WO2019151331A1 - 非ヒト動物の作製方法 - Google Patents
非ヒト動物の作製方法 Download PDFInfo
- Publication number
- WO2019151331A1 WO2019151331A1 PCT/JP2019/003185 JP2019003185W WO2019151331A1 WO 2019151331 A1 WO2019151331 A1 WO 2019151331A1 JP 2019003185 W JP2019003185 W JP 2019003185W WO 2019151331 A1 WO2019151331 A1 WO 2019151331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- promoter
- expressed
- human animal
- pair
- Prior art date
Links
- 241001465754 Metazoa Species 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 266
- 210000004027 cell Anatomy 0.000 claims abstract description 212
- 101710200251 Recombinase cre Proteins 0.000 claims abstract description 98
- 230000030833 cell death Effects 0.000 claims abstract description 97
- 230000001939 inductive effect Effects 0.000 claims abstract description 83
- 210000000349 chromosome Anatomy 0.000 claims abstract description 64
- 108091006047 fluorescent proteins Proteins 0.000 claims description 84
- 102000034287 fluorescent proteins Human genes 0.000 claims description 63
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 60
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 claims description 47
- 108091008778 RORγ2 Proteins 0.000 claims description 46
- 101150018129 CSF2 gene Proteins 0.000 claims description 38
- 108010053187 Diphtheria Toxin Proteins 0.000 claims description 30
- 102000016607 Diphtheria Toxin Human genes 0.000 claims description 30
- 241000283984 Rodentia Species 0.000 claims description 29
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 29
- 230000002950 deficient Effects 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 21
- 230000004936 stimulating effect Effects 0.000 claims description 20
- 230000005030 transcription termination Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 230000013011 mating Effects 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 102000018710 Heparin-binding EGF-like Growth Factor Human genes 0.000 claims description 9
- 210000004698 lymphocyte Anatomy 0.000 claims description 9
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical group O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 claims description 5
- 229960002963 ganciclovir Drugs 0.000 claims description 5
- 102000005962 receptors Human genes 0.000 claims description 4
- 108020003175 receptors Proteins 0.000 claims description 4
- 241000700584 Simplexvirus Species 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 229940104230 thymidine Drugs 0.000 claims description 3
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims 8
- 102000001253 Protein Kinase Human genes 0.000 claims 1
- 108060006633 protein kinase Proteins 0.000 claims 1
- 238000012239 gene modification Methods 0.000 description 68
- 230000005017 genetic modification Effects 0.000 description 57
- 235000013617 genetically modified food Nutrition 0.000 description 57
- 241000699666 Mus <mouse, genus> Species 0.000 description 54
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 52
- 241000699670 Mus sp. Species 0.000 description 52
- 102400001369 Heparin-binding EGF-like growth factor Human genes 0.000 description 37
- 101150036876 cre gene Proteins 0.000 description 26
- 239000012634 fragment Substances 0.000 description 26
- 108010054624 red fluorescent protein Proteins 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 22
- 102000004169 proteins and genes Human genes 0.000 description 20
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 19
- 229930182817 methionine Natural products 0.000 description 19
- 210000000813 small intestine Anatomy 0.000 description 17
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 16
- 230000000977 initiatory effect Effects 0.000 description 13
- 230000006798 recombination Effects 0.000 description 13
- 238000005215 recombination Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 8
- 210000001744 T-lymphocyte Anatomy 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 210000001165 lymph node Anatomy 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 241000700159 Rattus Species 0.000 description 6
- 238000002073 fluorescence micrograph Methods 0.000 description 6
- 230000036039 immunity Effects 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 239000013605 shuttle vector Substances 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 5
- 238000000684 flow cytometry Methods 0.000 description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 description 5
- 210000003563 lymphoid tissue Anatomy 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 108091033409 CRISPR Proteins 0.000 description 4
- 108091005947 EBFP2 Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 4
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 238000010362 genome editing Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 3
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 210000004400 mucous membrane Anatomy 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 210000003101 oviduct Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 241000272517 Anseriformes Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 102100025074 C-C chemokine receptor-like 2 Human genes 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 101000716068 Homo sapiens C-C chemokine receptor type 6 Proteins 0.000 description 2
- 102000013691 Interleukin-17 Human genes 0.000 description 2
- 108050003558 Interleukin-17 Proteins 0.000 description 2
- 108010065637 Interleukin-23 Proteins 0.000 description 2
- 102000013264 Interleukin-23 Human genes 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000286209 Phasianidae Species 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 102000018120 Recombinases Human genes 0.000 description 2
- 108010091086 Recombinases Proteins 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000010230 functional analysis Methods 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 1
- 108091079001 CRISPR RNA Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101100123521 Homo sapiens HBEGF gene Proteins 0.000 description 1
- 101000713602 Homo sapiens T-box transcription factor TBX21 Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100022297 Integrin alpha-X Human genes 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101100114958 Mus musculus Csf2 gene Proteins 0.000 description 1
- 101100091494 Mus musculus Rorc gene Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101800001494 Protease 2A Proteins 0.000 description 1
- 101800001066 Protein 2A Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 108091008680 RAR-related orphan receptors Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108091028113 Trans-activating crRNA Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 108091005948 blue fluorescent proteins Proteins 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 101150012462 dtr gene Proteins 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229940124829 interleukin-23 Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000005206 intestinal lamina propria Anatomy 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
Definitions
- the present invention relates to a non-human animal in which a target foreign protein is expressed in a target cell by genetic modification and a method for producing the same. More specifically, the present invention relates to a non-human animal in which a target cell can be deficient by an external stimulus, a non-human animal in which a target cell obtained from the non-human animal is deficient, and a non-human animal in which the target cell is visualized .
- This application claims priority based on Japanese Patent Application No. 2018-016832 filed in Japan on February 1, 2018, the contents of which are incorporated herein by reference.
- Helper T cells that produce IL-17A (interleukin-17A) are a group of cells that are deeply involved in the pathology of autoimmune diseases such as rheumatoid arthritis and psoriasis and inflammatory bowel diseases.
- IL-17A interleukin-17A
- TH17 type immunity is considered to be an inflammation amplification pathway by the acquired immune system centering on helper T cells
- recent mucocutaneous immunity research has rapidly and strongly produced TH17 type cytokines in the intestinal tract of humans and mice.
- type 3 natural lymphocytes ILC3
- IL-22 produced by ILC3 is important for maintaining the barrier function of the steady state intestinal epithelium.
- ILC3 is an exacerbation factor of inflammatory bowel disease (see, for example, Non-Patent Document 2), and the role of ILC3 in inflammatory bowel disease is enigmatic. ing.
- mice lacking ROR ⁇ t and IL-2 receptor ⁇ chain ( ⁇ c), which are master regulators required for ILC3 differentiation have been used as animal models deficient in ILC3.
- ⁇ T cell differentiation and lymphoid tissue formation are impaired (for example, see Non-Patent Document 3 and Reference), and in the latter, all lymphocyte differentiation is impaired (for example, see Non-Patent Document 5).
- all lymphocyte differentiation is impaired (for example, see Non-Patent Document 5).
- none of the animal models are suitable for use in evaluating immune functions in a living body.
- LTi-like cells are cells that are cCR-positive and localized in lymphoid tissues in addition to being CCR-positive, and both CD4-positive and CD4-negative are present (for example, non-patent literature) 7).
- LTi-like cells like T cells, have been proven to produce GM-CSF (Granulocyte-Macrophage-colony-stimulating-Factor) at the protein and gene level ( For example, refer nonpatent literature 8.).
- GM-CSF Granulocyte-Macrophage-colony-stimulating-Factor
- GM-CSF is a cytokine necessary for the differentiation and survival of dendritic cells and macrophages, and it is known that dendritic cells in the deficient mouse particularly decrease in the intestinal tract. GM-CSF has also been reported to be involved in the pathogenesis of inflammatory bowel disease and multiple sclerosis.
- the present invention relates to a non-human animal in which a target cell can be deleted by an external stimulus, a non-human animal in which a target cell obtained from the non-human animal is deleted, a non-human animal in which the target cell is visualized, and these It aims at providing the creation method of.
- the present inventor has found that by expressing a diphtheria toxin receptor selectively with respect to a target cell using the Cre / loxP system, a non-human animal deficient in the target cell by diphtheria toxin stimulation can be produced. Furthermore, a non-human animal in which the recombinase Cre gene is inserted downstream of the promoter of the KLRp1b gene and a diphtheria toxin receptor gene sandwiched between two loxP sequences of different orientations are integrated downstream of the ROR ⁇ t gene promoter. It was found that a non-human animal deficient in ILC3 by stimulation with diphtheria toxin can be produced by mating with a non-human animal thus produced, and the present invention has been completed.
- the present inventor further uses a Cre / loxP system to identify a non-human animal in which a recombinase Cre gene is inserted downstream of a promoter of a Csf2 gene encoding GM-CSF, and a gene expressed in a GM-CSF producing cell.
- a Cre / loxP system By crossing with a non-human animal in which a gene encoding a fluorescent protein is incorporated so that expression is controlled by a promoter, only GM-CSF producing cells were visualized by fluorescence emitted from the fluorescent protein.
- the present invention was completed by finding that non-human animals can be obtained.
- the target cell is obtained by administering the stimulating substance to the non-human animal deficient in the target cell and expressing the cell death-inducing molecule that causes cell death in the presence of the stimulating substance in the target cell.
- the non-human animal is (I) the recombinase Cre gene is incorporated so that the expression is controlled by the promoter of the first gene expressed in the target cell only in one of the pair of homologous chromosomes; and (ii) Two loxPs are expressed in only one of a pair of homologous chromosomes such that a cell death-inducing molecule is expressed only in the presence of recombinase Cre under the control of the promoter of the second gene expressed in the target cell.
- a sequence and a gene encoding the cell death-inducing molecule are incorporated, A method for producing a non-human animal deficient in target cells.
- the non-human animal is A non-human animal in which a recombinase Cre gene is incorporated so that expression is controlled by the promoter of the first gene in only one of a pair of homologous chromosomes; In only one of a pair of homologous chromosomes, two loxP sequences and the cell death induction are expressed such that the cell death inducing molecule is expressed only under the presence of recombinase Cre and under the control of the promoter of the second gene.
- a non-human animal into which a gene encoding the molecule is incorporated; The method for producing a non-human animal according to [1], which is an individual obtained by mating.
- the non-human animal is Two loxP sequences having different orientations are incorporated downstream of the promoter of the second gene, and the gene encoding the cell death-inducing molecule is inserted in an inverted position between the loxP sequences.
- the region sandwiched between the two loxP sequences is reversed by recombinase Cre, the cell death-inducing molecule is expressed under the control of the promoter of the second gene, and the non-human animal of [1] or [2] Manufacturing method.
- the stimulating substance is diphtheria toxin and the cell death inducing molecule is a diphtheria toxin receptor, or the stimulating substance is ganciclovir and the cell death inducing molecule is herpes simplex virus type 1-thymidine kinase.
- the method for producing a non-human animal according to any one of the above [1] to [3].
- [5] The gene according to [1] to [4], wherein the gene encoding the cell death-inducing molecule is linked to a gene encoding a fluorescent protein via a base sequence encoding a linker containing a self-cleaving peptide. A method for producing any non-human animal.
- a gene encoding a fluorescent protein is present downstream of the promoter of the second gene and upstream of the loxP sequence, and the gene encoding the fluorescent protein is determined by the promoter of the first gene.
- the first gene is a KLRp1b gene and the second gene is a ROR ⁇ t gene, or the first gene is a ROR ⁇ t gene and the second gene is a KLRp1b gene
- a non-human animal in which a cell death-inducing molecule that causes cell death in the presence of a stimulating substance is expressed in a target cell (I) the recombinase Cre gene is incorporated so that the expression is controlled by the promoter of the first gene expressed in the target cell only in one of the pair of homologous chromosomes; and (ii) Two loxPs are expressed in only one of a pair of homologous chromosomes such that a cell death-inducing molecule is expressed only in the presence of recombinase Cre under the control of the promoter of the second gene expressed in the target cell.
- a sequence and a gene encoding the cell death-inducing molecule are incorporated, Non-human animals.
- the target cell is a type 3 natural lymphocyte
- the first gene is a KLRp1b gene and the second gene is a ROR ⁇ t gene, or the first gene is a ROR ⁇ t gene, and the second gene is a KLRp1b gene, 9] non-human animals.
- Two loxP sequences and a diphtheria toxin receptor are expressed in only one of a pair of homologous chromosomes so that the diphtheria toxin receptor is expressed only in the presence of recombinase Cre under the control of the promoter of the ROR ⁇ t gene.
- a recombinase Cre gene is incorporated so that expression is controlled by the promoter of the KLRp1b gene in only one of the pair of homologous chromosomes.
- a method for producing a non-human animal, wherein a non-human animal in which the fluorescent protein is expressed in GM-CSF producing cells is obtained by mating with a non-human animal.
- the non-human animal into which the gene encoding the fluorescent protein is incorporated is only in one of a pair of homologous chromosomes, A transcription termination sequence sandwiched between two loxP sequences of the same orientation is inserted downstream of the promoter of a gene expressed in the GM-CSF producing cell, and the fluorescent protein is inserted downstream of these loxP sequences.
- the encoding gene is inserted, or A gene that encodes the fluorescent protein in a region sandwiched between two loxP sequences having different orientations downstream of a promoter of a gene expressed in the GM-CSF producing cell, and having a different orientation Is inserted upside down, [18]
- the recombinase Cre gene is incorporated so that expression is controlled by the promoter of the Csf2 gene only in one of the pair of homologous chromosomes, In only one of the pair of homologous chromosomes, the gene encoding the fluorescent protein is incorporated so that the expression is controlled by the promoter of the gene expressed in the GM-CSF producing cell only in the presence of the recombinase Cre. And A non-human animal in which the fluorescent protein is expressed in GM-CSF producing cells.
- a transcription termination sequence sandwiched between two loxP sequences of the same orientation is inserted downstream of the promoter of a gene expressed in the GM-CSF producing cell.
- a non-human animal in which a target cell can be deleted by a specific stimulus from the outside can be produced, and a non-human animal in which the target cell is deleted by stimulating the non-human animal with a specific stimulus.
- a non-human animal in which the target cell is deleted by stimulating the non-human animal with a specific stimulus can be made.
- the present invention can provide a non-human animal in which only GM-CSF producing cells are visualized by fluorescence. The non-human animal and the biological sample collected therefrom are very useful as a tool for functional analysis of GM-CSF.
- Example 1 the small intestine and liver cells of the progeny individuals expressing tdTomato obtained by crossing Klrp1b-EBFP2-P2A-Cre mice with Rosa26-tdTomato mice were expressed as tdTomato expression level and CD3 expression level. It is the figure which showed the result fractionated by.
- FIG. 2 is a diagram showing the result of further fractionation of the tdTomato positive cells (cells in a region surrounded by a square in the figure) in FIG. 1 by the expression level of CD127 and the expression level of NKp46.
- it is the fluorescence image of the MEF cell which transfected pROR ⁇ t / EGFP-invDTRKuO.
- Example 1 the CD3 ⁇ B220 ⁇ CD127 + cell group present in the intestinal tract of the Klrp1b-EBFP2-P2A-Cre mouse, the ROR ⁇ t-iDTR flox mouse and the ILC3-DTR mouse was divided into a green fluorescence amount and a red fluorescence amount.
- DTX diphtheria toxin
- Example 1 flow cytometry was used for cell groups in lymph nodes and cells in the small intestine of ROR ⁇ t-iDTR flox mice and ILC3-DTR mice administered intraperitoneally with diphtheria toxin (DTX) or PBS. It is the figure which showed the result of having counted the number of CD4T cells and the number of ILC3. In Example 2, it is the figure which showed typically the genome of the Csf2-Cre mouse
- DTX diphtheria toxin
- Example 2 it is the figure which showed the result of having fractionated the cell of the small intestine mucosa lamina intestinal of Csf2-Cre / Rosa26-tdTomato mouse by the expression level of CD3 and the expression level of tdTomato.
- Example 2 it is the figure which showed the result of having fractionated the cell of the small intestinal lamina limba layer of Csf2-Cre / Rosa26-tdTomato mouse by the expression level of c-kit and the expression level of CD127. It is the figure which showed the result of having fractionated the cell group in the area
- Example 2 it is a tdTomato fluorescence image of the small intestine of a Csf2-Cre / Rosa26-tdTomato mouse.
- Example 2 it is the fluorescence staining image (the left figure: Csf2 (tdTomato) fluorescence image, the right figure: CD11 staining image) of the small intestine tissue of Csf2-Cre / Rosa26-tdTomato mouse.
- the method for producing a non-human animal according to the present invention is a method for producing a non-human animal deficient in target cells (hereinafter sometimes referred to as “target cell-deficient animal”), wherein the cells are present in the presence of a stimulating substance.
- a target cell is obtained by administering the stimulating substance to a non-human animal in which a cell death-inducing molecule that causes death is expressed in the target cell (hereinafter, “cell death-inducing molecule-expressing animal”).
