WO2019151509A1 - Active energy ray-curable composition, and use thereof - Google Patents

Active energy ray-curable composition, and use thereof Download PDF

Info

Publication number
WO2019151509A1
WO2019151509A1 PCT/JP2019/003757 JP2019003757W WO2019151509A1 WO 2019151509 A1 WO2019151509 A1 WO 2019151509A1 JP 2019003757 W JP2019003757 W JP 2019003757W WO 2019151509 A1 WO2019151509 A1 WO 2019151509A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
curable composition
active energy
acrylate
energy ray
Prior art date
Application number
PCT/JP2019/003757
Other languages
French (fr)
Japanese (ja)
Inventor
明男 荒野
望月 克信
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2019569628A priority Critical patent/JPWO2019151509A1/en
Publication of WO2019151509A1 publication Critical patent/WO2019151509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to an active energy ray-curable composition and a method for using a cured product formed from the composition.
  • a touch panel is widely used in a display device provided in a mobile communication device such as a mobile phone or a smart phone, and needs are diversified as the application expands.
  • a display device in order to improve visibility and display characteristics, an active energy ray-curable resin composition is provided between an image display member such as a liquid crystal display panel or an organic EL panel and a light-transmitting optical member such as a touch panel or a protection panel. After applying an object, the optical adhesive layer is formed by irradiating and curing the active energy ray.
  • An active energy ray-curable composition containing a (meth) acrylate oligomer component, a (meth) acrylate monomer component, a photopolymerization initiator and a plasticizer is disclosed as an active energy ray-curable composition usable for such applications.
  • Patent Document 1 An active energy ray-curable composition containing a (meth) acrylate oligomer component, a (meth) acrylate monomer component, a photopolymerization initiator and a plasticizer is disclosed as an active energy ray-curable composition usable for such applications.
  • Patent Document 2 discloses an actinic radiation curable composition containing a polyfunctional (meth) acrylate, a polymerization initiator, and an acrylic polymer as a plasticizer.
  • the acrylic polymer has a molecular weight of a so-called oligomer region. It is described that some hundreds to thousands are preferably used.
  • Patent Document 3 discloses a method using ⁇ -tert-butyl monoperoxyitaconate or the like as a chain transfer agent as a means for producing a low molecular weight acrylic polymer.
  • a low molecular weight plasticizer containing such a chain transfer agent is added to the active energy ray-curable composition, the chain transfer agent causes a curing delay during photocuring, or the compound derived from the chain transfer agent is photocured. There was a problem of bleeding out on the surface of the conductive resin composition.
  • Patent Document 4 discloses a method for polymerizing a (meth) acryloyl group-containing monomer at a temperature of 180 ° C. to 350 ° C. as a method for efficiently producing a low molecular weight acrylic polymer without using a chain transfer agent. It is disclosed. However, since the acrylic polymer synthesized by such a method has a double bond at the molecular end, when blended in an active energy ray-curable composition as a plasticizer, the curability of the composition There is concern about this point.
  • the active energy ray-curable resin contains a polymer obtained by polymerizing a vinyl monomer at 150 to 350 ° C. and then adding hydrogen.
  • a composition has been proposed (Patent Document 5).
  • JP-A-2016-199656 JP 2006-28405 A Japanese National Patent Publication No. 8-503988 International Publication No. 01/83619 International Publication No. 2014/167999
  • the amount of double bonds at the molecular terminals can be sufficiently reduced, and the curability of the composition during irradiation with active energy rays can be improved.
  • the metal catalyst used in the process is mixed into the acrylic polymer (plasticizer).
  • plasticizer containing a metal catalyst is used for the production of a touch panel or the like, there is a concern that the metal catalyst leaks from the optical adhesive layer and can cause malfunction of the touch panel.
  • This invention is made
  • Another object of the present invention is to provide an optical adhesive layer formed from the above active energy ray-curable composition.
  • the inventors of the present invention are active energy ray-curable compositions containing a vinyl polymer, a (meth) acryloyl group-containing compound and a photopolymerization initiator, and exhibiting a specific curing rate.
  • the knowledge which can solve the said subject was acquired. This invention is completed based on the said knowledge. According to the present specification, the following means are provided.
  • An active energy ray-curable composition comprising a vinyl polymer (A), a (meth) acryloyl group-containing compound (B) and a photopolymerization initiator (C),
  • A vinyl polymer
  • B a (meth) acryloyl group-containing compound
  • C photopolymerization initiator
  • [Curing rate] (% / second) (reaction rate of (meth) acryloyl group 20 seconds after light irradiation ⁇ reaction rate of (meth) acryloyl group 10 seconds after light irradiation) / light irradiation time (10 seconds) (1)
  • the vinyl polymer (A) includes (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms in a structural monomer unit.
  • the photopolymerization initiator (C) is contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the vinyl polymer (A) and the (meth) acryloyl group-containing compound (B).
  • the active energy ray-curable composition of the present invention is excellent in curability.
  • the obtained cured product is suitably used as an optical adhesive layer because it has excellent adhesion to a substrate and light transmittance.
  • (meth) acryl means acryl and / or methacryl
  • (meth) acrylate means acrylate and / or methacrylate
  • the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
  • the curable composition of the present invention comprises a vinyl polymer as component (A), a (meth) acryloyl group-containing compound as component (B), and a photopolymerization initiator as component (C).
  • component (A) a vinyl polymer as component (A)
  • component (B) a (meth) acryloyl group-containing compound as component (B)
  • component (C) a photopolymerization initiator
  • a vinyl polymer is a polymer having a structural unit derived from a vinyl monomer, and can be obtained, for example, by polymerizing a monomer mixture containing a vinyl monomer.
  • vinyl monomers are not particularly limited, and include (meth) acrylate and (meth) acrylic acid, aromatic monomers such as styrene and ⁇ -methylstyrene, and amide groups such as (meth) acrylamide.
  • Examples include vinyl monomers, vinyl esters such as vinyl acetate, acrylonitrile, etc., but light transmittance, mechanical properties of cured products, flexibility, weather resistance, heat resistance, workability, adhesion, water resistance, etc. (Meth) acrylate is preferable because of its various performances.
  • Examples of (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t -Butyl (meth) acrylate, neopentyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, nonyl (meth) acrylate, isononyl ( Linear such as (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, nonadecyl (meth) acryl
  • (meth) acrylic acid esters having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms are preferable from the viewpoint of flexibility.
  • the alkyl group may have 1 to 12 carbon atoms or 4 to 12 carbon atoms.
  • the alkoxyalkyl group may have 2 to 12 carbon atoms or 4 to 12 carbon atoms.
  • the proportion of (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms is 30% by mass or more based on the total monomers used for producing the vinyl polymer. It is preferably 50% by mass or more.
  • the proportion of the (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms may be 70% by mass or more, or 90% by mass or more, It may be 95% by mass or more, or 100% by mass.
  • the weight average molecular weight (Mw) of the vinyl polymer is a molecular weight in terms of polystyrene by gel permeation chromatography (hereinafter also referred to as “GPC”), preferably 500 or more, from the viewpoint of suppressing bleeding in the cured product. Preferably it is 1,000 or more, More preferably, it is 1,500 or more.
  • the lower limit of Mw may be 3,000 or more, 5,000 or more, or 10,000 or more.
  • the upper limit value of Mw is preferably 100,000 or less, more preferably 50,000 or less, and further preferably 40,000 or less.
  • the upper limit value of Mw may be 30,000 or less, 20,000 or less, or 15,000 or less.
  • the range of Mw can be set by combining the above upper limit value and lower limit value, and is, for example, 500 or more and 100,000 or less, and may be 1,000 or more and 50,000 or less. It may be 20,000 or less.
  • the molecular weight distribution of the vinyl polymer is calculated as a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
  • Mw / Mn is preferably 5.0 or less from the viewpoint of mechanical strength of the cured product, more preferably 4.0 or less, still more preferably 3.0 or less, and even more preferably 2.5 or less. And more preferably 2.0 or less.
  • the lower limit value of Mw / Mn is usually 1.0.
  • the viscosity of the vinyl polymer is preferably 1,000 mPa ⁇ s or more at 25 ° C., more preferably 2,000 mPa ⁇ s or more.
  • the viscosity may be 3,000 mPa ⁇ s or more, 5,000 mPa ⁇ s or more, or 10,000 mPa ⁇ s or more.
  • the upper limit of the viscosity is preferably 100,000 mPa ⁇ s or less, more preferably 80,000 mPa ⁇ s or less, and still more preferably 60,000 mPa ⁇ s or less.
  • the upper limit of the viscosity may be 40,000 mPa ⁇ s or less, 30,000 mPa ⁇ s or less, or 20,000 mPa ⁇ s or less. If the viscosity is 1,000 mPa ⁇ s or more, the fluidity of the curable composition is suppressed, and this is preferable because it is easy to be cured in a desired form and shape. The workability of the composition is improved.
  • the viscosity range can be set by combining the above upper limit value and lower limit value.
  • the viscosity range is 1,000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, and 2,000 mPa ⁇ s or more and 80,000 mPa ⁇ s. Or 3,000 mPa ⁇ s or more and 60,000 mPa ⁇ s or less.
  • the vinyl polymer may have a double bond in the molecule.
  • the vinyl polymer has an appropriate amount of double bonds, the vinyl polymer is copolymerized with a matrix formed by polymerizing a (meth) acryloyl group-containing compound which is a component (B) described later, It is taken in moderately. For this reason, the compatibility of a vinyl polymer and the said matrix improves, and the hardened layer excellent in light transmittance can be obtained.
  • the said mechanism is inference and does not limit the scope of the present invention.
  • the amount of double bonds contained in the vinyl polymer is preferably 0.01 meq / g or more from the viewpoint of obtaining a cured product having good light transmittance.
  • the amount of double bonds may be 0.03 meq / g or more, 0.05 meq / g or more, 0.10 meq / g or more, or 0.20 meq / g or more. May be.
  • the upper limit of the double bond amount is preferably 1.0 meq / g or less, and more preferably 0.50 meq / g or less.
  • the upper limit of the double bond amount may be 0.40 meq / g or less, or 0.30 meq / g or less.
  • the range of the amount of double bonds can be set by combining the above upper limit value and lower limit value. For example, it is 0.01 meq / g or more and 1.0 meq / g or less, and 0.01 meq / g or more and 0 or less. .50 meq / g or less, or 0.05 meq / g or more and 0.50 meq / g or less.
  • the double bond amount means a value calculated from 1 H-NMR of the polymer.
  • a double bond can be introduced by producing a vinyl polymer under high temperature conditions.
  • a monomer having an acryloyl group is polymerized at a polymerization temperature of 100 ° C. or higher, a cleavage reaction starting from a hydrogen abstraction reaction from a polymer chain occurs due to high temperature polymerization.
  • the polymer which has an ethylenically unsaturated bond represented by this is obtained.
  • the polymerization temperature is preferably 120 ° C. or higher, more preferably 150 ° C. or higher.
  • the double bond concentration in the polymer also tends to increase. According to the said method, the vinyl polymer which has a double bond simply and with sufficient productivity can be obtained.
  • the upper limit of the polymerization temperature is preferably 350 ° C. or less from the viewpoint that there is no possibility of coloring of the polymerization solution or molecular weight reduction due to the decomposition reaction.
  • a very small amount of polymerization initiator may be used, and it is not necessary to use a chain transfer agent such as mercaptan or a polymerization solvent, and a highly pure copolymer can be obtained.
  • R 1 in the general formula (1) is an alkyl group, a hydroxyalkyl group, an alkoxyalkyl group, an alkyl group which may have other substituents, a phenyl group, a benzyl group, a polyalkylene glycol group, a dialkylamino group.
  • the vinyl polymer can be produced by ordinary radical polymerization. Any of solution polymerization, bulk polymerization, and dispersion polymerization may be employed, and a living radical polymerization method may be used.
  • the reaction process may be any of batch, semi-batch and continuous polymerization. Among these, a high temperature continuous polymerization method under a polymerization temperature condition of 100 to 350 ° C. or 150 to 350 ° C. is preferable.
  • a known method disclosed in JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, or the like may be used. For example, after filling a pressurizable reactor with a solvent and setting it to a predetermined temperature under pressure, the reactor is charged with a monomer mixture comprising each monomer and, if necessary, a polymerization solvent at a constant supply rate. And a method of extracting a polymerization solution in an amount commensurate with the supply amount of the monomer mixture. Moreover, a polymerization initiator can also be mix
  • the blending amount when blended is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the monomer mixture.
  • the pressure depends on the reaction temperature, the monomer mixture used and the boiling point of the solvent, and does not affect the reaction, but may be any pressure that can maintain the reaction temperature.
  • the residence time of the monomer mixture is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomer may not react sufficiently, and if the unreacted monomer exceeds 60 minutes, the productivity may deteriorate.
  • the preferred residence time is 2 to 40 minutes.
  • any initiator that generates radicals at a predetermined reaction temperature may be used.
  • One of these polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • a polymerization initiator having a high hydrogen abstraction ability is used, the double bond concentration of the resulting polymer tends to increase.
  • an organic peroxide is used rather than an azo compound, a polymer having a high double bond concentration tends to be obtained.
  • the amount of the polymerization initiator used can be appropriately adjusted depending on the kind of the polymerization initiator and the monomer, the desired molecular weight, the polymerization conditions, etc., but in general, with respect to 100 parts by mass of the monomer used. 0.001 to 10 parts by mass.
  • the smaller the amount of polymerization initiator used the higher the double bond concentration in the resulting polymer.
  • organic hydrocarbon compounds are suitable, cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, ethyl acetate and butyl acetate, etc.
  • esters ketones such as acetone, methyl ethyl ketone, and cyclohexanone, and alcohols such as methanol, ethanol, and isopropanol are exemplified, and one or more of these can be used.
  • the usage-amount of a solvent shall be 80 mass parts or less with respect to 100 mass parts of all vinyl monomers. By setting it to 80 parts by mass or less, a high conversion rate can be obtained in a short time. More preferably, it is 1 to 50 parts by mass.
  • a dehydrating agent such as trimethyl orthoacetate or trimethyl orthoformate can also be added.
  • a known chain transfer agent may be used for the production of the vinyl polymer.
  • the double bond concentration in the resulting polymer tends to be low.
  • the double bond concentration is lowered by increasing the amount of the chain transfer agent used.
  • the reaction solution withdrawn from the reactor proceeds to the next step as it is, or the polymer is simply removed by distilling off volatile components such as unreacted monomers, solvents and low molecular weight oligomers by distillation or the like. Can be separated. A part of volatile components such as unreacted monomers, solvent, and low molecular weight oligomers distilled off from the reaction solution can be returned to the raw material tank or directly returned to the reactor and used again for the polymerization reaction.
  • the method of recycling an unreacted monomer and a solvent is a preferable method from an economical viewpoint. In the case of recycling, it is necessary to determine the mixing ratio of the newly supplied monomer mixture so as to maintain the desired monomer ratio and the desired amount of solvent in the reactor.
  • the amount of double bonds introduced into the polymer can be reduced by adding a radical generator and post-treating under heating conditions.
  • a radical generator a known compound capable of generating radicals can be used. Specific examples of the radical generator include the polymerization initiator used to obtain the vinyl polymer described above.
  • the addition amount of the radical generator is about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer. The larger the addition amount, the greater the effect of reducing the double bond concentration.
  • the heating temperature during the heat treatment is about 50 to 130 ° C., but the lower the temperature, the greater the effect of reducing the double bond concentration.
  • the heating temperature is preferably in the range of 50 to 110 ° C, more preferably in the range of 50 to 100 ° C.
  • the heat treatment time is not particularly limited, but is preferably set so that the amount of the remaining radical generator is less than 1% by mass with respect to the polymer.
  • a person skilled in the art can calculate the remaining radical from the activation energy, frequency factor and reaction temperature of the radical generator used.
  • the double bond concentration can also be reduced by hydrogenating the vinyl polymer as a post treatment.
  • hydrogenation a conventionally known method can be employed. That is, after adding a homogeneous catalyst or a heterogeneous catalyst to the polymer reaction solution, the inside of the system is made a hydrogen atmosphere, the pressure is heated to normal pressure to 10 MPa, the temperature is heated to about 20 to 180 ° C., and about 2 to 20 hours. React.
  • homogeneous catalysts include rhodium complexes such as chlorotris (triphenylphosphine) rhodium, ruthenium complexes such as dichlorotris (triphenylphosphine) ruthenium, chlorohydrocarbonyltris (triphenylphosphine) ruthenium, dichlorobis (triphenylphosphine) ) Platinum complexes such as platinum, and iridium complexes such as carbonylbis (triphenylphosphine) iridium.
  • rhodium complexes such as chlorotris (triphenylphosphine) rhodium
  • ruthenium complexes such as dichlorotris (triphenylphosphine) ruthenium, chlorohydrocarbonyltris (triphenylphosphine) ruthenium, dichlorobis (triphenylphosphine)
  • Platinum complexes such as platinum
  • heterogeneous catalyst examples include solid catalysts in which transition metals such as nickel, rhodium, ruthenium, palladium, and platinum are supported on carbon, silica, alumina, fibers, organic gels, and the like.
  • the heterogeneous catalyst is preferable in that the catalyst can be easily removed by filtration or the like, so that the quality is stable and an expensive catalyst can be reused.
  • the amount of catalyst to be added is about 10 to 1,000 ppm with respect to the vinyl polymer in the case of a homogeneous catalyst. In the case of a heterogeneous catalyst, it is about 1,000 to 10,000 ppm.
  • the component (B) in the present invention is a compound having a (meth) acryloyl group in the molecule.
  • the (meth) acryloyl group-containing compound include (meth) acrylic acid and (meth) acrylate, and among these, (meth) acrylate is preferable.
  • As (meth) acrylate a compound having one (meth) acryloyl group in the molecule [hereinafter referred to as “monofunctional (meth) acrylate”] and a compound having two or more (meth) acryloyl groups in the molecule [Hereinafter referred to as “polyfunctional (meth) acrylate”].
  • Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, and stearyl ( Alkyl (meth) acrylates such as meth) acrylate; cyclohexyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Alicyclic (meth) acrylates such as acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl (meth) acrylate; 2-hydroxy Hydroxyl group
  • polyfunctional (meth) acrylate examples include 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol.
  • polyfunctional (meth) acrylate a glycidyl group of a vinyl polymer obtained by polymerizing a vinyl monomer having a glycidyl group alone or with a copolymerizable vinyl monomer
  • a vinyl polymer having a (meth) acrylate group in the side chain obtained by reacting a (meth) acrylate having a carboxyl group is also mentioned.
  • monofunctional or polyfunctional (meth) acrylates may be used alone or in combination of two or more.
  • a polyfunctional (meth) acrylate is preferable in that an adhesive layer showing good strength can be obtained.
  • the polyfunctional (meth) acrylate is preferably contained in an amount of 20 to 100% by mass based on the total amount of the (meth) acryloyl group-containing compound.
  • the proportion of the polyfunctional (meth) acrylate may be 50 to 100% by mass, 80 to 100% by mass, or 100% by mass.
  • Photopolymerization initiator contains a photopolymerization initiator as the component (C) for the purpose of curing with active energy rays such as ultraviolet rays and visible light.
  • Photopolymerization initiators include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1- (methyl Vinyl) phenyl] propanone, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl] -2-methylpropan-1-one, 2-methyl-1 -
  • the active energy ray-curable composition of the present invention contains the component (A) to the component (C).
  • the above (A) / (B) is more preferably 10-80 / 20-90.
  • the blending ratio of the photopolymerization initiator (component (C)) in the curable composition of the present invention is 0.01 to 10 mass with respect to 100 mass parts of the total amount of the components (A) and (B). It is preferable to be in the range of parts.
  • the blending ratio of the photopolymerization initiator is more preferably in the range of 0.1 to 10 parts by mass, and still more preferably in the range of 0.5 to 5 parts by mass.
  • the active energy ray-curable composition of the present invention is irradiated with light under conditions of an illuminance of 5 mW / cm 2 at a UV-A wavelength using a mercury xenon lamp as a light source, coating the curable composition to a film thickness of 15 ⁇ m.
  • equation (1) is 0.3% / second or more.
  • the curing rate is preferably 0.5% / second or more, more preferably 1.0% / second or more, from the viewpoint of light transmittance of the cured product and adhesion to the substrate.
  • the curing rate may be 2.0% / second or more, or 3.0% / second or more.
  • the accuracy of the film thickness is preferably 15.0 ⁇ 1.0 ⁇ m, more preferably 15.0 ⁇ 0.5 ⁇ m.
  • the reaction rate of the (meth) acryloyl group is the absorption peak height (X) of the (meth) acryloyl group in the FT-IR measurement chart of the active energy ray-curable composition before light irradiation (before the active energy ray irradiation), and From the absorption peak height (Y) of the (meth) acryloyl group in the FT-IR measurement chart of the active energy ray-curable composition after light irradiation (after active energy ray irradiation), it is calculated by the following formula (2).
  • [Reaction rate of (meth) acryloyl group] (%) ⁇ (XY) / X ⁇ ⁇ 100 (2)
  • the curing rate of the present invention is calculated from the reaction rate of (meth) acryloyl groups from 10 seconds to 20 seconds after light irradiation.
  • the radical reaction of the (meth) acryloyl group may not start normally, and is not appropriate as a measurement start point for the curing rate.
  • the end point of the measurement of the curing rate is preferably set before the radical reaction reaches a convergence tendency.
  • the curing rate is calculated using the reaction rate of the (meth) acryloyl group from 10 seconds to 20 seconds after light irradiation.
  • the curing rate of the curable composition can be adjusted to the above range.
  • the active energy ray-curable composition of the present invention is a composition containing the component (A) to the component (C), and has a certain curing rate even under relatively weak irradiation conditions of 5 mW / cm 2. It is shown.
  • a cured product (cured layer) obtained from the curable composition exhibiting such a curing rate is excellent in light transmittance and adhesiveness to the substrate.
  • the active energy ray-curable composition of the present invention essentially comprises the above-described component (A), component (B) and component (C), but may contain other components as necessary. .
  • solvent solvent
  • the composition of the present invention may be a solvent-free system that does not contain a solvent, or may contain a solvent such as an organic solvent for the purpose of improving coating properties.
  • an organic solvent the organic solvent which can be used for manufacture of the vinyl polymer which is (A) component can be used, for example.
  • the proportion of the solvent used may be set as appropriate, but is preferably 10 to 90% by mass, more preferably 30 to 80% by mass in the composition.
  • ethylenically unsaturated monomers include Aromatic monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid and salts thereof; Maleic anhydride; unsaturated dicarboxylic acids such as maleic acid and fumaric acid, and their monoalkyl and dialkyl esters; Maleimide compounds such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, phenylmaleimide, cyclohexylmaleimide; Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, vinyl cinnamate
  • composition of the present invention includes a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, an antifoaming agent, a surface conditioner, an adhesion promoter, a rheology.
  • Control agents, waxes, inorganic fillers, organic fillers, moisture curing catalysts, and the like can be added.
  • hydroquinone hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, and various phenolic antioxidants are preferable, but sulfur secondary antioxidants, phosphorus secondary antioxidants are preferable. A secondary antioxidant or the like can also be added.
  • ultraviolet absorbers examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2- (2 Benzotriazole compounds such as'-hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole; Triazine compounds such as 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-iso-octyloxyphenyl) -s-triazine; 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2, 4, 4 ' -Trihydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3', 4,4'-
  • Examples of the light stabilizer include N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2,6,6). -) Pentamethyl-4-piperidyl) -2- (3,5-ditertiarybutyl-4-hydroxybenzyl) -2-n-butylmalonate, bis (1,2,2,6,6-pentamethyl-4- Low molecular weight hindered amine compounds such as piperidinyl) sebacate; N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2 Hindered amine light stabilizers such as high molecular weight hindered amine compounds such as 2,6,6-pentamethyl-4-piperidinyl) sebacate.
  • the composition of the present invention can be obtained by mixing the above-mentioned raw materials at room temperature or under heating by a conventionally known method.
  • the viscosity of the composition is not particularly limited, but it is preferably 200 to 20,000 mPas at 25 ° C. When the viscosity is within this range, smooth coating is possible.
  • the cured product (cured layer) obtained from the active energy ray-curable composition of the present invention exhibits excellent light transmittance and excellent adhesion to the substrate. For this reason, the application to the bonding use of an optical member is possible, for example.
  • a base material which comprises an optical member transparent plastics, such as a polycarbonate, a polymethylmethacrylate, a cycloolefin polymer (COP), glass, etc. are mentioned, for example, Among these, 1 type (s) or 2 or more types are used.
  • cured material (hardened layer) can be used as an adhesive layer for optics in various displays, such as bonding of the member which comprises a touchscreen, and a liquid crystal display, EL display, and a plasma display.
  • the optical adhesive layer After applying the active energy ray-curable composition to the substrate, the optical adhesive layer is bonded to another substrate, and the active energy ray is irradiated from the transparent substrate side to apply the curable composition. It can be obtained by curing.
  • drying temperature or preheating temperature is not particularly limited as long as the applied substrate is at a temperature that does not cause problems such as deformation.
  • Examples of the active energy rays for curing the curable composition after coating include electron beams, ultraviolet rays, visible rays, and X-rays, but ultraviolet rays are preferable because inexpensive devices can be used.
  • Examples of the ultraviolet irradiation device include a high-pressure mercury lamp, a mercury xenon lamp, a metal halide lamp, a UV electrodeless lamp, and an LED.
  • the irradiation energy should be appropriately set according to the type and composition of the active energy ray. As an example, when using a high-pressure mercury lamp, the irradiation energy in the UV-A region is 100 to 5,000 mJ / cm 2 is preferable, and 200 to 5,000 mJ / cm 2 is more preferable.
  • the film thickness of the optical adhesive layer may be appropriately set according to the purpose, but is about 5 to 400 ⁇ m.
  • ⁇ Curing rate of curable composition > (1) Measurement of curing rate A solution of an active energy ray-curable composition was dropped on a ZEONOR (100 ⁇ m-thick cycloolefin polymer) film made by Nippon Zeon on which a copper foil separator having a thickness of 15 ⁇ m was placed. Covered with a ZEONOR film (100 ⁇ m thick) to obtain a laminate having a 15 ⁇ m thick layer of the curable composition.
  • ZEONOR 100 ⁇ m-thick cycloolefin polymer
  • An FT-IR measurement device manufactured by Nicolet Corp., model
  • the cure rate was measured by measuring in real time the unsaturated double bond of the (meth) acryloyl group with iS50FT-IR).
  • the peak at 1640 to 1610 cm-1 as the unsaturated double bond peak of the (meth) acryloyl group, or the peak at 820 to 800 cm-1 when the absorption peak of the adjacent carbonyl group is strong and the change in absorbance is difficult to observe was used for analysis.
  • the reaction rate of the (meth) acryloyl group is the absorption peak height (X) of the (meth) acryloyl group in the FT-IR measurement chart of the curable composition before ultraviolet irradiation, and the photocurable composition after ultraviolet irradiation. It was calculated by the following formula (4) from the absorption peak height (Y) of the (meth) acryloyl group in the FT-IR measurement chart.
  • the active energy ray-curable composition is applied to a lightly peeled PET film (film binder 75E-0010HTA, manufactured by Fujimori Kogyo Co., Ltd.) having a width of 300 mm, a length of 400 mm, and a thickness of 50 ⁇ m.
  • a lightly peeled PET film film binder 75E-0010HTA, manufactured by Fujimori Kogyo Co., Ltd.
  • a heavy release PET film (Fujimori Kogyo Co., Ltd., film binder KF-50) having a width of 300 mm, a length of 400 mm, and a thickness of 50 ⁇ m was bonded.
  • UV-A wavelength illuminance 120 mW / cm 2 is applied and the integrated light intensity is 3000 mJ / cm 2. After irradiating through a PET film so that it becomes, the sample sheet of 25 mm x 70 mm was cut out.
  • the heavy peeled PET film (film binder 75E-0010HTA) is peeled off and pasted onto the white slide glass.
  • a cured product for light transmittance measurement was produced.
  • a haze meter (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.)
  • NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the light transmittance was judged according to the criteria of Initial ⁇ : Total light transmittance is 99% or more ⁇ : Total light transmittance is less than 99% After wet heat test ⁇ : Total light transmittance is 87% or more ⁇ : Total light transmittance is less than 87%
  • ⁇ Adhesion> A cured product for measurement was prepared in the same manner as the cured product for light transmission measurement, and left for 1000 hours in an environment of 85 ° C. and 85% RH, and peeling was confirmed visually.
  • a monomer mixture consisting of 2.0 parts of di-tert-butyl peroxide (manufactured by NOF Corporation, trade name “Perbutyl D”, hereinafter referred to as “DTBP”) is supplied at a constant feed rate (48 g / Minutes and residence time: 12 minutes), continuous supply from the raw material tank to the reactor was started, and a reaction liquid corresponding to the supply amount of the monomer mixture was continuously withdrawn from the outlet. Immediately after the start of the reaction, once the reaction temperature decreased, a temperature increase due to the heat of polymerization was observed. However, the internal temperature of the reactor was maintained at 241 to 243 ° C. by controlling the oil jacket temperature.
  • the time point after 36 minutes from the stabilization of the reactor internal temperature was taken as the reaction liquid collection start point, and the reaction was continued for 25 minutes thereafter.
  • 1.2 kg of the monomer mixture was supplied and 1.2 kg of the reaction liquid was recovered.
  • the reaction solution was introduced into a thin film evaporator, and volatile components such as unreacted monomers were separated and removed to obtain a polymer.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the double bond concentration determined from 1 H-NMR measurement was 0.22 meq / g.
  • Post-treatment step 1000 g of the polymer was charged into a 2000 mL stirred tank reactor equipped with an oil jacket, and the atmosphere in the reactor was purged with nitrogen while flowing 100 mL / min of nitrogen. Thereafter, the internal temperature was raised to 90 ° C., and 36 g of t-hexylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name “Perhexyl O”) was added and stirred in this state for 16 hours. A radical addition reaction was performed to obtain vinyl polymer A-1. As a result of GPC measurement of the vinyl polymer A-1, Mn was 1,400, Mw was 2,300, and the viscosity was 650 mPa ⁇ s. The double bond concentration determined by 1 H-NMR measurement was 0.02 meq / g.
  • Production Example 2 (Production of vinyl polymer A-2) A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 2,700, Mw was 4,700, and the viscosity was 2,900 mPa ⁇ s. The double bond concentration determined by 1 H-NMR measurement was 0.22 meq / g. Thereafter, the same operation as in the post-treatment step of Synthesis Example 1 was performed on the above polymer to obtain a vinyl polymer A-2. The properties of the vinyl polymer A-2 are shown in Table 1.
  • Production Example 3 (Production of vinyl polymer A-3) A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 2,200, Mw was 3,600, and the viscosity was 1,570 mPa ⁇ s. The double bond concentration determined by 1 H-NMR measurement was 0.30 meq / g. Thereafter, the same operation as in the post-treatment step of Synthesis Example 1 was performed on the above polymer to obtain a vinyl polymer A-3. The properties of vinyl polymer A-3 are shown in Table 1.
  • Production Example 4 (Production of vinyl polymer A-4) A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 1,900, Mw was 2,900, and the viscosity was 1,030 mPa ⁇ s. The double bond concentration determined by 1 H-NMR measurement was 0.30 meq / g. Thereafter, the same operation as in the post-treatment step of Synthesis Example 1 was performed on the above polymer to obtain a vinyl polymer A-4. The properties of the vinyl polymer A-4 are shown in Table 1.
  • Production Example 5 (Production of vinyl polymer A-5) A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 1,000, Mw was 1,500, and the viscosity was 700 mPa ⁇ s. The double bond concentration determined by 1 H-NMR measurement was 0.22 meq / g. Thereafter, the polymer was subjected to the same operation as in the post-treatment step of Synthesis Example 1 to obtain a vinyl polymer A-5. Properties of the vinyl polymer A-5 are shown in Table 1.
  • Production Example 6 (Production of vinyl polymer A-6) A vinyl polymer A-6 was obtained in the same manner as in the polymerization step of Synthesis Example 1 except that the raw materials used and the temperature inside and outside the reactor were changed as shown in Table 1. At this time, the reaction was continued for 50 minutes from the reaction liquid collection start point, and 2.4 kg of the reaction liquid was recovered. The properties of the vinyl polymer A-6 are shown in Table 1.
  • Production Example 7 (Production of vinyl polymer A-7) A stirred tank reactor having a capacity of 2000 mL equipped with an oil jacket was charged with 1000 g of vinyl polymer A-6, and the atmosphere in the reactor was purged with nitrogen while flowing 100 mL / min of nitrogen. Thereafter, the internal temperature was raised to 90 ° C., 36 g of perhexyl O was added, and in this state, the mixture was stirred for 16 hours to perform a radical addition reaction to obtain a vinyl polymer A-7. Properties of the vinyl polymer A-7 are shown in Table 1.
  • Production Example 8 (Production of vinyl polymer A-8) Into a 1,000 mL pressurized stirred tank reactor equipped with an oil jacket, vinyl polymer A-6 (700 g) and dried 5% palladium carbon (3.5 g) were placed, and the atmosphere in the reactor was evacuated. I made it. Thereafter, the internal temperature was heated to 130 ° C. and pressurized to about 1.5 MPa with hydrogen. In this state, the mixture was stirred for 8 hours to perform a hydrogenation reaction. After purging the pressure, filtration was performed using diatomaceous earth “Radiolite # 100” manufactured by Showa Chemical Industry Co., Ltd. as a filter aid to obtain a vinyl polymer A-8. Properties of the vinyl polymer A-8 are shown in Table 1.
  • Production Example 9 (Production of vinyl polymer A-9) A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 1,100, Mw was 1,600, and the viscosity was 800 mPa ⁇ s. The double bond concentration determined by 1 H-NMR measurement was 0.23 meq / g. Thereafter, the polymer was subjected to the same operation as in the post-treatment step of Synthesis Example 1 to obtain a vinyl polymer A-9. The properties of vinyl polymer A-9 are shown in Table 1.
  • Examples 9-12 A vinyl polymer (component A), a (meth) acryloyl group-containing compound (component B) and a photopolymerization initiator (component C) are blended in the proportions shown in Table 3, and a mix rotor (trade name: MIX-ROATER VMR-5) And made by ASONE) for 2 hours to obtain a curable composition.
  • the curing rate of each curable composition was measured and listed in Table 3.
  • compatibility (haze) and adhesiveness were evaluated about the hardened
  • HX-220 Caprolactone-modified hydroxypivalic acid neopentyl glycol diacrylate (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD HX-220”)
  • M-270 Polypropylene glycol diacrylate (trade name “Aronix M-270” manufactured by Toagosei Co., Ltd.) (Aronix is a registered trademark)
  • FA-512AS Dicyclopentenyloxyethyl acrylate (manufactured by Hitachi Chemical Co., Ltd., trade name “FANCRYL FA-512AS”)
  • Irgacure 184 1-hydroxy-cyclohexyl-phenyl-ketone (BASF)
  • Examples 1 to 12 belong to the active energy ray-curable composition of the present invention, and are evaluated with respect to a curable composition having a degree of curing satisfying a certain curing rate even under low irradiation conditions. It is a result.
  • the obtained cured product exhibited good transparency and was excellent in adhesion to the substrate.
  • the vinyl polymer as the component (A) has an amount of double bond of 0.01 to 0.50 meq / g (0.02 to 0.36 meq / g). In 9 to 11, a result that the transparency of the obtained cured product was more excellent was obtained. This was presumed to be a result of improved compatibility between the vinyl polymer and the matrix derived from the component (B).
  • Comparative Example 1 relates to a curable composition that does not have a sufficient curing rate, and the obtained cured product was inferior in adhesion to the substrate.
  • the active energy ray-curable composition of the present invention is excellent in curability, and the resulting cured product is excellent in adhesion to a substrate and light transmittance. Therefore, it is suitably used as an optical adhesive layer for the purpose of laminating a transparent substrate, particularly an optical member.

