WO2019151538A1 - 高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用 - Google Patents

高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用 Download PDF

Info

Publication number
WO2019151538A1
WO2019151538A1 PCT/JP2019/004116 JP2019004116W WO2019151538A1 WO 2019151538 A1 WO2019151538 A1 WO 2019151538A1 JP 2019004116 W JP2019004116 W JP 2019004116W WO 2019151538 A1 WO2019151538 A1 WO 2019151538A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
superabsorbent
aqueous solution
alkali metal
Prior art date
Application number
PCT/JP2019/004116
Other languages
English (en)
French (fr)
Inventor
竜生 伊藤
遥奈 小野寺
尚行 船水
孝義 小西
八巻 孝一
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018154170A external-priority patent/JP7115933B2/ja
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to CN201980005831.9A priority Critical patent/CN111386304A/zh
Priority to EP19748325.8A priority patent/EP3733750A4/en
Priority to US16/966,884 priority patent/US20210039072A1/en
Publication of WO2019151538A1 publication Critical patent/WO2019151538A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure provides a method for regenerating a superabsorbent polymer inactivated by acid into a superabsorbent recycled polymer having a predetermined absorbency, from used sanitary goods, including pulp fibers and superabsorbent polymer.
  • a method for producing a highly water-absorbing recycled polymer having a predetermined water-absorbing property, and a high water-absorbing polymer having a predetermined water-absorbing property for a high water-absorbing polymer deactivated by an acid of an alkali metal ion source It relates to use for recycling into recycled polymers.
  • Patent Document 1 discloses a method for regenerating a water absorbent resin in which a water absorbent resin that has absorbed a liquid to be absorbed is taken out from a used body fluid absorbent article, and is washed and dehydrated.
  • a method for regenerating a water-absorbent resin is described, which includes an operation of placing in an environment in which the liquid to be absorbed absorbed by the water-absorbent resin is discharged.
  • the water absorbent resin after the regeneration treatment as exemplified above is the regenerated water absorbent resin of the present invention (hereinafter, the regenerated water absorbent resin is referred to as the water absorbent resin of the present invention).
  • the regenerated water absorbent resin is referred to as the water absorbent resin of the present invention.
  • it may be used as it is for applications such as absorbent articles, it is described that it is preferable to add a basic compound again in order to adjust the pH if necessary.
  • the superabsorbent polymer to be recycled has a relatively high water absorption.
  • Superabsorbent polymers for example, those contained in disposable diapers
  • superabsorbent polymers with relatively low water absorption but excellent gel strength when wet for example, light incontinence pads, sanitary napkins, panty liners, etc.
  • the regenerated superabsorbent polymer also includes a superabsorbent polymer having a relatively high water absorptivity and a superabsorbent polymer having a relatively low water absorptivity. Tend to be included.
  • disposable diapers from different manufacturers generally contain highly water-absorbing polymers with different water absorption, so In principle, the water-absorbing polymer and the regenerated super-water-absorbing polymer tend to include super-absorbent polymers having different water absorption.
  • the highly water-absorbing polymer regenerated from used sanitary goods is generally used for applications with a wide tolerance for water absorption (for example, soil conditioners).
  • water-absorbing polymers reclaimed from used sanitary products are reused in applications with limited water-absorbing capacity, such as sanitary products, recycle them to avoid adversely affecting the water absorbency of sanitary products.
  • regenerated from the used sanitary goods for sanitary goods at present is not generally performed.
  • regeneration of the absorbent resin is completed by performing a “regeneration method” including predetermined “washing” and “dehydration treatment”.
  • a “regeneration method” including predetermined “washing” and “dehydration treatment”.
  • the absorbent resin regenerated by the regenerating method described in Patent Document 1 is not adjusted in water absorption, so that it does not impair the water absorption of hygiene products in order to reuse it in hygiene products.
  • the present disclosure is a method for regenerating a superabsorbent polymer inactivated by an acid into a superabsorbent recycled polymer having a predetermined absorbency, which has an acid group and is inactivated by an acid.
  • Preparation step for preparing a superabsorbent polymer adding an alkali metal ion source capable of supplying alkali metal ions to the aqueous solution for regeneration containing the superabsorbent polymer inactivated by the acid, and inactivating by the acid
  • a method has been found that includes a drying step to form a superabsorbent recycled polymer.
  • the method for regenerating a superabsorbent polymer inactivated by an acid according to the present disclosure can form a superabsorbent polymer having a predetermined absorbency.
  • FIG. 1 is a block diagram of a system 1 for carrying out a manufacturing method, a regeneration method and use according to one of the embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the bag breaking device 11 and the crushing device 12 in FIG. 1.
  • FIG. 3 is a flowchart for explaining a method for producing recycled pulp fiber and superabsorbent recycled polymer from used sanitary goods using the system 1.
  • FIG. 4 is a diagram showing the results of the example.
  • FIG. 5 is a diagram showing the results of the example.
  • FIG. 6 is a diagram showing the results of the example.
  • “Inactivation” regarding the superabsorbent polymer means that the superabsorbent polymer holding excreta is preferably 50 times or less, more preferably 30 times or less, And more preferably, it means adjusting to have an absorption factor of 25 times or less, for example, releasing the retained excrement, suppressing absorption of the acid-containing aqueous solution, and the like.
  • a superabsorbent recycle polymer forming step for forming the superabsorbent recycle polymer A drying step of drying the superabsorbent recycle polymer in a wet state to form the superabsorbent recycle polymer having the predetermined water absorbency, Including the above method.
  • the above regeneration method includes a predetermined superabsorbent polymer formation step and a drying step
  • the superabsorbent polymer to be reclaimed is used in various applications that require different water absorption and narrow water absorption. Can be used.
  • the regenerated superabsorbent polymer can be used at a high ratio for various applications.
  • Aspect 3 Aspect 1 or 2 wherein the alkali metal ion source is a salt of an alkali metal hydroxide or an alkali metal hydroxide and an acid having an acid dissociation constant larger than the acid group of the superabsorbent polymer.
  • the method described in 1. since the alkali metal ion supply source is a predetermined compound, it is possible to easily adjust the water absorption of the regenerated superabsorbent polymer.
  • the highly water-absorbing recycled polymer in order to adjust the pH of the aqueous solution for regeneration to a predetermined range, is preferably used because the highly water-absorbing polymer having low water absorption is preferable to the highly water-absorbing polymer having high water absorption. Until now, the water absorption of the highly water-absorbing recycled polymer can be easily adjusted.
  • a method for producing a superabsorbent recycled polymer having a predetermined water absorbency from used sanitary goods comprising pulp fibers and a superabsorbent polymer comprising: A hygroscopic polymer comprising the sanitary ware comprising the pulp fiber and an acid group-containing superabsorbent polymer is immersed in an acid-containing aqueous solution containing an acid, and the superabsorbent polymer inactivated by the acid is obtained.
  • An alkali metal ion source capable of supplying alkali metal ions is added to an aqueous solution for regeneration containing the superabsorbent polymer inactivated by the acid, and the superabsorbent polymer inactivated by the acid is used in a wet state.
  • a superabsorbent recycle polymer forming step for forming the superabsorbent recycle polymer A drying step of drying the superabsorbent recycle polymer in a wet state to form the superabsorbent recycle polymer having the predetermined water absorbency, A method as described above, comprising:
  • the manufacturing method includes a predetermined superabsorbent recycle polymer forming step and a drying step
  • the superabsorbent recycle polymer to be manufactured can be used in various applications that require different water absorption and narrow tolerance. Can be used.
  • the highly water-absorbing recycled polymer produced can be used at a high ratio in various applications.
  • Aspect 8 Aspect 7 wherein the alkali metal ion source is a salt of an alkali metal hydroxide or an alkali metal hydroxide and an acid having a larger acid dissociation constant than the acid group of the superabsorbent polymer. the method of. In the said manufacturing method, since an alkali metal ion supply source is a predetermined compound, the water absorption of the highly water-absorbing recycled polymer to be regenerated can be easily adjusted.
  • the predetermined water absorption is adjusted by controlling the pH of the aqueous solution for regeneration, even if the amount of the high water absorption polymer to be recycled is unknown, the high water absorption recycled polymer The water absorption can be easily adjusted.
  • a highly water-absorbing recycle polymer is used from a use where a highly water-absorbing polymer with low water absorption is preferable, and a highly water-absorbing polymer with high water absorption is preferable. Until now, the water absorption of the highly water-absorbing recycled polymer can be easily adjusted.
  • Aspect 11 Aspect 9 or 10 in which the acid-containing aqueous solution is used as the regeneration aqueous solution and the pH of the regeneration aqueous solution is adjusted to 5.0 to 7.0 (25 ° C.) in the superabsorbent recycling polymer formation step. The method described in 1.
  • the acid-containing aqueous solution is used as a regenerating aqueous solution, and the pH of the regenerating aqueous solution is adjusted to a predetermined range.
  • a suitable highly water-absorbing recycled polymer can be easily produced.
  • the regeneration aqueous solution is a neutral aqueous solution or an alkaline aqueous solution.
  • the superabsorbent polymer inactivated by the acid is immersed in the regeneration aqueous solution, 11.
  • the method according to embodiment 9 or 10, wherein the pH is adjusted to more than 7.0 and 9.0 or less.
  • the aqueous solution for regeneration is a neutral aqueous solution or an alkaline aqueous solution
  • the superabsorbent polymer deactivated by the acid is immersed in the aqueous solution for regeneration in the step of forming the superabsorbent polymer for recycling. Since the pH of the aqueous solution for use is adjusted to a predetermined range, a highly water-absorbing recycled polymer suitable for applications in which a highly water-absorbing polymer with high water absorption is preferred can be produced easily by reducing the amount of alkali metal ion source. can do.
  • an alkali metal ion source capable of supplying alkali metal ions to regenerate a superabsorbent polymer deactivated by an acid into a superabsorbent recycle polymer having a predetermined absorbency
  • the alkali metal ion source is added to the aqueous solution for regeneration containing the superabsorbent polymer having an acid group and inactivated by the acid, and the wet polymer is in a wet state from the superabsorbent polymer inactivated by the acid.
  • the formed highly water-absorbing recycled polymer can be used in various applications where different water absorption and narrow water absorption are required.
  • the regenerated superabsorbent polymer can be used in various applications at a high ratio.
  • Aspect 14 Aspect 13 wherein the alkali metal ion source is a salt of an alkali metal hydroxide or an alkali metal hydroxide and an acid having a larger acid dissociation constant than the acid group of the superabsorbent polymer.
  • the alkali metal ion supply source is a predetermined compound, it is possible to easily adjust the water absorption of the regenerated superabsorbent polymer.
  • a method of regenerating a superabsorbent polymer deactivated with an acid according to the present disclosure into a superabsorbent recycle polymer having a predetermined absorbency (hereinafter referred to as “recycling method of superabsorbent polymer”, “present”
  • recycling method of superabsorbent polymer “present”
  • a method for producing a superabsorbent polymer (Hereinafter, it may be referred to as “a method for producing a superabsorbent polymer”, “a method for producing the present disclosure”, etc.), and (3) an alkali metal ion source capable of supplying alkali metal ions, Use to regenerate the activated superabsorbent polymer into a superabsorbent recycled polymer having a predetermined absorbency (hereinafter referred to as “use of alkali metal ion source”, “ For sometimes referred to as the use "), it will be described in detail. From the viewpoint of ease of explanation, first, (2) a method for producing a superabsorbent polymer will be described, (1) a method for regenerating superabsorbent polymer, and (3) use of an alkali metal ion source. About (2), a different point from the manufacturing method of a highly water-absorbing recycle polymer is demonstrated.
  • the method for producing a highly water-absorbing recycled polymer includes the following steps. -Hygienic article constituent materials that comprise sanitary goods, including pulp fibers and superabsorbent polymers having acid groups, are immersed in an acid-containing aqueous solution containing acid to form a superabsorbent polymer inactivated by acid. Inactivation step (hereinafter referred to as “inactivation step”) -A highly water-absorbing recycled polymer that forms a highly water-absorbing recycled polymer in a wet state by adding an alkali metal ion source capable of supplying alkali metal ions to an aqueous solution for regeneration containing a highly water-absorbing polymer inactivated by acid.
  • inactivation step A highly water-absorbing recycled polymer that forms a highly water-absorbing recycled polymer in a wet state by adding an alkali metal ion source capable of supplying alkali metal ions to an aqueous solution for regeneration containing a highly water-absorbing polymer inactivated by acid.
  • drying step for drying a highly water-absorbing recycled polymer in a wet state to form a highly water-absorbing recycled polymer having a predetermined water absorption (hereinafter sometimes referred to as “drying step”)
  • ⁇ Inactivation step> a hygroscopic polymer (hereinafter referred to as an acid) that has been inactivated by acid is immersed in an acid-containing aqueous solution containing a sanitary article comprising pulp fibers and a superabsorbent polymer having an acid group.
  • the water-absorbing polymer inactivated by the step hereinafter sometimes referred to as “acid-inactivated high water-absorbing polymer”).
  • the acid is not particularly limited, and examples thereof include inorganic acids and organic acids.
  • the pulp fiber is compared with the case of inactivating the superabsorbent polymer with lime, calcium chloride, magnesium sulfate, magnesium chloride, aluminum sulfate, aluminum chloride, etc. Difficult to leave ash.
  • the inorganic acid examples include sulfuric acid, hydrochloric acid, and nitric acid, and the inorganic acid is preferably sulfuric acid from the viewpoint of not containing chlorine and cost.
  • the organic acid what has an acid group, for example, a carboxyl group, a sulfo group, etc. is mentioned.
  • An organic acid having a sulfo group is referred to as a sulfonic acid, and an organic acid having a carboxyl group and not having a sulfo group is referred to as a carboxylic acid.
  • the organic acid is preferably an organic acid having a carboxyl group, particularly a carboxylic acid, from the viewpoint of protecting equipment.
  • the organic acid When the organic acid has a carboxyl group, the organic acid can have one or a plurality of carboxyl groups per molecule, and preferably has a plurality of carboxyl groups. By doing so, it becomes easy for the organic acid to form a chelate complex with a bivalent or higher metal contained in excrement etc., for example, calcium, and it is easy to lower the ash content of recycled pulp fiber produced from used sanitary goods. Become.
  • organic acid examples include citric acid, tartaric acid, malic acid, succinic acid, oxalic acid (above, carboxylic acid having a plurality of carboxyl groups), gluconic acid (C6), pentanoic acid (C5), butanoic acid (C4).
  • the acid-containing aqueous solution preferably has a predetermined pH, and the predetermined pH is preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and even more preferably 3 0.0 or less. If the predetermined pH is too high, the superabsorbent polymer is not sufficiently inactivated, excretion of excrement retained by the superabsorbent polymer tends to be insufficient, and separation from pulp fibers or the like tends to occur. Tend to be difficult to do.
  • the predetermined pH is preferably 0.5 or more, and more preferably 1.0 or more. If the predetermined pH is too low, the superabsorbent polymer is more inactivated, and it takes time to react the deactivated superabsorbent polymer with the alkali metal ion supply source in the step of forming the superabsorbent polymer. Tend.
  • pH means the value in 25 degreeC. The pH can be measured using, for example, a twin pH meter AS-711 manufactured by Horiba, Ltd.
  • the acid-containing aqueous solution preferably satisfies at least the predetermined pH at the start of the inactivation step, for example, when the sanitary article constituent material is immersed in the acid-containing aqueous solution.
  • This is to inactivate the superabsorbent polymer, and when the superabsorbent polymer is not sufficiently deactivated, the superabsorbent polymer is not sufficiently inactivated, such as a body fluid retained by the superabsorbent polymer.
  • the predetermined pH is preferably satisfied at the end of the inactivation step. This is from the viewpoint of continuing to deactivate the superabsorbent polymer.
  • the superabsorbent polymer is not particularly limited as long as it is used in the art as a superabsorbent polymer having an acid group, and examples thereof include those containing a carboxyl group, a sulfo group, and the like. Those containing a carboxyl group are preferred. Examples of the superabsorbent polymer containing a carboxyl group include polyacrylates and polyanhydride maleates, and examples of superabsorbent polymers containing a sulfo group include polysulfonates. Can be mentioned. The said pulp fiber will not be restrict
  • the acid to inactivate the superabsorbent polymer in order to efficiently inactivated superabsorbent polymer, less acid than the acid dissociation constant of the acid groups in the superabsorbent polymer (pK a, water) It preferably has a dissociation constant (pKa, in water).
  • the acid has a plurality of acid groups, for example, when the acid is a dibasic acid or a tribasic acid, the largest acid dissociation constant (pK a ) of the acid dissociation constants (pKa, in water) of the acid.
  • pK a the largest acid dissociation constant of the acid dissociation constants (pKa, in water) of the acid.
  • a, water is, when it is preferably less than the acid dissociation constant of the acid groups of the superabsorbent polymer (pK a, water), and the superabsorbent polymer has a plurality of types of acid groups, the acid acid dissociation constant (pK a, water) the largest acid dissociation constant of (pK a, water) is smaller than the smallest acid dissociation constant of the plurality of types of acid groups of the superabsorbent polymer (pK a, water) It is preferable. This is from the viewpoint of the inactivation efficiency of the superabsorbent polymer.
  • the value described in the electrochemical handbook edited by the Electrochemical Society can be adopted as the acid dissociation constant (pk a , in water).
  • the acid dissociation constants (pk a , in water, 25 ° C.) of the main compounds are as follows. [Organic acid] Tartaric acid: 2.99 (pK a1 ), 4.44 (pK a2 ) Malic acid: 3.24 (pK a1 ), 4.71 (pK a2 ) Citric acid: 2.87 (pK a1 ), 4.35 (pK a2 ), 5.69 (pK a3 ) [Inorganic acid] ⁇ Sulfuric acid: 1.99
  • the acid dissociation constant (pk a , in water) of acids not described in the electrochemical handbook can be determined by measurement.
  • Examples of the instrument that can measure the acid dissociation constant (pk a , in water) include a compound physical property evaluation / analysis system T3 manufactured by Sirius.
  • the specific method is not particularly limited as long as the sanitary ware constituting material can be immersed in the acid-containing aqueous solution.
  • the sanitary ware constituting material is introduced into a tank containing the acid-containing aqueous solution.
  • the acid-containing aqueous solution may be put into a tank in which the sanitary article constituent materials are arranged.
  • the sanitary article is not particularly limited as long as it contains a superabsorbent polymer, and examples thereof include disposable diapers, disposable shorts, sanitary napkins, panty liners, urine-absorbing pads, bed sheets, pet sheets, and the like. It is done.
  • the sanitary article preferably includes pulp fibers and a superabsorbent polymer.
  • sanitary goods what contains a liquid-permeable sheet
  • the sanitary article constituent material in the inactivation step can be a mixture of pulp fibers and a superabsorbent polymer, for example, an absorbent core taken out of a used sanitary article.
  • the sanitary article constituent material may be the sanitary article itself.
  • non-specific material in addition to pulp fiber and a superabsorbent polymer
  • specific material a superabsorbent polymer
  • a liquid-permeable sheet, a liquid-impermeable sheet, etc. are included, for example, as a sanitary product constituent material
  • removal step for removing the non-specific material. In the removal step, all of the non-specific material may be removed, and a part of the non-specific material may be removed.
  • the hygroscopic polymer is inactivated in an inactivation tank containing an acid-containing aqueous solution by stirring for about 5 to 60 minutes depending on the temperature, thereby inactivating the superabsorbent polymer.
  • An inactivated superabsorbent polymer can be formed.
  • the acid group of the superabsorbent polymer having an acid group changes from a salt (for example, sodium salt) state to a free acid state, so that the superabsorbent polymer absorbs water.