- cell death-inducing molecule-expressing animal Is a method for producing a non-human animal deficient in. In this method, the timing of target cell deficiency can be controlled by external stimulus substance administration. For this reason, this method is also suitable for producing a non-human animal in which target cells essential for survival are deficient.
- the cell death-inducing molecule-expressing animal used in the method for producing a non-human animal according to the present invention uses a Cre / loxP system in order to express a cell death-inducing molecule in a target cell.
- the cell death-inducing molecule-expressing animal used in the present invention comprises the following genetic modifications (i) and (ii). By providing these genetic modifications, the cell death-inducing molecule is expressed in the target cells of the cell-inducing molecule-expressing animal.
- the recombinase Cre gene is incorporated so that the expression is controlled by the promoter of the first gene expressed in the target cell.
- a cell death inducing molecule is expressed only in the presence of recombinase Cre under the control of the promoter of the second gene expressed in the target cell, Two loxP sequences and a gene encoding the cell death-inducing molecule are incorporated.
- both the first gene and the second gene are genes that are expressed in the target cell to be deleted, and can be appropriately determined in consideration of the target cell.
- cell death-inducing molecule-expressing animal used in the present invention cell death is induced only in cells in which both the first gene and the second gene are expressed by the genetic modification of (i) and (ii). The molecule is expressed.
- the combination of the first gene and the second gene is for all cells constituting the animal individual, Preferably, the combination of genes in which the proportion of cells in which both the first gene and the second gene are expressed is small, and the cells in which both the first gene and the second gene are expressed are targeted.
- a combination that is only cells is particularly preferred. For example, by setting at least one of the first gene and the second gene as a gene that is expressed only in the target cell, the cell in which both the first gene and the second gene are expressed becomes the target cell. Can only be.
- the region containing the initiation methionine in the first gene region (coding region of the first gene) in the genomic DNA is recombined with the recombinase Cre gene (encoding the recombinase Cre).
- the genetic modification in (i) may be any genetic modification in which the recombinase Cre gene is expressed by the promoter of the first gene, and the entire region of the first gene region may be replaced with the recombinase Cre gene. Only the partial region including the initiation methionine in one gene region may be replaced with the recombinase Cre gene region.
- Recombinase Cre is expressed in the target cells of the animal having the genetic modification (i).
- the recombinase Cre used in the present invention may be any recombinase Cre that can be used in genetic modification using the Cre / loxP system.
- As the recombinase Cre used in the present invention it is preferable to use recombinase Cre derived from E. coli P1 phage or a modified form thereof.
- the modified substance only needs to retain the recombinase activity. For example, a mutant in which one or more amino acids of recombinase Cre derived from E. coli P1 phage are substituted, deleted, or inserted, or derived from E. coli P1 phage And a variant in which the N-terminus or C-terminus of the recombinase Cre or a variant thereof is modified with a peptide, which retains the recombinase activity.
- the recombinase Cre may be expressed as a chimeric protein in which another protein is linked to the N-terminus or C-terminus.
- recombinase Cre and other proteins can be linked to each other with a linker containing a self-cleaving peptide, so that recombinase Cre can be present in the target cell in a state separated from the other proteins.
- self-cleaving peptides include 2A peptides.
- a gene encoding a protein in which recombinase Cre and another protein are linked by a linker containing a self-cleaving peptide is substituted for the region containing the starting methionine in the first gene region in the genomic DNA.
- the gene includes a base sequence encoding a linker containing a self-cleaving peptide so that the recombinase Cre gene and a gene encoding another protein have the same reading frame (if the self-cleaving peptide is a 2A peptide, the 2A peptide And a base sequence containing a P2A sequence, which is a base sequence encoding).
- Examples of such other proteins include fluorescent proteins.
- the presence or absence of expression of the recombinase Cre is determined. It can be distinguished by the fluorescence emitted from. That is, the fluorescent protein functions as a marker for genetic modification described in (i).
- the genetic modification (ii) is not particularly limited as long as it is a genetic modification in which a cell death-inducing molecule is expressed under the control of the promoter of the second gene after a recombination reaction with recombinase Cre. That is, after the recombination reaction by recombinase Cre, the region containing the initiation methionine in the second gene region (the coding region of the second gene) is a gene encoding a cell death inducing molecule (a base encoding the cell death inducing molecule). A DNA double-stranded fragment comprising a sequence) may be substituted.
- the genetic modification (ii) may be a modification in which the entire region of the second gene region is replaced with a gene encoding a cell death-inducing molecule after the recombination reaction with recombinase Cre.
- the modification may be such that only the partial region containing the initiation methionine in the gene region is replaced with a gene encoding a cell death-inducing molecule.
- the molecule is expressed when stimulated from the outside by a stimulating substance.
- the molecule is not particularly limited as long as it can induce cell death in living cells.
- the stimulating substance is diphtheria toxin
- diphtheria toxin receptor can be used as a cell death inducing molecule.
- the stimulating substance is ganciclovir
- herpes simplex virus type 1-thymidine kinase (HSV-TK) or a modified form thereof can be used as a cell death inducing molecule.
- HSV-TK herpes simplex virus type 1-thymidine kinase
- the non-human animal is a mouse or rat rodent
- the stimulating substance is diphtheria toxin
- it is preferable to use the diphtheria toxin receptor as a cell death-inducing molecule.
- the diphtheria toxin receptor used as a cell death-inducing molecule may be a natural diphtheria toxin receptor expressed in any organism, or a modified version of this natural diphtheria toxin receptor. Good.
- the modified natural diphtheria toxin receptor may be any one capable of inducing cell death in the presence of diphtheria toxin. For example, one or more amino acids of the natural diphtheria toxin receptor are substituted or deleted. And the mutants inserted or lost, natural diphtheria toxin receptors, or modifications in which the N-terminal or C-terminal of the mutants are modified with peptides, which function as diphtheria toxin receptors.
- HSV-TK used as a cell death-inducing molecule
- any variant that can induce cell death in the presence of ganciclovir can be used.
- one or more amino acids of HSV-TK can be substituted, deleted, Examples include an inserted mutant, HSV-TK or a modification in which the N-terminal or C-terminal of the mutant is modified with a peptide, which can induce cell death in the presence of ganciclovir.
- the cell death inducing molecule that is expressed under the control of the promoter of the second gene after the recombination reaction by recombinase Cre may be expressed as a chimeric protein linked to other proteins.
- the cell death-inducing molecule and other protein can be linked with a linker containing a self-cleaving peptide so that the cell death-inducing molecule is present in the target cell in a state separated from the other protein. it can.
- the self-cleaving peptide a known self-cleaving peptide such as 2A peptide can be used.
- the gene is a base sequence that encodes a linker containing a self-cleaving peptide (a self-cleaving peptide is a 2A peptide so that a gene encoding a cell death-inducing molecule and a gene encoding another protein have the same reading frame. In this case, it can be obtained by linking via a base sequence containing a P2A sequence that is a base sequence encoding the 2A peptide.
- Examples of such other proteins include fluorescent proteins.
- the genetic modification (ii) when expressing a protein in which a cell death-inducing molecule and a fluorescent protein are linked with a linker containing a self-cleaving peptide in a target cell after a recombination reaction with recombinase Cre, The presence or absence of expression of a cell death-inducing molecule in a target cell having the genetic modification of i) and (ii) can be discriminated by the fluorescence emitted from the fluorescent protein. That is, the fluorescent protein can function as a marker for cell death-inducing molecule expression.
- the loxP sequence used in the genetic modification (ii) may be any sequence that can be recognized by the recombinase Cre expressed by the genetic modification (i), and can be used in the genetic modification using the Cre / loxP system. It can be appropriately selected from loxP sequences. For example, a 34 bp loxP sequence derived from E. coli P1 phage or a variant thereof can be used. The two loxP sequences used in the genetic modification of (ii) may be the same or different.
- Examples of the genetic modification (ii) include, for example, downstream of the promoter of the second gene, preferably downstream of the start methionine immediately below the promoter of the second gene (start methionine of the second gene).
- Examples include modification in which a gene encoding a cell death-inducing molecule sandwiched between two different loxP sequences is inserted in an inverted position.
- two loxP sequences having different orientations are incorporated downstream of the promoter of the second gene in the target cell, and a cell death-inducing molecule is encoded in a region sandwiched by these loxP sequences.
- the inserted gene is inserted in the inverted position.
- the gene modification since the gene encoding the cell death inducing molecule is inserted in an inverted position, the cell death inducing molecule is not expressed in the absence of recombinase Cre.
- the region sandwiched between the two loxP sequences is reversed by recombinase Cre, and a cell death-inducing molecule is expressed under the control of the promoter of the second gene. .
- Examples of the genetic modification (ii) include, for example, a transcription termination sequence sandwiched between two loxP sequences of the same orientation downstream of the promoter of the second gene, and the cell death induction downstream of these loxP sequences.
- a modification that inserts a gene encoding a molecule is also included.
- a gene encoding a cell death-inducing molecule is inserted in the target cell downstream of the promoter of the second gene via a transcription termination sequence sandwiched between two loxP sequences of the same orientation. Yes.
- a transcription termination sequence sandwiched between two loxP sequences of the same orientation may be inserted downstream of the initiation methionine immediately below the promoter of the second gene, or inserted upstream of the initiation methionine. Also good.
- a transcription termination sequence exists between the gene encoding the cell death-inducing molecule and the promoter of the second gene, and therefore the cell death-inducing molecule is not expressed in the absence of recombinase Cre.
- a region sandwiched between the two loxP sequences is cut out by recombinase Cre, and a cell death-inducing molecule is expressed under the control of the promoter of the second gene.
- the transcription termination sequence include a polyA sequence and a sequence containing a stop codon.
- a gene encoding a fluorescent protein is further downstream of the promoter of the second gene and upstream of the two loxP sequences. You may insert so that expression may be controlled by a promoter. Since this fluorescent protein is expressed even before the recombination reaction by recombinase Cre, the presence or absence of the gene modification (ii) can be confirmed using the fluorescence emitted from this fluorescent protein as an index. That is, the fluorescent protein functions as a marker for genetic modification described in (ii).
- the fluorescent protein gene When the fluorescent protein gene is inserted upstream of the two loxP sequences, after the recombination reaction with recombinase Cre, a chimeric protein in which the fluorescent protein is linked to the N-terminus of the cell death inducing molecule is expressed. Therefore, it is preferable to provide a base sequence encoding a self-cleaving peptide downstream of the fluorescent protein gene and upstream of the two loxP sequences so as to have the same reading frame as the fluorescent protein gene. Since there is a self-cleaving peptide between the fluorescent protein and the cell death-inducing molecule, the cell death-inducing molecule can be present in the target cell in a state separated from the fluorescent protein.
- the cell death-inducing molecule When the cell death-inducing molecule is expressed together with a fluorescent protein that serves as a marker for cell death-inducing molecule expression, the fluorescent protein that serves as a marker for cell death-inducing molecule expression and the fluorescence that serves as a marker for gene modification in (ii) above. In order to distinguish and detect both proteins, it is preferable to use fluorescent substances having different fluorescence characteristics.
- the genetic modification (i) and the genetic modification (ii) are homologous using a DNA fragment in which a foreign gene is sandwiched between base sequences homologous upstream and downstream of a target region into which a foreign gene is to be introduced. It can be performed using a known gene modification technique such as a recombination method or a method using genome editing.
- Nucleases for genome editing include ZFN (Zinc-FingerFNuclease), TALEN (Transcription Activator-Like Effector Nuclease), CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) / Cas9 (Crispr Associated protein 9).
- the cell death-inducing molecule-expressing animal used in the present invention can be prepared by introducing the genetic modification (i) and the genetic modification (ii) sequentially or simultaneously by genetic recombination technology.
- each of the genetic modifications (i) and (ii) is a heterozygous type that exists in only one of a pair of homologous chromosomes. For this reason, generally, even in the target cells of the cell death-inducing molecule-expressing animal, both the first gene and the second gene are expressed by homologous chromosomes that are not modified. For this reason, the cell death-inducing molecule-expressing animal can be bred by a normal breeding method in the same manner as the animal before introducing the genetic modification of (i) and (ii).
- the cell death-inducing molecule-expressing animal used in the present invention includes a non-human animal having only the genetic modification of (i) (hereinafter sometimes referred to as “genetically modified animal (i)”) and the above (ii). It can also be obtained by mating non-human animals having only genetic modification (hereinafter sometimes referred to as “gene modified animals (ii)”).
- the phenotypes of the genetically modified animal (i) and the genetically modified animal (ii) are almost the same as the phenotypes of the animals before the introduction of these genetic modifications. And it can be raised by a normal breeding method in the same manner as the animal before introducing the genetic modification of (ii).
- a target cell-deficient animal is produced by administering a stimulating substance to a cell death-inducing molecule-expressing animal into which the genetic modifications (i) and (ii) have been introduced.
- Administration of the stimulating substance can be performed by a method generally used for administration to laboratory animals such as mice and rats, such as intravenous injection.
- the animal species of the cell death-inducing molecule-expressing animal introduced with the genetic modification of (i) and (ii) above and the non-human animal deficient in the target cell obtained by stimulating it with a stimulating substance are human There is no particular limitation as long as it is not, for example, mammals such as cows, pigs, horses, sheep, goats, monkeys, dogs, cats, rabbits, mice, rats, hamsters, guinea pigs, chickens, quails, ducks And other birds.
- rodents are preferable, and mice or rats are more preferable because they are widely used as experimental animals, and diphtheria toxin can be used as a stimulating substance and diphtheria toxin receptor can be used as a cell death-inducing molecule.
- the NK receptor KLRp1b is highly expressed in NK cells and ILC3, but not expressed in other T cell lineage cells other than ILC3. Therefore, when using ILC3 as a target cell, the first gene is the KLRp1b gene and the second gene is the ROR ⁇ t gene, or the first gene is the ROR ⁇ t gene and the second gene is the KLRp1b gene.
- the method for producing a non-human animal deficient in target cells according to the present invention can produce a non-human animal in which ILC3 is specifically deficient.
- a pair of homologous chromosomes encodes two loxP sequences and a diphtheria toxin receptor so that the diphtheria toxin receptor is expressed only in the presence of recombinase Cre and under the control of the promoter of the ROR ⁇ t gene.
- the gene has been genetically modified such that the recombinase Cre gene is incorporated so that expression is controlled by the promoter of the KLRp1b gene in only one of the pair of homologous chromosomes.
- a rodent genetically modified animal to which diphtheria toxin is administered for the production of a rodent genetically modified animal specifically deficient in ILC3 includes the ROR ⁇ t gene in only one of a pair of homologous chromosomes. Two loxP sequences with different orientations are incorporated downstream of the promoter of the gene, and a gene encoding a diphtheria toxin receptor is inserted in an inverted position in a region sandwiched by these loxP sequences.
- a rodent genetically modified animal (KLRp1b-Cre / ROR ⁇ t-iDTR flox gene-modified animal) in which the recombinase Cre gene is incorporated so that the expression is controlled by the promoter of the KLRp1b gene in only one of the homologous chromosomes Is preferred.
- the KLRp1b-Cre / ROR ⁇ t-iDTR flox gene-modified animal has two loxP sequences different from each other in the downstream of the promoter of the ROR ⁇ t gene in only one of a pair of homologous chromosomes.
- a rodent genetically modified animal in which a gene encoding a diphtheria toxin receptor is inserted in an inverted position in a region flanked by loxP sequences, and one of a pair of homologous chromosomes This can be obtained by mating a rodent genetically modified animal (KLRp1b-Cre genetically modified animal) in which the recombinase Cre gene is incorporated so that expression is controlled by the promoter of the KLRp1b gene. .
- a rodent genetically modified animal to which diphtheria toxin is administered for the production of a rodent genetically modified animal specifically deficient in ILC3 includes the KLRp1b gene in only one of a pair of homologous chromosomes. Two loxP sequences with different orientations are incorporated downstream of the promoter of the gene, and a gene encoding a diphtheria toxin receptor is inserted in an inverted position in a region sandwiched by these loxP sequences.
- Rodent genetically modified animals in which the recombinase Cre gene is integrated so that expression is controlled by the promoter of the ROR ⁇ t gene in only one of the homologous chromosomes (ROR ⁇ t-Cre / KLRp1b-iDTR flox gene modified animal) Is preferred.
- the ROR ⁇ t-Cre / KLRp1b-iDTR flox gene-modified animal has two loxP sequences of different orientations incorporated downstream of the promoter of the KLRp1b gene in only one of a pair of homologous chromosomes.
- a rodent genetically modified animal in which a gene encoding a diphtheria toxin receptor is inserted in an inverted position in a region flanked by loxP sequences, and one of a pair of homologous chromosomes Only in this book, it can be obtained by mating with a rodent genetically modified animal (ROR ⁇ t-Cre genetically modified animal) in which the recombinase Cre gene is incorporated so that the expression is controlled by the promoter of the ROR ⁇ t gene. .