Abstract

[Problem] To provide an active energy ray-curable composition which exhibits excellent curability and also exhibits excellent adhesion between a cured product and a base material and excellent light transmission properties. [Solution] An active energy ray-curable composition which contains a vinyl polymer, a (meth)acryloyl group-containing compound, and a photopolymerization initiator, and which exhibits at least a certain curing speed even under relatively weak irradiation conditions of 5 mW/cm2. The vinyl polymer may have 0.01-0.5 meq/g of double bonds in the molecule.

Description

活性エネルギー線硬化性組成物及びその利用Active energy ray-curable composition and use thereof
 本発明は、活性エネルギー線硬化性組成物、及び当該組成物から形成される硬化物の利用方法に関するものである。 The present invention relates to an active energy ray-curable composition and a method for using a cured product formed from the composition.
 携帯電話、スマートフォン等のモバイル通信機器に設けられているディスプレイ装置にはタッチパネルが広く利用されており、用途拡大に伴いニーズの多様化が進んでいる。上記ディスプレイ装置では、視認性や表示特性を向上させるため、液晶表示パネルや有機ELパネル等の画像表示部材とタッチパネルや保護パネル等の光透過性光学部材との間に活性エネルギー線硬化性樹脂組成物を塗布した後、活性エネルギー線を照射して硬化させることにより、光学用接着層を形成している。
 このような用途に使用可能な活性エネルギー線硬化性組成物として、(メタ)アクリレートオリゴマー成分、(メタ)アクリレートモノマー成分、光重合開始剤及び可塑剤を含む活性エネルギー線硬化性組成物が開示されている(例えば特許文献1)。
A touch panel is widely used in a display device provided in a mobile communication device such as a mobile phone or a smart phone, and needs are diversified as the application expands. In the display device, in order to improve visibility and display characteristics, an active energy ray-curable resin composition is provided between an image display member such as a liquid crystal display panel or an organic EL panel and a light-transmitting optical member such as a touch panel or a protection panel. After applying an object, the optical adhesive layer is formed by irradiating and curing the active energy ray.
An active energy ray-curable composition containing a (meth) acrylate oligomer component, a (meth) acrylate monomer component, a photopolymerization initiator and a plasticizer is disclosed as an active energy ray-curable composition usable for such applications. (For example, Patent Document 1).
 近年、表示装置の薄型化や大画面化が進んでおり、特に、車載用途においては視認性の改善、夏場の車中温度上昇に伴う耐熱性や曲面形状表示体への異形接着性などの観点で光透過性が高く密着性に優れた光学用接着層が求められている。また、貼り合わせる際の硬化収縮によってタッチパネルが変形してしまう問題がある。これらを解決する手段として、組成物中の可塑剤含有量を増量するという方法があるが、一般的な可塑剤を使用した場合、耐湿熱試験において支持体との接着面が剥れる、又は水分により可塑剤が加水分解を起こして光学用接着層での分解物の析出や光透過性が低下するという問題があった。 In recent years, display devices have been made thinner and larger screens, and in particular, in terms of in-vehicle applications, such as improved visibility, heat resistance due to a rise in vehicle temperature in summer, and irregular adhesion to curved display bodies Therefore, there is a demand for an optical adhesive layer having high light transmittance and excellent adhesion. In addition, there is a problem that the touch panel is deformed by curing shrinkage at the time of bonding. As a means to solve these problems, there is a method of increasing the plasticizer content in the composition. However, when a general plasticizer is used, the adhesive surface with the support is peeled off or moisture is removed in the heat and humidity resistance test. As a result, there is a problem in that the plasticizer hydrolyzes and precipitates decomposition products in the optical adhesive layer and the light transmittance is lowered.
 一方、支持体との密着性を改善する手段として、アクリル系高分子を配合した組成物も提案されている。特許文献2には、多官能(メタ)アクリレート、重合開始剤、及びアクリル系高分子を可塑剤として含む活性放射線硬化性組成物が開示されおり、アクリル系高分子として、いわゆるオリゴマー領域の分子量である数百~数千のものが好ましく使用されることが記載されている。 On the other hand, as a means for improving the adhesion to the support, a composition containing an acrylic polymer has also been proposed. Patent Document 2 discloses an actinic radiation curable composition containing a polyfunctional (meth) acrylate, a polymerization initiator, and an acrylic polymer as a plasticizer. The acrylic polymer has a molecular weight of a so-called oligomer region. It is described that some hundreds to thousands are preferably used.
 一般に、分子量が数百から数千程度のアクリル系高分子を製造する際には、連鎖移動剤を用いる必要がある。特許文献3には、低分子量のアクリル系高分子を製造する手段として、β-tert-ブチルモノペルオキシイタコネート等を連鎖移動剤として使用する方法が開示されている。しかし、このような連鎖移動剤を含む低分子量可塑剤を活性エネルギー線硬化性組成物に配合すると、連鎖移動剤が光硬化時の硬化遅延を引き起こす、又は、連鎖移動剤由来の化合物が光硬化性樹脂組成物表面にブリードアウトするという問題があった。特許文献4には、連鎖移動剤を用いずに低分子量のアクリル系高分子を効率よく製造する方法として、(メタ)アクリロイル基含有単量体を180℃から350℃の温度で重合する方法が開示されている。しかし、このような方法で合成したアクリル系高分子は分子末端に二重結合を有しているため、可塑剤として活性エネルギー線硬化性組成物に配合した場合には、当該組成物の硬化性の点で懸念される。 Generally, it is necessary to use a chain transfer agent when producing an acrylic polymer having a molecular weight of several hundred to several thousand. Patent Document 3 discloses a method using β-tert-butyl monoperoxyitaconate or the like as a chain transfer agent as a means for producing a low molecular weight acrylic polymer. However, when a low molecular weight plasticizer containing such a chain transfer agent is added to the active energy ray-curable composition, the chain transfer agent causes a curing delay during photocuring, or the compound derived from the chain transfer agent is photocured. There was a problem of bleeding out on the surface of the conductive resin composition. Patent Document 4 discloses a method for polymerizing a (meth) acryloyl group-containing monomer at a temperature of 180 ° C. to 350 ° C. as a method for efficiently producing a low molecular weight acrylic polymer without using a chain transfer agent. It is disclosed. However, since the acrylic polymer synthesized by such a method has a double bond at the molecular end, when blended in an active energy ray-curable composition as a plasticizer, the curability of the composition There is concern about this point.
 上記の硬化性の問題を解決する手段として、出願人は、ビニル系単量体を150~350℃で重合した後、水素を付加することにより得られた重合体を含む活性エネルギー線硬化性樹脂組成物を提案している(特許文献5)。 As a means for solving the above-mentioned curable problem, the applicant has determined that the active energy ray-curable resin contains a polymer obtained by polymerizing a vinyl monomer at 150 to 350 ° C. and then adding hydrogen. A composition has been proposed (Patent Document 5).
特開2016-199656号公報JP-A-2016-199656 特開2006-28405号公報JP 2006-28405 A 特表平8-503988号公報Japanese National Patent Publication No. 8-503988 国際公開第01/83619号International Publication No. 01/83619 国際公開第2014/167999号International Publication No. 2014/167999
 特許文献5に記載の方法によれば、分子末端の二重結合量を十分低減することができ、活性エネルギー線照射時の組成物の硬化性を向上することが可能であるが、水素付加反応に使用する金属触媒がアクリル系高分子(可塑剤)に混入するおそれがある。金属触媒が含まれる可塑剤をタッチパネル等の製造に使用した場合、光学接着層から金属触媒がリークし、タッチパネルの誤作動を誘引し得るという懸念点があった。 According to the method described in Patent Document 5, the amount of double bonds at the molecular terminals can be sufficiently reduced, and the curability of the composition during irradiation with active energy rays can be improved. There is a possibility that the metal catalyst used in the process is mixed into the acrylic polymer (plasticizer). When a plasticizer containing a metal catalyst is used for the production of a touch panel or the like, there is a concern that the metal catalyst leaks from the optical adhesive layer and can cause malfunction of the touch panel.
 本発明は上記事情に鑑みてなされたものであり、硬化性に優れ、硬化物及び基材との密着性、並びに、光透過性にも優れる活性エネルギー線硬化性組成物を提供することを目的とする。また、本発明では、上記活性エネルギー線硬化性組成物から形成される光学用接着層を提供することを他の目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the active energy ray curable composition which is excellent in sclerosis | hardenability, and is excellent also in adhesiveness with hardened | cured material and a base material, and light transmittance. And Another object of the present invention is to provide an optical adhesive layer formed from the above active energy ray-curable composition.
 本発明者らは、鋭意検討した結果、ビニル重合体、(メタ)アクリロイル基含有化合物及び光重合開始剤を含む活性エネルギー線硬化性組成物であって、特定の硬化速度を示すものであれば、上記課題を解決し得る知見を得た。本発明は、当該知見に基づいて完成したものである。本明細書によれば以下の手段を提供する。 As a result of intensive studies, the inventors of the present invention are active energy ray-curable compositions containing a vinyl polymer, a (meth) acryloyl group-containing compound and a photopolymerization initiator, and exhibiting a specific curing rate. The knowledge which can solve the said subject was acquired. This invention is completed based on the said knowledge. According to the present specification, the following means are provided.
〔1〕ビニル重合体(A)、(メタ)アクリロイル基含有化合物(B)及び光重合開始剤(C)を含む活性エネルギー線硬化性組成物であって、
 前記硬化性組成物を膜厚15μmに塗工し、光源に水銀キセノンランプを用いてUV-A波長の照度5mW/cm2の条件下で光照射を行った際、以下の式(1)で表される硬化速度が0.3%/秒以上である、活性エネルギー線硬化性組成物。
[硬化速度](%/秒)=(光照射20秒後の(メタ)アクリロイル基の反応率-光照射10秒後の(メタ)アクリロイル基の反応率)/光照射時間(10秒) ・・・ (1)
〔2〕前記硬化速度が0.3%~10%/秒である〔1〕記載の活性エネルギー線硬化性組成物。
〔3〕前記ビニル重合体(A)は、分子中に二重結合を0.01meq/g以上、0.50meq/g以下有する〔1〕又は〔2〕に記載の活性エネルギー線硬化性組成物。
〔4〕前記ビニル重合体(A)は、炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を有する(メタ)アクリル酸エステルを構造単量体単位に含む〔1〕~〔3〕のいずれかに記載の活性エネルギー線硬化性組成物。
〔5〕前記ビニル重合体(A)は、100~350℃の重合温度条件下における高温連続重合方法で得られた〔1〕~〔4〕のいずれかに記載の活性エネルギー線硬化性組成物。
〔6〕前記ビニル重合体(A)は、重量平均分子量が500以上、100,000以下である〔1〕~〔5〕のいずれかに記載の活性エネルギー線硬化性組成物。
〔7〕前記ビニル重合体(A)及び前記(メタ)アクリロイル基含有化合物(B)の使用量の割合は、(A)/(B)=10~95/5~90(質量比)である〔1〕~〔6〕のいずれかに記載の活性エネルギー線硬化性組成物。
〔8〕前記ビニル重合体(A)及び前記(メタ)アクリロイル基含有化合物(B)の総量100質量部に対し、光重合開始剤(C)を0.5~5質量部含む〔1〕~〔7〕のいずれかに記載の活性エネルギー線硬化性組成物。
〔9〕〔1〕~〔8〕のいずれかに記載の活性エネルギー線硬化性組成物を硬化して得られる光学用接着層。
[1] An active energy ray-curable composition comprising a vinyl polymer (A), a (meth) acryloyl group-containing compound (B) and a photopolymerization initiator (C),
When the curable composition was applied to a film thickness of 15 μm and irradiated with light using a mercury xenon lamp as a light source under the condition of illuminance of 5 mW / cm 2 with a UV-A wavelength, the following formula (1) An active energy ray-curable composition having a cure rate represented by 0.3% / second or more.
[Curing rate] (% / second) = (reaction rate of (meth) acryloyl group 20 seconds after light irradiation−reaction rate of (meth) acryloyl group 10 seconds after light irradiation) / light irradiation time (10 seconds) (1)
[2] The active energy ray-curable composition according to [1], wherein the curing rate is 0.3% to 10% / second.
[3] The active energy ray-curable composition according to [1] or [2], wherein the vinyl polymer (A) has a double bond in the molecule of 0.01 meq / g or more and 0.50 meq / g or less. .
[4] The vinyl polymer (A) includes (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms in a structural monomer unit. [3] The active energy ray-curable composition according to any one of [3].
[5] The active energy ray-curable composition according to any one of [1] to [4], wherein the vinyl polymer (A) is obtained by a high-temperature continuous polymerization method under a polymerization temperature condition of 100 to 350 ° C. .
[6] The active energy ray-curable composition according to any one of [1] to [5], wherein the vinyl polymer (A) has a weight average molecular weight of 500 or more and 100,000 or less.
[7] The proportion of the vinyl polymer (A) and the (meth) acryloyl group-containing compound (B) used is (A) / (B) = 10 to 95/5 to 90 (mass ratio). [1] The active energy ray-curable composition according to any one of [6].
[8] The photopolymerization initiator (C) is contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the vinyl polymer (A) and the (meth) acryloyl group-containing compound (B). [7] The active energy ray-curable composition according to any one of [7].
[9] An optical adhesive layer obtained by curing the active energy ray-curable composition according to any one of [1] to [8].
 本発明の活性エネルギー線硬化性組成物は、硬化性に優れるものである。得られる硬化物は、基材との密着性及び光透過性に優れるため、光学用接着層として好適に用いられる。 The active energy ray-curable composition of the present invention is excellent in curability. The obtained cured product is suitably used as an optical adhesive layer because it has excellent adhesion to a substrate and light transmittance.
 以下、本発明を詳しく説明する。尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Hereinafter, the present invention will be described in detail. In the present specification, “(meth) acryl” means acryl and / or methacryl, and “(meth) acrylate” means acrylate and / or methacrylate. The “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
 本発明の硬化性組成物は、(A)成分であるビニル重合体、(B)成分である(メタ)アクリロイル基含有化合物及び(C)成分としての光重合開始剤を含むものである。以下に、各成分の詳細を含め、本発明の硬化性組成物及び光学用接着層について説明する。 The curable composition of the present invention comprises a vinyl polymer as component (A), a (meth) acryloyl group-containing compound as component (B), and a photopolymerization initiator as component (C). Below, the detail of each component is included and the curable composition and optical adhesive layer of this invention are demonstrated.
<(A)成分:ビニル重合体>
 ビニル重合体は、ビニル単量体に由来する構造単位を有する重合体であり、例えば、ビニル単量体を含む単量体混合物を重合することにより得ることができる。ビニル単量体の例としては、特に制限はなく、(メタ)アクリレート、(メタ)アクリル酸の他、スチレン及びα-メチルスチレン等の芳香族単量体、(メタ)アクリルアミド等のアミド基含有ビニル単量体、酢酸ビニル等のビニルエステル類、アクリロニトリル等が挙げられるが、光透過性、硬化物の機械的特性、可とう性、耐候性、耐熱性、加工性、接着性及び耐水性等の各種性能が優れるため、(メタ)アクリレートが好ましい。
<(A) component: vinyl polymer>
A vinyl polymer is a polymer having a structural unit derived from a vinyl monomer, and can be obtained, for example, by polymerizing a monomer mixture containing a vinyl monomer. Examples of vinyl monomers are not particularly limited, and include (meth) acrylate and (meth) acrylic acid, aromatic monomers such as styrene and α-methylstyrene, and amide groups such as (meth) acrylamide. Examples include vinyl monomers, vinyl esters such as vinyl acetate, acrylonitrile, etc., but light transmittance, mechanical properties of cured products, flexibility, weather resistance, heat resistance, workability, adhesion, water resistance, etc. (Meth) acrylate is preferable because of its various performances.
 (メタ)アクリレートの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等の直鎖状若しくは分岐状脂肪族アルキル基又は脂環式アルキル基を有する(メタ)アクリル酸アルキルエステル;2-メトキシメチル(メタ)アクリレート、2-エトキシメチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシブチル(メタ)アクリレート、2-エトキシブチル(メタ)アクリレート、2-ブトキシブチル(メタ)アクリレート、2-メトキシヘキシル(メタ)アクリレート、2-ブトキシヘキシル(メタ)アクリレート、2-メトキシデシル(メタ)アクリレート、2-ブトキシデシル(メタ)アクリレート、2-メトキシラウリル(メタ)アクリレート、2-ブトキシラウリル(メタ)アクリレート、2-メトキシステアリル(メタ)アクリレート、2-ブトキシステアリル(メタ)アクリレート等の(メタ)アクリル酸アルコキシアルキルエステル;ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート等のヘテロ原子含有(メタ)アクリル酸エステル;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートのε-カプロラクトン付加物等のヒドロキシ基含有(メタ)アクリル酸エステル;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル;3-トリメトキシシリルプロピル(メタ)アクリレート、3-トリエトキシシリルプロピル(メタ)アクリレート、3-トリイソプロポキシシリルプロピル(メタ)アクリレート、3-メチルジメトキシシリルプロピル(メタ)アクリレート、3-メチルジエトキシシリルプロピル(メタ)アクリレート、3-メチルジイソプロポキシシリルプロピル(メタ)アクリレート、3-ジメチルメトキシシリルプロピル(メタ)アクリレート、3-ジメチルエトキシシリルプロピル(メタ)アクリレート、3-ジメチルイソプロポキシシリルプロピル(メタ)アクリレート、8-トリメトキシシリルオクチル(メタ)アクリレート等のアルコキシシリル基含有(メタ)アクリル酸エステル;ベンジル(メタ)アクリレートが挙げられる。 Examples of (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t -Butyl (meth) acrylate, neopentyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, nonyl (meth) acrylate, isononyl ( Linear such as (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, nonadecyl (meth) acrylate, eicosyl (meth) acrylate Or a (meth) acrylic acid alkyl ester having a branched aliphatic alkyl group or an alicyclic alkyl group; 2-methoxymethyl (meth) acrylate, 2-ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate 2-ethoxyethyl (meth) acrylate, 2-methoxybutyl (meth) acrylate, 2-ethoxybutyl (meth) acrylate, 2-butoxybutyl (meth) acrylate, 2-methoxyhexyl (meth) acrylate, 2-butoxyhexyl (Meth) acrylate, 2-methoxydecyl (meth) acrylate, 2-butoxydecyl (meth) acrylate, 2-methoxylauryl (meth) acrylate, 2-butoxylauryl (meth) acrylate, 2-methoxystearyl (meth) acrylate, -(Meth) acrylic acid alkoxyalkyl esters such as butoxycystearyl (meth) acrylate; heteroatom-containing (meth) acrylic esters such as dimethylaminoethyl (meth) acrylate and trifluoroethyl (meth) acrylate; 2-hydroxyethyl ( (Meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxy group-containing (meth) acrylic acid ester such as ε-caprolactone adduct of 2-hydroxyethyl (meth) acrylate; glycidyl ( Epoxy group-containing (meth) acrylic acid esters such as (meth) acrylate; 3-trimethoxysilylpropyl (meth) acrylate, 3-triethoxysilylpropyl (meth) acrylate, 3-triisopropoxysilyl Lopyl (meth) acrylate, 3-methyldimethoxysilylpropyl (meth) acrylate, 3-methyldiethoxysilylpropyl (meth) acrylate, 3-methyldiisopropoxysilylpropyl (meth) acrylate, 3-dimethylmethoxysilylpropyl (meth) ) Acrylate, 3-dimethylethoxysilylpropyl (meth) acrylate, 3-dimethylisopropoxysilylpropyl (meth) acrylate, alkoxysilyl group-containing (meth) acrylic acid ester such as 8-trimethoxysilyloctyl (meth) acrylate; benzyl (Meth) acrylate is mentioned.
 これらの中でも、炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を有する(メタ)アクリル酸エステルは、可とう性の観点から好ましい。上記アルキル基は、炭素数1~12のものであってもよく、炭素数4~12のものであってもよい。また、上記アルコキシアルキル基は、炭素数2~12のものであってもよく、炭素数4~12のものであってもよい。
 炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を有する(メタ)アクリル酸エステルの割合は、ビニル重合体の製造に用いる全単量体を基準に30質量%以上であることが好ましく、50質量%以上であることがより好ましい。炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を有する(メタ)アクリル酸エステルの割合は、70質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
Among these, (meth) acrylic acid esters having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms are preferable from the viewpoint of flexibility. The alkyl group may have 1 to 12 carbon atoms or 4 to 12 carbon atoms. Further, the alkoxyalkyl group may have 2 to 12 carbon atoms or 4 to 12 carbon atoms.
The proportion of (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms is 30% by mass or more based on the total monomers used for producing the vinyl polymer. It is preferably 50% by mass or more. The proportion of the (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms may be 70% by mass or more, or 90% by mass or more, It may be 95% by mass or more, or 100% by mass.
