WO2019151443A1 - 破砕工法及びこれに用いられる減圧装置 - Google Patents

破砕工法及びこれに用いられる減圧装置 Download PDF

Info

Publication number
WO2019151443A1
WO2019151443A1 PCT/JP2019/003490 JP2019003490W WO2019151443A1 WO 2019151443 A1 WO2019151443 A1 WO 2019151443A1 JP 2019003490 W JP2019003490 W JP 2019003490W WO 2019151443 A1 WO2019151443 A1 WO 2019151443A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
well
decompression device
decompression
crushing method
Prior art date
Application number
PCT/JP2019/003490
Other languages
English (en)
French (fr)
Inventor
浅沼 宏
成実 長縄
範芳 土屋
竜哉 梶原
邦明 島田
Original Assignee
国立研究開発法人産業技術総合研究所
国立大学法人 東京大学
国立大学法人東北大学
地熱エンジニアリング株式会社
帝石削井工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 国立大学法人 東京大学, 国立大学法人東北大学, 地熱エンジニアリング株式会社, 帝石削井工業株式会社 filed Critical 国立研究開発法人産業技術総合研究所
Priority to EP19748135.1A priority Critical patent/EP3751093A4/en
Priority to US16/967,035 priority patent/US11326433B2/en
Publication of WO2019151443A1 publication Critical patent/WO2019151443A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • E21B34/102Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole with means for locking the closing element in open or closed position
    • E21B34/103Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole with means for locking the closing element in open or closed position with a shear pin
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/12Valve arrangements for boreholes or wells in wells operated by movement of casings or tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/16Control means therefor being outside the borehole