  • a salt for example, sodium salt
  • the inventor of the present application puts a superabsorbent polymer that has absorbed water into an acid-containing aqueous solution, so that a negatively charged hydrophilic group (for example, —COO ⁇ ) is added by a positively charged hydrogen ion (H + ). It was found that the ion repulsive force of the hydrophilic group is weakened due to being neutralized (for example, —COOH), the water absorbing power is lowered, and the highly water-absorbing polymer is dehydrated.
  • a negatively charged hydrophilic group for example, —COO ⁇
  • H + positively charged hydrogen ion
  • the temperature of the acid-containing aqueous solution in the inactivation step is not particularly limited, and may be, for example, room temperature (25 ° C.) and may be higher than room temperature. Specifically, the temperature of the acid-containing aqueous solution in the inactivation step is preferably higher than room temperature, more preferably 60-100 ° C, more preferably 70-95 ° C, and even more preferably 80-90 ° C. . By doing so, the acid contained in the acid-containing aqueous solution makes it easy to sterilize bacteria derived from excreta and the like contained in the acid-containing aqueous solution.
  • ⁇ High water-absorbing recycle polymer formation step an alkali metal ion source capable of supplying alkali metal ions is added to the aqueous solution for regeneration containing the acid-inactivated superabsorbent polymer to form a superabsorbent recycle polymer in a wet state.
  • the superabsorbent polymer obtained by recycling the deactivated superabsorbent polymer is referred to as “superabsorbent polymer”.
  • the inventor of the present application contacts an acid-inactivated superabsorbent polymer with an alkali metal ion source in water or the like while adjusting the amount thereof, thereby converting some of the acid groups of the superabsorbent polymer into an alkali metal salt.
  • the alkali metal ion supply source is not particularly limited as long as it can supply alkali metal ions.
  • an alkali metal hydroxide or an alkali metal hydroxide and an acid salt hereinafter, it may be simply referred to as “salt”).
  • alkali metal ions examples include lithium ions, sodium ions and potassium ions, and any combination thereof.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide and potassium hydroxide, and any combination thereof.
  • Examples of the salt include an acidic salt and a basic salt.
  • Examples of the alkali metal hydroxide in the salt include lithium hydroxide, sodium hydroxide and potassium hydroxide, and any combination thereof.
  • the acid in the salt is not particularly limited, and examples thereof include acids listed in the “inactivation step” (for example, hydrochloric acid, sulfuric acid), carbonic acid and the like.
  • the acid is preferably an acid having an acid dissociation constant of the acid groups in the superabsorbent polymer (pK a, water) larger acid dissociation constant than (pK a, water). By doing so, the acid group of the superabsorbent polymer is likely to form an alkali metal salt.
  • the smallest acid dissociation constant of the acid dissociation constant of the acid (pK a, water) (pK a , in water) is preferably larger than the acid dissociation constant (pK a , in water) of the acid group of the superabsorbent polymer, and when the superabsorbent polymer has multiple types of acid groups, acid dissociation constant (pK a, water) smallest acid dissociation constant (pK a, water) of is larger than the largest acid dissociation constant of the plurality of types of acid groups of the superabsorbent polymer (pK a, water) It is preferable. This is because the acid group of the superabsorbent polymer is easily converted to an alkali metal salt.
  • Carbonic acid as the acid is preferable because carbonic acid hardly remains in the inactivated aqueous solution or can be easily removed by heating or the like.
  • the acid other than carbonic acid depends on the pH of the highly water-absorbing recycle polymer in a wet state. For example, when the highly water-absorbent recycle polymer in a wet state is at an acidic pH, the high water absorbency in a wet state is high. Antibacterial properties can be imparted to recycled polymers, highly water-absorbing recycled polymers in a dry state, and the like.
  • Examples of the salt include lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium chloride, sodium chloride, potassium chloride and the like.
  • the aqueous solution for regeneration may contain an acidic substance, an alkaline substance or a buffer substance (buffer solution), and the alkali metal ion source is an acidic substance.
  • an alkaline substance or a buffer substance (buffer solution) may be contained.
  • the acidic substance, alkaline substance or buffer substance (buffer solution) is used when the alkali metal ion source is difficult to change the pH of the aqueous solution for regeneration (for example, the alkali metal ion source is lithium chloride, sodium chloride, potassium chloride). Etc.), which is preferable when it is not desired to change the pH of the aqueous solution for regeneration.
  • the acidic substance is not particularly limited as long as the pH of deionized water can be made alkaline (7.0 ⁇ pH), and those known in the art can be adopted. Examples thereof include acids, carbonic acid and the like listed in “Step”.
  • the alkaline substance is not particularly limited as long as the pH of deionized water can be made alkaline (7.0 ⁇ pH), and those known in the art can be adopted. Examples include hydroxides or salts thereof, alkaline earth metal hydroxides or salts thereof, and the like, and alkali metal hydroxides or salts thereof are preferable from the viewpoint of making it difficult to inactivate the superabsorbent polymer. .
  • the alkali metal hydroxide or a salt thereof is as described above.
  • Examples of the buffer substance (buffer solution) include a carbonate-bicarbonate buffer solution containing sodium carbonate, sodium bicarbonate and water.
  • the aqueous solution for regeneration is not particularly limited as long as it contains water, and can be a substantially neutral aqueous solution (for example, tap water, deionized water, etc.), and an acidic aqueous solution (aqueous solution with pH ⁇ 7.0). ),
  • a substantially neutral aqueous solution for example, tap water, deionized water, etc.
  • an acidic aqueous solution aqueous solution with pH ⁇ 7.0).
  • an acid-containing aqueous solution used in the inactivation step an aqueous solution containing an inorganic acid or an organic acid described in the inactivation step, or an alkaline aqueous solution (7.0 ⁇ pH aqueous solution), for example, the above-mentioned It can be an aqueous solution containing an alkali metal ion source.
  • the inventor of the present application also adjusts the pH of the system containing the acid-inactivated superabsorbent polymer, that is, the pH of the aqueous solution for regeneration, so that the superabsorbent polymer of the superabsorbent polymer in the wet state has a high water absorbency (ie, high in the dry state). It has been found that the water absorption of the water-absorbing recycled polymer can be adjusted to a predetermined range.
  • the “highly water-absorbing recycle polymer in the wet state” formed in the high water-absorbing recycle polymer forming step has the same water absorption as the “high water-absorbing recycle polymer” obtained in the drying step.
  • the water absorption of the highly water-absorbing recycle polymer may fluctuate.
  • the reaction between the acid group of the highly water-absorbing recycle polymer and the alkali metal further progresses, although it may be slightly higher, it is the superabsorbent recycled polymer formation step that adjusts the absorbency of the superabsorbent recycled polymer in the dry state.
  • the regeneration aqueous solution is preferably an acidic aqueous solution, and the alkali metal ion source is used as it is or as an aqueous solution in the regeneration aqueous solution that is an acidic aqueous solution.
  • the alkali metal ion source is used as it is or as an aqueous solution in the regeneration aqueous solution that is an acidic aqueous solution.
  • the regeneration aqueous solution can be an acidic aqueous solution, a generally neutral aqueous solution, or an alkaline aqueous solution, and a generally neutral aqueous solution, Or it is preferable that it is alkaline aqueous solution. This is from the viewpoint of efficiently using the alkali metal ion supply source for the formation of the highly water-absorbing recycled polymer.
  • the alkali metal ion source may be present in the regeneration aqueous solution, and the alkali metal ion source can be added to the regeneration aqueous solution as it is or as an aqueous solution.
  • the alkali metal hydroxide is preferably an aqueous solution, and the aqueous solution has a hydroxide ion concentration. , Preferably 0.1-5.0 mol / L, more preferably 0.3-3.0 mol / L, and preferably 0.4-1.0 mol / L to the aqueous solution for regeneration. Is done. This is from the viewpoint of easy adjustment of the pH of the aqueous solution for regeneration, and hence the water absorption of the highly water-absorbing recycled polymer.
  • the acid-inactivated superabsorbent polymer is separated from the acid-containing aqueous solution using an apparatus capable of solid-liquid separation, and then the acid-inactivated superabsorbent polymer separated from the acid-containing aqueous solution is converted into an aqueous solution for regeneration. It may be immersed.
  • the apparatus capable of solid-liquid separation include a rotary drum screen, an inclined screen, and a vibrating screen.
  • the superabsorbent recycled polymer formation step can be carried out by stirring the aqueous solution for regeneration at a predetermined temperature, for example, 2 to 80 ° C., for a predetermined time, for example, 5 to 60 minutes.
  • the highly water-absorbing recycled polymer in a wet state is dried to form a highly water-absorbing recycled polymer having a predetermined water absorption.
  • the above-mentioned predetermined water absorption is not particularly limited, but considering the practicality of the highly water-absorbing recycled polymer, the absorption ratio is preferably 100 times (g / g) with respect to deionized water. Above, more preferably 200 times (g / g) or more, and even more preferably 300 times (g / g) or more.
  • the predetermined water absorption is not particularly limited, but considering the gel strength during swelling of the superabsorbent recycled polymer, the absorption ratio is preferably 500 times (g) with respect to deionized water. / G) or less, more preferably 450 times (g / g) or less, and even more preferably 400 times (g / g) or less.
  • the aqueous solution for regeneration containing the highly water-absorbing recycled polymer in the wet state obtained in the step of forming the highly water-absorbing recycled polymer can be directly dried to obtain the highly water-absorbing recycled polymer in the dry state.
  • the superabsorbent polymer can be separated from the reclaimed aqueous solution using an apparatus capable of solid-liquid separation from the reclaimed aqueous solution containing the superabsorbent polymer. Examples of the apparatus capable of solid-liquid separation include a rotary drum screen, an inclined screen, and a vibrating screen.
  • the separated superabsorbent recycled polymer may be washed with tap water, deionized water or the like before drying to remove the aqueous regeneration solution adhering to the surface of the superabsorbent recycled polymer.
  • the separated superabsorbent recycled polymer is brought into contact with the hydrophilic organic solvent (for example, immersed in the hydrophilic organic solvent) before drying, so that the moisture contained in the separated superabsorbent recycled polymer is reduced.
  • the dehydration can be performed up to 100 times (g / g) or less, more preferably 70 times (g / g) or less, and even more preferably 50 times (g / g) or less. By doing so, the temperature of drying can be reduced and / or the time of drying can be reduced.
  • the hydrophilic organic solvent is preferably a solvent miscible with water.
  • alcohol solvents for example, methanol, ethanol, propyl alcohol and isomers thereof, butyl alcohol and isomers thereof
  • ketone-based solvents for example, acetone, methyl ethyl ketone, a nitrile solvent (for example, acetonitrile), etc. are mentioned.
  • the superabsorbent recycled polymer in the wet state is preferably dried at a drying temperature of room temperature (eg, 25 ° C.) to 120 ° C., more preferably 30 to 80 ° C., and preferably 40 to 60 ° C.
  • room temperature eg, 25 ° C.
  • the drying time tends to be long, and when the drying temperature is high, the water absorption of the superabsorbent recycled polymer is reduced due to dehydration condensation of the acid groups of the superabsorbent recycled polymer.
  • the drying temperature can be lowered, for example, from room temperature to 60 ° C.
  • the drying step may be performed under reduced pressure, for example, at 0.1 kPa or more and less than 100 kPa.
  • the drying step can be performed, for example, for 30 to 300 minutes.
  • the drying step is preferably performed so that the loss on drying of the superabsorbent recycled polymer is preferably 15% or less (2.0 g, 105 ° C., 3 hours). This is from the viewpoint of using a highly water-absorbing recycled polymer.
  • the loss on drying is based on the “Physiological Treatment Product Material Standard” attached as a separate sheet to the “About the Sanitary Treatment Product Material Standard” dated March 25, 2015 by the Ministry of Health, Labor and Welfare as 0325 No. 24 ⁇ 2. It is measured in accordance with “7.
  • the dried superabsorbent recycled polymer may be pulverized and classified.
  • the method for regenerating a superabsorbent polymer includes the following steps.
  • Preparation step for preparing a superabsorbent polymer having an acid group and inactivated by acid (hereinafter sometimes referred to as “preparation step”) -A highly water-absorbing recycled polymer that forms a highly water-absorbing recycled polymer in a wet state by adding an alkali metal ion source capable of supplying alkali metal ions to an aqueous solution for regeneration containing a highly water-absorbing polymer inactivated by acid.
  • drying step for drying a highly water-absorbing recycled polymer in a wet state to form a highly water-absorbing recycled polymer having a predetermined water absorption (hereinafter sometimes referred to as “drying step”)
  • an acid-inactivated superabsorbent polymer having acid groups is prepared.
  • the acid-inactivated superabsorbent polymer is not particularly limited as long as it is inactivated by an acid.
  • the “inactivation step” section of “Production method of superabsorbent polymer” in the present specification. Can be prepared as described in.
  • the acid-inactivated superabsorbent polymer is obtained by inactivating the superabsorbent polymer contained in the used sanitary goods using a polyvalent metal salt, for example, an alkaline earth metal salt. Subsequently, those treated with an acid are also included.
  • the use of an alkali metal ion source includes the following steps. ⁇ Adding an alkali metal ion source that can supply alkali metal ions to an aqueous solution for regeneration containing a superabsorbent polymer that has acid groups and is inactivated by acid to form a superabsorbent recycled polymer in a wet state A superabsorbent recycle polymer forming step (hereinafter, referred to as a “superabsorbent recycle polymer forming step”).
  • the “superabsorbent recycle polymer formation step” in the use of the present disclosure is the same as the “superabsorbent recycle polymer formation step” in the “manufactured method of superabsorbent recycle polymer”, and the description thereof will be omitted.
  • FIG. 1 is a block diagram of a system 1 for carrying out a manufacturing method, a regeneration method and use according to one of the embodiments of the present disclosure.
  • FIG. 1 is a diagram for explaining a manufacturing method, a regeneration method, and a use according to one embodiment of the present disclosure, and does not limit the present disclosure in any way.
  • the system 1 includes a bag breaking device 11, a crushing device 12, a first separating device 13, a first dust removing device 14, a second dust removing device 15, a third dust removing device 16, a second separating device 17, A third separation device 18, an oxidant treatment device 19, and a fourth separation device 20 are provided.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the bag breaking device 11 and the crushing device 12 in FIG. 1.
  • the bag-breaking device 11 is filled with an acid-containing aqueous solution B, and an opening is formed in the collection bag A that has settled in the acid-containing aqueous solution B.
  • the collection includes a used sanitary article and has an opening.
  • a bag 91 is formed.
  • the bag breaking device 11 includes a solution tank V and an opening forming unit 50.
  • the solution tank V stores an acid-containing aqueous solution B.
  • the opening forming part 50 is provided in the solution tank V, and when the collecting bag A is put in the solution tank V, the opening forming part 50 is formed on the surface of the collecting bag A in contact with the acid-containing aqueous solution B. .
  • the opening forming part 50 includes a feeding part 30 and a bag breaking part 40.
  • the sending-in part 30 sends (draws) the collection bag A into the acid-containing aqueous solution B in the solution tank V (physically and forcibly).
  • the feeding unit 30 includes, for example, a stirrer, and includes a stirring blade 33, a support shaft (rotary shaft) 32 that supports the stirring blade 33, and a drive device 31 that rotates the support shaft 32 along the shaft.
  • the stirring blade 33 rotates around the rotation shaft (support shaft 32) by the drive device 31, thereby causing a swirl flow in the acid-containing aqueous solution B.
  • the feeding unit 30 draws the collection bag A toward the bottom of the acid-containing aqueous solution B (solution tank V) by swirling flow.
  • the bag breaking portion 40 is disposed at the lower portion (preferably the bottom portion) of the solution tank V, and has a bag breaking blade 41, a support shaft (rotating shaft) 42 for supporting the bag breaking blade 41, and the support shaft 42 as axes. And a drive device 43 that rotates along the axis.
  • the bag breaking blade 41 is rotated around the rotation shaft (support shaft 42) by the driving device 43, thereby forming an opening portion in the collection bag A moved to the lower part of the acid-containing aqueous solution B (solution tank V).
  • the crushing device 12 crushes the used sanitary goods in the collection bag A that has submerged under the surface of the acid-containing aqueous solution B together with the collection bag A.
  • the crushing device 12 includes a crushing unit 60 and a pump 63.
  • the crushing part 60 is connected to the solution tank V by a pipe 61 and includes a used sanitary article discharged from the solution tank V, and the collection bag 91 having an opening is formed in the collection bag A together with the acid-containing aqueous solution.
  • By crushing in B an acid-containing aqueous solution 92 containing crushed material is formed.
  • the crushing unit 60 examples include a biaxial crusher (for example, a biaxial rotary crusher, a biaxial differential crusher, and a biaxial shear crusher). For example, a Sumi cutter (Sumitomo Heavy Industries Environment Co., Ltd.) Company-made).
  • the pump 63 is connected to the crushing unit 60 by a pipe 62, and the acid-containing aqueous solution 92 containing the crushed material obtained by the crushing unit 60 is drawn out from the crushing unit 60 and sent to the next step.
  • the crushed material contains materials including pulp fiber, acid-inactivated superabsorbent polymer, material of collection bag A, film, nonwoven fabric, elastic body and the like.
  • the first separation device 13 stirs the acid-containing aqueous solution 92 containing the crushed material obtained by the crushing device 12 and performs cleaning to remove dirt (excrement etc.) from the crushed material,
  • the acid-containing first aqueous solution 93 from which foreign matters have been removed is separated from the aqueous solution 92, and the acid-containing first aqueous solution 93 is sent to the first dust removing device 14.
  • the acid containing 1st aqueous solution 93 contains a pulp fiber and an acid inactivation superabsorbent polymer.
  • Examples of the first separation device 13 include a washing machine including a washing tub / dehydration tub and a water tub surrounding the tub. However, a washing tank / dehydration tank (rotating drum) is used as a washing tank / sieving tank (separation tank). Examples of the washing machine include a horizontal washing machine ECO-22B (manufactured by Inamoto Seisakusho Co., Ltd.).
  • the first dust removing device 14 further removes foreign matters existing in the acid-containing first aqueous solution 93 by a screen having a plurality of openings, and the acid-containing second aqueous solution from which the foreign matters are removed more than the acid-containing first aqueous solution 93. 94 is formed.
  • the acid-containing second aqueous solution 94 includes pulp fibers and an acid-inactivated superabsorbent polymer.
  • Examples of the first dust removing device 14 include a screen separator (coarse screen separator). Specifically, for example, a pack pulper (manufactured by Satomi Manufacturing Co., Ltd.) can be used.
  • the second dust removing device 15 removes finer foreign substances from the acid-containing second aqueous solution 94 sent from the first dust removing device 14 by a screen having a plurality of openings, and further removes foreign matters from the acid-containing second aqueous solution 94.
  • the acid-containing third aqueous solution 95 is formed.
  • the acid-containing third aqueous solution 95 includes pulp fibers and an acid-inactivated superabsorbent polymer.
  • Examples of the second dust removing device 15 include a screen separator, specifically, a lamo screen (manufactured by Aikawa Tekko Co., Ltd.).
  • the third dust removing device 16 removes further foreign matters from the acid-containing third aqueous solution 95 sent from the second dust removing device 15 by centrifugation, and the acid from which the foreign matters are further removed than the acid-containing third aqueous solution 95.
  • a containing fourth aqueous solution 96 is formed.
  • the acid-containing third aqueous solution 95 includes pulp fibers and an acid-inactivated superabsorbent polymer.
  • Examples of the third dust removing device 16 include a cyclone separator, specifically, an ACT low concentration cleaner (manufactured by Aikawa Tekko Co., Ltd.).
  • the second separation device 17 mainly converts the acid-containing fourth aqueous solution 96 sent from the third dust removing device 16 into an acid-containing aqueous solution containing an acid-inactivated superabsorbent polymer and pulp fibers by a screen having a plurality of openings.
