WO2019151415A1 - 路面状態判別装置 - Google Patents
路面状態判別装置 Download PDFInfo
- Publication number
- WO2019151415A1 WO2019151415A1 PCT/JP2019/003431 JP2019003431W WO2019151415A1 WO 2019151415 A1 WO2019151415 A1 WO 2019151415A1 JP 2019003431 W JP2019003431 W JP 2019003431W WO 2019151415 A1 WO2019151415 A1 WO 2019151415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- road surface
- tire
- angle
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0486—Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
- B60C23/0489—Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/06—Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
- B60C23/064—Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle comprising tyre mounted deformation sensors, e.g. to determine road contact area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/172—Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
- B60T8/1725—Using tyre sensors, e.g. Sidewall Torsion sensors [SWT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/48—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/50—Devices characterised by the use of electric or magnetic means for measuring linear speed
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
- B60C2019/004—Tyre sensors other than for detecting tyre pressure
Definitions
- the present disclosure detects the vibration received by the tire in the tire side device, creates road surface data indicating the road surface state based on the vibration data, transmits the road surface data to the vehicle body side system, and determines the road surface state based on the road surface data.
- the present invention relates to a road surface state determination device.
- a road surface state determining device that includes an acceleration sensor on the back surface of a tire tread, detects vibration applied to the tire by the acceleration sensor, and determines road surface state based on the detection result of the vibration.
- This road surface condition determination device creates road surface condition data based on the tire vibration waveform detected by the acceleration sensor, and transmits the data of each wheel to a receiver on the vehicle body side to determine the road surface condition. ing.
- data communication is performed from a tire side device including an acceleration sensor provided on the tire side to a vehicle body side system such as a receiver provided on the vehicle body side. For this reason, it is preferable that data transmission from the tire-side device is performed when the angle at which the tire-side device is positioned with respect to the center of the tire is a good angle for data communication.
- the pressure sensor is at a predetermined angle with respect to the center of the tire during one rotation of the tire.
- a technique for transmitting data when the time has come is disclosed.
- the angle of the pressure sensor is measured at a timing when the tire air pressure reaches a peak value, and the pressure sensor when the data communication measured in advance from this timing becomes good is measured. Measure the time to reach the angle. Then, data communication is performed satisfactorily by allowing the air pressure data to be transmitted after a certain time from the timing when the tire air pressure reaches the peak value.
- This disclosure is intended to provide a road surface state determination device that can satisfactorily transmit road surface data from a tire side device to a vehicle body side system even if a change in the data communication environment occurs.
- the tire-side device includes a vibration detection unit that outputs a detection signal corresponding to the magnitude of tire vibration, road surface data that indicates a road surface state that appears in the waveform of the detection signal, Generate measurement data used for reception intensity measurement by the vehicle body side system, and further estimate an existing angle that is an angle at which the tire side device is located with respect to the center of the tire based on the waveform of the detection signal
- a control unit that transmits road surface data at a transmission timing determined based on an existing angle, and a first data communication unit that transmits road surface data or measurement data.
- a second data communication unit that performs bidirectional communication with the side device and receives road surface data and measurement data transmitted from the first data communication unit;
- a road surface discriminating unit for discriminating the road surface state of the traveling road surface of the vehicle, a reception intensity measuring unit for measuring the reception intensity of the measurement data, and the reception intensity of the measurement data during one rotation of the tire are stored.
- a transmission angle setting unit configured to set an existing angle when the measurement data reception intensity is high during rotation as a transmission angle, and transmit data indicating the transmission angle to the tire side device through the second data communication unit; The configuration is And a control part will transmit road surface data from a 1st data communication part, if an existing angle turns into a transmission angle.
- the existence angle when the reception intensity of the measurement data is high in one rotation of the tire is set as the transmission angle.
- the road surface data is transmitted from the tire side device when the existing angle becomes the transmission angle. For this reason, road surface data can be transmitted at a transmission timing at which the reception intensity in the vehicle body side system becomes maximum, and the road surface data can be accurately received by the vehicle body side system. Therefore, even if a change in the data communication environment occurs, road surface data can be transmitted from the tire side device to the vehicle body side system satisfactorily.
- Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
- FIG. 1 It is the figure which showed the block structure in the vehicle mounting state of the tire system to which the road surface state determination apparatus concerning 1st Embodiment was applied. It is the block diagram which showed the detail of the tire side apparatus and the vehicle body side system. It is a cross-sectional schematic diagram of the tire with which the tire side apparatus was attached. It is an output voltage waveform figure of a vibration sensor part at the time of tire rotation. It is a figure which shows a mode that the detection signal of the vibration sensor part was divided for every time window of the predetermined time width T. FIG. It is the flowchart which showed the detail of the vehicle body side process.
- a tire system 100 having a road surface state determining function according to the present embodiment will be described with reference to FIGS.
- the tire system 100 according to the present embodiment discriminates a road surface state during traveling based on vibration applied to a ground contact surface of a tire provided on each wheel of the vehicle, and also notifies the vehicle danger and vehicle based on the road surface state. It performs motion control.
- the tire system 100 includes a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
- the vehicle body side system 2 includes a receiver 21, an electronic control device for brake control (hereinafter referred to as a brake ECU) 22, a notification device 23, and the like.
- determination function among this tire system 100 is equivalent to a road surface state discrimination device.
- the receiver 21 of the tire side device 1 and the vehicle body side system 2 constitutes a road surface state determination device.
- the tire system 100 of the present embodiment transmits data (hereinafter referred to as road surface data) according to the road surface state in which the tire 3 is traveling from the tire side device 1, and receives road surface data by the receiver 21 to obtain the road surface state. To determine. In addition, the tire system 100 transmits the determination result of the road surface state at the receiver 21 to the notification device 23 and causes the notification device 23 to notify the determination result of the road surface state. As a result, it is possible to inform the driver of the road surface state such as a dry road, a wet road, or a frozen road, and it is possible to warn the driver if the road surface is slippery.
- road surface data data (hereinafter referred to as road surface data) according to the road surface state in which the tire 3 is traveling from the tire side device 1, and receives road surface data by the receiver 21 to obtain the road surface state. To determine. In addition, the tire system 100 transmits the determination result of the road surface state at the receiver 21 to the notification device 23 and causes the notification device 23 to notify the determination result of the road
- the tire system 100 transmits vehicle state control to the brake ECU 22 that performs vehicle motion control, so that vehicle motion control for avoiding danger is performed. For example, at the time of freezing, the braking force generated with respect to the brake operation amount is weakened compared to the case of a dry road, so that the vehicle motion control corresponding to the low road surface ⁇ is achieved.
- the tire side device 1 and the vehicle body side system 2 are configured as follows.
- the tire-side device 1 is configured to include a vibration sensor unit 10, a control unit 11, a data communication unit 12, and a power supply unit 13, and as illustrated in FIG. 3, the tread 31 of the tire 3. It is provided on the back side.
- the vibration sensor unit 10 constitutes a vibration detection unit for detecting vibration applied to the tire 3.
- the vibration sensor unit 10 is configured by an acceleration sensor.
- the vibration sensor unit 10 is an acceleration sensor
- the vibration sensor unit 10 is in a direction in contact with a circular orbit drawn by the tire side device 1 when the tire 3 rotates, that is, a tire tangent indicated by an arrow X in FIG.
- An acceleration detection signal is output as a detection signal corresponding to the magnitude of the direction vibration.
- the vibration sensor unit 10 generates, as a detection signal, an output voltage in which one of the two directions indicated by the arrow X is positive and the opposite is negative.
- the vibration sensor unit 10 performs acceleration detection for each predetermined sampling period set to a period shorter than one rotation of the tire 3, and outputs it as a detection signal.
- the detection signal of the vibration sensor unit 10 is expressed as an output voltage or an output current.
- a case where the detection signal is expressed as an output voltage is given as an example.
- the control unit 11 is configured by a known microcomputer having a CPU, ROM, RAM, I / O, and the like, performs signal processing of the detection signal according to a program stored in the ROM and the like, and indicates a road surface state appearing in the detection signal. Generate road surface data. And the control part 11 is set as the structure provided with the waveform process part 11a, the position estimation part 11b, and the transmission timing generation part 11c as a function part which performs those processes.
- the waveform processing unit 11a uses the detection signal output by the vibration sensor unit 10 as a detection signal representing vibration data in the tire tangential direction, and performs waveform processing of the vibration waveform indicated by the detection signal, thereby generating a raw waveform of the detection signal. Create data and road surface data.
- the waveform processing unit 11a inputs the detection signal of the vibration sensor unit 10 every predetermined sampling period and performs waveform processing.
- the waveform processing unit 11a extracts a feature amount of the tire G by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G), and the data including the feature amount is road surface data. It is said. Further, the waveform processing unit 11 a transmits the created raw waveform data to the position estimation unit 11 b and transmits road surface data to the data communication unit 12.
- the waveform processing unit 11a may extract the feature amount of the tire G for each rotation of the tire 3, but the tire only when the tire 3 rotates when data transmission from the data communication unit 12 is performed.
- the feature amount of G may be extracted. Details of the feature amount here will be described later.
- the position estimation unit 11b estimates the position of the tire-side device 1, specifically, the angle at which the tire-side device 1 is located with respect to the center of the tire 3 (hereinafter referred to as an existing angle).
- the position estimation unit 11b is based on the raw waveform data of the detection signal of the vibration sensor unit 10 transmitted from the waveform processing unit 11a every sampling period and the vehicle speed data transmitted from the vehicle body side system 2 as will be described later. Is estimated.
- the output voltage waveform of the detection signal of the vibration sensor unit 10 during tire rotation is, for example, the waveform shown in FIG.
- the output voltage of 10 takes the maximum value.
- the peak value at the start of grounding at which the output voltage of the vibration sensor unit 10 takes a maximum value is referred to as a first peak value.
- the output voltage of the vibration sensor unit 10 takes a minimum value at the end of grounding when the device mounting position is grounded with the rotation of the tire 3 from the grounding state.
- the peak value at the end of grounding at which the output voltage of the vibration sensor unit 10 takes a minimum value is referred to as a second peak value.
- the reason why the output voltage of the vibration sensor unit 10 takes the peak value at the above timing is as follows. That is, when the device mounting position is grounded as the tire 3 rotates, the portion of the tire 3 that has been a substantially cylindrical surface in the vicinity of the vibration sensor unit 10 is pressed and deformed into a planar shape. By receiving an impact at this time, the output voltage of the vibration sensor unit 10 takes the first peak value. Further, when the device mounting position moves away from the grounding surface as the tire 3 rotates, the tire 3 is released from pressing in the vicinity of the vibration sensor unit 10 and returns from a flat shape to a substantially cylindrical shape. By receiving an impact when the shape of the tire 3 returns to the original shape, the output voltage of the vibration sensor unit 10 takes the second peak value.
- the output voltage of the vibration sensor unit 10 takes the first and second peak values at the start and end of grounding, respectively. Moreover, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the press are opposite directions, the sign of the output voltage is also opposite.
- the moment when the device mounting position touches the road surface is referred to as “stepping area”, and the moment when the device is separated from the road surface is referred to as “kicking area”.
- the “stepping area” includes a timing at which the first peak value is reached, and the “kicking area” includes a timing at which the second peak value is reached.
- the area before the stepping area is the "pre-stepping area”
- the area from the stepping area to the kicking area that is, the area where the device is mounted on the ground
- the area after the kicking area is the "post-kicking area” "
- the period during which the device mounting position is grounded and the front and back thereof can be divided into five regions.
- the “pre-depression region”, “depression region”, “pre-kick region”, “kick region”, and “post-kick region” in the detection signal are sequentially divided into five regions R1 to R5. It is shown as
- the output voltage waveform of the detection signal of the vibration sensor unit 10 takes a peak value at the start of grounding or at the end of grounding at the device mounting position. Since the time required for one rotation of the tire 3 can be estimated from the vehicle speed data, the existence angle can be estimated during the rotation of the tire 3 based on the detection signal of the vibration sensor unit 10 representing the tire vibration and the vehicle speed data. For example, the position estimation unit 11b determines the elapsed time from the timing when the detection signal of the vibration sensor unit 10 becomes the first peak value or the second peak value, and the time taken for the tire 3 obtained from the vehicle speed data to make one rotation. From the above, the existence angle is estimated.
- the raw waveform data of the detection signal of the vibration sensor unit 10 is used to estimate the existence angle, but the present invention is not limited to the raw waveform data.
- the presence angle may be estimated using a digital value obtained by A / D converting the amplitude of the detection signal.
- the transmission timing generation unit 11c controls data transmission from the data communication unit 12, and outputs an instruction signal to the data communication unit 12 at a timing when data transmission is desired to be performed, whereby data transmission from the data communication unit 12 is performed. To be done. Specifically, the transmission timing generation unit 11c detects an angle at which road surface data is transmitted (hereinafter, this angle is referred to as a transmission angle), and when the existence angle estimated by the position estimation unit 11b becomes a transmission angle, An instruction signal is transmitted to the data communication unit 12. The transmission angle is transmitted from the vehicle body side system 2 and is set to an angle that is assumed to allow good data communication from the data communication unit 12 to the vehicle body side system 2. This transmission angle setting method will be described later. In the following description, the timing at which the existence angle estimated by the position estimation unit 11b becomes the transmission angle is referred to as transmission angle timing.
- the transmission timing generation unit 11c can detect the transmission angle timing for each rotation of the tire 3 and transmit the road surface data from the data communication unit 12. Data transmission may be performed at a rate of multiple times.
- the transmission timing generation unit 11c continuously transmits the transmission angle measurement data while the tire 3 makes one rotation before the data on the transmission angle is transmitted from the vehicle body side system 2. Based on this measurement data, the transmission angle is set in the vehicle body side system 2.
- the measurement data is transmitted as a signal having a certain radio wave intensity, and may be the raw waveform data itself of the detection signal of the vibration sensor unit 10 or may be dummy data for measurement.
- the measurement data includes the data of the existing angle for each sampling period estimated by the position estimation unit 11b, and the existing angle at the timing when the measurement data is transmitted is determined in the vehicle body side system 2. It is possible to grasp.
- the data communication unit 12 is a part constituting the first data communication unit.
- the data communication unit 12 stocks the road surface data, and when an instruction signal is transmitted from the transmission timing generation unit 11c when the transmission angle timing is reached, The road surface data is transmitted at the timing.
- the road surface data if it is generated every time the tire 3 is rotated by the waveform processing unit 11a, it is updated and stocked as appropriate so that the latest data is transmitted. It has become.
- the waveform processing unit 11 a when the waveform processing unit 11 a generates road surface data, it is transmitted to the data communication unit 12 and stocked by the data communication unit 12.