Definitions

  • the present invention relates to a crushing method used for crushing a rock mass and a decompression device used therefor.
  • Geothermal power generation uses crustal fluid.
  • the crustal fluid region currently used for power generation is below the critical point of pure water (374 ° C. and 22 MPa).
  • supercritical geothermal power generation that uses supercritical fluid (fluid above the critical point) existing beyond the currently used region for geothermal power generation is being studied.
  • the merit of using supercritical fluid for geothermal power generation is high specific enthalpy.
  • the specific enthalpy of the liquid phase at a saturated water vapor pressure (about 4 MPa) at 250 ° C. is about 1000 kJ / kg
  • the specific enthalpy of heated steam at 400 ° C. is about 3000 kJ / kg.
  • This hydraulic fracturing method is a method of generating a crack in the rock mass by injecting a fracturing fluid such as water filled in the well into the rock mass at a high pressure.
  • a crack support material called proppant may be added to prevent the generated crack from collapsing due to underground pressure or the like.
  • a fracturing fluid in which granular materials such as sand are added as proppants is pressed at a high pressure.
  • a fracturing fluid to which a hydrolyzable blocking agent for blocking a hydrolyzable material that temporarily closes a crack is added is pressurized. Press fit with.
  • the water permeability (permeability) of the rock mass is improved by injecting the fracturing fluid at a high pressure and generating cracks in the rock mass. It is often said that underground resources can be collected.
  • the permeability of the rock in which the supercritical fluid exists is important.
  • the water permeability of the rock is said to decrease greatly with depth.
  • the brittleness of the crust that is, the shear strength of the rock mass increases as the depth increases.
  • This intensity change follows a so-called friction law. That is, up to a predetermined depth, the rock in the brittle region is destroyed by applying force to the rock.
  • the temperature rises with the depth after a predetermined depth, it becomes a bedrock of a ductile region that is deformed by applying a force to the bedrock.
  • the conventional hydraulic fracturing method described above and the sampling method disclosed in Patent Document 1 are brittle regions that are fractured by applying force to the end because the fracturing fluid is press-fitted at a high pressure in order to improve the permeability of the rock mass. It can be applied to other rock masses. In other words, even if the fracturing fluid is pressed into the bedrock in the ductile region where supercritical fluid exists at a high pressure, cracks cannot be generated in the bedrock in the ductile region, and as a result, the water permeability of the bedrock can be improved. Can not. For this reason, the conventional hydraulic crushing method and the sampling method disclosed in Patent Document 1 cannot be applied to the bedrock in the ductile region.
  • the present invention has been devised in view of the above-described problems, and the object of the present invention is a crushing method capable of generating a crack even in a bedrock in a ductile region, and to this.
  • An object of the present invention is to provide a decompression device to be used.
  • the crushing method according to the first aspect of the present invention is a crushing method used for generating a crack in a rock, and a pressure reducing device that depressurizes the inside of the well is installed in the well installed in the rock.
  • An installation step and a decompression step of decompressing the interior of the well by the decompression device installed in the installation step are provided.
  • the installation step installs a connecting pipe connected to the decompression device and a packer attached to the connecting pipe inside the well
  • the decompression step is characterized in that a gap between the well and the connecting pipe is blocked by the packer, and a region below the packer inside the well is decompressed by the decompression device.
  • the installation step includes the pressure reducing device having a flow path through which a fluid passes and a switching mechanism that switches communication and blockage of the flow path. Installed inside the well with the channel closed, and the pressure reducing step reduces the pressure inside the well by switching the switching mechanism to communicate the blocked channel. It is characterized by that.
  • the installation step can be relatively moved to the first flow path connected to a connection pipe to which a packer for blocking the well is attached, and to the first flow path.
  • a pressure reducing device comprising: the flow path having a second flow path coupled to the flow path; a closing portion for closing the flow path; and the switching mechanism having a locking portion for locking the closing portion. It is installed inside the well, and the decompression step moves the first flow path and the second flow path relative to each other and is closed by the closing portion locked to the locking portion. The inside of the well is depressurized by communicating the flow path.
  • the crushing method according to a fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the decompression step decompresses the interior of the well installed in the bedrock containing a fluid in a supercritical state or a subcritical state. It is characterized by doing.
  • a decompression apparatus is a decompression apparatus used in the crushing method according to any of the first to fifth aspects of the invention, and is characterized in that the interior of the well is decompressed.
  • a decompression device is characterized in that, in the sixth aspect of the invention, a flow path through which the fluid passes and a switching mechanism that switches communication and blockage of the flow path are provided.
  • the crushing method to which the present invention is applied includes a decompression step of decompressing the interior of the well using a decompression device.
  • the interior of the well is decompressed.
  • a high-temperature and high-pressure fluid in a supercritical state or a subcritical state boiled under reduced pressure for this reason, according to the decompression device to which the present invention is applied, the rock mass is rapidly cooled by the latent heat of vaporization at the time of boiling under reduced pressure, and it is possible to generate a crack in the rock mass due to the thermal stress difference between the quenching portion and the other portions. Become.
  • FIG. 1 is a diagram showing a crushing system 100 used in a crushing method to which the present invention is applied.
  • the crushing system 100 is used in a crushing method to which the present invention is applied, and is used to generate a crack in the rock 9 near the bottom of the well 8.
  • the crushing system 100 is installed inside the well 8.
  • a plurality of casing pipes 81 are installed in the well 8.
  • the rock 9 near the bottom of the well 8 is a ductile region, and contains a high-temperature and high-pressure fluid in a supercritical state or a subcritical state.
  • the fluid contained in the bedrock 9 is water, a carbon dioxide, petroleum, natural gas, and shale gas, for example.
  • the length of the well 8 is, for example, 3 km or more although it depends on the bedrock 9 to be installed.
  • the crushing system 100 includes a decompression device 1 to which the present invention is applied, a tube body 2, a connecting tube 3, and a packer 4.
  • the decompression device 1 decompresses the inside of the well 8.
  • the decompression device 1 has a pipe body 2 connected to the upper end side and a connection pipe 3 connected to the lower end side.
  • a connecting pipe 3 connected to the pipe body 2 may be connected to the upper end side of the decompression device 1.
  • the pipe body 2 is formed by connecting a plurality of tubular members such as steel pipes and drill pipes.
  • the pipe body 2 is inserted into the casing pipe 81 of the well 8 and extends from the vicinity of the ground to the vicinity of the bottom of the well 8.
  • the connecting pipe 3 is a tubular member made of metal or the like around which the packer 4 is attached.
  • the packer 4 is expanded by a predetermined mechanism to block a gap (annulus portion) between the casing pipe 81 of the well 8 and the connecting pipe 3.
  • the packer 4 is made of, for example, resin or metal.
  • the packer 4 may be filled with a sealing liquid such as water and expanded due to thermal expansion of the sealing liquid.
  • the packer 4 in which the sealing liquid is sealed can be used even when the temperature of the rock mass 9 is 374 ° C. or higher, which is the critical point of water.
  • the connecting pipe 3 and the packer 4 are disposed on the lower side of the decompression device 1, but may be disposed on the upper side of the decompression device 1.
  • FIG. 2 is a diagram mainly showing a first embodiment of the decompression device 1 to which the present invention is applied.
  • the decompression device 1 according to the first embodiment includes a cylindrical flow path 11 through which a fluid passes, and a switching mechanism 12 that switches between communication and blockage of the flow path 11.
  • the flow path 11 has a cylindrical first flow path 111 connected to the connection pipe 3 side, and a cylindrical second flow path 112 connected to the tube body 2 side.
  • the first flow path 111 is disposed below the second flow path 112 and is inserted through the second flow path 112.
  • the first flow path 111 and the second flow path 112 are connected to each other via a first connection portion 113 using a shear pin or the like. By breaking the first connecting portion 113, the connection between the first flow path 111 and the second flow path 112 is released, and the first flow path 111 and the second flow path 112 can be moved relative to each other.
