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息;
所述处理单元501,从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,具体用于:根据所述时频资源信息中指示的第一信道索引值、以及时延信息,确定所述物理混合自动重传指示信道的时频位置;在确定的时频位置上监听到所述物理混合自动重传指示信道后,获取所述物理混合自动重传指示信道承载的所述第一反馈信息;其中,所述第一信道索引值用于指示所述物理混合自动重传指示信道占用的载波资源位置;所述时延信息用于指示所述装置500发送所述第一上行数据包与所述网络设备在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
在一种可能的实施方式中,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述处理单元501,从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,具体用于:通过搜索空间搜索,监听到所述第二下行控制信道后,获取所述第二下行控制信道承载的所述第一反馈信息。
图6示出了本申请实施例提供的一种通信装置600的结构示意图,其中,所述装置600可包括处理器601、收发器602。其中,处理器601也可以为控制器。所述处理器601被配置为支持终端设备执行上述方法实施例中涉及的功能。所述收发器602被配置为支持终端设备收发消息的功能。所述装置600还可以包括存储器603,所述存储器603用于与处 理器601耦合,其保存终端设备必要的计算机程序指令和/或数据。其中,处理器601、收发器602和存储器603相连,该存储器603用于存储实现上述方法实施例中涉及的终端设备的功能的必要的计算机程序指令,该处理器601用于执行该存储器603存储的计算机程序指令,以控制收发器602收发信号,完成上述方法实施例中终端设备执行相应功能的步骤。
具体的,所述收发器602,用于接收第一下行控制信道承载的第一下行控制信息,所述第一下行控制信息包括网络设备为所述装置600分配的上行资源的第一时频位置、以及第一指示信息;所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述网络设备是否正确接收所述装置600在所述第一时频位置上发送的第一上行数据包。所述处理器601,用于在所述收发器602在所述第一时频位置上发送上行数据包之后,从所述第一指示信息指示的下行信道中获取所述第一反馈信息。
在一种可能的实施方式中,所述处理器601,在所述收发器602接收第一下行控制信道承载的第一下行控制信息后,还用于:若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述处理器601确定需要监听的下行信道为下行控制信道;若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述处理器601确定需要监听的下行信道为物理混合自动重传指示信道。
在一种可能的实施方式中,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息;
所述处理器601,从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,具体用于:根据所述时频资源信息中指示的第一信道索引值、以及时延信息,确定所述物理混合自动重传指示信道的时频位置;在确定的时频位置上监听到所述物理混合自动重传指示信道后,获取所述物理混合自动重传指示信道承载的所述第一反馈信息;
其中,所述第一信道索引值用于指示所述物理混合自动重传指示信道占用的载波资源位置;所述时延信息用于指示所述装置600发送所述第一上行数据包与所述网络设备在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
在一种可能的实施方式中,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述处理器601,从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,具体用于:通过搜索空间搜索,监听到所述第二下行控制信道后,获取所述第二下行控制信道承载的所述第一反馈信息。
可以理解的是,本申请实施例附图中仅仅示出了网络设备和终端设备的简化设计。在实际应用中,网络设备和终端设备并不限于上述结构,例如还可以包括天线阵列,双工器以及基带处理部分。
需要说明的是,本申请实施例上述涉及的处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。 处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。其中,所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和至少一个终端设备。
本申请实施例还提供一种芯片,所述芯片可以与存储器相连,用于读取并执行所述存储器中存储的程序代码,以实现前述终端设备或前述网络设备所涉及的任意一种方法。
本申请实施例还提供一种计算机存储介质,用于存储程序或指令,这些程序或指令被执行时,可以完成前述终端设备或网络设备所涉及的任意一种方法。
本申请实施例还提供一种计算机程序产品,用于存储计算机程序,该计算机程序用于执行上述方法实施例中涉及的反馈信息的指示方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (24)