 ビニル重合体の重量平均分子量(Mw)は、硬化物におけるブリード抑制の観点から、ゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)によるポリスチレン換算分子量で、好ましくは500以上であり、より好ましくは1,000以上であり、さらに好ましくは1,500以上である。Mwの下限値は、3,000以上であってもよく、5,000以上であってもよく、10,000以上であってもよい。一方、塗工性の観点から、Mwの上限値は好ましくは100,000以下であり、より好ましくは50,000以下であり、さらに好ましくは40,000以下である。Mwの上限値は、30,000以下であってもよく、20,000以下であってもよく、15,000以下であってもよい。Mwの範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、500以上100,000以下であり、1,000以上50,000以下であってもよく、1,500以上20,000以下であってもよい。 The weight average molecular weight (Mw) of the vinyl polymer is a molecular weight in terms of polystyrene by gel permeation chromatography (hereinafter also referred to as “GPC”), preferably 500 or more, from the viewpoint of suppressing bleeding in the cured product. Preferably it is 1,000 or more, More preferably, it is 1,500 or more. The lower limit of Mw may be 3,000 or more, 5,000 or more, or 10,000 or more. On the other hand, from the viewpoint of coatability, the upper limit value of Mw is preferably 100,000 or less, more preferably 50,000 or less, and further preferably 40,000 or less. The upper limit value of Mw may be 30,000 or less, 20,000 or less, or 15,000 or less. The range of Mw can be set by combining the above upper limit value and lower limit value, and is, for example, 500 or more and 100,000 or less, and may be 1,000 or more and 50,000 or less. It may be 20,000 or less.
 ビニル重合体の分子量分布は、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)として算出される。Mw/Mnは、硬化物の機械的強度の観点から好ましくは5.0以下であり、より好ましくは4.0以下であり、さらに好ましくは3.0以下であり、一層好ましくは2.5以下であり、より一層好ましくは2.0以下である。尚、Mw/Mnの下限値は通常1.0である。 The molecular weight distribution of the vinyl polymer is calculated as a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). Mw / Mn is preferably 5.0 or less from the viewpoint of mechanical strength of the cured product, more preferably 4.0 or less, still more preferably 3.0 or less, and even more preferably 2.5 or less. And more preferably 2.0 or less. The lower limit value of Mw / Mn is usually 1.0.
 ビニル重合体の粘度は、25℃において好ましくは1,000mPa・s以上であり、より好ましくは2,000mPa・s以上である。粘度は3,000mPa・s以上であってもよく、5,000mPa・s以上であってもよく、10,000mPa・s以上であってもよい。粘度の上限は、好ましくは100,000mPa・s以下であり、より好ましくは80,000mPa・s以下であり、さらに好ましくは60,000mPa・s以下である。粘度の上限は、40,000mPa・s以下であってもよく、30,000mPa・s以下であってもよく、20,000mPa・s以下であってもよい。粘度が1,000mPa・s以上であれば、硬化性組成物の流動性が抑制され、所望の態様、形状で硬化させやすくなるために好ましく、100,000mPa・s以下にすることにより、硬化性組成物の作業性が良好になる。粘度の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、1,000mPa・s以上100,000mPa・s以下であり、2,000mPa・s以上80,000mPa・s以下であってもよく、3,000mPa・s以上60,000mPa・s以下であってもよい。 The viscosity of the vinyl polymer is preferably 1,000 mPa · s or more at 25 ° C., more preferably 2,000 mPa · s or more. The viscosity may be 3,000 mPa · s or more, 5,000 mPa · s or more, or 10,000 mPa · s or more. The upper limit of the viscosity is preferably 100,000 mPa · s or less, more preferably 80,000 mPa · s or less, and still more preferably 60,000 mPa · s or less. The upper limit of the viscosity may be 40,000 mPa · s or less, 30,000 mPa · s or less, or 20,000 mPa · s or less. If the viscosity is 1,000 mPa · s or more, the fluidity of the curable composition is suppressed, and this is preferable because it is easy to be cured in a desired form and shape. The workability of the composition is improved. The viscosity range can be set by combining the above upper limit value and lower limit value. For example, the viscosity range is 1,000 mPa · s or more and 100,000 mPa · s or less, and 2,000 mPa · s or more and 80,000 mPa · s. Or 3,000 mPa · s or more and 60,000 mPa · s or less.
 本発明では、ビニル重合体は分子中に二重結合を有していてもよい。ビニル重合体が適当量の二重結合を有すると、後述する(B)成分である(メタ)アクリロイル基含有化合物が重合することにより形成されるマトリックスにビニル重合体が共重合し、当該マトリックスに適度に取り込まれる。このため、ビニル重合体と上記マトリックスとの相溶性が向上し、光透過性に優れる硬化層を得ることができる。尚、上記メカニズムは推察であり、本発明の範囲を限定するものではない。 In the present invention, the vinyl polymer may have a double bond in the molecule. When the vinyl polymer has an appropriate amount of double bonds, the vinyl polymer is copolymerized with a matrix formed by polymerizing a (meth) acryloyl group-containing compound which is a component (B) described later, It is taken in moderately. For this reason, the compatibility of a vinyl polymer and the said matrix improves, and the hardened layer excellent in light transmittance can be obtained. In addition, the said mechanism is inference and does not limit the scope of the present invention.
 ビニル重合体に含まれる二重結合の量は、光透過性良好な硬化物が得られる点から0.01meq/g以上であることが好ましい。二重結合の量は0.03meq/g以上であってもよく、0.05meq/g以上であってもよく、0.10meq/g以上であってもよく、0.20meq/g以上であってもよい。一方、硬化性の観点から、二重結合量の上限値は、1.0meq/g以下が好ましく、0.50meq/g以下がより好ましい。二重結合量の上限値は、0.40meq/g以下であってもよく、0.30meq/g以下であってもよい。二重結合の量の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.01meq/g以上1.0meq/g以下であり、0.01meq/g以上0.50meq/g以下であってもよく、0.05meq/g以上0.50meq/g以下であってもよい。本発明において二重結合量とは、重合体の1H-NMRから算出した値を意味する。 The amount of double bonds contained in the vinyl polymer is preferably 0.01 meq / g or more from the viewpoint of obtaining a cured product having good light transmittance. The amount of double bonds may be 0.03 meq / g or more, 0.05 meq / g or more, 0.10 meq / g or more, or 0.20 meq / g or more. May be. On the other hand, from the viewpoint of curability, the upper limit of the double bond amount is preferably 1.0 meq / g or less, and more preferably 0.50 meq / g or less. The upper limit of the double bond amount may be 0.40 meq / g or less, or 0.30 meq / g or less. The range of the amount of double bonds can be set by combining the above upper limit value and lower limit value. For example, it is 0.01 meq / g or more and 1.0 meq / g or less, and 0.01 meq / g or more and 0 or less. .50 meq / g or less, or 0.05 meq / g or more and 0.50 meq / g or less. In the present invention, the double bond amount means a value calculated from 1 H-NMR of the polymer.
 二重結合の導入方法には特別の制限はなく、当業者に公知の方法を採用することができる。例えば、分子中に二重結合を複数有する単量体を共重合する方法や、官能基を有するビニル重合体を製造した後、当該官能基と反応し得る官能基及び二重結合を有する化合物と反応する方法等が挙げられる。 There is no particular limitation on the method for introducing a double bond, and methods known to those skilled in the art can be employed. For example, a method of copolymerizing a monomer having a plurality of double bonds in the molecule, a compound having a functional group capable of reacting with the functional group and a compound having a double bond after producing a vinyl polymer having a functional group Examples include a method of reacting.
 また、ビニル重合体の製造を高温条件下で行うことによっても二重結合を導入することができる。例えば、アクリロイル基を有する単量体を100℃以上の重合温度で重合した場合、高温重合のために高分子鎖からの水素引き抜き反応に始まる切断反応が起こるため、分子末端に下記一般式(1)で表されるエチレン性不飽和結合を有する重合体が得られる。重合温度は好ましくは120℃以上であり、より好ましくは150℃以上である。重合温度が高くなるにつれて、重合体中の二重結合濃度も高くなる傾向がある。上記方法によれば、簡便かつ生産性良く二重結合を有するビニル重合体を得ることができる。さらに、分子量制御に多量の開始剤や連鎖移動剤等の不純物を含まず容易に製造することが可能となる。メルカプタン等の連鎖移動剤は耐候性の低下につながるため、使用しないことが好ましい。一方、分解反応による重合液の着色や分子量低下等の虞がなくなる点から、重合温度の上限は350℃以下とすることが好ましい。上記の温度範囲で重合することにより、適度な分子量を有し、粘度が低く、無着色で夾雑物の少ない共重合体を効率よく製造することができる。すなわち、当該重合方法によれば、極微量の重合開始剤を使用すればよく、メルカプタンのような連鎖移動剤や、重合溶剤を使用する必要がなく、純度の高い共重合体を得ることができる。 Also, a double bond can be introduced by producing a vinyl polymer under high temperature conditions. For example, when a monomer having an acryloyl group is polymerized at a polymerization temperature of 100 ° C. or higher, a cleavage reaction starting from a hydrogen abstraction reaction from a polymer chain occurs due to high temperature polymerization. The polymer which has an ethylenically unsaturated bond represented by this is obtained. The polymerization temperature is preferably 120 ° C. or higher, more preferably 150 ° C. or higher. As the polymerization temperature increases, the double bond concentration in the polymer also tends to increase. According to the said method, the vinyl polymer which has a double bond simply and with sufficient productivity can be obtained. Furthermore, it is possible to easily produce the molecular weight control without containing a large amount of impurities such as an initiator and a chain transfer agent. It is preferable not to use a chain transfer agent such as mercaptan because it leads to a decrease in weather resistance. On the other hand, the upper limit of the polymerization temperature is preferably 350 ° C. or less from the viewpoint that there is no possibility of coloring of the polymerization solution or molecular weight reduction due to the decomposition reaction. By polymerizing in the above temperature range, it is possible to efficiently produce a copolymer having an appropriate molecular weight, low viscosity, no coloration and little impurities. That is, according to the polymerization method, a very small amount of polymerization initiator may be used, and it is not necessary to use a chain transfer agent such as mercaptan or a polymerization solvent, and a highly pure copolymer can be obtained. .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)におけるR1としては、アルキル基、ヒドロキシアルキル基、アルコキシアルキル基、その他の置換基を有していてもよいアルキル基、フェニル基、ベンジル基、ポリアルキレングリコール基、ジアルキルアミノアルキル基、トリアルコキシシリルアルキル基、アルキルジアルコキシシリルアルキル基又は水素原子である。 R 1 in the general formula (1) is an alkyl group, a hydroxyalkyl group, an alkoxyalkyl group, an alkyl group which may have other substituents, a phenyl group, a benzyl group, a polyalkylene glycol group, a dialkylamino group. An alkyl group, a trialkoxysilylalkyl group, an alkyldialkoxysilylalkyl group, or a hydrogen atom.
 ビニル重合体は、通常のラジカル重合によって製造することができる。溶液重合、塊状重合、分散重合いずれの方法を採用してもよく、また、リビングラジカル重合法を利用してもよい。反応プロセスは、バッチ式、セミバッチ式、連続重合のいずれの方法でもよい。これらの中でも、100~350℃又は150~350℃の重合温度条件下における高温連続重合方法が好ましい。 The vinyl polymer can be produced by ordinary radical polymerization. Any of solution polymerization, bulk polymerization, and dispersion polymerization may be employed, and a living radical polymerization method may be used. The reaction process may be any of batch, semi-batch and continuous polymerization. Among these, a high temperature continuous polymerization method under a polymerization temperature condition of 100 to 350 ° C. or 150 to 350 ° C. is preferable.
 高温連続重合法としては、特開昭57-502171号公報、特開昭59-6207号公報、特開昭60-215007号公報等に開示された公知の方法に従えば良い。例えば、加圧可能な反応機を溶媒で満たし、加圧下で所定温度に設定した後、各単量体、及び必要に応じて重合溶媒とからなる単量体混合物を一定の供給速度で反応器へ供給し、単量体混合物の供給量に見合う量の重合液を抜き出す方法が挙げられる。また、単量体混合物には、必要に応じて重合開始剤を配合することもできる。その配合する場合の配合量としては、単量体混合物100質量部に対して0.001~2質量部であることが好ましい。圧力は、反応温度と使用する単量体混合物及び溶媒の沸点に依存するもので、反応に影響を及ぼさないが、前記反応温度を維持できる圧力であればよい。単量体混合物の滞留時間は、1~60分であることが好ましい。滞留時間が1分に満たない場合は単量体が十分に反応しない恐れがあり、未反応単量体が60分を越える場合は、生産性が悪くなってしまうことがある。好ましい滞留時間は2~40分である。 As the high temperature continuous polymerization method, a known method disclosed in JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, or the like may be used. For example, after filling a pressurizable reactor with a solvent and setting it to a predetermined temperature under pressure, the reactor is charged with a monomer mixture comprising each monomer and, if necessary, a polymerization solvent at a constant supply rate. And a method of extracting a polymerization solution in an amount commensurate with the supply amount of the monomer mixture. Moreover, a polymerization initiator can also be mix | blended with a monomer mixture as needed. The blending amount when blended is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the monomer mixture. The pressure depends on the reaction temperature, the monomer mixture used and the boiling point of the solvent, and does not affect the reaction, but may be any pressure that can maintain the reaction temperature. The residence time of the monomer mixture is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomer may not react sufficiently, and if the unreacted monomer exceeds 60 minutes, the productivity may deteriorate. The preferred residence time is 2 to 40 minutes.
 ビニル重合体を得るために用いる重合開始剤の例としては、所定の反応温度でラジカルを発生する開始剤であれば何でもよい。具体的には、ジ-t-ブチルパーオキシド、ジ-t-ヘキシルパーオキシド、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、クメンハイドロパーオキシド、t-ブチルハイドロパーオキシド等の有機過酸化物、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロリド、4,4'-アゾビス(4-シアノバレリックアシッド)などのアゾ系化合物が挙げられる。重合開始剤はこれらの内の1種を単独で用いてもよいし、2種以上を併用してもよい。重合開始剤として水素引き抜き能が高いものを使用した場合、得られる重合体の二重結合濃度が高くなる傾向がある。例えば、アゾ系化合物よりも有機過酸化物を使用した方が、二重結合濃度の高い重合体が得られる傾向がある。
 重合開始剤の使用量は、重合開始剤及び単量体の種類、所望する分子量、重合条件等により適宜調整することができるが、一般的には、使用する単量体100質量部に対して0.001~10質量部である。同じ分子量の重合体を得る場合、重合開始剤の使用量が少ないほど、得られる重合体中の二重結合濃度は高くなる傾向がある。
As an example of the polymerization initiator used for obtaining the vinyl polymer, any initiator that generates radicals at a predetermined reaction temperature may be used. Specifically, di-t-butyl peroxide, di-t-hexyl peroxide, t-hexyl peroxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, cumene hydroper Organic peroxides such as oxide and t-butyl hydroperoxide, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), azobiscyclohexacarbonitrile, Examples thereof include azo compounds such as azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4′-azobis (4-cyanovaleric acid). One of these polymerization initiators may be used alone, or two or more thereof may be used in combination. When a polymerization initiator having a high hydrogen abstraction ability is used, the double bond concentration of the resulting polymer tends to increase. For example, when an organic peroxide is used rather than an azo compound, a polymer having a high double bond concentration tends to be obtained.
The amount of the polymerization initiator used can be appropriately adjusted depending on the kind of the polymerization initiator and the monomer, the desired molecular weight, the polymerization conditions, etc., but in general, with respect to 100 parts by mass of the monomer used. 0.001 to 10 parts by mass. When obtaining a polymer having the same molecular weight, the smaller the amount of polymerization initiator used, the higher the double bond concentration in the resulting polymer.
 ビニル重合体の製造に有機溶媒を用いる場合、有機炭化水素系化合物が適当であり、テトラヒドロフラン及びジオキサン等の環状エーテル類、ベンゼン、トルエン及びキシレン等の芳香族炭化水素化合物、酢酸エチル及び酢酸ブチル等のエステル類、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン類等、メタノール、エタノール、イソプロパノール等のアルコール類が例示され、これらの1種または2種以上を用いることができる。(メタ)アクリル酸エステル共重合体をよく溶解しない溶剤では、反応器の壁にスケールが成長しやすく洗浄工程等で生産上の問題がおきやすい。また、例えばイソプロパノール等の連鎖移動能の高い有機溶媒を使用した場合、得られる重合体中の二重結合濃度は低くなる傾向がある。
 溶媒の使用量は、全ビニル単量体100質量部に対して、80質量部以下とすることが好ましい。80質量部以下とすることにより、短時間で高い転化率が得られる。より好ましくは、1~50質量部である。また、オルト酢酸トリメチル、オルト蟻酸トリメチル等の脱水剤を添加することもできる。
When an organic solvent is used for producing the vinyl polymer, organic hydrocarbon compounds are suitable, cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, ethyl acetate and butyl acetate, etc. Examples of such esters, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, and alcohols such as methanol, ethanol, and isopropanol are exemplified, and one or more of these can be used. In a solvent that does not dissolve the (meth) acrylic acid ester copolymer well, scales are likely to grow on the walls of the reactor, and production problems are likely to occur in the cleaning process. In addition, when an organic solvent having a high chain transfer ability such as isopropanol is used, the double bond concentration in the resulting polymer tends to be low.
It is preferable that the usage-amount of a solvent shall be 80 mass parts or less with respect to 100 mass parts of all vinyl monomers. By setting it to 80 parts by mass or less, a high conversion rate can be obtained in a short time. More preferably, it is 1 to 50 parts by mass. A dehydrating agent such as trimethyl orthoacetate or trimethyl orthoformate can also be added.
 ビニル重合体の製造には、公知の連鎖移動剤を使用してもよい。連鎖移動剤を使用した場合、得られる重合体中の二重結合濃度は低くなる傾向がある。また、一般に、連鎖移動剤の使用量を増加することにより二重結合濃度は低下する。 A known chain transfer agent may be used for the production of the vinyl polymer. When a chain transfer agent is used, the double bond concentration in the resulting polymer tends to be low. In general, the double bond concentration is lowered by increasing the amount of the chain transfer agent used.
 反応器から抜き出された反応液は、そのまま次の工程に進むか、あるいは蒸留等により未反応単量体、溶剤、および低分子量オリゴマー等の揮発性成分を留去することによって重合体を単離することができる。反応液から留去した未反応単量体、溶剤、および低分子量オリゴマーなどの揮発性成分の一部を原料タンクに戻すかまたは直接反応器に戻し、再度重合反応に利用することもできる。
 このように未反応単量体および溶剤をリサイクルする方法は経済性の面から好ましい方法である。リサイクルする場合には、反応器内で望ましい単量体比と望ましい溶剤量を維持するように新たに供給する単量体混合物の混合比を決定する必要がある。
The reaction solution withdrawn from the reactor proceeds to the next step as it is, or the polymer is simply removed by distilling off volatile components such as unreacted monomers, solvents and low molecular weight oligomers by distillation or the like. Can be separated. A part of volatile components such as unreacted monomers, solvent, and low molecular weight oligomers distilled off from the reaction solution can be returned to the raw material tank or directly returned to the reactor and used again for the polymerization reaction.
Thus, the method of recycling an unreacted monomer and a solvent is a preferable method from an economical viewpoint. In the case of recycling, it is necessary to determine the mixing ratio of the newly supplied monomer mixture so as to maintain the desired monomer ratio and the desired amount of solvent in the reactor.
 重合体中に導入された二重結合は、ラジカル発生剤を添加して加熱条件下にて後処理することによりその量を低減することができる。ラジカル発生剤としては、ラジカルを発生させることが可能な公知の化合物を使用することができる。具体的なラジカル発生剤としては、既述した、ビニル重合体を得るために用いる重合開始剤が挙げられる。ラジカル発生剤の添加量は、重合体100質量部に対して0.1~10質量部程度であるが、当該添加量が多いほど、二重結合濃度の低減効果は大きい。
 加熱処理の際の加熱温度は50~130℃程度であるが、温度が低いほど二重結合濃度の低減効果は大きい。加熱温度は、好ましくは50~110℃の範囲であり、より好ましくは50~100℃の範囲である。
 加熱処理時間は特に制限されるものではないが、残存するラジカル発生剤量が、重合体に対して1質量%未満となるよう設定することが好ましい。当業者であれば、当該残存するラジカルを、使用するラジカル発生剤の活性化エネルギー、頻度因子及び反応温度から計算することができる。
The amount of double bonds introduced into the polymer can be reduced by adding a radical generator and post-treating under heating conditions. As the radical generator, a known compound capable of generating radicals can be used. Specific examples of the radical generator include the polymerization initiator used to obtain the vinyl polymer described above. The addition amount of the radical generator is about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer. The larger the addition amount, the greater the effect of reducing the double bond concentration.