- a non-human animal deficient in GM-CSF producing ILC3 can be produced. Specifically, except that GM-CSF producing ILC3 is a target cell, at least one of the first gene and the second gene is a Csf2 gene, and the other is a gene expressed in GM-CSF producing ILC3. It can be produced in the same manner as a non-human animal in which ILC3 is specifically deleted.
- Example 2 As demonstrated by the inventor in Example 2 below, among ILC3 cells, only CD4-positive LTi-like cells produce GM-CSF. That is, in GM-CSF producing ILC3, both the ROR ⁇ t gene and the Csf2 gene are expressed. Therefore, when GM-CSF producing ILC3 is used as a target cell, the first gene is the Csf2 gene and the second gene is the ROR ⁇ t gene, or the first gene is the ROR ⁇ t gene and the second gene is the Csf2 Let it be a gene. Thereby, a non-human animal in which GM-CSF producing ILC3 is specifically deleted can be produced.
- Non-human animals in which GM-CSF producing cells are visualized By expressing the fluorescent protein only in the GM-CSF producing cells, only the GM-CSF producing cells can be visualized.
- the cells in which the GM-CSF producing cells are visualized can be collected from a genetically modified animal (GM-CSF producing cell visualized genetically modified animal) in which a fluorescent protein is expressed only in the GM-CSF producing cells.
- the GM-CSF producing cell visualization gene-modified animal or the visualized GM-CSF producing cell collected therefrom is useful as a tool for analyzing the physiological function of the GM-CSF producing cell and the function of the GM-CSF itself.
- the GM-CSF producing cell visualization gene-modified animal has the recombinase Cre gene incorporated so that the expression is controlled by the promoter of the Csf2 gene in only one of the pair of homologous chromosomes, and In only one of the pair of homologous chromosomes, the fluorescent protein gene is incorporated so that the expression is controlled by the promoter of the gene expressed in the GM-CSF producing cell only in the presence of the recombinase Cre. . In GM-CSF producing cells, Cre is expressed under the control of the promoter of the Csf2 gene, and the fluorescent protein is expressed by this Cre.
- the GM-CSF producing cell visualization gene-modified animal is, for example, a non-human animal (Csf2) in which the recombinase Cre gene is incorporated so that the expression is controlled by the promoter of the Csf2 gene only in one of a pair of homologous chromosomes.
- the expression of the fluorescent protein gene is controlled by the promoter of the gene expressed in the GM-CSF producing cell only in the presence of the recombinase Cre in only one of the pair of homologous chromosomes. It can be obtained as a progeny individual by mating with a non-human animal (fluorescent protein gene-introduced modified animal) that has been incorporated in such a manner.
- the Csf2-Cre genetically modified animal is an animal having a genetic modification in which the first gene is the Csf2 gene among the genetic modifications described in (i) above.
- the Csf2-Cre gene-modified animal is a double-stranded DNA fragment comprising a recombinase Cre gene (a base sequence encoding recombinase Cre) in the region containing the initiation methionine in the coding region of the Csf2 gene region (Csf2 gene) in genomic DNA. ). Any gene modification may be used so long as the recombinase Cre gene is expressed by the promoter of the Csf2 gene.
- the entire region of the Csf2 gene region may be replaced with the recombinase Cre gene, and only the partial region including the initiation methionine in the Csf2 gene region is included.
- the recombinase Cre gene region may be substituted.
- the recombinase Cre gene is inserted downstream of the initiation methionine immediately below the promoter of the Csf2 gene.
- the fluorescent protein gene-introduced modified animal can be prepared in the same manner as the non-human animal having the genetic modification of (ii) above. That is, a fluorescent protein gene is used in place of a gene encoding a cell death-inducing molecule, and a gene expressed in a GM-CSF producing cell other than the Csf2 gene is used as the second gene.
- a fluorescent protein gene-introduced modified animal is a gene that incorporates two loxP sequences and a fluorescent protein gene so that the fluorescent protein is expressed under the control of the promoter of the gene expressed in the GM-CSF producing cell. It can be produced by modification.
- the second gene that is, the gene that incorporates the fluorescent protein gene downstream of the promoter (fluorescent protein introduction gene) is a gene that is expressed in GM-CSF producing cells and is a gene other than the Csf2 gene. It is not limited.
- the gene for introducing a fluorescent protein is preferably a gene that is not essential for cell survival or proliferation in order to suppress the influence on the cell into which the fluorescent protein gene is introduced. Examples of the gene include Rosa26 gene.
- a gene expressed only in specific cells is used as a fluorescent protein introduction gene, so that only a specific cell group in GM-CSF producing cells is fluorescent. Can be visualized.
- a gene specifically expressed in ILC3 as a gene for introducing a fluorescent protein, and crossing the obtained fluorescent protein gene-introduced animal with a Csf2-Cre gene-modified animal, GM-CSF producing ILC3 It is possible to obtain a non-human genetically modified animal that is specifically visualized with fluorescence.
- Examples of genetic modification that incorporates two loxP sequences and a fluorescent protein gene include, for example, two loxP sequences having different orientations downstream of the promoter of the gene for introducing the fluorescent protein, preferably downstream of the starting methionine immediately below the promoter.
- a modification that incorporates the sandwiched fluorescent protein gene into the inverted position can be mentioned.
- two loxP sequences having different orientations are incorporated downstream of the promoter in the GM-CSF producing cell, and the fluorescent protein gene is inverted in a region sandwiched by these loxP sequences. Has been inserted.
- the fluorescent protein gene since the fluorescent protein gene is inserted in an inverted position, the fluorescent protein is not expressed in the absence of recombinase Cre.
- the region sandwiched between the two loxP sequences is inverted by recombinase Cre, and a fluorescent protein is expressed.
- Examples of the genetic modification that incorporates two loxP sequences and a fluorescent protein gene include, for example, a transcription termination sequence sandwiched between two loxP sequences of the same orientation downstream of the promoter of a gene for introducing a fluorescent protein, and these loxP sequences.
- the modification which inserts a fluorescent protein gene downstream is also mentioned.
- a fluorescent protein gene is inserted downstream of the promoter via a transcription termination sequence sandwiched between two loxP sequences having the same orientation.
- a transcription termination sequence sandwiched between two loxP sequences having the same orientation may be inserted downstream of the initiation methionine immediately below the promoter, or upstream of the initiation methionine.
- the fluorescent protein is not expressed in the absence of recombinase Cre.
- a region sandwiched between the two loxP sequences is cut out by recombinase Cre, and a fluorescent protein is expressed.
- the animal species of the GM-CSF producing cell visualization genetically modified animal is not particularly limited as long as it is other than human, for example, cow, pig, horse, sheep, goat, monkey, dog, cat, rabbit, mouse, rat Mammals such as hamsters and guinea pigs, and birds such as chickens, quails and ducks. Rodents such as mice and rats are preferred because they are widely used as experimental tools.
- Example 1 ⁇ Preparation of a novel genetically modified mouse that expresses recombinase Cre specifically for ILC3>
- a blue fluorescent protein EBFP2 gene, a recombinase Cre gene sandwiched between two loxP sequences (inwardly directed loxP sequences) having different orientations, and a red fluorescent protein KuO (Kusterrorism Orange) gene are each encoded with a P2A sequence (a 2A peptide is encoded)
- a DNA fragment consisting of a base sequence (EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyA coding sequence) provided with a polyA sequence downstream of the KuO gene, and the KLRp1b gene Klrp1b-EBFP2-P2A-Cre mice knocked in to the starting methionine were generated by the CRISPR / Cas genome editing technique.
- the base sequence consisting of SEQ ID NO: 1 5′-GTTGAATCCATTGTA
- mouse bacterial artificial chromosome (BAC) library PRCI23 manufactured by Thermofischer scientific
- BAC mouse bacterial artificial chromosome
- the targeting vectors used for homologous recombination were upstream from the 5 'homology arm (named BoxA), EBFP2, Cre expression cassette flanked by VloxP, KuO, SV40 polyA signal, and 3' homology arm (
- a DNA fragment composed of (named Box B) was cloned into the p06A5 shuttle vector.
- BoxA consisted of a 969 bp fragment located immediately 5 'to the ATG translation start site of exon 1 of the Klp1b gene, and was amplified by PCR from BAC clone 175K9 to have an AscI site at its 3' end.
- the EBFP2 sequence was cloned from pEBFP2-Nuc (plasmid 14983, Addgen).
- the KuO sequence was cloned from a humanized KuO (phKO1-S1) vector (AM-V0044, MBL).
- a Cre sequence containing a stop codon and a polyA sequence was cloned from a Cre-IRES-EGFP-polyA p06A5 shuttle vector (provided by Dr. Lucie Peduto, Pasteur Institute).
- the EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyA coding sequence was fused to BoxA via the AscI site and to BoxB via the PmeI site.
- BoxB consists of a 977 bp fragment located 3 'to the ATG translation start site of exon 1 of the Klrp1b gene and was amplified by PCR from BAC clone 175K9.
- Circular targeting vector final concentration 10 ng / ⁇ L
- Cas9 protein manufactured by New England Biolabs, final concentration 30 ng / ⁇ L
- crisprRNA 5′-GTTGAATCCATTGTAGATGG-3 ′: SEQ ID NO: 2
- tracrRNA both A mixture of FASMAC (final concentration 0.61 pmol / ⁇ L) was microinjected into the nucleus of the pronuclear stage of BDF1 mice, and the eggs were transplanted into the oviducts of pseudopregnant female ICR mice. This resulted in exactly one of the 23 born children having the target Klrp1b locus.
- Initial screening was performed by PCR amplifying a 2.5 kb fragment starting at 80 bp 5 ′ of the short arm in the Klrp1b locus and ending at the 3 ′ end of KuO.
- the correct insertion of the EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyA coding sequence was also confirmed by the DNA sequence.
- Klrp1b + / EB FP2-P2A-Cre mouse The genotypes of Klrp1b + / EB FP2-P2A-Cre mouse (named Klrp1b-EBFP2-P2A-Cre mouse) and the mouse obtained from this mouse were expressed in the vicinity of exon 1 of Klrp1b gene [5 ′ primer 5′-AGCGGACTTCCTTT-3 ′ (SEQ ID NO: 3) and 3 ′ primer were confirmed by PCR using 5′-TCCTCGAACTGGAGGCT-3 ′ (SEQ ID NO: 4)]. The resulting Klrp1b-EBFP2-P2A-Cre mouse was backcrossed 6 or more times to C57 / BL6J mice.
- the obtained Klrp1b-EBFP2-P2A-Cre mouse was crossed with a Rosa26-tdTomato mouse to obtain a child expressing the fluorescent protein tdTomato.
- Rosa26-tdTomato mouse a stop codon sandwiched between two loxP sequences of the same orientation is located downstream of the promoter of the Rosa26 gene, and the fluorescent protein tdTomato gene is inserted downstream thereof.
- the fluorescence of tdTomato is used as an indicator.
- a cell group having an expression history of KLRp1b was analyzed by flow cytometry for cells of each tissue of a progeny individual expressing tdTomato. As a result, the cell group having the expression history of KLRp1b was only ILC3 and NK cells, and T cells and other natural lymphocytes had no expression history.
- FIG. 1 shows the results of fractionation of small intestine and liver cells by the expression level of tdTomato and the expression level of CD3.
- FIG. 2 shows the results of further fractionating the tdTomato positive cells in FIG. 1 (cells in the area enclosed by the square in the figure) by the expression level of CD127 and the expression level of NKp46.
- tdTomato positive cells in the small intestine were CD127 positive and NKp46 positive cells, and were ILC3.
- the tdTomato positive cells in the liver were CD127 negative and NKp46 positive cells, and were NK cells.
- a ROR ⁇ t-iDTRflox mouse in which a DNA fragment comprising a KuO-P2A-DTR sequence (a sequence in which a DTR gene is linked downstream of the KuO gene via a P2A sequence) is knocked into the start methionine of the ROR ⁇ t gene is expressed as a CRISPR / Cas Created by genome editing technology.
- the base sequence consisting of SEQ ID NO: 5 (5′-TGAATGGGGGCATCCGGTCATGG-3 ′) was used as the CRISPR target sequence.
- ROR ⁇ t-CRISPR-F (5′-TGAATGGGGGCATCCGGTCA-3 ′, SEQ ID NO: 6) and ROR ⁇ t-CRISPR-R (5) are included in the entry site of the pX330 plasmid (plasmid 42230, manufactured by addgen) having both gRNA and Cas9 expression units. '-TGACCGGATGCCCCCATTCA-3', SEQ ID NO: 7) was annealed and inserted. The resulting plasmid was named pX330-ROR ⁇ t.
- the targeting vector used for homologous recombination is the EGFP-loxp-inverted KuO-P2A-DTR-loxp sequence (from upstream, 5 ′ homology arm (named BoxA), EBFP2, and two loxP sequences with different orientations.
- a DNA fragment consisting of the inverted KuO-P2A-DTR sequence and the 3 'homology arm (named Box B) was cloned into the p06A5 shuttle vector. It was. BoxA consists of a 1065 bp fragment located immediately 5 'to the ATG translation start site of exon 1 of the ROR ⁇ t gene, and was amplified by PCR from BAC clone 263K17 to have an AscI site at its 3' end.
- the vector containing human DTR used was a gift from Dr. GerardGEberl of Pasteur Institute.
- the KuO sequence was cloned from a humanized KuO (phKO1-S1) vector (AM-V0044, MBL).
- the EBFP2 sequence was cloned from the Cre-IRES-EGFP-polyA p06A5 shuttle vector (provided by Dr. Lucie Peduto, Pasteur Institute).
- the EGFP-loxp-inverted KuO-P2A-DTR-loxp coding sequence was fused to BoxA via the AscI site and to BoxB via the PmeI site.
- BoxB consisted of a 1018 bp fragment located 3 'to the ATG translation start site of exon 1 of the ROR ⁇ t gene, and was amplified by PCR from BAC clone 263K17.
- the resulting plasmid was named pROR ⁇ t / EGFP-invDTRKuO.
- FIG. 3 shows a fluorescence image of cells transfected with pROR ⁇ t / EGFP-invDTRKuO.
- the upper row (“Cre ( ⁇ )”) is an image of cells transfected only with pROR ⁇ t / EGFP-invDTRKuO
- the lower row (“Cre (+)”) is a cell transfected with both pROR ⁇ t / EGFP-invDTRKuO and a Cre expression vector. It is an image. From this result, it was found that in cells containing pROR ⁇ t / EGFP-invDTRKuO, the loxp-invertedxKuO-P2A-DTR-loxp sequence was irreversibly inverted in the presence of Cre, and DTR and KuO were expressed downstream of the ROR ⁇ t promoter. confirmed.
- DNA vectors (pX330-ROR ⁇ t and pROR ⁇ t / EGFP-invDTRKuO) were isolated using FastGene Gel / PCR Extraction Kit (Nippon genetics), diluted to 5 ng / ⁇ L with deionized distilled water, and mixed. This DNA solution was filtered using a 0.2 ⁇ m filter unit (MILLEX-GV (registered trademark), manufactured by Millipore), and then males of fertilized oocytes collected from females of superovulated C57BL / 6J mice. One-cell embryos that had been microinjected into the pronuclei and survived were transplanted into the oviducts of pseudopregnant female ICR mice.
- MILLEX-GV registered trademark
- the initial screening was performed by PCR, which amplifies a 2.5 kb fragment starting from 150 bp on the 3 ′ side of Box A in the ROR ⁇ t locus and ending at 200 bp from the 5 ′ end of Box B. It was also confirmed by DNA sequence that the EGFP-loxp-inverted KuO-P2A-DTR-loxp coding sequence (EGFP-invDTRKuO) was inserted correctly.
- ROR ⁇ t + / EGFP-invDTRKuO mice The genotypes of ROR ⁇ t + / EGFP-invDTRKuO mice (named ROR ⁇ t-iDTR flox mice) and mice obtained from these mice were expressed as primers around exon 1 of the ROR ⁇ t gene [5 ′ primer is 5′-CCCCCTGCCCAGAAACACT-3 '(SEQ ID NO: 8), 3' primer was confirmed by PCR using 5'-TACCATTGCTGCCAAGG-3 '(SEQ ID NO: 9)].
- the DTR sequence on the genome is irreversibly inverted, and DTR is expressed downstream of the ROR ⁇ t promoter. That is, the mouse can visualize ROR ⁇ t-expressing cells with GFP, and can also visualize DTR expression in the presence of Cre with the fluorescent protein KuO.
- Cell groups present in the intestinal tract of Klrp1b-EBFP2-P2A-Cre mice, ROR ⁇ t-iDTR flox mice and ILC3-DTR mice were analyzed by flow cytometry, and fractionated by green fluorescence amount and red fluorescence amount. More specifically, a CD3 ⁇ B220 ⁇ CD127 + cell group (a cell group in which CD3 is negative, B220 is negative, and CD127 is positive) is sorted from the group of cells present in the intestinal tract, and the total amount of the sorted cell group is determined. The existence ratios of cells emitting green fluorescence (EGFP positive cells) and cells emitting red fluorescence (KuO positive cells) were examined. The results are shown in FIG.