- the road surface data generated by the waveform processing unit 11a is transmitted to the transmission timing generation unit 11c and the transmission timing generation unit 11c detects that the transmission angle timing is reached, the road surface data is replaced with the instruction signal. It may be transmitted to the data communication unit 12.
- the road surface data is stocked by the waveform processing unit 11a, and when the transmission timing generation unit 11c detects that the transmission angle timing is reached, the waveform processing unit 11a transmits the data to the data communication unit 12. good. In these cases, the data communication unit 12 may perform data transmission every time road surface data is sent.
- the data communication unit 12 transmits the measurement data toward the vehicle body side system 2 at the same time. Thereby, the measurement data is transmitted to the vehicle body side system 2. At this time, the measurement data is transmitted to the data communication unit 12 and simultaneously to the vehicle body system 2.
- the measurement data includes data on the existing angle at the timing when the measurement data is transmitted to the data communication unit 12. For this reason, the existence angle of the tire-side device 1 at each timing at which the measurement data is transmitted is the same as the existence angle included in the measurement data.
- the data communication unit 12 is capable of bidirectional communication, and also plays a role of receiving data sent from the vehicle body side system 2.
- the data communication unit 12 receives vehicle speed data from the vehicle body side system 2 and transmission angle data that is data indicating a transmission angle, and transmits it to the transmission timing generation unit 11c.
- the data communication unit 12 is described as one configuration here, but may be configured separately for each of the transmission unit and the reception unit.
- various forms of bidirectional communication can be applied, including Bluetooth communication including BLE (Bluetooth Low Energy) communication, wireless LAN such as wifi (Local Area Network), Sub-GHz Communication, ultra-wide band communication, ZigBee, etc. can be applied.
- Bluetooth is a “registered trademark”.
- the power supply unit 13 serves as a power source for the tire-side device 1, and power is supplied to each unit provided in the tire-side device 1 so that each unit can be operated.
- the power supply unit 13 is configured by a battery such as a button battery. Since the tire side device 1 is provided in the tire 3, it is not possible to easily replace the battery. Therefore, it is necessary to reduce power consumption.
- the receiver 21, the brake ECU 22, and the notification device 23 constituting the vehicle body side system 2 are driven when a start switch such as an ignition switch (not shown) is turned on.
- the receiver 21 is configured to include a data communication unit 24 and a control unit 25.
- the data communication unit 24 constitutes a second data communication unit, and performs bidirectional communication with the data communication unit 12 of the tire side device 1. Specifically, the data communication unit 24 plays a role of receiving road surface data including the feature amount transmitted from the data communication unit 12 and transmitting it to the control unit 25. Moreover, the data communication part 24 also plays the role which transmits the vehicle speed data and transmission angle data which are sent from the control part 25 to each tire side apparatus 1 so that it may mention later.
- the data communication unit 24 is described here as one configuration, but may be configured separately for each of the transmission unit and the reception unit.
- the control unit 25 is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and executes various processes for determining a road surface state in accordance with a program stored in the ROM. Specifically, the control unit 25 sets a transmission angle of each tire-side device 1 or determines a road surface state, and includes a road surface determination unit 25a, a vehicle speed data acquisition unit 25b, a reception intensity measurement unit. 25c and a transmission angle setting unit 25d.
- the road surface determination unit 25a determines the road surface state based on the road surface data transmitted from the tire-side device 1. Specifically, the road surface discriminating unit 25a stores a support vector and discriminates the road surface state by comparing the road surface data transmitted from the control unit 11 with the support vector.
- Support vectors are stored and stored for each type of road surface.
- the support vector is a model feature amount, and is obtained by learning using a support vector machine, for example.
- a vehicle equipped with the tire-side device 1 is experimentally driven for each type of road surface, and the feature amount extracted by the control unit 11 at that time is learned for a predetermined number of tire revolutions.
- the support vector is extracted for several minutes. For example, a feature vector for 1 million revolutions is learned for each type of road surface, and a typical feature quantity for 100 revolutions is extracted from the learned feature vectors.
- determination part 25a compares the feature-value contained in the road surface data sent from the tire side apparatus 1 which the data communication part 24 received, and the support vector according to the preserve
- the road surface determination unit 25a determines the road surface state
- the road surface state is transmitted to the notification device 23, and the road surface state is transmitted from the notification device 23 to the driver as necessary.
- the driver tries to drive corresponding to the road surface condition, and the danger of the vehicle can be avoided.
- the road surface state determined through the notification device 23 may be always displayed, or only when the determined road surface state needs to be operated more carefully, such as a wet road or a frozen road. The driver may be warned by displaying the status.
- the road surface state is transmitted from the receiver 21 to the ECU for executing the vehicle motion control such as the brake ECU 22, and the vehicle motion control is executed based on the transmitted road surface state.
- the vehicle speed data acquisition unit 25b plays a role of acquiring vehicle speed data, which is data corresponding to the vehicle speed, and transmitting the vehicle speed data to the data communication unit 24, thereby transmitting the data to the tire side device 1.
- the vehicle speed data acquisition unit 25b transmits vehicle speed data to the data communication unit 24 at each transmission timing of road surface data when the vehicle speed becomes a predetermined speed that requires road surface state determination, for example, 20 km / h or more.
- the vehicle speed data acquisition unit 25b may directly acquire data indicating the vehicle speed itself, may transmit the data to the data communication unit 24 as vehicle speed data, acquire data necessary for calculating the vehicle speed, and obtain the calculation result as the vehicle speed.
- the data may be transmitted to the data communication unit 24 as data.
- the brake ECU 22 handles data indicating the vehicle speed itself in order to perform brake control, it can be transmitted from the brake ECU 22 to the vehicle speed data acquisition unit 25b as vehicle speed data.
- the reception intensity measuring unit 25c measures the reception intensity. Since the measurement data is continuously transmitted during one rotation of the tire 3, the reception intensity measurement unit 25c continuously measures the reception intensity of the measurement data during the period and measures the measurement result. It is transmitted to the transmission angle setting unit 25d together with the data for use.
- the transmission angle setting unit 25d sets the transmission angle based on the reception intensity during one rotation of the tire 3 transmitted from the reception intensity measurement unit 25c and the existing angle data for each sampling period included in the measurement data. . Specifically, the transmission angle setting unit 25d extracts when the reception intensity is highest during one rotation of the tire 3, and sets the existing angle included in the measurement data at that time as the transmission angle. . Then, the transmission angle setting unit 25d transmits data regarding the set transmission angle to the data communication unit 24. Thereby, the data communication part 24 transmits the data regarding a transmission angle with respect to the tire side apparatus 1 which has transmitted the measurement data. In this way, the transmission angle can be transmitted to each tire-side device 1.
- the measurement data is continuously transmitted from each tire side device 1 during one rotation of the tire 3, so that the transmission from each tire side device 1 has a different timing. It is preferable to be performed in the above. For example, after the tire 3 starts to rotate, the measurement data is transmitted after being rotated by a predetermined number of rotations, and the number of rotations at the time of transmission is set randomly in each tire-side device 1. You can do it.
- the vehicle body side system 2 may transmit an instruction signal for transmitting the measurement data to each tire side device 1, and the measurement data may be transmitted from each tire side device 1 at different timings.
- the brake ECU 22 constitutes a brake control device that performs various brake controls.
- the brake ECU 22 automatically generates brake fluid pressure by driving an actuator for brake fluid pressure control, and pressurizes the wheel cylinder to increase the braking force. Is generated.
- the brake ECU 22 can also control the braking force of each wheel independently.
- the braking force is controlled as vehicle motion control based on the road surface state. For example, when the transmitted road surface state indicates that the road surface is a frozen road, the brake ECU 22 weakens the braking force generated with respect to the amount of brake operation performed by the driver as compared with the dry road surface. Thereby, wheel slip can be suppressed and it becomes possible to avoid the danger of a vehicle.
- the notification device 23 is constituted by a meter display, for example, and is used when notifying the driver of the road surface state.
- the notification device 23 is configured by a meter display
- the notification device 23 is disposed at a place where the driver can visually recognize the vehicle while driving, for example, in an instrument panel in the vehicle.
- the meter display can visually notify the driver of the road surface state by performing display in such a manner that the road surface state can be grasped.
- the notification device 23 can be configured by a buzzer or a voice guidance device. In that case, the notification device 23 can audibly notify the driver of the road surface state by a buzzer sound or voice guidance.
- the meter display device is exemplified as the notification device 23 that performs visual notification, the notification device 23 may be configured by a display device that displays information such as a head-up display.
- each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (Abbreviation of Local
- in-vehicle LAN Abbreviation of Local
- Network Controller
- the feature amount is an amount indicating the feature of the vibration applied to the tire 3 acquired by the vibration sensor unit 10, and is represented as a feature vector, for example.
- the output voltage waveform of the detection signal of the vibration sensor unit 10 has a waveform as shown in FIG. 4 and is divided into, for example, the regions R1 to R5 shown in FIG. Then, the vibration generated in the tire 3 fluctuates in each divided area according to the road surface state, and the detection signal of the vibration sensor unit 10 changes. Therefore, the frequency of the detection signal of the vibration sensor unit 10 in each area is analyzed. Thus, the road surface state on the traveling road surface of the vehicle is detected. For example, in a slippery road surface state such as a snowy road, the shearing force at the time of kicking is reduced, so that the band value selected from the 1 kHz to 4 kHz band becomes small in the kicking region R4 and the post-kicking region R5. Thus, since each frequency component of the detection signal of the vibration sensor unit 10 changes according to the road surface state, the road surface state can be determined based on the frequency analysis of the detection signal.
- the waveform processing unit 11a generates a detection signal of the vibration sensor unit 10 for one rotation of the tire 3 having a continuous time axis waveform for each time window having a predetermined time width T as shown in FIG.
- the feature quantity is extracted by dividing into a plurality of sections and performing frequency analysis in each section. Specifically, by performing frequency analysis in each section, a power spectrum value in each frequency band, that is, a vibration level in a specific frequency band is obtained, and this power spectrum value is used as a feature amount.
- the number of sections divided by the time window of the time width T is a value that varies according to the vehicle speed, more specifically, according to the rotational speed of the tire 3.
- the number of sections for one rotation of the tire is n (where n is a natural number).
- the power obtained by passing the detection signal of each section through a plurality of filters of specific frequency bands for example, five bandpass filters of 0 to 1 kHz, 1 to 2 kHz, 2 to 3 kHz, 3 to 4 kHz, and 4 to 5 kHz
- This feature quantity is called a feature vector
- a feature vector Xi of a certain section i (where i is a natural number of 1 ⁇ i ⁇ n) represents a power spectrum value of each specific frequency band as a ik. Is expressed as the following equation.
- a determinant X that collectively shows the feature vectors X1 to Xn of all the sections 1 to n is as follows.
- This determinant X is an expression representing the feature quantity for one rotation of the tire.
- the feature amount represented by the determinant X is extracted by performing frequency analysis on the detection signal of the vibration sensor unit 10.
- the vehicle speed data acquisition unit 25 b acquires vehicle speed data from the brake ECU 22 or the like, transmits the vehicle speed data to the data communication unit 24 at a predetermined timing, and transmits the vehicle speed data to each tire side device 1 through the data communication unit 24.
- the control part 25 of the receiver 21 performs the vehicle body side process shown in FIG. 6 for every predetermined
- step S100 the control unit 25 determines whether or not the transmission angle data has been transmitted from the transmission angle setting unit 25d.
- the control unit 25 determines whether or not the transmission angle data has been transmitted from the transmission angle setting unit 25d.
- step S110 the control unit 25 receives measurement data including data on the existing angle sent from each tire-side device 1.
- step S120 the control unit 25 stores the reception intensity of the measurement data in association with the existing angle data included in the measurement data. Thereafter, the process proceeds to step S130, where it is determined whether or not measurement data has been received from each tire-side device 1 for one rotation of the tire, and steps S110 and S120 until measurement data for one rotation of the tire is received. Repeat the process. Thereby, the reception intensity of the measurement data for each existence angle is stored in the control unit 25 for one rotation of the tire.
- step S140 the control unit 25 sets the existing angle when the reception intensity of the measurement data received for one rotation of the tire is maximum as the transmission angle.
- the device mounting position changes while the detection signal of the vibration sensor unit 10 rotates the tire one time, that is, during the period when the device mounting position is grounded and repeats the first peak value and the second peak value.
- the reception intensity of the measurement data also changes. For this reason, the timing at which the reception intensity is maximized is extracted, and the existence angle included in the measurement data at the timing at which the reception intensity is maximized is set as the transmission angle.
- step S150 the control unit 25 transmits transmission angle data indicating the transmission angle set in step S140 to the tire side device 1 that has transmitted the measurement data.
- the control unit 25 stores, as a history, transmission of transmission angle data, for example, by setting a transmission flag (not shown) provided in the transmission angle setting unit 25d.
- each tire-side device 1 is in a sleep state before the vehicle travels, but is activated when the travel is started.
- the control unit 11 inputs the detection signal of the vibration sensor unit 10, and detects the rotation of the tire 3, that is, the running of the vehicle based on the fact that the waveform of the detection signal exceeds a predetermined threshold. Activate the function.
- the control part 11 performs the data transmission process shown in FIG. 8 for every predetermined
- step S200 the control unit 11 inputs a detection signal of the vibration sensor unit 10 in the waveform processing unit 11a, and generates raw waveform data and road surface data using the detection signal.
- the waveform processing unit 11a acquires the time axis waveform of the detection signal of the vibration sensor unit 10 for one rotation of the tire 3 and generates it based on it. Specifically, the waveform processing unit 11a divides the acquired detection signal of the time axis waveform into a plurality of sections for each time window having a predetermined time width T. Thereafter, the waveform processing unit 11a performs frequency analysis in each divided section, calculates a feature amount for one rotation of the tire by obtaining a power spectrum value in each frequency band, and road surface data including data of this feature amount Is generated. Then, when the road surface data is generated in this way, it is transmitted to the data communication unit 12.
- the raw waveform data is generated every predetermined control cycle. Then, each time raw waveform data is generated, the process proceeds to the subsequent step S210.
- step S210 the control unit 11 estimates the existing angle in the position estimation unit 11b based on the vehicle speed data transmitted from the vehicle body side system 2 and the raw waveform data transmitted from the waveform processing unit 11a. Thereafter, the process proceeds to step S220, and the control unit 11 determines whether or not transmission angle data is received from the vehicle body side system 2 at the transmission timing generation unit 11c. If the transmission angle data has not been received yet, a negative determination is made, and the process proceeds to step S230. In step S ⁇ b> 230, the control unit 11 transmits the measurement data including the existing angle data to the vehicle body side system 2 through the data communication unit 12.
- step 130 in FIG. 6 a negative determination is made in step 130 in FIG. 6 described above, and transmission angle data is not transmitted in step S150, and the processes in steps S200 to S230 are repeated. For this reason, the waveform processing unit 11a continues to transmit the measurement data to the vehicle body side system 2 until the tire 3 makes one rotation.