The heating temperature during the heat treatment is about 50 to 130 ° C., but the lower the temperature, the greater the effect of reducing the double bond concentration. The heating temperature is preferably in the range of 50 to 110 ° C, more preferably in the range of 50 to 100 ° C.
The heat treatment time is not particularly limited, but is preferably set so that the amount of the remaining radical generator is less than 1% by mass with respect to the polymer. A person skilled in the art can calculate the remaining radical from the activation energy, frequency factor and reaction temperature of the radical generator used.
 二重結合濃度は、後処理としてビニル重合体に水素付加を行うことによっても低減することができる。水素付加は、従来公知の方法を採用することができる。
 即ち、重合体反応液に均一系触媒または不均一系触媒を添加した後、系内を水素雰囲気にし、圧力を常圧~10MPa、温度を20~180℃程度に加熱し、2~20時間ほど反応させる。均一系触媒の具体例としては、クロロトリス(トリフェニルホスフィン)ロジウム等のロジウム錯体、ジクロロトリス(トリフェニルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフェニルホスフィン)ルテニウム等のルテニウム錯体、ジクロロビス(トリフェニルホスフィン)白金等の白金錯体、カルボニルビス(トリフェニルホスフィン)イリジウム等のイリジウム錯体等が挙げられる。一方、不均一系触媒としては、ニッケル、ロジウム、ルテニウム、パラジウム、白金等の遷移金属をカーボン、シリカ、アルミナ、繊維、有機ゲル状物等に担持させた固体触媒が挙げられる。不均一系触媒の方が、ろ過等により容易に触媒が除去できるため、品質が安定する、高価な触媒が再利用できるといった点で好ましい。添加する触媒量としては、均一系触媒の場合、ビニル重合体に対して、10~1,000ppm程度である。不均一系触媒の場合、1,000~10,000ppm程度である。
The double bond concentration can also be reduced by hydrogenating the vinyl polymer as a post treatment. For hydrogenation, a conventionally known method can be employed.
That is, after adding a homogeneous catalyst or a heterogeneous catalyst to the polymer reaction solution, the inside of the system is made a hydrogen atmosphere, the pressure is heated to normal pressure to 10 MPa, the temperature is heated to about 20 to 180 ° C., and about 2 to 20 hours. React. Specific examples of homogeneous catalysts include rhodium complexes such as chlorotris (triphenylphosphine) rhodium, ruthenium complexes such as dichlorotris (triphenylphosphine) ruthenium, chlorohydrocarbonyltris (triphenylphosphine) ruthenium, dichlorobis (triphenylphosphine) ) Platinum complexes such as platinum, and iridium complexes such as carbonylbis (triphenylphosphine) iridium. On the other hand, examples of the heterogeneous catalyst include solid catalysts in which transition metals such as nickel, rhodium, ruthenium, palladium, and platinum are supported on carbon, silica, alumina, fibers, organic gels, and the like. The heterogeneous catalyst is preferable in that the catalyst can be easily removed by filtration or the like, so that the quality is stable and an expensive catalyst can be reused. The amount of catalyst to be added is about 10 to 1,000 ppm with respect to the vinyl polymer in the case of a homogeneous catalyst. In the case of a heterogeneous catalyst, it is about 1,000 to 10,000 ppm.
<(B)成分:(メタ)アクリロイル基含有化合物>
 本発明における(B)成分は、分子内に(メタ)アクリロイル基を有する化合物である。
 (メタ)アクリロイル基含有化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリレート等が挙げられ、これらの中でも(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、分子内に1個の(メタ)アクリロイル基を有する化合物〔以下、「単官能(メタ)アクリレート」という〕及び分子内に2個以上の(メタ)アクリロイル基を有する化合物〔以下、「多官能(メタ)アクリレート」という〕が挙げられる。
<(B) component: (meth) acryloyl group-containing compound>
The component (B) in the present invention is a compound having a (meth) acryloyl group in the molecule.
Examples of the (meth) acryloyl group-containing compound include (meth) acrylic acid and (meth) acrylate, and among these, (meth) acrylate is preferable. As (meth) acrylate, a compound having one (meth) acryloyl group in the molecule [hereinafter referred to as “monofunctional (meth) acrylate”] and a compound having two or more (meth) acryloyl groups in the molecule [Hereinafter referred to as “polyfunctional (meth) acrylate”].
 単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、及びステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート及びアダマンチル(メタ)アクリレート等の脂環式(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;フェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノール誘導体のアルキレンオキサイド変性物の(メタ)アクリレート及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート;N-(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド及びN-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等のマレイミド(メタ)アクリレート;グリシジル(メタ)アクリレート、(メタ)アクリル酸のポリカプロラクトン変性物、2-ヒドロキシエチル(メタ)アクリレートのポリカプロラクトン変性物、3-(トリメトキシシリル)プロピル(メタ)アクリレート、3-(トリエトキシシリル)プロピル(メタ)アクリレート、3-(メチルジメトキシシリル)プロピル(メタ)アクリレート、3-(メチルジエトキシシリル)プロピル(メタ)アクリレート並びにオキサゾリジノンエチル(メタ)アクリレート等が挙げられる。 Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, and stearyl ( Alkyl (meth) acrylates such as meth) acrylate; cyclohexyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Alicyclic (meth) acrylates such as acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl (meth) acrylate; 2-hydroxy Hydroxyl group-containing (meth) acrylates such as chill (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; 2-methoxyethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, Alkoxyalkyl (meth) acrylates such as 2-ethylhexyl carbitol (meth) acrylate and ethoxyethoxyethyl (meth) acrylate; phenoxyethyl (meth) acrylate, o-phenylphenoxyethyl (meth) acrylate, p-cumylphenoxyethyl ( (Meth) acrylates, nonylphenoxyethyl (meth) acrylates, benzyl (meth) acrylates, (meth) acrylates of phenol derivatives modified with alkylene oxide and 2-hydroxy Aromatic (meth) acrylates such as cis-3-phenoxypropyl (meth) acrylate; tetrahydrofurfuryl (meth) acrylate; N- (meth) acryloyloxyethyl tetrahydrophthalimide and N- (meth) acryloyloxyethyl hexahydrophthalimide Maleimide (meth) acrylate; glycidyl (meth) acrylate, polycaprolactone modified product of (meth) acrylic acid, polycaprolactone modified product of 2-hydroxyethyl (meth) acrylate, 3- (trimethoxysilyl) propyl (meth) acrylate 3- (triethoxysilyl) propyl (meth) acrylate, 3- (methyldimethoxysilyl) propyl (meth) acrylate, 3- (methyldiethoxysilyl) propyl (meth) acrylate and No doubt imidazolidinone ethyl (meth) acrylate.
 多官能(メタ)アクリレートとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-ノナンジオールジアクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート;これらポリ(メタ)アクリレートの原料アルコールのアルキレンオキサイド〔エチレンオキサイド及びプロピレンオキサイド等〕付加物のポリ(メタ)アクリレート;これらポリ(メタ)アクリレートの原料アルコールのカプロラクトン変性物のポリ(メタ)アクリレート;エチレンオキサイド変性イソシアヌル酸のジ(メタ)アクリレート及びエチレンオキサイド変性イソシアヌル酸のトリ(メタ)アクリレート等のアルキレンオキサイド変性イソシアヌル酸のポリ(メタ)アクリレート等が挙げられるが、これらに限らない。
 多官能(メタ)アクリレートとしては、オリゴマーも使用することができ、具体的にはウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレート等が挙げられる。
Examples of the polyfunctional (meth) acrylate include 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol. Di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, 3-methyl-1 , 5-pentanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-nonanediol diacrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 2-hydroxy-1, 3-di (meth) acrylo Ruoxypropane, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Polyacrylates such as acrylates, dipentaerythritol penta (meth) acrylates, dipentaerythritol hexa (meth) acrylates, ditrimethylolpropane tetra (meth) acrylates; alkylene oxides of these poly (meth) acrylates [Ethylene oxide, propylene oxide, etc.] Adduct poly (meth) acrylate; Capro of the raw alcohol of these poly (meth) acrylates Poly (meth) acrylates of kuton-modified products; poly (meth) acrylates of alkylene oxide-modified isocyanuric acid such as di (meth) acrylate of ethylene oxide-modified isocyanuric acid and tri (meth) acrylate of ethylene oxide-modified isocyanuric acid However, it is not limited to these.
As polyfunctional (meth) acrylate, an oligomer can also be used, and specifically, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like can be mentioned.
 また、上記以外にも、多官能(メタ)アクリレートの例として、グリシジル基を有するビニル単量体を単独、または共重合可能なビニル単量体とともに重合して得られたビニル重合体のグリシジル基に、カルボキシル基を有する(メタ)アクリレートを反応させた、側鎖に(メタ)アクリレート基を有するビニル重合体も挙げられる。
 これらの、単官能または多官能(メタ)アクリレートは単独で用いても、2種類以上を併用してもよい。
In addition to the above, as an example of the polyfunctional (meth) acrylate, a glycidyl group of a vinyl polymer obtained by polymerizing a vinyl monomer having a glycidyl group alone or with a copolymerizable vinyl monomer In addition, a vinyl polymer having a (meth) acrylate group in the side chain obtained by reacting a (meth) acrylate having a carboxyl group is also mentioned.
These monofunctional or polyfunctional (meth) acrylates may be used alone or in combination of two or more.
 (メタ)アクリロイル基含有化合物としては、良好な強度を示す接着層を得ることができる点で、多官能(メタ)アクリレートが好ましい。多官能(メタ)アクリレートは、(メタ)アクリロイル基含有化合物の総量に対し、20~100質量%含まれることが好ましい。多官能(メタ)アクリレートの割合は、50~100質量%でもよく、80~100質量%でもよく、100質量%でもよい。 As the (meth) acryloyl group-containing compound, a polyfunctional (meth) acrylate is preferable in that an adhesive layer showing good strength can be obtained. The polyfunctional (meth) acrylate is preferably contained in an amount of 20 to 100% by mass based on the total amount of the (meth) acryloyl group-containing compound. The proportion of the polyfunctional (meth) acrylate may be 50 to 100% by mass, 80 to 100% by mass, or 100% by mass.
<(C)成分:光重合開始剤>
 本組成物は、紫外線、可視光等の活性エネルギー線により硬化させる目的で、(C)成分として、光重合開始剤を含む。
 光重合開始剤としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパンー1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]-フェニル]-2-メチルプロパンー1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタンー1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イルーフェニル)-ブタンー1-オン、アデカオプトマーN-1414((株)ADEKA製)、フェニルグリオキシリックアシッドメチルエステル、エチルアントラキノン、フェナントレンキノン等の芳香族ケトン化合物;
ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパンー1-オン、4,4‘-ビス(ジメチルアミノ)ベンゾフェノン、4,4‘-ビス(ジエチルアミノ)ベンゾフェノン、N,N′-テトラメチル-4,4′-ジアミノベンゾフェノン、N,N′-テトラエチル-4,4′-ジアミノベンゾフェノン及び4-メトキシ-4′-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル-(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル]オキシ]-2-ヒドロキシプロピル-N,N,N―トリメチルアンモニウムクロライド及びフロロチオキサントン等のチオキサントン系化合物;
アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン系化合物;
1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O―ベンゾイルオキシム)]及びエタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O―アセチルオキシム)等のオキシムエステル類;
2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-フェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体及び2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;並びに
9-フェニルアクリジン及び1,7-ビス(9,9′-アクリジニル)ヘプタン等のアクリジン誘導体等が挙げられる。
 これらの化合物は、1種又は2種以上を併用することもできる。
<(C) component: photopolymerization initiator>
This composition contains a photopolymerization initiator as the component (C) for the purpose of curing with active energy rays such as ultraviolet rays and visible light.
Photopolymerization initiators include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1- (methyl Vinyl) phenyl] propanone, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl] -2-methylpropan-1-one, 2-methyl-1 -[4- (methylthio)] phenyl] -2-morpholinopropan-1-one, 2 Benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butane Aromatic ketone compounds such as 1-one, Adekaoptomer N-1414 (manufactured by ADEKA Corporation), phenylglyoxylic acid methyl ester, ethyl anthraquinone, phenanthrenequinone, and the like;
Benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 4- (methylphenylthio) phenylphenylmethane, methyl-2-benzophenone, 1- [4- (4-Benzoylphenylsulfanyl) phenyl] -2-methyl-2- (4-methylphenylsulfonyl) propan-1-one, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis ( Benzophenone compounds such as diethylamino) benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone and 4-methoxy-4′-dimethylaminobenzophenone ;
Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl- (2,4,6-trimethylbenzoyl) phenylphosphinate and bis (2, Acylphosphine oxide compounds such as 6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide;
Thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3- [3,4-dimethyl-9-oxo-9H-thioxanthone-2-yl] oxy]- Thioxanthone compounds such as 2-hydroxypropyl-N, N, N-trimethylammonium chloride and fluorothioxanthone;
Acridone compounds such as acridone, 10-butyl-2-chloroacridone;
1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)] and ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] Oxime esters such as -1- (O-acetyloxime);
2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-phenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2 2,4,5-triarylimidazole such as 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer and 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer Dimer; and acridine derivatives such as 9-phenylacridine and 1,7-bis (9,9'-acridinyl) heptane.
These compounds may be used alone or in combination of two or more.
<活性エネルギー線硬化性組成物>
 本発明の活性エネルギー線硬化性組成物は、上記(A)成分乃至上記(C)成分を含むものである。硬化性組成物中における(A)成分及び(B)成分の割合は、質量比で、(A)/(B)=10~95/5~90であることが好ましい。(A)成分及び(B)成分の割合が上記の範囲であれば、硬化性に優れるとともに、基材との密着性及び光透過性にも優れる光硬化接着層を得ることができる。上記(A)/(B)は、より好ましくは、10~80/20~90である。
<Active energy ray-curable composition>
The active energy ray-curable composition of the present invention contains the component (A) to the component (C). The ratio of the component (A) and the component (B) in the curable composition is preferably (A) / (B) = 10 to 95/5 to 90 in terms of mass ratio. If the ratio of (A) component and (B) component is said range, while being excellent in sclerosis | hardenability, the photocuring contact bonding layer which is excellent also in adhesiveness with a base material and light transmittance can be obtained. The above (A) / (B) is more preferably 10-80 / 20-90.
 本発明の硬化性組成物における光重合開始剤((C)成分)の配合割合としては、上記(A)成分及び(B)成分の合計量100質量部に対して、0.01~10質量部の範囲となることが好ましい。光重合開始剤の配合割合を0.01質量部以上とすることにより、適量な紫外線又は可視光線量で組成物を硬化させることができ生産性を向上させることができ、一方10質量部以下とすることで、硬化物の耐候性や透明性の点で優れたものとすることができる。光重合開始剤の上記配合割合は、より好ましくは0.1~10質量部の範囲であり、さらに好ましくは0.5~5質量部の範囲である。 The blending ratio of the photopolymerization initiator (component (C)) in the curable composition of the present invention is 0.01 to 10 mass with respect to 100 mass parts of the total amount of the components (A) and (B). It is preferable to be in the range of parts. By setting the blending ratio of the photopolymerization initiator to 0.01 parts by mass or more, the composition can be cured with an appropriate amount of ultraviolet light or visible light, and the productivity can be improved. By doing, it can be excellent in the weather resistance and transparency of the cured product. The blending ratio of the photopolymerization initiator is more preferably in the range of 0.1 to 10 parts by mass, and still more preferably in the range of 0.5 to 5 parts by mass.
 本発明の活性エネルギー線硬化性組成物は、当該硬化性組成物を膜厚15μmに塗工し、光源に水銀キセノンランプを用いてUV-A波長の照度5mW/cm2の条件下で光照射を行った際、以下の式(1)で表される硬化速度が0.3%/秒以上であることが好ましい。硬化物の光透過性及び基材との密着性の点で、上記硬化速度は、好ましくは0.5%/秒以上であり、より好ましくは1.0%/秒以上である。硬化速度は、2.0%/秒以上であってもよく、3.0%/秒以上であってもよい。また、上記膜厚の精度は、好ましくは15.0±1.0μmであり、より好ましくは15.0±0.5μmである。上記照度は、UV-A領域の波長に基づくものであり、市販の照度計を用いて測定することが可能である。より具体的には、後述する本明細書実施例において記載された方法により測定することができる。
[硬化速度](%/秒)=(光照射20秒後の(メタ)アクリロイル基の反応率-光照射10秒後の(メタ)アクリロイル基の反応率)/光照射時間(10秒) ・・・ (1)
The active energy ray-curable composition of the present invention is irradiated with light under conditions of an illuminance of 5 mW / cm 2 at a UV-A wavelength using a mercury xenon lamp as a light source, coating the curable composition to a film thickness of 15 μm. When performing, it is preferable that the hardening rate represented by the following formula | equation (1) is 0.3% / second or more. The curing rate is preferably 0.5% / second or more, more preferably 1.0% / second or more, from the viewpoint of light transmittance of the cured product and adhesion to the substrate. The curing rate may be 2.0% / second or more, or 3.0% / second or more. The accuracy of the film thickness is preferably 15.0 ± 1.0 μm, more preferably 15.0 ± 0.5 μm. The illuminance is based on the wavelength in the UV-A region, and can be measured using a commercially available illuminometer. More specifically, it can be measured by the method described in Examples described later.
[Curing rate] (% / second) = (reaction rate of (meth) acryloyl group 20 seconds after light irradiation−reaction rate of (meth) acryloyl group 10 seconds after light irradiation) / light irradiation time (10 seconds) (1)
 (メタ)アクリロイル基の反応率は、光照射前(活性エネルギー線照射前)の活性エネルギー線硬化性組成物のFT-IR測定チャートにおける(メタ)アクリロイル基の吸収ピーク高さ(X)、及び光照射後(活性エネルギー線照射後)の活性エネルギー線硬化性組成物のFT-IR測定チャートにおける(メタ)アクリロイル基の吸収ピーク高さ(Y)から、次式(2)により算出される。
[(メタ)アクリロイル基の反応率](%)={(X-Y)/X}×100 ・・・ (2)
The reaction rate of the (meth) acryloyl group is the absorption peak height (X) of the (meth) acryloyl group in the FT-IR measurement chart of the active energy ray-curable composition before light irradiation (before the active energy ray irradiation), and From the absorption peak height (Y) of the (meth) acryloyl group in the FT-IR measurement chart of the active energy ray-curable composition after light irradiation (after active energy ray irradiation), it is calculated by the following formula (2).
[Reaction rate of (meth) acryloyl group] (%) = {(XY) / X} × 100 (2)
 上記の通り、本発明の硬化速度は、光照射10秒後から20秒後までの間の(メタ)アクリロイル基の反応率から算出される。ここで、光照射直後は、活性エネルギー線硬化性組成物中に含まれる溶存酸素の影響による硬化阻害が見られる。このため、光照射直後は、(メタ)アクリロイル基のラジカル反応が正常に開始していない場合があり、硬化速度の測定開始点としては適切でない。一方、硬化速度の測定の終点は、上記ラジカル反応が収束傾向を迎える前に設定することが好ましい。このような観点から、硬化速度は、光照射10秒後から20秒後までの(メタ)アクリロイル基の反応率を用いて算出される。
 尚、当業者であれば本明細書の開示に基づき、ビニル重合体(A)に含まれる二重結合濃度、(メタ)アクリロイル基含有化合物(B)の種類及び濃度、光重合開始剤(C)の種類及び濃度等により、硬化性組成物の硬化速度を上記の範囲に調整することが可能である。