  1. 一种反馈信息的指示方法,其特征在于,包括:
    网络设备通过第一下行控制信道发送第一下行控制信息,所述第一下行控制信息包括为终端设备分配的上行资源的第一时频位置、以及第一指示信息;
    所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述网络设备是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
  2. 如权利要求1所述的方法,其特征在于,若所述第一指示信息指示所述网络设备发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息。
  3. 如权利要求2所述的方法,其特征在于,所述时频资源信息包括以下信息中的至少一种:
    第一信道索引值,所述第一信道索引值用于指示承载所述第一反馈信息的所述物理混合自动重传指示信道占用的载波资源位置;
    所述物理混合自动重传指示信道发送的传输块大小;
    所述物理混合自动重传指示信道的重复次数;
    所述物理混合自动重传指示信道发送的传输块中所述第一反馈信息占用的比特位;
    时延信息,所述时延信息用于指示所述终端设备发送所述第一上行数据包与所述网络设备在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
  4. 如权利要求1~3任一所述的方法,其特征在于,所述网络设备通过第一下行控制信道发送第一下行控制信息之后,还包括:
    所述网络设备判断是否正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包;
    所述网络设备在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征正确接收所述第一上行数据包;或者,
    所述网络设备在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征未正确接收所述第一上行数据包。
  5. 如权利要求1所述的方法,其特征在于,若所述第一指示信息指示所述网络设备发送所述第一反馈信息采用的下行信道为下行控制信道,则所述网络设备通过第一下行控制信道发送第一下行控制信息之后,还包括:
    所述网络设备判断是否正确接收所述终端设备在所述第一时频位置上发送的第一上行数据包;
    所述网络设备在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示正确接收所述第一上行数据包;或者,
    所述网络设备在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第 一上行数据包时,通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示未正确接收所述第一上行数据包。
  6. 如权利要求5所述的方法,其特征在于,所述第二下行控制信息还包括为所述终端设备再次分配的上行资源的第二时频位置、以及第二指示信息;
    所述第二指示信息用于指示所述网络设备发送第二反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第二反馈信息用于表征所述网络设备是否正确接收所述终端设备在所述第二时频位置上发送的第二上行数据包。
  7. 如权利要求5所述的方法,其特征在于,所述第一反馈信息为第二信道索引值、且所述第二信道索引值为无效值,所述第二信道索引值用于指示为所述终端设备分配的上行资源中的载波资源位置,所述无效值表示所述网络设备为所述终端设备分配的上行资源无效。
  8. 一种反馈信息的指示方法,其特征在于,包括:
    终端设备接收第一下行控制信道承载的第一下行控制信息,所述第一下行控制信息包括网络设备为所述终端设备分配的上行资源的第一时频位置、以及第一指示信息;所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述网络设备是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包;
    所述终端设备在所述第一时频位置上发送上行数据包之后,从所述第一指示信息指示的下行信道中获取所述第一反馈信息。
  9. 如权利要求8所述的方法,其特征在于,所述终端设备接收第一下行控制信道承载的第一下行控制信息之后,还包括:
    所述终端设备若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述终端设备确定需要监听的下行信道为下行控制信道;
    所述终端设备若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述终端设备确定需要监听的下行信道为物理混合自动重传指示信道。
  10. 如权利要求8或9所述的方法,其特征在于,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息;
    所述终端设备从所述第一指示信息指示的下行信道中获取所述第一反馈信息,包括:
    所述终端设备根据所述时频资源信息中指示的第一信道索引值、以及时延信息,确定所述物理混合自动重传指示信道的时频位置;
    所述终端设备在确定的时频位置上监听到所述物理混合自动重传指示信道后,获取所述物理混合自动重传指示信道承载的所述第一反馈信息;
    其中,所述第一信道索引值用于指示所述物理混合自动重传指示信道占用的载波资源位置;所述时延信息用于指示所述终端设备发送所述第一上行数据包与所述网络设备在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
  11. 如权利要求8或9所述的方法,其特征在于,若所述第一指示信息用于指示所述 网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述终端设备从所述第一指示信息指示的下行信道中获取所述第一反馈信息,包括:
    所述终端设备通过搜索空间搜索,监听到所述第二下行控制信道后,获取所述第二下行控制信道承载的所述第一反馈信息。
  12. 一种通信装置,其特征在于,包括:处理器和收发器;
    所述处理器,用于控制所述收发器通过第一下行控制信道发送第一下行控制信息,所述第一下行控制信息包括为终端设备分配的上行资源的第一时频位置、以及第一指示信息;
    所述第一指示信息用于指示所述装置发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述装置是否正确接收终端设备在所述第一时频位置上发送的第一上行数据包。
  13. 如权利要求12所述的装置,其特征在于,若所述第一指示信息指示所述装置发送所述第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息。