- step S220 If transmission angle data is transmitted from the vehicle body side system 2 and an affirmative determination is made in step S220, the process proceeds to step S240. And the control part 11 determines whether the present presence angle is a transmission angle in the transmission timing production
- step S240 If an affirmative determination is made in step S240, the process proceeds to step S250, where the transmission timing generation unit 11c outputs an instruction signal to the data communication unit 12, and the road surface data transmitted from the waveform processing unit 11a is transmitted to the vehicle body side system. 2 to send. In this way, when the existence angle of each tire-side device 1 becomes the transmission angle, road surface data is transmitted from each tire-side device 1 to the vehicle body-side system 2.
- road surface data is transmitted every time the existing angle becomes the transmission angle, that is, every time the tire 3 makes one rotation. It may be made to be performed.
- control part 25 progresses to Step S160, and receives the road surface data transmitted from tire side device 1 when an existence angle turns into a transmission angle. And it progresses to step S170 and the road surface discrimination
- the calculation of the similarity between the feature quantity and all the support vectors for each type of road surface can be performed by the following method.
- the determinant of the feature quantity is X (r)
- the determinant of the support vector is X (s)
- the determinant X (r) of the feature quantity and the determinant X (s) of the support vector are respectively expressed as follows.
- the similarity indicates the degree of similarity between the feature quantity indicated by the two determinants and the support vector, and means that the similarity is higher as the similarity is higher.
- determination part 25a calculates
- the inner product of the determinant X (r) of the feature quantity and the determinant X (s) of the support vector in other words, the feature vector Xi between the sections divided for each time window of the predetermined time width T in the feature space. The distance between the coordinates indicated by is calculated and used as the similarity.
- the time axis waveform at the time of rotation of the tire 3 and the time axis waveform of the support vector are each a time window having a predetermined time width T.
- n 5
- i is represented by 1 ⁇ i ⁇ 5.
- the feature vector Xi of each section when the tire 3 is rotated this time is Xi (r)
- the feature vector of each section of the support vector is Xi (s).
- the feature vector is acquired by dividing it into five specific frequency bands.
- the feature vector Xi of each section is represented in the 6-dimensional space combined with the time axis, and the distance between the coordinates indicated by the feature vector Xi of the sections is the distance between the coordinates in the 6-dimensional space.
- the distance between the coordinates indicated by the feature vectors of each section is smaller as the feature quantity and the support vector are similar, and increases as they are not similar. Therefore, the smaller the distance, the higher the similarity and the distance becomes smaller. The larger the value is, the lower the similarity is.
- the distance K yz between the coordinates indicated by the feature vectors of the sections 1 is expressed by the following equation.
- the distance K yz between coordinates indicated by the feature vector of the compartment between time-division determined for all sections calculates the distance K yz sum K total of all sections fraction, the sum K total similarity Used as the corresponding value. Then, the total K total is compared with a predetermined threshold Th, and if the total K total is larger than the threshold Th, the similarity is low, and if the total K total is smaller than the threshold Th, it is determined that the similarity is high. Then, the similarity is calculated for all the support vectors, and it is determined that the road surface type corresponding to the support vector having the highest similarity is the current road surface state. In this way, the road surface state can be determined.
- the total K total of the distance K yz between the two coordinates indicated by the feature vector of each section is used as a value corresponding to the similarity, but other values may be used as parameters indicating the similarity.
- an average distance K ave that is an average value of the distances K yz obtained by dividing the total K total by the number of partitions is used as a parameter indicating similarity, or various kernels can be used as disclosed in Patent Document 1.
- the similarity can be obtained using a function. Further, instead of using all of the feature vectors, similarity calculation may be performed by removing paths with low similarity from among them.
- the road surface state of the road surface of the vehicle can be determined by the tire system 100 according to the present embodiment.
- the road surface data is transmitted from the tire-side device 1 when the existing angle becomes the transmission angle. For this reason, road surface data can be transmitted at a transmission timing at which the reception intensity at the receiver 21 is maximized, and the receiver 21 can receive the road surface data accurately. That is, even if the data communication environment changes, the road surface data can be transmitted from the tire side device 1 to the vehicle body side system 2 satisfactorily.
- the setting of the transmission angle described in the present embodiment may be performed only once at the time of delivery, depending on changes in the actual data communication environment of the vehicle, not the data communication environment at the time of vehicle manufacture. It is possible to set the transmission angle. However, for example, if the transmission angle is set for each run of the vehicle with the ignition switch turned on, the transmission angle can be set according to the change in the data communication environment accompanying the secular change or the like. It becomes possible. For example, in the tire-side device 1, when the vehicle stops for a predetermined time or more based on the detection signal of the vibration sensor unit 10 and the control unit 11 enters a sleep state, the set transmission angle is reset, so that The transmission angle can be set every time the vehicle travels.
- an update determination unit 25e is added to the control unit 25 of the receiver 21.
- the update determination unit 25e can update the transmission timing of road surface data from the tire-side device 1, that is, the transmission angle.
- the update determination unit 25e stores the reception intensity (hereinafter referred to as the maximum reception intensity) when the reception intensity of the measurement data becomes maximum during one rotation of the tire 3 when the transmission angle is set. doing.
- the update determination unit 25e causes the reception intensity measurement unit 25c to measure the reception intensity when the road surface data is received from the tire-side device 1, and transmits when the measured reception intensity is reduced from the maximum reception intensity. Update the angle.
- the update determination unit 25e has received power measured when the received power measured with respect to the maximum received power has decreased by a predetermined value or more, or when the received power measured to a predetermined ratio or less with respect to the maximum received power has decreased In this case, the transmission angle is updated. By updating the transmission angle in this way, it is possible to set a more appropriate transmission angle even when an environmental change occurs after the transmission angle is once set.
- the control unit 25 updates the transmission angle by executing the vehicle body side processing shown in FIG.
- the control unit 11 performs the tire-side processing shown in FIG. 8 to transmit measurement data before the transmission angle is set, When the transmission angle is set, road surface data is transmitted.
- step S300 the control unit 25 determines whether or not transmission angle data has been transmitted from the transmission angle setting unit 25d.
- a transmission flag (not shown) provided in the transmission angle setting unit 25d is set to “1”
- the control unit 25 determines that data related to the transmission angle has been transmitted.
- the transmission angle is set and the transmission angle data is transmitted in steps S310 to S350 by performing the same processing as in steps S110 to S150 of FIG.
- the control unit 25 stores the reception strength when the maximum is obtained during one rotation of the tire 3 as the maximum reception strength.
- step S360 receives the road surface data, and measures the reception intensity at the reception intensity measurement unit 25c. Then, the process proceeds to step S370, where the road surface determination unit 25a determines the road surface state based on the road surface data received by the same method as in step S170, and then proceeds to step S380.
- step S380 it is determined whether or not the reception intensity measured in step S360 has decreased compared to the maximum reception intensity. If it has not decreased, the process of step S370 is repeated. If it has decreased, the process proceeds to step S390 to reset the transmission angle transmission flag to “0”, and the process from step S300 is executed again. To. Further, the control unit 25 transmits an instruction signal for instructing the resetting of the transmission angle to the tire-side device 1 that has been determined that the reception intensity has decreased through the data communication unit 24.
- step S220 in FIG. 8 it is determined in step S220 in FIG. 8 that the transmission angle is not received from the vehicle body side system 2, and the process proceeds to step S230 to transmit the measurement data. Will do. Therefore, the control unit 25 executes various processes in steps S300 to S350 and sets the transmission angle again, thereby updating the transmission angle.
- step S340 the control unit 25 stores, as the maximum reception intensity, the reception intensity when the maximum is obtained during one rotation of the tire 3. For this reason, even after the transmission angle is updated, if the reception strength of the road surface data decreases, the transmission angle is updated again, and the transmission angle is updated to a more preferable transmission angle.
- the transmission angle is updated when the reception strength of the road surface data decreases.
- the transmission angle can be updated to a more preferable transmission angle, and even if a change in the data communication environment occurs, the road surface data can be transmitted from the tire side device 1 to the vehicle body side system 2 even better. Can do.
- control unit 11 of the tire-side device 1 includes a vehicle speed estimation unit 11d, and the vehicle speed data acquisition unit 25b is omitted from the control unit 25 of the receiver 21.
- the vehicle speed estimation unit 11d receives the detection signal of the vibration sensor unit 10 after waveform processing, for example, raw waveform data, from the waveform processing unit 11a, and estimates the vehicle speed based on the detection signal. Specifically, the vehicle speed estimation unit 11d stores the circumferential length of the tire 3 to which the tire side device 1 is attached, and estimates the vehicle speed based on the circumferential length and the raw waveform data.
- the detection signal of the vibration sensor unit 10 has a time axis waveform as shown in FIG. 4, and the time interval between successive first peak values or second peak values corresponds to the time taken for the tire 3 to make one rotation. . For this reason, the vehicle speed estimation unit 11d can estimate the vehicle speed from the circumference of the tire 3 and the time taken for the tire 3 to make one rotation obtained from the waveform of the past detection signal.
- the position estimation unit 11b can estimate the existence angle based on the vehicle speed estimated by the vehicle speed estimation unit 11d.
- the tire side processing shown in FIG. 13 is executed by the control unit 11 of the tire side device 1.
- the control unit 25 executes the vehicle body side processing shown in FIG. 6 so as to transmit the transmission angle and determine the road surface state based on the road surface data. It has become.
- step S400 the control unit 11 inputs a detection signal of the vibration sensor unit 10, and generates raw waveform data and road surface data using the detection signal.
- step S405 the control unit 11 estimates the vehicle speed by the above-described method based on the detection signal of the vibration sensor unit 10. Thereafter, in steps S410 to S450, processing similar to that in steps S210 to S250 in FIG. 8 is performed.
- the vehicle speed is estimated in the tire-side device 1. Even if it does in this way, the effect similar to 1st Embodiment can be acquired.
- the transmission angle can be set in consideration of the surrounding environment with respect to the first to third embodiments, and the others are the same as the first to third embodiments. Only parts different from the first to third embodiments will be described.
- the setting of the transmission angle which considered the surrounding environment with respect to 1st Embodiment can be performed is demonstrated here, it is applicable also to 2nd, 3rd Embodiment.
- a surrounding environment acquisition unit 25f is added to the control unit 25 of the receiver 21.
- Data related to the surrounding environment of the vehicle is acquired by the surrounding environment acquisition unit 25f.
- the surrounding environment acquisition unit 25f is configured with an in-vehicle camera, a millimeter wave radar, a sonar, and the like, acquires data related to the surrounding environment of the vehicle, and can set a transmission angle, such as a building, for example, a building It is detected that there is a structure or a nearby vehicle.
- the surrounding environment acquisition unit 25f detects the presence of an obstacle that can be an obstacle when the distance from the vehicle to the obstacle can be less than a predetermined distance. Then, when the surrounding environment acquisition unit 25f detects the presence of something that may be an obstacle in the vicinity of the vehicle, the measurement data from the tire side device 1 is not transmitted, Make sure that the transmission angle is not set.
- the surrounding environment acquisition unit 25f does not issue an instruction to transmit measurement data from the vehicle body side system 2 to the tire side device 1 when detecting the presence of an obstacle that may be an obstacle around the vehicle. In the case where no detection is made, an instruction to transmit measurement data is issued. By doing so, measurement data is not transmitted from the tire-side device 1 when the presence of an obstacle that is an obstacle around the vehicle is detected.
- control unit 25 of the receiver 21 executes the vehicle body side processing shown in FIG. 15, and the control unit 11 of the tire side device 1 performs the tire side processing shown in FIG. Run.
- the control unit 25 performs the same processing as step S100 in FIG. 6 in step S100, and then determines whether or not the surrounding environment is good in step S102. This determination is made based on the detection result of the surrounding environment acquisition unit 25f.
- the control unit 25 proceeds to step S104 and issues a measurement data transmission instruction.
- a transmission instruction signal for instructing each tire-side device 1 to transmit measurement data is output through the data communication unit 24.
- step S104 the control unit 25 does not proceed to step S104 but repeats the processing from step S100. Therefore, in this case, a measurement data transmission instruction signal cannot be transmitted from the vehicle body side system 2 to each tire side device 1.
- step S200 to S220 the control unit 11 performs the same processing as in steps S200 to S220 of FIG. If a negative determination is made in step S220, the process proceeds to step S222 to determine whether or not a transmission instruction signal is received.
- step S222 if a transmission instruction signal is transmitted to each tire-side device 1 based on the measurement data transmission instruction in step S104 of FIG. 15 described above, an affirmative determination is made in step S222 and the process of step S230 is performed. Is executed. Thereby, since the measurement data including the data of the existing angle is transmitted to the vehicle body side system 2 through the data communication unit 12, the transmission angle based on the measurement data is set in the vehicle body side system 2. become. On the other hand, if the transmission instruction signal is not transmitted to each tire-side device 1, a negative determination is made in step S222, and the process ends without proceeding to step S230. For this reason, it is possible to prevent the measurement data from being transmitted and the setting of the transmission angle in the vehicle body side system 2 from being performed.
- control unit 25 performs the same operation as steps S110 to S170 of FIG. 6 after issuing the measurement data transmission instruction signal. Further, since the transmission angle data is transmitted from the vehicle body side system 2 after transmitting the measurement data, the control unit 11 makes an affirmative determination in step S220 of FIG. Therefore, after that, the control part 11 performs the same operation
- the transmission angle is not set when there is something that may cause some obstacle around the vehicle. That is, the transmission angle is not set when there is a concern about the influence of multipath, and the transmission angle can be set when there is no concern about the influence of multipath. Thereby, it can suppress that an inappropriate transmission angle is set, and it becomes possible to acquire the effect similar to 1st Embodiment.
- the control unit 11 of the tire-side device 1 includes a reception intensity measurement unit 11 e and a transmission angle setting unit 11 f, and the control unit 25 of the receiver 21. Is provided with a measurement data generation unit 25g. And in this embodiment, the receiving intensity measurement part 25c and the transmission angle setting part 25d are eliminated from the control part 25 of the receiver 21 with respect to 1st Embodiment.
- the measurement data generation unit 25g generates measurement data to be transmitted to each tire side device 1.
- the measurement data may be any signal as long as it has a constant radio field intensity. For example, dummy data can be used.
- the measurement data generation unit 25 g when the receiver 21 receives a measurement data transmission request from each tire-side device 1, the measurement data generation unit 25 g generates the measurement data and passes the data communication unit 24. The transmission is made to the tire side device 1 that has made a transmission request.
- the reception intensity measuring unit 11 e measures the reception intensity.
- the reception intensity measurement unit 11e continuously receives the measurement data, measures the reception intensity, and transmits the measurement result to the transmission angle setting unit 11f.
- the transmission angle setting unit 11f sets the transmission angle based on the reception intensity transmitted from the reception intensity measurement unit 11e and the existing angle data for each sampling period included in the measurement data. Specifically, the transmission angle setting unit 11f stores the presence angle estimated by the position estimation unit 11b and the reception intensity measured by the reception intensity measurement unit 11e in association with each other, and among the reception intensity for one rotation of the tire. Extract when reception strength is highest. Then, the transmission angle setting unit 11f sets the existing angle when the reception strength is the highest as the transmission angle. Further, the transmission angle setting unit 11f transmits data regarding the set transmission angle to the transmission timing generation unit 11c. As a result, the transmission timing generation unit 11c can detect that the existence angle has become the transmission angle.
- the transmission angle setting unit 11f When the transmission angle is set, the transmission angle setting unit 11f outputs a notification signal indicating that the transmission angle has been set, and transmits the notification signal to the vehicle body side system 2 via the data communication unit 12. This is received by the receiver 21, and generation of measurement data by the measurement data generation unit 25g is stopped.
- the transmission angle setting unit 11f for example, when the vehicle stops and the control unit 11 enters a sleep state, resets the set transmission angle and determines that the transmission angle has not been set.
- the transmission angle setting unit 11 f determines that the transmission angle has not been set, the transmission angle setting unit 11 f issues a measurement data transmission request to the vehicle body side system 2 via the data communication unit 12.
- control unit 11 performs the tire-side processing shown in FIG. 18, and in the vehicle body-side system 2, the control unit 25 performs the vehicle-side processing shown in FIG. Execute.
- step S500 the control unit 11 inputs a detection signal of the vibration sensor unit 10, and uses this detection signal to generate raw waveform data and road surface data. Is generated.
- step S505 the control unit 11 estimates the existence angle in the same manner as in step S210. Thereafter, the process proceeds to step S510, and the control unit 11 determines whether or not the transmission angle has been set.
- the control unit 11 issues a measurement data transmission request.
- the control unit 25 determines whether or not a measurement data transmission request has been made in step S600. If a measurement data transmission request has been issued based on the processing in step S515 in FIG. 18 described above, the process proceeds to step S610, and the control unit 25 causes the data communication unit 24 to transmit measurement data.
- step S5 the control part 11 progresses to step S520, and receives the data for a measurement. Then, the process proceeds to step S525, and the control unit 11 measures the reception intensity of the measurement data and stores it in association with the existence angle data estimated in step S505. Thereafter, the process proceeds to step S530, where the control unit 11 determines whether or not measurement data for one rotation of the tire has been received based on the existing angle estimated in step S505, and the measurement for one rotation of the tire is performed. The above processes are repeated until the business data is received. Thereby, the reception intensity of the measurement data for each existence angle is stored in the control unit 11 for one rotation of the tire 3.
- step S535 the control unit 11 uses the existing angle when the reception intensity of the measurement data received for one rotation of the tire is the maximum as the transmission angle. Set. Furthermore, it progresses to step S540 and the control part 11 transmits the notification signal by which the transmission angle was set with respect to the vehicle body side system 2 from the data communication part 12.
- step S510 the process proceeds to step S545.
- the control part 11 transmits road surface data, when a presence angle turns into a transmission angle by performing the process similar to step S240 of FIG. 8, and S250 in step S545 and S550.
- step S610 of FIG. when a notification signal with the transmission angle set is transmitted, an affirmative determination is made in step S610 of FIG.
- steps S630 and S640 the road surface state is determined by performing the same processing as in steps S160 and S170 of FIG.
- the measurement data can be transmitted from the vehicle body side system 2 and the transmission angle can be set by the tire side device 1. Even if it does in this way, the effect similar to 1st Embodiment can be acquired.
- the measurement data includes the data of the existing angle for each sampling period, but raw waveform data or the like can also be used.
- the vehicle body side system 2 can estimate the existence angle in the vehicle body side system 2 by using the time axis waveform of the detection signal indicated by the raw waveform data as data indicating the existence angle. . And you may make it transmit transmission angle data to each tire side apparatus 1 by making into a transmission angle the existing angle when receiving intensity becomes the largest.
- the tire side device 1 can also grasp the transmission angle. For example, in the vehicle body side system 2, the timing at which the reception intensity of the measurement data is maximized during one rotation of the tire is stored, and at the timing of the next rotation, the reception intensity stored at the previous rotation is maximized. A notification signal to that effect is sent from the side system 2 to the tire side device 1. In this way, the tire side device 1 can recognize the existence angle when the notification signal indicating the timing when the reception intensity is maximized from the vehicle body side system 2 as the transmission angle.
- the vehicle speed can be grasped by the vehicle speed data acquisition unit 25b, the rotational speed of the tire 3 can be understood based on the vehicle speed, and the existence angle can also be grasped. Therefore, when the notification signal is transmitted from the vehicle body side system 2, the vehicle body side system 2 can grasp the existing angle regardless of whether the measurement data is transmitted from the tire side device 1.
- the vehicle speed data acquired by the vehicle speed data acquisition part 25b are sent to the tire side apparatus 1, and the presence angle is estimated based on the detection signal of the vehicle speed and the vibration sensor part 10.
- FIG. the presence angle can be estimated based on the detection signal of the vibration sensor unit 10 without using the vehicle speed.
- the time taken for one rotation of the tire is estimated from the time axis waveform of the past detection signal, such as the detection signal of the vibration sensor unit 10 for one rotation of the previous tire, and the elapsed time from the first peak value or the second peak value
- the existence angle may be estimated based on the above.
- the existence angle at which the reception intensity of the measurement data during one rotation of the tire is the highest is the transmission angle, but it is not necessarily the highest angle.
- a threshold value may be provided for the reception intensity, and an existing angle having a reception intensity greater than the threshold value may be set as the transmission angle.
- an arbitrary existence angle may be set as the transmission angle, but it is preferable to set the one with the maximum reception angle as the transmission angle.
- the transmission angle based on the instruction signal from the vehicle body side system 2 As an example of setting the transmission angle based on the instruction signal from the vehicle body side system 2, the case where the road surface data reception intensity is reduced with respect to the maximum reception intensity. Take as an example. However, this is merely an example, and an instruction signal is transmitted from the vehicle body side system 2 to each tire side device 1 at an arbitrary timing, and the transmission angle is set from each tire side device 1 using the instruction signal as a trigger. The measurement data may be transmitted.
- the vibration sensor unit 10 is configured by an acceleration sensor.
- the vibration sensor unit 10 is configured by another element capable of detecting vibration, such as a piezoelectric element. You can also.
- the data containing a feature-value are used as road surface data which shows the road surface state which appears in the detection signal of the vibration sensor part 10 from the tire side apparatus 1.
- FIG. this is only an example, and other data may be used as road surface data.