  • the switching mechanism 12 includes a rod-shaped contact part 121 fixed to the second flow path 112, an expansion / contraction part 122 attached to the first flow path 111, and an obstruction that is attached to the upper end of the expansion / contraction part 122 and closes the flow path 11. Part 123 and a locking part 124 for locking the closing part 123.
  • the contact portion 121 is formed with a recess 121a that is recessed in a conical shape or the like at the lower end.
  • the elastic part 122 is made of an elastic member such as a spring, for example.
  • the stretchable part 122 is attached to the first flow path 111 so as to be stretchable in the extending direction of the first flow path 111.
  • the locking portion 124 is formed in the first flow path 111 by reducing the diameter of the upper end side of the first flow path 111 from the other part of the first flow path.
  • the blocking portion 123 is blocked by the locking portion 124 to block the flow path 11.
  • the closing part 123 has a shape in which the upper end can be fitted into the recessed part 121a of the contact part 121, and is formed in a conical shape, for example.
  • FIG. 3 is a view showing the well 8 at the start of the crushing method to which the present invention is applied.
  • the crushing method to which the present invention is applied starts from a state where excavation of the well 8 is completed.
  • a plurality of casing pipes 81 are connected to the well 8.
  • the rock 9 near the bottom of the well 8 is a ductile region, and contains a high-temperature and high-pressure fluid in a supercritical state or a subcritical state.
  • the crushing method to which the present invention is applied includes an installation process and a decompression process.
  • FIG. 4 is a diagram showing an installation process of the crushing method to which the present invention is applied.
  • FIG. 5 is a diagram mainly showing the decompression device 1 according to the first embodiment in the installation process.
  • the crushing system 100 including the decompression device 1, the pipe body 2, the connection pipe 3, and the packer 4 is lowered to the vicinity of the bottom of the well 8, Install inside.
  • the bedrock 9 around the packer 4 installed in the well 8 contains a high-temperature and high-pressure fluid in a supercritical state or a subcritical state.
  • the flow path 11 of the decompression device 1 is installed inside the well 8 in a state of being blocked by the blocking portion 123.
  • the pressure in the channel 11 (first channel 111) on the lower side across the blocking portion 123 is above the blocking portion 123 by a high-temperature and high-pressure fluid in a supercritical state or a subcritical state.
  • the pressure in the side flow path 11 (second flow path 112) is higher.
  • first flow path 111 and the second flow path 112 are connected to each other via the first connection portion 113.
  • FIG. 6 is a diagram showing the crushing system 100 in a state where the gap between the well 8 and the connecting pipe 3 is blocked by the packer 4 in the decompression step.
  • the installed packer 4 is expanded.
  • the gap between the casing pipe 81 and the connection pipe 3 of the well 8 is blocked by the expanded packer 4. That is, in the decompression step, the packer 4 is expanded to block the interior of the well 8 into a region above the packer 4 and a region below the packer 4.
  • FIG. 7 is a diagram showing the crushing system 100 when the pressure is reduced by the pressure reducing device 1 in the pressure reducing step.
  • FIG. 8 is a diagram mainly showing the decompression device 1 of FIG. After the gap between the casing pipe 81 and the connection pipe 3 of the well 8 is blocked by the packer 4, the decompression step decompresses the region below the packer 4 inside the well 8 by the decompression device 1. Thereby, the fluid contained in the rock mass 9 flows into the connecting pipe 3 as shown in the arrow P direction in the figure.
  • the first connection portion 113 that connects the first flow path 111 and the second flow path 112 is broken, and the second flow path 112 is cut into the first flow path 111. Relative to the lower side. Since the gap between the casing pipe 81 and the connecting pipe 3 of the well 8 is blocked by the packer 4, the position of the connecting pipe 3 is fixed. For this reason, the position of the first flow path 111 connected to the connection pipe 3 is also fixed. Therefore, by applying a downward force to the second flow path 112, the first connecting portion 113 can be broken, and the second flow path 112 can be pushed down and moved relative to the first flow path 111. By moving the second flow path 112 downward, the contact portion 121 of the switching mechanism 12 is brought into contact with the closing portion 123. At this time, the recessed portion 121 a of the contact portion 121 is fitted to the upper end of the closing portion 123.
  • the expansion / contraction part 122 is deformed so as to be contracted via the closing part 123 in contact with the contact part 121.
  • the locking of the blocking portion 123 locked to the locking portion 124 is released, and a gap is generated between the blocking portion 123 and the first flow path 111, and as a result, the blocking portion 123 is blocked.
  • the flow path 11 is communicated. In this way, the blocked flow path 11 is switched by the switching mechanism 12, and the flow path 11 is communicated.
  • the gap between the casing pipe 81 of the well 8 and the connecting pipe 3 is blocked by the packer 4.
  • the high-temperature and high-pressure fluid in the supercritical state or the subcritical state flows from the connecting pipe 3 to the pipe body 2 through the flow path 11 in the direction of arrow P in the figure.
  • the region below the packer 4 is decompressed.
  • the decompression device 1 decompresses the region below the packer 4 inside the well 8.
  • the inside of the well 8 is depressurized by the depressurizer 1, so that the supercritical or subcritical high-temperature and high-pressure fluid contained in the rock 9 is depressurized and boiled.
  • the rock mass 9 is rapidly cooled by the latent heat of vaporization at the time of the boiling under reduced pressure, and a crack can be generated in the rock mass 9 due to the difference in thermal stress between the rapidly cooled portion and other portions.
  • FIG. 9 is a diagram showing the crushing system 100 at the end of the decompression process.
  • the fluid that has flowed into the flow path 11 also flows into the tube body 2, and the tube body 2 is filled with the fluid.
  • the expanded packer 4 is contracted to release the blockage of the gap between the casing pipe 81 of the well 8 and the connection pipe 3.
  • the decompression device 1, the pipe body 2, the connecting pipe 3, and the packer 4 are taken out of the well 8 and the fluid filled in the pipe body 2 is recovered.
  • the installation process and the decompression process are performed several times, and the crushing method to which the present invention is applied is completed.
  • the depressurization step of depressurizing the inside of the well 8 by the decompression device 1 is provided.
  • the fluid of a supercritical state or a subcritical state will boil under reduced pressure.
  • the rock mass 9 is rapidly cooled by the latent heat of evaporation at the time of boiling under reduced pressure, and a crack is generated in the rock mass 9 due to the difference in thermal stress between the rapid cooling portion and the other portions. It becomes possible.
  • the water permeability (permeability) of the rock mass 9 can be improved by generating cracks in the rock mass 9, and as a result, the fluid contained in the rock mass 9 can be efficiently recovered. It becomes possible to do.
  • the fracturing fluid is not pressed into the rock mass 9 at a high pressure unlike the conventional hydraulic crushing method. For this reason, since the installation for pressurizing to high pressure is not required, it becomes possible to reduce cost. Moreover, according to the crushing method to which the present invention is applied, the fracturing fluid itself is not required. For this reason, it becomes possible to prevent the surrounding water resources from being depleted and to reduce the load on the environment.
  • the decompression device 1 in a state where the flow path 11 is blocked is installed in the well 8, and the decompression process is blocked by switching the switching mechanism 12.
  • the inside of the well 8 is decompressed by communicating the channel 11 in the state.
  • the installation step is performed by installing the connection pipe 3 connected to the decompression device 1 and the packer 4 attached around the connection pipe 3 inside the well 8 and reducing the pressure.
  • the gap between the well 8 and the connecting pipe 3 is blocked by the packer 4, and the region below the packer 4 inside the well 8 is decompressed by the decompression device 1.
  • the crushing method to which the present invention in the decompression step, the fluid that has flowed from the connection pipe 3 is caused to flow into the tube body 2 through the flow path 11. Thereby, the crushing method to which the present invention is applied can efficiently collect the fluid.
  • a fluid in a supercritical state or a subcritical state is included in the rock 9 near the well 8 to be decompressed by the decompression process.
  • the fluid since the fluid has a high specific enthalpy, the fluid can be suitably used for supercritical geothermal power generation.
  • the inside of the well 8 is decompressed.
  • a high-temperature and high-pressure fluid in a supercritical state or a subcritical state boiles under reduced pressure.
  • the rock mass 9 is rapidly cooled by the latent heat of vaporization during the boiling under reduced pressure, and a crack is generated in the rock mass 9 due to the difference in thermal stress between the quenching portion and the other portions. Is possible.