  14. 如权利要求13所述的装置,其特征在于,所述时频资源信息包括以下信息中的至少一种:
    第一信道索引值,所述第一信道索引值用于指示承载所述第一反馈信息的所述物理混合自动重传指示信道占用的载波资源位置;
    所述物理混合自动重传指示信道发送的传输块大小;
    所述物理混合自动重传指示信道的重复次数;
    所述物理混合自动重传指示信道发送的传输块中所述第一反馈信息占用的比特位;
    时延信息,所述时延信息用于指示所述终端设备发送所述第一上行数据包与所述装置在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
  15. 如权利要求12~14任一所述的装置,其特征在于,所述处理器,在控制所述收发器通过第一下行控制信道发送第一下行控制信息之后,还用于:
    判断是否正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包;
    在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征正确接收所述第一上行数据包;或者,
    在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器通过所述物理混合自动重传指示信道发送所述第一反馈信息,所述第一反馈信息用于表征未正确接收所述第一上行数据包。
  16. 如权利要求12所述的装置,其特征在于,若所述第一指示信息指示所述装置发送所述第一反馈信息采用的下行信道为下行控制信道,则所述处理器,在控制所述收发器通过第一下行控制信道发送第一下行控制信息之后,还用于:
    判断是否正确接收所述终端设备在所述第一时频位置上发送的第一上行数据包;
    在确定正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示正确接收所述第一上行数据包;或者,
    在确定未正确接收所述终端设备在所述第一时频位置上发送的所述第一上行数据包时,控制所述收发器通过所述第二下行控制信道发送所述第二下行控制信息,所述第二下行控制信息包括所述第一反馈信息,所述第一反馈信息用于指示未正确接收所述第一上行数据包。
  17. 如权利要求16所述的装置,其特征在于,所述第二下行控制信息还包括为所述终端设备再次分配的上行资源的第二时频位置、以及第二指示信息;
    所述第二指示信息用于指示所述装置发送第二反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第二反馈信息用于表征所述装置是否正确接收所述终端设备在所述第二时频位置上发送的第二上行数据包。
  18. 如权利要求16所述的装置,其特征在于,所述第一反馈信息为第二信道索引值、且所述第二信道索引值为无效值,所述第二信道索引值用于指示为所述终端设备分配的上行资源中的载波资源位置,所述无效值表示所述装置为所述终端设备分配的上行资源无效。
  19. 一种通信装置,其特征在于,包括:处理器和收发器;
    所述收发器,用于接收第一下行控制信道承载的第一下行控制信息,所述第一下行控制信息包括网络设备为所述装置分配的上行资源的第一时频位置、以及第一指示信息;所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道或者为物理混合自动重传指示信道,所述第一反馈信息用于表征所述网络设备是否正确接收所述装置在所述第一时频位置上发送的第一上行数据包;
    所述处理器,用于在所述收发器在所述第一时频位置上发送上行数据包之后,从所述第一指示信息指示的下行信道中获取所述第一反馈信息。
  20. 如权利要求19所述的装置,其特征在于,所述处理器,在所述收发器接收第一下行控制信道承载的第一下行控制信息后,还用于:
    若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述处理器确定需要监听的下行信道为下行控制信道;
    若确定所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述处理器确定需要监听的下行信道为物理混合自动重传指示信道。
  21. 如权利要求19或20所述的装置,其特征在于,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为物理混合自动重传指示信道,则所述第一下行控制信息还包括所述物理混合自动重传指示信道对应的时频资源信息;
    所述处理器,从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,具体用于:
    根据所述时频资源信息中指示的第一信道索引值、以及时延信息,确定所述物理混合自动重传指示信道的时频位置;
    在确定的时频位置上监听到所述物理混合自动重传指示信道后,获取所述物理混合自动重传指示信道承载的所述第一反馈信息;
    其中,所述第一信道索引值用于指示所述物理混合自动重传指示信道占用的载波资源位置;所述时延信息用于指示所述装置发送所述第一上行数据包与所述网络设备在所述物理混合自动重传指示信道发送所述第一反馈信息之间间隔的时长。
  22. 如权利要求19或20所述的装置,其特征在于,若所述第一指示信息用于指示所述网络设备发送第一反馈信息采用的下行信道为下行控制信道,则所述处理器,从所述第一指示信息指示的下行信道中获取所述第一反馈信息时,具体用于:
    通过搜索空间搜索,监听到所述第二下行控制信道后,获取所述第二下行控制信道承载的所述第一反馈信息。
  23. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的程序代码,以实现如权利要求1至11任一项所述的方法。
  24. 一种计算机存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至11中任意一项所述的方法被执行。
PCT/CN2018/075459 2018-02-06 2018-02-06 反馈信息的指示方法及装置 WO2019153126A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/075459 WO2019153126A1 (zh) 2018-02-06 2018-02-06 反馈信息的指示方法及装置
CN201880088627.3A CN111684835B (zh) 2018-02-06 2018-02-06 反馈信息的指示方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075459 WO2019153126A1 (zh) 2018-02-06 2018-02-06 反馈信息的指示方法及装置