- the cell group in the lymph node collected from each mouse was fractionated by the expression level of CD127 and the expression level of ckit using flow cytometry.
- the results are shown in FIG.
- the cell in the region surrounded by the polygon is ILC3.
- the abundance ratio (%) of ILC3 relative to the total amount of cells in the lymph node was 2.88% in the PBS administration group in the ROR ⁇ t-iDTR flox mice in which DTR was not expressed in ILC3, whereas in DTX The dose increased to 7.01%.
- ILC3-DTR mice in which DTR is expressed in ILC3 it was 4.37% in the PBS administration group, but 0.775% by DTX administration, and ILC3 was not present. .
- the number of CD4 T cells and the number of ILC3 were counted using flow cytometry for the cell group in the lymph node and the cell group in the small intestine collected from each mouse.
- the results are shown in FIG.
- the upper stage (LN) is the result of the cell group in the lymph node
- the lower stage is the result of the cell group in the small intestine.
- “inv.DTR” indicates the result of the ROR ⁇ t-iDTR flox mouse
- inv.DTR ⁇ KLRCre indicates the result of the ILC3-DTR mouse.
- ILC3-DTR mice Since the number of CD4T cells in ILC3-DTR mice was similar to that in the PBS-administered group, it was confirmed that there was not much influence of DTX administration on CD4T cells other than ILC3. On the other hand, the number of ILC3 in ILC3-DTR mice was remarkably reduced by DTX administration. Similar results were obtained in lymph nodes and small intestine. From these results, it was confirmed that ILC3-DTR mice can specifically remove ILC3 in a DTX-dependent manner.
- Example 2 ⁇ Csf2-Cre mouse production> Csf2-Cre mice in which a DNA fragment comprising the base sequence of the recombinase Cre gene was knocked into the initiation methionine of the Csf2 gene were prepared by the Bacterialartificial chromosome (BAC) transgenic method.
- BAC Bacterialartificial chromosome
- BAC mouse bacterial artificial chromosome
- the targeting vector used for homologous recombination was a DNA fragment (Cre group) composed of 5 ′ homology arm (named Box A), Cre expression cassette, and 3 ′ homology arm (named Box B) from upstream.
- the fragment for replacement) cloned into the p06A5 shuttle vector was used.
- BoxA consists of a 969 bp fragment located immediately 5 'to the ATG translation start site of exon 1 of the Csf2 gene, and was amplified by PCR from BAC clone RP23-397C23 to have an AscI site at its 3' end. .
- the Cre recombination fragment was fused to Box A via the AscI site and to Box B via the PmeI site.
- BoxB consisted of a 1011 bp fragment located 3 'to the ATG translation start site of exon 1 of the Csf2 gene, and was amplified by PCR from the BAC clone RP23-397C23.
- homologous recombination was caused between the RP23-397C23 BAC DNA and the p06A5 shuttle vector having the Csf2 gene fragment on the 5 'and 3' sides of the created Cre gene, and the Csf2 gene start codon of RP23-395C23 BAC DNA Recombinant BAC DNA in which the Cre gene was knocked in immediately below was prepared following the previous example (Non-patent Document 9).
- Recombinant BAC DNA was microinjected into the nucleus of the pronuclear egg of BDF1 mice, and the eggs were transplanted into the oviducts of pseudopregnant female ICR mice. As a result, one of 24 born children had exactly the target Csf2 locus.
- Initial screening was performed by PCR amplifying a 2 kb fragment starting at 80 bp 5 'of the short arm in the Csf2 locus and ending at the 3' end of Cre. The correct insertion of the Cre recombination fragment was also confirmed by the DNA sequence.
- the genotype of a mouse (Csf2-Cre mouse) in which the Cre recombination fragment was confirmed to be correctly inserted and the mouse obtained from this mouse were expressed as follows: a primer around exon 1 of the Csf2 gene [5 ′ primer is 5′-AGAACTTGCCAGGGAAG-3 ′ (SEQ ID NO: 10) and 3 ′ primer were confirmed by PCR using 5′-TTAGCTTCTGTGGGAAGC-3 ′ (SEQ ID NO: 11)].
- the obtained Csf2-Cre mice were backcrossed to C57 / BL6J mice 6 times or more.
- the obtained Csf2-Cre mouse was crossed with a Rosa26-tdTomato mouse (FIG. 7) to obtain a progeny individual (Csf2-Cre / Rosa26-tdTomato mouse) expressing the fluorescent protein tdTomato.
- a progeny individual containing both a genetic modification in which Cre is introduced downstream of the promoter of the Csf2 gene and a genetic modification in which the fluorescent protein tdTomato gene is introduced downstream of the promoter of the Rosa26 gene
- the Csf2 gene is used with the fluorescence of tdTomato as an index. Can be identified.
- FIG. 8 shows the results of fractionating the cells in the lamina intestinal of the small intestine of Csf2-Cre / Rosa26-tdTomato mice by the expression level of CD3 and the expression level of tdTomato.
- tdTomato expression was strongly observed in CD3 negative cells.
- the measured cell sample was gated with the expression levels of LTi-like cell surface antigens c-kit and CD127 (FIG. 9A), and a group of cells with high expression levels of both c-kit and CD127.
- FIG. 9B shows the result of fractionation of this LTi-like cell group by the expression level of CD4 and the expression level of tdTomato. TdTomato expression was strongly observed in CD4 positive cells in the LTi-like cell group. From these results, it was revealed that GM-CSF producing ILC3 is a CD4 positive LTi-like cell.
- FIG. 10 shows a tdTomato fluorescence image of the small intestine tissue of Csf2-Cre / Rosa26-tdTomato mouse. As shown in FIG. 10, tdTomato expression was observed in a lymphoid tissue called Cryptopatch. Further, the small intestine tissue of Csf2-Cre / Rosa26-tdTomato mice was fluorescently stained with an anti-CD11c antibody (eBioscience, Clone N418) and observed with a confocal microscope.
- FIG. 10 shows a tdTomato fluorescence image of the small intestine tissue of Csf2-Cre / Rosa26-tdTomato mouse. As shown in FIG. 10, tdTomato expression was observed in a lymphoid tissue called Cryptopatch. Further, the small intestine tissue of Csf2-Cre / Rosa26-tdTomato mice was fluorescently stained with an anti-CD11c antibody (eBioscience, Clone N418) and observed with a confocal microscope.
- FIG. 11 shows fluorescence-stained images of the small intestine tissue of Csf2-Cre / Rosa26-tdTomato mice (left: Csf2 (tdTomato) fluorescence image, right: CD11-stained image).
- Csf2 (tdTomato) fluorescence image right: CD11-stained image.
- FIG. 11 in Cryptopatch, it was confirmed that CD11c-positive dendritic cells and tdTomato-positive cells were collected.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本発明は、刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物に、前記刺激物質を投与することにより標的細胞を細胞死させて標的細胞を欠損した非ヒト動物を作製する方法であり、前記非ヒト動物は、(i)一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ(ii)一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている。
Description
本発明は、遺伝子改変により、標的細胞に目的の外来タンパク質が発現している非ヒト動物及びその作製方法に関する。より詳細には、外部からの刺激によって標的細胞を欠損させることができる非ヒト動物、当該非ヒト動物から得られる標的細胞を欠損させた非ヒト動物、及び標的細胞が可視化された非ヒト動物に関する。
本願は、2018年2月1日に、日本に出願された特願2018-016832号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年2月1日に、日本に出願された特願2018-016832号に基づき優先権を主張し、その内容をここに援用する。
IL-17A(interleukin-17A)を産生するヘルパーT細胞(TH17細胞)は、関節リウマチや乾癬などの自己免疫疾患や炎症性腸疾患の病態に深く関与する細胞群である。現在、TH17細胞が関与する免疫(TH17型免疫)の経路上の分子群であるIL-23(interleukin-23)、RORγt、及びCCR6などを標的とした生物学製剤や低分子化合物が、自己免疫疾患や炎症性腸疾患に対する有力な創薬候補として注目されている。
TH17型免疫は、ヘルパーT細胞を中心とした獲得免疫系による炎症増幅経路と考えられているが、近年の粘膜皮膚免疫研究により、ヒトやマウスの腸管にはTH17型サイトカインを迅速かつ強力に産生する3型自然リンパ球(ILC3)が存在する事が明らかになってきた(例えば、非特許文献1参照。)。ILC3が産生するIL-22は、定常状態腸管上皮のバリア機能維持に重要である。一方、一部のマウスモデルでは、ILC3が炎症性腸疾患の増悪因子であることも報告されており(例えば、非特許文献2参照。)、炎症性腸疾患におけるILC3の役割は謎に包まれている。
これまで、ILC3を欠損する動物モデルとして、ILC3分化に必要なマスター制御因子であるRORγtやIL-2受容体γ鎖(γc)を欠損したマウスが用いられてきた。しかし、前者はαβT細胞分化やリンパ組織形成が障害され(例えば、非特許文献3及び参照。)、後者は全てのリンパ球分化が障害される(例えば、非特許文献5参照。)。このため、いずれの動物モデルも、生体における免疫機能を評価する用途には適していない。また、RORγt遺伝子のプロモーターの下流にリコンビナーゼCreを発現させたRORγt-CreマウスをId2-floxマウスと交配することによってILC3を欠損させたマウスモデルも作成されている(例えば、非特許文献6参照。)。しかし、当該マウスモデルはリンパ組織も欠損するため、ILC3機能を評価するには適さない。
ILC3のサブタイプのうち、ケモカイン受容体CCR6を発現しており、かつ転写因子T-bet陰性である細胞群がLTi-like細胞と呼ばれており、腸管リンパ組織内に集簇している(例えば、非特許文献1参照。)。LTi-like細胞は、CCR陽性であることに加えて、c-kit陽性でリンパ組織内に局在する細胞であり、CD4陽性のものとCD4陰性のものの両方が存在する(例えば、非特許文献7参照。)。また、LTi-like細胞では、T細胞と同様に、GM-CSF(Granulocyte Macrophage colony-stimulating Factor:顆粒球単球コロニー刺激因子)を産生することが、タンパク質及び遺伝子のレベルで証明されている(例えば、非特許文献8参照。)。GM-CSFは、樹状細胞やマクロファージの分化及び生存に必要なサイトカインであり、その欠損マウスは特に腸管内における樹状細胞が減少することが知られている。また、GM-CSFは、炎症性腸疾患や多発性硬化症の病態形成に関わることも報告されている。
Sawa,et al.,Science,2010,vol.330(6004),p.665-669.
Buonocore,et al.,Nature,2010,vol.464(7293),p.1371-1375.
Sun,et al.,Science,2000,vol.288(5475),p.2369-2373.
Eberl,et al.,Nature Immunology,2003,vol.5(1),p.64-73.
Satoh-Takayama,et al.,Immunity,2008,vol.29,p.958-970.
Guo,et al.,Immunity,2015,vol.42(4),p.731-743.
Penny et al, Seminars in Immunopathology, 2018,vol.40,p.357-370.
Mortha, Science, 2014,vol.343(6178),1249288.
Sparwasser, et al.,Genesis, 2004, vol.38(1), p.39-50.
本発明は、外部からの刺激によって標的細胞を欠損させることができる非ヒト動物、当該非ヒト動物から得られる標的細胞を欠損させた非ヒト動物、標的細胞が可視化された非ヒト動物、及びこれらの作成方法を提供することを目的とする。
本発明者は、Cre/loxPシステムを用いて標的細胞に対して選択的にジフテリア毒素受容体を発現させることにより、ジフテリア毒素刺激によって標的細胞を欠損させた非ヒト動物が作製できることを見出した。さらに、KLRp1b遺伝子のプロモーターの下流にリコンビナーゼCre遺伝子を挿入した非ヒト動物と、RORγt遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列に挟まれたジフテリア毒素受容体遺伝子が逆位に組み込まれた非ヒト動物と、を交配させることにより、ジフテリア毒素刺激によってILC3を欠損させた非ヒト動物が作製できることを見出し、本発明を完成させた。
本発明者は、さらに、Cre/loxPシステムを用いて、GM-CSFコードするCsf2遺伝子のプロモーターの下流にリコンビナーゼCre遺伝子を挿入した非ヒト動物と、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように蛍光タンパク質をコードする遺伝子が組み込まれている非ヒト動物と、を交配させることにより、GM-CSF産生細胞のみが前記蛍光タンパク質から発される蛍光によって可視化された非ヒト動物が得られることを見出し、本発明を完成させた。
すなわち、本発明は、以下の非ヒト動物及びその製造方法を提供するものである。
[1] 標的細胞を欠損した非ヒト動物を、刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物に、前記刺激物質を投与して前記標的細胞を細胞死させることによって作製する方法であり、
前記非ヒト動物は、
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている、
標的細胞を欠損した非ヒト動物の作製方法。
[2] 前記非ヒト動物が、
一対の相同染色体のうちの1本のみにおいて、前記第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物と、