  • the decompression device 1 to which the present invention is applied includes the flow path 11 through which the fluid contained in the rock mass 9 passes, and the switching mechanism 12 that switches between communication and blockage of the flow path 11.
  • the inside of the well 8 can be decompressed only by switching the switching mechanism 12. That is, it is possible to easily reduce the pressure inside the well 8.
  • the connecting pipe 3 around which the packer 4 is attached is connected to the flow path 11.
  • connection pipe 3 and the pipe body 2 are connected to the flow path 11.
  • the flow path 11 includes a first flow path 111 connected to the connection pipe 3 and a second flow path connected to the first flow path 111 so as to be relatively movable. 112, and the switching mechanism 12 has a closing portion 123 that closes the flow passage 11 and a locking portion 124 that locks the closing portion 123, and the first flow passage 111 and the second flow passage 112 are connected to each other. By relative movement, the locking of the blocking portion 123 locked to the locking portion 124 is released, and the flow path 11 is communicated.
  • the blocked channel 11 can be communicated only by relatively moving the first channel 111 and the second channel 112.
  • the inside of the well 8 can be decompressed only by relatively moving the first flow path 111 and the second flow path 112. That is, it is possible to more easily reduce the pressure inside the well 8.
  • the first flow path 111 and the second flow path 112 are connected via the first connecting portion 113, and the first connecting portion 113 is broken, so that the first flow The path 111 and the second flow path 112 can be moved relative to each other.
  • decompression inside well 8 can be performed at an arbitrary position.
  • the decompression device 1 to which the present invention is applied it has the closing portion 123 formed in a shape that can be fitted to the contact portion 121.
  • FIG. 10 is a diagram mainly showing a second embodiment of the decompression device 1 to which the present invention is applied.
  • the decompression device 1 according to the second embodiment includes a cylindrical flow path 11 through which the fluid contained in the rock mass 9 passes, and a switching mechanism 15 that switches between communication and blockage of the flow path 11. Is provided.
  • the switching mechanism 15 includes a rod-shaped contact portion 151 that is fixed to the first flow path 111, a cylindrical fixing portion 152 that is fixed to the inside of the second flow path 112, and a closing portion 153 that closes the flow path 11.
  • a locking portion 154 that locks the closing portion 153.
  • the fixing portion 152 and the closing portion 153 are connected to each other via a second connecting portion 155 using a shear pin or the like. By breaking the second connecting portion 155, the connection between the fixing portion 152 and the closing portion 153 is released, and the fixing portion 152 and the closing portion 153 can be moved relative to each other.
  • the fixing portion 152 has a locking portion 154 formed with a diameter smaller than that of other portions on the lower end side. In the illustrated form, the locking portion 154 and the closing portion 153 formed on the fixing portion 152 are coupled to each other via the second coupling portion 155.
  • the blocking portion 153 is blocked by the locking portion 154 to block the flow path 11.
  • the crushing method to which the present invention is applied includes an installation process and a decompression process.
  • the first flow path 111 and the second flow path 112 are connected to each other via the first connection portion 113.
  • the fixing portion 152 and the closing portion 153 are connected to each other via the second connecting portion 155.
  • a decompression process is performed.
  • the installed packer 4 is expanded.
  • the gap between the casing pipe 81 and the connection pipe 3 of the well 8 is blocked by the expanded packer 4.
  • the decompression step decompresses the region below the packer 4 inside the well 8 by the decompression device 1.
  • FIG. 11 is a diagram mainly showing the decompression device 1 in a state where the connection between the first flow path 111 and the second flow path 112 is released in the decompression process. Specifically, as shown in FIG. 11, in the decompression step, the first connection portion 113 that connects the first flow path 111 and the second flow path 112 is broken, and the second flow path 112 is cut into the first flow path 111. Relative to the lower side. Since the gap between the casing pipe 81 and the connecting pipe 3 of the well 8 is blocked by the packer 4, the position of the connecting pipe 3 is fixed. For this reason, the position of the first flow path 111 connected to the connection pipe 3 is also fixed.
  • the first connecting portion 113 can be broken, and the second flow path 112 can be pushed down and moved relative to the first flow path 111.
  • the closing portion 153 of the switching mechanism 15 is brought into contact with the contact portion 151.
  • FIG. 12 is a diagram mainly showing the decompression device 1 in a state in which the connection between the fixing portion 152 and the closing portion 153 is released in the decompression step.
  • the closing part 153 of the switching mechanism 15 contacts the contact part 151, the position of the closing part 153 is fixed. For this reason, by applying a downward force to the second flow path 112, the second connection part 155 that connects the fixing part 152 fixed to the second flow path 112 and the closing part 153 is broken, The two flow paths 112 can be moved further downward with respect to the first flow path 111. By moving the second flow path 112 further downward, the locking of the blocking portion 153 locked to the locking portion 154 is released, and a gap is generated between the blocking portion 153 and the fixing portion 152. As a result, the flow path 11 closed by the closing portion 153 is communicated. In this way, the closed flow path 11 is switched by the switching mechanism 15 and the flow path 11 is communicated.
  • the gap between the casing pipe 81 of the well 8 and the connecting pipe 3 is blocked by the packer 4.
  • the high-temperature and high-pressure fluid in the supercritical state or the subcritical state flows from the connecting pipe 3 to the pipe body 2 through the flow path 11 in the direction of arrow P in the figure.
  • the region below the packer 4 is decompressed.
  • the decompression device 1 decompresses the region below the packer 4 inside the well 8.
  • the inside of the well 8 is depressurized by the depressurizer 1, so that the supercritical or subcritical high-temperature and high-pressure fluid contained in the rock 9 is depressurized and boiled.
  • the rock mass 9 is rapidly cooled by the latent heat of vaporization at the time of the boiling under reduced pressure, and a crack can be generated in the rock mass 9 due to the difference in thermal stress between the rapidly cooled portion and other portions.
  • the fluid that has flowed into the flow path 11 also flows into the tube body 2, and the tube body 2 is filled with the fluid.
  • the expanded packer 4 is contracted, and the blocking of the gap between the casing tube 81 of the well 8 and the connection tube 3 is released. Thereafter, the decompression device 1, the pipe body 2, the connecting pipe 3, and the packer 4 are taken out of the well 8 and the fluid filled in the pipe body 2 is recovered.
  • a new installation process and a decompression process are performed.
  • the first connection portion 113 that has already been broken is replaced with a new first connection portion 113 that has not been broken, and the first flow path 111 and the second flow path 112 are connected. Keep it.
  • the already broken second connecting portion 155 is replaced with a new second connecting portion 155 that is not broken, and the fixing portion 152 and the closing portion 153 are connected to each other.
  • the installation process and the decompression process are performed several times, and the crushing method to which the present invention is applied is completed.
  • the interior of the well 8 is decompressed in the same manner as the decompression device 1 according to the first embodiment described above.
  • a high-temperature and high-pressure fluid in a supercritical state or a subcritical state boiles under reduced pressure.
  • the rock mass 9 is rapidly cooled by the latent heat of vaporization during the boiling under reduced pressure, and a crack is generated in the rock mass 9 due to the difference in thermal stress between the quenching portion and the other portions. Is possible.
  • the decompression device 1 to which the present invention is applied includes the flow path 11 through which the fluid contained in the rock mass 9 passes, and the switching mechanism 15 that switches between communication and blockage of the flow path 11.
  • the fluid contained in the rock mass 9 can be decompressed only by switching the switching mechanism 15. That is, it is possible to easily reduce the pressure inside the well 8.
  • the flow path 11 includes the first flow path 111 communicated with the connecting pipe 3 and the second flow path 112 that can move relative to the first flow path 111.
  • the switching mechanism 15 includes a closing portion 153 that closes the flow passage 11 and a locking portion 154 that locks the closing portion 153, and relatively moves the first flow passage 111 and the second flow passage 112. Thus, the locking of the blocking portion 123 locked to the locking portion 154 is released, and the flow path 11 is communicated.
  • the blocked channel 11 can be communicated only by relatively moving the first channel 111 and the second channel 112.
  • the inside of the well 8 can be decompressed only by relatively moving the first flow path 111 and the second flow path 112. That is, it is possible to more easily reduce the pressure inside the well 8.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