  • an acid-inactivated superabsorbent polymer also remains.
  • Examples of the second separation device 17 include a drum screen separator, specifically, a drum screen dehydrator manufactured by Toyo Screen Co., Ltd.
  • the third separation device 18 is a solid containing an acid-containing aqueous solution 97 mainly containing pulp fibers sent from the second separation device 17 and containing pulp fibers and acid-inactivated superabsorbent polymer by a screen having a plurality of openings. 98 and pressurizing the solid 98 containing the pulp fiber and the acid-inactivated superabsorbent polymer while separating into the liquid containing the acid-inactivated superabsorbent polymer and the acid-containing aqueous solution, and the pulp fiber and the acid-inactivated superabsorbent water The acid-inactivated superabsorbent polymer in the solid 98 containing the conductive polymer is crushed.
  • the third separation device 18 include a screw press dehydrator, specifically, a screw press dehydrator manufactured by Kawaguchi Seiki Co., Ltd.
  • the oxidant treatment device 19 treats the solid 98 containing pulp fibers and acid-inactivated superabsorbent polymer sent from the third separation device 18 with an aqueous solution (treatment liquid) containing an oxidant. Thereby, the acid-inactivated superabsorbent polymer is oxidized and decomposed and removed from the pulp fiber, and the treatment liquid 99 containing the recycled pulp fiber is sent out.
  • the oxidant treatment device When ozone is used as the oxidant, the oxidant treatment device includes, for example, a treatment tank and an ozone supply device.
  • the treatment tank stores an acidic aqueous solution as a treatment liquid.
  • the ozone supply device supplies an ozone-containing gas that is a gaseous substance to the treatment tank.
  • Examples of the ozone generator of the ozone supply device include an ozone water exposure tester ED-OWX-2 manufactured by Ecodesign Corporation and an ozone generator OS-25V manufactured by Mitsubishi Electric Corporation.
  • the oxidant treatment apparatus decomposes the acid-inactivated superabsorbent polymer using other oxidants such as chlorine dioxide, peracid (for example, peracetic acid), sodium hypochlorite, and hydrogen peroxide. be able to.
  • the fourth separation device 20 separates the recycled pulp fiber and the treatment liquid from the treatment liquid 99 containing the recycled pulp fiber, which has been processed by the oxidant treatment device 19, using a screen having a plurality of openings.
  • Examples of the fourth separation device 20 include a screen separator.
  • FIG. 3 is a flowchart for explaining a method for producing recycled pulp fibers and superabsorbent recycled polymer from used sanitary goods using the system 1 shown in FIG.
  • the flowchart shown in FIG. 3 is an example, and does not limit the present disclosure in any way.
  • FIG. 3 shows an inactivation step S1 (preparation step S1), a removal step S2, a superabsorbent recycled polymer formation step S3, and a recycled pulp fiber recovery step S4.
  • the inactivation step S1 includes an opening portion formation step P11 and a crushing step P12
  • the removal step S2 includes a first separation step P13, a first dust removal step P14, and a second step.
  • the dust removal process P15 and the third dust removal process P16 are included
  • the superabsorbent recycled polymer formation step S3 includes the second separation process P17
  • the recycled pulp fiber recovery step S3 includes the fourth separation process P20. Is included. Details will be described below.
  • the opening portion forming step P11 is performed using the bag breaking device 11.
  • the collection bag A enclosing the used sanitary goods is put into the solution tank V in which the acid-containing aqueous solution B is stored, and an opening is formed on the surface of the collection bag A that contacts the acid-containing aqueous solution B.
  • the acid-containing aqueous solution B is disposed around the collection bag A so that dirt, fungi, odors, etc. of used sanitary goods in the collection bag A are not released to the outside. Enclose and seal.
  • the gas in the collection bag A escapes to the outside of the collection bag A, and the specific gravity of the collection bag A becomes heavier than the acid-containing aqueous solution B. It settles in the acid-containing aqueous solution B. Further, the acid in the acid-containing aqueous solution B acts as an inactivating agent, and inactivates the superabsorbent polymer in the used sanitary article in the collection bag A.
  • the superabsorbent polymer in the used hygiene product When the superabsorbent polymer in the used hygiene product is inactivated, its water absorption capacity is reduced, the superabsorbent polymer is dehydrated, and the particle size is reduced, making it easy to handle in each subsequent process. Thus, the processing efficiency is improved.
  • the use of acid for inactivation has the advantage that no ash remains in the pulp fiber compared to the case of inactivating the superabsorbent polymer using lime, calcium chloride or the like, and the degree of inactivation (particle size, specific gravity) Etc.) is easy to adjust with pH.
  • the sanitary article constituent material to be immersed in the acid-containing aqueous solution includes a non-specific material such as a liquid permeable sheet, a liquid impermeable sheet, etc., for example, the sanitary article itself is used as the sanitary article constituent material.
  • the size and specific gravity of the pulp fiber constituting the specific material are relatively close to the size and specific gravity of the superabsorbent polymer.
  • the acid-containing aqueous solution preferably has the above-described predetermined pH.
  • the crushing process P12 is executed by the crushing device 12.
  • a collection bag 91 containing used sanitary goods and having an opening is moved from the solution tank V to the crushing device 12 together with the acid-containing aqueous solution B, and the used hygiene in the collection bag A is within the crushing device 12.
  • the article is crushed together with the collection bag A in the acid-containing aqueous solution B.
  • a collection bag 91 containing used sanitary goods and having an aperture is sent from the solution tank V together with the acid-containing aqueous solution B by the crushing unit 60.
  • A is crushed together in the acid-containing aqueous solution B (submerged crushing step).
  • the pump 63 extracts the acid-containing aqueous solution 92 containing the crushed material obtained in the crushing part 60 (submerged crushing process) from the crushing part 60 (drawing process) and sends it to the next process. Is done.
  • the first separation step P13 is executed by the first separation device 13. While stirring the acid-containing aqueous solution 92 containing the crushed material obtained by the crushing device 12, the acid-containing aqueous solution 92 containing the crushed material is washed with the specified material and the acid-containing aqueous solution ( That is, it is separated into an acid-containing aqueous solution containing pulp fibers and an acid-inactivated superabsorbent polymer) and non-specific materials for sanitary goods.
  • an acid-containing aqueous solution may be added separately in order to enhance the cleaning effect and / or adjust the pH.
  • the acid-containing first aqueous solution 93 containing pulp fibers and acid-inactivated superabsorbent polymer is separated from the acid-containing aqueous solution 92 containing crushed material through the through-holes, and sent from the first separation device 13. Is done.
  • the acid-containing aqueous solution 92 containing crushed material a relatively large non-specific material cannot pass through the through hole and remains in the first separation device 13 or is sent out by another route.
  • a small thing among the crushed non-specific materials cannot be separated by the first separation device 13 and is contained in the acid-containing first aqueous solution 93.
  • the size of the through-hole of the washing tub functioning as a sieve is 5 to 20 mm ⁇ in the case of a round hole, and the holes having other shapes are used. In some cases, the size is approximately the same area as the round hole.
  • 1st dust removal process P14 is performed by the 1st dust removal apparatus 14.
  • FIG. The acid-containing first aqueous solution 93 sent from the first separation device 13 is passed through a screen, and an acid-containing aqueous solution containing pulp fibers and an acid-inactivated superabsorbent polymer, and a crushed non-specific material (foreign matter) are further added.
  • the crushed non-specific material (foreign matter) is separated without passing through the screen, and the acid-containing second aqueous solution 94 is sent out from the first dust removing device 14.
  • the crushed non-specific material (foreign matter) cannot pass through the screen and remains in the first dust removing device 14 or is sent out by another route. Note that a smaller one of the crushed non-specific materials cannot be separated by the first dust removing device 14 and is contained in the acid-containing second aqueous solution 94.
  • the second dust removing step P15 is executed by the second dust removing device 15, and the acid-containing second aqueous solution 94 sent from the first dust removing device 14 is passed through the screen, and the acid containing the pulp fiber and the acid inactivated superabsorbent polymer.
  • the aqueous solution and the crushed non-specific material (foreign matter) are further separated.
  • the crushed non-specific material (foreign matter) is separated without passing through the screen, and the acid-containing third aqueous solution 95 is sent out from the second dust removing device 15.
  • the crushed non-specific material (foreign matter) cannot pass through the screen and remains in the second dust removing device 15 or is sent out by another route. Further, among the crushed non-specific materials, a smaller one is not separated by the second dust removing device 15 and is contained in the acid-containing third aqueous solution 95.
  • the third dust removing step P16 is executed by the third dust removing device 16, and the acid-containing third aqueous solution 95 sent out from the second dust removing device 15 is centrifuged in an inverted conical casing, so that the pulp fibers and acid non-removing step P16 are separated.
  • the acid-containing aqueous solution containing the activated superabsorbent polymer is further separated from the crushed non-specific material (foreign material).
  • the acid-containing fourth aqueous solution 96 is delivered from the upper part of the third dust removing device 16 (cyclone separator).
  • the crushed non-specific material foreign matter
  • a heavy material such as metal is sent out from the lower part of the third dust removing device 16 (cyclone separator).
  • the pH of the acid-containing aqueous solution is adjusted so that the specific gravity and size of the acid-inactivated superabsorbent polymer and the specific gravity and size of the pulp fiber are within a predetermined range.
  • the second separation step P17 is executed by the second separation device 17.
  • the acid-containing fourth aqueous solution 96 delivered from the third dust removing device 16 is separated into an acid-containing aqueous solution containing an acid-inactivated superabsorbent polymer and an acid-containing aqueous solution 97 mainly containing pulp fibers by a drum screen. .
  • the acid-containing aqueous solution containing the acid-inactivated superabsorbent polymer is separated from the acid-containing fourth aqueous solution 96 through the drum screen and sent out from the second separator 17.
  • the acid-containing aqueous solution 96 the acid-containing aqueous solution 97 mainly containing pulp fibers cannot pass through the drum screen and is sent out from the second separation device 17 through another path.
  • the acid-containing aqueous solution containing the acid-inactivated superabsorbent polymer is moved to the stirrer together with the acid-containing aqueous solution, and the agitator is stirred with the acid-containing aqueous solution containing the acid-inactivated superabsorbent polymer. Can be added to adjust the pH to form a superabsorbent recycled polymer.
  • the acid-containing aqueous solution containing the acid-inactivated superabsorbent polymer was separated into the acid-inactivated superabsorbent polymer and the acid-containing aqueous solution by using a solid-liquid separator, for example, a rotary drum screen, and separated. Then, the acid-inactivated superabsorbent polymer is transferred to a stirrer filled with tap water, alkaline aqueous solution, etc. as an aqueous solution for regeneration, and the pH is adjusted by adding an alkali metal ion supply source, so that the superabsorbent in a wet state is absorbed. Recyclable polymers can be formed.
  • the superabsorbent recycled polymer in a wet state is dried using a vacuum dryer, and then a superabsorbent recycled polymer in a dry state is formed. It can grind
  • the third separation step P18 is executed by the third separation device 18.
  • the acid-containing aqueous solution 97 mainly containing pulp fibers sent from the second separation device 17 is solidified by the drum screen 98 including pulp fibers and acid-inactivated superabsorbent polymer, acid-inactivated superabsorbent polymer, and It is separated into a liquid containing an acid-containing aqueous solution. And with isolation
  • the liquid containing the acid-inactivated superabsorbent polymer and the acid-containing aqueous solution is separated from the acid-containing aqueous solution 97 mainly containing pulp fibers through the drum screen, and is sent out from the third separator 18.
  • the solid 98 containing pulp fibers and acid-inactivated superabsorbent polymer cannot add the drum screen, and the third from the gap of the lid at the tip of the drum screen. It is sent to the outside of the separation device 18.
  • the oxidant treatment step P19 is executed by the oxidant treatment device 19.
  • the pulp fiber and the crushed acid-inactivated superabsorbent polymer in the solid 98 containing the pulp fiber and the acid-inactivated superabsorbent polymer sent from the third separator 18 are treated with an aqueous solution containing an oxidizing agent.
  • the acid inactivated superabsorbent polymer is oxidatively decomposed and removed from the pulp fiber.
  • the acid-inactivated superabsorbent polymer adhered to the solid 98 pulp fiber containing the pulp fiber and the acid-inactivated superabsorbent polymer (for example, remaining on the surface of the pulp fiber) is converted into an aqueous solution containing an oxidizing agent.
  • By being oxidatively decomposed and converted into a low molecular weight organic substance that is soluble in an aqueous solution it is removed from the pulp fiber to form a treatment liquid 99 containing recycled pulp fiber.
  • a solid 98 containing pulp fibers and an acid-inactivated superabsorbent polymer is introduced from the upper part of the treatment tank, and settles from the upper part to the lower part of the treatment liquid, that is, the aqueous solution containing the oxidant. Go.
  • the ozone-containing gas is continuously released in the form of fine bubbles (for example, microbubbles or nanobubbles) from the nozzles in the treatment tank into the treatment liquid. That is, the ozone-containing gas rises from the lower part to the upper part of the treatment liquid.
  • the pulp fibers that settle and the ozone-containing gas that rises collide while proceeding in opposition.
  • the ozone-containing gas adheres to the surface of the pulp fiber so as to wrap the pulp fiber.
  • ozone in the ozone-containing gas reacts with the acid-inactivated superabsorbent polymer in the pulp fiber to oxidize and decompose the acid-inactivated superabsorbent polymer and dissolve it in the treatment liquid.
  • the acid-inactivated superabsorbent polymer contained in the solid 98 pulp fiber containing the pulp fiber and the acid-inactivated superabsorbent polymer is oxidatively decomposed and removed from the pulp fiber, and a treatment liquid 99 containing recycled pulp fiber is obtained.
  • the fourth separation step P20 is executed by the fourth separation device 20, and the processing liquid 99 containing the recycled pulp fibers passes through the screen having a plurality of slits, and the recycled pulp fibers are processed from the processing liquid 99 containing the recycled pulp fibers. And the processing liquid are separated. As a result, the treatment liquid is separated from the treatment liquid 99 containing the recycled pulp fiber through the screen and is sent out from the fourth separation device 20. On the other hand, among the treatment liquid 99 containing recycled pulp fibers, the recycled pulp fibers cannot pass through the screen and remain in the fourth separation device 20 or are sent out by another route.
  • the superabsorbent recycled polymer formed by the production method of the present disclosure, the regeneration method of the present disclosure, and the use of the present disclosure can be used without particular limitation in applications in which the superabsorbent polymer is used.
  • it can be used for disposable diapers, incontinence pads (for example, light incontinence pads), disposable shorts, sanitary napkins, panty liners, bed sheets), pet sheets, cat sand, soil conditioners, and the like.
  • Example 1 A polyacrylic acid-based superabsorbent polymer (manufactured by Sumitomo Seika Co., Ltd., Aquakeep, unused product) in a constant temperature and humidity chamber at a temperature of 25 ⁇ 5 ° C. and a humidity of 65 ⁇ 5% RH in a mass ratio of 150 It was immersed in a double amount of physiological saline for 10 minutes.
  • the absorption capacity (physiological saline) of the immersed superabsorbent polymer was measured according to the method described in the present specification, the absorption capacity (physiological saline) was 86.6 (g / g).
  • the absorption ratio (deionized water) was measured after changing the “saline of 150 times by mass ratio” to “1,000 times deionized water by mass ratio”, the absorption ratio (deionized water) Water) was about 600 times (g / g).
  • a polymer was prepared.
  • the acid-inactivated superabsorbent polymer was placed in a 1 L beaker filled with 500 mL of deionized water as an aqueous solution for recycling together with the above bag, and while stirring, 0.1 mL of 1.0 mol / L NaOH aqueous solution was added. Added.
  • Example 1 the pH of the aqueous solution for regeneration before adding the aqueous NaOH solution was measured. The results are shown in FIG. 4 as pH values when the amount of NaOH added is 0 mL. Further, in Example 1, the absorption rate of the acid-inactivated superabsorbent polymer before being put into a 1 L beaker filled with deionized water is shown in FIG. 4 as the value of the absorption rate when the addition amount of NaOH is 0 mL. Show.
  • FIG. 4 shows that the absorption ratio of the superabsorbent polymer (superabsorbent polymer) can be adjusted by adjusting the amount of NaOH aqueous solution added.
  • FIG. 5 shows that there is a high correlation between the pH of the aqueous solution for regeneration and the water absorption of the highly water-absorbing recycled polymer.
  • Example 7 An acid-inactivated superabsorbent polymer was prepared according to Example 1, 450 g of the prepared acid-inactivated superabsorbent polymer was placed in a polytetrafluoroethylene bag, and 500 mL of the acid-inactivated superabsorbent polymer was added to the bag. Place in a 1 L beaker filled with deionized water, add Na 2 CO 3 to the beaker while stirring the beaker, and after 10 minutes from the addition of Na 2 CO 3 , remove the bag from the beaker and place it in the bag. The absorbency of the superabsorbent polymer (superabsorbent polymer) was measured. The results are shown in FIG.
  • Example 7 a plurality of experiments were performed by changing a predetermined amount of Na 2 CO 3 .
  • the horizontal axis represents the molar concentration of Na 2 CO 3 (mmol / L), and the vertical axis represents the absorption rate (g / g) of the superabsorbent recycled polymer.
  • Example 8 Except for changing Na 2 CO 3 to NaHCO 3 , the absorption ratio of the superabsorbent polymer (superabsorbent polymer) was measured according to Example 7. The results are shown in FIG. In FIG. 6, the horizontal axis represents the molar concentration (mmol / L) of NaHCO 3 .
  • the superabsorbent polymer after standing is filled with a 1% by mass citric acid aqueous solution (the container is filled with a citric acid aqueous solution of about 1000 times the mass ratio of the unused superabsorbent polymer. And the superabsorbent polymer after immersion was allowed to stand on the net for 10 minutes.
  • the superabsorbent polymer after standing is filled with a 20 mmol / L NaOH aqueous solution (the container is filled with a NaOH aqueous solution of about 1000 times the mass ratio of the unused superabsorbent polymer.
  • a portion of the highly water-absorbing recycled polymer in a wet state is placed in each container filled with a hydrophilic organic solvent (each container contains approximately 600 times the amount of the hydrophilic organic solvent in the mass ratio of the unused superabsorbent polymer). It is dehydrated by immersing it in a solvent for 30 minutes, and the superabsorbent recycled polymer after dehydration is allowed to stand on the net for 10 minutes, and the absorption capacity of the superabsorbent recycled polymer after standing (dehydration) After) was measured. The results are shown in Table 1.
  • the used hydrophilic organic solvent is methanol, ethanol, acetone, or acetonitrile, and the thing which is not immersed in a hydrophilic organic solvent was prepared as a control
  • the superabsorbent recycled polymer in a wet state after standing was dried at 60 ° C. for 24 hours to obtain a superabsorbent recycled polymer in a dry state.
  • a container in which dehydrated water is filled with the highly water-absorbing recycled polymer in a dry state (the container is filled with deionized water about 1000 times the mass ratio of the unused superabsorbent polymer)
  • the superabsorbent recycled polymer after immersion was allowed to stand on the net for 10 minutes, and the absorption capacity (after drying) was measured.
  • the results are shown in Table 1.
  • the superabsorbent recycle polymer (Examples 9 to 12) dehydrated with a hydrophilic solvent has the same absorption capacity as the superabsorbent polymer (Example 13) not dehydrated with a hydrophilic solvent (Example 13). It can be seen that after drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本開示は、予め定められた吸水性を有する高吸水性リサイクルポリマーを形成することができる、酸により不活化された高吸水性ポリマーの再生方法を提供することを目的とする。本開示の再生方法は、以下の構成を含む。 酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生する方法であって、酸基を有し、酸により不活化された高吸水性ポリマーを準備する準備ステップ(S1)、上記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、上記酸により不活化された高吸水性ポリマーから、湿潤状態における上記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ(S3)、湿潤状態における上記高吸水性リサイクルポリマーを乾燥し、上記予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップを含む方法。