一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記第2の遺伝子のプロモーターの制御下で前記細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている非ヒト動物と、
を交配して得られた個体である、前記[1]の非ヒト動物の作製方法。
[3] 前記非ヒト動物が、
前記第2の遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記細胞死誘導分子をコードする遺伝子が逆位に挿入されており、
リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が反転すると、前記第2の遺伝子のプロモーターの制御下で前記細胞死誘導分子が発現する、前記[1]又は[2]の非ヒト動物の作製方法。
[4] 前記刺激物質がジフテリア毒素であり、かつ前記細胞死誘導分子がジフテリア毒素受容体である、又は
前記刺激物質がガンシクロビルであり、かつ前記細胞死誘導分子が単純ヘルペスウイルス1型-チミジンキナーゼである、前記[1]~[3]のいずれかの非ヒト動物の作製方法。
[5] 前記細胞死誘導分子をコードする遺伝子が、蛍光タンパク質をコードする遺伝子と、自己切断ペプチドを含むリンカーをコードする塩基配列を介して連結されている、前記[1]~[4]のいずれかの非ヒト動物の作製方法。
[6] 前記第2の遺伝子のプロモーターの下流であり、かつ前記loxP配列の上流に、蛍光タンパク質をコードする遺伝子が存在し、前記蛍光タンパク質をコードする遺伝子は、前記第1の遺伝子のプロモーターによって発現が制御されている、前記[1]~[5]のいずれかの非ヒト動物の作製方法。
[7] 前記標的細胞が、3型自然リンパ球である、前記[1]~[6]のいずれかの非ヒト動物の作製方法。
[8] 前記第1の遺伝子がKLRp1b遺伝子であり、かつ前記第2の遺伝子がRORγt遺伝子である、又は、前記第1の遺伝子がRORγt遺伝子であり、かつ前記第2の遺伝子がKLRp1b遺伝子である、前記[7]の非ヒト動物の作製方法。
[9] 刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物であって、
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている、
非ヒト動物。
[10] 前記標的細胞が、3型自然リンパ球であり、
前記第1の遺伝子がKLRp1b遺伝子であり、かつ前記第2の遺伝子がRORγt遺伝子である、又は、前記第1の遺伝子がRORγt遺伝子であり、かつ前記第2の遺伝子がKLRp1b遺伝子である、前記[9]の非ヒト動物。
[11] 前記刺激物質がジフテリア毒素であり、前記細胞死誘導分子がジフテリア毒素受容体であり、げっ歯類である、前記[9]又は[10]の非ヒト動物。
[12] 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子又はKLRp1b遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれている、げっ歯類の遺伝子改変動物。
[13] 一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子又はKLRp1b遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されている、前記[12]のげっ歯類の遺伝子改変動物。
[14] 一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、げっ歯類の遺伝子改変動物。
[15] 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれており、かつ
一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、
げっ歯類の遺伝子改変動物。
[16] 一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されており、
一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、
前記[15]のげっ歯類の遺伝子改変動物。
[17] 3型自然リンパ球を特異的に欠損させた、げっ歯類の遺伝子改変動物。
[18] 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物と、
一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質をコードする遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれている非ヒト動物と
を交配することによって、GM-CSF産生細胞で前記蛍光タンパク質が発現している非ヒト動物を得る、非ヒト動物の作製方法。
[19] 前記蛍光タンパク質をコードする遺伝子が組み込まれている非ヒト動物が、一対の相同染色体のうちの1本のみにおいて、
前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列が挿入されており、これらのloxP配列の下流に前記蛍光タンパク質をコードする遺伝子が挿入されている、又は、
前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記蛍光タンパク質をコードする遺伝子が逆位に挿入されている、
前記[18]の非ヒト動物の作製方法。
[20] 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、
一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質をコードする遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれており、
GM-CSF産生細胞で前記蛍光タンパク質が発現している、非ヒト動物。
[21] 一対の相同染色体のうちの1本のみにおいて、前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列が挿入されており、これらのloxP配列の下流に前記蛍光タンパク質をコードする遺伝子が挿入されている、前記[20]の非ヒト動物。
[22] 一対の相同染色体のうちの1本のみにおいて、前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記蛍光タンパク質をコードする遺伝子が逆位に挿入されている、前記[20]の非ヒト動物。
[23] 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、非ヒト動物。
[1] 標的細胞を欠損した非ヒト動物を、刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物に、前記刺激物質を投与して前記標的細胞を細胞死させることによって作製する方法であり、
前記非ヒト動物は、
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている、
標的細胞を欠損した非ヒト動物の作製方法。
[2] 前記非ヒト動物が、
一対の相同染色体のうちの1本のみにおいて、前記第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物と、
一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記第2の遺伝子のプロモーターの制御下で前記細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている非ヒト動物と、
を交配して得られた個体である、前記[1]の非ヒト動物の作製方法。
[3] 前記非ヒト動物が、
前記第2の遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記細胞死誘導分子をコードする遺伝子が逆位に挿入されており、
リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が反転すると、前記第2の遺伝子のプロモーターの制御下で前記細胞死誘導分子が発現する、前記[1]又は[2]の非ヒト動物の作製方法。
[4] 前記刺激物質がジフテリア毒素であり、かつ前記細胞死誘導分子がジフテリア毒素受容体である、又は
前記刺激物質がガンシクロビルであり、かつ前記細胞死誘導分子が単純ヘルペスウイルス1型-チミジンキナーゼである、前記[1]~[3]のいずれかの非ヒト動物の作製方法。
[5] 前記細胞死誘導分子をコードする遺伝子が、蛍光タンパク質をコードする遺伝子と、自己切断ペプチドを含むリンカーをコードする塩基配列を介して連結されている、前記[1]~[4]のいずれかの非ヒト動物の作製方法。
[6] 前記第2の遺伝子のプロモーターの下流であり、かつ前記loxP配列の上流に、蛍光タンパク質をコードする遺伝子が存在し、前記蛍光タンパク質をコードする遺伝子は、前記第1の遺伝子のプロモーターによって発現が制御されている、前記[1]~[5]のいずれかの非ヒト動物の作製方法。
[7] 前記標的細胞が、3型自然リンパ球である、前記[1]~[6]のいずれかの非ヒト動物の作製方法。
[8] 前記第1の遺伝子がKLRp1b遺伝子であり、かつ前記第2の遺伝子がRORγt遺伝子である、又は、前記第1の遺伝子がRORγt遺伝子であり、かつ前記第2の遺伝子がKLRp1b遺伝子である、前記[7]の非ヒト動物の作製方法。
[9] 刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物であって、
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている、
非ヒト動物。
[10] 前記標的細胞が、3型自然リンパ球であり、
前記第1の遺伝子がKLRp1b遺伝子であり、かつ前記第2の遺伝子がRORγt遺伝子である、又は、前記第1の遺伝子がRORγt遺伝子であり、かつ前記第2の遺伝子がKLRp1b遺伝子である、前記[9]の非ヒト動物。
[11] 前記刺激物質がジフテリア毒素であり、前記細胞死誘導分子がジフテリア毒素受容体であり、げっ歯類である、前記[9]又は[10]の非ヒト動物。
[12] 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子又はKLRp1b遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれている、げっ歯類の遺伝子改変動物。
[13] 一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子又はKLRp1b遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されている、前記[12]のげっ歯類の遺伝子改変動物。
[14] 一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、げっ歯類の遺伝子改変動物。
[15] 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれており、かつ
一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、
げっ歯類の遺伝子改変動物。
[16] 一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されており、
一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、
前記[15]のげっ歯類の遺伝子改変動物。
[17] 3型自然リンパ球を特異的に欠損させた、げっ歯類の遺伝子改変動物。
[18] 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物と、
一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質をコードする遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれている非ヒト動物と
を交配することによって、GM-CSF産生細胞で前記蛍光タンパク質が発現している非ヒト動物を得る、非ヒト動物の作製方法。
[19] 前記蛍光タンパク質をコードする遺伝子が組み込まれている非ヒト動物が、一対の相同染色体のうちの1本のみにおいて、
前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列が挿入されており、これらのloxP配列の下流に前記蛍光タンパク質をコードする遺伝子が挿入されている、又は、
前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記蛍光タンパク質をコードする遺伝子が逆位に挿入されている、
前記[18]の非ヒト動物の作製方法。
[20] 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、
一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質をコードする遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれており、
GM-CSF産生細胞で前記蛍光タンパク質が発現している、非ヒト動物。
[21] 一対の相同染色体のうちの1本のみにおいて、前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列が挿入されており、これらのloxP配列の下流に前記蛍光タンパク質をコードする遺伝子が挿入されている、前記[20]の非ヒト動物。
[22] 一対の相同染色体のうちの1本のみにおいて、前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記蛍光タンパク質をコードする遺伝子が逆位に挿入されている、前記[20]の非ヒト動物。
[23] 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、非ヒト動物。
本発明により、外部からの特定の刺激によって標的細胞を欠損させることができる非ヒト動物を作製でき、当該非ヒト動物を特定の刺激で刺激することによって、標的細胞を欠損させた非ヒト動物を作製できる。
特に、本発明により、外部からの特定の刺激によってILC3を選択的に欠損させる非ヒト動物を作製することができ、作製されたILC3特異的欠損非ヒト動物は、ILC3の機能解析のツールとして非常に有用である。
また、本発明により、GM-CSF産生細胞のみを蛍光によって可視化した非ヒト動物を提供できる。当該非ヒト動物及びこれから採取された生体試料は、GM-CSFの機能解析のツールとして非常に有用である。
特に、本発明により、外部からの特定の刺激によってILC3を選択的に欠損させる非ヒト動物を作製することができ、作製されたILC3特異的欠損非ヒト動物は、ILC3の機能解析のツールとして非常に有用である。
また、本発明により、GM-CSF産生細胞のみを蛍光によって可視化した非ヒト動物を提供できる。当該非ヒト動物及びこれから採取された生体試料は、GM-CSFの機能解析のツールとして非常に有用である。
<標的細胞を欠損した非ヒト動物の作製方法>
本発明に係る非ヒト動物の作製方法は、標的細胞を欠損させた非ヒト動物(以下、「標的細胞欠損動物」ということがある。)を作製する方法であって、刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物(以下、「細胞死誘導分子発現動物」)に前記刺激物質を投与して標的細胞を細胞死させることによって、標的細胞を欠損した非ヒト動物を作製する方法である。当該方法では、標的細胞を欠損させる時期を外部からの刺激物質投与によって制御できる。このため、当該方法は、生存に不可欠な標的細胞を欠損させた非ヒト動物の作製にも好適である。
本発明に係る非ヒト動物の作製方法は、標的細胞を欠損させた非ヒト動物(以下、「標的細胞欠損動物」ということがある。)を作製する方法であって、刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物(以下、「細胞死誘導分子発現動物」)に前記刺激物質を投与して標的細胞を細胞死させることによって、標的細胞を欠損した非ヒト動物を作製する方法である。当該方法では、標的細胞を欠損させる時期を外部からの刺激物質投与によって制御できる。このため、当該方法は、生存に不可欠な標的細胞を欠損させた非ヒト動物の作製にも好適である。
本発明に係る非ヒト動物の作製方法において用いられる細胞死誘導分子発現動物は、細胞死誘導分子を標的細胞内で発現させるために、Cre/loxPシステムを利用している。具体的には、本発明で用いられる細胞死誘導分子発現動物は、下記(i)及び(ii)の遺伝子改変を備える。これらの遺伝子改変を備えることにより、当該細胞死誘導分子発現動物の標的細胞では、細胞死誘導分子が発現している。
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている。
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている。
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている。
本発明において、第1の遺伝子と第2の遺伝子はいずれも、欠損させる目的の標的細胞において発現している遺伝子であり、標的細胞を考慮して適宜決定することができる。本発明で用いられる細胞死誘導分子発現動物では、前記(i)及び(ii)の遺伝子改変により、第1の遺伝子と第2の遺伝子の両方が発現している細胞内にのみ、細胞死誘導分子が発現している。
標的細胞以外の細胞の欠損を可能な限り回避するために、本発明に係る非ヒト動物の作製方法では、第1の遺伝子と第2の遺伝子の組み合わせは、動物個体を構成する全細胞に対する、第1の遺伝子と第2の遺伝子の両方が発現している細胞の割合が小さくなる遺伝子の組み合わせであることが好ましく、第1の遺伝子と第2の遺伝子の両方が発現している細胞が標的細胞のみである組み合わせが特に好ましい。例えば、第1の遺伝子と第2の遺伝子の少なくとも一方を、標的細胞のみで発現している遺伝子とすることにより、第1の遺伝子と第2の遺伝子の両方が発現している細胞が標的細胞のみとすることができる。
前記(i)の遺伝子改変は、具体的には、ゲノムDNA中の第1の遺伝子領域(第1の遺伝子のコーディング領域)のうちの開始メチオニンを含む領域を、リコンビナーゼCre遺伝子(リコンビナーゼCreをコードする塩基配列からなるDNA2本鎖断片)に置換することにより行う。前記(i)の遺伝子改変は、第1の遺伝子のプロモーターによってリコンビナーゼCre遺伝子が発現する遺伝子改変であればよく、第1の遺伝子領域の全領域を、リコンビナーゼCre遺伝子に置換してもよく、第1の遺伝子領域のうちの開始メチオニンを含む部分領域のみを、リコンビナーゼCre遺伝子領域に置換してもよい。
前記(i)の遺伝子改変を備える動物の標的細胞内では、リコンビナーゼCreが発現している。本発明において使用されるリコンビナーゼCreは、Cre/loxPシステムを用いた遺伝子改変において使用可能ないずれのリコンビナーゼCreであってもよい。本発明において使用されるリコンビナーゼCreとしては、大腸菌P1ファージ由来のリコンビナーゼCre又はその改変体を用いることが好ましい。当該改変体は、リコンビナーゼ活性が保持されているものであればよく、例えば、大腸菌P1ファージ由来のリコンビナーゼCreの1又は複数個のアミノ酸を置換、欠失、挿入した変異体や、大腸菌P1ファージ由来のリコンビナーゼCre又はその変異体のN末端若しくはC末端がペプチドで修飾された修飾体であって、リコンビナーゼ活性が保持されているものが挙げられる。
前記(i)の遺伝子改変において、リコンビナーゼCreは、そのN末端若しくはC末端に他のタンパク質を連結させたキメラタンパク質として発現させてもよい。この場合、リコンビナーゼCreとその他のタンパク質とを、自己切断ペプチドを含むリンカーで連結させることにより、リコンビナーゼCreを当該他のタンパク質と分離した状態で標的細胞内に存在させることができる。自己切断ペプチドとしては、2Aペプチド等が挙げられる。具体的には、リコンビナーゼCreとその他のタンパク質とを自己切断ペプチドを含むリンカーで連結させたタンパク質をコードする遺伝子で、ゲノムDNA中の第1の遺伝子領域のうちの開始メチオニンを含む領域を置換する。当該遺伝子は、リコンビナーゼCre遺伝子とその他のタンパク質をコードする遺伝子とを、読み枠が同じとなるように、自己切断ペプチドを含むリンカーをコードする塩基配列(自己切断ペプチドが2Aペプチドの場合、2Aペプチドをコードする塩基配列であるP2A配列を含む塩基配列)を介して連結させて得ることができる。
当該他のタンパク質としては、例えば、蛍光タンパク質が挙げられる。前記(i)の遺伝子改変において、標的細胞内でリコンビナーゼCreと蛍光タンパク質とを自己切断ペプチドを含むリンカーで連結させたタンパク質を発現させた場合には、リコンビナーゼCreの発現の有無を、当該蛍光タンパク質から発される蛍光で判別することができる。すなわち、当該蛍光タンパク質は、前記(i)の遺伝子改変のマーカーとして機能する。
前記(ii)の遺伝子改変は、リコンビナーゼCreによる組み換え反応後に、前記第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するような遺伝子改変であれば、特に限定されるものではない。すなわち、リコンビナーゼCreによる組み換え反応後に、第2の遺伝子領域(第2の遺伝子のコーディング領域)のうちの開始メチオニンを含む領域が、細胞死誘導分子をコードする遺伝子(細胞死誘導分子をコードする塩基配列からなるDNA2本鎖断片)に置換されていればよい。前記(ii)の遺伝子改変は、リコンビナーゼCreによる組み換え反応後において、第2の遺伝子領域の全領域が、細胞死誘導分子をコードする遺伝子に置換されるような改変であってもよく、第2の遺伝子領域のうちの開始メチオニンを含む部分領域のみが、細胞死誘導分子をコードする遺伝子に置換されるような改変であってもよい。