Publications (1)

Publication Number Publication Date
WO2019153126A1 true WO2019153126A1 (zh) 2019-08-15

Family

ID=67547761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075459 WO2019153126A1 (zh) 2018-02-06 2018-02-06 反馈信息的指示方法及装置

Country Status (2)

Country Link
CN (1) CN111684835B (zh)
WO (1) WO2019153126A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557228A (zh) * 2019-08-16 2019-12-10 中国信息通信研究院 一种对上行数据harq反馈方法、终端设备和网络设备
WO2021203247A1 (zh) * 2020-04-07 2021-10-14 北京小米移动软件有限公司 非授权频段反馈方法、非授权频段反馈装置及存储介质
CN114128186A (zh) * 2019-09-25 2022-03-01 华为技术有限公司 一种通信方法及装置
CN114342501A (zh) * 2019-09-27 2022-04-12 华为技术有限公司 多用户下行数据聚合传输的方法和装置
CN114641956A (zh) * 2019-11-08 2022-06-17 华为技术有限公司 一种确定数据传输反馈时延的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790240A (zh) * 2009-01-24 2010-07-28 华为技术有限公司 Ack/nack信道资源分配及确认信息处理的方法及装置
CN103178942A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 信令传输方法、基站和用户设备
US20140078993A1 (en) * 2011-02-12 2014-03-20 Samsung Electronics Co., Ltd. Method and apparatus for assigning response channel resources
US9210697B2 (en) * 2010-09-09 2015-12-08 Lg Electronics Inc. Method and device of transmitting a plurality of reception confirmation information
CN106998245A (zh) * 2016-01-22 2017-08-01 中兴通讯股份有限公司 一种下行反馈方法及装置
CN107231218A (zh) * 2016-03-25 2017-10-03 电信科学技术研究院 一种ack/nack反馈方法及相关设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1594331B1 (en) * 2004-05-04 2008-04-23 Alcatel Lucent Method for terminal assisted coordinated interference avoidance in a radio communication system
US20100034126A1 (en) * 2008-08-08 2010-02-11 Qualcomm Incorporated Method and apparatus for handling measurement gaps in wireless networks
US9144065B2 (en) * 2011-12-16 2015-09-22 Samsung Electronics Co., Ltd Communication support for low capability devices
US9042227B2 (en) * 2012-01-17 2015-05-26 Netapp, Inc. Systems , methods, and computer program products providing feedback for network congestion management
CN103368708A (zh) * 2012-03-30 2013-10-23 北京三星通信技术研究有限公司 一种pusch的重传指示方法
CN103378960B (zh) * 2012-04-24 2016-05-11 普天信息技术研究院有限公司 增强phich信道的信息传输方法
EP2870810A4 (en) * 2012-07-04 2016-02-24 Ericsson Telefon Ab L M HARQ RECONDITIONING TRANSMISSION, INCLUDING A LATENCY ABOUT AVAILABLE CHANNELS
CN103841603B (zh) * 2012-11-20 2019-05-31 北京三星通信技术研究有限公司 上行分组调度的方法及设备
CN104104486A (zh) * 2013-04-12 2014-10-15 北京三星通信技术研究有限公司 一种支持多子帧调度上行数据传输的方法和设备
CN104243108B (zh) * 2013-06-08 2019-06-14 中兴通讯股份有限公司 上行混合自动重传请求反馈方法、装置和系统
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
CN104811284B (zh) * 2014-01-29 2019-05-31 上海诺基亚贝尔股份有限公司 为mtc ue进行上行链路传输反馈的方法和装置
CN105515734B (zh) * 2014-09-26 2018-12-28 上海诺基亚贝尔股份有限公司 用于促进上行链路传输的混合自动重复请求的方法和设备
CN107078835A (zh) * 2014-10-31 2017-08-18 富士通株式会社 混合自动重传反馈的获取方法、装置以及通信系统
CN105991243A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 一种数据重复传输方法及装置
WO2016154899A1 (en) * 2015-03-31 2016-10-06 Panasonic Intellectual Property Corporation Of America Wireless communication method, user equipment and enodb
CN106330410B (zh) * 2015-06-16 2019-12-13 中国移动通信集团公司 一种上行信息的处理方法及装置
EP3346628B1 (en) * 2015-09-25 2020-02-05 Huawei Technologies Co., Ltd. Feedback information transmission method and base station, and user equipment
US10602488B2 (en) * 2015-10-22 2020-03-24 Qualocmm Incorporated HARQ and control channel timing for enhanced machine type communications (EMTC)
CN107529226A (zh) * 2016-06-22 2017-12-29 电信科学技术研究院 一种物理上行共享信道的传输方法及装置
CN105978671A (zh) * 2016-06-27 2016-09-28 深圳市金立通信设备有限公司 一种harq重传的指示方法及相关设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790240A (zh) * 2009-01-24 2010-07-28 华为技术有限公司 Ack/nack信道资源分配及确认信息处理的方法及装置
US9210697B2 (en) * 2010-09-09 2015-12-08 Lg Electronics Inc. Method and device of transmitting a plurality of reception confirmation information
US20140078993A1 (en) * 2011-02-12 2014-03-20 Samsung Electronics Co., Ltd. Method and apparatus for assigning response channel resources
CN103178942A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 信令传输方法、基站和用户设备
CN106998245A (zh) * 2016-01-22 2017-08-01 中兴通讯股份有限公司 一种下行反馈方法及装置
CN107231218A (zh) * 2016-03-25 2017-10-03 电信科学技术研究院 一种ack/nack反馈方法及相关设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557228A (zh) * 2019-08-16 2019-12-10 中国信息通信研究院 一种对上行数据harq反馈方法、终端设备和网络设备
CN114128186A (zh) * 2019-09-25 2022-03-01 华为技术有限公司 一种通信方法及装置
CN114128186B (zh) * 2019-09-25 2023-07-11 华为技术有限公司 一种通信方法及装置
CN114342501A (zh) * 2019-09-27 2022-04-12 华为技术有限公司 多用户下行数据聚合传输的方法和装置
CN114641956A (zh) * 2019-11-08 2022-06-17 华为技术有限公司 一种确定数据传输反馈时延的方法及装置
WO2021203247A1 (zh) * 2020-04-07 2021-10-14 北京小米移动软件有限公司 非授权频段反馈方法、非授权频段反馈装置及存储介质
CN113767668A (zh) * 2020-04-07 2021-12-07 北京小米移动软件有限公司 非授权频段反馈方法、非授权频段反馈装置及存储介质