As described above, the curing rate of the present invention is calculated from the reaction rate of (meth) acryloyl groups from 10 seconds to 20 seconds after light irradiation. Here, immediately after the light irradiation, curing inhibition due to the influence of dissolved oxygen contained in the active energy ray-curable composition is observed. For this reason, immediately after the light irradiation, the radical reaction of the (meth) acryloyl group may not start normally, and is not appropriate as a measurement start point for the curing rate. On the other hand, the end point of the measurement of the curing rate is preferably set before the radical reaction reaches a convergence tendency. From such a viewpoint, the curing rate is calculated using the reaction rate of the (meth) acryloyl group from 10 seconds to 20 seconds after light irradiation.
Those skilled in the art based on the disclosure of the present specification, the double bond concentration contained in the vinyl polymer (A), the type and concentration of the (meth) acryloyl group-containing compound (B), the photopolymerization initiator (C ), The curing rate of the curable composition can be adjusted to the above range.
 本発明の活性エネルギー線硬化性組成物は、上記(A)成分乃至上記(C)成分を含む組成物において、5mW/cm2という比較的弱い照射条件下であっても一定以上の硬化速度を示すものである。係る硬化速度を示す硬化性組成物から得られる硬化物(硬化層)は、光透過性に優れるとともに基材との密着性にも優れるものである。 The active energy ray-curable composition of the present invention is a composition containing the component (A) to the component (C), and has a certain curing rate even under relatively weak irradiation conditions of 5 mW / cm 2. It is shown. A cured product (cured layer) obtained from the curable composition exhibiting such a curing rate is excellent in light transmittance and adhesiveness to the substrate.
<その他の成分>
 本発明の活性エネルギー線硬化性組成物は、上記した(A)成分、(B)成分及び(C)成分を必須とするものであるが、必要に応じてその他の成分を含有してもよい。以下、配合可能なその他の成分について説明する。
(1)溶媒(溶剤)
 本発明の組成物は、溶媒を含有しない無溶剤系であってもよいし、または、塗工性を改善する等の目的で、有機溶剤等の溶媒を含有してもよい。有機溶剤としては、例えば、(A)成分であるビニル重合体の製造に使用可能な有機溶剤を使用できる。
 溶媒の使用割合としては、適宜設定すれば良いが、組成物中に10~90質量%が好ましく、より好ましくは30~80質量%である。組成物が溶媒を含む場合、当該組成物を塗工後、加熱等により溶媒を揮発除去した後に活性エネルギー線を照射して硬化物を得てもよい。
<Other ingredients>
The active energy ray-curable composition of the present invention essentially comprises the above-described component (A), component (B) and component (C), but may contain other components as necessary. . Hereinafter, other components that can be blended will be described.
(1) Solvent (solvent)
The composition of the present invention may be a solvent-free system that does not contain a solvent, or may contain a solvent such as an organic solvent for the purpose of improving coating properties. As an organic solvent, the organic solvent which can be used for manufacture of the vinyl polymer which is (A) component can be used, for example.
The proportion of the solvent used may be set as appropriate, but is preferably 10 to 90% by mass, more preferably 30 to 80% by mass in the composition. When a composition contains a solvent, after applying the composition, the solvent may be volatilized and removed by heating or the like and then irradiated with active energy rays to obtain a cured product.
(2)その他のエチレン性不飽和単量体
 本発明により奏される効果を損なわない範囲において、その他のエチレン性不飽和単量体として、硬化性組成物に(B)成分以外の単量体成分を含んでもよい。その他のエチレン性不飽和単量体としては、
スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族単量体;
無水マレイン酸;マレイン酸及びフマル酸等の不飽和ジカルボン酸、並びに、これらのモノアルキルエステル及びジアルキルエステル;
マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド化合物;
アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;
アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;
酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;
エチレン、プロピレン等のアルケン類;
ブタジエン、イソプレン等の共役ジエン類;
塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられるが、これらに限らない。また、これらのうちの1種又は2種以上を用いることができる。
(2) Other ethylenically unsaturated monomers As long as the effects exhibited by the present invention are not impaired, other ethylenically unsaturated monomers are used as monomers other than the component (B) in the curable composition. Ingredients may be included. Other ethylenically unsaturated monomers include
Aromatic monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid and salts thereof;
Maleic anhydride; unsaturated dicarboxylic acids such as maleic acid and fumaric acid, and their monoalkyl and dialkyl esters;
Maleimide compounds such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, phenylmaleimide, cyclohexylmaleimide;
Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile;
Amide group-containing vinyl monomers such as acrylamide and methacrylamide;
Vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, vinyl cinnamate;
Alkenes such as ethylene and propylene;
Conjugated dienes such as butadiene and isoprene;
Examples include, but are not limited to, vinyl chloride, vinylidene chloride, allyl chloride, and allyl alcohol. Moreover, 1 type, or 2 or more types of these can be used.
(3)その他の成分
 前記以外に、本発明の組成物には重合禁止剤、酸化防止剤、紫外線吸収剤、光安定剤、レベリング剤、消泡剤、表面調整剤、密着性付与剤、レオロジーコントロール剤、ワックス、無機フィラー、有機フィラー、湿気硬化用触媒等を添加することができる。
(3) Other components In addition to the above, the composition of the present invention includes a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, an antifoaming agent, a surface conditioner, an adhesion promoter, a rheology. Control agents, waxes, inorganic fillers, organic fillers, moisture curing catalysts, and the like can be added.
 重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール、並びに種々のフェノール系酸化防止剤が好ましいが、イオウ系二次酸化防止剤、リン系二次酸化防止剤等を添加することもできる。 As the polymerization inhibitor, hydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, and various phenolic antioxidants are preferable, but sulfur secondary antioxidants, phosphorus secondary antioxidants are preferable. A secondary antioxidant or the like can also be added.
 紫外線吸収剤としては、2-(2'-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-t-ブチル-5'-メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール化合物;
2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソ-オクチルオキシフェニル)-s-トリアジン等のトリアジン化合物;
2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-4'-メチルベンゾフェノン、2,2'-ジヒドロキシ-4-メトキシベンゾフェノン、2、4、4'-トリヒドロキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,3,4,4'-テトラヒドロキシベンゾフェノン、2,3',4,4'-テトラヒドロキシベンゾフェノン、又は2、2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノン等のベンゾフェノン化合物等を挙げることができる。
Examples of ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2- (2 Benzotriazole compounds such as'-hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole;
Triazine compounds such as 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-iso-octyloxyphenyl) -s-triazine;
2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2, 4, 4 ' -Trihydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3', 4,4'-tetrahydroxybenzophenone, or 2,2 Examples include benzophenone compounds such as'-dihydroxy-4,4'-dimethoxybenzophenone.
 光安定性剤としては、N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N′-ジホルミルヘキサメチレンジアミン、ビス(1,2,6,6-)ペンタメチル-4-ピペリジル)-2-(3,5-ジターシャリーブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、等の低分子量ヒンダードアミン化合物;N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N′-ジホルミルヘキサメチレンジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート等の高分子量ヒンダードアミン化合物等のヒンダードアミン系光安定剤を挙げることができる。 Examples of the light stabilizer include N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2,6,6). -) Pentamethyl-4-piperidyl) -2- (3,5-ditertiarybutyl-4-hydroxybenzyl) -2-n-butylmalonate, bis (1,2,2,6,6-pentamethyl-4- Low molecular weight hindered amine compounds such as piperidinyl) sebacate; N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2 Hindered amine light stabilizers such as high molecular weight hindered amine compounds such as 2,6,6-pentamethyl-4-piperidinyl) sebacate.
 本発明の組成物は、前述の原料を、常温または加熱下で、従来公知の方法により混合することにより得られる。組成物の粘度には、特に制限はないが、25℃において、200~20,000mPasとなることが好ましい。粘度がこの範囲になることにより、平滑な塗工が可能になる。 The composition of the present invention can be obtained by mixing the above-mentioned raw materials at room temperature or under heating by a conventionally known method. The viscosity of the composition is not particularly limited, but it is preferably 200 to 20,000 mPas at 25 ° C. When the viscosity is within this range, smooth coating is possible.
<活性エネルギー線硬化性組成物の用途>
 本発明の活性エネルギー線硬化性組成物から得られる硬化物(硬化層)は、良好な光透過性を示すとともに基材との密着性にも優れる。このため、例えば光学部材の貼合せ用途への適用が可能である。光学部材を構成する基材としては、例えば、ポリカーボネート、ポリメチルメタクリレート、シクロオレフィンポリマー(COP)等の透明プラスチック、及びガラス等が挙げられ、これらの内の1種又は2種以上が用いられる。
 上記硬化物(硬化層)は、タッチパネルを構成する部材の貼合せ、並びに、液晶ディスプレイ、ELディスプレイ及びプラズマディスプレイ等の各種ディスプレイにおける光学用接着層として使用することができる。
<Use of active energy ray-curable composition>
The cured product (cured layer) obtained from the active energy ray-curable composition of the present invention exhibits excellent light transmittance and excellent adhesion to the substrate. For this reason, the application to the bonding use of an optical member is possible, for example. As a base material which comprises an optical member, transparent plastics, such as a polycarbonate, a polymethylmethacrylate, a cycloolefin polymer (COP), glass, etc. are mentioned, for example, Among these, 1 type (s) or 2 or more types are used.
The said hardened | cured material (hardened layer) can be used as an adhesive layer for optics in various displays, such as bonding of the member which comprises a touchscreen, and a liquid crystal display, EL display, and a plasma display.
 上記光学用接着層は、活性エネルギー線硬化性組成物を基材に塗工した後、別の基材を貼合せ、透明な基材側から活性エネルギー線を照射して当該硬化性組成物を硬化させることにより得ることができる。 After applying the active energy ray-curable composition to the substrate, the optical adhesive layer is bonded to another substrate, and the active energy ray is irradiated from the transparent substrate side to apply the curable composition. It can be obtained by curing.
 硬化性組成物の塗工方法としては、常法に従えば良い。
 具体的には、バーコート、ロールコート、スピンコート、ディップコート、グラビアコート、フローコート及びスプレーコート等が挙げられる。必要に応じて、塗工後、活性エネルギー線を照射する前に溶媒を蒸発させるための乾燥工程又は予備加熱工程を経ても良い。
 乾燥温度又は予備加熱温度は、適用する基材が変形等の問題を生じない温度以下であれば特に限定されるものではない。
What is necessary is just to follow a conventional method as a coating method of a curable composition.
Specific examples include bar coating, roll coating, spin coating, dip coating, gravure coating, flow coating, and spray coating. As needed, you may pass through the drying process or preheating process for evaporating a solvent after application | coating and before irradiating an active energy ray.
The drying temperature or preheating temperature is not particularly limited as long as the applied substrate is at a temperature that does not cause problems such as deformation.
 塗工後の硬化性組成物を硬化させるための活性エネルギー線としては、電子線、紫外線、可視光線及びX線等が挙げられるが、安価な装置を使用することができるため、紫外線が好ましい。
 紫外線照射装置としては、高圧水銀ランプ、水銀キセノンランプ、メタルハライドランプ、UV無電極ランプ、LED等が挙げられる。
 照射エネルギーは、活性エネルギー線の種類や配合組成に応じて適宜設定すべきものであるが、一例として高圧水銀ランプを使用する場合を挙げると、UV-A領域の照射エネルギーで100~5,000mJ/cm2が好ましく、200~5,000mJ/cm2がより好ましい。
Examples of the active energy rays for curing the curable composition after coating include electron beams, ultraviolet rays, visible rays, and X-rays, but ultraviolet rays are preferable because inexpensive devices can be used.
Examples of the ultraviolet irradiation device include a high-pressure mercury lamp, a mercury xenon lamp, a metal halide lamp, a UV electrodeless lamp, and an LED.
The irradiation energy should be appropriately set according to the type and composition of the active energy ray. As an example, when using a high-pressure mercury lamp, the irradiation energy in the UV-A region is 100 to 5,000 mJ / cm 2 is preferable, and 200 to 5,000 mJ / cm 2 is more preferable.
 光学用接着層の膜厚は、目的に応じて適宜設定すれば良いが、5~400μm程度である。 The film thickness of the optical adhesive layer may be appropriately set according to the purpose, but is about 5 to 400 μm.
 以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。
 製造例、実施例及び比較例で得られた重合体の分析方法、並びに硬化性組成物から得られた硬化物の評価方法について以下に記載する。
Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited by these Examples. In the following, “parts” and “%” mean mass parts and mass% unless otherwise specified.
It describes below about the analysis method of the polymer obtained by the manufacture example, the Example, and the comparative example, and the evaluation method of the hardened | cured material obtained from the curable composition.
<二重結合量の定量方法>
 1H-NMRの測定により以下のように定量することができる。
二重結合量(meq/g)=(5.2~5.7ppmに観測される重合体由来の水素原子の1H-NMRの積分値を1とした値)×((各ビニル単量体のモル数×3.0~4.5ppmに観測される各ビニル単量体のプロトン数)の総和)/((100×(3.0~4.5ppmに観測される1H-NMRの積分値)×1000。ただし、各ビニル単量体の総部数は100部とし、各ビニル単量体のモル数=各ビニル単量体の部数/各ビニル単量体の分子量とする
<Quantification method of double bond amount>
It can be quantified as follows by measurement of 1 H-NMR.
Double bond amount (meq / g) = (value obtained by integrating 1 H-NMR integrated value of hydrogen atom derived from polymer observed at 5.2 to 5.7 ppm) × ((each vinyl monomer The total number of protons of each vinyl monomer observed at 3.0 to 4.5 ppm) / ((100 × ( 1 H-NMR integral observed at 3.0 to 4.5 ppm)) Value) × 1000, where the total number of each vinyl monomer is 100 parts, the number of moles of each vinyl monomer = the number of parts of each vinyl monomer / the molecular weight of each vinyl monomer.
<分子量測定>
 ゲル浸透クロマトグラフ装置(型式名「HLC-8320」、東ソー社製)を用いて、下記の条件よりポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られた値から分子量分布(Mw/Mn)を算出した。
○測定条件
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
カラム温度:40℃
溶離液:テトラヒドロフラン
検出器:RI
<Molecular weight measurement>
Using a gel permeation chromatograph (model name “HLC-8320”, manufactured by Tosoh Corporation), a number average molecular weight (Mn) and a weight average molecular weight (Mw) in terms of polystyrene were obtained from the following conditions. Moreover, molecular weight distribution (Mw / Mn) was computed from the obtained value.
○ Measurement condition column: Tosoh TSKgel SuperMultipore HZ-M × 4 Column temperature: 40 ° C.
Eluent: Tetrahydrofuran Detector: RI
<ビニル重合体の粘度>
 TVE-20H型粘度計(塩水/平板方式、東機産業社製)を用いて、下記の条件下でE型粘度を測定した。
○測定条件
コーン形状:角度1°34′、半径24mm(10000mPa・s未満)
      角度3°、半径7.7mm(10000mPa・s以上)
温度:25℃±0.5℃
<Viscosity of vinyl polymer>
Using a TVE-20H viscometer (salt water / flat plate method, manufactured by Toki Sangyo Co., Ltd.), the E type viscosity was measured under the following conditions.
○ Measurement conditions Cone shape: angle 1 ° 34 ', radius 24mm (less than 10000mPa · s)
Angle 3 °, radius 7.7mm (10000mPa · s or more)
Temperature: 25 ° C ± 0.5 ° C
<硬化性組成物の硬化速度>
(1)硬化速度の測定
 厚さ15μmの銅箔セパレーターを載せた日本ゼオン製ゼオノア(100μm厚シクロオレフィンポリマー)フィルム上に活性エネルギー線硬化性組成物の溶液を滴下し、さらに、その滴下面をゼオノアフィルム(100μm厚)で被い、当該硬化性組成物からなる厚さ15μmの層を有する積層体を得た。光源に水銀キセノンランプを用いた浜松ホトニクス社製紫外線照射装置(LIGHTNINGCURE LC5)を用いてUV-A波長の照度5mW/cm2の紫外線を照射しながら、FT-IR測定装置(Nicolet社製、型式iS50FT-IR)にて(メタ)アクリロイル基の不飽和二重結合をリアルタイムで測定することにより硬化速度を測定した。(メタ)アクリロイル基の不飽和二重結合ピークとして1640~1610cm-1のピークを、または、隣接したカルボニル基の吸収ピークが強く吸光度変化の観測が難しい場合には、820~800cm-1のピークを解析に用いた。
 (メタ)アクリロイル基の反応率は、紫外線照射前の硬化性組成物のFT-IR測定チャートにおける(メタ)アクリロイル基の吸収ピーク高さ(X)、及び紫外線照射後の光硬化性組成物のFT-IR測定チャートにおける(メタ)アクリロイル基の吸収ピーク高さ(Y)から、次式(4)により算出した。
[(メタ)アクリロイル基の反応率](%)={(X-Y)/X}×100 ・・・ (4)
 また、上記(メタ)アクリロイル基の反応率から、以下の式(5)により硬化速度を求めた。
[硬化速度](%/秒)=(光照射20秒後の(メタ)アクリロイル基の反応率-光照射10秒後の(メタ)アクリロイル基の反応率)/光照射時間(10秒) ・・・ (5)
<Curing rate of curable composition>
(1) Measurement of curing rate A solution of an active energy ray-curable composition was dropped on a ZEONOR (100 μm-thick cycloolefin polymer) film made by Nippon Zeon on which a copper foil separator having a thickness of 15 μm was placed. Covered with a ZEONOR film (100 μm thick) to obtain a laminate having a 15 μm thick layer of the curable composition. An FT-IR measurement device (manufactured by Nicolet Corp., model) while irradiating UV light with an illuminance of 5 mW / cm 2 at a UV-A wavelength using a UV irradiation device (LIGHTNINGCURE LC5) manufactured by Hamamatsu Photonics using a mercury xenon lamp as a light source. The cure rate was measured by measuring in real time the unsaturated double bond of the (meth) acryloyl group with iS50FT-IR). The peak at 1640 to 1610 cm-1 as the unsaturated double bond peak of the (meth) acryloyl group, or the peak at 820 to 800 cm-1 when the absorption peak of the adjacent carbonyl group is strong and the change in absorbance is difficult to observe Was used for analysis.
The reaction rate of the (meth) acryloyl group is the absorption peak height (X) of the (meth) acryloyl group in the FT-IR measurement chart of the curable composition before ultraviolet irradiation, and the photocurable composition after ultraviolet irradiation. It was calculated by the following formula (4) from the absorption peak height (Y) of the (meth) acryloyl group in the FT-IR measurement chart.
[Reaction rate of (meth) acryloyl group] (%) = {(XY) / X} × 100 (4)
Moreover, the cure rate was calculated | required by the following formula | equation (5) from the reaction rate of the said (meth) acryloyl group.
[Curing rate] (% / second) = (reaction rate of (meth) acryloyl group 20 seconds after light irradiation−reaction rate of (meth) acryloyl group 10 seconds after light irradiation) / light irradiation time (10 seconds) (5)
<光透過性>
 アプリケーターを用いて、活性エネルギー線硬化性組成物を、幅300mm×長さ400mm×厚さ50μmの軽剥離PETフィルム(藤森工業社製、フィルムバイナ75E-0010HTA)に、硬化性組成物の膜厚が250μmになるように塗布した。次いで、幅300mm×長さ400mm×厚さ50μmの重剥離PETフィルム(藤森工業社製、フィルムバイナKF-50)を貼合した。
 光源に高圧水銀ランプ(80W/cm、オゾンレス)を用いたアイグラフィックス社製紫外線照射装置(US―5X0602)により、UV-A波長の照度120mW/cm2の紫外線を積算光量が3000mJ/cm2となるようにPETフィルム越しに照射した後、25mm×70mmのサンプルシートを切り出した。サンプルシートの軽剥離PETフィルムを剥がし、白スライドグラス(松浪硝子工業(株)製S-1112)に貼り合せた後、重剥離PETフィルム(フィルムバイナ75E-0010HTA)を剥がして白スライドグラスに貼り合せ、光透過性測定用の硬化物を作製した。ヘーズメーター(NDH-2000、日本電色工業社製)を用いて、初期の全光線透過率と85℃、85%RH環境下、1000時間の湿熱試験後の全光線透過率を測定し、以下の基準により光透過性を判断した。
初期
 ○:全光線透過率が99%以上
 ×:全光線透過率が99%未満
湿熱試験後
 ○:全光線透過率が87%以上
 ×:全光線透過率が87%未満
<Light transmission>
Using an applicator, the active energy ray-curable composition is applied to a lightly peeled PET film (film binder 75E-0010HTA, manufactured by Fujimori Kogyo Co., Ltd.) having a width of 300 mm, a length of 400 mm, and a thickness of 50 μm. Was applied to a thickness of 250 μm. Subsequently, a heavy release PET film (Fujimori Kogyo Co., Ltd., film binder KF-50) having a width of 300 mm, a length of 400 mm, and a thickness of 50 μm was bonded.