Description

高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用
 本開示は、酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生する方法、パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品から、予め定められた吸水性を有する高吸水性リサイクルポリマーを製造する方法、及びアルカリ金属イオン供給源の、酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生するための使用に関する。
 使用済の衛生用品から、高吸水性ポリマーを回収する方法が知られている。
 例えば、特許文献1には、使用済みの体液吸収性物品から被吸収液を吸収した吸水性樹脂を取り出し、洗浄および脱水処理を行う吸水性樹脂の再生方法であって、洗浄及び/又は脱水処理が、該吸水性樹脂が吸収した被吸収液を排出する環境に置く操作を含むことを特徴とする吸水性樹脂の再生方法が記載されている。
 また、特許文献1の段落[0037]には、上記例示したような再生処理を経た後の吸水性樹脂は本発明の再生された吸水性樹脂(以下再生された吸水性樹脂を本発明の吸水剤と称する)としてそのまま吸収性物品等の用途に用いても良いが、必要によりpHを調整する為再度塩基性化合物を添加することが好ましいことが記載されている。
特開2003-326161号公報
 使用済の衛生用品のリサイクルでは、例えば、使い捨ておむつ、軽失禁パッド、生理用ナプキン、パンティーライナー等を一緒にリサイクルする場合には、再生すべき高吸水性ポリマーに、吸水性が相対的に高い高吸水性ポリマー(例えば、使い捨ておむつに含まれるもの)と、吸水性は相対的に低いが、湿潤時のゲル強度に優れる高吸水性ポリマー(例えば、軽失禁パッド、生理用ナプキン、パンティーライナー等に含まれるもの)とが混在することになるため、再生される高吸水性ポリマーにも、吸水性が相対的に高い高吸水性ポリマーと、吸水性は相対的に低い高吸水性ポリマーとが含まれる傾向がある。
 また、リサイクルする衛生用品を、例えば、使い捨ておむつのみに限定する場合であっても、一般的に、異なるメーカーの使い捨ておむつは、吸水性の異なる高吸水性ポリマーを含むことから、再生すべき高吸水性ポリマー、並びに再生された高吸水性ポリマーには、原則として、吸水性の異なる高吸水性ポリマーとが含まれる傾向がある。
 従って、使用済の衛生用品から再生された高吸水性ポリマーは、吸水性の許容度の広い用途(例えば、土壌改良剤)に用いられるのが一般的である。
 使用済の衛生用品から再生された高吸水性ポリマーを、吸水性の許容度の狭い用途、例えば、衛生用品に再利用する場合には、衛生用品の吸水性に悪影響を与えないために、再生された高吸水性ポリマーを低比率(例えば、衛生用品に含まれる高吸水性ポリマーの10~30質量%)で、バージンの高吸水性ポリマーに混入して用いる必要が有ると考えられる。なお、現状、使用済の衛生用品から再生された高吸水性ポリマーを、衛生用品に再利用する事業は一般的に行われていない。
 特許文献1に記載の再生方法では、所定の「洗浄」及び「脱水処理」を含む『再生方法』を実施することにより、吸収性樹脂の再生は完了しており、特許文献1の段落[0037]に記載される塩基性化合物は、ゲルを収縮させるために「脱水処理」において添加された酸性化合物に起因して酸性を呈する吸収性樹脂のpHを調整する、具体的には中和するために添加されるに過ぎず、再生される吸収性樹脂の吸水性を調整するためのものではない。
 従って、特許文献1に記載の再生方法により再生された吸収性樹脂は、吸水性が調整されたものではないことから、衛生用品に再利用するためには、衛生用品の吸水性を阻害しないように、低比率、例えば、10~30質量%で混入して用いる必要が有る。
 以上より、本開示は、予め定められた吸水性を有する高吸水性リサイクルポリマーを形成することができる、酸により不活化された高吸水性ポリマーの再生方法を提供することを目的とする。
 本開示者らは、酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生する方法であって、酸基を有し、酸により不活化された高吸水性ポリマーを準備する準備ステップ、上記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、上記酸により不活化された高吸水性ポリマーから、湿潤状態における上記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、湿潤状態における上記高吸水性リサイクルポリマーを乾燥し、上記予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップを含む方法を見出した。
 本開示の酸により不活化された高吸水性ポリマーの再生方法は、予め定められた吸水性を有する高吸水性リサイクルポリマーを形成することができる。
図1は、本開示の実施形態の1つに従う製造方法、再生方法及び使用を実施するためのシステム1のブロック図である。 図2は、図1の破袋装置11及び破砕装置12の構成例を示す模式図である。 図3は、システム1を用いた、使用済の衛生用品からリサイクルパルプ繊維及び高吸水性リサイクルポリマーを製造する方法を説明するフローチャートである。 図4は、実施例の結果を示す図である。 図5は、実施例の結果を示す図である。 図6は、実施例の結果を示す図である。
<定義>
・「吸収倍率」
 本明細書において、「吸収倍率」は、以下の通り測定される。
(1)湿潤状態にある高吸水性ポリマー又は高吸水性リサイクルポリマーを、メッシュに入れて5分間吊るし、それらの表面に付着した水分を除去し、その乾燥前質量:m1(g)を測定する。
(2)表面に付着した水分を除去した高吸水性ポリマー又は高吸水性リサイクルポリマーを、50℃で180分間乾燥し、その乾燥後質量:m2(g)を測定する。
(3)吸収倍率(g/g)を、次の式:
 吸収倍率(g/g)=m1/m2
 により算出する。
・高吸水性ポリマーに関する「不活化」
 本明細書において、高吸水性ポリマー(Super Absorbent Polymer,SAP)に関する「不活化」は、排泄物等を保持している高吸水性ポリマーが、好ましくは50倍以下、より好ましくは30倍以下、そしてさらに好ましくは25倍以下の吸収倍率を有するように調整すること、例えば、保持している排泄物を放出させること、酸含有水溶液の吸収を抑制すること等を意味する。
 具体的には、本開示は以下の態様に関する。
[態様1]
 酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生する方法であって、
 酸基を有し、酸により不活化された高吸水性ポリマーを準備する準備ステップ、
 上記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、上記酸により不活化された高吸水性ポリマーから、湿潤状態における上記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、
 湿潤状態における上記高吸水性リサイクルポリマーを乾燥し、上記予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップ、
 を含む、上記方法。
 上記再生方法は、所定の高吸水性リサイクルポリマー形成ステップと、乾燥ステップとを含むため、再生される高吸水性リサイクルポリマーを、異なる吸水性且つ許容度の狭い吸水性が求められる種々の用途に用いることができる。また、再生された高吸水性リサイクルポリマーを、種々の用途に高比率で用いることができる。
[態様2]
 上記予め定められた吸水性が、脱イオンに対する、100~400倍(g/g)の吸収倍率の任意の値である、態様1に記載の方法。
 上記再生方法では、予め定められた吸水性が所定の吸収倍率の任意の値であるため、高吸水性リサイクルポリマーを、吸水性の低い高吸水性ポリマーが好ましい用途(例えば、軽失禁パッド、生理用ナプキン等)から、吸水性の高い高吸水性ポリマーが好ましい用途(例えば、使い捨ておむつ等)のいずれにも用いることができる。
[態様3]
 上記アルカリ金属イオン供給源が、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、上記高吸水性ポリマーの酸基よりも酸解離定数の大きな酸との塩である、態様1又は2に記載の方法。
 上記再生方法では、アルカリ金属イオン供給源が、所定の化合物であるため、再生される高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
[態様4]
 上記アルカリ金属イオンが、リチウムイオン、ナトリウムイオン及びカリウムイオン、並びにそれらの任意の組み合わせからなる群から選択される、態様1~3のいずれか一項に記載の方法。
 上記再生方法では、所定の群から選択されるため、高吸水性リサイクルポリマーが、吸水性に優れる。
[態様5]
 上記予め定められた吸水性を、上記再生用水溶液のpHを制御することにより調整する、態様1~4のいずれか一項に記載の方法。
 上記再生方法では、予め定められた吸水性を、再生用水溶液のpHを制御することにより調整するので、再生すべき高吸水性ポリマーの量が不明な場合であっても、高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
[態様6]
 上記再生用水溶液のpHを、5.0~9.0(25℃)に調整する、態様5に記載の方法。
 上記再生方法では、再生用水溶液のpHを所定の範囲に調整するため、高吸水性リサイクルポリマーを、吸水性の低い高吸水性ポリマーが好ましい用途から、吸水性の高い高吸水性ポリマーが好ましい用途まで、高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
[態様7]
 パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品から、予め定められた吸水性を有する高吸水性リサイクルポリマーを製造する方法であって、
 上記パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、上記衛生用品を構成する衛生用品構成資材を、酸を含む酸含有水溶液に浸漬し、酸により不活化された高吸水性ポリマーを形成する不活化ステップ、
 上記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、上記酸により不活化された高吸水性ポリマーから、湿潤状態における上記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、
 湿潤状態における上記高吸水性リサイクルポリマーを乾燥し、上記予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップ、
 を含むことを特徴とする、上記方法。
 上記製造方法は、所定の高吸水性リサイクルポリマー形成ステップと、乾燥ステップとを含むことから、製造される高吸水性リサイクルポリマーを、異なる吸水性且つ許容度の狭い吸水性が求められる種々の用途に用いることができる。また、製造される高吸水性リサイクルポリマーを、種々の用途に高比率で用いることができる。
[態様8]
 上記アルカリ金属イオン供給源が、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、上記高吸水性ポリマーの酸基よりも酸解離定数の大きな酸との塩である、態様7に記載の方法。
 上記製造方法では、アルカリ金属イオン供給源が、所定の化合物であるため、再生される高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
[態様9]
 上記予め定められた吸水性を、上記再生用水溶液のpHを制御することにより調整する、態様7又は8に記載の方法。
 上記製造方法では、予め定められた吸水性を、再生用水溶液のpHを制御することにより調整するため、リサイクルすべき高吸水性ポリマーの量が不明な場合であっても、高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
[態様10]
 上記再生用水溶液のpHを、5.0~9.0(25℃)に調整する、態様9に記載の方法。
 上記製造方法では、再生用水溶液のpHを所定の範囲に調整するため、高吸水性リサイクルポリマーを、吸水性の低い高吸水性ポリマーが好ましい用途から、吸水性の高い高吸水性ポリマーが好ましい用途まで、高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
[態様11]
 上記高吸水性リサイクルポリマー形成ステップにおいて、上記酸含有水溶液を、上記再生用水溶液として用い、上記再生用水溶液のpHを、5.0~7.0(25℃)に調整する、態様9又は10に記載の方法。
 上記製造方法では、高吸水性リサイクルポリマー形成ステップにおいて、酸含有水溶液を再生用水溶液として用い、再生用水溶液のpHを所定の範囲に調整するので、吸水性の低い高吸水性ポリマーが好ましい用途に好適な高吸水性リサイクルポリマーを簡易に製造することができる。
[態様12]
 上記再生用水溶液が、中性水溶液又はアルカリ性水溶液であり、上記高吸水性リサイクルポリマー形成ステップにおいて、上記酸により不活化された高吸水性ポリマーを上記再生用水溶液に浸漬し、上記再生用水溶液のpHを7.0超且つ9.0以下に調整する、態様9又は10に記載の方法。
 上記製造方法では、再生用水溶液が中性水溶液又はアルカリ性水溶液であり、上記高吸水性リサイクルポリマー形成ステップにおいて、上記酸により不活化された高吸水性ポリマーを上記再生用水溶液に浸漬し、上記再生用水溶液のpHを所定の範囲に調整するので、吸水性の高い高吸水性ポリマーが好ましい用途に好適な高吸水性リサイクルポリマーを、アルカリ金属イオン供給源の量を低減して、そして簡易に製造することができる。
[態様13]
 アルカリ金属イオンを供給可能なアルカリ金属イオン供給源の、酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生するための使用であって、
 酸基を有し、上記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、上記アルカリ金属イオン供給源を添加し、前記酸により不活化された高吸水性ポリマーから、湿潤状態における上記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、
 を含む、上記使用。
 上記使用は、所定の高吸水性リサイクルポリマー形成ステップを含むことから、形成される高吸水性リサイクルポリマーを、異なる吸水性且つ許容度の狭い吸水性が求められる種々の用途に用いることができる。また、再生される高吸水性リサイクルポリマーを、種々の用途に高比率で用いることができる。
[態様14]
 上記アルカリ金属イオン供給源が、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、上記高吸水性ポリマーの酸基よりも酸解離定数の大きな酸との塩である、態様13に記載の使用。
 上記使用では、アルカリ金属イオン供給源が、所定の化合物であるため、再生される高吸水性リサイクルポリマーの吸水性を簡易に調整することができる。
 本開示の(1)酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生する方法(以下、「高吸水性ポリマーの再生方法」、「本開示の再生方法」等と称する場合がある)、(2)パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品から、予め定められた吸水性を有する高吸水性リサイクルポリマーを製造する方法(以下、「高吸水性リサイクルポリマーの製造方法」、「本開示の製造方法」等と称する場合がある)、及び(3)アルカリ金属イオンを供給可能なアルカリ金属イオン供給源の、酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生するための使用(以下、「アルカリ金属イオン供給源の使用」、「本開示の使用」と称する場合がある)について、以下、詳細に説明する。
 なお、説明のしやすさの観点から、最初に、(2)高吸水性リサイクルポリマーの製造方法を説明し、(1)高吸水性ポリマーの再生方法及び(3)アルカリ金属イオン供給源の使用については、(2)高吸水性リサイクルポリマーの製造方法と異なる点について説明する。
<<高吸水性リサイクルポリマーの製造方法>>
 高吸水性リサイクルポリマーの製造方法は、以下のステップを含む。
・パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、衛生用品を構成する衛生用品構成資材を、酸を含む酸含有水溶液に浸漬し、酸により不活化された高吸水性ポリマーを形成する不活化ステップ(以下、「不活化ステップ」と称する場合がある)
・酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、湿潤状態における高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ(以下、「高吸水性リサイクルポリマー形成ステップ」と称する場合がある)