【課題】延性領域の岩盤であっても亀裂を発生させることが可能となる破砕工法を提供する。 【解決手段】本発明を適用した破砕工法は、岩盤に亀裂を発生させるために用いられるものであり、岩盤9に設置された坑井8の内部に、坑井8の内部を減圧する減圧装置1を設置する設置工程と、設置工程において設置した減圧装置1により坑井8の内部を減圧する減圧工程を備えることを特徴とする。設置工程は、減圧装置1に接続される接続管3と、接続管3に取り付けられるパッカー4と、を坑井8の内部に設置し、減圧工程は、パッカー4により坑井8と接続管3との隙間を遮断し、坑井8の内部におけるパッカー4よりも下方側の領域を減圧装置1により減圧する。

Description

破砕工法及びこれに用いられる減圧装置
 本発明は、岩盤を破砕するために用いられる破砕工法及びこれに用いられる減圧装置に関する。
 地熱発電は、地殻流体を利用して発電を行っている。現在発電に利用されている地殻流体領域は、純水の臨界点(374℃及び22MPa)以下である。今後、現在利用されている領域を超えた場所に存在する超臨界流体(臨界点以上の流体)を地熱発電に利用する超臨界地熱発電が検討されている。超臨界流体を地熱発電に利用するメリットは、比エンタルピーの高さである。例えば、250℃の飽和水蒸気圧(約4MPa)の液相の比エンタルピーは約1000kJ/kgであるのに対し、400℃の加熱蒸気の比エンタルピーは約3000kJ/kgである。
 従来、石油、天然ガス、シェールガス等の地下資源を採取する際に用いられる水圧破砕法が知られている。この水圧破砕法は、坑井内に満たされた水等のフラクチャリング流体を高圧で岩盤に圧入することで、岩盤に亀裂を発生させる方法である。
 フラクチャリング流体には、生成した亀裂が地中の圧力等による崩壊を防ぐために、プロパントと呼ばれる亀裂支持材が添加されることもある。従来の水圧破砕法では、砂等の粒状物をプロパントとして添加したフラクチャリング流体を高圧で圧入する。また、特許文献1に開示される水圧破砕法を利用した地下資源の採掘方法では、亀裂を一時的に塞ぐ加水分解性材料をブロッキングするための加水分解性ブロッキング剤を添加したフラクチャリング流体を高圧で圧入する。
 従来の水圧破砕法及び特許文献1に開示される採掘方法によれば、フラクチャリング流体を高圧で圧入して岩盤に亀裂を発生させることにより、岩盤の透水性(透過性)を向上させ、効率よく地下資源を採取できるとされている。
特開2016-098503号公報
 ところで、超臨界流体を地熱発電に利用するためには、超臨界流体が存在する岩盤の透水性が重要となる。岩盤の透水性は、深度とともに大きく減少するとされている。
 また、地殻の脆性、即ち岩盤のせん断強度は、深度が深くなるに従って大きくなる。この強度変化は、いわゆる摩擦則に従う。つまり、所定の深度までは、岩盤に力を加えることにより破壊する脆性領域の岩盤となる。一方、深度とともに、温度も上昇することから、所定の深度以降では、岩盤に力を加えることにより変形する延性領域の岩盤となる。
 上述した従来の水圧破砕法及び特許文献1に開示される採取方法は、岩盤の透水性を向上させるために、フラクチャリング流体を高圧で圧入することから、あくまで力を加えることにより破壊する脆性領域の岩盤に適用できるものである。即ち、超臨界流体が存在する延性領域の岩盤にフラクチャリング流体を高圧で圧入したとしても、延性領域の岩盤に亀裂を発生させることができず、その結果、岩盤の透水性を向上させることができない。このため、従来の水圧破砕法及び特許文献1に開示される採取方法は、延性領域の岩盤に適用することができない。
 したがって、延性領域の岩盤に亀裂を発生させて、延性領域の岩盤に存在する超臨界流体を利用する技術が切望されている。
 そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、延性領域の岩盤であっても亀裂を発生させることが可能となる破砕工法及びこれに用いられる減圧装置を提供することにある。
 第1発明に係る破砕工法は、岩盤に亀裂を発生させるために用いられる破砕工法であって、前記岩盤に設置された坑井の内部に、前記坑井の内部を減圧する減圧装置を設置する設置工程と、前記設置工程において設置した前記減圧装置により前記坑井の内部を減圧する減圧工程を備えることを特徴とする。
 第2発明に係る破砕工法は、第1発明において、前記設置工程は、前記減圧装置に接続される接続管と、前記接続管に取り付けられるパッカーと、を前記坑井の内部に設置し、前記減圧工程は、前記パッカーにより前記坑井と前記接続管との隙間を遮断し、前記坑井の内部における前記パッカーよりも下方側の領域を前記減圧装置により減圧することを特徴とする。
 第3発明に係る破砕工法は、第1発明又は第2発明において、前記設置工程は、流体が通る流路と、前記流路の連通及び閉塞を切り替える切替機構とを有する前記減圧装置を、前記流路が閉塞された状態で前記坑井の内部に設置し、前記減圧工程は、前記切替機構を切り替えて閉塞された状態の前記流路を連通させることで、前記坑井の内部を減圧することを特徴とする。
 第4発明に係る破砕工法は、第3発明において、前記設置工程は、前記坑井を遮断するパッカーが取り付けられる接続管に接続される第1流路と、前記第1流路に相対移動可能に連結された第2流路と、を有する前記流路と、前記流路を閉塞する閉塞部と、前記閉塞部を係止する係止部を有する前記切替機構と、を有する前記減圧装置を前記坑井の内部に設置し、前記減圧工程は、前記第1流路と前記第2流路を相対移動させ、前記係止部に係止されていた前記閉塞部により閉塞された状態の前記流路を連通させることで、前記坑井の内部を減圧することを特徴とする。
 第5発明に係る破砕工法は、第1発明~第4発明の何れかにおいて、前記減圧工程は、超臨界状態又は亜臨界状態の流体を含む前記岩盤に設置された前記坑井の内部を減圧することを特徴とする。
 第6発明に係る減圧装置は、第1発明~第5発明の何れかの破砕工法に用いられる減圧装置であって、前記坑井の内部を減圧するものであることを特徴とする。
 第7発明に係る減圧装置は、第6発明において、流体が通る流路と、前記流路の連通及び閉塞を切り替える切替機構とを備えることを特徴とする。
 本発明を適用した破砕工法によれば、坑井の内部を減圧装置により減圧する減圧工程を備える。これにより、本発明を適用した破砕工法によれば、超臨界状態又は亜臨界状態の高温高圧な流体が減圧沸騰することとなる。このため、本発明を適用した破砕工法によれば、減圧沸騰の際の蒸発潜熱により岩盤が急冷却され、急冷部分と他の部分との熱応力差により岩盤に亀裂を発生させることが可能となる。
 本発明を適用した減圧装置によれば、坑井の内部を減圧する。これにより、本発明を適用した減圧装置によれば、超臨界状態又は亜臨界状態の高温高圧な流体が減圧沸騰することとなる。このため、本発明を適用した減圧装置によれば、減圧沸騰の際の蒸発潜熱により岩盤が急冷却され、急冷部分と他の部分との熱応力差により岩盤に亀裂を発生させることが可能となる。
本発明を適用した破砕工法に用いられる破砕システムを示す図である。 本発明を適用した減圧装置の第1実施形態を主に示す図である。 本発明を適用した破砕工法の開始時における坑井を示す図である。 本発明を適用した破砕工法の設置工程を示す図である。 設置工程における第1実施形態に係る減圧装置を主に示す図である。 減圧工程においてパッカーにより坑井と接続管との隙間を遮断した状態の破砕システムを示す図である。 減圧工程において減圧装置により減圧する際の破砕システムを示す図である。 図7の減圧装置を主に示す図である。 減圧工程終了時における破砕システムを示す図である。 本発明を適用した減圧装置の第2実施形態を主に示す図である。 減圧工程において第1流路と第2流路との連結を解除した状態の減圧装置を主に示す図である。 減圧工程において固定部と閉塞部との連結を解除した状態の減圧装置を主に示す図である。
 以下、本発明を適用した破砕工法及びこれに用いられる減圧装置を実施するための形態について、図面を参照しながら詳細に説明する。
 図1は、本発明を適用した破砕工法に用いられる破砕システム100を示す図である。
 破砕システム100は、本発明を適用した破砕工法に用いられ、坑井8の坑底近傍の岩盤9に亀裂を発生させるために用いられる。破砕システム100は、坑井8の内側に設置される。坑井8には、複数のケーシング管81が設置されている。坑井8の坑底近傍の岩盤9は、延性領域となっており、超臨界状態又は亜臨界状態の高温高圧な流体が含まれる。また、岩盤9に含まれる流体は、例えば、水、二酸化炭素、石油、天然ガス、シェールガスである。坑井8の長さは、設置される岩盤9にもよるが、例えば、3km以上である。
 破砕システム100は、本発明を適用した減圧装置1と、管体2と、接続管3と、パッカー4と、を備える。
 減圧装置1は、坑井8の内部を減圧するものである。減圧装置1は、上端側に管体2が接続され、下端側に接続管3が接続される。なお、減圧装置1の上端側に、管体2に接続された接続管3が接続されてもよい。
 管体2は、鋼管、ドリルパイプ等の管状部材が複数連結されるものである。管体2は、、坑井8のケーシング管81に挿入され、地上近傍から坑井8の坑底近傍まで延びている。
 接続管3は、その周囲にパッカー4が取り付けられる金属製等の管状部材である。
 パッカー4は、所定の機構により膨張することで、坑井8のケーシング管81と接続管3との隙間(アニュラス部)を遮断するものである。
 パッカー4は、例えば、樹脂製、金属製のものが用いられる。この他、パッカー4は、その内部に水等の封入液が封入されて、封入液の熱膨張によって膨張するものであってもよい。封入液が封入されたパッカー4は、岩盤9の温度が水の臨界点である374℃以上であっても使用することができる。
 なお、図1に示す形態において、接続管3及びパッカー4は、減圧装置1の下方側に配置されるが、減圧装置1の上方側に配置されてもよい。
 図2は、本発明を適用した減圧装置1の第1実施形態を主に示す図である。第1実施形態に係る減圧装置1は、流体が通るための筒状の流路11と、流路11の連通と閉塞とを切り替える切替機構12とを有する。