Using an ultraviolet ray irradiation device (US-5X0602) manufactured by Eye Graphics Co., Ltd., which uses a high-pressure mercury lamp (80 W / cm, ozone-less) as a light source, UV-A wavelength illuminance of 120 mW / cm 2 is applied and the integrated light intensity is 3000 mJ / cm 2. After irradiating through a PET film so that it becomes, the sample sheet of 25 mm x 70 mm was cut out. After peeling off the lightly peeled PET film from the sample sheet and pasting it onto a white slide glass (S-1112 manufactured by Matsunami Glass Industry Co., Ltd.), the heavy peeled PET film (film binder 75E-0010HTA) is peeled off and pasted onto the white slide glass. In addition, a cured product for light transmittance measurement was produced. Using a haze meter (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.), the initial total light transmittance and the total light transmittance after a 1000 hour wet heat test in an 85 ° C., 85% RH environment were measured. The light transmittance was judged according to the criteria of
Initial ○: Total light transmittance is 99% or more ×: Total light transmittance is less than 99%
After wet heat test ○: Total light transmittance is 87% or more ×: Total light transmittance is less than 87%
<密着性>
 上記の光透過性測定用の硬化物と同様の方法で測定用硬化物を作成し、85℃、85%RH環境下、1000時間放置して、目視にて剥がれを確認した。
 ○:被着面積中の剥がれの面積比率が1%未満
 △:被着面積中の剥がれの面積比率が1%以上10%未満
 ×:被着面積中の剥がれの面積比率が10%以上
<Adhesion>
A cured product for measurement was prepared in the same manner as the cured product for light transmission measurement, and left for 1000 hours in an environment of 85 ° C. and 85% RH, and peeling was confirmed visually.
○: Area ratio of peeling in the deposition area is less than 1% Δ: Area ratio of peeling in the deposition area is 1% or more and less than 10% ×: Area ratio of peeling in the deposition area is 10% or more
<活性エネルギー線照射後の相溶性>
 硬化性組成物から得られる膜厚が100μmとなるようにして、厚さ1mmの白スライドグラス2枚を貼り合わせた。白スライドグラスで挟まれた硬化性組成物に、光源に高圧水銀ランプを用いたアイグラフィックス社製紫外線照射装置(UBX01.51-3L1)により、UV-A波長の照度92mW/cm2の紫外線を積算光量が3000mJ/cm2となるようにガラス越しに照射して硬化させ、形成された接着層の相溶状態を目視にて確認した。
 ○:ヘイズ値が0.1%未満
 △:ヘイズ値が0.1%以上、0.2%未満
 ×:ヘイズ値が0.2%以上
<Compatibility after irradiation with active energy rays>
Two white slide glasses having a thickness of 1 mm were bonded so that the film thickness obtained from the curable composition was 100 μm. Ultraviolet rays having an illuminance of 92 mW / cm 2 with a UV-A wavelength are applied to the curable composition sandwiched between white slide glasses by an ultraviolet ray irradiation apparatus (UBX01.51-3L1) manufactured by Igraphics using a high-pressure mercury lamp as a light source. Was irradiated and cured through glass so that the integrated light amount was 3000 mJ / cm 2, and the compatibility state of the formed adhesive layer was visually confirmed.
○: Haze value is less than 0.1% Δ: Haze value is 0.1% or more and less than 0.2% ×: Haze value is 0.2% or more
≪(A)成分:ビニル重合体の製造≫
製造例1(ビニル重合体A-1の製造)
○重合工程
 オイルジャケットを備えた容量1,000mLの加圧式攪拌槽型反応器のジャケット温
度を248℃に保った。次いで、反応器の圧力を一定に保ちながら、単量体として、2-エチルヘキシルアクリレート(以下、「HA」という)を100部、重合溶媒として、イソプロピルアルコールを20部、及びメチルエチルケトンを20部、重合開始剤として、ジ-tert-ブチルパーオキサイド(日油製、商品名「パーブチルD」、以下、「DTBP」という)を2.0部からなる単量体混合物を、一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給を開始し、単量体混合物の供給量に相当する反応液を出口から連続的に抜き出した。反応開始直後に、一旦反応温度が低下した後、重合熱による温度上昇が認められたが、オイルジャケット温度を制御することにより、反応器の内温を241~243℃に保持した。反応器内温が安定してから36分後の時点を、反応液の採取開始点とし、これから25分間反応を継続した。この製造では、結果として、1.2kgの単量体混合物を供給し、1.2kgの反応液を回収した。その後、反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分の分離及び除去を行い、重合体を得た。当該重合体のGPC測定を行った結果、数平均分子量(以下、「Mn」という)は1,200、重量平均分子量(以下、「Mw」という)は1,600であり、粘度は430mPa・sであった。また、1H-NMR測定から求められた二重結合濃度は0.22meq/gであった。
<< (A) component: Production of vinyl polymer >>
Production Example 1 (Production of vinyl polymer A-1)
Polymerization process The jacket temperature of a pressurized stirring tank reactor having a capacity of 1,000 mL equipped with an oil jacket was kept at 248 ° C. Next, while maintaining the reactor pressure constant, 100 parts of 2-ethylhexyl acrylate (hereinafter referred to as “HA”) as a monomer, 20 parts of isopropyl alcohol and 20 parts of methyl ethyl ketone as polymerization solvents were polymerized. As an initiator, a monomer mixture consisting of 2.0 parts of di-tert-butyl peroxide (manufactured by NOF Corporation, trade name “Perbutyl D”, hereinafter referred to as “DTBP”) is supplied at a constant feed rate (48 g / Minutes and residence time: 12 minutes), continuous supply from the raw material tank to the reactor was started, and a reaction liquid corresponding to the supply amount of the monomer mixture was continuously withdrawn from the outlet. Immediately after the start of the reaction, once the reaction temperature decreased, a temperature increase due to the heat of polymerization was observed. However, the internal temperature of the reactor was maintained at 241 to 243 ° C. by controlling the oil jacket temperature. The time point after 36 minutes from the stabilization of the reactor internal temperature was taken as the reaction liquid collection start point, and the reaction was continued for 25 minutes thereafter. In this production, as a result, 1.2 kg of the monomer mixture was supplied and 1.2 kg of the reaction liquid was recovered. Thereafter, the reaction solution was introduced into a thin film evaporator, and volatile components such as unreacted monomers were separated and removed to obtain a polymer. As a result of GPC measurement of the polymer, the number average molecular weight (hereinafter referred to as “Mn”) is 1,200, the weight average molecular weight (hereinafter referred to as “Mw”) is 1,600, and the viscosity is 430 mPa · s. Met. The double bond concentration determined from 1 H-NMR measurement was 0.22 meq / g.
○後処理工程
 オイルジャケットを備えた容量2000mLの撹拌槽型反応器に、上記重合体1000gを仕込み、窒素100mL/分を流しながら反応器内の雰囲気を窒素置換した。その後、内温を90℃に加温し、t-ヘキシルパーオキシ-2-エチルヘキサノエート(日油社製、商品名「パーヘキシルO」)36gを加え、この状態で、16時間撹拌してラジカル付加反応を行い、ビニル重合体A-1を得た。ビニル重合体A-1のGPC測定を行った結果、Mnは1,400、Mwは2,300であり、粘度は650mPa・sであった。また、1H-NMR測定による二重結合濃度は、0.02meq/gであった。
○ Post-treatment step 1000 g of the polymer was charged into a 2000 mL stirred tank reactor equipped with an oil jacket, and the atmosphere in the reactor was purged with nitrogen while flowing 100 mL / min of nitrogen. Thereafter, the internal temperature was raised to 90 ° C., and 36 g of t-hexylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name “Perhexyl O”) was added and stirred in this state for 16 hours. A radical addition reaction was performed to obtain vinyl polymer A-1. As a result of GPC measurement of the vinyl polymer A-1, Mn was 1,400, Mw was 2,300, and the viscosity was 650 mPa · s. The double bond concentration determined by 1 H-NMR measurement was 0.02 meq / g.
製造例2(ビニル重合体A-2の製造)
 用いる原料及び反応器内外温を表1の通り変更した以外は合成例1の重合工程と同様の操作を行い、重合体を得た。当該重合体のGPC測定を行った結果、Mnは2,700、Mwは4,700であり、粘度は2,900mPa・sであった。また、1H-NMR測定による二重結合濃度は、0.22meq/gであった。
 その後、上記重合体について合成例1の後処理工程と同様の操作を行い、ビニル重合体A-2を得た。ビニル重合体A-2の性状について、表1に示した。
Production Example 2 (Production of vinyl polymer A-2)
A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 2,700, Mw was 4,700, and the viscosity was 2,900 mPa · s. The double bond concentration determined by 1 H-NMR measurement was 0.22 meq / g.
Thereafter, the same operation as in the post-treatment step of Synthesis Example 1 was performed on the above polymer to obtain a vinyl polymer A-2. The properties of the vinyl polymer A-2 are shown in Table 1.
製造例3(ビニル重合体A-3の製造)
 用いる原料及び反応器内外温を表1の通り変更した以外は合成例1の重合工程と同様の操作を行い、重合体を得た。当該重合体のGPC測定を行った結果、Mnは2,200、Mwは3,600であり、粘度は1,570mPa・sであった。また、1H-NMR測定による二重結合濃度は、0.30meq/gであった。
 その後、上記重合体について合成例1の後処理工程と同様の操作を行い、ビニル重合体A-3を得た。ビニル重合体A-3の性状について、表1に示した。
Production Example 3 (Production of vinyl polymer A-3)
A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 2,200, Mw was 3,600, and the viscosity was 1,570 mPa · s. The double bond concentration determined by 1 H-NMR measurement was 0.30 meq / g.
Thereafter, the same operation as in the post-treatment step of Synthesis Example 1 was performed on the above polymer to obtain a vinyl polymer A-3. The properties of vinyl polymer A-3 are shown in Table 1.
製造例4(ビニル重合体A-4の製造)
 用いる原料及び反応器内外温を表1の通り変更した以外は合成例1の重合工程と同様の操作を行い、重合体を得た。当該重合体のGPC測定を行った結果、Mnは1,900、Mwは2,900であり、粘度は1,030mPa・sであった。また、1H-NMR測定による二重結合濃度は、0.30meq/gであった。
 その後、上記重合体について合成例1の後処理工程と同様の操作を行い、ビニル重合体A-4を得た。ビニル重合体A-4の性状について、表1に示した。
Production Example 4 (Production of vinyl polymer A-4)
A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 1,900, Mw was 2,900, and the viscosity was 1,030 mPa · s. The double bond concentration determined by 1 H-NMR measurement was 0.30 meq / g.
Thereafter, the same operation as in the post-treatment step of Synthesis Example 1 was performed on the above polymer to obtain a vinyl polymer A-4. The properties of the vinyl polymer A-4 are shown in Table 1.
製造例5(ビニル重合体A-5の製造)
 用いる原料及び反応器内外温を表1の通り変更した以外は合成例1の重合工程と同様の操作を行い、重合体を得た。当該重合体のGPC測定を行った結果、Mnは1,000、Mwは1,500であり、粘度は700mPa・sであった。また、1H-NMR測定による二重結合濃度は、0.22meq/gであった。
 その後、重合体について合成例1の後処理工程と同様の操作を行い、ビニル重合体A-5を得た。ビニル重合体A-5の性状について、表1に示した。
Production Example 5 (Production of vinyl polymer A-5)
A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 1,000, Mw was 1,500, and the viscosity was 700 mPa · s. The double bond concentration determined by 1 H-NMR measurement was 0.22 meq / g.
Thereafter, the polymer was subjected to the same operation as in the post-treatment step of Synthesis Example 1 to obtain a vinyl polymer A-5. Properties of the vinyl polymer A-5 are shown in Table 1.
製造例6(ビニル重合体A-6の製造)
 用いる原料及び反応器内外温を表1の通り変更した以外は合成例1の重合工程と同様の操作を行い、ビニル重合体A-6を得た。この際、反応液の採取開始点から50分間反応を継続し、2.4kgの反応液を回収した。ビニル重合体A-6の性状について、表1に示した。
Production Example 6 (Production of vinyl polymer A-6)
A vinyl polymer A-6 was obtained in the same manner as in the polymerization step of Synthesis Example 1 except that the raw materials used and the temperature inside and outside the reactor were changed as shown in Table 1. At this time, the reaction was continued for 50 minutes from the reaction liquid collection start point, and 2.4 kg of the reaction liquid was recovered. The properties of the vinyl polymer A-6 are shown in Table 1.
製造例7(ビニル重合体A-7の製造)
 オイルジャケットを備えた容量2000mLの撹拌槽型反応器に、ビニル重合体A-6を1000g仕込み、窒素100mL/分を流しながら反応器内の雰囲気を窒素置換した。その後、内温を90℃に加温し、パーヘキシルOを36g加え、この状態で、16時間撹拌してラジカル付加反応を行い、ビニル重合体A-7を得た。ビニル重合体A-7の性状について、表1に示した。
Production Example 7 (Production of vinyl polymer A-7)
A stirred tank reactor having a capacity of 2000 mL equipped with an oil jacket was charged with 1000 g of vinyl polymer A-6, and the atmosphere in the reactor was purged with nitrogen while flowing 100 mL / min of nitrogen. Thereafter, the internal temperature was raised to 90 ° C., 36 g of perhexyl O was added, and in this state, the mixture was stirred for 16 hours to perform a radical addition reaction to obtain a vinyl polymer A-7. Properties of the vinyl polymer A-7 are shown in Table 1.
製造例8(ビニル重合体A-8の製造)
 オイルジャケットを備えた容量1,000mLの加圧式撹拌槽型反応器に、ビニル重合体A-6(700g)及び乾燥した5%パラジウムカーボン(3.5g)を入れ、反応器内の雰囲気を真空にした。その後、内温を130℃に加温し、水素で約1.5MPaまで加圧した。この状態で、8時間撹拌し、水素付加反応を行った。圧力をパージした後、ろ過助剤として、昭和化学工業社製珪藻土「ラジオライト#100」を用いて、ろ過し、ビニル重合体A-8を得た。ビニル重合体A-8の性状について、表1に示した。
Production Example 8 (Production of vinyl polymer A-8)
Into a 1,000 mL pressurized stirred tank reactor equipped with an oil jacket, vinyl polymer A-6 (700 g) and dried 5% palladium carbon (3.5 g) were placed, and the atmosphere in the reactor was evacuated. I made it. Thereafter, the internal temperature was heated to 130 ° C. and pressurized to about 1.5 MPa with hydrogen. In this state, the mixture was stirred for 8 hours to perform a hydrogenation reaction. After purging the pressure, filtration was performed using diatomaceous earth “Radiolite # 100” manufactured by Showa Chemical Industry Co., Ltd. as a filter aid to obtain a vinyl polymer A-8. Properties of the vinyl polymer A-8 are shown in Table 1.
製造例9(ビニル重合体A-9製造)
 用いる原料及び反応器内外温を表1の通り変更した以外は合成例1の重合工程と同様の操作を行い、重合体を得た。当該重合体のGPC測定を行った結果、Mnは1,100、Mwは1,600であり、粘度は800mPa・sであった。また、1H-NMR測定による二重結合濃度は、0.23meq/gであった。
 その後、重合体について合成例1の後処理工程と同様の操作を行い、ビニル重合体A-9を得た。ビニル重合体A-9の性状について、表1に示した。
Production Example 9 (Production of vinyl polymer A-9)
A polymer was obtained by performing the same operation as in the polymerization step of Synthesis Example 1 except that the raw materials used and the reactor internal / external temperature were changed as shown in Table 1. As a result of GPC measurement of the polymer, Mn was 1,100, Mw was 1,600, and the viscosity was 800 mPa · s. The double bond concentration determined by 1 H-NMR measurement was 0.23 meq / g.
Thereafter, the polymer was subjected to the same operation as in the post-treatment step of Synthesis Example 1 to obtain a vinyl polymer A-9. The properties of vinyl polymer A-9 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示された化合物の詳細は以下の通り。
MA:アクリル酸メチル
BA:アクリル酸ブチル
HA:アクリル酸2-エチルヘキシル
MEA:アクリル酸2-メトキシエチル
MMA:メタクリル酸メチル
IPA:イソプロピルアルコール
MEK:メチルエチルケトン
DTBP:ジ-t-ブチルパーオキサイド
Details of the compounds shown in Table 1 are as follows.
MA: methyl acrylate BA: butyl acrylate HA: 2-ethylhexyl acrylate MEA: 2-methoxyethyl acrylate MMA: methyl methacrylate IPA: isopropyl alcohol MEK: methyl ethyl ketone DTBP: di-t-butyl peroxide
≪活性エネルギー線硬化性組成物の調製及び評価≫
実施例1~8及び比較例1
 上記製造例で得られたビニル重合体(A成分)、(メタ)アクリロイル基含有化合物(B成分)及び光重合開始剤(C成分)を表2に示す割合で配合し、ミックスローター(商品名:MIX-ROATER VMR-5、アズワン製)で2時間混合することにより硬化性組成物を得た。各硬化性組成物の硬化速度を測定し、表2に記載した。また、各硬化性組成物から得られた硬化物について光透過性及び密着性を評価し、結果を表2に示した。
≪Preparation and evaluation of active energy ray curable composition≫
Examples 1 to 8 and Comparative Example 1
The vinyl polymer (component A), the (meth) acryloyl group-containing compound (component B) and the photopolymerization initiator (component C) obtained in the above production examples were blended in the proportions shown in Table 2, and mixed rotor (trade name) : MIX-ROATER VMR-5, manufactured by ASONE) for 2 hours to obtain a curable composition. The curing rate of each curable composition was measured and listed in Table 2. Moreover, the light transmittance and adhesiveness were evaluated about the hardened | cured material obtained from each curable composition, and the result was shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例9~12
 ビニル重合体(A成分)、(メタ)アクリロイル基含有化合物(B成分)及び光重合開始剤(C成分)を表3に示す割合で配合し、ミックスローター(商品名:MIX-ROATER VMR-5、アズワン製)で2時間混合することにより硬化性組成物を得た。各硬化性組成物の硬化速度を測定し、表3に記載した。また、各硬化性組成物から得られた硬化物について相溶性(ヘイズ)及び密着性を評価し、結果を表3に示した。
Examples 9-12
A vinyl polymer (component A), a (meth) acryloyl group-containing compound (component B) and a photopolymerization initiator (component C) are blended in the proportions shown in Table 3, and a mix rotor (trade name: MIX-ROATER VMR-5) And made by ASONE) for 2 hours to obtain a curable composition. The curing rate of each curable composition was measured and listed in Table 3. Moreover, compatibility (haze) and adhesiveness were evaluated about the hardened | cured material obtained from each curable composition, and the result was shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2~表3に示された化合物の詳細は以下の通り。
HX-220:カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート(日本化薬社製、商品名「KAYARAD HX-220」)
M-270:ポリプロピレングリコールジアクリレート(東亞合成社製、商品名「アロニックスM-270」)(アロニックスは登録商標)
FA-512AS:ジシクロペンテニルオキシエチルアクリレート(日立化成社製、商品名「FANCRYL FA-512AS」)
Irgacure184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製)
Details of the compounds shown in Tables 2 to 3 are as follows.
HX-220: Caprolactone-modified hydroxypivalic acid neopentyl glycol diacrylate (manufactured by Nippon Kayaku Co., Ltd., trade name “KAYARAD HX-220”)
M-270: Polypropylene glycol diacrylate (trade name “Aronix M-270” manufactured by Toagosei Co., Ltd.) (Aronix is a registered trademark)
FA-512AS: Dicyclopentenyloxyethyl acrylate (manufactured by Hitachi Chemical Co., Ltd., trade name “FANCRYL FA-512AS”)
Irgacure 184: 1-hydroxy-cyclohexyl-phenyl-ketone (BASF)
 実施例1~12は、本発明の活性エネルギー線硬化性組成物に属するものであり、低照射条件下であっても一定以上の硬化速度を満たす程度の硬化性を有する硬化性組成物に関する評価結果である。得られた硬化物は良好な透明性を示すとともに、基材との密着性にも優れるものであった。また、実施例9~12の結果から、(A)成分であるビニル重合体が二重結合量が0.01~0.50meq/g(0.02~0.36meq/g)である実施例9~11では、得られた硬化物の透明性がより優れる結果が得られた。これは、上記ビニル重合体と(B)成分由来のマトリックスとの相溶性が向上した結果であると推察された。
 一方、比較例1は、十分な硬化速度を有しない硬化性組成物に関するものであり、得られた硬化物は、基材との密着性に劣るものであった。
Examples 1 to 12 belong to the active energy ray-curable composition of the present invention, and are evaluated with respect to a curable composition having a degree of curing satisfying a certain curing rate even under low irradiation conditions. It is a result. The obtained cured product exhibited good transparency and was excellent in adhesion to the substrate. Further, from the results of Examples 9 to 12, the vinyl polymer as the component (A) has an amount of double bond of 0.01 to 0.50 meq / g (0.02 to 0.36 meq / g). In 9 to 11, a result that the transparency of the obtained cured product was more excellent was obtained. This was presumed to be a result of improved compatibility between the vinyl polymer and the matrix derived from the component (B).
On the other hand, Comparative Example 1 relates to a curable composition that does not have a sufficient curing rate, and the obtained cured product was inferior in adhesion to the substrate.
 本発明の活性エネルギー線硬化性組成物は、硬化性に優れ、得られる硬化物は、基材との密着性及び光透過性に優れる。よって、透明基材からなる積層体、特に光学部材の貼合せを目的とする光学用接着層として好適に用いられる。 The active energy ray-curable composition of the present invention is excellent in curability, and the resulting cured product is excellent in adhesion to a substrate and light transmittance. Therefore, it is suitably used as an optical adhesive layer for the purpose of laminating a transparent substrate, particularly an optical member.