・湿潤状態における高吸水性リサイクルポリマーを乾燥し、予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップ(以下、「乾燥ステップ」と称する場合がある)
<不活化ステップ>
 不活化ステップでは、パルプ繊維と、酸基を有する高吸水性ポリマーとを含む衛生用品構成資材を、酸を含む酸含有水溶液に浸漬し、酸により不活化された高吸水性ポリマー(以下、酸により不活化された高吸水性ポリマーを、「酸不活化高吸水性ポリマー」と称する場合がある)を形成する。
 上記酸としては、特に限定されるものではないが、例えば、無機酸及び有機酸が挙げられる。酸を用いて高吸水性ポリマーを不活化すると、石灰、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、硫酸アルミニウム、塩化アルミニウム等を用いて高吸水性ポリマーを不活化する場合と比較して、パルプ繊維に灰分を残留させにくい。
 上記無機酸としては、例えば、硫酸、塩酸及び硝酸が挙げられ、上記無機酸としては、塩素を含まないこと、コスト等の観点から硫酸が好ましい。上記有機酸としては、酸基、例えば、カルボキシル基、スルホ基等を有するものが挙げられる。なお、スルホ基を有する有機酸は、スルホン酸と称され、そしてカルボキシル基を有し且つスルホ基を有しない有機酸は、カルボン酸と称される。上記有機酸としては、設備を保護する観点から、カルボキシル基を有する有機酸、特に、カルボン酸であることが好ましい。
 上記有機酸がカルボキシル基を有する場合には、上記有機酸は、1分子当たり、1又は複数のカルボキシル基を有することができ、そして複数のカルボキシル基を有することが好ましい。そうすることにより、有機酸が、排泄物等に含まれる2価以上の金属、例えば、カルシウムとキレート錯体を形成しやすくなり、使用済の衛生用品から製造されるリサイクルパルプ繊維の灰分を下げやすくなる。
 上記有機酸としては、例えば、クエン酸、酒石酸、リンゴ酸、コハク酸、シュウ酸(以上、複数のカルボキシル基を有するカルボン酸)、グルコン酸(C6)、ペンタン酸(C5)、ブタン酸(C4)、プロピオン酸(C3)、グリコール酸(C2)、酢酸(C2)、例えば、氷酢酸、蟻酸(C1)(以上、1つのカルボキシル基を有するカルボン酸)、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸(以上、スルホン酸)等が挙げられる。
 上記酸含有水溶液は、所定のpHを有することが好ましく、上記所定のpHは、好ましくは4.5以下、より好ましくは4.0以下、さらに好ましくは3.5以下、そしてさらにいっそう好ましくは3.0以下である。上記所定のpHが高すぎると、高吸水性ポリマーの不活化が十分に行われず、高吸水性ポリマーが保持する排泄物の排出が不十分になる傾向があり、そしてパルプ繊維等との分離がしにくくなる傾向がある。
 また、上記所定のpHは、好ましくは0.5以上、そしてより好ましくは1.0以上である。上記所定のpHが低すぎると、高吸水性ポリマーがより不活化され、高吸水性リサイクルポリマー形成ステップにおいて、不活化された高吸水性ポリマーと、アルカリ金属イオン供給源との反応に時間がかかる傾向がある。また、本開示の再生方法に加え、使用済の衛生用品に含まれるパルプ繊維をリサイクルし、リサイクルパルプ繊維を製造する場合には、リサイクルパルプ繊維が損傷するおそれがある。
 なお、本明細書において、pHは、25℃における値を意味する。また、pHは、例えば、株式会社堀場製作所製のtwin pHメーター AS-711を用いて測定することができる。
 本開示の製造方法では、酸含有水溶液は、上記所定のpHを、不活化ステップの開始時点、例えば、衛生用品構成資材を、酸含有水溶液に浸漬する際において少なくとも満たすことが好ましい。高吸水性ポリマーを不活化させるためであり、高吸水性ポリマーの不活化が不十分な場合には、高吸水性ポリマーの不活化が十分に行われず、高吸水性ポリマーが保持する体液等の液体の排出が不十分になる傾向があり、そしてパルプ繊維等との分離がしにくくなる傾向がある。
 本開示の製造方法では、上記所定のpHを、不活化ステップの終了時点で満たすことが好ましい。高吸水性ポリマーを不活化させ続ける観点からである。
 上記高吸水性ポリマーは、当技術分野で、酸基を有する高吸水性ポリマーとして用いられているものであれば、特に制限されず、例えば、カルボキシル基、スルホ基等を含むものが挙げられ、カルボキシル基を含むものが好ましい。
 カルボキシル基を含む高吸水性ポリマーとしては、例えば、ポリアクリル酸塩系、ポリ無水マレイン酸塩系のものが挙げられ、スルホ基等を含む高吸水性ポリマーとしては、ポリスルホン酸塩系のものが挙げられる。
 上記パルプ繊維は、衛生用品に含まれうるものであれば、特に制限されない。
 なお、高吸水性ポリマーを不活化するための酸は、高吸水性ポリマーを効率的に不活化するため、高吸水性ポリマー中の酸基の酸解離定数(pKa,水中)よりも小さい酸解離定数(pKa,水中)を有することが好ましい。
 上記酸が複数の酸基を有する場合、例えば、上記酸が二塩基酸又は三塩基酸である場合には、上記酸の酸解離定数(pKa,水中)のうち最も大きな酸解離定数(pKa,水中)が、高吸水性ポリマーの酸基の酸解離定数(pKa,水中)よりも小さいことが好ましく、そして高吸水性ポリマーが複数種の酸基を有する場合には、上記酸の酸解離定数(pKa,水中)のうち最も大きな酸解離定数(pKa,水中)が、高吸水性ポリマーの複数種の酸基のうち最も小さな酸解離定数(pKa,水中)よりも小さいことが好ましい。高吸水性ポリマーの不活化の効率の観点からである。
 本明細書では、酸解離定数(pka,水中)は、電気化学会編集の電気化学便覧に記載の値を採用することができる。
 電気化学便覧によると、主要な化合物の酸解離定数(pka,水中,25℃)は、以下の通りである。
[有機酸]
・酒石酸:2.99(pKa1),4.44(pKa2
・リンゴ酸:3.24(pKa1),4.71(pKa2
・クエン酸:2.87(pKa1),4.35(pKa2),5.69(pKa3
[無機酸]
・硫酸:1.99
 電気化学便覧に記載されていない酸の酸解離定数(pka,水中)は、測定により求めることができる。酸の酸解離定数(pka,水中)を測定することができる機器としては、例えば、Sirius社製の化合物物性評価分析システム,T3が挙げられる。
 本開示の製造方法では、衛生用品構成資材を、酸含有水溶液に浸漬することができれば、具体的な手法は特に限定されず、例えば、酸含有水溶液を含む槽に、衛生用品構成資材を投入してもよく、そして衛生用品構成資材が配置されている槽に、酸含有水溶液を投入してもよい。
 上記衛生用品は、高吸水性ポリマーを含むものであれば、特に制限されず、例えば、使い捨ておむつ、使い捨てショーツ、生理用ナプキン、パンティーライナー、尿取りパッド、ベッド用シート、ペット用シート等が挙げられる。上記衛生用品は、パルプ繊維と、高吸水性ポリマーとを含むものであることが好ましい。
 上記衛生用品としては、例えば、液透過性シートと、液不透過性シートと、それらの間の吸収体(吸収コア及びコアラップ)とを含むものが例示される。
 本開示の製造方法では、不活化ステップにおける衛生用品構成資材は、パルプ繊維と、高吸水性ポリマーとの混合物、例えば、使用済の衛生用品から取り出した吸収コアであることができる。また、衛生用品構成資材は、衛生用品そのものであってもよい。
 酸含有水溶液に浸漬すべき衛生用品構成資材が、パルプ繊維及び高吸水性ポリマー(以下、「特定資材」と称する場合がある)に加え、追加の資材(以下、「非特定資材」と称する場合がある)、例えば、液透過性シート、液不透過性シート等を含む場合、例えば、衛生用品構成資材として、衛生用品そのものを、酸含有水溶液に浸漬する場合には、不活化ステップの後、非特定資材を除去する除去ステップ(以下、「除去ステップ」と称する場合がある)をさらに含むことができる。なお、上記除去ステップでは、非特定資材の全部を除去してもよく、そして非特定資材の一部を除去してもよい。
 上記除去ステップの具体例については、図1に示されるシステム1、並びに図3に示されるフローチャートに関連して後述する。
 不活化ステップでは、例えば、酸含有水溶液を含む不活化槽中で、衛生用品構成資材を、温度にもよるが、約5~60分攪拌することにより、高吸水性ポリマーを不活化し、酸不活化高吸水性ポリマーを形成することができる。
 不活化ステップでは、酸基を有する高吸水性ポリマーの酸基が、塩(例えば、ナトリウム塩)の状態から、遊離酸の状態に変化するため、高吸水性ポリマーの吸水性が低下する。
 本願発明者は、水を吸収した高吸水性ポリマーを、酸含有水溶液中に入れると、マイナスに帯電した親水性基(例えば、-COO-)がプラスに帯電した水素イオン(H+)によって中和される(例えば、-COOH)ため、親水性基のイオン反発力が弱まり、吸水力が低下し、高吸水性ポリマーが脱水されることを見いだした。
 不活化ステップにおける酸含有水溶液の温度は、特に制限がなく、例えば、室温(25℃)であることができ、そして室温よりも高温であってもよい。
 具体的には、不活化ステップにおける酸含有水溶液の温度は、好ましくは室温よりも高温、より好ましくは60~100℃、さらに好ましくは70~95℃、そしてさらにいっそう好ましくは80~90℃である。そうすることにより、酸含有水溶液に含まれる酸により、酸含有水溶液に含まれる、排泄物等に由来する菌を殺菌しやすくなる。
<高吸水性リサイクルポリマー形成ステップ>
 高吸水性リサイクルポリマー形成ステップでは、酸不活化高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、湿潤状態における高吸水性リサイクルポリマーを形成する。
 なお、本明細書では、不活化された高吸水性ポリマーをリサイクルすることにより得られた高吸水性ポリマーを、「高吸水性リサイクルポリマー」と称する。
 本願発明者は、酸不活化高吸水性ポリマーに、水中等において、アルカリ金属イオン供給源を、その量を調整させながら接触させ、高吸水性ポリマーの酸基の一部をアルカリ金属塩とすることにより、湿潤状態における高吸水性リサイクルポリマーの吸水性(すなわち、乾燥状態における高吸水性リサイクルポリマーの吸水性)を制御することができることを見いだした。
 上記アルカリ金属イオン供給源としては、アルカリ金属イオンを供給することができるものであれば特に制限されず、例えば、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、酸との塩(以下、単に「塩」と称する場合がある)等が挙げられる。
 上記アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン及びカリウムイオン、並びにそれらの任意の組み合わせが挙げられる。
 上記アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム及び水酸化カリウム、並びにそれらの任意の組み合わせが挙げられる。
 上記塩としては、酸性塩、塩基性塩等であることができる。
 上記塩におけるアルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム及び水酸化カリウム、並びにそれらの任意の組み合わせが挙げられる。
 上記塩における酸としては、特に制限されず、例えば、「不活化ステップ」において列挙される酸(例えば、塩酸、硫酸)、炭酸等が挙げられる。
 上記酸は、高吸水性ポリマー中の酸基の酸解離定数(pKa,水中)よりも大きい酸解離定数(pKa,水中)を有する酸であることが好ましい。そうすることにより、高吸水性ポリマーの酸基が、アルカリ金属塩を形成しやすくなる。
 上記酸が複数の酸基を有する場合、例えば、上記酸が二塩基酸又は三塩基酸である場合には、上記酸の酸解離定数(pKa,水中)のうち最も小さな酸解離定数(pKa,水中)が、高吸水性ポリマーの酸基の酸解離定数(pKa,水中)よりも大きいことが好ましく、そして高吸水性ポリマーが複数種の酸基を有する場合には、上記酸の酸解離定数(pKa,水中)のうち最も小さな酸解離定数(pKa,水中)が、高吸水性ポリマーの複数種の酸基のうち最も大きな酸解離定数(pKa,水中)よりも大きいことが好ましい。高吸水性ポリマーの酸基を、アルカリ金属塩としやすくする観点からである。
 上記酸としての炭酸は、炭酸が、不活化水溶液中に残存しにくいか、又は加熱等により容易に除去できるため好ましい。
 また、炭酸以外の上記酸は、湿潤状態における前記高吸水性リサイクルポリマーのpHにもよるが、例えば、湿潤状態における高吸水性リサイクルポリマーが酸性pHにある場合には、湿潤状態における高吸水性リサイクルポリマー、乾燥状態における高吸水性リサイクルポリマー等に抗菌性を付与することができる。
 上記塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム等が挙げられる。
 高吸水性リサイクルポリマー形成ステップでは、再生用水溶液が、酸性(pH<7.0)、中性(pH=7.0)又はアルカリ性(7.0<pH)であることができ、中性又はアルカリ性であることが好ましく、アルカリ性であることが好ましい。本開示の効果の観点からである。
 再生用水溶液を酸性、中性又はアルカリ性とするために、再生用水溶液が、酸性物質、アルカリ性物質又は緩衝物質(緩衝溶液)を含んでいてもよく、そして上記アルカリ金属イオン供給源が、酸性物質、アルカリ性物質又は緩衝物質(緩衝溶液)を含んでいてもよい。
 上記酸性物質、アルカリ性物質又は緩衝物質(緩衝溶液)は、アルカリ金属イオン供給源が、再生用水溶液のpHを変化させにくい場合(例えば、アルカリ金属イオン供給源が、塩化リチウム、塩化ナトリウム、塩化カリウム等である場合)、再生用水溶液のpHを変化させたくない場合等に好ましい。
 上記酸性物質としては、脱イオン水のpHをアルカリ性(7.0<pH)にできるものであれば特に制限されず、当技術分野で公知のものを採用することができ、例えば、「不活化ステップ」において列挙される酸、炭酸等が挙げられる。
 上記アルカリ性物質としては、脱イオン水のpHをアルカリ性(7.0<pH)にできるものであれば特に制限されず、当技術分野で公知のものを採用することができ、例えば、アルカリ金属の水酸化物又はその塩、アルカリ土類金属の水酸化物又はその塩等が挙げられ、高吸水性ポリマーを不活化させにくくする観点から、アルカリ金属の水酸化物又はその塩であることが好ましい。アルカリ金属の水酸化物又はその塩については、上述の通りである。
 上記緩衝物質(緩衝溶液)としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム及び水を含む炭酸-重炭酸緩衝溶液が挙げられる。
 上記再生用水溶液は、水を含むものであれば特に制限されず、概ね中性の水溶液(例えば、水道水、脱イオン水等)であることができ、酸性水溶液(pH<7.0の水溶液)、例えば、不活化ステップに用いられた酸含有水溶液、不活化ステップの箇所に記載される無機酸又は有機酸を含む水溶液、又はアルカリ性水溶液(7.0<pHの水溶液)、例えば、上述のアルカリ金属イオン供給源を含む水溶液であることができる。
 本願発明者はまた、酸不活化高吸水性ポリマーを含む系のpH、すなわち、再生用水溶液のpHを調整することにより、湿潤状態における高吸水性リサイクルポリマーの吸水性(すなわち、乾燥状態における高吸水性リサイクルポリマーの吸水性)を、予め定められた範囲に調整することができることを見いだした。
 なお、高吸水性リサイクルポリマー形成ステップにおいて形成される、「湿潤状態における高吸水性リサイクルポリマー」は、乾燥ステップにおいて得られる「高吸水性リサイクルポリマー」と同様の吸水性を有するが、乾燥ステップの具体的な手法によっては、高吸水性リサイクルポリマーの吸水性が変動する、例えば、高吸水性リサイクルポリマーの酸基と、アルカリ金属との反応がさらに進行し、高吸水性リサイクルポリマーの吸水性が若干高くなる場合があるが、乾燥状態における高吸水性リサイクルポリマーの吸収性を調整するのは、高吸水性リサイクルポリマー形成ステップである。
 上記pHとしては、乾燥状態における高吸水性リサイクルポリマーが予め定められた吸水性(吸収倍率)を達成できるものであれば特に制限されないが、酸性pHの領域(pH<7.0)、中性pH(pH=7.0)、及びアルカリ性pHの領域(7.0<pH)のいずれでもよく、そして上記pHは、好ましくは5.0~9.0である。
 上記pHを酸性pHの領域内で調整する場合には、上記再生用水溶液は、酸性水溶液であることが好ましく、そして酸性水溶液である再生用水溶液に、アルカリ金属イオン供給源を、そのまま又は水溶液として添加することにより、湿潤状態における高吸水性リサイクルポリマーを形成することが好ましい。
 上記pHを中性pH又はアルカリ性pHの領域内で調整する場合には、上記再生用水溶液は、酸性水溶液、概ね中性の水溶液、又はアルカリ性水溶液であることができ、そして概ね中性の水溶液、又はアルカリ性水溶液であることが好ましい。アルカリ金属イオン供給源を、高吸水性リサイクルポリマーの形成に効率よく用いる観点からである。
 また、概ね中性の水溶液又はアルカリ性水溶液である再生用水溶液に、アルカリ金属イオン供給源を、そのまま又は水溶液として添加することにより、湿潤状態における高吸水性リサイクルポリマーを形成することが好ましい。
 アルカリ金属イオン供給源は、上述の通り、再生用水溶液中に存在していてもよく、そして再生用水溶液に、アルカリ金属イオン供給源を、そのまま又は水溶液として添加することができる。