 流路11は、接続管3側に接続される筒状の第1流路111と、管体2側に接続される筒状の第2流路112と、有する。第1流路111は、第2流路112の下方側に配置され、第2流路112に挿通される。
 第1流路111と第2流路112とは、シャーピン等が用いられる第1連結部113を介して互いに連結される。第1連結部113を破断させることで、第1流路111と第2流路112との連結が解除され、第1流路111と第2流路112とが相対移動可能となる。
 切替機構12は、第2流路112に固定される棒状の接触部121と、第1流路111に取り付けられる伸縮部122と、伸縮部122の上端に取り付けられるとともに流路11を閉塞する閉塞部123と、閉塞部123を係止する係止部124とを有する。
 接触部121は、下端に円錐形状等に窪ませられた窪み部121aが形成される。
 伸縮部122は、例えば、スプリング等の伸縮可能な弾性部材が用いられる。伸縮部122は、第1流路111の延伸方向に伸縮可能に第1流路111に取り付けられる。
 係止部124は、第1流路111の上端側が第1流路の他の部分よりも縮径されて、第1流路111に形成される。
 閉塞部123は、係止部124に係止されることで流路11を閉塞するものとなる。閉塞部123は、上端が接触部121の窪み部121aに嵌合可能な形状であり、例えば、円錐形状等に形成される。
 次に、第1実施形態に係る減圧装置1を用いた、本発明を適用した破砕工法について説明する。
 図3は、本発明を適用した破砕工法の開始時における坑井8を示す図である。本発明を適用した破砕工法は、先ず、坑井8の掘削が完了した状態から開始する。この坑井8には、ケーシング管81が複数連結されている。坑井8の坑底近傍の岩盤9は、延性領域となっており、超臨界状態又は亜臨界状態の高温高圧な流体が含まれる。
 本発明を適用した破砕工法は、設置工程と、減圧工程とを備える。
 図4は、本発明を適用した破砕工法の設置工程を示す図である。図5は、設置工程における第1実施形態に係る減圧装置1を主に示す図である。
 図4に示すように、設置工程は、減圧装置1と、管体2と、接続管3と、パッカー4とを備える破砕システム100を坑井8の坑底近傍まで降下し、坑井8の内部に設置する。坑井8に設置されるパッカー4の周辺の岩盤9には、超臨界状態又は亜臨界状態の高温高圧な流体が含まれている。
 図5に示すように、設置工程において、減圧装置1の流路11は、閉塞部123により閉塞された状態で坑井8の内部に設置される。設置工程においては、閉塞部123を挟んで下方側の流路11(第1流路111)内の圧力は、超臨界状態又は亜臨界状態の高温高圧な流体により、閉塞部123を挟んで上方側の流路11(第2流路112)内の圧力よりも高圧となっている。
 また、設置工程では、第1流路111と第2流路112とは、第1連結部113を介して互いに連結されている。
 設置工程の後に、減圧工程を行う。図6は、減圧工程においてパッカー4により坑井8と接続管3との隙間を遮断した状態の破砕システム100を示す図である。減圧工程は、設置したパッカー4を膨張させる。減圧工程は、膨張させたパッカー4により坑井8のケーシング管81と接続管3との隙間を遮断する。つまり、減圧工程では、パッカー4を膨張させることにより、坑井8の内部を、パッカー4よりも上方側の領域と、パッカー4よりも下方側の領域と、に遮断する。
 図7は、減圧工程において減圧装置1により減圧する際の破砕システム100を示す図である。図8は、図7の減圧装置1を主に示す図である。パッカー4により坑井8のケーシング管81と接続管3との隙間を遮断した後、減圧工程は、坑井8の内部におけるパッカー4よりも下方側の領域を減圧装置1により減圧する。これにより、岩盤9に含まれる流体が図中矢印P方向に示すように接続管3に流入する。
 詳細には、図8に示すように、減圧工程は、第1流路111と第2流路112とを連結した第1連結部113を破断させ、第2流路112を第1流路111に対して下方側に相対移動させる。坑井8のケーシング管81と接続管3との隙間をパッカー4により遮断したことにより、接続管3の位置が固定される。このため、接続管3に接続される第1流路111の位置も固定される。したがって、第2流路112に下方に向けて力を加えることにより第1連結部113を破断させ、第1流路111に対して第2流路112を下方に押し下げて移動させることができる。第2流路112を下方に移動させることで、切替機構12の接触部121が閉塞部123に接触される。このとき、接触部121の窪み部121aが閉塞部123の上端に嵌合される。
 そして、第2流路112を第1流路111に対して更に下方側に移動させることにより、接触部121に接触した閉塞部123を介して伸縮部122が縮むように変形する。これにより、係止部124に係止されていた閉塞部123の係止が解除され、閉塞部123と第1流路111との間に隙間が生じる、その結果、閉塞部123により閉塞した状態の流路11が連通される。このようにして、閉塞した状態の流路11が切替機構12により切り替えられ、流路11が連通されることとなる。
 このとき、パッカー4により坑井8のケーシング管81と接続管3との隙間が遮断されている。このため、超臨界状態又は亜臨界状態の高温高圧な流体は、接続管3から図中矢印P方向で流路11を通り、管体2まで流入する。流路11及び管体2に流体が流入することにより、パッカー4よりも下方側の領域が減圧されることとなる。このようにして、減圧工程は、坑井8の内部におけるパッカー4よりも下方側の領域を減圧装置1により減圧する。
 減圧工程において、坑井8の内部を減圧装置1により減圧することにより、岩盤9に含まれる超臨界状態又は亜臨界状態の高温高圧な流体が減圧沸騰することとなる。このため、その減圧沸騰の際の蒸発潜熱により岩盤9が急冷却され、急冷部分と他の部分との熱応力差により岩盤9に亀裂を発生させることが可能となる。
 図9は、減圧工程終了時における破砕システム100を示す図である。図9に示すように、流路11に流入した流体は、管体2にも流入し、管体2が流体で満たされることとなる。管体2に流体が満たされた後、膨張させていたパッカー4を収縮させ、坑井8のケーシング管81と接続管3との隙間の遮断を解除する。その後、減圧装置1、管体2、接続管3、パッカー4を坑井8の外部に取り出して、管体2に満たされた流体を回収する。
 そして、管体2に満たされた流体を回収した後に、新たに設置工程と、減圧工程とを行う。新たに設置工程を行う前には、既に破断させた第1連結部113を破断していない新たな第1連結部113に交換し、第1流路111と第2流路112とを連結しておく。
 設置工程と、減圧工程とを複数回行い、本発明を適用した破砕工法が完了する。
 次に、本発明を適用した破砕工法の作用効果について説明する。
 本発明を適用した破砕工法によれば、坑井8の内部を減圧装置1により減圧する減圧工程を備える。これにより、本発明を適用した破砕工法によれば、超臨界状態又は亜臨界状態の流体が減圧沸騰することとなる。このため、本発明を適用した破砕工法によれば、減圧沸騰の際の蒸発潜熱により岩盤9が急冷却され、急冷部分と他の部分との熱応力差により岩盤9に亀裂を発生させることが可能となる。
 本発明を適用した破砕工法によれば、岩盤9に亀裂を発生させることにより、岩盤9の透水性(透過性)を向上させることができ、その結果、岩盤9に含まれる流体を効率よく回収することが可能となる。
 本発明を適用した破砕工法によれば、従来の水圧破砕法のように、フラクチャリング流体を岩盤9に高圧で圧入しない。このため、高圧に加圧するための設備を必要としないため、コストを低減することが可能となる。また、本発明を適用した破砕工法によれば、フラクチャリング流体自体を必要としない。このため、周囲の水資源の枯渇を防止し、環境への負荷を低減することが可能となる。
 本発明を適用した破砕工法によれば、設置工程は、流路11が閉塞された状態の減圧装置1を坑井8の内部に設置し、減圧工程は、切替機構12を切り替えて閉塞された状態の流路11を連通させることで、坑井8の内部を減圧する。これにより、本発明によれば、減圧装置1の切替機構12の切り替えだけで、坑井8の内部を減圧することが可能となる。即ち、坑井8の内部の減圧を容易に行うことが可能となる。
 本発明を適用した破砕工法によれば、設置工程は、減圧装置1に接続される接続管3と、接続管3の周囲に取り付けられるパッカー4と、を坑井8の内部に設置し、減圧工程は、パッカー4により坑井8と接続管3との隙間を遮断し、坑井8の内部におけるパッカー4の下方側の領域を減圧装置1により減圧する。これにより、本発明を適用した破砕工法によれば、パッカー4により遮断した坑井8のケーシング管81と接続管3の隙間から流体が漏れるのを防止できる。このため、流体を接続管3に確実に流入させることができ、効果的に坑井8の内部を減圧することが可能となる。
 更に、本発明を適用した破砕工法によれば、減圧工程は、接続管3から流入した流体を流路11を介して管体2に流入させる。これにより、本発明を適用した破砕工法は、流体を効率よく回収することが可能となる。
 特に、本発明を適用した破砕工法によれば、減圧工程により減圧する坑井8の近傍の岩盤9に超臨界状態又は亜臨界状態の流体が含まれる。このとき、当該流体が高い比エンタルピーを有するため、この流体を超臨界地熱発電に好適に利用することが可能となる。
 次に、第1実施形態に係る減圧装置1の作用効果について説明する。
 本発明を適用した減圧装置1によれば、坑井8の内部を減圧する。これにより、本発明を適用した減圧装置1によれば、超臨界状態又は亜臨界状態の高温高圧な流体が減圧沸騰することとなる。このため、本発明を適用した減圧装置1によれば、減圧沸騰の際の蒸発潜熱により岩盤9が急冷却され、急冷部分と他の部分との熱応力差により岩盤9に亀裂を発生させることが可能となる。
 本発明を適用した減圧装置1によれば、岩盤9に含まれる流体が通る流路11と、流路11の連通と閉塞とを切り替える切替機構12とを備える。これにより、本発明を適用した減圧装置1によれば、切替機構12の切り替えだけで坑井8の内部を減圧することができる。即ち、坑井8の内部の減圧を容易に行うことが可能となる。