Claims (9)

  1.  ビニル重合体(A)、(メタ)アクリロイル基含有化合物(B)及び光重合開始剤(C)を含む活性エネルギー線硬化性組成物であって、
     前記硬化性組成物を膜厚15μmに塗工し、光源に水銀キセノンランプを用いてUV-A波長の照度5mW/cm2の条件下で光照射を行った際、以下の式(1)で表される硬化速度が0.3%/秒以上である、活性エネルギー線硬化性組成物。
    [硬化速度](%/秒)=(光照射20秒後の(メタ)アクリロイル基の反応率-光照射10秒後の(メタ)アクリロイル基の反応率)/光照射時間(10秒) ・・・ (1)
    An active energy ray-curable composition comprising a vinyl polymer (A), a (meth) acryloyl group-containing compound (B) and a photopolymerization initiator (C),
    When the curable composition was applied to a film thickness of 15 μm and irradiated with light using a mercury xenon lamp as a light source under the condition of illuminance of 5 mW / cm 2 with a UV-A wavelength, the following formula (1) An active energy ray-curable composition having a cure rate represented by 0.3% / second or more.
    [Curing rate] (% / second) = (reaction rate of (meth) acryloyl group 20 seconds after light irradiation−reaction rate of (meth) acryloyl group 10 seconds after light irradiation) / light irradiation time (10 seconds) (1)
  2.  前記硬化速度が0.3%~10%/秒である請求項1記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1, wherein the curing rate is 0.3% to 10% / second.
  3.  前記ビニル重合体(A)は、分子中に二重結合を0.01meq/g以上、0.50meq/g以下有する請求項1又は2に記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1 or 2, wherein the vinyl polymer (A) has a double bond in a molecule of 0.01 meq / g or more and 0.50 meq / g or less.
  4.  前記ビニル重合体(A)は、炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を有する(メタ)アクリル酸エステルを構造単量体単位に含む請求項1~3のいずれかに記載の活性エネルギー線硬化性組成物。 4. The vinyl polymer (A) according to any one of claims 1 to 3, wherein the structural monomer unit contains (meth) acrylic acid ester having an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms. The active energy ray-curable composition according to claim 1.
  5.  前記ビニル重合体(A)は、100~350℃の重合温度条件下における高温連続重合方法で得られた請求項1~4のいずれかに記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to any one of claims 1 to 4, wherein the vinyl polymer (A) is obtained by a high-temperature continuous polymerization method under a polymerization temperature condition of 100 to 350 ° C.
  6.  前記ビニル重合体(A)は、重量平均分子量が500以上、100,000以下である請求項1~5のいずれかに記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to any one of claims 1 to 5, wherein the vinyl polymer (A) has a weight average molecular weight of 500 or more and 100,000 or less.
  7.  前記ビニル重合体(A)及び前記(メタ)アクリロイル基含有化合物(B)の使用量の割合は、(A)/(B)=10~95/5~90(質量比)である請求項1~6のいずれかに記載の活性エネルギー線硬化性組成物。 The proportion of the vinyl polymer (A) and the (meth) acryloyl group-containing compound (B) used is (A) / (B) = 10 to 95/5 to 90 (mass ratio). The active energy ray-curable composition according to any one of 1 to 6.
  8.  前記ビニル重合体(A)及び前記(メタ)アクリロイル基含有化合物(B)の総量100質量部に対し、光重合開始剤(C)を0.5~5質量部含む請求項1~7のいずれかに記載の活性エネルギー線硬化性組成物。 The photopolymerization initiator (C) is contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the vinyl polymer (A) and the (meth) acryloyl group-containing compound (B). The active energy ray-curable composition according to claim 1.
  9.  請求項1~8のいずれかに記載の活性エネルギー線硬化性組成物を硬化して得られる光学用接着層。 An optical adhesive layer obtained by curing the active energy ray-curable composition according to any one of claims 1 to 8.
PCT/JP2019/003757 2018-02-02 2019-02-01 Active energy ray-curable composition, and use thereof WO2019151509A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019569628A JPWO2019151509A1 (en) 2018-02-02 2019-02-01 Active energy ray-curable composition and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018017116 2018-02-02
JP2018-017116 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019151509A1 true WO2019151509A1 (en) 2019-08-08