 アルカリ金属イオン供給源として、アルカリ金属の水酸化物を再生用水溶液に添加する場合には、アルカリ金属の水酸化物は水溶液であることが好ましく、そして当該水溶液は、水酸化物イオンの濃度が、好ましくは0.1~5.0mol/L、より好ましくは0.3~3.0mol/L、そして好ましくは0.4~1.0mol/Lとなるような濃度で、再生用水溶液に添加される。再生用水溶液のpH、ひいては高吸水性リサイクルポリマーの吸水性の調整しやすさの観点からである。
 なお、酸不活化高吸水性ポリマーを、固液分離可能な装置を用いて、酸含有水溶液から分離し、次いで、酸含有水溶液から分離された酸不活化高吸水性ポリマーを、再生用水溶液に浸漬してもよい。上記固液分離可能な装置としては、例えば、ロータリードラムスクリーン、傾斜スクリーン、振動スクリーン等が挙げられる。
 高吸水性リサイクルポリマー形成ステップは、所定の温度、例えば、2~80℃にて、所定の時間、例えば、5~60分、再生用水溶液を撹拌等することにより実施することができる。
<乾燥ステップ>
 乾燥ステップでは、湿潤状態における高吸水性リサイクルポリマーを乾燥し、予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する。
 上記予め定められた吸水性は、特に制限されるものではないが、高吸水性リサイクルポリマーの実用性を考慮すると、吸収倍率として、脱イオン水に対して、好ましくは100倍(g/g)以上、より好ましくは200倍(g/g)以上、そしてさらに好ましくは300倍(g/g)以上の任意の値を有する。
 上記予め定められた吸水性は、特に制限されるものではないが、高吸水性リサイクルポリマーの膨潤時のゲル強度を考慮すると、吸収倍率として、脱イオン水に対して、好ましくは500倍(g/g)以下、より好ましくは450倍(g/g)以下、そしてさらに好ましくは400倍(g/g)以下の任意の値を有する。
 乾燥ステップでは、高吸水性リサイクルポリマー形成ステップにて得られた、湿潤状態における高吸水性リサイクルポリマーを含む再生用水溶液を直接乾燥し、乾燥状態における高吸水性リサイクルポリマーを得ることができる。
 また、高吸水性リサイクルポリマーを含む再生用水溶液から、固液分離可能な装置を用いて、高吸水性リサイクルポリマーを再生用水溶液から分離することもできる。上記固液分離可能な装置としては、例えば、ロータリードラムスクリーン、傾斜スクリーン、振動スクリーン等が挙げられる。
 分離された高吸水性リサイクルポリマーは、乾燥前に、水道水、脱イオン水等を用いて洗浄し、高吸水性リサイクルポリマーの表面に付着している再生用水溶液を除去してもよい。
 また、分離された高吸水性リサイクルポリマーは、乾燥前に、親水性有機溶媒と接触(例えば、親水性有機溶媒に浸漬)させることにより、分離された高吸水性リサイクルポリマーに含まれる水分を、好ましくは100倍(g/g)以下、より好ましくは70倍(g/g)以下、そしてさらに好ましくは50倍(g/g)以下の吸収倍率まで脱水することができる。そうすることにより、乾燥の温度を低下させ、そして/又は乾燥の時間を低減させることができる。
 上記親水性有機溶媒としては、水と混和性を有するものであることが好ましく、例えば、アルコール系溶媒(例えば、メタノール、エタノール、プロピルアルコール及びその異性体、ブチルアルコール及びその異性体)、ケトン系溶媒(例えば、アセトン、メチルエチルケトン)、ニトリル系溶媒(例えば、アセトニトリル)等が挙げられる。
 乾燥ステップでは、湿潤状態における高吸水性リサイクルポリマーを、好ましくは室温(例えば、25℃)~120℃、より好ましくは30~80℃、そして好ましくは40~60℃の乾燥温度で乾燥する。乾燥温度が低くなると、乾燥時間が長くなる傾向があり、そして乾燥温度が高くなると、高吸水性リサイクルポリマーの酸基が脱水縮合を生じる等により、高吸水性リサイクルポリマーの吸水性が低下する場合がある。
 分離された高吸水性リサイクルポリマーを、乾燥前に、親水性有機溶媒と接触させる場合には、上記乾燥温度を低く、例えば、室温~60℃とすることができる。
 乾燥ステップは、減圧下、例えば、0.1kPa以上且つ100kPa未満で実施してもよい。
 乾燥ステップは、例えば、30~300分間実施することができる。
 乾燥ステップは、高吸水性リサイクルポリマーの乾燥減量が、好ましくは15%以下(2.0g,105℃,3時間)となるように実施することが好ましい。高吸水性リサイクルポリマーの利用の観点からである。
 上記乾燥減量は、厚生労働省が2015年3月25日付で、薬食審査発0325第24号として通知された「生理処理用品材料規格について」に別紙として添付される「生理処理用品材料規格」の<2.一般試験法>の「7.乾燥減量試験法」に従って測定される。
 乾燥ステップの後、乾燥した高吸水性リサイクルポリマーが固着、一体化等している場合には、乾燥した高吸水性リサイクルポリマーの粉砕し、分級等を実施してもよい。
<<酸により不活化された高吸水性ポリマーの再生方法>>
 高吸水性ポリマーの再生方法は、以下のステップを含む。
・酸基を有し、酸により不活化された高吸水性ポリマーを準備する準備ステップ(以下、「準備ステップ」と称する場合がある)
・酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、湿潤状態における高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ(以下、「高吸水性リサイクルポリマー形成ステップ」と称する場合がある)
・湿潤状態における高吸水性リサイクルポリマーを乾燥し、予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップ(以下、「乾燥ステップ」と称する場合がある)
<準備ステップ>
 準備ステップでは、酸基を有する酸不活化高吸水性ポリマーを準備する。
 上記酸不活化高吸水性ポリマーは、酸により不活化されたものであれば、特に制限されず、例えば、本明細書の「高吸水性リサイクルポリマーの製造方法」の「不活化ステップ」の箇所で説明されるようにして準備することができる。
 また、酸不活化高吸水性ポリマーには、上述のもの以外に、使用済の衛生用品に含まれる高吸水性ポリマーを、多価金属塩、例えば、アルカリ土類金属塩を用いて不活化し、次いで、酸で処理されたものも含まれる。
<高吸水性リサイクルポリマー形成ステップ及び乾燥ステップ>
 本開示の再生方法における「高吸水性リサイクルポリマー形成ステップ」及び「乾燥ステップ」は、それぞれ、「高吸水性リサイクルポリマーの製造方法」における「高吸水性リサイクルポリマー形成ステップ」及び「乾燥ステップ」と同様であるため、説明を省略する。
<アルカリ金属イオン供給源の使用>
 アルカリ金属イオン供給源の使用は、以下のステップを含む。
・酸基を有し、酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、湿潤状態における高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ(以下、「高吸水性リサイクルポリマー形成ステップ」と称する場合がある)。
 本開示の使用における「高吸水性リサイクルポリマー形成ステップ」は、「高吸水性リサイクルポリマーの製造方法」における「高吸水性リサイクルポリマー形成ステップ」と同様であるため、説明を省略する。
 図1は、本開示の実施形態の1つに従う製造方法、再生方法及び使用を実施するためのシステム1のブロック図である。図1は、本開示の実施形態の1つに従う製造方法、再生方法及び使用を説明するための図であって,本開示を何ら制限するものではない。
 システム1は、破袋装置11と、破砕装置12と、第1分離装置13と、第1除塵装置14と、第2除塵装置15と、第3除塵装置16と、第2分離装置17と、第3分離装置18と、酸化剤処理装置19と、第4分離装置20とを備える。
 破袋装置11には、酸含有水溶液が充填されており、酸含有水溶液中で、使用済の衛生用品を含む収集袋に開孔部を形成する。破砕装置12は、酸含有水溶液の水面下に沈んだ使用済の衛生用品を、収集袋ごと破砕する。図2は、図1の破袋装置11及び破砕装置12の構成例を示す模式図である。
 破袋装置11には、酸含有水溶液Bが充填されており、酸含有水溶液B中に沈降した収集袋Aに開孔部を形成し、使用済の衛生用品を含み、開孔部を有する収集袋91を形成する。破袋装置11は、溶液槽Vと、開孔形成部50とを含む。溶液槽Vは、酸含有水溶液Bを溜めている。開孔形成部50は、溶液槽V内に設けられており、収集袋Aが溶液槽Vに入れられたときに、収集袋Aの、酸含有水溶液Bに接する表面に開孔部を形成する。
 開孔形成部50は、送り込み部30と、破袋部40とを含む。送り込み部30は、収集袋Aを(物理的且つ強制的に)溶液槽V内の酸含有水溶液B中に送り込む(引き込む)。送り込み部30は、例えば、攪拌機が挙げられ、撹拌羽根33と、撹拌羽根33を支持する支持軸(回転軸)32と、支持軸32を軸に沿って回転する駆動装置31とを備える。撹拌羽根33が、駆動装置31により回転軸(支持軸32)の周りを回転することで、酸含有水溶液Bに旋回流を起こす。送り込み部30は、旋回流により、収集袋Aを酸含有水溶液B(溶液槽V)の底部方向へ引き込む。
 破袋部40は、溶液槽Vの下部(好ましくは底部)に配置されており、破袋刃41と、破袋刃41を支持する支持軸(回転軸)42と、支持軸42を軸に沿って回転する駆動装置43とを備える。破袋刃41は、駆動装置43により回転軸(支持軸42)の周りを回転することで、酸含有水溶液B(溶液槽V)の下部に移動した収集袋Aに開孔部を形成する。
 破砕装置12は、酸含有水溶液Bの水面下に沈んだ収集袋A内の使用済の衛生用品を収集袋Aごと破砕する。破砕装置12は、破砕部60と、ポンプ63とを含む。破砕部60は、溶液槽Vと配管61で連接されており、溶液槽Vから排出された、使用済の衛生用品を含み、開孔部を有する収集袋91を、収集袋Aごと酸含有水溶液B中で破砕して、破砕物を含む酸含有水溶液92を形成する。
 破砕部60としては、二軸破砕機(例えば、二軸回転式破砕機、二軸差動式破砕機、二軸せん断式破砕機)が挙げられ、例えば、スミカッター(住友重機械エンバイロメント株式会社製)が挙げられる。ポンプ63は、破砕部60と、配管62で連接されており、破砕部60で得られた、破砕物を含む酸含有水溶液92を、破砕部60から引き出して、次工程へ送出する。ただし、破砕物は、パルプ繊維、酸不活化高吸水性ポリマー、収集袋Aの素材、フィルム、不織布、弾性体等を含む資材を含んでいる。
 第1分離装置13は、破砕装置12で得られた、破砕物を含む酸含有水溶液92を撹拌して、破砕物から汚れ(排泄物等)を除去する洗浄を行いつつ、破砕物を含む酸含有水溶液92から、異物が除去された酸含有第1水溶液93を分離して、酸含有第1水溶液93を第1除塵装置14へ送出する。なお、酸含有第1水溶液93は、パルプ繊維及び酸不活化高吸水性ポリマーを含む。
 第1分離装置13としては、例えば、洗濯槽兼脱水槽及びそれを囲む水槽を備える洗濯機が挙げられる。ただし、洗濯槽兼脱水槽(回転ドラム)が洗浄槽兼ふるい槽(分離槽)として用いられる。上記洗濯機としては、例えば、横型洗濯機ECO-22B(株式会社稲本製作所製)が挙げられる。
 第1除塵装置14は、複数の開口を有するスクリーンにより、酸含有第1水溶液93中に存在する異物をさらに除去し、酸含有第1水溶液93よりも異物がより除去された酸含有第2水溶液94を形成する。なお、酸含有第2水溶液94は、パルプ繊維及び酸不活化高吸水性ポリマーを含む。第1除塵装置14としては、例えば、スクリーン分離機が挙げられる(粗スクリーン分離機)、具体的には、例えば、パックパルパー(株式会社サトミ製作所製)が挙げられる。
 第2除塵装置15は、複数の開口を有するスクリーンにより、第1除塵装置14から送出された酸含有第2水溶液94からさらに細かい異物を除去し、酸含有第2水溶液94よりも異物がさらに除去された酸含有第3水溶液95を形成する。なお、酸含有第3水溶液95は、パルプ繊維及び酸不活化高吸水性ポリマーを含む。第2除塵装置15としては、例えば、スクリーン分離機、具体的には、例えば、ラモスクリーン(相川鉄工株式会社製)が挙げられる。
 第3除塵装置16は、遠心分離により、第2除塵装置15から送出された酸含有第3水溶液95からさらにいっそう異物を除去し、酸含有第3水溶液95よりも異物がさらにいっそう除去された酸含有第4水溶液96を形成する。なお、酸含有第3水溶液95は、パルプ繊維及び酸不活化高吸水性ポリマーを含む。第3除塵装置16としては、例えば、サイクロン分離機、具体的には、ACT低濃度クリーナー(相川鉄工株式会社製)が挙げられる。
 第2分離装置17は、第3除塵装置16から送出された酸含有第4水溶液96を、複数の開口を有するスクリーンにより、酸不活化高吸水性ポリマーを含む酸含有水溶液と、パルプ繊維を主に含む酸含有水溶液97とに分離する。なお、パルプ繊維を主に含む酸含有水溶液97には、酸不活化高吸水性ポリマーも残存している。
 第2分離装置17は、例えば、ドラムスクリーン分離機、具体的には、東洋スクリーン株式会社製のドラムスクリーン脱水機が挙げられる。
 第3分離装置18は、第2分離装置17から送出された、パルプ繊維を主に含む酸含有水溶液97を、複数の開口を有するスクリーンにより、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98と、酸不活化高吸水性ポリマー及び酸含有水溶液を含む液体とに分離しつつ、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98を加圧して、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98中の酸不活化高吸水性ポリマーを押し潰す。
 第3分離装置18としては、例えば、スクリュープレス脱水機、具体的には、川口精機株式会社製のスクリュープレス脱水機が挙げられる。
 酸化剤処理装置19は、第3分離装置18から送出された、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98を、酸化剤を含む水溶液(処理液)で処理する。それにより、酸不活化高吸水性ポリマーを酸化分解してパルプ繊維から除去して、リサイクルパルプ繊維を含む処理液99を送出する。
 酸化剤処理装置は、酸化剤としてオゾンを用いる場合、例えば、処理槽と、オゾン供給装置とを備える。処理槽は、酸性水溶液を処理液として貯蔵する。オゾン供給装置は、処理槽にガス状物質であるオゾン含有ガスを供給する。オゾン供給装置のオゾン発生装置としては、例えば、エコデザイン株式会社製オゾン水曝露試験機ED-OWX-2、三菱電機株式会社製オゾン発生装置OS-25Vが挙げられる。
 なお、酸化剤処理装置は、他の酸化剤、例えば、二酸化塩素、過酸(例えば、過酢酸)、次亜塩素酸ナトリウム、過酸化水素を用いて、酸不活化高吸水性ポリマーを分解することができる。
 第4分離装置20は、複数の開口を有するスクリーンを用いて、酸化剤処理装置19にて処理された、リサイクルパルプ繊維を含む処理液99から、リサイクルパルプ繊維と、処理液とを分離する。第4分離装置20としては、例えば、スクリーン分離機が挙げられる。
 図3は、図1に示されるシステム1を用いた、使用済の衛生用品からリサイクルパルプ繊維及び高吸水性リサイクルポリマーを製造する方法を説明するフローチャートである。図3に示されるフローチャートは、例示であり、本開示を何ら制限するものではない。
 図3には、不活化ステップS1(準備ステップS1)と、除去ステップS2と、高吸水性リサイクルポリマー形成ステップS3と、リサイクルパルプ繊維回収ステップS4とが示されている。不活化ステップS1(準備ステップS1)には、開孔部形成工程P11と、破砕工程P12とが含まれ、除去ステップS2には、第1分離工程P13と、第1除塵工程P14と、第2除塵工程P15と、第3除塵工程P16とが含まれ、高吸水性リサイクルポリマー形成ステップS3には、第2分離工程P17が含まれ、そしてリサイクルパルプ繊維回収ステップS3には、第4分離工程P20が含まれる。以下、詳細に説明する。
 開孔部形成工程P11は、破袋装置11を用いて実施される。使用済の衛生用品を封入した収集袋Aが、酸含有水溶液Bを溜めた溶液槽Vに投入されて、収集袋Aにおける酸含有水溶液Bに接する表面に開孔部を形成する。酸含有水溶液Bは、収集袋Aに開孔部が形成されたとき、収集袋A内の使用済の衛生用品の汚れ、菌類、臭気等が外部に放出しないように、収集袋Aの周りを囲んで封止する。上記開孔部から酸含有水溶液が収集袋A内に浸入すると、収集袋A内の気体が収集袋Aの外部へ抜け、収集袋Aの比重が酸含有水溶液Bより重くなり、収集袋Aが酸含有水溶液B内に沈降する。また、酸含有水溶液B内の酸は、不活化剤として作用し、収集袋A内の使用済の衛生用品内の高吸水性ポリマーを不活化する。
 使用済の衛生用品内の高吸水性ポリマーが不活化されると、その吸水能力が低下し、高吸水性ポリマーが脱水して、粒径が小さくなるので、後続の各工程での取り扱いが容易になり、処理の効率が向上する。不活化に酸を用いると、石灰、塩化カルシウム等を用いて高吸水性ポリマーを不活化する場合と比較して、パルプ繊維に灰分が残留しない利点があり、不活化の度合い(粒径、比重等の大きさ)をpHで調整しやすい利点がある。