- integrated data of vibration waveforms of five regions R1 to R5 included in vibration data during one rotation of the tire 3 may be road surface data, or raw data of the detection signal itself may be road surface data.
- the road surface state is determined by obtaining the similarity between the feature quantity and the support vector by the road surface determination unit 25a of the receiver 21 provided in the vehicle body side system 2.
- the degree of similarity is determined by another ECU such as the brake ECU 22 or the road surface state is determined, or the instruction signal Transmission may also be performed.
- the support vector is stored in the tire side device 1 so that the tire side device 1 can determine the road surface state, and data indicating the road surface state determination result is sent to the vehicle body side system 2 as road surface data. May be.
- a control unit and a method thereof described in the present disclosure are provided by configuring a processor and a memory programmed to execute one or a plurality of functions embodied by a computer program. May be realized.
- the control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
- the control unit and the method thereof described in the present disclosure may include a combination of a processor and a memory programmed to execute one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more configured dedicated computers.
- the computer program may be stored in a computer-readable non-transition tangible recording medium as instructions executed by the computer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Tires In General (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
車体側システム(2)は、タイヤ側装置(1)と双方向通信を行い、第1データ通信部(12)から送信された路面データおよび計測用データを受信する第2データ通信部(24)と、路面データに基づいて車両の走行路面の路面状態を判別する路面判別部(25a)と、計測用データの受信強度を測定する受信強度測定部(25c)と、タイヤ(3)の1回転中における計測用データの受信強度を記憶し、タイヤ(3)の1回転の中で計測用データの受信強度が高いときの存在角度を送信角度に設定し、第2データ通信部(24)を通じて、送信角度を示すデータをタイヤ側装置に送信する送信角度設定部(25d)と、を備える。また、制御部(11)は、存在角度が送信角度になると、路面データを第1データ通信部(12)より送信する。
Description
本出願は、2018年2月1日に出願された日本特許出願番号2018-16624号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、タイヤ側装置にてタイヤが受ける振動を検出すると共に、振動データに基づいて路面状態を示す路面データを作成して車体側システムに伝え、その路面データに基づいて路面状態を判別する路面状態判別装置に関する。
従来より、タイヤトレッドの裏面に加速度センサを備え、加速度センサにてタイヤに加えられる振動を検出すると共に、その振動の検出結果に基づいて路面状態の判別を行う路面状態判別装置がある。この路面状態判別装置では、加速度センサが検出したタイヤの振動波形に基づいて路面状態に関するデータを作成し、各車輪それぞれのデータを車体側の受信機などに伝えることで、路面状態の判別を行っている。
このような路面状態判別装置では、タイヤ側に備えられる加速度センサなどを含むタイヤ側装置から車体側に備えられる受信機などの車体側システムに対してデータ通信を行うことになる。このため、タイヤの中心に対してタイヤ側装置の位置している角度がデータ通信の良好な角度となっているときに、タイヤ側装置からのデータ送信が行われるようにするのが好ましい。
例えば、特許文献1に、タイヤ側に圧力センサ等が備えられ、車体側に受信機が備えられるタイヤ空気圧モニタ装置において、タイヤ1回転中において、圧力センサがタイヤの中心に対して所定の角度となったときにデータ送信を行う技術が開示されている。この装置では、タイヤが1回転する際に、タイヤ空気圧がピーク値となるタイミングでの圧力センサの角度を測定し、このタイミングから予め測定しておいたデータ通信が良好になるときの圧力センサの角度となるまでの時間を計測する。そして、タイヤ空気圧がピーク値となるタイミングから一定の時間を置いて空気圧データが送信されるようにすることで、データ通信が良好に行われるようにしている。
しかしながら、データ通信環境の変化などによって、タイヤ側装置がタイヤのどの角度に位置しているときにデータ通信が良好に行われるかが変化し得る。このため、単に、タイヤに対するタイヤ側装置の角度が予め測定しておいたデータ通信が良好になる角度となったタイミングでデータ送信が行われるようにしただけでは、データ通信環境の変化に対応することができない。
本開示は、データ通信環境の変化が生じたとしても、良好にタイヤ側装置から車体側システムに対して路面データを伝えることができる路面状態判別装置を提供することを目的とする。
本開示の1つの観点における路面状態判別装置では、タイヤ側装置は、タイヤの振動の大きさに応じた検出信号を出力する振動検出部と、検出信号の波形に現れる路面状態を示す路面データや車体側システムによる受信強度測定に用いられる計測用データを生成し、さらに、検出信号の波形に基づいてタイヤの中心に対して該タイヤ側装置が位置している角度である存在角度を推定すると共に、存在角度に基づいて決められる送信タイミングで路面データの送信が行われるようにする制御部と、路面データもしくは計測用データを送信する第1データ通信部と、を備え、車体側システムは、タイヤ側装置と双方向通信を行い、第1データ通信部から送信された路面データおよび計測用データを受信する第2データ通信部と、路面データに基づいて車両の走行路面の路面状態を判別する路面判別部と、計測用データの受信強度を測定する受信強度測定部と、タイヤの1回転中における計測用データの受信強度を記憶し、タイヤの1回転の中で計測用データの受信強度が高いときの存在角度を送信角度に設定し、第2データ通信部を通じて、送信角度を示すデータをタイヤ側装置に送信する送信角度設定部と、を備えた構成とされる。そして、制御部は、存在角度が送信角度になると、路面データを第1データ通信部より送信する。
このように、タイヤの1回転の中で計測用データの受信強度が高いときの存在角度が送信角度に設定されるようにしている。そして、存在角度が送信角度となったときにタイヤ側装置から路面データが送信されるようにしている。このため、車体側システムでの受信強度が最大となる送信タイミングで路面データが送信されるようにでき、車体側システムで路面データを的確に受信することが可能となる。よって、データ通信環境の変化が生じたとしても、良好にタイヤ側装置から車体側システムに対して路面データを伝えることができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
図1~図9を参照して、本実施形態にかかる路面状態判別機能を有するタイヤシステム100について説明する。本実施形態にかかるタイヤシステム100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を判別すると共に、路面状態に基づいて車両の危険性の報知や車両運動制御などを行うものである。
図1~図9を参照して、本実施形態にかかる路面状態判別機能を有するタイヤシステム100について説明する。本実施形態にかかるタイヤシステム100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を判別すると共に、路面状態に基づいて車両の危険性の報知や車両運動制御などを行うものである。
図1および図2に示すようにタイヤシステム100は、車輪側に設けられたタイヤ側装置1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21、ブレーキ制御用の電子制御装置(以下、ブレーキECUという)22、報知装置23などが備えられている。なお、このタイヤシステム100のうち路面状態判別機能を実現する部分が路面状態判別装置に相当する。本実施形態の場合、タイヤ側装置1と車体側システム2のうちの受信機21が路面状態判別装置を構成している。
本実施形態のタイヤシステム100は、タイヤ側装置1よりタイヤ3が走行中の路面状態に応じたデータ(以下、路面データという)を送信すると共に、受信機21で路面データを受信して路面状態の判別を行う。また、タイヤシステム100は、受信機21での路面状態の判別結果を報知装置23に伝え、報知装置23より路面状態の判別結果を報知させる。これにより、例えばドライ路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。また、タイヤシステム100は、車両運動制御を行うブレーキECU22などに路面状態を伝えることで、危険を回避するための車両運動制御が行われるようにする。例えば、凍結時には、ドライ路の場合と比較してブレーキ操作量に対して発生させられる制動力が弱められるようにすることで、路面μが低いときに対応じた車両運動制御となるようにする。具体的には、タイヤ側装置1および車体側システム2は、以下のように構成されている。
タイヤ側装置1は、図2に示すように、振動センサ部10、制御部11、データ通信部12および電源部13を備えた構成とされ、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。
振動センサ部10は、タイヤ3に加わる振動を検出するための振動検出部を構成するものである。例えば、振動センサ部10は、加速度センサによって構成される。振動センサ部10が加速度センサとされる場合、振動センサ部10は、タイヤ3が回転する際にタイヤ側装置1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動の大きさに応じた検出信号として、加速度の検出信号を出力する。より詳しくは、振動センサ部10は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧などを検出信号として発生させる。例えば、振動センサ部10は、タイヤ3が1回転するよりも短い周期に設定される所定のサンプリング周期ごとに加速度検出を行い、それを検出信号として出力している。なお、振動センサ部10の検出信号は、出力電圧もしくは出力電流として表されるが、ここでは出力電圧として表される場合を例に挙げる。
制御部11は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って検出信号の信号処理を行い、検出信号に現れる路面状態を示す路面データを生成する。そして、制御部11は、それらの処理を行う機能部として波形処理部11a、位置推定部11bおよび送信タイミング生成部11cを備えた構成とされている。
波形処理部11aは、振動センサ部10が出力する検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号が示す振動波形の波形処理を行うことで、検出信号の生波形データや路面データを作成する。例えば、波形処理部11aは、所定のサンプリング周期毎に振動センサ部10の検出信号を入力し、波形処理を行っている。本実施形態の場合、波形処理部11aは、タイヤ3の加速度(以下、タイヤGという)の検出信号を信号処理することでタイヤGの特徴量を抽出し、この特徴量を含むデータを路面データとしている。さらに、波形処理部11aは、作成した生波形データを位置推定部11bに伝えたり、路面データをデータ通信部12に伝えたりしている。
なお、後述するように、データ通信部12からの路面データのデータ送信はタイヤ3が複数回転する毎、例えば10回転する毎に1回もしくは複数回の割合で行われる。このため、波形処理部11aは、タイヤ3の1回転毎にタイヤGの特徴量の抽出を行っても良いが、データ通信部12からのデータ送信が行われるときのタイヤ3の回転時のみタイヤGの特徴量を抽出するようにしても良い。また、ここでいう特徴量の詳細については後で説明する。
位置推定部11bは、タイヤ側装置1の位置、具体的にはタイヤ3の中心に対するタイヤ側装置1の位置している角度(以下、存在角度という)を推定する。位置推定部11bは、波形処理部11aからサンプリング周期毎に伝えられる振動センサ部10の検出信号の生波形データと、後述するように、車体側システム2から伝えられる車速データに基づいて、存在角度を推定している。
例えば、タイヤ回転時における振動センサ部10の検出信号の出力電圧波形は、例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴ってトレッド31のうち振動センサ部10の配置箇所と対応する部分(以下、装置搭載位置という)が接地し始めた接地開始時に、振動センサ部10の出力電圧が極大値をとる。以下、この振動センサ部10の出力電圧が極大値をとる接地開始時のピーク値を第1ピーク値という。さらに、図4に示されるように、タイヤ3の回転に伴って装置搭載位置が接地していた状態から接地しなくなる接地終了時に、振動センサ部10の出力電圧が極小値をとる。以下、この振動センサ部10の出力電圧が極小値をとる接地終了時のピーク値を第2ピーク値という。
振動センサ部10の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴って装置搭載位置が接地する際、振動センサ部10の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、振動センサ部10の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴って装置搭載位置が接地面から離れる際には、振動センサ部10の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、振動センサ部10の出力電圧が第2ピーク値をとる。このようにして、振動センサ部10の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。
ここで、装置搭載位置が路面に接地した瞬間を「踏み込み領域」、路面から離れる瞬間を「蹴り出し領域」とする。「踏み込み領域」には、第1ピーク値となるタイミングが含まれ、「蹴り出し領域」には、第2ピーク値となるタイミングが含まれる。また、踏み込み領域の前を「踏み込み前領域」、踏み込み領域から蹴り出し領域までの領域、つまり装置搭載位置が接地中の領域を「蹴り出し前領域」、蹴り出し領域後を「蹴り出し後領域」とする。このように、装置搭載位置が接地する期間およびその前後を5つの領域に区画することができる。なお、図4中では、検出信号のうちの「踏み込み前領域」、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」、「蹴り出し後領域」を順に5つの領域R1~R5として示してある。
このように、振動センサ部10の検出信号の出力電圧波形は、装置搭載位置の接地開始時や接地終了時にピーク値を取る。そして、タイヤ3が1回転するのに掛かる時間が車速データから推定できることから、タイヤ振動を表す振動センサ部10の検出信号と車速データに基づいて、タイヤ3の回転中に存在角度を推定できる。例えば、位置推定部11bは、振動センサ部10の検出信号が第1ピーク値もしくは第2ピーク値となったタイミングからの経過時間と、車速データから得られるタイヤ3が1回転するのに掛かる時間とから、存在角度を推定する。
なお、ここでは、存在角度を推定するのに、振動センサ部10の検出信号の生波形データを用いているが、生波形データに限らない。例えば、検出信号の振幅の大きさをA/D変換したデジタル値を用いて、存在角度を推定しても良い。
送信タイミング生成部11cは、データ通信部12からのデータ送信を制御するもので、データ送信を行わせたいタイミングでデータ通信部12に対して指示信号を出力することでデータ通信部12からデータ通信が行われるようにする。具体的には、送信タイミング生成部11cは、路面データを送信させるときの角度(以下、この角度を送信角度という)を検出し、位置推定部11bで推定される存在角度が送信角度になると、データ通信部12に指示信号を送信する。送信角度については、車体側システム2から伝えられるようになっており、データ通信部12から車体側システム2へのデータ通信が良好に行えると想定される角度に設定される。なお、この送信角度の設定方法については後述する。また、以下の説明では、位置推定部11bで推定される存在角度が送信角度になったタイミングのことを送信角度タイミングという。
なお、送信タイミング生成部11cは、タイヤ3の1回転毎に送信角度タイミングを検出してデータ通信部12から路面データの送信を行わせることもできるが、タイヤ3の複数回転毎に1回もしくは複数回の割合でデータ送信を行わせれば良い。
また、送信タイミング生成部11cは、車体側システム2から送信角度に関するデータが伝えられる前のときには、タイヤ3が1回転する間、連続的に送信角度の計測用データを送信する。この計測用データに基づいて、車体側システム2において送信角度が設定されるようになっている。計測用データは、一定の電波強度の信号として送信されるものであり、振動センサ部10の検出信号の生波形データそのものであっても良いし、計測用のダミーデータであっても良い。本実施形態の場合、計測用データには、位置推定部11bで推定されるサンプリング周期毎の存在角度のデータが含められ、計測用データが送信されたタイミングでの存在角度が車体側システム2において把握できるようになっている。
データ通信部12は、第1データ通信部を構成する部分である。データ通信部12は、例えば、波形処理部11aから路面データが伝えられるとその路面データをストックしておき、送信角度タイミングになったときに送信タイミング生成部11cから指示信号が伝えられると、そのタイミングで路面データの送信を行う。路面データについては、波形処理部11aでタイヤ3が1回転する毎に生成されるのであれば最新のものに適宜更新されてストックされるようになっており、最新のものが送信されるようになっている。