Also Published As

Publication number Publication date
CN111684835A (zh) 2020-09-18
CN111684835B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN109391372B (zh) 通信方法与设备
WO2020048364A1 (zh) 发送和接收混合自动重传请求确认信息的方法、通信装置
WO2019153126A1 (zh) 反馈信息的指示方法及装置
US11140731B2 (en) Data transmission method, communication device, and data transmission system
JP6159672B2 (ja) 基地局、送信方法、移動局及び再送制御方法
US10469213B2 (en) Network node, a wireless device and methods therein for handling automatic repeat requests (ARQ) feedback information
US10148323B2 (en) Uplink inter-cell coordination method and base station
EP3603256B1 (en) Network node and method in a wireless communications network
WO2017184049A1 (en) Delaying transmission depending on transmission type and ue processing capabilities
TW201519680A (zh) 用於傳輸控制資訊的方法和設備
US11381347B2 (en) Communication method and communication device
EP3386254B1 (en) Cross-carrier scheduling methods, and apparatuses
TWI744346B (zh) 傳輸反饋信息的方法、終端設備和基站
EP3018853A1 (en) Method and device for configuring data transmission resource
JP6397059B2 (ja) ユーザ装置及び基地局
WO2018000373A1 (zh) 一种数据传输方法、设备及系统
JPWO2016189916A1 (ja) 基地局
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
CN108702258B (zh) 一种harq应答信息传输方法及设备
US9768936B2 (en) Message transmission in an unlicensed spectrum
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2022150976A1 (zh) 半永久性调度的反馈方法、装置、设备及存储介质
TW202218366A (zh) 處理混合自動重傳請求重新傳送的裝置
WO2019028833A1 (zh) 数据传输方法和装置
WO2016029411A1 (zh) 一种传输多媒体数据的方法及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904576

Country of ref document: EP

Kind code of ref document: A1