 酸含有水溶液に浸漬すべき衛生用品構成資材が、非特定資材、例えば、液透過性シート、液不透過性シート等を含む場合、例えば、衛生用品構成資材として、衛生用品そのものを、酸含有水溶液に浸漬する場合には、特定資材を構成するパルプ繊維の大きさ、比重等と、高吸水性ポリマーの大きさ、比重等とが比較的近い方が好ましい。当該観点からも、不活化ステップにおいて、酸含有水溶液が、上述の所定のpHを有することが好ましい。
 図2の破袋装置11では、撹拌羽根33の回転軸(支持軸32)の周りの回転により、酸含有水溶液Bに旋回流が生じて、収集袋Aが物理的に強制的に酸含有水溶液B(溶液槽V)の底部方向へ引き込まれる。そして、底部に移動してきた収集袋Aが、破袋刃41の回転軸(支持軸42)の周りの回転により、破袋刃41に接触して、収集袋Aに開孔部が形成される。
 破砕工程P12は、破砕装置12により実行される。使用済の衛生用品を含み、開孔部を有する収集袋91が、酸含有水溶液Bとともに、溶液槽Vから破砕装置12に移動し、破砕装置12内で、収集袋A内の使用済の衛生用品が、収集袋Aごと酸含有水溶液B中で破砕される。
 例えば、図2の破砕装置12では、まず、破砕部60により、溶液槽Vから酸含有水溶液Bと共に送出された、使用済の衛生用品を含み、開孔部を有する収集袋91が、収集袋Aごと酸含有水溶液B中で破砕される(液中破砕工程)。図2の破砕装置12において、ポンプ63により、破砕部60(液中破砕工程)で得られた、破砕物を含む酸含有水溶液92が破砕部60から引き出され(引出工程)、次工程へ送出される。
 第1分離工程P13は、第1分離装置13により実行される。破砕装置12で得られた、破砕物を含む酸含有水溶液92を撹拌しながら、破砕物から汚れを除去する洗浄を行いつつ、破砕物を含む酸含有水溶液92を、特定資材及び酸含有水溶液(すなわち、パルプ繊維及び酸不活化高吸水性ポリマーを含む酸含有水溶液)と、衛生用品の非特定資材とに分離する。その際、洗浄効果を高めるため、そして/又はpHを調整するために、別途、酸含有水溶液を添加してもよい。
 その結果、破砕物を含む酸含有水溶液92から、パルプ繊維及び酸不活化高吸水性ポリマーを含む酸含有第1水溶液93が、貫通孔を通過して分離されて、第1分離装置13から送出される。一方、破砕物を含む酸含有水溶液92のなかで、比較的大きな非特定資材は、貫通孔を通過できず、第1分離装置13内に残存するか、又は別経路で送出される。なお、破砕された非特定資材のうち小さなものは、第1分離装置13にて分離しきれず、酸含有第1水溶液93に含まれる。
 ここで、第1分離装置13として洗濯機を用いるとき、ふるいとして機能する洗濯槽の貫通孔の大きさとしては、丸孔の場合には5mm~20mmφが挙げられ、それ以外の形状の孔の場合には丸孔と略同一面積の大きさが挙げられる。
 第1除塵工程P14は、第1除塵装置14により実行される。第1分離装置13から送出された、酸含有第1水溶液93をスクリーンに通し、パルプ繊維及び酸不活化高吸水性ポリマーを含む酸含有水溶液と、破砕された非特定資材(異物)とをさらに分離する。その結果、破砕された非特定資材(異物)は、スクリーンを通過できずに分離されて、酸含有第2水溶液94が、第1除塵装置14から送出される。一方、破砕された非特定資材(異物)は、スクリーンを通過できず第1除塵装置14内に残存するか、又は別経路で送出される。なお、破砕された非特定資材のうちより小さなものは、第1除塵装置14にて分離しきれずに、酸含有第2水溶液94に含まれる。
 第2除塵工程P15は、第2除塵装置15により実行され、第1除塵装置14から送出された、酸含有第2水溶液94をスクリーンに通し、パルプ繊維及び酸不活化高吸水性ポリマーを含む酸含有水溶液と、破砕された非特定資材(異物)とをさらに分離する。その結果、破砕された非特定資材(異物)が、スクリーンを通過できずに分離され、酸含有第3水溶液95が、第2除塵装置15から送出される。一方、破砕された非特定資材(異物)は、スクリーンを通過できず第2除塵装置15内に残存するか、又は別経路で送出される。なお、破砕された非特定資材のうちさらに小さなものは、第2除塵装置15にて分離しきれずに、酸含有第3水溶液95に含まれる。
 第3除塵工程P16は、第3除塵装置16により実行され、第2除塵装置15から送出された、酸含有第3水溶液95を、逆さ向きの円錐筐体内で遠心分離し、パルプ繊維及び酸不活化高吸水性ポリマーを含む酸含有水溶液と、破砕された非特定資材(異物)とをさらにいっそう分離する。その結果、酸含有第4水溶液96が、第3除塵装置16(サイクロン分離機)の上部から送出される。一方、破砕された非特定資材(異物)、特に、金属等の重い資材が、第3除塵装置16(サイクロン分離機)の下部から送出される。
 なお、酸含有水溶液のpHは、酸不活化高吸水性ポリマーの比重及び大きさと、パルプ繊維の比重及び大きさとが所定の範囲内にあるように調整されている。
 第2分離工程P17は、第2分離装置17により実行される。第3除塵装置16から送出された酸含有第4水溶液96は、ドラムスクリーンにより、酸不活化高吸水性ポリマーを含む酸含有水溶液と、パルプ繊維を主に含む酸含有水溶液97とに分離される。その結果、酸含有第4水溶液96から、酸不活化高吸水性ポリマーを含む酸含有水溶液がドラムスクリーンを通過して分離され、第2分離装置17から送出される。一方、酸含有第4水溶液96のうち、パルプ繊維を主に含む酸含有水溶液97が、ドラムスクリーンを通過できず第2分離装置17から別経路で送出される。
 酸不活化高吸水性ポリマーを含む酸含有水溶液は、酸含有水溶液ごと、撹拌装置に移動させ、酸不活化高吸水性ポリマーを含む酸含有水溶液を撹拌しながら、撹拌装置に水酸化ナトリウム水溶液等を添加してpHを調整し、高吸水性リサイクルポリマーを形成することができる。
 また、酸不活化高吸水性ポリマーを含む酸含有水溶液は、固液分離装置、例えば、ロータリードラムスクリーンを用いて、酸不活化高吸水性ポリマーと、酸含有水溶液とに分離し、分離された、酸不活化高吸水性ポリマーを、再生用水溶液として、水道水、アルカリ性水溶液等が充填された撹拌装置に移動し、アルカリ金属イオン供給源を添加してpHを調整し、湿潤状態における高吸水性リサイクルポリマーを形成することができる。
 次いで、湿潤状態にある高吸水性リサイクルポリマーを、減圧乾燥機を用いて乾燥させ、次いで、乾燥状態における高吸水性リサイクルポリマーを形成し、次いで、乾燥状態における高吸水性リサイクルポリマーを、例えば、粉砕機を用いて粉砕し、粒子状の高吸水性リサイクルポリマーを形成することができる。
 第3分離工程P18は、第3分離装置18により実行される。第2分離装置17から送出された、パルプ繊維を主に含む酸含有水溶液97が、ドラムスクリーンにより、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98と、酸不活化高吸水性ポリマー及び酸含有水溶液を含む液体とに分離される。そして分離と共に、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98中の酸不活化高吸水性ポリマーが加圧されて押し潰される。その結果、パルプ繊維を主に含む酸含有水溶液97から、酸不活化高吸水性ポリマー及び酸含有水溶液を含む液体がドラムスクリーンを通過して分離され、第3分離装置18から送出される。一方、パルプ繊維を主に含む酸含有水溶液97のうちの、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98がドラムスクリーンを追加できず、ドラムスクリーン先端部の蓋体の隙間から第3分離装置18の外側へ送出される。
 酸化剤処理工程P19は、酸化剤処理装置19により実行される。第3分離装置18から送出された、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98中のパルプ繊維及び押し潰された酸不活化高吸水性ポリマーが、酸化剤を含む水溶液で処理される。それにより、酸不活化高吸水性ポリマーが酸化分解され、パルプ繊維から除去される。その結果、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98のパルプ繊維に付着(例示:パルプ繊維の表面に残存)していた酸不活化高吸水性ポリマーが、酸化剤を含む水溶液により酸化分解され、水溶液に可溶な低分子量の有機物に変化することにより、パルプ繊維から除去され、リサイクルパルプ繊維を含む処理液99が形成される。
 例えば、酸化剤処理装置19では、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98が処理槽の上部から投入され、処理液、すなわち酸化剤を含む水溶液の上部から下部へ向かって沈降してゆく。一方、オゾン含有ガスが、処理槽内のノズルから処理液内に細かい気泡の状態(例えば、マイクロバブル又はナノバブル)で連続的に放出される。すなわち、オゾン含有ガスは、処理液の下部から上部へ向かって上昇してゆく。処理液内で、沈降するパルプ繊維と、上昇するオゾン含有ガスとが、対向して進みつつ衝突し合う。そして、オゾン含有ガスは、パルプ繊維の表面に、パルプ繊維を包み込むように付着する。そのとき、オゾン含有ガス中のオゾンが、パルプ繊維中の酸不活化高吸水性ポリマーと反応して、酸不活化高吸水性ポリマーを酸化分解して、処理液に溶解させる。それにより、パルプ繊維及び酸不活化高吸水性ポリマーを含む固体98のパルプ繊維に含まれる酸不活化高吸水性ポリマーを酸化分解してパルプ繊維から除去し、リサイクルパルプ繊維を含む処理液99を形成する。
 第4分離工程P20は、第4分離装置20により実行され、リサイクルパルプ繊維を含む処理液99が、複数のスリットを有するスクリーンを通過して、リサイクルパルプ繊維を含む処理液99から、リサイクルパルプ繊維と、処理液とが分離される。その結果、リサイクルパルプ繊維を含む処理液99から処理液がスクリーンを通過して分離され、第4分離装置20から送出される。一方、リサイクルパルプ繊維を含む処理液99のうち、リサイクルパルプ繊維がスクリーンを通過できず、第4分離装置20に残存するか、又は別経路で送出される。
 本開示の製造方法、本開示の再生方法及び本開示の使用により形成された高吸水性リサイクルポリマーは、高吸水性ポリマーが用いられる用途に特に制限なく用いられることができ、例えば、衛生用品(例えば、使い捨ておむつ、失禁パッド(例えば、軽失禁パッド)、使い捨てショーツ、生理用ナプキン、パンティーライナー、ベッドシート)、ペットシート、猫砂、土壌改良剤等に用いられうる。
 以下、例を挙げて本開示を説明するが、本開示はこれらの例に限定されるものではない。
[実施例1]
 ポリアクリル酸系の高吸水性ポリマー(住友精化社製、アクアキープ、未使用品)を、温度:25±5℃及び湿度:65±5%RHの恒温恒湿室において、質量比で150倍量の生理食塩水に10分間浸漬した。
 なお、浸漬した高吸水性ポリマーの吸収倍率(生理食塩水)を本明細書に記載の方法に従って測定したところ、吸収倍率(生理食塩水)は、86.6(g/g)であった。
 また、「質量比で150倍量の生理食塩水」を、『質量比で1,000倍の脱イオン水』に変更して吸収倍率(脱イオン水)を測定したところ、吸収倍率(脱イオン水)は約600倍(g/g)であった。
 生理食塩水から取り出した高吸水性ポリマー450gを、ポリテトラフルオロエチレン製のバッグに入れ、クエン酸水溶液(1,000mL,pH=2.52)に、5分間浸漬し、酸不活化高吸水性ポリマーを準備した。
 次いで、酸不活化高吸水性ポリマーを、上記バッグごと、再生用水溶液としての500mLの脱イオン水を充填した1Lのビーカーに入れ、撹拌しながら、1.0mol/LのNaOH水溶液を0.1mL添加した。NaOHの添加から10分後に、ビーカーから上記バッグを取り出し、再生用水溶液のpHを測定し、バッグ内の高吸水性ポリマー(高吸水性リサイクルポリマー)の吸収倍率を測定した。結果を図4に示す。
[実施例2~6]
 1.0mol/LのNaOH水溶液の添加量を、0.2mL,0.3mL,0.4mL,0.5mL,0.6mLに変更した以外は、実施例1と同様にして、再生用水溶液のpH及び高吸水性ポリマー(高吸水性リサイクルポリマー)の吸収倍率(g/g)を測定した。NaOH水溶液の添加量と、pH及び吸収倍率(g/g)との関係を図4に示し、そしてpHと、吸収倍率(g/g)との関係を、図5に示す。
[参考例1]
 実施例1において、NaOH水溶液を添加する前の再生用水溶液のpHを測定した。結果を、NaOHの添加量が0mLの際のpHの値として図4に示す。また、実施例1において、脱イオン水を充填したlLのビーカーに入れる前の、酸不活化高吸水性ポリマーの吸収倍率を、NaOHの添加量が0mLの際の吸収倍率の値として図4に示す。
 図4より、NaOH水溶液の添加量を調整することにより、高吸水性ポリマー(高吸水性リサイクルポリマー)の吸収倍率を調整することができることが分かる。また、図5より、再生用水溶液のpHと、高吸水性リサイクルポリマーの吸水性との間に高い相関性があることが分かる。
[実施例7]
 実施例1に従って酸不活化高吸水性ポリマーを準備し、準備した酸不活化高吸水性ポリマー450gを、ポリテトラフルオロエチレン製のバッグに入れ、酸不活化高吸水性ポリマーをバッグごと、500mLの脱イオン水を充填した1Lのビーカーに入れ、ビーカーを撹拌しながら、Na2CO3を所定量ビーカーに添加し、Na2CO3の添加から10分後に、ビーカーから上記バッグを取り出し、バッグ内の高吸水性ポリマー(高吸水性リサイクルポリマー)の吸収倍率を測定した。結果を図6に示す。なお、実施例7では、Na2CO3の所定量を代えて複数回の実験を行った。
 なお、図6では、横軸は、Na2CO3のモル濃度(mmol/L)であり、そして縦軸は、高吸水性リサイクルポリマーの吸収倍率(g/g)である。
[実施例8]
 Na2CO3をNaHCO3に変更した以外は、実施例7に従って、高吸水性ポリマー(高吸水性リサイクルポリマー)の吸収倍率を測定した。結果を図6に示す。なお、図6では、横軸は、NaHCO3のモル濃度(mmol/L)である。
[実施例9~13]
 ポリアクリル酸系の高吸水性ポリマー(住友精化社製、アクアキープ、未使用品)を、温度:25±5℃及び湿度:65±5%RHの恒温恒湿室において、人工尿(イオン交換水10Lに、尿素200g、塩化ナトリウム80g、硫酸マグネシウム8g、塩化カルシウム3g及び色素:青色1号約1gを溶解させることにより調製した)が充填されている容器(容器には、未使用品の高吸水性ポリマーの質量比の約1000倍量の人工尿が充填されている)に30分間浸漬し、浸漬後の高吸水性ポリマーを、ネット上で10分間静置した。
 静置後の高吸水性ポリマーを、1質量%のクエン酸水溶液が充填されている容器(容器には、未使用品の高吸水性ポリマーの質量比の約1000倍量のクエン酸水溶液が充填されている)に30分間浸漬し、浸漬後の高吸水性ポリマーを、ネット上で10分間静置した。静置後の高吸水性ポリマーを、20mmol/LのNaOH水溶液が充填されている容器(容器には、未使用品の高吸水性ポリマーの質量比の約1000倍量のNaOH水溶液が充填されている)に30分間浸漬し、浸漬後の高吸水性ポリマー(湿潤状態における高吸水性リサイクルポリマー)を、ネット上で10分間静置し、湿潤状態における高吸水性リサイクルポリマーを得た。湿潤状態における高吸水性リサイクルポリマーの一部をサンプリングし、吸収倍率(再生後)を測定したところ、201.0倍であった。
 湿潤状態における高吸水性リサイクルポリマーの一部を、親水性有機溶媒が充填されている各容器(各容器には、未使用品の高吸水性ポリマーの質量比の約600倍量の親水性有機溶媒が充填されている)に30分間浸漬することにより脱水し、脱水後の高吸水性リサイクルポリマーを、ネット上で10分間静置し、静置後の高吸水性リサイクルポリマーの吸収倍率(脱水後)を測定した。結果を表1に示す。
 なお、用いられた親水性有機溶媒は、メタノール、エタノール、アセトン又はアセトニトリルであり、対照として、親水性有機溶媒に浸漬しないものを準備した。
 静置後の湿潤状態における高吸水性リサイクルポリマーを60℃で24時間乾燥し、乾燥状態における高吸水性リサイクルポリマーを得た。
 乾燥状態における高吸水性リサイクルポリマーを、脱イオン水が充填されている容器(容器には、未使用品の高吸水性ポリマーの質量比の約1000倍量の脱イオン水が充填されている)に30分間浸漬し、浸漬後の高吸水性リサイクルポリマーを、ネット上で10分間静置し、吸収倍率(乾燥後)を測定した。結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、親水性溶媒により脱水を行った高吸水性リサイクルポリマー(実施例9~12)は、親水性溶媒による脱水を行っていない高吸水性ポリマー(実施例13)と同様の吸収倍率(乾燥後)を有していることが分かる。
 1  システム
 11  破袋装置
 12  破砕装置
 13  第1分離装置
 14  第1除塵装置
 15  第2除塵装置
 16  第3除塵装置
 17  第2分離装置
 18  第3分離装置
 19  酸化剤処理装置
 20  第4分離装置
 S1  不活化ステップ
 S2  除去ステップ
 S3  高吸水性リサイクルポリマー形成ステップ
 S4  リサイクルパルプ繊維回収ステップ
 P11  開孔部形成工程
 P12  破砕工程
 P13  第1分離工程
 P14  第1除塵工程
 P15  第2除塵工程
 P16  第3除塵工程
 P17  第2分離工程
 P18  第3分離工程
 P19  酸化剤処理工程
 P20  第4分離工程