なお、ここでは、波形処理部11aが路面データを生成すると、それをデータ通信部12に伝え、データ通信部12でストックしておくようにしている。これに対して、波形処理部11aで生成した路面データを送信タイミング生成部11cに伝え、送信タイミング生成部11cで送信角度タイミングになったことを検出したときに、指示信号に代えて路面データをデータ通信部12に伝えるようにしても良い。さらに、波形処理部11aで路面データをストックしておき、送信タイミング生成部11cで送信角度タイミングになったことを検出したときに、波形処理部11aからデータ通信部12に伝えさせるようにしても良い。これらの場合、データ通信部12は、路面データが送られてくるたびに、データ送信を行うようにすれば良い。
また、データ通信部12は、送信タイミング生成部11cから計測用データが伝えられると、同時に、その計測用データを車体側システム2に向けて送信する。これにより、計測用データが車体側システム2に伝えられる。このとき、計測用データがデータ通信部12に伝えられると同時に車体側システム2に伝えられている。また、計測用データには、計測用データがデータ通信部12に伝えられたタイミングでの存在角度のデータが含められている。このため、計測用データが送信される各タイミングでのタイヤ側装置1の存在角度は、計測用データに含まれる存在角度と同じになる。
また、データ通信部12は、双方向通信可能とされており、車体側システム2から送られてくるデータを受信する役割も果たす。例えば、データ通信部12は、車体側システム2からの車速データや送信角度を示すデータである送信角度データを受信し、それを送信タイミング生成部11cに伝える。
なお、データ通信部12は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。また、双方向通信の形態については、様々なものを適用することができ、BLE(Bluetooth Low Energyの略)通信を含むブルートゥース通信、wifiなどの無線LAN(Local Area Networkの略)、Sub-GHz通信、ウルトラワイドバンド通信、ZigBeeなどを適用できる。なお、ブルートゥースは「登録商標」である。
電源部13は、タイヤ側装置1の電源となるものであり、タイヤ側装置1に備えられる各部への電力供給を行うことで、各部が作動させられるようにしている。電源部13は、例えばボタン電池等の電池で構成される。タイヤ側装置1がタイヤ3内に備えられることから、容易に電池交換を行うことができないため、消費電力の軽減を図ることが必要となっている。
一方、車体側システム2を構成する受信機21やブレーキECU22および報知装置23は、図示しないイグニッションスイッチなどの起動スイッチがオンされると駆動されるものである。
受信機21は、図2に示すように、データ通信部24と制御部25とを有した構成とされている。
データ通信部24は、第2データ通信部を構成するものであり、タイヤ側装置1のデータ通信部12との間において双方向通信を行う。具体的には、データ通信部24は、データ通信部12より送信された特徴量を含む路面データを受信し、制御部25に伝える役割を果たす。また、データ通信部24は、後述するように、制御部25から送られてくる車速データや送信角度データを各タイヤ側装置1に送信する役割も果たす。なお、データ通信部24は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。
制御部25は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って、路面状態の判別のための各種処理を実行する。具体的には、制御部25は、各タイヤ側装置1の送信角度の設定を行ったり、路面状態の判別を行ったりしており、路面判別部25a、車速データ取得部25b、受信強度測定部25cおよび送信角度設定部25dを有した構成とされている。
路面判別部25aは、タイヤ側装置1から送信されてくる路面データに基づいて路面状態の判別を行う。具体的には、路面判別部25aは、サポートベクタを保存しており、制御部11から伝えられる路面データとサポートベクタとを比較することで路面状態の判別を行っている。
サポートベクタは、路面の種類ごとに記憶され、保存されている。サポートベクタは、手本となる特徴量のことであり、例えばサポートベクタマシンを用いた学習によって得られる。タイヤ側装置1を備えた車両を実験的に路面の種類別に走行させ、そのときに制御部11で抽出した特徴量を所定のタイヤ回転数分学習し、その中から典型的な特徴量を所定数分抽出したものがサポートベクタとされる。例えば、路面の種類別に、100万回転分の特徴量を学習し、その中から100回転分の典型的な特徴量を抽出したものをサポートベクタとしている。
そして、路面判別部25aは、データ通信部24が受信したタイヤ側装置1より送られてきた路面データに含まれる特徴量と、保存された路面の種類別のサポートベクタとを比較することで、路面状態を判別する。例えば、今回受信した路面データに含まれる特徴量を路面の種類別のサポートベクタと対比して、その特徴量が最も近いサポートベクタの路面を現在の走行路面と判別している。
また、路面判別部25aは、路面状態を判別すると、判別した路面状態を報知装置23に伝え、必要に応じて報知装置23より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置23を通じて判別された路面状態を常に表示するようにしても良いし、判別された路面状態がウェット路や凍結路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。また、受信機21からブレーキECU22などの車両運動制御を実行するためのECUに対して路面状態を伝えており、伝えられた路面状態に基づいて車両運動制御が実行されるようにしている。
車速データ取得部25bは、車速に対応するデータである車速データを取得し、それをデータ通信部24に伝えることで、タイヤ側装置1に伝える役割を果たす。例えば、車速データ取得部25bは、車速が路面状態判別を必要とする所定速度、例えば20km/h以上になると、路面データの送信タイミング毎に車速データをデータ通信部24に伝える。車速データ取得部25bは、車速そのものを示すデータを直接取得し、それを車速データとしてデータ通信部24に伝えても良いし、車速を算出するために必要なデータを取得し、算出結果を車速データとしてデータ通信部24に伝えても良い。例えば、ブレーキECU22では、ブレーキ制御を行うために車速そのものを示すデータを扱っているため、それを車速データとしてブレーキECU22から車速データ取得部25bに伝えられるようにすることができる。
受信強度測定部25cは、タイヤ側装置1から送信された計測用データを受信すると、その受信強度を測定するものである。受信強度測定部25cは、タイヤ3が1回転する間、連続的に計測用データが送信されてくるため、その期間中、連続的に計測用データの受信強度を測定し、その測定結果を計測用データと共に送信角度設定部25dに伝えている。
送信角度設定部25dは、受信強度測定部25cから伝えられたタイヤ3の1回転中の受信強度と計測用データに含まれるサンプリング周期毎の存在角度のデータとに基づいて、送信角度を設定する。具体的には、送信角度設定部25dは、タイヤ3の1回転中において、最も受信強度が高かったときを抽出し、そのときの計測用データに含まれていた存在角度を送信角度として設定する。そして、送信角度設定部25dは、設定した送信角度に関するデータをデータ通信部24に伝える。これにより、計測用データを送信してきたタイヤ側装置1に対して、データ通信部24から送信角度に関するデータを送信する。このようにして、各タイヤ側装置1に対して送信角度を伝えることが可能となる。
なお、車体側システム2においては、各タイヤ側装置1から計測用データがタイヤ3の1回転中に連続的に送信されてくることになるため、各タイヤ側装置1からの送信が異なったタイミングで行われるようにするのが好ましい。例えば、タイヤ3が回転し始めてから所定回転数だけ回転してから計測用データが送信されるようにしておき、その送信されるときの回転数が各タイヤ側装置1でランダムに設定されるようにすれば良い。車体側システム2から各タイヤ側装置1に対して計測用データの送信を行わせる指示信号を送信させ、各タイヤ側装置1から異なるタイミングで計測用データの送信が行われるようにしても良い。
ブレーキECU22は、様々なブレーキ制御を行う制動制御装置を構成するものであり、ブレーキ液圧制御用のアクチュエータを駆動することで自動的にブレーキ液圧を発生させ、ホイールシリンダを加圧して制動力を発生させる。また、ブレーキECU22は、各車輪の制動力を独立して制御することもできる。このブレーキECU22により、受信機21から路面状態が伝えられると、それに基づいて車両運動制御として制動力の制御を行っている。例えば、ブレーキECU22は、伝えられた路面状態が凍結路であることを示していた場合、ドライ路面と比較して、ドライバによるブレーキ操作量に対して発生させる制動力を弱めるようにする。これにより、車輪スリップを抑制でき、車両の危険性を回避することが可能となる。
報知装置23は、例えばメータ表示器などで構成され、ドライバに対して路面状態を報知する際に用いられる。報知装置23をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態が伝えられると、その路面状態が把握できる態様で表示を行うことで、視覚的にドライバに対して路面状態を報知することができる。
なお、報知装置23をブザーや音声案内装置などで構成することもできる。その場合、報知装置23は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態を報知することができる。また、視覚的な報知を行う報知装置23としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置23を構成しても良い。
このようにして、本実施形態にかかるタイヤシステム100が構成されている。なお、車体側システム2を構成する各部は、例えばCAN(Controller Area Networkの略)通信などによる車内LAN(Local Area Networkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。
次に、上記した制御部11で抽出する特徴量の詳細について説明する。
ここでいう特徴量とは、振動センサ部10が取得したタイヤ3に加わる振動の特徴を示す量であり、例えば特徴ベクトルとして表される。
上記したように、振動センサ部10の検出信号の出力電圧波形は、図4に示すような波形となり、例えば図4中に示した各領域R1~R5に区画される。そして、路面状態に応じて、区画した各領域でタイヤ3に生じる振動が変動し、振動センサ部10の検出信号が変化することから、各領域での振動センサ部10の検出信号を周波数解析することで、車両の走行路面における路面状態を検出する。例えば、圧雪路のような滑り易い路面状態では蹴り出し時の剪断力が低下するため、蹴り出し領域R4や蹴り出し後領域R5において、1kHz~4kHz帯域から選択される帯域値が小さくなる。このように、路面状態に応じて振動センサ部10の検出信号の各周波数成分が変化することから、検出信号の周波数解析に基づいて路面状態を判定することが可能になる。
このため、波形処理部11aは、連続した時間軸波形となっているタイヤ3の1回転分の振動センサ部10の検出信号を、図5に示すように所定の時間幅Tの時間窓毎に複数の区画に分割し、各区画で周波数解析を行うことで特徴量を抽出している。具体的には、各区画で周波数解析を行うことで、各周波数帯域でのパワースペクトル値、つまり特定周波数帯域の振動レベルを求め、このパワースペクトル値を特徴量としている。
なお、時間幅Tの時間窓で分割された区画の数は車速に応じて、より詳しくはタイヤ3の回転速度に応じて変動する値である。以下の説明では、タイヤ1回転分の区画数をn(ただし、nは自然数)としている。
例えば、各区画それぞれの検出信号を複数の特定周波数帯域のフィルタ、例えば0~1kHz、1~2kHz、2~3kHz、3~4kHz、4~5kHzの5つのバンドパスフィルタに通して得られたパワースペクトル値を特徴量としている。この特徴量は、特徴ベクトルと呼ばれるもので、ある区画i(ただし、iは1≦i≦nの自然数)の特徴ベクトルXiは、各特定周波数帯域のパワースペクトル値をaikで示すと、これを要素とする行列として、次式のように表される。
続いて、本実施形態にかかるタイヤシステム100の作動について説明する。
まず、車両の起動スイッチがオンされると、車体側システム2の各部に電力供給が行われ、受信機21等が起動させられる。そして、受信機21では、車速データ取得部25bがブレーキECU22等より車速データを取得し、その車速データを所定のタイミングでデータ通信部24に伝え、データ通信部24を通じて各タイヤ側装置1に対して送信する。そして、受信機21の制御部25は、路面判別部25a、受信強度測定部25cおよび送信角度設定部25dにおいて、所定の制御周期毎に図6に示す車体側処理を実行する。
まず、ステップS100では、制御部25は、送信角度設定部25dから送信角度データが送信済みであるか否かを判定する。ここで、車両の起動スイッチがオンされた直後の場合には、送信角度データを送信済みではないと判定され、ステップS110に進む。
ステップS110では、制御部25は、後述するように、各タイヤ側装置1から送られてくる存在角度のデータを含む計測用データを受信する。そして、ステップS120に進み、制御部25は、計測用データの受信強度を計測用データに含まれる存在角度のデータと対応づけて記憶する。この後、ステップS130に進み、タイヤ1回転分、各タイヤ側装置1からの計測用データの受信を行ったか否かを判定し、タイヤ1回転分の計測用データを受信するまでステップS110、S120の処理を繰り返す。これにより、制御部25には、存在角度毎の計測用データの受信強度がタイヤ1回転分記憶される。
そして、タイヤ1回転分の計測用データを受信するとステップS140に進み、制御部25は、タイヤ1回転分受信した計測用データの受信強度が最大となるときの存在角度を送信角度として設定する。例えば、図7に示すように、振動センサ部10の検出信号がタイヤ1回転中、つまり装置搭載位置が接地して第1ピーク値や第2ピーク値を繰り返す期間中に、装置搭載位置が変化し、これに伴って計測用データの受信強度も変化する。このため、受信強度が最大となったタイミングを抽出し、受信強度が最大となったタイミングの計測用データに含まれていた存在角度を送信角度として設定する。
その後、ステップS150に進み、制御部25は、計測用データを送信してきたタイヤ側装置1に対して、ステップS140で設定された送信角度を示した送信角度データを送信する。また、制御部25は、例えば、送信角度設定部25dに備えられた図示しない送信済みフラグをセットする等により、送信角度データの送信を行ったことを履歴として記憶する。
一方、各タイヤ側装置1は、車両走行前にはスリープ状態となっているが、走行開始すると起動させられる。例えば、制御部11は、振動センサ部10の検出信号を入力し、検出信号の波形が所定の閾値を超えることに基づいてタイヤ3の回転、つまり車両の走行を検知してスリープされていた各機能を起動させる。そして、制御部11は、波形処理部11a、位置推定部11bおよび送信タイミング生成部11cにおいて、所定の制御周期毎に図8に示すデータ送信処理を実行する。
まず、ステップS200では、制御部11は、波形処理部11aにおいて、振動センサ部10の検出信号を入力し、この検出信号を用いて生波形データや路面データの生成を行う。
路面データについては、波形処理部11aは、タイヤ3の1回転分における振動センサ部10の検出信号の時間軸波形を取得し、それに基づいて生成している。具体的には、波形処理部11aは、取得した時間軸波形の検出信号を、所定の時間幅Tの時間窓毎に複数の区画に分割する。その後、波形処理部11aは、分割した各区画で周波数解析を行い、各周波数帯域でのパワースペクトル値を得ることでタイヤ1回転分の特徴量を算出し、この特徴量のデータを含む路面データを生成している。そして、このようにして路面データが生成されると、それがデータ通信部12に伝えられる。
一方、生波形データについては、所定の制御周期毎に生成される。そして、生波形データが生成される毎に、続くステップS210の処理に移行する。
ステップS210では、制御部11は、位置推定部11bにおいて、車体側システム2から伝えられた車速データと、波形処理部11aから伝えられた生波形データとに基づいて存在角度を推定する。その後、ステップS220に進み、制御部11は、送信タイミング生成部11cにて、車体側システム2から送信角度データを受け取っているか否かを判定する。ここで、まだ送信角度データを受け取っていなければ否定判定され、ステップS230に進む。そして、ステップS230において、制御部11は、データ通信部12を通じて、車体側システム2へ、存在角度のデータを含めた計測用データを送信する。
なお、少なくともタイヤ3が1回転するまでは、上記した図6のステップ130で否定判定され、ステップS150での送信角度データの送信が行われず、ステップS200~S230の処理が繰り返されることになる。このため、波形処理部11aは、タイヤ3が1回転するまでは計測用データを車体側システム2に対して送信し続ける。
また、車体側システム2から送信角度データの送信が行われ、ステップS220で肯定判定されると、ステップS240に進む。そして、制御部11は、送信タイミング生成部11cにおいて、現在の存在角度が送信角度であるか否かを判定し、存在角度が送信角度になるまでは、ステップS200からの処理を繰り返す。これにより、波形処理部11aは、振動センサ部10の検出信号の時間軸波形の取得処理をタイヤ3が1回転するまで継続することになり、上記したように、タイヤ3の1回転分の検出信号に基づいて路面データを生成する。
そして、ステップS240で肯定判定されると、ステップS250に進み、送信タイミング生成部11cは、データ通信部12に対して指示信号を出力し、波形処理部11aから伝えられた路面データを車体側システム2へ送信させる。このようにして、各タイヤ側装置1の存在角度が送信角度となると、各タイヤ側装置1から車体側システム2に対して路面データが送信される。
なお、図8に示すタイヤ側処理を行う場合、存在角度が送信角度になる毎、つまりタイヤ3が1回転する毎に路面データの送信が行われることになるが、タイヤ3が複数回転する毎に行われるようにしても良い。
さらに、車体側システム2においては、上記したステップS150の送信角度データの送信が完了すると、ステップS100で肯定判定されることになる。このため、制御部25は、ステップS160に進み、存在角度が送信角度となったときにタイヤ側装置1から送信された路面データを受信する。そして、ステップS170に進み、路面判別部25aにおいて、受信した路面データに基づいて路面状態を判別する。具体的には、受信した路面データに含まれる特徴量と、路面判別部25aに保存された路面の種類別のサポートベクタとを比較することで、路面状態を判別する。例えば、特徴量を路面の種類別の全サポートベクタとの類似度を求め、最も類似度が高かったサポートベクタの路面を現在の走行路面と判別している。
例えば、特徴量を路面の種類別の全サポートベクタとの類似度の算出は、次のような手法によって行うことができる。
上記したように特徴量を表す行列式Xについて、特徴量の行列式をX(r)、サポートベクタの行列式をX(s)とし、それぞれの行列式の各要素となるパワースペクトル値aikをa(r)ik,a(s)ikで表すとする。その場合、特徴量の行列式X(r)とサポートベクタの行列式X(s)は、それぞれ次のように表される。
例えば、図9に示すように、振動センサ部10の検出信号の時間軸波形について、今回のタイヤ3の回転時の時間軸波形とサポートベクタの時間軸波形それぞれを所定の時間幅Tの時間窓で各区画に分割する。図示例の場合、各時間軸波形を5つの区画に分割しているため、n=5となり、iは、1≦i≦5で表される。ここで、図中に示したように、今回のタイヤ3の回転時の各区画の特徴ベクトルXiをXi(r)、サポートベクタの各区画の特徴ベクトルをXi(s)とする。その場合、各区画の特徴ベクトルXiが示す座標間の距離Kyzについては、今回のタイヤ3の回転時の各区画の特徴ベクトルXi(r)を含む横の升とサポートベクタの各区画の特徴ベクトルXi(s)を含む縦の升とが交差する升のように示される。なお、距離Kyzについて、yはXi(s)におけるiを書き換えたものであり、zはXi(r)におけるiを書き換えたものである。なお、実際には、車速に応じて、今回のタイヤ3の回転時とサポートベクタとの区画数は異なったものとなり得るが、ここでは等しくなる場合を例に挙げてある。
本実施形態の場合、5つの特定周波数帯域に分けて特徴ベクトルを取得している。このため、時間軸と合わせた6次元空間において各区画の特徴ベクトルXiが表されることとなり、区画同士の特徴ベクトルがXi示す座標間の距離は、6次元空間における座標間の距離となる。ただし、各区画の特徴ベクトルが示す座標間の距離については、特徴量とサポートベクタとが似ているほど小さく、似ていないほど大きくなることから、当該距離が小さいほど類似度が高く、距離が大きいほど類似度が低いことを示している。
例えば、時分割によって区画1~nとされている場合、区画1同士の特徴ベクトルが示す座標間の距離Kyzについては、次式で示される。
なお、ここでは類似度に対応する値として各区画の特徴ベクトルが示す2つの座標間の距離Kyzの総和Ktotalを用いているが、類似度を示すパラメータとして他のものを用いることもできる。例えば、類似度を示すパラメータとして、総和Ktotalを区画数で割って求めた距離Kyzの平均値である平均距離Kaveを用いたり、特許文献1に示されているように、様々なカーネル関数を用いて類似度を求めることもできる。また、特徴ベクトルのすべてを用いるのではなく、その中から類似度の低いパスを除いて類似度の演算を行うようにしても良い。
以上説明したようにして、本実施形態にかかるタイヤシステム100により、車両の走行路面の路面状態を判別することができる。そして、上記したように、存在角度が送信角度となったときにタイヤ側装置1から路面データが送信されるようにしている。このため、受信機21での受信強度が最大となる送信タイミングで路面データが送信されるようにでき、受信機21で路面データを的確に受信することが可能となる。すなわち、データ通信環境の変化が生じたとしても、良好にタイヤ側装置1から車体側システム2に対して路面データを伝えることができる。
なお、本実施形態で説明した送信角度の設定については、納車時に1回のみ実施されるようにしても、車両製造時のデータ通信環境ではなく、その車両の実際のデータ通信環境の変化に応じた送信角度の設定を行うことが可能になる。ただし、例えばイグニッションスイッチがオン中の車両の一回の走行毎に、送信角度の設定が行われるようにすると、経年変化等に伴うデータ通信環境の変化に応じて送信角度の設定を行うことが可能となる。例えば、タイヤ側装置1において、振動センサ部10の検出信号に基づいて車両が一定時間以上停止して制御部11がスリープ状態になると、設定した送信角度をリセットするようにすれば、車両の一回の走行毎に送信角度の設定が行われるようにできる。
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対して送信角度の更新が行えるようにしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
第2実施形態について説明する。本実施形態は、第1実施形態に対して送信角度の更新が行えるようにしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図10に示すように、本実施形態では、受信機21の制御部25に更新判定部25eを追加している。この更新判定部25eにより、タイヤ側装置1からの路面データの送信タイミング、つまり送信角度の更新が行えるようにしている。具体的には、更新判定部25eは、送信角度を設定したときにタイヤ3の1回転中に計測用データの受信強度が最大となったときの受信強度(以下、最大受信強度という)を記憶している。そして、更新判定部25eは、受信強度測定部25cにおいて、タイヤ側装置1から路面データを受信したときの受信強度を測定させ、測定した受信強度が最大受信強度から低下している場合に、送信角度の更新を行う。例えば、更新判定部25eは、最大受信強度に対して測定した受信強度が所定値以上低下していた場合、もしくは、最大受信強度に対して所定の割合以下まで測定した受信強度が低下していた場合に、送信角度の更新を行うようにしている。このように送信角度の更新を行うことにより、一旦送信角度が設定された後に環境変化が生じた場合にも、より適切な送信角度が設定されるようにすることができる。
具体的には、本実施形態の場合、制御部25は、図11に示す車体側処理を実行することで送信角度の更新を行っている。なお、各タイヤ側装置1では、第1実施形態と同様、制御部11が図8に示すタイヤ側処理を実行することで、送信角度が設定される前には計測用データの送信を行い、送信角度が設定されると路面データの送信を行うようになっている。
まず、ステップS300では、制御部25は、送信角度設定部25dから送信角度データを送信済みであるか否かを判定する。ここでは、送信角度設定部25dに備えられた図示しない送信済みフラグが“1”となっていてセットされていれば、制御部25は、送信角度に関するデータが送信済みであると判定している。ここで、送信角度データが送信済みでなければ、ステップS310~S350において、図6のステップS110~S150と同様の処理を行うことで送信角度を設定すると共に、送信角度データを送信する。それに加えて、ステップS340では、制御部25は、タイヤ3の1回転中において最大となったときの受信強度を最大受信強度として記憶している。
さらに、送信角度データが送信済みであれば、制御部25は、ステップS360に進み、路面データを受信すると共に受信強度測定部25cにおいてその受信強度を測定する。そして、ステップS370に進み、路面判別部25aにおいて、ステップS170と同様の手法によって受信した路面データに基づいて路面状態を判別したのち、ステップS380に進む。
ステップS380では、ステップS360で測定した受信強度を最大受信強度と比較して低下したか否かを判定する。そして、低下していなければステップS370の処理を繰り返し、低下していればステップS390に進んで送信角度の送信済みフラグをリセットして“0”にし、再びステップS300からの処理が実行されるようにする。また、制御部25は、データ通信部24を通じて、受信強度が低下したと判定されたタイヤ側装置1に対して送信角度のリセットを指示する指示信号を送信する。
これにより、受信強度が低下したと判定されたタイヤ側装置1では、図8のステップS220で送信角度を車体側システム2から受信していないと判定され、ステップS230に進んで計測用データの送信を行うことになる。したがって、制御部25がステップS300~S350の各種処理を実行し、再び送信角度を設定することで送信角度の更新が行われる。
なお、送信角度の更新が行われるときにも、ステップS340において、制御部25は、タイヤ3の1回転中において最大となったときの受信強度を最大受信強度として記憶している。このため、送信角度の更新後にも、路面データの受信強度が低下すると、改めて送信角度の更新が行われることになり、より好ましい送信角度に更新されるようになっている。
以上説明したように、本実施形態では、送信角度が設定された後にも、路面データの受信強度が低下した場合に、送信角度が更新されるようにしている。これにより、より好ましい送信角度に更新されるようにすることが可能となり、データ通信環境の変化が生じたとしても、さらに良好にタイヤ側装置1から車体側システム2に対して路面データを伝えることができる。
(第3実施形態)
第3実施形態について説明する。本実施形態は、第1実施形態に対してタイヤ側装置1において車速推定が行えるようにして車体側システム2から車速データ取得部25bを無くしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
第3実施形態について説明する。本実施形態は、第1実施形態に対してタイヤ側装置1において車速推定が行えるようにして車体側システム2から車速データ取得部25bを無くしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図12に示すように、本実施形態では、タイヤ側装置1の制御部11に車速推定部11dを備え、受信機21の制御部25から車速データ取得部25bを無くしている。
車速推定部11dは、波形処理部11aから波形処理後の振動センサ部10の検出信号、例えば生波形データを受け取り、検出信号に基づいて車速を推定する。具体的には、車速推定部11dは、タイヤ側装置1が取り付けられたタイヤ3の円周の長さを記憶しており、円周の長さと生波形データに基づいて車速を推定する。振動センサ部10の検出信号は、図4に示すような時間軸波形となり、連続する第1ピーク値同士もしくは第2ピーク値同士の時間間隔はタイヤ3が1回転するのに掛かる時間に相当する。このため、車速推定部11dは、タイヤ3の円周の長さと、過去の検出信号の波形から求めたタイヤ3が1回転するのに掛かる時間とから車速を推定することができる。
このように、車速推定部11dにおいて車速を推定できることから、位置推定部11bは、車速推定部11dで推定された車速に基づいて、存在角度を推定することができる。
このように構成される本実施形態のタイヤシステム100では、タイヤ側装置1の制御部11で図13に示すタイヤ側処理を実行する。なお、車体側システム2については、第1実施形態と同様、制御部25が図6に示す車体側処理を実行することで、送信角度の送信や路面データに基づく路面状態の判別を行うようになっている。
まず、ステップS400では、図8のステップS200と同様に、制御部11は、振動センサ部10の検出信号を入力し、この検出信号を用いて生波形データや路面データの生成を行う。そして、ステップS405において、制御部11は、振動センサ部10の検出信号に基づいて、上記した手法により車速を推定する。その後、ステップS410~S450において、図8のステップS210~S250と同様の処理を行う。
以上説明したように、本実施形態では、タイヤ側装置1において車速を推定している。このようにしても、第1実施形態と同様の効果を得ることができる。
(第4実施形態)
第4実施形態について説明する。本実施形態は、第1~第3実施形態に対して周辺環境を加味して送信角度の設定が行えるようにしたものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。なお、ここでは、第1実施形態に対して周辺環境を加味した送信角度の設定を行えるようにした場合について説明するが、第2、第3実施形態に対しても適用可能である。
第4実施形態について説明する。本実施形態は、第1~第3実施形態に対して周辺環境を加味して送信角度の設定が行えるようにしたものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。なお、ここでは、第1実施形態に対して周辺環境を加味した送信角度の設定を行えるようにした場合について説明するが、第2、第3実施形態に対しても適用可能である。
図14に示すように、本実施形態では、受信機21の制御部25に周辺環境取得部25fを追加している。この周辺環境取得部25fにより、車両の周辺環境に関するデータを取得している。周辺環境取得部25fは、車載カメラ、ミリ波レーダ、ソナーなどで構成され、車両の周辺環境に関するデータを取得し、送信角度を設定する際に車両の周辺に何らかの障害となり得るもの、例えば建物などの構造物や周辺車両などが存在していることを検知する。例えば、周辺環境取得部25fは、車両から障害となり得るものまでの距離が所定の距離未満の場合に、障害となり得るものの存在を検知するようになっている。そして、周辺環境取得部25fは、車両の周辺に障害となり得るものの存在を検知した場合には、タイヤ側装置1からの計測用データの送信が行われないようにするか、制御部25での送信角度の設定が行われないようにする。
本実施形態の場合、周辺環境取得部25fは、車両の周辺に障害となり得るものの存在を検知した場合には、車体側システム2からタイヤ側装置1に対して計測用データの送信指示を行わないようにし、検知されなかった場合に計測用データの送信指示を行う。このようにすることで、車両の周辺に障害となり得るものの存在が検知された場合に、タイヤ側装置1からの計測用データの送信が行われないようにしている。
具体的には、本実施形態の場合、受信機21の制御部25は、図15に示す車体側側処理を実行し、タイヤ側装置1の制御部11は、図16に示すタイヤ側処理を実行する。
まず、図15に示すように、制御部25は、ステップS100において、図6のステップS100と同じ処理を行ったのち、ステップS102において、周辺環境が良好であるか否かを判定する。この判定は、周辺環境取得部25fの検知結果に基づいて行われる。そして、周辺環境取得部25fにて、車両の周辺に障害となり得るものの存在が検知されていない場合には、制御部25は、ステップS104に進んで計測用データの送信指示を出す。これにより、データ通信部24を通じて各タイヤ側装置1に対して計測用データの送信を指示する送信指示信号が出力される。一方、周辺環境取得部25fにて、車両の周辺に障害となり得るものの存在が検知されている場合には、制御部25は、ステップS104に進まず、ステップS100からの処理を繰り返す。したがって、この場合には、車体側システム2から各タイヤ側装置1に対して計測用データの送信指示信号が伝えられないことになる。
一方、図16に示すように、制御部11は、ステップS200~S220において、図8のステップS200~S220と同じ処理を行う。そして、ステップS220で否定判定された場合には、ステップS222に進み、送信指示信号を受信しているか否かを判定する。
ここで、上記した図15のステップS104での計測用データの送信指示に基づいて送信指示信号が各タイヤ側装置1に対して送信されていれば、ステップS222で肯定判定されてステップS230の処理が実行される。これにより、データ通信部12を通じて、車体側システム2へ、存在角度のデータを含めた計測用データが送信されるため、車体側システム2において、計測用データに基づく送信角度の設定が行われることになる。これに対して、送信指示信号が各タイヤ側装置1に対して送信されていなければ、ステップS222で否定判定されてステップS230に進むこと無く処理が終了となる。このため、計測用データが送信されず、車体側システム2での送信角度の設定が行われないようにできる。
なお、制御部25については、図15のステップS110~S170に示すように、計測用データの送信指示信号を出してからは、図6のステップS110~S170と同じ作動を行う。また、制御部11については、計測用データの送信を行ってからは、車体側システム2から送信角度データが送られてくることから、図16のステップS220で肯定判定されることになる。したがって、その後は、制御部11は、ステップS240、S250において、図8のステップS240、250と同じ作動を行う。
以上説明したように、周辺環境取得部25fによって車両の周辺環境に関するデータを取得し、車両の周辺に何らかの障害となり得るものが存在しているときには、送信角度の設定が行われないようにしている。すなわち、マルチパスの影響などが懸念されるときには送信角度の設定が行われず、マルチパスの影響などが懸念されないときに送信角度が設定されるようにできる。これにより、不適切な送信角度が設定されてしまうことを抑制することができ、第1実施形態と同様の効果を得ることが可能となる。
(第5実施形態)
第5実施形態について説明する。本実施形態は、第1~第4実施形態に対して、送信角度の設定を各タイヤ側装置1で行うようにしたものである。本実施形態のその他の部分については第1~第4実施形態と同様であるため、第1~第4実施形態と異なる部分についてのみ説明する。
第5実施形態について説明する。本実施形態は、第1~第4実施形態に対して、送信角度の設定を各タイヤ側装置1で行うようにしたものである。本実施形態のその他の部分については第1~第4実施形態と同様であるため、第1~第4実施形態と異なる部分についてのみ説明する。
図17に示すように、本実施形態では、第1実施形態に対して、タイヤ側装置1の制御部11に受信強度測定部11eおよび送信角度設定部11fを備え、受信機21の制御部25に計測用データ生成部25gを備えている。そして、本実施形態では、第1実施形態に対して、受信機21の制御部25から受信強度測定部25cおよび送信角度設定部25dを無くしている。
計測用データ生成部25gは、各タイヤ側装置1に対して送信するための計測用データを生成するものである。計測用データについては、一定の電波強度の信号であればどのようなものであっても良く、例えばダミーデータなどを用いることができる。本実施形態の場合、受信機21で各タイヤ側装置1からの計測用データの送信要求が受信されると、計測用データ生成部25gが計測用データを生成し、データ通信部24を介して、送信要求をしてきたタイヤ側装置1に対して送信するようになっている。
受信強度測定部11eは、車体側システム2から送信された計測用データを受信すると、その受信強度を測定するものである。受信強度測定部11eは、計測用データを連続的に受信して受信強度を測定し、その測定結果を送信角度設定部11fに伝えている。
送信角度設定部11fは、受信強度測定部11eから伝えられた受信強度と計測用データに含まれるサンプリング周期毎の存在角度のデータとに基づいて、送信角度を設定する。具体的には、送信角度設定部11fは、位置推定部11bで推定される存在角度と受信強度測定部11eで測定した受信強度を対応づけて記憶し、タイヤ1回転分の受信強度の中で最も受信強度が高かったときを抽出する。そして、送信角度設定部11fは、最も受信強度が高かったときの存在角度を送信角度として設定する。また、送信角度設定部11fは、設定した送信角度に関するデータを送信タイミング生成部11cに伝える。これにより、送信タイミング生成部11cにて、存在角度が送信角度になったことを検知することが可能となる。
また、送信角度設定部11fは、送信角度を設定すると、送信角度を設定したことを示す送信角度設定済みの通知信号を出力し、データ通信部12を介して車体側システム2に送信する。これが、受信機21で受信されて、計測用データ生成部25gによる計測用データの生成が停止されるようになっている。
なお、送信角度設定部11fは、例えば車両が停止して制御部11がスリープ状態になると、設定した送信角度をリセットし、送信角度が設定済みでは無いと判定する。そして、送信角度設定部11fは、送信角度が設定済みでは無いと判定した場合、データ通信部12を介して車体側システム2に対して計測用データの送信要求を出すようになっている。
具体的には、本実施形態の場合、各タイヤ側装置1では、制御部11が図18に示すタイヤ側処理を実行し、車体側システム2では、制御部25が図19に示す車体側処理を実行する。
まず、図18に示すように、ステップS500では、図8のステップS200と同様に、制御部11は、振動センサ部10の検出信号を入力し、この検出信号を用いて生波形データや路面データの生成を行う。また、ステップS505において、制御部11は、ステップS210と同様に、存在角度を推定する。この後、ステップS510に進み、制御部11は、送信角度が設定済みか否かを判定する。ここで、車両の起動スイッチがオンされた直後などのように、車両が走行を開始して直ぐの場合には、まだ送信角度設定部11fでの送信角度の設定が行われていないため、ステップS510で否定判定されてステップS515に進む。これにより、制御部11は、計測用データの送信要求を出す。
一方、図19に示すように、制御部25は、ステップS600において計測用データの送信要求があったか否かを判定する。上記した図18のステップS515の処理に基づいて、測用データの送信要求が出されていた場合には、ステップS610に進み、制御部25は、データ通信部24から計測用データを送信させる。
また、タイヤ側装置1では、制御部11は、ステップS515の処理を行ったのちにステップS520に進み、計測用データを受信する。そして、ステップS525に進み、制御部11は、計測用データの受信強度を測定し、ステップS505で推定された存在角度のデータと対応づけて記憶する。この後、ステップS530に進み、制御部11は、ステップS505で推定された存在角度に基づいて、タイヤ1回転分の計測用データの受信を行ったか否かを判定し、タイヤ1回転分の計測用データを受信するまで上記各処理を繰り返す。これにより、制御部11には、存在角度毎の計測用データの受信強度がタイヤ3の1回転分記憶される。
そして、タイヤ1回転分の計測用データが受信されると、ステップS535に進み、制御部11は、タイヤ1回転分受信した計測用データの受信強度が最大となるときの存在角度を送信角度として設定する。さらに、ステップS540に進み、制御部11は、データ通信部12より車体側システム2に対して送信角度設定済みの通知信号を送信させる。