 本発明を適用した減圧装置1によれば、パッカー4が周囲に取り付けられる接続管3が、流路11に接続される。これにより、本発明を適用した減圧装置1によれば、ケーシング管81と接続管3の隙間から流体が漏れるのを防止できる。このため、流体を接続管3に確実に流入させることができ、効果的に坑井8の内部を減圧することが可能となる。
 更に、本発明を適用した減圧装置1によれば、接続管3と管体2とが流路11に接続される。これにより、本発明を適用した減圧装置1によれば、接続管3から流入した流体を流路11を介して管体2に流入させることができる。このため、流体を効率よく回収することが可能となる。
 本発明を適用した減圧装置1によれば、流路11は、接続管3に接続される第1流路111と、第1流路111に対して相対移動可能に連結された第2流路112とを有し、切替機構12が流路11を閉塞する閉塞部123と、閉塞部123を係止する係止部124とを有し、第1流路111と第2流路112とを相対移動させることで、係止部124に係止された閉塞部123の係止が解除されて、流路11が連通される。
 これにより、本発明を適用した減圧装置1によれば、第1流路111と第2流路112とを相対移動させるだけで、閉塞された状態の流路11を連通させることができる。このため、本発明を適用した減圧装置1によれば、第1流路111と第2流路112とを相対移動させるだけで坑井8の内部を減圧することができる。即ち、坑井8の内部の減圧を一層容易に行うことが可能となる。
 本発明を適用した減圧装置1によれば、第1流路111と第2流路112とが第1連結部113を介して連結され、第1連結部113を破断させることで、第1流路111と第2流路112とが相対移動可能となる。これにより、本発明を適用した減圧装置1によれば、坑井8の内部の減圧を任意の位置で行うことが可能となる。
 本発明を適用した減圧装置1によれば、接触部121に嵌合可能な形状に形成される閉塞部123を有する。これにより、本発明を適用した減圧装置1によれば、閉塞部123が接触部121に接触したとき、閉塞部123が接触部121に嵌合される。このため、流体が流路11を通ったとしても、閉塞部123を安定した状態に保つことができる。その結果、流路11を連通させた状態を維持することが可能となる。
 次に、本発明を適用した減圧装置の第2実施形態について説明する。第1実施形態に係る減圧装置と同一の構成は同一の符号を付すことにより、以下での詳細な説明を省略する。
 図10は、本発明を適用した減圧装置1の第2実施形態を主に示す図である。第2実施形態に係る減圧装置1は、図10に示すように、岩盤9に含まれる流体が通るための筒状の流路11と、流路11の連通と閉塞とを切り替える切替機構15とを備える。
 切替機構15は、第1流路111に固定される棒状の接触部151と、第2流路112の内側に固定される筒状の固定部152と、流路11を閉塞する閉塞部153と、閉塞部153を係止する係止部154と、を有する。
 固定部152と閉塞部153とは、シャーピン等が用いられる第2連結部155を介して互いに連結される。第2連結部155を破断させることで、固定部152と閉塞部153との連結が解除され、固定部152と閉塞部153とが相対移動可能となる。固定部152は、下端側に他の部分よりも縮径されて形成される係止部154を有する。図示の形態では、固定部152に形成される係止部154と閉塞部153とが第2連結部155を介して互いに連結されている。
 閉塞部153は、係止部154に係止されることで流路11を閉塞するものとなる。
 次に、第2実施形態に係る減圧装置1を用いた、本発明を適用した破砕工法について説明する。
 本発明を適用した破砕工法は、設置工程と、減圧工程とを備える。
 設置工程では、第1流路111と第2流路112とは、第1連結部113を介して互いに連結されている。また、設置工程では、固定部152と閉塞部153とは、第2連結部155を介して互いに連結されている。その他については、上述した設置工程と同様であるため、説明を省略する。
 設置工程の後に、減圧工程を行う。減圧工程は、設置したパッカー4を膨張させる。減圧工程は、膨張させたパッカー4により坑井8のケーシング管81と接続管3との隙間を遮断する。
 そして、パッカー4により坑井8のケーシング管81と接続管3との隙間を遮断した後、減圧工程は、坑井8の内部におけるパッカー4の下方側の領域を減圧装置1により減圧する。
 図11は、減圧工程において第1流路111と第2流路112との連結を解除した状態の減圧装置1を主に示す図である。詳細には、図11に示すように、減圧工程は、第1流路111と第2流路112とを連結した第1連結部113を破断させ、第2流路112を第1流路111に対して下方側に相対移動させる。坑井8のケーシング管81と接続管3との隙間をパッカー4により遮断したことにより、接続管3の位置が固定される。このため、接続管3に接続される第1流路111の位置も固定される。したがって、第2流路112に下方に向けて力を加えることにより第1連結部113を破断させ、第1流路111に対して第2流路112を下方に押し下げて移動させることができる。第2流路112を下方に移動させることで、切替機構15の閉塞部153が接触部151に接触される。
 図12は、減圧工程において固定部152と閉塞部153との連結を解除した状態の減圧装置1を主に示す図である。切替機構15の閉塞部153が接触部151に接触したことにより、閉塞部153の位置が固定される。このため、第2流路112に更に下方に向けて力を加えることにより、第2流路112に固定された固定部152と閉塞部153とを連結した第2連結部155を破断させ、第2流路112を第1流路111に対して更に下方に移動させることができる。第2流路112を更に下方に移動させることにより、係止部154に係止されていた閉塞部153の係止が解除され、閉塞部153と固定部152との間に隙間が生じる。その結果、閉塞部153により閉塞した状態の流路11が連通される。このようにして、閉塞した状態の流路11が切替機構15により切り替えられ、流路11が連通されることとなる。
 このとき、パッカー4により坑井8のケーシング管81と接続管3との隙間が遮断されている。このため、超臨界状態又は亜臨界状態の高温高圧な流体は、接続管3から図中矢印P方向で流路11を通り、管体2まで流入する。流路11及び管体2に流体が流入することにより、パッカー4よりも下方側の領域が減圧されることとなる。このようにして、減圧工程は、坑井8の内部におけるパッカー4よりも下方側の領域を減圧装置1により減圧する。
 減圧工程において、坑井8の内部を減圧装置1により減圧することにより、岩盤9に含まれる超臨界状態又は亜臨界状態の高温高圧な流体が減圧沸騰することとなる。このため、その減圧沸騰の際の蒸発潜熱により岩盤9が急冷却され、急冷部分と他の部分との熱応力差により岩盤9に亀裂を発生させることが可能となる。
 流路11に流入した流体は、管体2にも流入し、管体2が流体で満たされることとなる。管体2が流体に満たされた後、膨張させていたパッカー4を収縮させ、坑井8のケーシング管81と接続管3との隙間の遮断を解除する。その後、減圧装置1、管体2、接続管3、パッカー4を坑井8の外部に取り出して、管体2に満たされた流体を回収する。
 そして、管体2に満たされた流体を回収した後に、新たに設置工程と、減圧工程とを行う。新たに設置工程を行う前には、既に破断させた第1連結部113を破断していない新たな第1連結部113に交換し、第1流路111と第2流路112とを連結しておく。また、既に破断させた第2連結部155も同様に、破断していない新たな第2連結部155に交換し、固定部152と閉塞部153とを互いに連結しておく。
 設置工程と、減圧工程とを複数回行い、本発明を適用した破砕工法が完了する。
 次に、第2実施形態に係る減圧装置1の作用効果について説明する。
 第2実施形態に係る減圧装置1によれば、上述した第1実施形態に係る減圧装置1と同様に、坑井8の内部を減圧する。これにより、本発明を適用した減圧装置1によれば、超臨界状態又は亜臨界状態の高温高圧な流体が減圧沸騰することとなる。このため、本発明を適用した減圧装置1によれば、減圧沸騰の際の蒸発潜熱により岩盤9が急冷却され、急冷部分と他の部分との熱応力差により岩盤9に亀裂を発生させることが可能となる。
 本発明を適用した減圧装置1によれば、岩盤9に含まれる流体が通る流路11と、流路11の連通と閉塞とを切り替える切替機構15とを備える。これにより、本発明を適用した減圧装置1によれば、切替機構15の切り替えだけで、岩盤9に含まれる流体を減圧することができる。即ち、坑井8の内部の減圧を容易に行うことが可能となる。
 本発明を適用した減圧装置1によれば、流路11は、接続管3に連通される第1流路111と、第1流路111に対して相対移動可能な第2流路112とを有し、切替機構15が流路11を閉塞する閉塞部153と、閉塞部153を係止する係止部154とを有し、第1流路111と第2流路112とを相対移動させることで、係止部154に係止された閉塞部123の係止が解除されて、流路11が連通される。
 これにより、本発明を適用した減圧装置1によれば、第1流路111と第2流路112とを相対移動させるだけで、閉塞された状態の流路11を連通させることができる。このため、本発明を適用した減圧装置1によれば、第1流路111と第2流路112とを相対移動させるだけで坑井8の内部を減圧することができる。即ち、坑井8の内部の減圧を一層容易に行うことが可能となる。
 以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。
100  :破砕システム
1    :減圧装置
11   :流路
111  :第1流路
112  :第2流路
113  :第1連結部
12   :切替機構
121  :接触部
121a :窪み部
122  :伸縮部
123  :閉塞部
124  :係止部
15   :切替機構
151  :接触部
152  :固定部
153  :閉塞部
154  :係止部
155  :第2連結部
2    :管体
3    :接続管
4    :パッカー
8    :坑井
81   :ケーシング管
9    :岩盤