Claims (14)

  1.  酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生する方法であって、
     酸基を有し、酸により不活化された高吸水性ポリマーを準備する準備ステップ、
     前記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、前記酸により不活化された高吸水性ポリマーから、湿潤状態における前記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、
     湿潤状態における前記高吸水性リサイクルポリマーを乾燥し、前記予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップ、
     を含む、前記方法。
  2.  前記予め定められた吸水性が、脱イオンに対する、100~400倍(g/g)の吸収倍率の任意の値である、請求項1に記載の方法。
  3.  前記アルカリ金属イオン供給源が、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、前記高吸水性ポリマーの酸基よりも酸解離定数の大きな酸との塩である、請求項1又は2に記載の方法。
  4.  前記アルカリ金属イオンが、リチウムイオン、ナトリウムイオン及びカリウムイオン、並びにそれらの任意の組み合わせからなる群から選択される、請求項1~3のいずれか一項に記載の方法。
  5.  前記予め定められた吸水性を、前記再生用水溶液のpHを制御することにより調整する、請求項1~4のいずれか一項に記載の方法。
  6.  前記再生用水溶液のpHを、5.0~9.0(25℃)に調整する、請求項5に記載の方法。
  7.  パルプ繊維及び高吸水性ポリマーを含む、使用済の衛生用品から、予め定められた吸水性を有する高吸水性リサイクルポリマーを製造する方法であって、
     前記パルプ繊維と、酸基を有する高吸水性ポリマーとを含む、前記衛生用品を構成する衛生用品構成資材を、酸を含む酸含有水溶液に浸漬し、酸により不活化された高吸水性ポリマーを形成する不活化ステップ、
     前記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源を添加し、前記酸により不活化された高吸水性ポリマーから、湿潤状態における前記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、
     湿潤状態における前記高吸水性リサイクルポリマーを乾燥し、前記予め定められた吸水性を有する高吸水性リサイクルポリマーを形成する乾燥ステップ、
     を含むことを特徴とする、前記方法。
  8.  前記アルカリ金属イオン供給源が、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、前記高吸水性ポリマーの酸基よりも酸解離定数の大きな酸との塩である、請求項7に記載の方法。
  9.  前記予め定められた吸水性を、前記再生用水溶液のpHを制御することにより調整する、請求項7又は8に記載の方法。
  10.  前記再生用水溶液のpHを、5.0~9.0(25℃)に調整する、請求項9に記載の方法。
  11.  前記高吸水性リサイクルポリマー形成ステップにおいて、前記酸含有水溶液を、前記再生用水溶液として用い、前記再生用水溶液のpHを、5.0~7.0(25℃)に調整する、請求項9又は10に記載の方法。
  12.  前記再生用水溶液が、中性水溶液又はアルカリ性水溶液であり、前記高吸水性リサイクルポリマー形成ステップにおいて、前記酸により不活化された高吸水性ポリマーを前記再生用水溶液に浸漬し、前記再生用水溶液のpHを7.0超且つ9.0以下に調整する、請求項9又は10に記載の方法。
  13.  アルカリ金属イオンを供給可能なアルカリ金属イオン供給源の、酸により不活化された高吸水性ポリマーを、予め定められた吸水性を有する高吸水性リサイクルポリマーに再生するための使用であって、
     酸基を有し、前記酸により不活化された高吸水性ポリマーを含む再生用水溶液に、前記アルカリ金属イオン供給源を添加し、前記酸により不活化された高吸水性ポリマーから、湿潤状態における前記高吸水性リサイクルポリマーを形成する高吸水性リサイクルポリマー形成ステップ、
     を含む、前記使用。
  14.  前記アルカリ金属イオン供給源が、アルカリ金属の水酸化物、又はアルカリ金属の水酸化物と、前記高吸水性ポリマーの酸基よりも酸解離定数の大きな酸との塩である、請求項13に記載の使用。
PCT/JP2019/004116 2018-02-05 2019-02-05 高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用 WO2019151538A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980005831.9A CN111386304A (zh) 2018-02-05 2019-02-05 高吸水性聚合物的再生方法、高吸水性再生聚合物的制造方法、和碱金属离子供给源的使用
EP19748325.8A EP3733750A4 (en) 2018-02-05 2019-02-05 METHOD FOR REGENERATING HIGHLY WATER-ABSORBING POLYMER, METHOD FOR MANUFACTURING HIGHLY WATER-ABSORBENT RECYCLED POLYMER, AND USING AN ALKALINE METAL ION SOURCE
US16/966,884 US20210039072A1 (en) 2018-02-05 2019-02-05 Method for regenerating highly water-absorbing polymer, method for producing highly water-absorbing recycled polymer, and use of alkali metal ion source

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018018664 2018-02-05
JP2018-018664 2018-02-05
JP2018-154170 2018-08-20
JP2018154170A JP7115933B2 (ja) 2018-02-05 2018-08-20 高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用

Publications (1)

Publication Number Publication Date
WO2019151538A1 true WO2019151538A1 (ja) 2019-08-08

Family

ID=67479420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004116 WO2019151538A1 (ja) 2018-02-05 2019-02-05 高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用

Country Status (2)

Country Link
JP (1) JP7446369B2 (ja)
WO (1) WO2019151538A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241025A1 (ja) * 2019-05-30 2020-12-03 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
WO2021044690A1 (ja) 2019-09-06 2021-03-11 ユニ・チャーム株式会社 再生高吸水性ポリマーを製造する方法、再生高吸水性ポリマーを用いて高吸水性ポリマーを製造する方法、及び、再生高吸水性ポリマー
WO2022178371A1 (en) * 2021-02-22 2022-08-25 The Procter & Gamble Company Recycling of superabsorbent fibers via uv irradiation in flow system
CN115379892A (zh) * 2020-04-10 2022-11-22 尤妮佳股份有限公司 高吸水性再循环聚合物的制造方法和高吸水性再循环聚合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225645A (ja) * 2002-02-05 2003-08-12 Tomio Wada 使用済み吸収性物品からのパルプ成分および吸水性ポリマーの分離回収法
JP2003326161A (ja) 2002-03-06 2003-11-18 Nippon Shokubai Co Ltd 吸水性樹脂の再生方法および吸水剤
JP2013198862A (ja) * 2012-03-23 2013-10-03 Hokkaido Univ 使用済み高吸水性ポリマーの再生方法
US20140230322A1 (en) * 2011-09-23 2014-08-21 Zynnovation Llc Disposable diaper recycling and applications thereof
JP2016123973A (ja) * 2014-12-26 2016-07-11 ユニ・チャーム株式会社 使用済み吸収性物品のリサイクル方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225645A (ja) * 2002-02-05 2003-08-12 Tomio Wada 使用済み吸収性物品からのパルプ成分および吸水性ポリマーの分離回収法
JP2003326161A (ja) 2002-03-06 2003-11-18 Nippon Shokubai Co Ltd 吸水性樹脂の再生方法および吸水剤
US20140230322A1 (en) * 2011-09-23 2014-08-21 Zynnovation Llc Disposable diaper recycling and applications thereof
JP2013198862A (ja) * 2012-03-23 2013-10-03 Hokkaido Univ 使用済み高吸水性ポリマーの再生方法
JP2016123973A (ja) * 2014-12-26 2016-07-11 ユニ・チャーム株式会社 使用済み吸収性物品のリサイクル方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241025A1 (ja) * 2019-05-30 2020-12-03 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
JP2020195994A (ja) * 2019-05-30 2020-12-10 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
US11358123B2 (en) 2019-05-30 2022-06-14 Unicharm Corporation Method for recycling superabsorbent polymer derived from used absorbent article and recycled superabsorbent polymer derived from used absorbent article
JP7378374B2 (ja) 2019-05-30 2023-11-13 ユニ・チャーム株式会社 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
WO2021044690A1 (ja) 2019-09-06 2021-03-11 ユニ・チャーム株式会社 再生高吸水性ポリマーを製造する方法、再生高吸水性ポリマーを用いて高吸水性ポリマーを製造する方法、及び、再生高吸水性ポリマー
CN114341242A (zh) * 2019-09-06 2022-04-12 尤妮佳股份有限公司 制造再生高吸水性聚合物的方法、使用再生高吸水性聚合物制造高吸水性聚合物的方法以及再生高吸水性聚合物
CN115379892A (zh) * 2020-04-10 2022-11-22 尤妮佳股份有限公司 高吸水性再循环聚合物的制造方法和高吸水性再循环聚合物
EP4115973A4 (en) * 2020-04-10 2023-09-13 Unicharm Corporation METHOD FOR PRODUCING HIGH WATER ABSORBENT RECYCLED POLYMER AND HIGH WATER ABSORBENT RECYCLED POLYMER
WO2022178371A1 (en) * 2021-02-22 2022-08-25 The Procter & Gamble Company Recycling of superabsorbent fibers via uv irradiation in flow system

Also Published As

Publication number Publication date
JP2022145758A (ja) 2022-10-04
JP7446369B2 (ja) 2024-03-08

Similar Documents

Publication Publication Date Title
JP7115933B2 (ja) 高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用
WO2019151538A1 (ja) 高吸水性ポリマーの再生方法、高吸水性リサイクルポリマーの製造方法、及びアルカリ金属イオン供給源の使用
JP6580116B2 (ja) リサイクルパルプ繊維の製造方法
JP6847028B2 (ja) リサイクルパルプ繊維の製造方法、過酸の、高吸水性ポリマーの不活化及び分解のための使用、並びに過酸を含む、高吸水性ポリマーの不活化及び分解剤
JP6843030B2 (ja) 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム
JP6762287B2 (ja) 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム
JP6771633B1 (ja) 使用済み吸収性物品由来の高吸水性ポリマーを再生する方法及び使用済み吸収性物品由来のリサイクル高吸水性ポリマー
CN110055793A (zh) 再生浆粕
JP7231522B2 (ja) 再生高吸水性ポリマーを製造する方法、再生高吸水性ポリマーを用いて高吸水性ポリマーを製造する方法、及び、再生高吸水性ポリマー
CN111278579B (zh) 有机酸的回收方法和再循环浆粕的制造方法
JP6598836B2 (ja) 有機酸及び排泄物の回収方法、及びリサイクルパルプ繊維の製造方法
JP6820961B2 (ja) リサイクルパルプの衛生用品への使用、及び衛生用品
WO2024090234A1 (ja) 使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法、及び、回収された高吸水性ポリマーを用いてリサイクル高吸水性ポリマーを製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748325

Country of ref document: EP

Effective date: 20200727