Family

ID=67478380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003757 WO2019151509A1 (en) 2018-02-02 2019-02-01 Active energy ray-curable composition, and use thereof

Country Status (2)

Country Link
JP (1) JPWO2019151509A1 (en)
WO (1) WO2019151509A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167999A1 (en) * 2013-04-09 2014-10-16 東亞合成株式会社 Active-energy-ray-curable resin composition
JP2016094499A (en) * 2014-11-12 2016-05-26 東亞合成株式会社 Vinyl polymer and manufacturing method therefor, and curable composition
JP2017014379A (en) * 2015-06-30 2017-01-19 リンテック株式会社 Adhesive composition, adhesive sheet and display body
JP2017173479A (en) * 2016-03-23 2017-09-28 三菱ケミカル株式会社 Laminate for image display device configuration, and method for manufacturing image display device
JP2017222738A (en) * 2016-06-13 2017-12-21 日立化成株式会社 Photocurable resin composition, image display device and method for producing image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167999A1 (en) * 2013-04-09 2014-10-16 東亞合成株式会社 Active-energy-ray-curable resin composition
JP2016094499A (en) * 2014-11-12 2016-05-26 東亞合成株式会社 Vinyl polymer and manufacturing method therefor, and curable composition
JP2017014379A (en) * 2015-06-30 2017-01-19 リンテック株式会社 Adhesive composition, adhesive sheet and display body
JP2017173479A (en) * 2016-03-23 2017-09-28 三菱ケミカル株式会社 Laminate for image display device configuration, and method for manufacturing image display device
JP2017222738A (en) * 2016-06-13 2017-12-21 日立化成株式会社 Photocurable resin composition, image display device and method for producing image display device

Also Published As

Publication number Publication date
JPWO2019151509A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP5880304B2 (en) Method for producing optical film or sheet
JP5983098B2 (en) Polarizer
JP6094193B2 (en) Active energy ray-curable composition for forming optical film or sheet, optical film or sheet, and polarizing plate
KR102365812B1 (en) Modified liquid diene rubber, and resin composition containing said modified liquid diene rubber
TW200909505A (en) Resin composition for optical use and resin material for optical use using the same
TW201502189A (en) Solvent-free photocurable resin composition
TWI778029B (en) Curable-type composition
JP5669373B2 (en) Quaternary cationic antistatic agent, antistatic composition containing the same and molded product
JP6493699B2 (en) Resin sheet and manufacturing method thereof
JP2008069303A (en) Curl inhibitor, active energy ray-curable resin composition and film substrate
JP2016117797A (en) Curable composition for producing resin sheet
JP5891972B2 (en) Optical film or sheet, polarizer protective film, and polarizing plate
WO2019151509A1 (en) Active energy ray-curable composition, and use thereof
JP2021105170A (en) Active energy ray-curable composition and method for producing the same
JP2016094499A (en) Vinyl polymer and manufacturing method therefor, and curable composition
JP5943227B2 (en) Process for producing active energy ray-curable resin composition
JP6256021B2 (en) Active energy ray-curable composition for forming optical film or sheet and optical film or sheet
JP6418053B2 (en) Manufacturing method of resin sheet
JP6343883B2 (en) Active energy ray-curable resin composition
JP5821103B2 (en) Antistatic agent and antistatic composition comprising quaternary cationic vinyl monomer
JP6331989B2 (en) Active energy ray-curable adhesive composition
WO2009017320A2 (en) Mold film composition for forming pattern and mold film manufactured by using the same
JP2022086409A (en) Active energy ray-curable composition
JP2005139405A (en) Curing composition
JP2022075274A (en) Active energy ray-curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747466

Country of ref document: EP

Kind code of ref document: A1