前記(ii)の遺伝子改変において、リコンビナーゼCreによる組み換え反応後に第2の遺伝子のプロモーターの制御下で発現させる細胞死誘導分子としては、細胞外から刺激物質によって刺激した場合に、当該分子を発現している細胞に細胞死を誘導することができる分子であれば特に限定されるものではない。例えば、刺激物質をジフテリア毒素とした場合には、ジフテリア毒素受容体を細胞死誘導分子として用いることができる。また、刺激物質をガンシクロビルとした場合には、単純ヘルペスウイルス1型-チミジンキナーゼ(HSV-TK)又はその改変体を細胞死誘導分子として用いることができる。特に、非ヒト動物がマウスやラットのげっ歯類の場合には、刺激物質をジフテリア毒素とした場合には、ジフテリア毒素受容体を細胞死誘導分子として用いることが好ましい。
細胞死誘導分子として用いられるジフテリア毒素受容体は、いずれかの生物に発現している天然型のジフテリア毒素受容体であってもよく、この天然型のジフテリア毒素受容体の改変体であってもよい。天然型のジフテリア毒素受容体の改変体としては、ジフテリア毒素の存在下で細胞死を誘導できるものであればよく、例えば、天然型のジフテリア毒素受容体の1又は複数個のアミノ酸を置換、欠失、挿入した変異体や、天然型のジフテリア毒素受容体又はその変異体のN末端若しくはC末端がペプチドで修飾された修飾体であって、ジフテリア毒素受容体として機能するものが挙げられる。
細胞死誘導分子として用いられるHSV-TKの改変体としては、ガンシクロビルの存在下で細胞死を誘導できるものであればよく、例えば、HSV-TKの1又は複数個のアミノ酸を置換、欠失、挿入した変異体や、HSV-TK又はその変異体のN末端若しくはC末端がペプチドで修飾された修飾体であって、ガンシクロビルの存在下で細胞死を誘導できるものが挙げられる。
前記(ii)の遺伝子改変において、リコンビナーゼCreによる組み換え反応後に第2の遺伝子のプロモーターの制御下で発現させる細胞死誘導分子は、その他のタンパク質と連結させたキメラタンパク質として発現させてもよい。この場合には、細胞死誘導分子とその他のタンパク質とを、自己切断ペプチドを含むリンカーで連結させることにより、細胞死誘導分子を当該他のタンパク質と分離した状態で標的細胞内に存在させることができる。自己切断ペプチドとしては、2Aペプチド等の公知の自己切断ペプチドを用いることができる。具体的には、細胞死誘導分子とその他のタンパク質とを自己切断ペプチドを含むリンカーで連結させたタンパク質をコードする遺伝子で、ゲノムDNA中の第2の遺伝子領域のうちの開始メチオニンを含む領域を置換する。当該遺伝子は、細胞死誘導分子をコードする遺伝子とその他のタンパク質をコードする遺伝子とを、読み枠が同じとなるように、自己切断ペプチドを含むリンカーをコードする塩基配列(自己切断ペプチドが2Aペプチドの場合、2Aペプチドをコードする塩基配列であるP2A配列を含む塩基配列)を介して連結させて得ることができる。
当該他のタンパク質としては、例えば、蛍光タンパク質が挙げられる。前記(ii)の遺伝子改変において、リコンビナーゼCreによる組み換え反応後の標的細胞内で、細胞死誘導分子と蛍光タンパク質とを自己切断ペプチドを含むリンカーで連結させたタンパク質を発現させる場合には、前記(i)及び(ii)の遺伝子改変を備える標的細胞における細胞死誘導分子の発現の有無を、当該蛍光タンパク質から発される蛍光で判別することができる。すなわち、当該蛍光タンパク質は、細胞死誘導分子発現のマーカーとして機能し得る。
前記(ii)の遺伝子改変において使用されるloxP配列は、前記(i)の遺伝子改変により発現するリコンビナーゼCreが認識可能な配列であればよく、Cre/loxPシステムを用いた遺伝子改変において使用可能なloxP配列の中から、適宜選択して用いることができる。例えば、大腸菌P1ファージ由来の34bpのloxP配列又はその改変体を用いることができる。前記(ii)の遺伝子改変において使用される2つのloxP配列は、同種のものであってもよく、異種のものであってもよい。
前記(ii)の遺伝子改変としては、例えば、第2の遺伝子のプロモーターの下流、好ましくは第2の遺伝子のプロモーターの直下の開始メチオニン(第2の遺伝子の開始メチオニン)の下流に、互いに向きの異なる2つのloxP配列に挟まれた細胞死誘導分子をコードする遺伝子を逆位に組み込む改変が挙げられる。当該遺伝子改変により、標的細胞中では、第2の遺伝子のプロモーターの下流に互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に細胞死誘導分子をコードする遺伝子が逆位に挿入されている。当該遺伝子改変では、細胞死誘導分子をコードする遺伝子は逆位に挿入されているために、リコンビナーゼCre非存在下では、当該細胞死誘導分子は発現しない。この遺伝子改変と共に前記(i)の遺伝子改変を備える細胞では、リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が反転し、第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現する。
前記(ii)の遺伝子改変としては、例えば、第2の遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列と、これらのloxP配列の下流に前記細胞死誘導分子をコードする遺伝子と、を挿入する改変も挙げられる。当該遺伝子改変により、標的細胞中では、第2の遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列を介して細胞死誘導分子をコードする遺伝子が挿入されている。当該改変では、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列は、第2の遺伝子のプロモーターの直下の開始メチオニンの下流に挿入されてもよく、当該開始メチオニンの上流に挿入されてもよい。当該遺伝子改変では、細胞死誘導分子をコードする遺伝子と第2の遺伝子のプロモーターの間に転写停止配列が存在するため、リコンビナーゼCre非存在下では、当該細胞死誘導分子は発現しない。この遺伝子改変と共に前記(i)の遺伝子改変を備える細胞では、リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が切り出されて、第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現する。なお、転写停止配列としては、例えば、polyA配列、ストップコドンを含む配列等が挙げられる。
前記(ii)の遺伝子改変においては、さらに、第2の遺伝子のプロモーターの下流であり、かつ2つのloxP配列の上流に、蛍光タンパク質をコードする遺伝子(蛍光タンパク質遺伝子)を、第2の遺伝子のプロモーターによって発現が制御されるように挿入してもよい。この蛍光タンパク質は、リコンビナーゼCreによる組み換え反応の前であっても発現するため、この蛍光タンパク質から発される蛍光を指標として、前記(ii)の遺伝子改変の有無を確認することができる。すなわち、当該蛍光タンパク質は、前記(ii)の遺伝子改変のマーカーとして機能する。
蛍光タンパク質遺伝子が2つのloxP配列の上流に挿入された場合には、リコンビナーゼCreによる組み換え反応後には、当該蛍光タンパク質が細胞死誘導分子のN末端に連結したキメラタンパク質が発現する。そこで、蛍光タンパク質遺伝子の下流であり、かつ2つのloxP配列の上流に、当該蛍光タンパク質遺伝子と同じ読み枠となるように自己切断ペプチドをコードする塩基配列を設けておくことが好ましい。蛍光タンパク質と細胞死誘導分子の間に自己切断ペプチドがあるため、細胞死誘導分子を当該蛍光タンパク質と分離した状態で標的細胞内に存在させることができる。なお、細胞死誘導分子を細胞死誘導分子発現のマーカーとなる蛍光タンパク質と共に発現させる場合には、細胞死誘導分子発現のマーカーとなる蛍光タンパク質と、前記(ii)の遺伝子改変のマーカーとなる蛍光タンパク質とは、両者を区別して検出するために、互いに蛍光特性の異なる蛍光物質とすることが好ましい。
前記(i)の遺伝子改変と前記(ii)の遺伝子改変は、外来遺伝子を、ゲノム上の外来遺伝子を導入したい目的の領域の上流及び下流と相同な塩基配列で挟んだDNA断片を用いた相同組み換え法や、ゲノム編集を利用した方法など、公知の遺伝子改変技術を利用して行うことができる。ゲノム編集のためのヌクレアーゼとしては、ZFN(Zinc-Finger Nuclease)、TALEN(Transcription Activator-Like Effector Nuclease)、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9(Crispr Associated protein 9)等がある。
本発明で用いられる細胞死誘導分子発現動物は、遺伝子組み換え技術により、前記(i)の遺伝子改変と前記(ii)の遺伝子改変を順次又は同時に導入することによって作製することができる。
本発明で用いられる細胞死誘導分子発現動物では、前記(i)及び(ii)の遺伝子改変は、いずれも一対の相同染色体のうちの1本のみにおいて存在する、ヘテロ接合型である。このため、一般的には、当該細胞死誘導分子発現動物の標的細胞でも、第1の遺伝子と第2の遺伝子はいずれも改変されていない相同染色体により発現している。このため、当該細胞死誘導分子発現動物は、前記(i)及び(ii)の遺伝子改変を導入する前の動物と同様に、通常の飼育方法で飼育することができる。
本発明で用いられる細胞死誘導分子発現動物は、前記(i)の遺伝子改変のみを備える非ヒト動物(以下、「遺伝子改変動物(i)」ということがある。)と、前記(ii)の遺伝子改変のみを備える非ヒト動物(以下、「遺伝子改変動物(ii)」ということがある。)を交配することによって得ることもできる。遺伝子改変動物(i)と遺伝子改変動物(ii)の表現型はいずれも、これらの遺伝子改変を導入する前の動物の表現型とほぼ同じであり、これらの遺伝子改変動物も、前記(i)及び(ii)の遺伝子改変を導入する前の動物と同様に、通常の飼育方法で飼育することができる。
前記(i)及び(ii)の遺伝子改変が導入された細胞死誘導分子発現動物に、刺激物質を投与することにより、標的細胞欠損動物が作製される。刺激物質の投与は、静脈注射等の一般的にマウスやラットのような実験動物に投与する際に使用される方法で行うことができる。
本発明において、前記(i)及び(ii)の遺伝子改変が導入された細胞死誘導分子発現動物やこれを刺激物質で刺激して得られる標的細胞を欠損した非ヒト動物の動物種は、ヒト以外であれば特に限定されるものではなく、例えば、ウシ、ブタ、ウマ、ヒツジ、ヤギ、サル、イヌ、ネコ、ウサギ、マウス、ラット、ハムスター、モルモット等の哺乳動物や、ニワトリ、ウズラ、カモ等の鳥類等が挙げられる。なかでも、実験動物として汎用されていること、及びジフテリア毒素を刺激物質とし、ジフテリア毒素受容体を細胞死誘導分子として用いることができることから、げっ歯類が好ましく、マウス又はラットがより好ましい。
<ILC3を特異的に欠損させた非ヒト動物>
RORγtは、ILC3、胸腺細胞、TH17細胞、及びγδT細胞の一部で発現している。一方で、NK受容体KLRp1bは、NK細胞とILC3において高発現しているが、ILC3以外のその他のT細胞系列の細胞では発現していない。そこで、ILC3を標的細胞とする場合には、第1の遺伝子をKLRp1b遺伝子、第2の遺伝子をRORγt遺伝子とする、又は、第1の遺伝子をRORγt遺伝子、第2の遺伝子をKLRp1b遺伝子とすることにより、本発明に係る標的細胞を欠損した非ヒト動物の作製方法で、ILC3を特異的に欠損させた非ヒト動物を作製することができる。
RORγtは、ILC3、胸腺細胞、TH17細胞、及びγδT細胞の一部で発現している。一方で、NK受容体KLRp1bは、NK細胞とILC3において高発現しているが、ILC3以外のその他のT細胞系列の細胞では発現していない。そこで、ILC3を標的細胞とする場合には、第1の遺伝子をKLRp1b遺伝子、第2の遺伝子をRORγt遺伝子とする、又は、第1の遺伝子をRORγt遺伝子、第2の遺伝子をKLRp1b遺伝子とすることにより、本発明に係る標的細胞を欠損した非ヒト動物の作製方法で、ILC3を特異的に欠損させた非ヒト動物を作製することができる。
例えば、一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれており、かつ、一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれているように遺伝子改変されたげっ歯類の遺伝子改変動物に、ジフテリア毒素を投与すると、ILC3に特異的に細胞死が誘導される。この結果、ILC3を特異的に欠損させたげっ歯類の遺伝子改変動物を作製できる。ILC3を特異的に欠損させたげっ歯類の遺伝子改変動物の作製のためにジフテリア毒素を投与されるげっ歯類の遺伝子改変動物としては、一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されており、一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれているげっ歯類の遺伝子改変動物(KLRp1b-Cre/RORγt-iDTRflox遺伝子改変動物)が好ましい。
KLRp1b-Cre/RORγt-iDTRflox遺伝子改変動物は、一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されているげっ歯類の遺伝子改変動物(RORγt-iDTRflox遺伝子改変動物)と、一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれているげっ歯類の遺伝子改変動物(KLRp1b-Cre遺伝子改変動物)と、を交配させることによって得ることができる。
一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみKLRp1b遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれており、かつ、一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれているように遺伝子改変されたげっ歯類の遺伝子改変動物に、ジフテリア毒素を投与することによっても、ILC3を特異的に欠損させたげっ歯類の遺伝子改変動物を作製できる。ILC3を特異的に欠損させたげっ歯類の遺伝子改変動物の作製のためにジフテリア毒素を投与されるげっ歯類の遺伝子改変動物としては、一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されており、一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれているげっ歯類の遺伝子改変動物(RORγt-Cre/KLRp1b-iDTRflox遺伝子改変動物)が好ましい。
RORγt-Cre/KLRp1b-iDTRflox遺伝子改変動物は、一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されているげっ歯類の遺伝子改変動物(KLRp1b-iDTRflox遺伝子改変動物)と、一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれているげっ歯類の遺伝子改変動物(RORγt-Cre遺伝子改変動物)と、を交配させることによって得ることができる。
<GM-CSF産生ILC3を欠損した非ヒト動物>
本発明に係る非ヒト動物の作製方法を実施することにより、GM-CSF産生ILC3を欠損した非ヒト動物を作製することができる。具体的には、GM-CSF産生ILC3を標的細胞とし、第1の遺伝子と第2の遺伝子の少なくとも一方をCsf2遺伝子とし、残る一方をGM-CSF産生ILC3において発現している遺伝子とする以外は、ILC3を特異的に欠損させた非ヒト動物と同様にして作製することができる。
本発明に係る非ヒト動物の作製方法を実施することにより、GM-CSF産生ILC3を欠損した非ヒト動物を作製することができる。具体的には、GM-CSF産生ILC3を標的細胞とし、第1の遺伝子と第2の遺伝子の少なくとも一方をCsf2遺伝子とし、残る一方をGM-CSF産生ILC3において発現している遺伝子とする以外は、ILC3を特異的に欠損させた非ヒト動物と同様にして作製することができる。
後記実施例2において本発明者が明らかにしたように、ILC3細胞のうち、GM-CSFを産生するのは、CD4陽性のLTi-like細胞のみである。つまり、GM-CSF産生ILC3では、RORγt遺伝子とCsf2遺伝子の両方が発現している。そこで、GM-CSF産生ILC3を標的細胞とする場合には、第1の遺伝子をCsf2遺伝子、第2の遺伝子をRORγt遺伝子とする、又は、第1の遺伝子をRORγt遺伝子、第2の遺伝子をCsf2遺伝子とする。これにより、GM-CSF産生ILC3を特異的に欠損させた非ヒト動物を作製することができる。
<GM-CSF産生細胞が可視化された非ヒト動物>
GM-CSF産生細胞のみに蛍光タンパク質を発現させることにより、GM-CSF産生細胞のみを可視化することができる。このGM-CSF産生細胞が可視化された細胞は、GM-CSF産生細胞のみに蛍光タンパク質を発現させた遺伝子改変動物(GM-CSF産生細胞可視化遺伝子改変動物)から採取できる。GM-CSF産生細胞可視化遺伝子改変動物又はこれから採取された可視化されたGM-CSF産生細胞は、GM-CSF産生細胞の生理的機能やGM-CSF自体の機能解析のためのツールとして有用である。
GM-CSF産生細胞のみに蛍光タンパク質を発現させることにより、GM-CSF産生細胞のみを可視化することができる。このGM-CSF産生細胞が可視化された細胞は、GM-CSF産生細胞のみに蛍光タンパク質を発現させた遺伝子改変動物(GM-CSF産生細胞可視化遺伝子改変動物)から採取できる。GM-CSF産生細胞可視化遺伝子改変動物又はこれから採取された可視化されたGM-CSF産生細胞は、GM-CSF産生細胞の生理的機能やGM-CSF自体の機能解析のためのツールとして有用である。
GM-CSF産生細胞可視化遺伝子改変動物は、具体的には、一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ、一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれている。GM-CSF産生細胞では、Csf2遺伝子のプロモーターの制御下でCreが発現しており、このCreによって、蛍光タンパク質が発現している。
GM-CSF産生細胞可視化遺伝子改変動物は、例えば、一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物(Csf2-Cre遺伝子改変動物)と、一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれている非ヒト動物(蛍光タンパク質遺伝子導入改変動物)と、を交配させることにより、後代個体として得ることができる。
Csf2-Cre遺伝子改変動物は、前記(i)の遺伝子改変のうち、第1の遺伝子がCsf2遺伝子である遺伝子改変を備える動物である。Csf2-Cre遺伝子改変動物は、ゲノムDNA中のCsf2遺伝子領域(Csf2遺伝子)のコーディング領域)のうちの開始メチオニンを含む領域を、リコンビナーゼCre遺伝子(リコンビナーゼCreをコードする塩基配列からなるDNA2本鎖断片)に置換することにより作製できる。Csf2遺伝子のプロモーターによってリコンビナーゼCre遺伝子が発現する遺伝子改変であればよく、Csf2遺伝子領域の全領域を、リコンビナーゼCre遺伝子に置換してもよく、Csf2遺伝子領域のうちの開始メチオニンを含む部分領域のみを、リコンビナーゼCre遺伝子領域に置換してもよい。好ましくは、Csf2遺伝子のプロモーターの直下の開始メチオニンの下流に、リコンビナーゼCre遺伝子を挿入する。
蛍光タンパク質遺伝子導入改変動物は、前記(ii)の遺伝子改変を備える非ヒト動物と同様にして作製できる。すなわち、細胞死誘導分子をコードする遺伝子に代えて蛍光タンパク質遺伝子を用い、GM-CSF産生細胞で発現している遺伝子であってCsf2遺伝子以外の遺伝子を第2の遺伝子とする。
具体的には、蛍光タンパク質遺伝子導入改変動物は、GM-CSF産生細胞で発現している遺伝子のプロモーターの制御下で蛍光タンパク質が発現するように、2つのloxP配列と蛍光タンパク質遺伝子とを組み込む遺伝子改変により作製できる。第2の遺伝子、すなわち、蛍光タンパク質遺伝子をプロモーターの下流に組み込む遺伝子(蛍光タンパク質導入用遺伝子)としては、GM-CSF産生細胞で発現している遺伝子であってCsf2遺伝子以外の遺伝子であれば特に限定されるものではない。当該蛍光タンパク質導入用遺伝子としては、蛍光タンパク質遺伝子が導入される細胞への影響を抑えるために、細胞の生存や増殖に必須ではない遺伝子であることが好ましい。当該遺伝子としては、例えば、Rosa26遺伝子等が挙げられる。
GM-CSF産生細胞で発現している遺伝子のうち、特定の細胞にのみ発現している遺伝子を蛍光タンパク質導入用遺伝子とすることにより、GM-CSF産生細胞のうちの特定の細胞群のみを蛍光で可視化することができる。例えば、ILC3に特異的に発現している遺伝子を蛍光タンパク質導入用遺伝子とすることにより、得られた蛍光タンパク質遺伝子導入改変動物とCsf2-Cre遺伝子改変動物を交配することにより、GM-CSF産生ILC3を蛍光で特異的に可視化した非ヒト遺伝子改変動物を得ることができる。
2つのloxP配列と蛍光タンパク質遺伝子とを組み込む遺伝子改変としては、例えば、蛍光タンパク質導入用遺伝子のプロモーターの下流、好ましくは当該プロモーターの直下の開始メチオニンの下流に、互いに向きの異なる2つのloxP配列に挟まれた蛍光タンパク質遺伝子を逆位に組み込む改変が挙げられる。当該遺伝子改変により、GM-CSF産生細胞中では、当該プロモーターの下流に互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に蛍光タンパク質遺伝子が逆位に挿入されている。当該遺伝子改変では、蛍光タンパク質遺伝子は逆位に挿入されているために、リコンビナーゼCre非存在下では、当該蛍光タンパク質は発現しない。この遺伝子改変と共にCsf2-Cre遺伝子改変を備えるGM-CSF産生細胞では、リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が反転し、蛍光タンパク質が発現する。