この後は、ステップS510において肯定判定されるため、ステップS545に進む。そして、制御部11は、ステップS545、S550において、図8のステップS240、S250と同様の処理を行うことで、存在角度が送信角度になったときに路面データを送信する。
また、車体側システム2においては、送信角度設定済みの通知信号が送信されると、図19のステップS610において肯定判定される。そして、ステップS630、S640において、図6のステップS160、S170と同様の処理を行うことで、路面状態を判別する。
以上説明したように、車体側システム2から計測用データを送信し、タイヤ側装置1にて送信角度を設定することもできる。このようにしても、第1実施形態と同様の効果を得ることができる。
(他の実施形態)
本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(1)例えば、上記各実施形態では、計測用データとして、サンプリング周期毎の存在角度のデータが含まれたものを用いているが、生波形データなどを用いることもできる。生波形データを用いる場合には、車体側システム2において、生波形データが示す検出信号の時間軸波形を、存在角度を示すデータとして用いて、車体側システム2において存在角度を推定することもできる。そして、受信強度が最も大きくなったときの存在角度を送信角度として、各タイヤ側装置1に送信角度データを伝えるようにしても良い。
(2)また、車体側システム2からの信号の送信タイミングに基づいて、タイヤ側装置1が送信角度を把握することもできる。例えば、車体側システム2において、タイヤ1回転中に計測用データの受信強度が最大なったタイミングを記憶し、その次の回転時に、前の回転時に記憶した受信強度が最大となったタイミングで車体側システム2からタイヤ側装置1にその旨の通知信号を送る。このようにすれば、タイヤ側装置1は、車体側システム2から受信強度が最大となったタイミングを示す通知信号を受け取ったときの存在角度を送信角度として認識することができる。
なお、車速データ取得部25bで車速を把握でき、それに基づいてタイヤ3の回転速度が分かり、存在角度も把握できる。したがって、車体側システム2から通知信号を送るときには、タイヤ側装置1から計測用データを送信していてもしていなくても、車体側システム2で存在角度を把握できる。
(3)また、上記各実施形態では、車速データ取得部25bで取得した車速データをタイヤ側装置1に送り、車速と振動センサ部10の検出信号に基づいて存在角度の推定が行われている。しかしながら、車速を用いることなく、振動センサ部10の検出信号に基づいて存在角度の推定が行われるようにすることもできる。例えば、前回のタイヤ1回転分の振動センサ部10の検出信号など、過去の検出信号の時間軸波形からタイヤ1回転に掛かる時間を推定し、第1ピーク値や第2ピーク値からの経過時間などに基づいて、存在角度の推定が行われるようにしても良い。
(4)また、上記各実施形態では、タイヤ1回転中における計測用データの受信強度が最も高くなる存在角度を送信角度としているが、必ずしも最も高くなる角度で無くても良い。例えば、受信強度に閾値を設けておき、閾値よりも大きな受信強度となった存在角度を送信角度に設定すれば良い。この条件を満たす存在角度が複数ある場合には、任意の存在角度を送信角度に設定すれば良いが、その中で受信角度が最大のものを送信角度に設定するのが好ましい。
(5)また、上記第2実施形態では、車体側システム2からの指示信号に基づいて送信角度の設定を行う場合の一例として、最大受信強度に対して路面データの受信強度が低下した場合を例に挙げた。しかしながら、これは一例を示したに過ぎず、車体側システム2から任意のタイミングで指示信号を各タイヤ側装置1に伝え、指示信号をトリガーとして各タイヤ側装置1から送信角度の設定のための計測用データの送信が行われるようにしても良い。
(6)また、上記実施形態では、振動センサ部10を加速度センサによって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって振動センサ部10を構成することもできる。
(7)また、上記実施形態では、タイヤ側装置1から振動センサ部10の検出信号に現れる路面状態を示す路面データとして、特徴量を含むデータを用いている。しかしながら、これも一例を示したに過ぎず、他のデータを路面データとして用いても良い。例えば、タイヤ3の1回転中の振動データに含まれる5つの領域R1~R5それぞれの振動波形の積分値データを路面データとして良いし、検出信号そのものの生データを路面データとしても良い。
(7)また、上記各実施形態では、車体側システム2に備えられる受信機21の路面判別部25aによって特徴量とサポートベクタとの類似度を求めて路面状態の判別を行っている。
しかしながら、これも一例を示したに過ぎず、車体側システム2のいずれかの場所、例えばブレーキECU22などのような他のECUによって類似度を求めたり、路面状態の判別を行ったり、指示信号の送信を行うようにしても良い。また、タイヤ側装置1にサポートベクタを記憶しておき、タイヤ側装置1で路面状態の判別を行えるようにし、路面状態の判別結果を示すデータを路面データとして、車体側システム2に送るようにしても良い。
(8)本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
Claims (9)
- 車両に備えられる複数のタイヤ(3)に取り付けられたタイヤ側装置(1)と、車体に備えられた車体側システム(2)とを有する路面状態判別装置であって、
前記タイヤ側装置は、
前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、
前記検出信号の波形に現れる路面状態を示す路面データや前記車体側システムによる受信強度測定に用いられる計測用データを生成し、さらに、前記検出信号の波形に基づいて前記タイヤの中心に対して該タイヤ側装置が位置している角度である存在角度を推定すると共に、前記存在角度に基づいて決められる送信タイミングで前記路面データの送信が行われるようにする制御部(11)と、
前記路面データもしくは前記計測用データを送信する第1データ通信部(12)と、を備え、
前記車体側システムは、
前記タイヤ側装置と双方向通信を行い、前記第1データ通信部から送信された前記路面データおよび前記計測用データを受信する第2データ通信部(24)と、
前記路面データに基づいて前記車両の走行路面の路面状態を判別する路面判別部(25a)と、
前記計測用データの受信強度を測定する受信強度測定部(25c)と、
前記タイヤの1回転中における前記計測用データの受信強度を記憶し、前記タイヤの1回転の中で前記計測用データの受信強度が高いときの前記存在角度を送信角度に設定し、前記第2データ通信部を通じて、前記送信角度を示すデータを前記タイヤ側装置に送信する送信角度設定部(25d)と、を備え、
前記制御部は、前記存在角度が前記送信角度になると、前記路面データを前記第1データ通信部より送信する路面状態判別装置。 - 前記送信角度設定部は、前記タイヤの1回転の中で前記計測用データの受信強度が最も高いときの前記存在角度を前記送信角度に設定する請求項1に記載の路面状態判別装置。
- 前記制御部は、前記計測用データに、該計測用データを送信させる際の前記存在角度のデータを含ませており、
前記送信角度設定部は、前記タイヤの1回転の中で前記計測用データの受信強度が最も高いときの前記計測用データに含まれる前記存在角度を前記送信角度に設定する請求項1に記載の路面状態判別装置。 - 前記車体側システムは、任意のタイミングで前記タイヤ側装置に対して指示信号を送信し、
前記制御部は、前記指示信号をトリガーとして、前記計測用データが送信されるようにする請求項1ないし3のいずれか1つに記載の路面状態判別装置。 - 前記車体側システムは、前記車両の速度である車速に対応するデータである車速データを取得すると共に、前記第2データ通信部を通じて前記車速データを前記タイヤ側装置に送信させる車速データ取得部(25b)を備え、前記第2データ通信部を通じて、前記車速データを前記タイヤ側装置に送信し、
前記制御部は、前記車速データと前記検出信号の波形に基づいて前記存在角度を推定する請求項1ないし4のいずれか1つに記載の路面状態判別装置。 - 前記制御部は、過去の前記検出信号の波形に基づいて前記タイヤが1回転するのに掛かる時間を推定し、該推定した時間から車速を推定する車速推定部(11d)を有し、該車速推定部で推定された車速と前記検出信号の波形に基づいて前記存在角度を推定する請求項1ないし4のいずれか1つに記載の路面状態判別装置。
- 前記車体側システムは、前記送信角度が設定されてからも前記タイヤ側装置から送信されてきた前記路面データを受信したときの受信強度を測定し、該測定した受信強度が低下したことを判定すると、該受信強度が低下した前記路面データを送信してきた前記タイヤ側装置に対して前記送信角度のリセットを指示することで、前記計測用データの送信を行わせ、該計測用データの受信強度に基づいて前記送信角度の更新を行わせる更新判定部(25e)を有している請求項1ないし6のいずれか1つに記載の路面状態判別装置。
- 前記車体側システムは、前記車両の周辺環境に関するデータを取得し、該車両の周辺に前記送信角度の設定に影響を与えるものが存在していることを検知する周辺環境取得部(25f)を備え、前記送信角度の設定に影響を与えるものの存在が検知されると前記送信角度設定部による前記送信角度の設定が行われないようにする請求項1ないし7のいずれか1つに記載の路面状態判別装置。
- 車両に備えられる複数のタイヤ(3)に取り付けられたタイヤ側装置(1)と、車体に備えられた車体側システム(2)とを有する路面状態判別装置であって、
前記タイヤ側装置は、
前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、
前記検出信号の波形に現れる路面状態を示す路面データを生成し、さらに、前記検出信号の波形に基づいて前記タイヤの中心に対して該タイヤ側装置が位置している角度である存在角度を推定すると共に、前記存在角度に基づいて決められる送信タイミングで前記路面データの送信が行われるようにする制御部(11)と、
前記路面データを送信する第1データ通信部(12)と、を備え、
前記車体側システムは、
前記タイヤ側装置と双方向通信を行い、前記第1データ通信部から送信された前記路面データを受信する第2データ通信部(24)と、
前記路面データに基づいて前記車両の走行路面の路面状態を判別する路面判別部(25a)と、
前記タイヤ側装置による受信強度測定に用いられる計測用データを生成する計測用データ生成部(25g)と、を備え、
前記制御部は、前記計測用データの受信強度を測定する受信強度測定部(11e)と、前記タイヤの1回転中における前記計測用データの受信強度を記憶し、前記タイヤの1回転の中で前記計測用データの受信強度が高いときの前記存在角度を送信角度に設定する送信角度設定部(11f)と、を有し、前記存在角度が前記送信角度になると、前記路面データを前記第1データ通信部より送信する路面状態判別装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/936,159 US11371880B2 (en) | 2018-02-01 | 2020-07-22 | Road surface condition determination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-016624 | 2018-02-01 | ||
JP2018016624A JP6907965B2 (ja) | 2018-02-01 | 2018-02-01 | 路面状態判別装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/936,159 Continuation US11371880B2 (en) | 2018-02-01 | 2020-07-22 | Road surface condition determination device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151415A1 true WO2019151415A1 (ja) | 2019-08-08 |
Family
ID=67478826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003431 WO2019151415A1 (ja) | 2018-02-01 | 2019-01-31 | 路面状態判別装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11371880B2 (ja) |
JP (1) | JP6907965B2 (ja) |
WO (1) | WO2019151415A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376901B2 (en) * | 2018-03-02 | 2022-07-05 | Denso Corporation | Road surface condition determination device performing sensing based on different sensing conditions |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111433054B (zh) * | 2017-11-24 | 2022-12-23 | 倍耐力轮胎股份公司 | 用于监测车辆行驶期间与轮胎相关的参数的方法和系统 |
CN112537314A (zh) * | 2019-09-20 | 2021-03-23 | 大陆汽车有限公司 | 用于确定湿路状况的系统和方法 |
US20230150316A1 (en) * | 2020-04-20 | 2023-05-18 | Nippon Telegraph And Telephone Corporation | Tire with Built-In Antenna |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006007902A (ja) * | 2004-06-24 | 2006-01-12 | Denso Corp | タイヤ状態監視装置 |
JP2016144962A (ja) * | 2015-02-06 | 2016-08-12 | トヨタ自動車株式会社 | タイヤ空気圧センサユニット、および、タイヤ空気圧報知装置 |
WO2018003693A1 (ja) * | 2016-07-01 | 2018-01-04 | 株式会社デンソー | タイヤマウントセンサおよびそれを含む路面状態推定装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5298607B2 (ja) | 2008-04-08 | 2013-09-25 | パナソニック株式会社 | タイヤ空気圧モニタ装置、その制御方法、およびプログラム |
JP5910402B2 (ja) * | 2012-08-06 | 2016-04-27 | 株式会社デンソー | 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置 |
CN105473983B (zh) * | 2014-06-09 | 2020-05-12 | 尼拉动力公司 | 路面上的短期不平度的检测 |
JP2018016300A (ja) * | 2016-07-13 | 2018-02-01 | 株式会社デンソー | 車輪位置検出装置 |
JP6627670B2 (ja) * | 2016-07-13 | 2020-01-08 | 株式会社デンソー | タイヤマウントセンサおよびそれを含む路面状態推定装置 |
-
2018
- 2018-02-01 JP JP2018016624A patent/JP6907965B2/ja active Active
-
2019
- 2019-01-31 WO PCT/JP2019/003431 patent/WO2019151415A1/ja active Application Filing
-
2020
- 2020-07-22 US US16/936,159 patent/US11371880B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006007902A (ja) * | 2004-06-24 | 2006-01-12 | Denso Corp | タイヤ状態監視装置 |
JP2016144962A (ja) * | 2015-02-06 | 2016-08-12 | トヨタ自動車株式会社 | タイヤ空気圧センサユニット、および、タイヤ空気圧報知装置 |
WO2018003693A1 (ja) * | 2016-07-01 | 2018-01-04 | 株式会社デンソー | タイヤマウントセンサおよびそれを含む路面状態推定装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376901B2 (en) * | 2018-03-02 | 2022-07-05 | Denso Corporation | Road surface condition determination device performing sensing based on different sensing conditions |
Also Published As
Publication number | Publication date |
---|---|
US20200348167A1 (en) | 2020-11-05 |
US11371880B2 (en) | 2022-06-28 |
JP6907965B2 (ja) | 2021-07-21 |
JP2019132770A (ja) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6777103B2 (ja) | 路面状態判別装置およびそれを含むタイヤシステム | |
WO2019151415A1 (ja) | 路面状態判別装置 | |
JP6930355B2 (ja) | 路面状態判別装置およびそれを備えたタイヤシステム | |
JP6614073B2 (ja) | 路面状態推定装置 | |
JP6773015B2 (ja) | 路面状態判別装置 | |
JP7047466B2 (ja) | 路面状態判別装置 | |
WO2018199262A1 (ja) | タイヤ側装置およびそれを含むタイヤ装置 | |
JP6969399B2 (ja) | タイヤシステム | |
WO2019103095A1 (ja) | 路面状態判別装置 | |
JP6828716B2 (ja) | 路面状態推定装置 | |
WO2019131568A1 (ja) | 路面状態判別装置 | |
WO2020004471A1 (ja) | 路面状態判別装置およびそれを備えるタイヤシステム | |
JP2019127253A (ja) | タイヤシステム | |
JP2018009974A (ja) | タイヤマウントセンサおよびそれを含む路面状態推定装置 | |
JP6946970B2 (ja) | 路面状態判別装置 | |
WO2019142870A1 (ja) | タイヤシステム | |
WO2021045050A1 (ja) | タイヤ側装置およびそれを含む路面状態判別装置 | |
WO2019131567A1 (ja) | 路面状態判別装置 | |
WO2018003693A1 (ja) | タイヤマウントセンサおよびそれを含む路面状態推定装置 | |
JP7115060B2 (ja) | 路面状態判別装置 | |
WO2019088023A1 (ja) | 路面状態推定装置 | |
WO2019093437A1 (ja) | 路面状態判別装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19748322 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19748322 Country of ref document: EP Kind code of ref document: A1 |