Claims (7)

  1.  岩盤に亀裂を発生させるために用いられる破砕工法であって、
     前記岩盤に設置された坑井の内部に、前記坑井の内部を減圧する減圧装置を設置する設置工程と、
     前記設置工程において設置した前記減圧装置により前記坑井の内部を減圧する減圧工程を備えること
     を特徴とする破砕工法。
  2.  前記設置工程は、前記減圧装置に接続される接続管と、前記接続管に取り付けられるパッカーと、を前記坑井の内部に設置し、
     前記減圧工程は、前記パッカーにより前記坑井と前記接続管との隙間を遮断し、前記坑井の内部における前記パッカーよりも下方側の領域を前記減圧装置により減圧すること
     を特徴とする請求項1記載の破砕工法。
  3.  前記設置工程は、流体が通る流路と、前記流路の連通及び閉塞を切り替える切替機構とを有する前記減圧装置を、前記流路が閉塞された状態で前記坑井の内部に設置し、
     前記減圧工程は、前記切替機構を切り替えて閉塞された状態の前記流路を連通させることで、前記坑井の内部を減圧すること
     を特徴とする請求項1又は2記載の破砕工法。
  4.  前記設置工程は、
      前記坑井を遮断するパッカーが取り付けられる接続管に接続される第1流路と、前記第1流路に相対移動可能に連結された第2流路と、を有する前記流路と、
      前記流路を閉塞する閉塞部と、前記閉塞部を係止する係止部を有する前記切替機構と、
     を有する前記減圧装置を前記坑井の内部に設置し、
     前記減圧工程は、前記第1流路と前記第2流路を相対移動させ、前記係止部に係止されていた前記閉塞部により閉塞された状態の前記流路を連通させることで、前記坑井の内部を減圧すること
     を特徴とする請求項3記載の破砕工法。
  5.  前記減圧工程は、超臨界状態又は亜臨界状態の流体を含む前記岩盤に設置された前記坑井の内部を減圧すること
     を特徴とする請求項1~4の何れか1項記載の破砕工法。
  6.  請求項1~5の何れか1項記載の破砕工法に用いられる減圧装置であって、
     前記坑井の内部を減圧するものであること
     を特徴とする減圧装置。
  7.  流体が通る流路と、前記流路の連通及び閉塞を切り替える切替機構とを備えること
     を特徴とする請求項6記載の減圧装置。
PCT/JP2019/003490 2018-02-05 2019-01-31 破砕工法及びこれに用いられる減圧装置 WO2019151443A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19748135.1A EP3751093A4 (en) 2018-02-05 2019-01-31 CRUSHING PROCESS AND DEPRESSURIZING DEVICE USED FOR THIS
US16/967,035 US11326433B2 (en) 2018-02-05 2019-01-31 Fracturing method and depressurizing device used for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-018477 2018-02-05
JP2018018477A JP6969057B2 (ja) 2018-02-05 2018-02-05 破砕工法及びこれに用いられる減圧装置

Publications (1)

Publication Number Publication Date
WO2019151443A1 true WO2019151443A1 (ja) 2019-08-08

Family

ID=67478319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003490 WO2019151443A1 (ja) 2018-02-05 2019-01-31 破砕工法及びこれに用いられる減圧装置

Country Status (4)

Country Link
US (1) US11326433B2 (ja)
EP (1) EP3751093A4 (ja)
JP (1) JP6969057B2 (ja)
WO (1) WO2019151443A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595646A (zh) * 2020-05-28 2020-08-28 中国矿业大学 一种煤岩试样内部任意角度裂缝预制装置及方法
CN112945724A (zh) * 2021-01-28 2021-06-11 中国科学院武汉岩土力学研究所 基于纳米压痕的裂纹尖端断裂过程区域确定方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855029B (zh) * 2021-04-26 2021-07-20 中铁九局集团第七工程有限公司 一种采空区钻孔外扩管施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236179A (ja) * 2009-03-30 2010-10-21 Taisei Corp 採取装置及び水底資源の採取方法
JP2014234794A (ja) * 2013-06-04 2014-12-15 大成建設株式会社 地熱発電方法および地熱発電システム
JP2016098503A (ja) 2014-11-19 2016-05-30 東洋製罐グループホールディングス株式会社 水圧破砕法を利用しての地下資源の採掘方法及び水圧破砕に用いる流体に添加される加水分解性ブロッキング剤
JP2017110367A (ja) * 2015-12-15 2017-06-22 帝石削井工業株式会社 パッカー

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA908044A (en) * 1972-08-22 D. Kilgore Marion Cement retainer valve for well packers
US2384090A (en) * 1944-10-20 1945-09-04 Hartsell Lee Well tool
US2974922A (en) * 1957-09-30 1961-03-14 Baker Oil Tools Inc Tubing control valve apparatus
US3308882A (en) * 1963-12-24 1967-03-14 Schlumberger Technology Corp Well testing method and apparatus
US5014788A (en) * 1990-04-20 1991-05-14 Amoco Corporation Method of increasing the permeability of a coal seam
US6877566B2 (en) * 2002-07-24 2005-04-12 Richard Selinger Method and apparatus for causing pressure variations in a wellbore
US8485257B2 (en) * 2008-08-06 2013-07-16 Chevron U.S.A. Inc. Supercritical pentane as an extractant for oil shale
WO2013130491A2 (en) * 2012-03-01 2013-09-06 Shell Oil Company Fluid injection in light tight oil reservoirs
FR3064004B1 (fr) * 2017-03-20 2019-03-29 S.P.C.M. Sa Forme cristalline hydratee de l'acide 2-acrylamido-2-methylpropane sulfonique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236179A (ja) * 2009-03-30 2010-10-21 Taisei Corp 採取装置及び水底資源の採取方法
JP2014234794A (ja) * 2013-06-04 2014-12-15 大成建設株式会社 地熱発電方法および地熱発電システム
JP2016098503A (ja) 2014-11-19 2016-05-30 東洋製罐グループホールディングス株式会社 水圧破砕法を利用しての地下資源の採掘方法及び水圧破砕に用いる流体に添加される加水分解性ブロッキング剤
JP2017110367A (ja) * 2015-12-15 2017-06-22 帝石削井工業株式会社 パッカー

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595646A (zh) * 2020-05-28 2020-08-28 中国矿业大学 一种煤岩试样内部任意角度裂缝预制装置及方法
CN112945724A (zh) * 2021-01-28 2021-06-11 中国科学院武汉岩土力学研究所 基于纳米压痕的裂纹尖端断裂过程区域确定方法及设备
CN112945724B (zh) * 2021-01-28 2023-09-15 中国科学院武汉岩土力学研究所 基于纳米压痕的裂纹尖端断裂过程区域确定方法及设备

Also Published As

Publication number Publication date
JP2019135362A (ja) 2019-08-15
EP3751093A4 (en) 2021-11-10
JP6969057B2 (ja) 2021-11-24
EP3751093A1 (en) 2020-12-16
US20210040831A1 (en) 2021-02-11
US11326433B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2019151443A1 (ja) 破砕工法及びこれに用いられる減圧装置
CN201288515Y (zh) 热致动器和在井眼中期望的位置分离第二部件与第一部件的系统
CN107002476B (zh) 温度启用的区域分隔封隔器装置
CN101589205A (zh) 与井下设备的致动元件一起使用的限制元件捕获装置及其使用方法
CN104254663A (zh) 管用锚定系统和方法
NO20141195A1 (no) Tetning med metalltettende element
CN102959181B (zh) 破裂系统
GB2417971A (en) Coupling and expanding tubulars and providing a sleeve to prevent leaks at a predetermined pressure
CN204252969U (zh) 防砂管柱及生产管柱
JP6620286B2 (ja) パッカー
US9810037B2 (en) Shear thickening fluid controlled tool
WO2004009950A1 (en) Dual well completion system
CN103233698A (zh) 沉砂封隔器
US11578554B2 (en) Well packers
GB2371820A (en) Packer and method for fixation thereof in a well
CN104563955A (zh) 钢管水力膨胀式管外封隔器
US20160108700A1 (en) Compensating pressure chamber for setting in low and high hydrostatic pressure applications
Tang et al. Technology for improving life of thermal recovery well casing
RU2660951C1 (ru) Заколонный пакер (варианты)
CN204266982U (zh) 一种热力锥入式封隔器
CN207348822U (zh) 一种多管穿越油套安全封隔器
RU2151854C1 (ru) Пакер гидравлический
RU2653156C1 (ru) Заколонный пакер (варианты)
Brooks et al. Optimizing steam injection in heavy oil reservoirs
CN205206783U (zh) 封隔器胶筒防突结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748135

Country of ref document: EP

Effective date: 20200907