2つのloxP配列と蛍光タンパク質遺伝子とを組み込む遺伝子改変としては、例えば、蛍光タンパク質導入用遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列と、これらのloxP配列の下流に蛍光タンパク質遺伝子と、を挿入する改変も挙げられる。当該遺伝子改変により、GM-CSF産生ILC3中では、当該プロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列を介して蛍光タンパク質遺伝子が挿入されている。当該改変では、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列は、当該プロモーターの直下の開始メチオニンの下流に挿入されてもよく、当該開始メチオニンの上流に挿入されてもよい。当該遺伝子改変では、蛍光タンパク質遺伝子と当該プロモーターの間に転写停止配列が存在するため、リコンビナーゼCre非存在下では、当該蛍光タンパク質は発現しない。この遺伝子改変と共にCsf2-Cre遺伝子改変を備えるGM-CSF産生細胞では、リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が切り出されて、蛍光タンパク質が発現する。
GM-CSF産生細胞可視化遺伝子改変動物の動物種は、ヒト以外であれば特に限定されるものではなく、例えば、ウシ、ブタ、ウマ、ヒツジ、ヤギ、サル、イヌ、ネコ、ウサギ、マウス、ラット、ハムスター、モルモット等の哺乳動物や、ニワトリ、ウズラ、カモ等の鳥類等が挙げられる。実験ツールとして汎用されていることから、マウスやラット等のげっ歯類が好ましい。
次に実施例等を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、以降の動物実験は、北海道大学の動物実験倫理委員会の承認のもと、北海道大学動物実験に関する規定に従い行った。
なお、以降の動物実験は、北海道大学の動物実験倫理委員会の承認のもと、北海道大学動物実験に関する規定に従い行った。
[実施例1]
<ILC3特異的にリコンビナーゼCreを発現する新規遺伝子改変マウスの作製>
青色蛍光タンパク質EBFP2遺伝子と、互いに向きの異なる2つのloxP配列(内向きloxP配列)によって挟まれたリコンビナーゼCre遺伝子と、赤色蛍光タンパク質KuO(Kusabira Orange)遺伝子とを、それぞれP2A配列(2Aペプチドをコードする塩基配列)を介して連結させ、かつKuO遺伝子の下流にpolyA配列を設けた塩基配列(EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyAコード配列)からなるDNA断片を、KLRp1b遺伝子の開始メチオニンにノックインしたKlrp1b-EBFP2-P2A-Creマウスを、CRISPR/Casゲノム編集技術により作成した。配列番号1からなる塩基配列(5'-GTTGAATCCATTGTAGATGGAGG-3')を、CRISPR標的配列とした。
<ILC3特異的にリコンビナーゼCreを発現する新規遺伝子改変マウスの作製>
青色蛍光タンパク質EBFP2遺伝子と、互いに向きの異なる2つのloxP配列(内向きloxP配列)によって挟まれたリコンビナーゼCre遺伝子と、赤色蛍光タンパク質KuO(Kusabira Orange)遺伝子とを、それぞれP2A配列(2Aペプチドをコードする塩基配列)を介して連結させ、かつKuO遺伝子の下流にpolyA配列を設けた塩基配列(EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyAコード配列)からなるDNA断片を、KLRp1b遺伝子の開始メチオニンにノックインしたKlrp1b-EBFP2-P2A-Creマウスを、CRISPR/Casゲノム編集技術により作成した。配列番号1からなる塩基配列(5'-GTTGAATCCATTGTAGATGGAGG-3')を、CRISPR標的配列とした。
まず、マウスのKlrp1b遺伝子(アクセッション番号:NM_030599.4)のエキソン1を含む250bpの断片を増幅するプライマーを用いたPCRにより、マウス細菌性人工染色体(BAC)ライブラリーPRCI23(Thermofischer scientific社製)をスクリーニングし、制限酵素マッピングによる結果から、Klrp1b遺伝子座を全て含むクローン175K9を同定した。以降はこのクローン175K9を、Klrp1b遺伝子座のゲノムDNAの供給源として使用した。
相同組換えに使用したターゲティングベクターは、上流から、5’相同性アーム(BoxAと命名した)、EBFP2、VloxPで挟まれたCre発現カセット、KuO、SV40ポリAシグナル、及び3’相同性アーム(BoxBと命名した)から構成されたDNA断片を、p06A5シャトルベクターにクローン化したものを用いた。BoxAは、Klp1b遺伝子のエキソン1のATG翻訳開始部位のすぐ5’側に位置する969bpの断片からなり、BACクローン175K9からのPCRによってその3’末端にAscI部位を有するように増幅された。EBFP2配列は、pEBFP2-Nuc(プラスミド14983、Addgen社製)からクローン化された。KuO配列は、ヒト化KuO(phKO1-S1)ベクター(AM-V0044、MBL社製)からクローン化された。ストップコドンとpolyA配列を含むCre配列は、Cre-IRES-EGFP-polyA p06A5シャトルベクター(パスツール研究所のLucie Peduto博士から供与)からクローン化された。EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyAコード配列を、AscI部位を介してBoxAに融合させ、PmeI部位を介してBoxBに融合させた。BoxBは、Klrp1b遺伝子のエキソン1のATG翻訳開始部位のすぐ3’側に位置する977bpの断片からなり、BACクローン175K9からのPCRによって増幅された。
環状のターゲティングベクター(終濃度10ng/μL)と、Cas9タンパク質(New England Biolabs社製、終濃度30ng/μL)と、crisprRNA(5’-GTTGAATCCATTGTAGATGG-3’:配列番号2)及びtracrRNA(いずれも、FASMAC社製、終濃度0.61pmol/μL)との混合物を、BDF1マウスの前核期の卵の核にマイクロインジェクションし、この卵を偽妊娠雌性ICRマウスの卵管に移植した。この結果、生まれた子供23匹のうちの1匹が、正確に、標的のKlrp1b遺伝子座を有していた。最初のスクリーニングは、Klrp1b座中の短腕の5’側の80bpから開始してKuOの3’末端で終わる2.5kbの断片を増幅するPCRによって行った。EBFP2-P2A-Vloxp-Cre-Vloxp-P2A-KuO-polyAコード配列が正しく挿入されていることも、DNA配列によって確認された。Klrp1b+/EBFP2-P2A-Creマウス(Klrp1b-EBFP2-P2A-Creマウスと命名した)及びこのマウスから得られたマウスの遺伝子型を、Klrp1b遺伝子のエキソン1の周辺のプライマー[5’プライマーは5'-AGCGGACTTCCTTT-3'(配列番号3)、3’プライマーは5'-TCCTCGAACTGGAGGCT-3'(配列番号4)]を用いたPCRによって確認した。得られたKlrp1b-EBFP2-P2A-Creマウスを、C57/BL6Jマウスに6回以上戻し交配した。
得られたKlrp1b-EBFP2-P2A-Creマウスを、Rosa26-tdTomatoマウスと交配し、蛍光タンパク質tdTomatoが発現している子供を得た。なお、Rosa26-tdTomatoマウスは、Rosa26遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれたストップコドンがあり、その下流に蛍光タンパク質tdTomato遺伝子が挿入されている。Klrp1b遺伝子のプロモーターの下流にEBFP2-P2A-Creが導入された遺伝子改変と、Rosa26遺伝子のプロモーターの下流に蛍光タンパク質tdTomato遺伝子が導入された遺伝子改変の両方を含む後代個体では、tdTomatoの蛍光を指標として、Klrp1b遺伝子が発現する細胞を識別することができる。tdTomatoが発現している後代個体の各組織の細胞について、KLRp1bの発現履歴を持つ細胞群をフローサイトメトリーで分析した。この結果、KLRp1bの発現履歴を持つ細胞群はILC3とNK細胞のみであり、T細胞や他の自然リンパ球には発現履歴がなかった。
図1に、小腸と肝臓の細胞をtdTomatoの発現量とCD3の発現量とで分画した結果を示す。図1中のtdTomato陽性細胞(図中、四角で囲った領域の細胞)をさらにCD127の発現量とNKp46の発現量とで分画した結果を図2に示す。この結果、小腸中のtdTomato陽性細胞は、CD127陽性かつNKp46陽性の細胞であり、ILC3であった。肝臓中のtdTomato陽性細胞は、CD127陰性かつNKp46陽性の細胞であり、NK細胞であった。
<RORγt陽性細胞分画にDTR(ジフテリア毒素受容体)を発現するマウスの作成>
ILC3を時期特異的に欠失させるために、マウスのRORγt遺伝子(アクセッション番号:NM_001293734.1)のプロモーターの下流にDTRを発現するノックインマウスを作製した。
ILC3を時期特異的に欠失させるために、マウスのRORγt遺伝子(アクセッション番号:NM_001293734.1)のプロモーターの下流にDTRを発現するノックインマウスを作製した。
まず、KuO-P2A-DTR配列(KuO遺伝子の下流にP2A配列を介してDTR遺伝子が連結された配列)からなるDNA断片を、RORγt遺伝子の開始メチオニンにノックインしたRORγt-iDTRfloxマウスを、CRISPR/Casゲノム編集技術により作成した。配列番号5からなる塩基配列(5'-TGAATGGGGGCATCCGGTCATGG-3')を、CRISPR標的配列とした。gRNA及びCas9の発現ユニットを共に備えるpX330プラスミド(プラスミド42230、addgen社製)のエントリーサイトに、RORγt-CRISPR-F(5'-TGAATGGGGGCATCCGGTCA-3'、配列番号6)及びRORγt-CRISPR-R(5'-TGACCGGATGCCCCCATTCA-3'、配列番号7)をアニールして挿入した。得られたプラスミドを、pX330-RORγtと命名した。
相同組換えに使用したターゲティングベクターは、EGFP-loxp-inverted KuO-P2A-DTR-loxp配列(上流から、5’相同性アーム(BoxAと命名した)、EBFP2、互いに向きの異なる2つのloxP配列で挟まれたKuO-P2A-DTR配列の逆位の配列、及び3’相同性アーム(BoxBと命名した)から構成された塩基配列)からなるDNA断片を、p06A5シャトルベクターにクローン化したものを用いた。BoxAは、RORγt遺伝子のエキソン1のATG翻訳開始部位のすぐ5’側に位置する1065bpの断片からなり、BACクローン263K17からのPCRによってその3’末端にAscI部位を有するように増幅された。ヒトDTRを含むベクターは、パスツール研究所のGerard Eberl博士から供与されたものを用いた。KuO配列は、ヒト化KuO(phKO1-S1)ベクター(AM-V0044、MBL社製)からクローン化された。EBFP2配列は、Cre-IRES-EGFP-polyA p06A5シャトルベクター(パスツール研究所のLucie Peduto博士から供与)からクローン化された。EGFP-loxp-inverted KuO-P2A-DTR-loxpコード配列を、AscI部位を介してBoxAに融合させ、PmeI部位を介してBoxBに融合させた。BoxBは、RORγt遺伝子のエキソン1のATG翻訳開始部位のすぐ3’側に位置する1018bpの断片からなり、BACクローン263K17からのPCRによって増幅された。得られたプラスミドを、pRORγt/EGFP-invDTRKuOと命名した。
pRORγt/EGFP-invDTRKuOのみを培養細胞株MEF細胞にトランスフェクションしたところ、緑色蛍光のみが観察された。これに対して、pRORγt/EGFP-invDTRKuOとCre発現ベクターを共に培養細胞株MEF細胞にトランスフェクションしたところ、緑色蛍光と赤色蛍光の両方が観察された。図3に、pRORγt/EGFP-invDTRKuOをトランスフェクションした細胞の蛍光画像を示す。上段(「Cre(-)」)はpRORγt/EGFP-invDTRKuOのみトランスフェクションした細胞の画像であり、下段(「Cre(+)」)はpRORγt/EGFP-invDTRKuOとCre発現ベクターを共にトランスフェクションした細胞の画像である。この結果から、pRORγt/EGFP-invDTRKuOを含む細胞では、Cre存在下で、loxp-inverted KuO-P2A-DTR-loxp配列が不可逆的に反転し、RORγtプロモーターの下流でDTRとKuOが発現したことが確認された。
DNAベクター(pX330-RORγt及びpRORγt/EGFP-invDTRKuO)を、FastGene Gel/PCR Extraction Kit(Nippon genetics社製)を用いて単離し、脱イオン蒸留水で5ng/μLに希釈して混合した。このDNA溶液は、0.2μmフィルターユニット(MILLEX-GV(登録商標)、ミリポア社製)を用いてフィルター濾過した後、過剰排卵されたC57BL/6Jマウスの雌から採取した受精卵母細胞の雄性前核にマイクロインジェクションし、生存していた1細胞胚を、偽妊娠雌性ICRマウスの卵管に移植した。この結果、生まれた子供47匹のうちの2匹が、正確に、標的のRORγt遺伝子座を有していた。最初のスクリーニングは、RORγt遺伝子座中のBoxAの3’側の150bpから開始してBoxBの5’末端から200bpで終わる2.5kbの断片を増幅するPCRによって行った。EGFP-loxp-inverted KuO-P2A-DTR-loxpコード配列(EGFP-invDTRKuO)が正しく挿入されていることも、DNA配列によって確認された。RORγt+/EGFP-invDTRKuOマウス(RORγt-iDTRfloxマウスと命名した)及びこのマウスから得られたマウスの遺伝子型を、RORγt遺伝子のエキソン1の周辺のプライマー[5’プライマーは5'-CCCCCTGCCCAGAAACACT-3'(配列番号8)、3’プライマーは5'-TACCATTGCTGCCAAGG-3'(配列番号9)]を用いたPCRによって確認した。
得られたRORγt-iDTRfloxマウスは、Creを発現している任意のCreマウスと交配することでゲノム上のDTR配列が不可逆的に反転し、RORγtプロモーターの下流でDTRが発現する。つまり、当該マウスは、RORγt発現細胞をGFPで可視化でき、さらに、Cre存在下でのDTR発現をも蛍光タンパク質KuOにより可視化できる。
<二重ヘテロ接合性ノックインマウスの作製>
作製したKlrp1b-EBFP2-P2A-Creマウスと作製したRORγt-iDTRfloxマウスを交配し、二重ヘテロ接合性ノックインマウス(ILC3-DTRマウスと命名した)を得た。当該マウスは、Klrp1b遺伝子とRORγt遺伝子の両方が発現している細胞において、特異的にDTRを発現している。
作製したKlrp1b-EBFP2-P2A-Creマウスと作製したRORγt-iDTRfloxマウスを交配し、二重ヘテロ接合性ノックインマウス(ILC3-DTRマウスと命名した)を得た。当該マウスは、Klrp1b遺伝子とRORγt遺伝子の両方が発現している細胞において、特異的にDTRを発現している。
Klrp1b-EBFP2-P2A-CreマウスとRORγt-iDTRfloxマウスとILC3-DTRマウスの腸管に存在する細胞群をフローサイトメトリーで分析し、緑色蛍光量と赤色蛍光量とで分画した。より詳細には、腸管に存在する細胞群から、CD3-B220-CD127+細胞群(CD3が陰性、B220が陰性、CD127が陽性の細胞群)を分取し、この分取した細胞群全量に対する、緑色蛍光を発する細胞(EGFP陽性細胞)と赤色蛍光を発する細胞(KuO陽性細胞)のそれぞれの存在比率を調べた。結果を図4に示す。この結果、Klrp1b-EBFP2-P2A-Creマウスの細胞群では、EGFP陽性細胞とKuO陽性細胞のいずれも存在していなかった。RORγt-iDTRfloxマウスの細胞群では、EGFP陽性細胞の存在比率は33.1%であったが、KuO陽性細胞の存在比率は0.637%であり、KuO陽性細胞は存在していなかった。ILC3-DTRマウスの細胞群では、KuO陽性細胞の存在比率が17.9%であり、EGFP陽性細胞の存在比率は17.5%であった。これらの結果から、ILC3-DTRマウスでは、Klrp1b遺伝子のプロモーターに制御されてリコンビナーゼCreが発現し、これによりRORγt遺伝子のプロモーターの下流に組み込まれたEGFP-loxp-inverted KuO-P2A-DTR-loxpのうち、互いに向きの異なる2つのloxP配列で挟まれた領域が不可逆的に反転して、RORγtプロモーターの下流で、DTRとKuOが2Aペプチドで連結されたタンパク質が発現したことが確認された。なお、この発現産物は、2Aペプチドの自己切断によって、細胞内ではDTRとKuOとして存在している。
<ILC3特異的な欠損マウスの作製>
RORγt-iDTRfloxマウスとILC3-DTRマウスの成体に、それぞれ、エンドトキシンフリーのPBS(リン酸生理食塩水)で希釈したジフテリア毒素(Merck社製)を1.0μg、腹腔内投与した。対照群のマウスには、ジフテリア毒素に代えて等量のPBSを腹腔内投与した。投与から1日後のマウスからリンパ節と小腸を採取した。
RORγt-iDTRfloxマウスとILC3-DTRマウスの成体に、それぞれ、エンドトキシンフリーのPBS(リン酸生理食塩水)で希釈したジフテリア毒素(Merck社製)を1.0μg、腹腔内投与した。対照群のマウスには、ジフテリア毒素に代えて等量のPBSを腹腔内投与した。投与から1日後のマウスからリンパ節と小腸を採取した。
各マウスから採取されたリンパ節内の細胞群を、フローサイトメトリーを用いて、CD127の発現量とckitの発現量とで分画した。結果を図5に示す。各図中、多角形で囲った領域の細胞が、ILC3である。この結果、リンパ節内の細胞群全量に対するILC3の存在比(%)は、ILC3でDTRが発現していないRORγt-iDTRfloxマウスでは、PBS投与群では2.88%であったのが、DTX投与により7.01%と増えていた。これに対して、ILC3でDTRが発現しているILC3-DTRマウスでは、PBS投与群では4.37%であったのが、DTX投与により0.775%であり、ILC3は存在していなかった。これらの結果から、ILC3-DTRマウスでは、DTX依存的にILC3を除去できることが確認された。
また、各マウスから採取されたリンパ節内の細胞群及び小腸内の細胞群について、フローサイトメトリーを用いて、CD4T細胞の数とILC3の数を計数した。結果を図6に示す。図6中、上段(LN)がリンパ節内の細胞群の結果であり、下段が小腸内の細胞群の結果である。また、図中、「inv.DTR」はRORγt-iDTRfloxマウスの結果を、「inv.DTR x KLRCre」はILC3-DTRマウスの結果を、それぞれ示す。この結果、いずれのマウスでも、PBS投与群では、CD4T細胞の数とILC3の数は、RORγt-iDTRfloxマウスとILC3-DTRマウスで差はなかった。これに対して、DTX投与群では、RORγt-iDTRfloxマウスのCD4T細胞の数とILC3の数は、いずれもPBS投与群よりも増大していたが、ILC3-DTRマウスのCD4T細胞の数とILC3の数は、RORγt-iDTRfloxマウスよりも明らかに少なかった。ILC3-DTRマウスのCD4T細胞の数は、PBS投与群と同程度であったことから、ILC3以外のCD4T細胞に対しては、DTX投与の影響はあまりないことが確認された。一方で、ILC3-DTRマウスのILC3の数は、DTX投与により顕著に減少していた。リンパ節と小腸では同様の結果が得られた。これらの結果から、ILC3-DTRマウスでは、DTX依存的にILC3を特異的に除去できることが確認された。
[実施例2]
<Csf2-Creマウスの作製>
リコンビナーゼCre遺伝子の塩基配列からなるDNA断片を、Csf2遺伝子の開始メチオニンにノックインしたCsf2-Creマウスを、Bacterialartificial chromosome(BAC)トランスジェニック法により作成した。
<Csf2-Creマウスの作製>
リコンビナーゼCre遺伝子の塩基配列からなるDNA断片を、Csf2遺伝子の開始メチオニンにノックインしたCsf2-Creマウスを、Bacterialartificial chromosome(BAC)トランスジェニック法により作成した。
まず、マウスのCsf2遺伝子(アクセッション番号:12981)のエキソン1を含む250bpの断片を増幅するプライマーを用いたPCRにより、マウス細菌性人工染色体(BAC)ライブラリーPRCI23(Thermofischer scientific社製)をスクリーニングし、制限酵素マッピングによる結果から、Csf2遺伝子座を全て含むクローンRP23-397C23を同定した。以降はこのクローンを、Csf2遺伝子座のゲノムDNAの供給源として使用した。
相同組換えに使用したターゲティングベクターは、上流から、5’相同性アーム(BoxAと命名した)、Cre発現カセット、及び3’相同性アーム(BoxBと命名した)から構成されたDNA断片(Cre組換え用断片)を、p06A5シャトルベクターにクローン化したものを用いた。BoxAは、Csf2遺伝子のエキソン1のATG翻訳開始部位のすぐ5’側に位置する969bpの断片からなり、BACクローンRP23-397C23からのPCRによってその3’末端にAscI部位を有するように増幅された。Cre組換え用断片を、AscI部位を介してBoxAに融合させ、PmeI部位を介してBoxBに融合させた。BoxBは、Csf2遺伝子のエキソン1のATG翻訳開始部位のすぐ3’側に位置する1011bpの断片からなり、BACクローンRP23-397C23からのPCRによって増幅された。次に、RP23-397C23 BAC DNAと作成したCre遺伝子の5’側及び3’側にCsf2遺伝子断片を有するp06A5シャトルベクターとの間で相同組替えを生じさせ、RP23-397C23 BAC DNAのCsf2遺伝子開始コドン直下にCre遺伝子をノックインさせた組替えBAC DNAを前例にならい作成した(非特許文献9).
組替えBAC DNAを、BDF1マウスの前核期の卵の核にマイクロインジェクションし、この卵を偽妊娠雌性ICRマウスの卵管に移植した。この結果、生まれた子供24匹のうちの1匹が、正確に、標的のCsf2遺伝子座を有していた。最初のスクリーニングは、Csf2座中の短腕の5’側の80bpから開始してCreの3’末端で終わる2kbの断片を増幅するPCRによって行った。Cre組換え用断片が正しく挿入されていることも、DNA配列によって確認された。Cre組換え用断片が正しく挿入されていることが確認されたマウス(Csf2-Creマウス)及びこのマウスから得られたマウスの遺伝子型を、Csf2遺伝子のエキソン1の周辺のプライマー[5’プライマーは5'-AGAACTTGCCAGGGAAG-3'(配列番号10)、3’プライマーは5'-TTAGCTTCTGTGGGAAGC-3'(配列番号11)]を用いたPCRによって確認した。得られたCsf2-Creマウスを、C57/BL6Jマウスに6回以上戻し交配した。
得られたCsf2-Creマウスを、Rosa26-tdTomatoマウスと交配し(図7)、蛍光タンパク質tdTomatoが発現している後代個体(Csf2-Cre/Rosa26-tdTomatoマウス)を得た。Csf2遺伝子のプロモーターの下流にCreが導入された遺伝子改変と、Rosa26遺伝子のプロモーターの下流に蛍光タンパク質tdTomato遺伝子が導入された遺伝子改変の両方を含む後代個体では、tdTomatoの蛍光を指標として、Csf2遺伝子が発現する細胞を識別することができる。
Csf2-Cre/Rosa26-tdTomatoマウスの小腸粘膜固有層の細胞を、フローサイトメーターで解析した。図8に、Csf2-Cre/Rosa26-tdTomatoマウスの小腸粘膜固有層の細胞を、CD3の発現量とtdTomatoの発現量とで分画した結果を示す。この結果、CD3陰性細胞にtdTomato発現が強く認められた。また、測定した細胞サンプルに対して、LTi-like細胞の表面抗原であるc-kitとCD127の発現量でゲーティングし(図9A)、c-kitとCD127の両方の発現量の多い細胞群(図9Aの四角で囲まれた領域内の細胞群。全体の9.9%)をLTi-like細胞群として選別した。図9Bに、このLTi-like細胞群を、CD4の発現量とtdTomatoの発現量とで分画した結果を示す。LTi-like細胞群のうちCD4陽性細胞に、tdTomato発現が強く認められた。これらの結果から、GM-CSF産生ILC3は、CD4陽性のLTi-like細胞であることが明らかとなった。
さらに、Csf2-Cre/Rosa26-tdTomatoマウスの小腸を蛍光実体顕微鏡で観察した。図10に、Csf2-Cre/Rosa26-tdTomatoマウスの小腸組織のtdTomato蛍光画像を示す。図10に示す通り、Cryptopatchと呼ばれるリンパ組織に、tdTomato発現がみられた。また、Csf2-Cre/Rosa26-tdTomatoマウスの小腸組織を、抗CD11c抗体(eBioscience, Clone N418)を用いて蛍光染色し、共焦点顕微鏡で観察した。図11に、Csf2-Cre/Rosa26-tdTomatoマウスの小腸組織の蛍光染色画像(左図:Csf2(tdTomato)蛍光画像、右図:CD11染色画像)を示す。図11に示す通り、Cryptopatchでは、CD11c陽性樹状細胞とtdTomato陽性細胞が集簇している様子が確認できた。
Claims (23)
- 標的細胞を欠損した非ヒト動物を、刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物に、前記刺激物質を投与して前記標的細胞を細胞死させることによって作製する方法であり、
前記非ヒト動物は、
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている、
非ヒト動物の作製方法。 - 前記非ヒト動物が、
一対の相同染色体のうちの1本のみにおいて、前記第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物と、
一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記第2の遺伝子のプロモーターの制御下で前記細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている非ヒト動物と、
を交配して得られた個体である、請求項1に記載の非ヒト動物の作製方法。 - 前記非ヒト動物が、
前記第2の遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記細胞死誘導分子をコードする遺伝子が逆位に挿入されており、
リコンビナーゼCreによって前記2つのloxP配列に挟まれた領域が反転すると、前記第2の遺伝子のプロモーターの制御下で前記細胞死誘導分子が発現する、請求項1又は2に記載の非ヒト動物の作製方法。 - 前記刺激物質がジフテリア毒素であり、かつ前記細胞死誘導分子がジフテリア毒素受容体である、又は
前記刺激物質がガンシクロビルであり、かつ前記細胞死誘導分子が単純ヘルペスウイルス1型-チミジンキナーゼである、請求項1~3のいずれか一項に記載の非ヒト動物の作製方法。 - 前記細胞死誘導分子をコードする遺伝子が、蛍光タンパク質をコードする遺伝子と、自己切断ペプチドを含むリンカーをコードする塩基配列を介して連結されている、請求項1~4のいずれか一項に記載の非ヒト動物の作製方法。
- 前記第2の遺伝子のプロモーターの下流であり、かつ前記loxP配列の上流に、蛍光タンパク質をコードする遺伝子が存在し、前記蛍光タンパク質をコードする遺伝子は、前記第2の遺伝子のプロモーターによって発現が制御されている、請求項1~5のいずれか一項に記載の非ヒト動物の作製方法。
- 前記標的細胞が、3型自然リンパ球である、請求項1~6のいずれか一項に記載の非ヒト動物の作製方法。
- 前記第1の遺伝子がKLRp1b遺伝子であり、かつ前記第2の遺伝子がRORγt遺伝子である、又は、前記第1の遺伝子がRORγt遺伝子であり、かつ前記第2の遺伝子がKLRp1b遺伝子である、請求項7に記載の非ヒト動物の作製方法。
- 刺激物質存在下で細胞死を引き起こす細胞死誘導分子が標的細胞中で発現している非ヒト動物であって、
(i) 一対の相同染色体のうちの1本のみにおいて、前記標的細胞で発現している第1の遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、かつ
(ii) 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、前記標的細胞で発現している第2の遺伝子のプロモーターの制御下で細胞死誘導分子が発現するように、2つのloxP配列と前記細胞死誘導分子をコードする遺伝子とが組み込まれている、
非ヒト動物。 - 前記標的細胞が、3型自然リンパ球であり、
前記第1の遺伝子がKLRp1b遺伝子であり、かつ前記第2の遺伝子がRORγt遺伝子である、又は、前記第1の遺伝子がRORγt遺伝子であり、かつ前記第2の遺伝子がKLRp1b遺伝子である、請求項9に記載の非ヒト動物。 - 前記刺激物質がジフテリア毒素であり、前記細胞死誘導分子がジフテリア毒素受容体であり、げっ歯類である、請求項9又は10に記載の非ヒト動物。
- 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子又はKLRp1b遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれている、げっ歯類の遺伝子改変動物。
- 一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子又はKLRp1b遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されている、請求項12に記載のげっ歯類の遺伝子改変動物。
- 一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、げっ歯類の遺伝子改変動物。
- 一対の相同染色体のうちの1本のみにおいて、リコンビナーゼCre存在下でのみ、RORγt遺伝子のプロモーターの制御下でジフテリア毒素受容体が発現するように、2つのloxP配列とジフテリア毒素受容体をコードする遺伝子とが組み込まれており、かつ
一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、
げっ歯類の遺伝子改変動物。 - 一対の相同染色体のうちの1本のみにおいて、RORγt遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域にジフテリア毒素受容体をコードする遺伝子が逆位に挿入されており、
一対の相同染色体のうちの1本のみにおいて、KLRp1b遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、
請求項15に記載のげっ歯類の遺伝子改変動物。 - 3型自然リンパ球を特異的に欠損させた、げっ歯類の遺伝子改変動物。
- 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている非ヒト動物と、
一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質をコードする遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれている非ヒト動物と
を交配することによって、GM-CSF産生細胞で前記蛍光タンパク質が発現している非ヒト動物を得る、非ヒト動物の作製方法。 - 前記蛍光タンパク質をコードする遺伝子が組み込まれている非ヒト動物が、一対の相同染色体のうちの1本のみにおいて、
前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列が挿入されており、これらのloxP配列の下流に前記蛍光タンパク質をコードする遺伝子が挿入されている、又は、
前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記蛍光タンパク質をコードする遺伝子が逆位に挿入されている、
請求項18に記載の非ヒト動物の作製方法。 - 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれており、
一対の相同染色体のうちの1本のみにおいて、蛍光タンパク質をコードする遺伝子が、リコンビナーゼCre存在下でのみ、GM-CSF産生細胞で発現している遺伝子のプロモーターによって発現が制御されるように組み込まれており、
GM-CSF産生細胞で前記蛍光タンパク質が発現している、非ヒト動物。 - 一対の相同染色体のうちの1本のみにおいて、前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの同じ2つのloxP配列に挟まれた転写停止配列が挿入されており、これらのloxP配列の下流に前記蛍光タンパク質をコードする遺伝子が挿入されている、請求項20に記載の非ヒト動物。
- 一対の相同染色体のうちの1本のみにおいて、前記GM-CSF産生細胞で発現している遺伝子のプロモーターの下流に、互いに向きの異なる2つのloxP配列が組み込まれており、かつこれらのloxP配列によって挟まれた領域に前記蛍光タンパク質をコードする遺伝子が逆位に挿入されている、請求項20に記載の非ヒト動物。
- 一対の相同染色体のうちの1本のみにおいて、Csf2遺伝子のプロモーターによって発現が制御されるようにリコンビナーゼCre遺伝子が組み込まれている、非ヒト動物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018016832 | 2018-02-01 | ||
JP2018-016832 | 2018-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151331A1 true WO2019151331A1 (ja) | 2019-08-08 |
Family
ID=67479233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003185 WO2019151331A1 (ja) | 2018-02-01 | 2019-01-30 | 非ヒト動物の作製方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019151331A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018003451A1 (ja) * | 2016-06-29 | 2018-01-04 | 隆 横尾 | 腎臓の製造方法 |
WO2018003450A1 (ja) * | 2016-06-29 | 2018-01-04 | 隆 横尾 | 臓器の製造方法 |
WO2018003452A1 (ja) * | 2016-06-29 | 2018-01-04 | 隆 横尾 | 腎臓の製造方法 |
-
2019
- 2019-01-30 WO PCT/JP2019/003185 patent/WO2019151331A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018003451A1 (ja) * | 2016-06-29 | 2018-01-04 | 隆 横尾 | 腎臓の製造方法 |
WO2018003450A1 (ja) * | 2016-06-29 | 2018-01-04 | 隆 横尾 | 臓器の製造方法 |
WO2018003452A1 (ja) * | 2016-06-29 | 2018-01-04 | 隆 横尾 | 腎臓の製造方法 |
Non-Patent Citations (4)
Title |
---|
MAGRI, GIULIANA ET AL.: "Copycat innate lymphoid cells dampen gut inflammation", CELL RESEARCH, vol. 25, no. 9, 2015, pages 991 - 992, XP055628463 * |
RAHIM, MIR MUNIR A. ET AL.: "The mouse NKR-PlB:Clr-b recognition system is a negative regulator of innate immune responses", BLOOD, vol. 125, no. 14, 2015, pages 2217 - 2227, XP055628461 * |
SAWA, SHINICHIRO: "Generation of RORgt+ Innate lymphpid cell deficient mouse", RESEARCH PERFORMANCE REPORT ON GRANTS-IN-AID FOR SCIENTIFIC RESEARCH, 2 September 2016 (2016-09-02), XP055628458, Retrieved from the Internet <URL:https:/kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-25670228/25670228seika> [retrieved on 20190412] * |
SEYDEL, F. ET AL.: "GM-CSF induces STAT5 binding at epigenetic regulatory sites within the Csf2 promoter of non-obese diabetic(NOD) mouse myeloid cells", JOURNAL OF AUTOIMMUNITY, vol. 31, 2008, pages 377 - 384, XP025693670 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3571337B2 (ja) | 遺伝子標的現象による同型遺伝子接合 | |
JP3734831B2 (ja) | 普遍的なドナー細胞及びキメラ性哺乳類宿主のための相同組換え | |
US10820580B2 (en) | Immunodeficient non-human animal | |
JP6884831B2 (ja) | C9orf72遺伝子座における破壊を有する非ヒト動物 | |
US8558055B2 (en) | Genetically modified rat comprising a cytokine gene disruption and exhibiting a greater susceptibility to a cytokine-mediated autoimmune and/or inflammatory disease | |
US20210392865A1 (en) | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception | |
US9439404B2 (en) | Boosting human dendritic cell development, homeostasis and function in xenografted immunodeficient mice | |
WO2019151331A1 (ja) | 非ヒト動物の作製方法 | |
JPH10201396A (ja) | H2−m改変トランスジエニツク動物 | |
US8263346B2 (en) | Nonhuman model animal lacking the ability to control lymphocyte migration | |
JP2020089332A (ja) | 非ヒト遺伝子改変動物及びその作製方法 | |
WO2021129766A1 (zh) | 一种il-15人源化小鼠模型及其用途 | |
JP6078383B2 (ja) | トランスジェニック非ヒト哺乳動物 | |
Costello | Towards the analyses of cell lineages using conditional gene alterations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19748437 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19748437 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |