WO2019151283A1 - Gas adsorbent, deodorant fiber sheet, and method for preparing gas adsorbent - Google Patents

Gas adsorbent, deodorant fiber sheet, and method for preparing gas adsorbent Download PDF

Info

Publication number
WO2019151283A1
WO2019151283A1 PCT/JP2019/003069 JP2019003069W WO2019151283A1 WO 2019151283 A1 WO2019151283 A1 WO 2019151283A1 JP 2019003069 W JP2019003069 W JP 2019003069W WO 2019151283 A1 WO2019151283 A1 WO 2019151283A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
gas adsorbent
fiber sheet
type
low
Prior art date
Application number
PCT/JP2019/003069
Other languages
French (fr)
Japanese (ja)
Inventor
三好賢吾
浅田康裕
八並裕治
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980011335.4A priority Critical patent/CN111683745B/en
Priority to JP2019516735A priority patent/JP7188383B2/en
Publication of WO2019151283A1 publication Critical patent/WO2019151283A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts

Definitions

  • the present invention relates to a gas adsorbent and a deodorizing fiber sheet using the same.
  • VOC volatile organic compounds
  • filter media containing activated carbon as an adsorbent have been widely known as filter media having VOC removal ability.
  • VOCs acetaldehyde and formaldehyde have low boiling points and high polarities, so it is difficult to remove them with activated carbon. Therefore, it is necessary to use a large amount of activated carbon.
  • the filter medium using this technology is based on activated charcoal based on physical adsorption ability, and adsorbs substances other than acetaldehyde to be removed and further concentrates it. Since these odor components are not trapped by chemical bonds, the concentrated odor components are released at once due to environmental factors such as changes in temperature and humidity. In that case, the problem that the odor component which was not a problem at the original concentration is recognized as a bad odor is also known.
  • filter media using silica gel or zeolite each carrying an acid hydrazide compound are being used, and these are excellent in adsorption performance for low-boiling aldehydes.
  • the fiber sheet described in Patent Document 1 is excellent in adsorption performance of low-boiling aldehydes, and can remove low-boiling aldehydes with a small amount of adsorbent.
  • the amount of desorption from low-boiling aldehydes and low-polarity gases such as toluene and xylene once adsorbed on the adsorbent in the fiber sheet can be reduced compared to a filter medium using a large amount of activated carbon. Yes.
  • Patent Document 2 discloses an adsorbent obtained by adding acid hydrazide to A-type zeolite or X-type zeolite.
  • Patent Document 3 discloses an adsorbent obtained by adding an amine compound to zeolite.
  • the present invention is intended to solve the above-mentioned problems, and is excellent in the adsorption performance of low-boiling aldehydes under dynamic conditions where air such as an air filter is circulating, and once adsorbed by the adsorbent.
  • Another object of the present invention is to provide a gas adsorbent having excellent performance for suppressing the desorption of low-boiling aldehydes and low polar gases from the adsorbent.
  • the present invention for solving the above-described problems is characterized by taking one of the following configurations.
  • a proton type Y zeolite and a water-soluble acid hydrazide compound are contained, and the proton type Y zeolite contains SiO 2 and Al 2 O 3 , and SiO in the proton type Y zeolite Gas adsorbent in which the content molar ratio of 2 to Al 2 O 3 (the content mole of SiO 2 / the content mole of Al 2 O 3 ) is 2 or more and 20 or less.
  • the gas adsorbent according to (1) further comprising activated carbon.
  • An air filter unit comprising the deodorizing fiber sheet of (5) or (6).
  • a method for producing a gas adsorbent comprising a step, a step of calcining the zeolite with superheated steam at 500 to 800 ° C., and a step of attaching a water-soluble acid hydrazide compound to the zeolite in this order.
  • the gas adsorbent of the present invention contains a proton type Y zeolite (hereinafter sometimes simply referred to as “Y type zeolite”) and a water-soluble acid hydrazide compound.
  • Y type zeolite a proton type Y zeolite
  • the proton-type zeolite refers to a zeolite whose cation exchange site is proton (H + ).
  • Y-type zeolite of proton type containing SiO 2 and Al 2 O 3
  • molar / Al of molar ratio SiO 2 with SiO 2 and Al 2 O 3 in the Y-type zeolite of proton type 2 O 3 -containing mole
  • the gas adsorbent is excellent in adsorption performance of low-boiling aldehydes under dynamic conditions where air such as an air filter is circulating (hereinafter sometimes referred to as “dynamic adsorption performance”), and
  • the low-boiling aldehydes and low-polarity gases once adsorbed on the gas adsorbent are excellent in the ability to suppress desorption from the gas adsorbent (hereinafter sometimes referred to as “desorption suppression performance”).
  • the zeolite contained in the gas adsorbent of the present invention is Y-type zeolite.
  • Y-type zeolite has a bottleneck-type pore structure with an inlet pore diameter of 7.4 mm. Since this inlet pore diameter is larger than that of the A-type zeolite, it is easy to add a water-soluble acid hydrazide compound, and the amount of addition can be increased. As a result, dynamic adsorption performance can be enhanced.
  • Y type zeolite has a structure with a larger pore inlet than A type zeolite, so it is possible to promote the entry of low-boiling aldehydes to be removed into the zeolite pores, resulting in dynamic adsorption performance. Can be increased.
  • Y-type zeolite does not have mesopores unlike porous silica, it is possible to inhibit the entry of high-boiling aldehydes and low-polarity gases into the pores, thereby suppressing the amount of accumulation. . As a result, the desorption suppression performance of the gas adsorbent is excellent.
  • the chemical reaction between low boiling point aldehydes and water-soluble acid hydrazide compounds is a multistage reaction.
  • Acetaldehyde which is a representative component of low-boiling aldehydes, will be described as an example.
  • the chemical reaction between an acid hydrazide compound and acetaldehyde is a multi-step reaction in which an intermediate product carbinolamine undergoes a reaction of eliminating water. And this multistage reaction has the characteristic that progress is accelerated
  • the proton-type Y-type zeolite exhibits a stronger activity as an acid catalyst than the X-type zeolite.
  • the dynamic adsorption performance of the gas adsorbent of the present invention containing the proton type Y zeolite and the water-soluble acid hydrazide compound is excellent.
  • the proton-type Y-type zeolite can be obtained, for example, by subjecting the Y-type zeolite to dealumination.
  • Y-type zeolite proton type employed in the present invention contains SiO 2 and Al 2 O 3
  • molar ratio of SiO 2 and Al 2 O 3 in the Y-type zeolite of proton type is 2 to 20.
  • Proton type Y zeolite zeolite has a three-dimensional framework structure which is a crystalline aluminosilicate. During synthesis, the mixing ratio of the silica raw material and the alumina raw material is adjusted. The composition ratio of silicon and aluminum can be controlled.
  • the SiO 2 / Al 2 O 3 content molar ratio increases, the ratio of metal cations existing in the crystal lattice decreases. As a result, the affinity for polar substances such as water is weakened, and nonpolar substances are more adsorbed. Therefore, by reducing the SiO 2 / Al 2 O 3 content molar ratio of the proton type Y zeolite as low as 20 or less, the decrease in the hydrophilicity of the proton type Y zeolite is suppressed, and the porous structure is reduced. Since the water-soluble acid hydrazide compound can be adhered to the inner surface of the pores of the Y-type zeolite having, the dynamic adsorption performance of the gas adsorbent of the present invention is excellent.
  • non-polar or low-polarity gases are not easily accumulated in the proton type Y-type zeolite. It is suppressed that a large amount of accumulated non-polar or low-polarity gases, which are likely to be another type of zeolite, is released in some way. That is, the desorption suppression performance of the gas adsorbent of the present invention is excellent.
  • the hydrophilicity of the zeolite increases, and water tends to accumulate in the pores of the zeolite. Then, it becomes difficult for aldehyde gas to enter the pores. Therefore, by setting the content molar ratio to 2 or more, even when the air filter equipped with the gas adsorbent of the present invention is used, the low-boiling aldehydes can easily enter the pores of the zeolite, and the gas of the present invention can be used. The dynamic adsorption performance of the adsorbent is excellent.
  • the average particle size of the proton type Y zeolite is preferably 0.5 to 1000.0 ⁇ m.
  • the proton type Y zeolite is likely to be scattered, and the handleability and workability of the proton type Y zeolite tend to be lowered. Therefore, the average particle diameter of the proton type Y-type zeolite is preferably 0.5 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
  • the average particle size of the proton type Y-type zeolite is preferably 1000.0 ⁇ m or less, and more preferably 700.0 ⁇ m or less.
  • the proton type Y zeolite having an average particle size of 100.0 ⁇ m or more can be obtained by granulating powdery proton type Y zeolite together with a binder such as silica sol or alumina sol.
  • a binder such as silica sol or alumina sol.
  • the average particle diameter here is calculated by the following method. In accordance with the method described in JIS K1474 (2014), the particle size is measured by the ratio of passing through the openings and expressed as an integrated weight percentage. The particle size having an integrated value of 50% is defined as “average particle size”. However, if the average particle size is about several ⁇ m, the sieve may be clogged, so proton type Y zeolite is dispersed in a liquid such as water and diffracted light or scattered light is used. The particle size can be measured.
  • the BET specific surface area of the proton type Y zeolite by 77K nitrogen adsorption method is preferably 100 m 2 / g or more in terms of the BET specific surface area.
  • an effective area increases as a reaction field for the water-soluble acid hydrazide compound supported by the Y-type zeolite.
  • the reaction rate between the gas adsorbent and the low-boiling aldehydes to be removed is further improved, and the dynamic adsorption performance of the gas adsorbent of the present invention is excellent.
  • the BET specific surface area of the proton type Y zeolite is more preferably 200 m 2 / g or more.
  • the upper limit of the BET specific surface area is not particularly limited, but the BET specific surface area of the proton type Y-type zeolite is preferably 1000 m 2 / g or less. This is because exceeding this range causes inconvenience that the production becomes very difficult, and the handleability is lowered due to the decrease in mechanical strength.
  • the average pore diameter of the proton-type Y-type zeolite means the peak diameter obtained by the MP method, and more specifically, it is determined using the adsorption side isotherm obtained by the nitrogen adsorption method at 77 Kelvin (liquid nitrogen temperature). It is done.
  • the range of the average pore size of the proton type Y zeolite is preferably 7.0 to 30.0 mm, more preferably 7.5 to 20.0 mm.
  • Proton Y-type zeolite has a uniform pore diameter peak in the range of 7.0 to 10.0 mm in average pore diameter, but macropores may be formed in the process of producing secondary particles in the granulation process. To the above range.
  • the acid hydrazide compound can easily penetrate into the pores of the proton type Y-type zeolite, and the reactivity with low-boiling aldehydes can be enhanced. As a result, the dynamic adsorption performance of the gas adsorbent becomes better.
  • the Y-type zeolite has an average pore diameter of 30.0 mm or less, which inhibits the entry of high-boiling aldehydes and low polar gases into the pores, which can be a problem of desorption odor, It is possible to suppress the accumulation amount of these gases. As a result, the desorption suppression performance of the gas adsorbent is excellent.
  • a water-soluble acid hydrazide compound is attached to the proton type Y-type zeolite in order to adsorb the low boiling point aldehydes contained in the VOC gas.
  • water-soluble in the present invention means that 0.5% by mass or more (5 g / L or more) dissolves in neutral water at 25 ° C.
  • the water-soluble acid hydrazide compound is a compound having an acid hydrazide group represented by —CO—NHNH 2 derived from carboxylic acid and hydrazine. Further, a nitrogen atom having an unshared electron pair is bonded to the ⁇ -position of the hydrazide terminal, thereby significantly improving the nucleophilic reactivity. When this unshared electron pair reacts by nucleophilic attack on the carbonyl carbon atom of the low-boiling aldehydes, and the low-boiling aldehydes are immobilized as hydrazine derivatives, the adsorption ability of the low-boiling aldehydes can be expressed. Conceivable.
  • acetaldehyde has an electron-donating alkyl group at the ⁇ -position of the carbonyl carbon, so the carbonyl carbon has low electrophilicity and is difficult to be chemisorbed.
  • the water-soluble acid hydrazide compound used in the gas adsorbent used in the present invention has high nucleophilic reactivity as described above, it exhibits good chemical adsorption performance for acetaldehyde.
  • water-soluble acid hydrazide compound examples include those containing at least one selected from the group consisting of carbodihydrazide, glutamic acid dihydrazide, succinic acid dihydrazide, and adipic acid dihydrazide.
  • adipic acid dihydrazide is particularly preferable in that it has excellent adsorption performance for low-boiling aldehydes.
  • the content of the water-soluble acid hydrazide compound in the gas adsorbent of the present invention is preferably 0.5 to 20.0 parts by mass with respect to 100.0 parts by mass of the Y-type zeolite.
  • the content of the water-soluble acid hydrazide compound is more preferably 1.0 part by mass or more.
  • the pH of the Y-type zeolite attached with the water-soluble acid hydrazide compound used in the present invention is preferably in the range of 4.0 to 7.5 when 5 g is dispersed in 100 g of water at 25 ° C.
  • the pH is 7.5 or less, the intermediate formed from the reaction of the water-soluble acid hydrazide compound by the nucleophilic attack on the carbonyl carbon atom of the low-boiling aldehydes of the lone pair becomes an acidic reaction field. In this case, it becomes easy to dehydrate, and the immobilization reaction of the intermediate to the derivative proceeds sufficiently.
  • the pH is more preferably 7.0 or less.
  • the pH when the pH is 4.0 or more, the activity of the lone carbon pair of the water-soluble acid hydrazide compound to nucleophilically attack the carbonyl carbon atom of the low-boiling aldehydes becomes higher, and the gas adsorbent Thus, the dynamic adsorption performance of the low-boiling aldehydes is more excellent.
  • the pH was a value obtained by immersing the Y-type zeolite with the acid hydrazide compound attached in pure water at 25 ° C. to 5% by mass, stirring it lightly and leaving it for 10 minutes, and measuring the pH of the liquid with a pH meter. Say.
  • the pH of the Y-type zeolite to which the water-soluble acid hydrazide compound is attached can be adjusted by adding an organic acid.
  • the organic acid it is preferable to adopt an organic acid that does not generate odor and has low hygroscopicity.
  • Specific examples of the organic acid as described above include adipic acid, sulfanilic acid, malic acid, citric acid and the like, and may be appropriately selected according to the acid hydrazide compound to be used. Among them, adipic acid is preferably employed. be able to. Adipic acid is preferable because it maintains a stable balance of the dispersion and does not cause odor generation or hygroscopicity.
  • Examples of the method for producing the gas adsorbent of the present invention include the following. That is, after mixing sodium aluminate and sodium silicate to obtain a mixture, the mixture is heated at 90 to 120 ° C. to obtain zeolite, and the zeolite is treated with an ammonium nitrate solution at 100 to 120 ° C. And a step of calcining the zeolite with superheated steam at 500 to 800 ° C. and a step of attaching a water-soluble acid hydrazide compound to the zeolite in this order.
  • examples of the step of attaching a water-soluble acid hydrazide compound to zeolite include the following.
  • a method in which an aqueous solution in which a water-soluble acid hydrazide compound is dissolved in a solvent is sprayed and applied to a Y-type zeolite, and then the Y-type zeolite is dried.
  • an appropriate solvent can be selected in consideration of the characteristics and workability of the water-soluble acid hydrazide compound.
  • an aqueous solvent from the viewpoint of excellent safety and workability, and it is more preferable to use pure water as the solvent.
  • the gas adsorbent may be directly formed on the fiber sheet by drying the treatment liquid on the fiber sheet.
  • the water-soluble acid hydrazide compound is preferably attached to the Y-type zeolite, but more preferably the water-soluble acid hydrazide compound is attached to the pores of the Y-type zeolite.
  • the gas adsorbent of the present invention preferably has activated carbon in addition to the water-soluble acid hydrazide compound and proton type Y-type zeolite.
  • the gas adsorbent of the present invention further suppresses the desorption of the once adsorbed VOC gas from the gas adsorbent and further suppresses the generation of secondary odor in the air filter using this gas adsorbent. It can be done. And, when used in automotive applications where the wind pressure of the airflow passing through the air filter tends to be strong, secondary odor due to odor gas desorption from the deodorant fiber sheet is noticeably generated. And since the air filter using the gas adsorbent of this invention can suppress a secondary odor, the air filter using the gas adsorbent of this invention can be used suitably for a motor vehicle use.
  • the activated carbon is a granular material separate from the proton type Y zeolite.
  • the proton type Y zeolite and the activated carbon are partially fixed to each other by an adhesive. It may exist in the state.
  • the Y-type zeolite to which the water-soluble acid hydrazide compound is adhered is excellent in the adsorption performance of low-boiling aldehydes under dynamic conditions.
  • the shape of the pores having a uniform pore diameter unique to Y-type zeolite and the moles of SiO 2 / Al 2 O 3 in the Y-type zeolite By setting the ratio to 20.0 or less, it becomes possible to greatly suppress the physical adsorption amount of low-boiling aldehydes and low-polarity gas components, and excellent desorption suppression performance.
  • the average particle diameter of the activated carbon is preferably 0.5 to 1000.0 ⁇ m.
  • the average particle size of the activated carbon is preferably 0.5 ⁇ m or more, because it tends to scatter and the handleability and workability tend to decrease. Is preferably 1.0 ⁇ m or more.
  • the average particle diameter of the activated carbon is preferably 1000.0 ⁇ m or less, and more preferably 600.0 ⁇ m or less.
  • the particle diameter of said activated carbon points out the mass mean diameter based on the JISK1474 (2014) activated carbon test method.
  • a desired particle size can be obtained by adjusting the particle size using a normal classifier.
  • the activated carbon becomes a fine powder of about several ⁇ m, the sieve may become clogged. In that case, the activated carbon is dispersed in a liquid such as water, and the particle size is reduced using diffracted light or scattered light. Can be measured.
  • coconut shell, wood-based, coal-based, pitch-based, and the like are known as raw materials for activated carbon, but palm shell is preferable.
  • the fine pores of coconut shell activated carbon have a large proportion of small pores compared to other raw materials, and the amount of ash that is an impurity is also small.
  • the coconut shell activated carbon has small pores, the intermolecular force with the pore walls works effectively against the adsorbed odor molecules, making it difficult to desorb the adsorbed odor molecules, that is, generating secondary odor. There is a feature that can be suppressed.
  • the specific surface area of the activated carbon used in the present invention is preferably 900 to 1300 m 2 / g in terms of BET specific surface area.
  • the active carbon may carry a drug.
  • an amine compound for the purpose of removing low-boiling aldehydes, it is preferable that an amine compound is supported, and among them, a primary amine compound having an amino group is preferable, and an acid hydrazide compound is more preferable.
  • amine compounds are adsorbed on activated carbon, or by intercalation while partially reacting with functional groups such as hydroxyl groups and alkali metals remaining on the surface of the activated carbon, to obtain activated carbon carrying amine compounds. be able to.
  • the amount of the amine compound supported on the activated carbon is preferably 0.5 to 20.0 parts by mass, more preferably 1.0 to 10.0 parts by mass with respect to 100.0 parts by mass of the activated carbon.
  • the amount is preferably 0.5 to 20.0 parts by mass, more preferably 1.0 to 10.0 parts by mass with respect to 100.0 parts by mass of the activated carbon.
  • the mass ratio of the activated carbon to the Y-type zeolite to which the water-soluble acid hydrazide compound is adhered (the mass of the activated carbon / the mass of the Y-type zeolite to which the water-soluble acid hydrazide compound is adhered) is in the range of 0.05 to 0.50. It is preferable that
  • the content mass ratio By setting the content mass ratio to 0.05 or more, when low-boiling aldehydes that Y-type zeolite unintentionally adsorbs by physical adsorption phenomenon are desorbed, these low-boiling aldehydes are placed in the vicinity of Y-type zeolite. By adsorbing the activated carbon present, the desorption suppression performance of the gas adsorbent is further improved.
  • the content ratio is 0.50 or less, the content ratio of the Y-type zeolite is increased, the adsorption performance of the low-boiling aldehydes is improved, and the dynamic adsorption performance of the gas adsorbent is further improved. In addition to being excellent, once the adsorbed low-boiling aldehydes are less likely to be desorbed, the gas adsorbent has better desorption suppression performance.
  • a deodorant fiber sheet can be obtained using the gas adsorbent of the present invention.
  • the following can be mentioned as a manufacturing method of such a deodorizing fiber sheet.
  • a sheeting method obtained by dispersing gas adsorbent particles in water, adhering to a fiber sheet, and then dehydrating.
  • An airlaid method obtained by dispersing gas adsorbent particles in the air together with fibers when a fiber sheet is formed.
  • a method in which a gas adsorbent is filled by thermal bonding between two or more layers of nonwoven fabric or woven fabric, net-like material, film, and membrane.
  • a method in which a gas adsorbent is bonded and supported on a breathable material such as a nonwoven fabric, a woven fabric, or urethane foam using an emulsion adhesive or a solvent-based adhesive (5) A method in which a gas adsorbent is bonded and supported on a breathable material such as a nonwoven fabric, a woven fabric, or urethane foam by utilizing the thermoplasticity of a base material or a hot melt adhesive. (6) A method in which the gas adsorbent is mixed and integrated by kneading the fiber or resin.
  • the processing method (1), (2), (3), or (5) is performed. It is preferable to use it.
  • an aqueous solution mixed with an acid hydrazide compound may be attached by dipping or spraying.
  • the binder resin is not particularly limited, and any kind of resin can be used. Examples thereof include an acrylic resin, a methacrylic resin, a urethane resin, an ester resin, a polyvinyl alcohol resin, and a silicon resin. Two or more kinds of resins may be mixed.
  • the mass ratio of the Y-type zeolite to the binder resin (the mass of the Y-type zeolite: the mass of the binder resin) is in the range of 10: 1 to 1: 1.
  • the adhesion and gas of the Y-type zeolite and the water-soluble acid hydrazide compound It is preferable in terms of adsorption performance.
  • the water-soluble acid hydrazide compound and the Y-type zeolite are first dispersed in a solvent, and then the binder resin is dispersed, because this allows more uniform dispersion.
  • a sheet having a different fiber structure is further laminated on a fiber sheet carrying the above Y-type zeolite and a water-soluble acid hydrazide compound.
  • a direct flow filter if a bulky and coarse nonwoven fabric sheet is laminated on the upstream side, the amount of dust retained is improved and the life can be extended. If a nonwoven fabric sheet made of ultrafine fibers is laminated on the downstream side, high collection efficiency can be achieved.
  • the nonwoven fabric sheet which consists of this ultrafine fiber is electret-treated.
  • the electret treatment it becomes possible to collect submicron-size and nano-size fine dust that is difficult to remove normally by electrostatic force.
  • Deodorized fiber sheet can be obtained by integrating thermoplastic resin as a gas adsorbent and binder of the present invention disposed between two layers of nonwoven fabric by thermal bonding. First, mix thoroughly on one nonwoven fabric. The stirred gas adsorbent and the thermoplastic resin are sprayed and heat-treated to melt the thermoplastic resin. A heating furnace can be used as a heating method. The other non-woven fabric can be covered with the heat-treated material and pressed to be integrated.
  • a hot press method between rolls which is often used for producing a sheet by hot pressing, or a flat bed laminating method in which the upper and lower sides are sandwiched between flat heat belt conveyors can be used.
  • thermoplastic resin material examples include thermoplastic resins such as polyester, polyolefin, polyamide, polyurethane, ethylene-acrylic copolymer, polyacrylate, polyacrylic, polydiene, ethylene-vinyl acetate, polyvinyl chloride, and polystyrene. Of these, polyesters and polyolefins are preferred as materials that generate less odor during heating.
  • the shape of the thermoplastic resin is not particularly limited as long as it is in a powder form, but examples thereof include a spherical shape, a crushed shape, and a fibrous shape.
  • the melting point of the thermoplastic resin is preferably 80 ° C. or higher, more preferably 90 ° C. or higher in consideration of the environmental temperature in the room of a moving vehicle or the like.
  • the content of the thermoplastic resin is preferably 5 to 40% by mass, and more preferably 10 to 35% by mass with respect to the content of the gas adsorbent of the present invention. If it exists in this range, the adhesive force with a nonwoven fabric will improve more, and also the ventilation resistance and deodorizing performance of a deodorant fiber sheet will improve more.
  • thermoplastic resin capable of melt spinning examples include polyester, polyamide, polyolefin, acrylic, vinylon, polystyrene, polyvinyl chloride, polyvinylidene chloride, polylactic acid, and the like, which can be selected according to the use. Moreover, you may use combining multiple types.
  • the fibers constituting the nonwoven fabric not only those having a circular cross section but also, for example, those having an irregular cross section and those having a large number of holes and slits on the fiber surface are preferably used.
  • the atypical cross-sectional shape herein refers to a cross-sectional shape other than a circle, and examples thereof include a flat shape, a substantially polygonal shape, and a wedge shape.
  • Such a fiber having an irregular cross-sectional shape can be obtained by spinning using a die having a non-circular hole.
  • fibers having a large number of holes and slits on the fiber surface can be obtained by alloying and spinning two or more types of polymers having different solubility in the solvent, and dissolving and removing the higher solubility polymer with the solvent. Can do.
  • a dry method As a method for producing a nonwoven fabric, a dry method, a wet method, a spunbond method, a thermal bond method, a chemical bond method, a spunlace method (a hydroentanglement method), a spunbond nonwoven fabric, and a melt blown nonwoven fabric can be used.
  • a dry method As a method for producing a nonwoven fabric, a dry method, a wet method, a spunbond method, a thermal bond method, a chemical bond method, a spunlace method (a hydroentanglement method), a spunbond nonwoven fabric, and a melt blown nonwoven fabric can be used.
  • at least one nonwoven fabric is preferably a wet nonwoven fabric produced by a papermaking method because the fabric weight and thickness can be made uniform.
  • the fiber diameter of the fibers constituting the nonwoven fabric may be selected according to the target air permeability and dust collection performance in the application used as the deodorant fiber sheet.
  • the thickness is preferably 1 to 2000 ⁇ m.
  • the fiber diameter is set to 1 ⁇ m or more, more preferably 2 ⁇ m or more, the gas adsorbent can be prevented from being clogged on the surface of the fiber structure, and the air permeability can be prevented from being lowered.
  • the fiber diameter to 2000 ⁇ m or less, more preferably 100 ⁇ m or less, it is possible to prevent a decrease in the carrying capacity of the gas adsorbent and a decrease in contact efficiency with the processing air due to a decrease in the fiber surface area.
  • the basis weight of the nonwoven fabric is preferably 10 to 500 g / m 2 .
  • the basis weight is preferably 10 to 500 g / m 2 .
  • the basis weight is preferably 10 to 500 g / m 2 .
  • the basis weight is set to 10 g / m 2 or more, sufficient strength to withstand the processing for supporting the gas adsorbent can be obtained, and the rigidity necessary to maintain the filter structure when air is aerated can be obtained.
  • the basis weight to 500 g / m 2 or less, more preferably 200 g / m 2 or less, the gas adsorbent can be uniformly supported up to the inside of the nonwoven fabric, and the deodorized fiber sheet is formed in a pleated shape or a honeycomb shape. Excellent handleability during secondary processing.
  • the thickness of the nonwoven fabric is preferably 0.10 mm to 0.60 mm. If it is thin, the gas adsorbent particles may jump out and break the nonwoven fabric. If it is thick, the handleability may be deteriorated.
  • At least one non-woven fabric is electret-treated.
  • fine dust of submicron size or nano size which is difficult to remove normally, can be collected by electrostatic force.
  • Materials that make up the electret-treated non-woven fabric include high electrical properties such as polypropylene, polyethylene, polystyrene, polybutylene terephthalate, polyolefin resins such as polytetrafluoroethylene, aromatic polyester resins such as polyethylene terephthalate, and polycarbonate resins.
  • a material having a resistivity is preferred.
  • the nonwoven fabric may be configured to include components having ancillary functions such as antibacterial agents, antifungal agents, antiallergen agents, antiviral agents, vitamin agents, flame retardants, and the like. These components may be kneaded into fibers or non-woven fabrics, or may be attached and supported by post-processing. For example, after producing a nonwoven fabric by an arbitrary method, an aqueous solution containing a flame retardant and a resin binder is produced, impregnated and dried, and the nonwoven fabric can be obtained by fixing the flame retardant.
  • ancillary functions such as antibacterial agents, antifungal agents, antiallergen agents, antiviral agents, vitamin agents, flame retardants, and the like.
  • the content of the gas adsorbent of the present invention in the deodorant fiber sheet is preferably 10 to 100 g / m 2 in total of the proton type Y zeolite and the water-soluble acid hydrazide compound.
  • the content is preferably 10 to 100 g / m 2 in total of the proton type Y zeolite and the water-soluble acid hydrazide compound.
  • An air filter can be constructed using a deodorant fiber sheet.
  • a deodorant fiber sheet in the air filter it may be used as it is, but a pleat type or a honeycomb type should be adopted in order to put more deodorant fiber sheets in a limited size. Is preferred.
  • the pleat type as a direct flow type air filter
  • the honeycomb type as a parallel flow type filter
  • a method of pleating there are a reciprocating method, a rotary method, and the like, and any method may be used as long as it is a method of processing into a valley shape. Further, it is desirable to perform a separator process in order to maintain the pleated shape, and from the viewpoint of production efficiency, a method of melt-processing a thermoplastic resin such as bead processing or ribbon processing is desirable. Here, it is preferable to use a polyolefin resin having a melting point of 90 ° C. or higher.
  • the distance between the apexes of the folds of the air filter using the deodorant fiber sheet provided with the gas adsorbent of the present invention is preferably 2 to 30 mm. If it is less than 2 mm, the folds are in close contact with each other and there is a lot of dead space, which makes it impossible to use the sheet efficiently. On the other hand, if it exceeds 30 mm, the deodorized fiber sheet folding area becomes small, so that it becomes impossible to obtain the removal effect corresponding to the thickness of the air filter, which is not preferable.
  • the air filter using the gas adsorbent of the present invention is stored in a frame body in terms of air processing efficiency and handleability.
  • Thickness (mm) For a measurement sample cut to 10 cm ⁇ 10 cm, 10 points are randomly measured using a thickness meter (manufactured by Daiei Kagaku Seiki Co., Ltd., model FS-60DS, probe area 2500 mm 2 , measurement load 0.5 KPa), and an average value is calculated. And the thickness. The thickness of the deodorant fiber sheet is also measured by the same method as the above measurement method.
  • BET specific surface area The specific surface area of zeolite and activated carbon is measured according to the BET multipoint method specified in JIS R 1626-1996 using NOVA2200e manufactured by Yuasa Ionics. 100 mg of a sample is collected, vacuum degassed at 100 ° C. for 4 hours, N2 is used as an adsorbate, and measurement is performed by a constant volume method.
  • Average pore diameter Assuming that the pore shape of the zeolite is cylindrical, the average pore diameter (D) is calculated from the specific surface area (S) and pore volume (V) obtained during the BET specific surface area measurement. To do.
  • thermoplastic resin that can be used as gas adsorbent and binder
  • another nonwoven fabric is layered and heat pressed to integrate.
  • the total basis weight is measured, and the value obtained by subtracting the basis weight of the two nonwoven fabrics from the total basis weight is multiplied by the charged amount ratio of the gas adsorbent and the thermoplastic resin to obtain the gas adsorbent and thermoplastic for the entire deodorant fiber sheet.
  • the resin content is calculated.
  • Pressure loss Set the flat deodorizing fiber sheet to the effective frontage area 0.1 m 2 holder, is passed through the air in a vertical direction at a face velocity 6.5m / min, MODUS Co. digital manometer MA2 the pressure difference of the filter upstream and downstream Measure with a -04P differential pressure gauge. The measurement is performed by sampling 5 points arbitrarily from one specimen, and the average value is taken as the pressure loss of the deodorant fiber sheet.
  • a 12 cm square size flat plate-like deodorant fiber sheet is attached to a 10 cm square size experimental duct, and air at a temperature of 23 ° C. and a humidity of 50% RH is blown into the duct at a speed of 0.2 m / sec. Furthermore, from the upstream side, acetaldehyde was added to the upstream concentration of 10 ppm with a standard gas cylinder, air was sampled on the upstream side and the downstream side of the deodorant fiber sheet, and each infrared absorption type continuous monitor was used. The acetaldehyde concentration is measured over time, and the removal efficiency is calculated by the following formula.
  • Acetaldehyde removal efficiency (%) [(C 0 -C) / C 0 ] ⁇ 100
  • C Downstream acetaldehyde concentration (ppm)
  • the removal efficiency after 100 seconds from the start of addition of acetaldehyde is taken as the initial removal efficiency, and the removal efficiency after 100 seconds is measured over time. Further, the amount of adsorption until the difference between the upstream concentration and the downstream concentration becomes 5% is evaluated as the adsorption capacity.
  • the clean air of the temperature 23 degreeC and humidity 50% RH which do not contain acetaldehyde is 0.2 m / sec.
  • the odor intensity of the blown air that is blown and downstream of the deodorant fiber sheet is judged by a five-person monitor using a six-step odor judgment method using the judgment criteria shown in Table 4, and the arithmetic result of the judgment results of the five persons
  • the average value is used as an index for evaluating acetaldehyde elimination.
  • Toluene removal efficiency (%) [(C 0 -C) / C 0 ] ⁇ 100
  • Toluene concentration (ppm) on the downstream side The removal efficiency 3 minutes after the start of toluene addition was defined as the initial removal efficiency, and the initial removal efficiency was compared. The removal efficiency after 3 minutes is measured over time. Further, the amount of adsorption until the difference between the upstream concentration and the downstream concentration becomes 5% is evaluated as the adsorption capacity.
  • the odor intensity of the blown air downstream of the sample is determined by a five-step monitor using a six-stage odor determination method using the following criteria. 5: Intense odor 4: Strong odor 3: Easy odor 2: Weak odor 1 To do. In addition, it can be said that the secondary odor of a deodorant fiber sheet is suppressed more highly, so that arithmetic mean is small.
  • Desorption determination A comprehensive determination on desorption odor is performed from the arithmetic average value of the 6-step odor determination method of acetaldehyde gas and toluene gas and the maximum concentration of toluene desorption. The comprehensive judgment was performed in four stages: A (particularly excellent), B (excellent), C (having improvement), and D (not preferred). The judgment criteria are as follows.
  • A When the maximum toluene desorption concentration is 1.5 ppm or less and the 6-step odor determination method is 0.6 or less in any of acetaldehyde gas and toluene gas
  • B When the maximum concentration of toluene desorption is in the range of 1.5 ppm to 2.0 ppm, and the 6-step odor determination method is 0.6 to 1.0 in both acetaldehyde gas and toluene gas
  • C The maximum toluene desorption concentration is in the range of 2.0 ppm to 5.0 ppm, and the 6-step odor determination method is 1.0 to 2.5 in both acetaldehyde gas and toluene gas.
  • the obtained zeolite was a proton type Y zeolite.
  • This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 5.4, and a specific surface area measured by nitrogen adsorption / desorption method was 690 m 2 / g.
  • this zeolite was used as a raw material, alumina sol was used as a binder, and zeolite granulated to an average particle size of 230 ⁇ m by a high speed mixer method was used.
  • the specific surface area of the granulated zeolite was 600 m 2 / g and the average pore diameter was 17.0 mm.
  • the proton-type Y-type zeolite refers to a Y-type zeolite whose cation exchange site is proton (H + ).
  • gas adsorbent B Zeolite
  • sodium aluminate and sodium silicate were mixed to obtain a mixture, and then the mixture was heated at 100 ° C. to obtain zeolite.
  • the zeolite was treated with an ammonium nitrate solution at 110 ° C., and the zeolite was calcined with superheated steam at 750 ° C.
  • the obtained zeolite was a proton type Y zeolite.
  • This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 7.2, and a specific surface area measured by nitrogen adsorption / desorption method was 650 m 2 / g. And this zeolite was used as a raw material, alumina sol was used as a binder, and zeolite granulated to an average particle size of 230 ⁇ m by a high speed mixer method was used. The specific surface area of the zeolite after granulation was 580 m 2 / g, and the average pore diameter was 16.5 mm.
  • zeolite Preparation of gas adsorbent C (Zeolite) First, sodium aluminate and sodium silicate were mixed to obtain a mixture, and then the mixture was heated at 100 ° C. to obtain zeolite. Next, the zeolite was treated with an ammonium nitrate solution at 110 ° C., and the zeolite was calcined with superheated steam at 750 ° C. The obtained zeolite was a proton type Y zeolite.
  • This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 5.4, and a specific surface area measured by nitrogen adsorption / desorption method was 690 m 2 / g. And this zeolite was used as a raw material, alumina sol was used as a binder, and zeolite granulated to an average particle size of 230 ⁇ m by a high speed mixer method was used. The specific surface area of the granulated zeolite was 600 m 2 / g and the average pore diameter was 17.0 mm.
  • ZSM-5 type zeolite with a SiO 2 / Al 2 O 3 content molar ratio of 38.0 and specific surface area of 340 m 2 / g is used as a raw material, alumina sol is used as a binder, and averaged by a high speed mixer method. Zeolite granulated to a particle size of 230 ⁇ m was used. The specific surface area of the granulated zeolite was 300 m 2 / g, and the average pore diameter was 18.4 mm.
  • This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 5.4, and a specific surface area measured by nitrogen adsorption / desorption method was 690 m 2 / g.
  • A-type zeolite (sodium-type A-type zeolite) having a SiO 2 / Al 2 O 3 -containing molar ratio of 2.0 and having an alkali metal ion Na + as a cationic group was used.
  • the A-type zeolite having the alkali metal ion Na + as a cationic group means an A-type zeolite having a cation exchange site of Na + .
  • a Y-type zeolite having ammonium ion NH 4 + having a SiO 2 / Al 2 O 3 -containing molar ratio of 25.0 and a specific surface area of 680 m 2 / g was used.
  • the Y-type zeolite having ammonium ion NH 4 + refers to a Y-type zeolite having a cation exchange site of NH 4 + .
  • Activated carbon A Coconut shell activated carbon having an average particle diameter of 220 ⁇ m and a specific surface area of 1100 m 2 / g according to JIS K1474 method was used.
  • Activated carbon B Coconut shell activated carbon having an average particle size of 220 ⁇ m and a specific surface area of 1200 m 2 / g according to JIS K1474 method was used.
  • Adipic acid dihydrazide manufactured by Otsuka Chemical Co., Ltd. having a solubility in water of 8.0% was used.
  • coconut shell activated carbon having an average particle size of 220 ⁇ m and a specific surface area of 1200 m 2 / g according to JIS K1474 method was used.
  • Porous silica A Inorganic porous material
  • Silica gel manufactured by AGC S-Tech Co., Ltd. having an average particle size of 200 ⁇ m, a specific surface area of 700 m 2 / g and an average pore size of 60 mm according to JIS K1474 method was used.
  • Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
  • Porous silica A An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to 40.0% by mass of the porous silica, followed by drying at 110 ° C. for 4 hours to obtain porous silica A.
  • Porous silica B Inorganic porous material
  • Silica gel manufactured by AGC S-Tech Co., Ltd. having an average particle diameter of 200 ⁇ m, a specific surface area of 30 m 2 / g and an average pore diameter of 1000 mm according to JIS K1474 method was used.
  • Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
  • Porous silica B An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to the porous silica by 40.0% by mass, and dried at 110 ° C. for 4 hours to obtain porous silica B.
  • Example 1 (Nonwoven fabric a) A fiber aggregate having a basis weight of 30 g / m 2 composed of polyester fiber and vinylon fiber was produced by a wet papermaking method. The fiber assembly was impregnated with a dispersion of a styrene acrylic polymer and melamine phosphate as a flame retardant, and then subjected to a dry heat treatment to produce a nonwoven fabric a having a basis weight of 50 g / m 2 and a thickness of 0.42 mm.
  • Nonwoven fabric b As the thermoplastic resin, a polypropylene resin composition having a melting point of 163 ° C. and a charge stabilizer added thereto was used.
  • the melt blown nonwoven fabric was manufactured using the apparatus which consists of an extruder and a gear pump, a melt blow nozzle, a compressed air generator and an air heater, a collection conveyor, and a winder.
  • the basis weight is 30 g / m 2 , and the average A nonwoven fabric b having a fiber diameter of 6.2 ⁇ m and a thickness of 0.20 mm was obtained.
  • Example 2 (Deodorant fiber sheet) 73.7 / 26.3 (gas adsorbent B / low density polyethylene) of the gas adsorbent B and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. Weighed at a mass ratio, stirred with a shaker, and then uniformly spread on the nonwoven fabric a so as to have a total amount of 95 g / m 2. In a state where the hot melt adhesive was dissolved in a drying oven at 150 ° C. Then, the nonwoven fabric b was covered and heat-pressed to produce a deodorant fiber sheet B.
  • Table 1 The composition and the like of the gas adsorbent are shown in Table 1.
  • the physical properties and performance of the deodorant fiber sheet are shown in Table 3.
  • Example 3 (Deodorant fiber sheet) 55.6 / 15.9 / 28 gas adsorbent including the gas adsorbent A and activated carbon A and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. .6 (gas adsorbent A / activated carbon A / low density polyethylene) was weighed, stirred with a shaker, and then uniformly spread on the nonwoven fabric a to a total amount of 63 g / m 2.
  • Example 4 (Deodorant fiber sheet) 55.6 / 15.9 / 28.6 (gas adsorbent) of the gas adsorbent A and activated carbon B and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. (A / activated carbon B / low density polyethylene) and weighed with a shaker and sprayed uniformly on the nonwoven fabric a to a total amount of 63 g / m 2. Hot in a drying oven at 150 ° C. In a state where the melt adhesive was dissolved, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet D. The composition of the gas adsorbent, etc. are shown in Table 1. Physical properties and performance of the deodorant fiber sheet Is shown in Table 3.
  • Example 5 (Deodorant fiber sheet) By impregnating the nonwoven fabric a in an aqueous solution in which the gas adsorbent E, adipic acid dihydrazide and styrene acrylic binder are uniformly dispersed in pure water so as to have a mass ratio of 43.5 / 21.7 / 34.8, and then drying. A nonwoven fabric sheet c having a basis weight of 73 g / m 2 was obtained. Low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) was uniformly sprayed on the non-woven fabric c so as to be 7 g / m 2.
  • the hot melt adhesive was melted in a 130 ° C. drying oven. In this state, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet E.
  • the composition and the like of the gas adsorbent are shown in Table 1.
  • the physical properties and performance of the deodorant fiber sheet are shown in Table 3. .
  • the hot melt adhesive was melted in a 130 ° C. drying oven. In this state, the nonwoven fabric b was covered and heat pressed to produce a deodorant fiber sheet L.
  • the composition of the gas adsorbent, etc. are shown in Table 2.
  • the physical properties and performance of the deodorant fiber sheet are shown in Table 3. .
  • the hot melt adhesive was melted in a 130 ° C. drying oven. In this state, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet M.
  • the composition of the gas adsorbent and the like are shown in Table 2.
  • the physical properties and performance of the deodorant fiber sheet are shown in Table 3. .
  • the gas adsorbents of Examples 1 and 2 had a SiO 2 / Al 2 O 3 molar ratio in the range of 2 to 20 to which adipic acid dihydrazide was adhered, and had Y-type zeolite.
  • the initial removal efficiency and adsorption capacity of acetaldehyde which is a representative component of low-boiling aldehydes, were excellent.
  • both acetaldehyde gas and toluene gas were 1.0 or less, and almost no odor was generated.
  • Example 3 and Example 4 contain a smaller amount of activated carbon. Due to the effect of zeolite with adipic acid dihydrazide attached, it was excellent in acetaldehyde removal performance, and due to the combined effect with activated carbon, more excellent results were obtained in the evaluation of desorption odor after adsorption saturation of toluene and acetaldehyde. In Example 4, since the adipic acid dihydrazide was adhered to the activated carbon, the effect of improving the acetaldehyde desorption odor appeared remarkably.
  • Example 5 a fine powdery zeolite having a particle size of 5.0 ⁇ m is fixed to a nonwoven fabric with a binder, but as in Examples 1 and 2, it has excellent acetaldehyde removal performance and evaluates desorption odor after adsorption saturation.
  • both acetaldehyde gas and toluene gas were 1.0 or less, and good results with almost no odor were obtained.
  • the gas adsorbent of Comparative Example 6 uses zeolite having a SiO 2 / Al 2 O 3 molar ratio of 38.0, which increases the amount of physical adsorption of toluene, and the maximum desorption concentration after adsorption saturation. As a result, an odor component that was not a problem at the original concentration of 9.3 ppm was recognized as a bad odor.
  • Comparative Example 7 A-type zeolite is used, but since the pore diameter is small, the water-soluble acid hydrazide compound is difficult to enter the pores, and acetaldehyde is difficult to enter the pores. Sufficient performance for acetaldehyde removal was not obtained.
  • Comparative Example 8 a Y-type zeolite is used, but since the SiO 2 / Al 2 O 3 molar ratio is 25.0 and the hydrophobicity is strong, the physical adsorption amount of toluene is increased and the maximum desorption concentration is increased. Since the cation exchange site in the crystal structure is ammonium ion, sufficient performance for removing acetaldehyde was not obtained.
  • the gas adsorbent, deodorant fiber sheet and air filter according to the present invention are excellent in adsorption performance of low-boiling aldehydes in VOC components, and from low-boiling aldehydes and low-polarity gas adsorbents generated from the passenger compartment.
  • it is preferably used as an air filter for purifying the air in the passenger compartment of automobiles and railway vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The purpose of the present invention is to provide a gas adsorbent which has excellent adsorption performance for low-boiling point aldehydes and also has excellent performance for suppressing the desorption of low-boiling point aldehydes and low-polar gases from a gas adsorbent, once the low-boiling point aldehydes and the low-polar gases have been adsorbed onto the gas adsorbent. This purpose is achieved by providing a gas adsorbent containing: a proton-type Y zeolite; and a water-soluble acid hydrazide compound, wherein the proton-type Y zeolite contains SiO2 and Al2O3, and the molar ratio of SiO2 to Al2O3 contained (mole of SiO2 contained/mole of Al2O3 contained) therein is 2-20.

Description

ガス吸着剤、消臭繊維シートおよびガス吸着剤の製造方法Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent
 本発明は、ガス吸着剤およびそれを用いた消臭繊維シートに関する。 The present invention relates to a gas adsorbent and a deodorizing fiber sheet using the same.
 近年、生活環境の改善志向の高まりから、消臭繊維シートである濾材によって空気中に存在する塵埃以外にも揮発性有機化合物(VOC)を除去して、空気を清浄化できることが求められている。特に自動車などの車輌内では、狭い空間中にバインダーや塗料を用いた部品が多数存在するためVOCが高濃度で存在し易く、濾材によるVOCの効率的な除去が求められている。 2. Description of the Related Art In recent years, there has been a demand for the ability to clean air by removing volatile organic compounds (VOC) in addition to dust present in the air by using a filter medium that is a deodorizing fiber sheet, due to the increasing desire to improve the living environment. . Particularly in vehicles such as automobiles, since there are many parts using binders and paints in a narrow space, VOC tends to exist at a high concentration, and efficient removal of VOC by a filter medium is required.
 最近では自動車部材由来のVOC発生量を抑制すべく、開発が進められておりトルエンやキシレンなどの有機溶剤の発生量は厚生労働省指針値以下に抑えられるようになってきた。ホルムアルデヒドやアセトアルデヒドなどの低沸点アルデヒド類は発生源による対策が困難であり、低沸点アルデヒド類を除去可能な濾材が求められている。 Recently, development has been promoted to reduce the amount of VOC generated from automobile parts, and the amount of organic solvents such as toluene and xylene has been reduced below the guidelines set by the Ministry of Health, Labor and Welfare. Low-boiling aldehydes such as formaldehyde and acetaldehyde are difficult to counter by the source, and a filter medium capable of removing low-boiling aldehydes is required.
 これまでVOC除去能を有する濾材としては、吸着剤として活性炭を含む濾材が広く知られていた。しかしVOCの中でもアセトアルデヒドやホルムアルデヒドは沸点が低く、極性も高いので活性炭では除去しづらく、そのため多量の活性炭を使用する必要があるため、通気抵抗の高い濾材となっていた。また、当該技術を用いた濾材は、活性炭が物理吸着能をベースとしており、除去対象とするアセトアルデヒド以外の物質をも吸着し、さらに濃縮してしまっていた。これらの臭気成分は化学結合によりトラップされているわけではないため、温度や湿度の変化等の環境要因によって、濃縮されていた臭気成分が一気に放出されてしまう。そうなると本来の存在濃度では問題とならなかった臭気成分が悪臭として認知されてしまうという課題も知られている。 Until now, filter media containing activated carbon as an adsorbent have been widely known as filter media having VOC removal ability. However, among VOCs, acetaldehyde and formaldehyde have low boiling points and high polarities, so it is difficult to remove them with activated carbon. Therefore, it is necessary to use a large amount of activated carbon. In addition, the filter medium using this technology is based on activated charcoal based on physical adsorption ability, and adsorbs substances other than acetaldehyde to be removed and further concentrates it. Since these odor components are not trapped by chemical bonds, the concentrated odor components are released at once due to environmental factors such as changes in temperature and humidity. In that case, the problem that the odor component which was not a problem at the original concentration is recognized as a bad odor is also known.
 そこで、近年ではそれぞれ酸ヒドラジド化合物を担持したシリカゲルやゼオライトを用いた濾材が使用されつつあり、これらは低沸点アルデヒド類の吸着性能に優れている。特許文献1に記載の繊維シートは、低沸点アルデヒド類の吸着性能に優れており、少量の吸着剤量で低沸点アルデヒド類を除去できる。またこの繊維シート中の吸着剤に一旦吸着された低沸点アルデヒド類やトルエンやキシレンなどの低極性ガス類のこの吸着剤からの脱離量が、多量の活性炭を使用した濾材に比べ低減できている。 Therefore, in recent years, filter media using silica gel or zeolite each carrying an acid hydrazide compound are being used, and these are excellent in adsorption performance for low-boiling aldehydes. The fiber sheet described in Patent Document 1 is excellent in adsorption performance of low-boiling aldehydes, and can remove low-boiling aldehydes with a small amount of adsorbent. In addition, the amount of desorption from low-boiling aldehydes and low-polarity gases such as toluene and xylene once adsorbed on the adsorbent in the fiber sheet can be reduced compared to a filter medium using a large amount of activated carbon. Yes.
 そのほかに、特許文献2はA型ゼオライトまたはX型ゼオライトに酸ヒドラジドを加えた吸着剤を開示している。特許文献3はゼオライトにアミン系化合物を加えた吸着剤を開示している。 In addition, Patent Document 2 discloses an adsorbent obtained by adding acid hydrazide to A-type zeolite or X-type zeolite. Patent Document 3 discloses an adsorbent obtained by adding an amine compound to zeolite.
特開2007-167632号公報JP 2007-167632 A 特開2011-83756号公報JP 2011-83756 A 特開平08-280781号公報Japanese Patent Laid-Open No. 08-280781
 しかし、特許文献1の繊維シートの形態をもつ濾材においては、メソ孔を中心に広い細孔径分布を有する吸着材を使用していた。そのため酸ヒドラジド化合物による低沸点アルデヒド類に対する化学吸着量が飽和すると、一旦吸着された低沸点アルデヒド類や低極性ガス類等の臭気閾値の低いガス成分の脱離による二次発臭が起こるという課題が依然としてあった。また、特許文献2や3に記載の吸着剤は、エアフィルターのようなエアが流通している動的な条件下において低沸点アルデヒド類の吸着性能は不十分であるとの課題があった。 However, in the filter medium having the fiber sheet form of Patent Document 1, an adsorbent having a wide pore size distribution centering on mesopores was used. Therefore, when the amount of chemical adsorption of low boiling point aldehydes by acid hydrazide compound is saturated, secondary odor occurs due to desorption of gas components with low odor threshold such as once adsorbed low boiling point aldehydes and low polar gases. There was still. Further, the adsorbents described in Patent Documents 2 and 3 have a problem that the adsorption performance of low-boiling aldehydes is insufficient under dynamic conditions where air such as an air filter is circulating.
 本発明は上記課題を解決しようとするものであり、エアフィルターのようなエアが流通している動的な条件下における低沸点アルデヒド類の吸着性能に優れ、かつ、吸着剤に一旦、吸着された低沸点アルデヒド類や低極性ガス類の吸着剤からの脱離を抑制する性能に優れるガス吸着剤を提供することを課題とする。 The present invention is intended to solve the above-mentioned problems, and is excellent in the adsorption performance of low-boiling aldehydes under dynamic conditions where air such as an air filter is circulating, and once adsorbed by the adsorbent. Another object of the present invention is to provide a gas adsorbent having excellent performance for suppressing the desorption of low-boiling aldehydes and low polar gases from the adsorbent.
 上記課題を解決するための本発明は、以下のいずれかの構成をとることを特徴とする。
(1)プロトン型のY型ゼオライトと水溶性の酸ヒドラジド化合物とを含有し、前記プロトン型のY型ゼオライトは、SiOおよびAlを含有し、前記プロトン型のY型ゼオライトにおけるSiOとAlとの含有モル比(SiOの含有モル/Alの含有モル)が2以上20以下である、ガス吸着剤。
(2)さらに、活性炭を含有する、(1)のガス吸着剤。
(3)前記活性炭の比表面積が900~1300m/gである、(2)のガス吸着剤、
(4)前記活性炭と前記Y型ゼオライトとの含有質量比(活性炭の含有質量/Y型ゼオライトの含有質量)が0.05~0.50である、(2)または(3)のガス吸着剤。
(5)(1)~(4)のいずれかのガス吸着剤を有する、消臭繊維シート。
(6)単位面積あたりの前記ガス吸着剤の含有量が10~100g/mである、(5)の消臭繊維シート。
(7)(5)または(6)の消臭繊維シートを備える、エアフィルターユニット。
(8)アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、前記混合物を90~120℃で加熱し、ゼオライトを得る工程と、前記ゼオライトを100~120℃の硝酸アンモニウム溶液で処理する工程と、前記ゼオライトを500~800℃の過熱水蒸気にて焼成処理する工程と、前記ゼオライトに水溶性の酸ヒドラジド化合物を添着させる工程とを、この順に有するガス吸着剤の製造方法である。
The present invention for solving the above-described problems is characterized by taking one of the following configurations.
(1) A proton type Y zeolite and a water-soluble acid hydrazide compound are contained, and the proton type Y zeolite contains SiO 2 and Al 2 O 3 , and SiO in the proton type Y zeolite Gas adsorbent in which the content molar ratio of 2 to Al 2 O 3 (the content mole of SiO 2 / the content mole of Al 2 O 3 ) is 2 or more and 20 or less.
(2) The gas adsorbent according to (1), further comprising activated carbon.
(3) The gas adsorbent according to (2), wherein the activated carbon has a specific surface area of 900 to 1300 m 2 / g,
(4) The gas adsorbent according to (2) or (3), wherein the mass ratio of the activated carbon to the Y-type zeolite (the mass of the activated carbon / the mass of the Y-type zeolite) is 0.05 to 0.50. .
(5) A deodorizing fiber sheet comprising the gas adsorbent according to any one of (1) to (4).
(6) The deodorized fiber sheet according to (5), wherein the content of the gas adsorbent per unit area is 10 to 100 g / m 2 .
(7) An air filter unit comprising the deodorizing fiber sheet of (5) or (6).
(8) After mixing sodium aluminate and sodium silicate to obtain a mixture, the mixture is heated at 90 to 120 ° C. to obtain zeolite, and the zeolite is treated with an ammonium nitrate solution at 100 to 120 ° C. A method for producing a gas adsorbent comprising a step, a step of calcining the zeolite with superheated steam at 500 to 800 ° C., and a step of attaching a water-soluble acid hydrazide compound to the zeolite in this order.
 エアフィルターのようなエアが流通している動的な条件下における低沸点アルデヒド類の吸着性能に優れ、かつ、ガス吸着剤に一旦、吸着された低沸点アルデヒド類や低極性ガス類のガス吸着剤からの脱離を抑制する性能に優れるガス吸着剤を提供することが可能となる。 Excellent adsorption performance of low-boiling aldehydes under dynamic conditions where air such as an air filter is circulating, and gas adsorption of low-boiling aldehydes and low-polarity gases once adsorbed to the gas adsorbent It is possible to provide a gas adsorbent that is excellent in performance of suppressing desorption from the agent.
 本発明のガス吸着剤は、プロトン型のY型ゼオライト(以下、単に「Y型ゼオライト」ということがある。)と水溶性の酸ヒドラジド化合物とを含有する。ここでプロトン型ゼオライトとはカチオン交換サイトがプロトン(H)であるゼオライトのことを言う。 The gas adsorbent of the present invention contains a proton type Y zeolite (hereinafter sometimes simply referred to as “Y type zeolite”) and a water-soluble acid hydrazide compound. Here, the proton-type zeolite refers to a zeolite whose cation exchange site is proton (H + ).
 そして、このプロトン型のY型ゼオライトは、SiOおよびAlを含有し、このプロトン型のY型ゼオライトにおけるSiOとAlとの含有モル比(SiOの含有モル/Alの含有モル)が2以上20以下である。そして、このガス吸着剤は、エアフィルターのようなエアが流通している動的な条件下における低沸点アルデヒド類の吸着性能(以下、「動的吸着性能」ということがある)に優れ、かつ、ガス吸着剤に一旦、吸着された低沸点アルデヒド類や低極性ガス類のガス吸着剤からの脱離を抑制する性能(以下、「脱離抑制性能」ということがある)に優れる。 Then, Y-type zeolite of proton type, containing SiO 2 and Al 2 O 3, molar / Al of molar ratio (SiO 2 with SiO 2 and Al 2 O 3 in the Y-type zeolite of proton type 2 O 3 -containing mole) is 2 or more and 20 or less. The gas adsorbent is excellent in adsorption performance of low-boiling aldehydes under dynamic conditions where air such as an air filter is circulating (hereinafter sometimes referred to as “dynamic adsorption performance”), and The low-boiling aldehydes and low-polarity gases once adsorbed on the gas adsorbent are excellent in the ability to suppress desorption from the gas adsorbent (hereinafter sometimes referred to as “desorption suppression performance”).
 本発明のガス吸着剤が含有するゼオライトは、Y型ゼオライトであることが重要である。Y型ゼオライトは細孔の入り口細孔径が7.4Åのボトルネック型の細孔構造を有する。この入り口細孔径はA型ゼオライトのものよりも大きいため、水溶性の酸ヒドラジド化合物の添着が容易となり、添着量を増やすことができる。その結果、動的吸着性能を高めることができる。また、Y型ゼオライトはA型ゼオライトよりも細孔入口が大きい構造を有するため、除去対象となる低沸点アルデヒド類のゼオライト細孔内部への進入を促進することができ、その結果動的吸着性能を高めることができる。一方、Y型ゼオライトは多孔質シリカのようにメソ孔を有していないため、高沸点アルデヒド類や低極性ガス類の細孔内部への進入を阻害し、蓄積量を抑えることが可能となる。その結果、ガス吸着剤の脱離抑制性能が優れたものとなる。 It is important that the zeolite contained in the gas adsorbent of the present invention is Y-type zeolite. Y-type zeolite has a bottleneck-type pore structure with an inlet pore diameter of 7.4 mm. Since this inlet pore diameter is larger than that of the A-type zeolite, it is easy to add a water-soluble acid hydrazide compound, and the amount of addition can be increased. As a result, dynamic adsorption performance can be enhanced. Y type zeolite has a structure with a larger pore inlet than A type zeolite, so it is possible to promote the entry of low-boiling aldehydes to be removed into the zeolite pores, resulting in dynamic adsorption performance. Can be increased. On the other hand, since Y-type zeolite does not have mesopores unlike porous silica, it is possible to inhibit the entry of high-boiling aldehydes and low-polarity gases into the pores, thereby suppressing the amount of accumulation. . As a result, the desorption suppression performance of the gas adsorbent is excellent.
 また、低沸点アルデヒド類と水溶性の酸ヒドラジド化合物の化学反応は多段階反応である。低沸点アルデヒド類の代表成分であるアセトアルデヒドを例として説明する。酸ヒドラジド化合物とアセトアルデヒドとの化学反応は中間体生成物であるカルビノールアミンが水を脱離する反応を経る多段階反応である。そして、この多段階反応は、酸触媒の存在下で進行が促進されるという特徴がある。ここで、プロトン型のY型ゼオライトは、X型ゼオライトと比べ、酸触媒として強い活性を示す。よって、プロトン型のY型ゼオライトと水溶性の酸ヒドラジド化合物とを含有する本発明のガス吸着剤の動的吸着性能は優れたものとなる。なお、詳細は後述するが、プロトン型のY型ゼオライトは、例えば、Y型ゼオライトに脱アルミニウム処理を施すことで得られる。 Also, the chemical reaction between low boiling point aldehydes and water-soluble acid hydrazide compounds is a multistage reaction. Acetaldehyde, which is a representative component of low-boiling aldehydes, will be described as an example. The chemical reaction between an acid hydrazide compound and acetaldehyde is a multi-step reaction in which an intermediate product carbinolamine undergoes a reaction of eliminating water. And this multistage reaction has the characteristic that progress is accelerated | stimulated in presence of an acid catalyst. Here, the proton-type Y-type zeolite exhibits a stronger activity as an acid catalyst than the X-type zeolite. Therefore, the dynamic adsorption performance of the gas adsorbent of the present invention containing the proton type Y zeolite and the water-soluble acid hydrazide compound is excellent. Although details will be described later, the proton-type Y-type zeolite can be obtained, for example, by subjecting the Y-type zeolite to dealumination.
 次に、本発明で採用するプロトン型のY型ゼオライトは、SiOおよびAlを含有し、このプロトン型のY型ゼオライトにおけるSiOとAlとの含有モル比(SiOの含有モル/Alの含有モル)が2以上20以下である。プロトン型のY型ゼオライトゼオライトは、結晶性アルミノケイ酸塩である三次元骨格構造を有しているが、合成時に、シリカの原料となるものとアルミナの原料となるものの混合比率を調整することでケイ素とアルミニウムとの構成比率をコントロールすることができる。 Then, Y-type zeolite proton type employed in the present invention contains SiO 2 and Al 2 O 3, molar ratio of SiO 2 and Al 2 O 3 in the Y-type zeolite of proton type (SiO 2 the molar of molar / Al 2 O 3) is 2 to 20. Proton type Y zeolite zeolite has a three-dimensional framework structure which is a crystalline aluminosilicate. During synthesis, the mixing ratio of the silica raw material and the alumina raw material is adjusted. The composition ratio of silicon and aluminum can be controlled.
 ここで、プロトン型のY型ゼオライトはSiO/Alの含有モル比が高くなると、その結晶格子内に存在する金属カチオンの比率が減少する。それに起因して水のような極性物質に対する親和性が弱くなり、非極性物質をより吸着するようになる特徴を有している。よって、プロトン型のY型ゼオライトのSiO/Alの含有モル比を20以下と低いものとすることで、プロトン型のY型ゼオライトの親水性の低下が抑制され、多孔質構造を有するY型ゼオライトの細孔内部表面にまで水溶性の酸ヒドラジド化合物を付着させることができるため、本発明のガス吸着剤の動的吸着性能は優れたものとなる。 Here, in the proton type Y-type zeolite, when the SiO 2 / Al 2 O 3 content molar ratio increases, the ratio of metal cations existing in the crystal lattice decreases. As a result, the affinity for polar substances such as water is weakened, and nonpolar substances are more adsorbed. Therefore, by reducing the SiO 2 / Al 2 O 3 content molar ratio of the proton type Y zeolite as low as 20 or less, the decrease in the hydrophilicity of the proton type Y zeolite is suppressed, and the porous structure is reduced. Since the water-soluble acid hydrazide compound can be adhered to the inner surface of the pores of the Y-type zeolite having, the dynamic adsorption performance of the gas adsorbent of the present invention is excellent.
 また、上記の効果に加えて、非極性または低極性ガス類の、プロトン型のY型ゼオライトへの物理吸着を抑制することができる。すなわちプロトン型のY型ゼオライトには非極性または低極性ガス類が蓄積されにくい。別の種類のゼオライトでありがちな蓄積された非極性または低極性のガス類が何らかのきっかけで大量に放出されることが抑制される。すなわち、本発明のガス吸着剤の脱離抑制性能は優れたものとなる。 In addition to the above effects, physical adsorption of non-polar or low-polarity gases to proton type Y-type zeolite can be suppressed. That is, non-polar or low-polarity gases are not easily accumulated in the proton type Y-type zeolite. It is suppressed that a large amount of accumulated non-polar or low-polarity gases, which are likely to be another type of zeolite, is released in some way. That is, the desorption suppression performance of the gas adsorbent of the present invention is excellent.
 また、上記の含有モル比が低いと、ゼオライトの親水性が高まり、ゼオライトの細孔内に水がたまりやすくなる。そうなるとアルデヒドのガスが細孔内に入りづらくなる。そこで含有モル比を2以上とすることで、本発明のガス吸着剤を備えたエアフィルターの使用時においても、ゼオライトの細孔内への低沸点アルデヒド類の進入を容易とし、本発明のガス吸着剤の動的吸着性能が優れたものとなる。 Also, when the above-mentioned molar ratio is low, the hydrophilicity of the zeolite increases, and water tends to accumulate in the pores of the zeolite. Then, it becomes difficult for aldehyde gas to enter the pores. Therefore, by setting the content molar ratio to 2 or more, even when the air filter equipped with the gas adsorbent of the present invention is used, the low-boiling aldehydes can easily enter the pores of the zeolite, and the gas of the present invention can be used. The dynamic adsorption performance of the adsorbent is excellent.
 次に、プロトン型のY型ゼオライトの平均粒子径としては、0.5~1000.0μmであることが好ましい。プロトン型のY型ゼオライトの平均粒子径は小さいほど、ガス吸着剤の低沸点アルデヒド類の吸着速度は速くなる。その一方で、プロトン型のY型ゼオライトが飛散しやすく、プロトン型のY型ゼオライトの取り扱い性や加工性が低下する傾向にある。そのためプロトン型のY型ゼオライトの平均粒子径は0.5μm以上であることが好ましく、1.0μm以上であることがより好ましい。また、プロトン型のY型ゼオライトの平均粒子径が大きいと、そのような粒子径のプロトン型のY型ゼオライトの製造は難しいとこともあるまた強度的にも脆弱となるため、プロトン型のY型ゼオライトが破損し易くなり、逆に粉塵が発生してしまう傾向にある。プロトン型のY型ゼオライトの平均粒子径は1000.0μm以下であることが好ましく、700.0μm以下であることがより好ましい。 Next, the average particle size of the proton type Y zeolite is preferably 0.5 to 1000.0 μm. The smaller the average particle size of the proton type Y-type zeolite, the faster the adsorption rate of the low-boiling aldehydes in the gas adsorbent. On the other hand, the proton type Y zeolite is likely to be scattered, and the handleability and workability of the proton type Y zeolite tend to be lowered. Therefore, the average particle diameter of the proton type Y-type zeolite is preferably 0.5 μm or more, and more preferably 1.0 μm or more. In addition, if the average particle size of the proton type Y-type zeolite is large, it may be difficult to produce the proton type Y-type zeolite having such a particle size. The type zeolite tends to break, and conversely, dust tends to be generated. The average particle size of the proton-type Y-type zeolite is preferably 1000.0 μm or less, and more preferably 700.0 μm or less.
 平均粒子径が100.0μm以上のプロトン型のY型ゼオライトは、粉末のプロトン型のY型ゼオライトをシリカゾルやアルミナゾルなどの結着剤とともに造粒することで得られる。特にプロトン型のY型ゼオライトの細孔特性を維持するためにはハイスピードミキサー法やスプレードライ法などの湿式造粒法を採用することが好ましい。 The proton type Y zeolite having an average particle size of 100.0 μm or more can be obtained by granulating powdery proton type Y zeolite together with a binder such as silica sol or alumina sol. In particular, in order to maintain the pore characteristics of proton type Y-type zeolite, it is preferable to employ a wet granulation method such as a high speed mixer method or a spray drying method.
 ここでいう平均粒子径とは以下の方法によって算出されるものである。粒度をJIS K1474(2014)に記載される方法に従い、目開きを通過する割合を測定し、積算重量百分率で表現する。そして、積算値50%の粒度を「平均粒子径」とする。ただし、平均粒子径が数μm程度の微粒子になると、ふるいは目詰まりしてしまう場合があるので、プロトン型のY型ゼオライトを水などの液体に分散させ、回折光や散乱光を利用して粒度を測定することができる。 The average particle diameter here is calculated by the following method. In accordance with the method described in JIS K1474 (2014), the particle size is measured by the ratio of passing through the openings and expressed as an integrated weight percentage. The particle size having an integrated value of 50% is defined as “average particle size”. However, if the average particle size is about several μm, the sieve may be clogged, so proton type Y zeolite is dispersed in a liquid such as water and diffracted light or scattered light is used. The particle size can be measured.
 プロトン型のY型ゼオライトの77K窒素吸着法によるBET比表面積は、BET比表面積で100m/g以上であることが好ましい。比表面積を100m/g以上とすることで、Y型ゼオライトが担持した水溶性の酸ヒドラジド化合物の反応場として実効的な面積が高まる。面積が高くなることによりガス吸着剤と除去しようとする低沸点アルデヒド類との反応速度がより向上し、本発明のガス吸着剤の動的吸着性能は優れたものとなる。上記の理由から、プロトン型のY型ゼオライトのBET比表面積は200m/g以上であることがより好ましい。また、BET比表面積の上限は特に限定しないが、プロトン型のY型ゼオライトのBET比表面積は1000m/g以下であることが好ましい。この範囲を超えると製造が非常に困難になるという不都合が生じるとともに、機械的強度の低下による取り扱い性が低下するためである。 The BET specific surface area of the proton type Y zeolite by 77K nitrogen adsorption method is preferably 100 m 2 / g or more in terms of the BET specific surface area. By setting the specific surface area to 100 m 2 / g or more, an effective area increases as a reaction field for the water-soluble acid hydrazide compound supported by the Y-type zeolite. By increasing the area, the reaction rate between the gas adsorbent and the low-boiling aldehydes to be removed is further improved, and the dynamic adsorption performance of the gas adsorbent of the present invention is excellent. For the above reasons, the BET specific surface area of the proton type Y zeolite is more preferably 200 m 2 / g or more. The upper limit of the BET specific surface area is not particularly limited, but the BET specific surface area of the proton type Y-type zeolite is preferably 1000 m 2 / g or less. This is because exceeding this range causes inconvenience that the production becomes very difficult, and the handleability is lowered due to the decrease in mechanical strength.
 プロトン型のY型ゼオライトの平均細孔径はMP法により得られるピーク直径を意味しており、より詳しくは77ケルビン(液体窒素の温度)における窒素吸着法により得られる吸着側等温線を用いて求められる。好ましいプロトン型のY型ゼオライトの平均細孔径の範囲は7.0~30.0Åであり、より好ましくは7.5~20.0Åである。プロトン型のY型ゼオライトは平均細孔径7.0~10.0Åの範囲に均一な細孔径ピークを有するが、造粒工程で2次粒子を製造する工程でマクロポアが形成される場合もあることから上記範囲とすることが好ましい。 The average pore diameter of the proton-type Y-type zeolite means the peak diameter obtained by the MP method, and more specifically, it is determined using the adsorption side isotherm obtained by the nitrogen adsorption method at 77 Kelvin (liquid nitrogen temperature). It is done. The range of the average pore size of the proton type Y zeolite is preferably 7.0 to 30.0 mm, more preferably 7.5 to 20.0 mm. Proton Y-type zeolite has a uniform pore diameter peak in the range of 7.0 to 10.0 mm in average pore diameter, but macropores may be formed in the process of producing secondary particles in the granulation process. To the above range.
 平均細孔径が7.0Å以上であることで酸ヒドラジド化合物がプロトン型のY型ゼオライトの細孔内部に浸透しやすくなり、低沸点アルデヒド類との反応性を高めることができる。結果として、ガス吸着剤の動的吸着性能がより優れたものとなる。一方で、Y型ゼオライトの平均細孔径が30.0Å以下であることで脱離臭の問題となりうる高沸点アルデヒド類や低極性ガス類の細孔内部への進入を阻害しガス吸着剤における、これらのガスの蓄積量を抑えることが可能となる。結果として、ガス吸着剤の脱離抑制性能が優れたものとなる。 When the average pore diameter is 7.0 mm or more, the acid hydrazide compound can easily penetrate into the pores of the proton type Y-type zeolite, and the reactivity with low-boiling aldehydes can be enhanced. As a result, the dynamic adsorption performance of the gas adsorbent becomes better. On the other hand, in the gas adsorbent, the Y-type zeolite has an average pore diameter of 30.0 mm or less, which inhibits the entry of high-boiling aldehydes and low polar gases into the pores, which can be a problem of desorption odor, It is possible to suppress the accumulation amount of these gases. As a result, the desorption suppression performance of the gas adsorbent is excellent.
 本発明のガス吸着剤では、VOCガス中に含まれる低沸点アルデヒド類を吸着するために、プロトン型のY型ゼオライトに水溶性の酸ヒドラジド化合物が付着していることが好ましい。 In the gas adsorbent of the present invention, it is preferable that a water-soluble acid hydrazide compound is attached to the proton type Y-type zeolite in order to adsorb the low boiling point aldehydes contained in the VOC gas.
 ここで、本発明における水溶性とは25℃で中性の水に対し、0.5質量%以上(5g/L以上)溶解することをいう。 Here, water-soluble in the present invention means that 0.5% by mass or more (5 g / L or more) dissolves in neutral water at 25 ° C.
 そして、水溶性の酸ヒドラジド化合物は、カルボン酸とヒドラジンとから誘導される-CO-NHNHで表される酸ヒドラジド基を有する化合物である。ヒドラジド末端のα位に、更に非共有電子対を有する窒素原子が結合しており、これにより求核反応性が著しく向上している。この非共有電子対が低沸点アルデヒド類のカルボニル炭素原子を求核的に攻撃して反応し、低沸点アルデヒド類をヒドラジン誘導体として固定化することにより、低沸点アルデヒド類の吸着性能を発現できると考えられる。 The water-soluble acid hydrazide compound is a compound having an acid hydrazide group represented by —CO—NHNH 2 derived from carboxylic acid and hydrazine. Further, a nitrogen atom having an unshared electron pair is bonded to the α-position of the hydrazide terminal, thereby significantly improving the nucleophilic reactivity. When this unshared electron pair reacts by nucleophilic attack on the carbonyl carbon atom of the low-boiling aldehydes, and the low-boiling aldehydes are immobilized as hydrazine derivatives, the adsorption ability of the low-boiling aldehydes can be expressed. Conceivable.
 低沸点アルデヒド類の中でもアセトアルデヒドは、カルボニル炭素のα位に電子供与性のアルキル基を有するために、カルボニル炭素の求電子性が低く化学吸着されにくい。しかし本発明に用いるガス吸着剤において使用する水溶性の酸ヒドラジド化合物は前述のとおり求核反応性が高いため、アセトアルデヒドに対しても良好な化学吸着性能を発現する。 Among the low-boiling aldehydes, acetaldehyde has an electron-donating alkyl group at the α-position of the carbonyl carbon, so the carbonyl carbon has low electrophilicity and is difficult to be chemisorbed. However, since the water-soluble acid hydrazide compound used in the gas adsorbent used in the present invention has high nucleophilic reactivity as described above, it exhibits good chemical adsorption performance for acetaldehyde.
 水溶性の酸ヒドラジド化合物としては、例えば、カルボジヒドラジド、グルタミン酸ジヒドラジド、コハク酸ジヒドラジド、およびアジピン酸ジヒドラジドからなる群より選ばれる1種以上を含むものを挙げることができる。これらの中でも、とりわけアジピン酸ジヒドラジドが低沸点アルデヒド類の吸着性能に優れる点で好ましい。また、低沸点アルデヒド類の吸着性能を上げる目的でアジピン酸ジヒドラジドとコハク酸ジヒドラジドを併用することがより好ましい。 Examples of the water-soluble acid hydrazide compound include those containing at least one selected from the group consisting of carbodihydrazide, glutamic acid dihydrazide, succinic acid dihydrazide, and adipic acid dihydrazide. Among these, adipic acid dihydrazide is particularly preferable in that it has excellent adsorption performance for low-boiling aldehydes. Moreover, it is more preferable to use adipic acid dihydrazide and succinic acid dihydrazide in combination for the purpose of improving the adsorption performance of low-boiling aldehydes.
 本発明のガス吸着剤における水溶性の酸ヒドラジド化合物の含有量は、Y型ゼオライト100.0質量部に対して0.5~20.0質量部であることが好ましい。水溶性の酸ヒドラジド化合物の含有量を0.5質量部以上とすることで、ガス吸着剤の低沸点アルデヒド類の吸着性能をより向上させることができ、ガス吸着剤の動的吸着性能をより優れたものとすることができる。この理由から、水溶性の酸ヒドラジド化合物の含有量は1.0質量部以上であることがより好ましい。そして、水溶性の酸ヒドラジド化合物の含有量を20.0質量部以下とすることで、Y型ゼオライトに付着した水溶性の酸ヒドラジド化合物の結晶化を抑制することができ、結晶化した水溶性の酸ヒドラジド化合物がY型ゼオライトの細孔を閉塞することを抑制することができる。そして、このことにより、ガス吸着剤の低沸点アルデヒド類の動的吸着性能を向上させることができるとともに、本発明のガス吸着剤の脱離抑制性能も優れたものとすることができる。 The content of the water-soluble acid hydrazide compound in the gas adsorbent of the present invention is preferably 0.5 to 20.0 parts by mass with respect to 100.0 parts by mass of the Y-type zeolite. By setting the content of the water-soluble acid hydrazide compound to 0.5 parts by mass or more, the adsorption performance of the low-boiling aldehydes of the gas adsorbent can be further improved, and the dynamic adsorption performance of the gas adsorbent is further improved. It can be excellent. For this reason, the content of the water-soluble acid hydrazide compound is more preferably 1.0 part by mass or more. And by making content of a water-soluble acid hydrazide compound into 20.0 mass parts or less, crystallization of the water-soluble acid hydrazide compound adhering to a Y-type zeolite can be suppressed, and crystallized water-soluble It is possible to prevent the acid hydrazide compound from blocking the pores of the Y-type zeolite. As a result, the dynamic adsorption performance of the low-boiling aldehydes of the gas adsorbent can be improved, and the desorption suppression performance of the gas adsorbent of the present invention can be improved.
 本発明に用いる水溶性の酸ヒドラジド化合物が付着したY型ゼオライトは、25℃の水100gに5g分散させた際のpHが4.0~7.5の範囲であることが好ましい。pHが7.5以下であることで、水溶性の酸ヒドラジド化合物の非共有電子対の低沸点アルデヒド類のカルボニル炭素原子への求核的攻撃による反応から生成した中間体が、酸性の反応場においてプロトン化されるため脱水し易くなり、前記中間体の誘導体への固定化反応が十分に進む。上記の理由からpHは7.0以下であることがより好ましい。また、pHが4.0以上であることで、水溶性の酸ヒドラジド化合物の非共有電子対が低沸点アルデヒド類のカルボニル炭素原子を求核的に攻撃する活性がより高いものとなり、ガス吸着剤の低沸点アルデヒド類の動的吸着性能がより優れたものとなる。なお、pHは、25℃の純水に酸ヒドラジド化合物が付着したY型ゼオライトが5質量%となるよう浸漬し、軽く攪拌した後10分間放置し、液のpHをpH計にて測定した値をいう。 The pH of the Y-type zeolite attached with the water-soluble acid hydrazide compound used in the present invention is preferably in the range of 4.0 to 7.5 when 5 g is dispersed in 100 g of water at 25 ° C. When the pH is 7.5 or less, the intermediate formed from the reaction of the water-soluble acid hydrazide compound by the nucleophilic attack on the carbonyl carbon atom of the low-boiling aldehydes of the lone pair becomes an acidic reaction field. In this case, it becomes easy to dehydrate, and the immobilization reaction of the intermediate to the derivative proceeds sufficiently. For the above reason, the pH is more preferably 7.0 or less. In addition, when the pH is 4.0 or more, the activity of the lone carbon pair of the water-soluble acid hydrazide compound to nucleophilically attack the carbonyl carbon atom of the low-boiling aldehydes becomes higher, and the gas adsorbent Thus, the dynamic adsorption performance of the low-boiling aldehydes is more excellent. The pH was a value obtained by immersing the Y-type zeolite with the acid hydrazide compound attached in pure water at 25 ° C. to 5% by mass, stirring it lightly and leaving it for 10 minutes, and measuring the pH of the liquid with a pH meter. Say.
 水溶性の酸ヒドラジド化合物が付着したY型ゼオライトのpHは、有機酸を添加することにより調整することができる。有機酸としては、それ自体は臭気を発生しないものであり、かつ、吸湿性の低いものを採用することが好ましい。上記のような有機酸の具体的な例としては、アジピン酸、スルファニル酸、リンゴ酸、クエン酸等が挙げられ、用いる酸ヒドラジド化合物に応じて適宜選択すればよく、中でもアジピン酸を好ましく採用することができる。アジピン酸は上記分散液のバランスを安定に保ち、また臭気の発生や吸湿性の発現を伴わないため好ましい。 The pH of the Y-type zeolite to which the water-soluble acid hydrazide compound is attached can be adjusted by adding an organic acid. As the organic acid, it is preferable to adopt an organic acid that does not generate odor and has low hygroscopicity. Specific examples of the organic acid as described above include adipic acid, sulfanilic acid, malic acid, citric acid and the like, and may be appropriately selected according to the acid hydrazide compound to be used. Among them, adipic acid is preferably employed. be able to. Adipic acid is preferable because it maintains a stable balance of the dispersion and does not cause odor generation or hygroscopicity.
 本発明のガス吸着剤の製造方法としては、たとえば、以下のものを挙げることができる。すなわち、アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、前記混合物を90~120℃で加熱し、ゼオライトを得る工程と、前記ゼオライトを100~120℃の硝酸アンモニウム溶液で処理する工程と、前記ゼオライトを500~800℃の過熱水蒸気にて焼成処理する工程と、前記ゼオライトに水溶性の酸ヒドラジド化合物を添着させる工程とを、この順に有するガス吸着剤の製造方法である。 Examples of the method for producing the gas adsorbent of the present invention include the following. That is, after mixing sodium aluminate and sodium silicate to obtain a mixture, the mixture is heated at 90 to 120 ° C. to obtain zeolite, and the zeolite is treated with an ammonium nitrate solution at 100 to 120 ° C. And a step of calcining the zeolite with superheated steam at 500 to 800 ° C. and a step of attaching a water-soluble acid hydrazide compound to the zeolite in this order.
 ここで、ゼオライトに水溶性の酸ヒドラジド化合物を添着させる工程としては以下のものが例示される。
水溶性の酸ヒドラジド化合物を溶解させた水溶液中にY型ゼオライトを投入し、分散させることで、水溶性の酸ヒドラジド化合物をY型ゼオライトに付着させる方法。
水溶性の酸ヒドラジド化合物を溶媒中に溶解させた水溶液をY型ゼオライトに噴霧・塗布し、次に、このY型ゼオライトを乾燥する方法。
Here, examples of the step of attaching a water-soluble acid hydrazide compound to zeolite include the following.
A method in which a water-soluble acid hydrazide compound is attached to a Y-type zeolite by introducing and dispersing the Y-type zeolite in an aqueous solution in which a water-soluble acid hydrazide compound is dissolved.
A method in which an aqueous solution in which a water-soluble acid hydrazide compound is dissolved in a solvent is sprayed and applied to a Y-type zeolite, and then the Y-type zeolite is dried.
 後者の方法の溶媒としては水溶性の酸ヒドラジド化合物の特性ならびに作業性を考慮し適当なものを選択することができる。このうち、安全性に優れ、かつ作業性にも優れるとの観点から水系溶媒を用いることが好ましく、溶媒として純水を用いることがより好ましい。また、後述するように、この処理液を繊維シート上で乾燥させることにより、直接、繊維シート上においてガス吸着剤を形成してもよい。水溶性の酸ヒドラジド化合物はY型ゼオライトに付着していることが好ましいが、Y型ゼオライトの細孔内に水溶性の酸ヒドラジド化合物が付着していることがより好ましい。 As the solvent for the latter method, an appropriate solvent can be selected in consideration of the characteristics and workability of the water-soluble acid hydrazide compound. Among these, it is preferable to use an aqueous solvent from the viewpoint of excellent safety and workability, and it is more preferable to use pure water as the solvent. Further, as will be described later, the gas adsorbent may be directly formed on the fiber sheet by drying the treatment liquid on the fiber sheet. The water-soluble acid hydrazide compound is preferably attached to the Y-type zeolite, but more preferably the water-soluble acid hydrazide compound is attached to the pores of the Y-type zeolite.
 また、本発明のガス吸着剤は、水溶性の酸ヒドラジド化合物およびプロトン型のY型ゼオライトに加え、さらに、活性炭を有するものであることが好ましい。本発明のガス吸着剤は、一旦、吸着したVOCガスのガス吸着剤からの脱離をより抑制し、このガス吸着剤を用いたエアフィルターでの二次発臭の発生をより抑制することができるものである。そして、エアフィルターを通過する気流の風圧が強いものとなる傾向にある自動車用途での使用時において、消臭繊維シートからの臭気ガスの脱離による二次発臭は顕著に発生する。そして、本発明のガス吸着剤を用いたエアフィルターは二次発臭を抑制できるものであるので、本発明のガス吸着剤を用いたエアフィルターは自動車用途により好適に用いることができる。 In addition, the gas adsorbent of the present invention preferably has activated carbon in addition to the water-soluble acid hydrazide compound and proton type Y-type zeolite. The gas adsorbent of the present invention further suppresses the desorption of the once adsorbed VOC gas from the gas adsorbent and further suppresses the generation of secondary odor in the air filter using this gas adsorbent. It can be done. And, when used in automotive applications where the wind pressure of the airflow passing through the air filter tends to be strong, secondary odor due to odor gas desorption from the deodorant fiber sheet is noticeably generated. And since the air filter using the gas adsorbent of this invention can suppress a secondary odor, the air filter using the gas adsorbent of this invention can be used suitably for a motor vehicle use.
 なお、プロトン型のY型ゼオライトおよび活性炭を有する本発明のガス吸着材の実施形態例において、活性炭は、上記のプロトン型のY型ゼオライトとは別体の粒状物である。しかし、本発明のガス吸着材を有する消臭繊維シート(消臭繊維シートについての詳細は後述する)において、プロトン型のY型ゼオライトと活性炭とは接着材にて各々の一部分が相互に固定された状態で存在していてもよい。 In the embodiment of the gas adsorbent of the present invention having proton type Y zeolite and activated carbon, the activated carbon is a granular material separate from the proton type Y zeolite. However, in the deodorant fiber sheet having the gas adsorbent of the present invention (details of the deodorant fiber sheet will be described later), the proton type Y zeolite and the activated carbon are partially fixed to each other by an adhesive. It may exist in the state.
 ここで、水溶性の酸ヒドラジド化合物が付着したY型ゼオライトは、低沸点アルデヒド類の動的条件下での吸着性能に優れる。また、低沸点アルデヒド類に対する化学吸着量が飽和した後も、Y型ゼオライト特有のボトルネック型の均一な細孔径を有する細孔形状と、Y型ゼオライトにおけるSiO/Alの含有モル比を20.0以下とすることで、低沸点アルデヒド類や低極性ガス成分の物理吸着量を大幅に抑えることが可能となり、脱離抑制性能にも優れたものとなる。 Here, the Y-type zeolite to which the water-soluble acid hydrazide compound is adhered is excellent in the adsorption performance of low-boiling aldehydes under dynamic conditions. In addition, even after the amount of chemical adsorption with respect to the low-boiling aldehydes is saturated, the shape of the pores having a uniform pore diameter unique to Y-type zeolite and the moles of SiO 2 / Al 2 O 3 in the Y-type zeolite By setting the ratio to 20.0 or less, it becomes possible to greatly suppress the physical adsorption amount of low-boiling aldehydes and low-polarity gas components, and excellent desorption suppression performance.
 しかし、それでも、細孔構造を有する限りにおいて、低極性または非極性のガス類のY型ゼオライトへの物理吸着量を完全にゼロにすることは困難であり、わずかにでも物理吸着された低沸点アルデヒド類や低極性または非極性のガス類はエアコン稼動時など温湿度が急激に変化する際には、ガス吸着剤からの脱離現象を起こし、臭気成分として感じられることがある。そこで、ガス吸着剤が、さらに活性炭を有することで、Y型ゼオライトから脱離する低沸点アルデヒド類や低極性または非極性のガス類を活性炭が吸着し、二次発臭をさらに抑制することが可能となる(すなわち、ガス吸着剤の脱離抑制性能はより優れたものとなる)。 However, as long as it has a pore structure, it is difficult to completely eliminate the physical adsorption amount of low polar or non-polar gases on the Y-type zeolite. Aldehydes and low-polar or non-polar gases cause desorption from the gas adsorbent when the temperature and humidity change abruptly, such as when operating an air conditioner, and may be perceived as odor components. Therefore, when the gas adsorbent further has activated carbon, the activated carbon adsorbs low-boiling aldehydes and low polar or nonpolar gases desorbed from the Y-type zeolite, and further suppresses secondary odor generation. (That is, the desorption suppression performance of the gas adsorbent becomes better).
 活性炭の平均粒子径は0.5~1000.0μmであることが好ましい。活性炭の平均粒子径が小さいほどVOCガスの吸着速度は速くなるが、その一方で、飛散しやすく取り扱い性や加工性が低下する傾向にあるため、活性炭の平均粒子径は0.5μm以上、好ましくは1.0μm以上とすることが好ましい。一方、活性炭の平均粒子径が大きいと、エアフィルターユニットに加工する際にプリーツ頂上部の不織布が破れやすくなる問題が生じる傾向にあるため、消臭繊維シートのプリーツ加工性等を考慮して、活性炭の平均粒子径を1000.0μm以下とすることが好ましく、600.0μm以下とすることがより好ましい。上記の活性炭の粒子径は、JIS K 1474(2014)活性炭試験方法に基づいた質量平均径を指す。通常の分級機を使用して所定の粒度調整をすることにより、所望の粒子径のものを得ることが可能である。ただし、活性炭が数μm程度の微粉になると,ふるいが目詰まりしてしまうことがあるので,その場合には、活性炭を水などの液体に分散させ、回折光や散乱光を利用して粒度を測定することができる。 The average particle diameter of the activated carbon is preferably 0.5 to 1000.0 μm. The smaller the average particle size of the activated carbon, the faster the VOC gas adsorption rate. On the other hand, the average particle size of the activated carbon is preferably 0.5 μm or more, because it tends to scatter and the handleability and workability tend to decrease. Is preferably 1.0 μm or more. On the other hand, if the average particle size of the activated carbon is large, there is a tendency for the nonwoven fabric at the top of the pleats to be easily broken when processed into an air filter unit, so considering the pleatability of the deodorant fiber sheet, The average particle diameter of the activated carbon is preferably 1000.0 μm or less, and more preferably 600.0 μm or less. The particle diameter of said activated carbon points out the mass mean diameter based on the JISK1474 (2014) activated carbon test method. A desired particle size can be obtained by adjusting the particle size using a normal classifier. However, if the activated carbon becomes a fine powder of about several μm, the sieve may become clogged. In that case, the activated carbon is dispersed in a liquid such as water, and the particle size is reduced using diffracted light or scattered light. Can be measured.
 活性炭の原料としては、ヤシ殻、木質系、石炭系、ピッチ系などが知られているが、ヤシ殻であることが好ましい。ヤシ殻活性炭の細孔は他の原料と比較して小さい細孔の比率が多く、不純物である灰分も少ない。つまり、ヤシ殻活性炭は細孔が小さいために吸着した臭気分子に対して効果的に細孔壁との分子間力が働き、吸着した臭気分子を脱離させにくい、すなわち二次発臭の発生を抑制できる特徴がある。 Coconut shell, wood-based, coal-based, pitch-based, and the like are known as raw materials for activated carbon, but palm shell is preferable. The fine pores of coconut shell activated carbon have a large proportion of small pores compared to other raw materials, and the amount of ash that is an impurity is also small. In other words, because the coconut shell activated carbon has small pores, the intermolecular force with the pore walls works effectively against the adsorbed odor molecules, making it difficult to desorb the adsorbed odor molecules, that is, generating secondary odor. There is a feature that can be suppressed.
 次に本発明に用いる活性炭の比表面積は、BET比表面積で900~1300m/gであることが好ましい。活性炭の比表面積が900m/g以上とすることで、低沸点アルデヒド類との反応場として実効的な反応速度を得ることが可能となる。また、活性炭の比表面積が1300m/g以下とすることで、二次発臭につながる臭気の非意図的吸着を抑制することが可能となる。 Next, the specific surface area of the activated carbon used in the present invention is preferably 900 to 1300 m 2 / g in terms of BET specific surface area. By making the specific surface area of activated carbon 900 m < 2 > / g or more, it becomes possible to obtain an effective reaction rate as a reaction field with low boiling point aldehydes. Moreover, it becomes possible to suppress the unintentional adsorption | suction of the odor which leads to a secondary odor because the specific surface area of activated carbon shall be 1300 m < 2 > / g or less.
 活性炭には薬剤が担持されていてもよい。中でも低沸点アルデヒド類を除去する目的においてはアミン系化合物が担持されていることが好ましく、中でも、アミノ基を有する第1級アミン系化合物が好ましく、さらに酸ヒドラジド化合物がより好ましい。 The active carbon may carry a drug. Among them, for the purpose of removing low-boiling aldehydes, it is preferable that an amine compound is supported, and among them, a primary amine compound having an amino group is preferable, and an acid hydrazide compound is more preferable.
 これらのアミン系化合物は活性炭に吸着させるか、あるいは、活性炭の表面に残る水酸基やアルカリ金属などの官能基と部分的に反応させながらインターカレーションを行うことによりアミン系化合物を担持した活性炭を得ることができる。 These amine compounds are adsorbed on activated carbon, or by intercalation while partially reacting with functional groups such as hydroxyl groups and alkali metals remaining on the surface of the activated carbon, to obtain activated carbon carrying amine compounds. be able to.
 活性炭へのアミン系化合物の担持量は、活性炭100.0質量部に対して0.5~20.0質量部であることが好ましく、より好ましくは1.0~10.0質量部である。0.5質量部以上とすることで低沸点アルデヒド類の吸着性能吸着性能の向上の実効を得ることができる。アミン系化合物を過剰に添加すると結晶化して活性炭の細孔を塞いでしまい、粉落ちの原因ともなるため、担持量は20.0質量部以下とすることが好ましい。 The amount of the amine compound supported on the activated carbon is preferably 0.5 to 20.0 parts by mass, more preferably 1.0 to 10.0 parts by mass with respect to 100.0 parts by mass of the activated carbon. By setting the amount to 0.5 parts by mass or more, the effect of improving the adsorption performance of the low-boiling aldehydes can be obtained. If the amine compound is added excessively, it crystallizes and closes the pores of the activated carbon, which may cause powder falling, so the supported amount is preferably 20.0 parts by mass or less.
 活性炭と水溶性の酸ヒドラジド化合物が付着したY型ゼオライトとの質量比(活性炭の含有質量/水溶性の酸ヒドラジド化合物が付着したY型ゼオライトの含有質量)は0.05~0.50の範囲であることが好ましい。 The mass ratio of the activated carbon to the Y-type zeolite to which the water-soluble acid hydrazide compound is adhered (the mass of the activated carbon / the mass of the Y-type zeolite to which the water-soluble acid hydrazide compound is adhered) is in the range of 0.05 to 0.50. It is preferable that
 この含有質量比を0.05以上とすることで、Y型ゼオライトが非意図的に物理吸着現象で吸着する低沸点アルデヒド類が脱離した際に、この低沸点アルデヒド類をY型ゼオライト近傍に存在する活性炭が吸着することで、ガス吸着剤の脱離抑制性能がより優れたものとなる。一方で、この含有質量比が0.50以下であることでY型ゼオライトの含有質量割合が増え、低沸点アルデヒド類の吸着性能がより優れたものとなり、ガス吸着剤の動的吸着性能がより優れたものとなるとともに、一旦、吸着された低沸点アルデヒド類が脱離しやすい活性炭の質量比率が少ないことでガス吸着剤に脱離抑制性能がより優れたものとなる。 By setting the content mass ratio to 0.05 or more, when low-boiling aldehydes that Y-type zeolite unintentionally adsorbs by physical adsorption phenomenon are desorbed, these low-boiling aldehydes are placed in the vicinity of Y-type zeolite. By adsorbing the activated carbon present, the desorption suppression performance of the gas adsorbent is further improved. On the other hand, when the content ratio is 0.50 or less, the content ratio of the Y-type zeolite is increased, the adsorption performance of the low-boiling aldehydes is improved, and the dynamic adsorption performance of the gas adsorbent is further improved. In addition to being excellent, once the adsorbed low-boiling aldehydes are less likely to be desorbed, the gas adsorbent has better desorption suppression performance.
 本発明のガス吸着剤を用いて消臭繊維シートを得ることができる。そのような消臭繊維シートの製造方法としては以下のものを挙げることができる。
(1)ガス吸着剤粒子を水中に分散させ繊維シートに付着後、脱水することにより得られるシート化法。
(2)繊維シートを構成すると繊維と共にガス吸着剤粒子を気中に分散させることにより得られるエアレイド法。
(3)2層以上の不織布もしくは織布、ネット状物、フィルム、膜の層間に熱接着によりガス吸着剤を充填する方法。
(4)エマルジョン接着剤、溶剤系接着剤を利用して不織布、織布、発泡ウレタンなどの通気性材料にガス吸着剤を結合担持させる方法。
(5)基材、ホットメルト接着剤の熱可塑性等を利用して不織布、織布、発泡ウレタンなどの通気性材料にガス吸着剤を結合担持する方法。
(6)ガス吸着剤を繊維もしくは樹脂に練りこむことにより混合一体化する方法。
A deodorant fiber sheet can be obtained using the gas adsorbent of the present invention. The following can be mentioned as a manufacturing method of such a deodorizing fiber sheet.
(1) A sheeting method obtained by dispersing gas adsorbent particles in water, adhering to a fiber sheet, and then dehydrating.
(2) An airlaid method obtained by dispersing gas adsorbent particles in the air together with fibers when a fiber sheet is formed.
(3) A method in which a gas adsorbent is filled by thermal bonding between two or more layers of nonwoven fabric or woven fabric, net-like material, film, and membrane.
(4) A method in which a gas adsorbent is bonded and supported on a breathable material such as a nonwoven fabric, a woven fabric, or urethane foam using an emulsion adhesive or a solvent-based adhesive.
(5) A method in which a gas adsorbent is bonded and supported on a breathable material such as a nonwoven fabric, a woven fabric, or urethane foam by utilizing the thermoplasticity of a base material or a hot melt adhesive.
(6) A method in which the gas adsorbent is mixed and integrated by kneading the fiber or resin.
 用途に応じて適当な方法を用いることができるが、Y型ゼオライト自身の細孔閉塞を防止することができるため、前記加工方法(1)、(2)、(3)、または(5)を用いることが好ましい。 Although an appropriate method can be used depending on the application, since the pore blockage of the Y-type zeolite itself can be prevented, the processing method (1), (2), (3), or (5) is performed. It is preferable to use it.
 加工方法(1)の具体的製造方法について記載する。Y型ゼオライトと水溶性の酸ヒドラジド化合物とバインダー樹脂とを混合分散させた液を繊維に付与し、さらに乾燥する方法や、Y型ゼオライトと水溶性の酸ヒドラジド化合物を混合した水溶液を基材繊維シートにコーティング処理により塗布した後に、さらに乾燥たり、スプレー処理により吹き付けた後に、さらに乾燥したりしてもよい。 Describing the specific manufacturing method of processing method (1). A method in which a solution obtained by mixing and dispersing a Y-type zeolite, a water-soluble acid hydrazide compound, and a binder resin is applied to the fiber and further dried, or an aqueous solution in which the Y-type zeolite and a water-soluble acid hydrazide compound are mixed is used as a base fiber. You may dry after apply | coating to a sheet | seat by a coating process, or after spraying by a spray process.
 また、Y型ゼオライトとバインダー樹脂を先に繊維シート表面に固定した後、酸ヒドラジド化合物を混合した水溶液をディッピング処理やスプレー処理で付着させてもよい。 Alternatively, after fixing the Y-type zeolite and the binder resin on the fiber sheet surface, an aqueous solution mixed with an acid hydrazide compound may be attached by dipping or spraying.
 バインダー樹脂としては特に限定は無く、どのような種類の樹脂でも使用することがで
きる。たとえばアクリル樹脂、メタアクリル樹脂、ウレタン樹脂、エステル樹脂、ポリビニルアルコール樹脂、シリコン樹脂などが挙げられる。樹脂を二種類以上混合しても良い。Y型ゼオライトとバインダー樹脂の質量比(Y型ゼオライトの質量:バインダー樹脂の質量)は10:1~1:1の範囲であることがY型ゼオライトや水溶性の酸ヒドラジド化合物の固着性ならびにガス吸着性能の点で好ましい。
The binder resin is not particularly limited, and any kind of resin can be used. Examples thereof include an acrylic resin, a methacrylic resin, a urethane resin, an ester resin, a polyvinyl alcohol resin, and a silicon resin. Two or more kinds of resins may be mixed. The mass ratio of the Y-type zeolite to the binder resin (the mass of the Y-type zeolite: the mass of the binder resin) is in the range of 10: 1 to 1: 1. The adhesion and gas of the Y-type zeolite and the water-soluble acid hydrazide compound It is preferable in terms of adsorption performance.
 調合の際は先に水溶性の酸ヒドラジド化合物とY型ゼオライトを溶媒に分散させておいてから、バインダー樹脂を分散させる方が、より均一に分散できるので好ましい。 In the preparation, it is preferable that the water-soluble acid hydrazide compound and the Y-type zeolite are first dispersed in a solvent, and then the binder resin is dispersed, because this allows more uniform dispersion.
 本発明のガス吸着剤を用いた消臭繊維シートは上記のようなY型ゼオライトと水溶性の酸ヒドラジド化合物とを担持させた繊維シートにさらに異なる繊維構成のシートを積層することも好ましい。例えば直行流型フィルターとしての使用において、上流側に嵩高で目の粗い不織布シートを積層すれば、ダスト保持量が向上し長寿命化が可能となる。また下流側に極細繊維からなる不織布シートを積層すれば、高捕集効率化が可能となる。 In the deodorizing fiber sheet using the gas adsorbent of the present invention, it is also preferable that a sheet having a different fiber structure is further laminated on a fiber sheet carrying the above Y-type zeolite and a water-soluble acid hydrazide compound. For example, in use as a direct flow filter, if a bulky and coarse nonwoven fabric sheet is laminated on the upstream side, the amount of dust retained is improved and the life can be extended. If a nonwoven fabric sheet made of ultrafine fibers is laminated on the downstream side, high collection efficiency can be achieved.
 さらにこの極細繊維からなる不織布シートがエレクトレット処理されていればなお好ましい。エレクトレット処理がされていることにより、通常では除去しにくいサブミクロン
サイズやナノサイズの微細塵を静電気力により捕集する事が出来るようになる。
Furthermore, it is still more preferable if the nonwoven fabric sheet which consists of this ultrafine fiber is electret-treated. By performing the electret treatment, it becomes possible to collect submicron-size and nano-size fine dust that is difficult to remove normally by electrostatic force.
 次に前記加工方法(3)の具体的製造方法について記載する。2層の不織布の間に配置される本発明のガス吸着剤およびバインダーとして熱可塑性樹脂を熱接着により一体化することで消臭繊維シートを得られるが、まず、片方の不織布上に充分に混合攪拌したガス吸着剤および熱可塑性樹脂を散布し、熱処理して熱可塑性樹脂を溶融する。加熱方法としては加熱炉が利用できる。熱処理されたものに、もう一方の不織布を被せ合わせ加圧し、一体化することができる。 Next, a specific manufacturing method of the processing method (3) will be described. Deodorized fiber sheet can be obtained by integrating thermoplastic resin as a gas adsorbent and binder of the present invention disposed between two layers of nonwoven fabric by thermal bonding. First, mix thoroughly on one nonwoven fabric. The stirred gas adsorbent and the thermoplastic resin are sprayed and heat-treated to melt the thermoplastic resin. A heating furnace can be used as a heating method. The other non-woven fabric can be covered with the heat-treated material and pressed to be integrated.
 最終的に熱プレスしシート製造するにはよく使用されるロール間熱プレス法、あるいは上下ともフラットな熱ベルトコンベヤー間にはさみこむフラットベッドラミネート法等が挙げられる。 Finally, a hot press method between rolls, which is often used for producing a sheet by hot pressing, or a flat bed laminating method in which the upper and lower sides are sandwiched between flat heat belt conveyors can be used.
 熱可塑性樹脂の材料としては、ポリエステル、ポリオレフィン、ポリアミド、ポリウレタン、エチレン-アクリル共重合体、ポリアクリレート、ポリアクリル、ポリジエン、エチレン-酢酸ビニル、ポリ塩化ビニル、ポリスチレン等の熱可塑性樹脂が挙げられ、中でも加熱時の臭気発生が少ない材料としてポリエステルやポリオレフィンが好ましい。 Examples of the thermoplastic resin material include thermoplastic resins such as polyester, polyolefin, polyamide, polyurethane, ethylene-acrylic copolymer, polyacrylate, polyacrylic, polydiene, ethylene-vinyl acetate, polyvinyl chloride, and polystyrene. Of these, polyesters and polyolefins are preferred as materials that generate less odor during heating.
 熱可塑性樹脂は粉末状であれば形状は特に規定しないが、球状、破砕状、繊維状等があげられる。 The shape of the thermoplastic resin is not particularly limited as long as it is in a powder form, but examples thereof include a spherical shape, a crushed shape, and a fibrous shape.
 熱可塑性樹脂の融点は、移動車両等の室内の環境温度等考慮すると80℃以上が好ましく、90℃以上がより好ましい。 The melting point of the thermoplastic resin is preferably 80 ° C. or higher, more preferably 90 ° C. or higher in consideration of the environmental temperature in the room of a moving vehicle or the like.
 また熱可塑性樹脂の含有量は、本発明のガス吸着剤の含有質量に対して5~40質量%であることが好ましく、10~35質量%であることがより好ましい。かかる範囲内であれば、不織布との接着力がより向上し、さらに消臭繊維シートの通気抵抗、脱臭性能もより向上する。 Further, the content of the thermoplastic resin is preferably 5 to 40% by mass, and more preferably 10 to 35% by mass with respect to the content of the gas adsorbent of the present invention. If it exists in this range, the adhesive force with a nonwoven fabric will improve more, and also the ventilation resistance and deodorizing performance of a deodorant fiber sheet will improve more.
 上記の不織布を形成する繊維としては、天然繊維、合成繊維、ガラス繊維や金属繊維等の無機繊維が使用でき、中でも溶融紡糸が可能な熱可塑性樹脂の合成繊維が好ましい。合成繊維を形成する熱可塑性樹脂の例としては、ポリエステル、ポリアミド、ポリオレフィン、アクリル、ビニロン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ乳酸等を挙げることができ、用途等に応じて選択できる。また、複数種を組み合わせて使用してもよい。 As the fibers forming the above-mentioned nonwoven fabric, natural fibers, synthetic fibers, inorganic fibers such as glass fibers and metal fibers can be used, and among them, synthetic fibers of thermoplastic resin capable of melt spinning are preferable. Examples of the thermoplastic resin forming the synthetic fiber include polyester, polyamide, polyolefin, acrylic, vinylon, polystyrene, polyvinyl chloride, polyvinylidene chloride, polylactic acid, and the like, which can be selected according to the use. Moreover, you may use combining multiple types.
 不織布を構成する繊維としては、円形断面のもののみならず、たとえば異型断面のものや、繊維表面に多数の孔やスリットを有するものも好ましく使用される。そのような形状とすることにより、繊維の表面積を大きくし、本発明のガス吸着剤を用いた消臭繊維シートにおいては、ガス吸着剤の担持性を向上させることができる。ここでいう異型断面形状とは、円形以外の断面形状を指し、例えば扁平型、略多角形、楔型等を挙げることができる。かかる異型断面形状の繊維は、円形でない孔を有する口金を用いて紡糸することにより得ることができる。また、繊維表面に多数の孔やスリットを有する繊維は、溶剤に対する溶解性の異なる2種類以上のポリマーをアロイ化して紡糸し、溶解性の高い方のポリマーを溶剤で溶解除去することにより得ることができる。 As the fibers constituting the nonwoven fabric, not only those having a circular cross section but also, for example, those having an irregular cross section and those having a large number of holes and slits on the fiber surface are preferably used. By setting it as such a shape, the surface area of a fiber can be enlarged and in the deodorizing fiber sheet using the gas adsorbent of this invention, the supportability of a gas adsorbent can be improved. The atypical cross-sectional shape herein refers to a cross-sectional shape other than a circle, and examples thereof include a flat shape, a substantially polygonal shape, and a wedge shape. Such a fiber having an irregular cross-sectional shape can be obtained by spinning using a die having a non-circular hole. Also, fibers having a large number of holes and slits on the fiber surface can be obtained by alloying and spinning two or more types of polymers having different solubility in the solvent, and dissolving and removing the higher solubility polymer with the solvent. Can do.
 不織布の製造方法としては乾式法、湿式法、スパンボンド法、サーマルボンド法、ケミカルボンド法、スパンレース法(水流絡合法)、スパンボンド不織布、メルトブロー不織布が使用できる。2枚の不織布のうち少なくとも1枚の不織布は目付けや厚みが均一にできることから抄紙法による湿式不織布が好ましい。 As a method for producing a nonwoven fabric, a dry method, a wet method, a spunbond method, a thermal bond method, a chemical bond method, a spunlace method (a hydroentanglement method), a spunbond nonwoven fabric, and a melt blown nonwoven fabric can be used. Of the two nonwoven fabrics, at least one nonwoven fabric is preferably a wet nonwoven fabric produced by a papermaking method because the fabric weight and thickness can be made uniform.
 不織布を構成する繊維の繊維径としては、消臭繊維シートとして使用する用途において目標とする通気性や集塵性能に応じて選択すればよい。好ましくは1~2000μmである。繊維径を1μm以上、より好ましくは2μm以上とすることで、ガス吸着剤が繊維構造物表面で目詰まりするのを防ぎ、通気性の低化を防ぐことができる。また、繊維径を2000μm以下、より好ましくは100μm以下とすることで、繊維表面積の減少による該ガス吸着剤の担持能力の低下や処理エアとの接触効率の低下を防ぐことができる。 The fiber diameter of the fibers constituting the nonwoven fabric may be selected according to the target air permeability and dust collection performance in the application used as the deodorant fiber sheet. The thickness is preferably 1 to 2000 μm. By setting the fiber diameter to 1 μm or more, more preferably 2 μm or more, the gas adsorbent can be prevented from being clogged on the surface of the fiber structure, and the air permeability can be prevented from being lowered. Further, by setting the fiber diameter to 2000 μm or less, more preferably 100 μm or less, it is possible to prevent a decrease in the carrying capacity of the gas adsorbent and a decrease in contact efficiency with the processing air due to a decrease in the fiber surface area.
 不織布の目付としては、10~500g/mが好ましい。目付けを10g/m以上とすることで、ガス吸着剤を担持するための加工に耐える十分な強度が得られ、エアを通気させた際にフィルター構造を維持するのに必要な剛性が得られる。また目付けを500g/m以下、より好ましくは200g/m以下とすることで、不織布の内部までガス吸着剤を均一に担持させることができ、また、消臭繊維シートをプリーツ形状やハニカム形状に二次加工する際の取扱い性にも優れる。 The basis weight of the nonwoven fabric is preferably 10 to 500 g / m 2 . By setting the basis weight to 10 g / m 2 or more, sufficient strength to withstand the processing for supporting the gas adsorbent can be obtained, and the rigidity necessary to maintain the filter structure when air is aerated can be obtained. . Further, by setting the basis weight to 500 g / m 2 or less, more preferably 200 g / m 2 or less, the gas adsorbent can be uniformly supported up to the inside of the nonwoven fabric, and the deodorized fiber sheet is formed in a pleated shape or a honeycomb shape. Excellent handleability during secondary processing.
 不織布の厚みは0.10mm~0.60mmであることが好ましい。薄いとガス吸着剤粒子が飛び出して不織布を破る可能性があり、厚いと取り扱い性が悪くなる可能性がある。 The thickness of the nonwoven fabric is preferably 0.10 mm to 0.60 mm. If it is thin, the gas adsorbent particles may jump out and break the nonwoven fabric. If it is thick, the handleability may be deteriorated.
 不織布の少なくとも1枚はエレクトレット処理されていることが好ましい。エレクトレット処理がされていることにより、通常では除去しにくいサブミクロンサイズやナノサイズの微細塵を静電気力により捕集することができる。 It is preferable that at least one non-woven fabric is electret-treated. By performing the electret treatment, fine dust of submicron size or nano size, which is difficult to remove normally, can be collected by electrostatic force.
 エレクトレット処理を施された不織布を構成する材料としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリブチレンテレフタレート、ポリテトラフルオロエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート等の芳香族ポリエステル系樹脂、ポリカーボネート樹脂等の高い電気抵抗率を有する材料が好ましい。 Materials that make up the electret-treated non-woven fabric include high electrical properties such as polypropylene, polyethylene, polystyrene, polybutylene terephthalate, polyolefin resins such as polytetrafluoroethylene, aromatic polyester resins such as polyethylene terephthalate, and polycarbonate resins. A material having a resistivity is preferred.
 また、不織布は抗菌剤、防カビ剤、抗アレルゲン剤、抗ウイルス剤、ビタミン剤、難燃剤等の付随的機能を有する成分等を含めて構成してもよい。これらの成分は繊維類や不織布中に練りこんでも、後加工で付着および担持して付与してもよい。例えば、任意の方法により不織布を作製後、難燃剤と樹脂バインダーを含む水溶液を作製し、含浸乾燥し、難燃剤を固着することで不織布を得ることができる。 Further, the nonwoven fabric may be configured to include components having ancillary functions such as antibacterial agents, antifungal agents, antiallergen agents, antiviral agents, vitamin agents, flame retardants, and the like. These components may be kneaded into fibers or non-woven fabrics, or may be attached and supported by post-processing. For example, after producing a nonwoven fabric by an arbitrary method, an aqueous solution containing a flame retardant and a resin binder is produced, impregnated and dried, and the nonwoven fabric can be obtained by fixing the flame retardant.
 消臭繊維シートにおける本発明のガス吸着剤の含有量は、プロトン型のY型ゼオライトと水溶性の酸ヒドラジド化合物との合計が10~100g/mであることが好ましい。含有量を10g/m以上、より好ましくは15g/m以上とすることで低沸点アルデヒド類のガス吸着性能吸着性能の実向を得ることができる。また、含有量を100g/m以下とすることで、この消臭繊維シートに目詰まりが発生するのを抑制し、このことによって、上記の消臭繊維シートの通気性の低下を抑えることができる。 The content of the gas adsorbent of the present invention in the deodorant fiber sheet is preferably 10 to 100 g / m 2 in total of the proton type Y zeolite and the water-soluble acid hydrazide compound. By setting the content to 10 g / m 2 or more, more preferably 15 g / m 2 or more, it is possible to obtain the actual performance of the low-boiling aldehyde gas adsorption performance. Moreover, by making the content 100 g / m 2 or less, it is possible to suppress clogging of the deodorant fiber sheet, and thereby to suppress a decrease in air permeability of the deodorant fiber sheet. it can.
 消臭繊維シートを用いてエアフィルターを構成することができる。エアフィルターにおける消臭繊維シートの形状としては、そのまま平面状で使用してもよいが、限られた寸法内により多くの消臭繊維シートを入れるためにプリ-ツ型やハニカム型を採用することが好ましい。プリーツ型は直行流型エアフィルターとしての使用において、またハニカム型は平行流型フィルターとしての使用において、処理エアの接触面積を大きくして捕集効率を向上させるとともに、低圧損化を同時に図ることができる。 An air filter can be constructed using a deodorant fiber sheet. As the shape of the deodorant fiber sheet in the air filter, it may be used as it is, but a pleat type or a honeycomb type should be adopted in order to put more deodorant fiber sheets in a limited size. Is preferred. When using the pleat type as a direct flow type air filter, and when using the honeycomb type as a parallel flow type filter, increase the contact area of the processing air to improve the collection efficiency and simultaneously reduce the low pressure loss. Can do.
 プリーツ加工の方法としては、レシプロ方式やロータリー方式などがあり、山谷状に加工する方法であればいずれの方法でもよい。また、プリーツ形状を保持するためセパレータ加工を行うことが望ましく、生産効率の観点からビード加工やリボン加工のような熱可塑性樹脂を溶融加工する方式が望ましい。ここで、熱可塑性樹脂の融点は90℃以上のポリオレフィン樹脂を使用することが好ましい。自動車車室内のエアコンシステム周辺では夏場に80℃前後まで上昇することが想定されるため、融点が90℃以上のポリオレフィン樹脂を使用することで、低コストでプリーツ形状保持可能なエアフィルターを提供することが可能となる。 As a method of pleating, there are a reciprocating method, a rotary method, and the like, and any method may be used as long as it is a method of processing into a valley shape. Further, it is desirable to perform a separator process in order to maintain the pleated shape, and from the viewpoint of production efficiency, a method of melt-processing a thermoplastic resin such as bead processing or ribbon processing is desirable. Here, it is preferable to use a polyolefin resin having a melting point of 90 ° C. or higher. Since it is assumed that the temperature rises to around 80 ° C in the vicinity of the air conditioner system in the automobile cabin, an air filter that can maintain a pleated shape at low cost is provided by using a polyolefin resin having a melting point of 90 ° C or higher. It becomes possible.
 本発明のガス吸着剤を備える消臭繊維シートを用いたエアフィルターのひだ山頂点間隔は、2~30mmが好ましい。2mm未満ではひだ山間が密着しすぎでデッドスペースが多く、効率的にシートを活用できなくなるため好ましくない。一方、30mmを越えると消臭繊維シート折り込み面積が小さくなるためエアフィルター厚みに応じた除去効果を得ることができなくなるため好ましくない。 The distance between the apexes of the folds of the air filter using the deodorant fiber sheet provided with the gas adsorbent of the present invention is preferably 2 to 30 mm. If it is less than 2 mm, the folds are in close contact with each other and there is a lot of dead space, which makes it impossible to use the sheet efficiently. On the other hand, if it exceeds 30 mm, the deodorized fiber sheet folding area becomes small, so that it becomes impossible to obtain the removal effect corresponding to the thickness of the air filter, which is not preferable.
 また本発明のガス吸着剤を用いたエアフィルターは、枠体に納めて使用することが、エアの処理効率や取扱い性の点で好ましい。 In addition, it is preferable that the air filter using the gas adsorbent of the present invention is stored in a frame body in terms of air processing efficiency and handleability.
 以下、実施例を用いて本発明を具体的に説明する。なお、本実施例による消臭繊維シートの各特性の評価方法を下記する。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, the evaluation method of each characteristic of the deodorant fiber sheet by a present Example is described below.
 [測定方法]
 (1)平均粒子径(μm)
 ゼオライトおよび活性炭については、JIS K 1474(2014)の活性炭試験方法に基づいて測定された50%質量平均径を平均粒子径とする。
[Measuring method]
(1) Average particle diameter (μm)
For zeolite and activated carbon, the 50% mass average diameter measured based on the activated carbon test method of JIS K 1474 (2014) is taken as the average particle diameter.
 (2)目付(g/m
 25cm×25cmにカットした測定試料の質量について質量計(エー・アンド・ディ社製FY-300)を用いて4枚分計測し、その平均値から1mあたりの質量に換算し、小数点以下第2位を四捨五入し、目付とする。なお、消臭繊維シートの目付についても上記の測定方法と同様の方法により測定する。
(2) Weight per unit (g / m 2 )
The mass of the measurement sample cut to 25 cm x 25 cm was measured for 4 sheets using a mass meter (FY-300 manufactured by A & D Co., Ltd.), converted from the average value to the mass per 1 m 2 , and after the decimal point Round the 2nd place to make the basis weight. In addition, about the fabric weight of a deodorant fiber sheet, it measures by the method similar to said measuring method.
 (3)厚み(mm)
 10cm×10cmにカットした測定試料について、厚み計(大栄科学精機社製、型式FS-60DS、測定子面積2500mm、測定荷重0.5KPa)を使用しランダムに10点測定し、平均値を算出し、厚みとする。なお、消臭繊維シートの厚みについても上記の測定方法と同様の方法により測定する。
(3) Thickness (mm)
For a measurement sample cut to 10 cm × 10 cm, 10 points are randomly measured using a thickness meter (manufactured by Daiei Kagaku Seiki Co., Ltd., model FS-60DS, probe area 2500 mm 2 , measurement load 0.5 KPa), and an average value is calculated. And the thickness. The thickness of the deodorant fiber sheet is also measured by the same method as the above measurement method.
 (4)Y型ゼオライトにおけるSiO/Al含有モル比
 Y型ゼオライトにおけるSiO/Alの含有モル比は、蛍光X線分光分析装置(XRF)島津製作所製(VF-320A)によりケイ素およびアルミニウムの元素数を測定し、算出する。
(4) the molar ratio of SiO 2 / Al 2 O 3 in SiO 2 / Al 2 O 3 molar ratio Y zeolite in zeolite Y, X-ray fluorescence analyzer (XRF) manufactured by Shimadzu Corporation (VF-320A ) To measure and calculate the number of elements of silicon and aluminum.
 (5)BET比表面積
 ゼオライトおよび活性炭の比表面積はユアサアイオニクス社製NOVA2200eを用い、JIS R 1626-1996に規定のBET多点法に従って測定する。試料は100mgを採取し100℃で4時間真空脱気し、N2を吸着質とし、定容法にて測定する。
(5) BET specific surface area The specific surface area of zeolite and activated carbon is measured according to the BET multipoint method specified in JIS R 1626-1996 using NOVA2200e manufactured by Yuasa Ionics. 100 mg of a sample is collected, vacuum degassed at 100 ° C. for 4 hours, N2 is used as an adsorbate, and measurement is performed by a constant volume method.
 (6)平均細孔径
 ゼオライトの細孔の形状を円筒状と仮定し、BET比表面積測定の際に得られた比表面積(S)、細孔容積(V)から平均細孔径(D)を算出する。
(6) Average pore diameter Assuming that the pore shape of the zeolite is cylindrical, the average pore diameter (D) is calculated from the specific surface area (S) and pore volume (V) obtained during the BET specific surface area measurement. To do.
 (7)水溶性酸ヒドラジド化合物の含有量
 水溶性酸ヒドラジド化合物を分散もしくは溶解させた液にY型ゼオライトを含浸させて、Y型ゼオライトを乾燥させた後のガス吸着剤の重量と、上記の含浸処理前のY型ゼオライトの重量との差から算出する。
(7) Content of water-soluble acid hydrazide compound The weight of the gas adsorbent after impregnating Y-type zeolite into a liquid in which the water-soluble acid hydrazide compound is dispersed or dissolved and drying the Y-type zeolite, It is calculated from the difference from the weight of the Y-type zeolite before the impregnation treatment.
 (8)ガス吸着剤やバインダーとなりうる熱可塑性樹脂の含有量
 ガス吸着剤および熱可塑性樹脂を混合攪拌した混合粉体を不織布に散布した後、さらに他の不織布を重ね合わせて熱プレスを行い一体化し、その総目付を測定し、総目付から2枚の不織布の目付を差し引いた値に、ガス吸着剤および熱可塑性樹脂の仕込み量比を掛け、消臭繊維シート全体に対するガス吸着剤や熱可塑性樹脂の含有量を算出する。
(8) Content of thermoplastic resin that can be used as gas adsorbent and binder After spraying mixed powder mixed with gas adsorbent and thermoplastic resin on nonwoven fabric, another nonwoven fabric is layered and heat pressed to integrate. The total basis weight is measured, and the value obtained by subtracting the basis weight of the two nonwoven fabrics from the total basis weight is multiplied by the charged amount ratio of the gas adsorbent and the thermoplastic resin to obtain the gas adsorbent and thermoplastic for the entire deodorant fiber sheet. The resin content is calculated.
 (9)圧力損失(Pa)
 平面状の消臭繊維シートを有効間口面積0.1mのホルダーにセットし、面風速6.5m/minで鉛直方向に空気を通過させ、フィルター上下流の圧力差をMODUS社製デジタルマノメータMA2-04P差圧計で測定する。測定は1検体から任意に5箇所をサンプリングして行い、その平均値を消臭繊維シートの圧力損失とする。
(9) Pressure loss (Pa)
Set the flat deodorizing fiber sheet to the effective frontage area 0.1 m 2 holder, is passed through the air in a vertical direction at a face velocity 6.5m / min, MODUS Co. digital manometer MA2 the pressure difference of the filter upstream and downstream Measure with a -04P differential pressure gauge. The measurement is performed by sampling 5 points arbitrarily from one specimen, and the average value is taken as the pressure loss of the deodorant fiber sheet.
 (10)低沸点アルデヒドの動的吸着性能および脱離抑制性能
 低沸点アルデヒド類としてアセトアルデヒドを使用した。
(10) Dynamic adsorption performance and desorption suppression performance of low-boiling aldehydes Acetaldehyde was used as the low-boiling aldehydes.
 12cm角サイズの平板状の消臭性繊維シートを10cm角サイズの実験用のダクトに取り付け、ダクトに温度23℃、湿度50%RHの空気を0.2m/secの速度で送風する。さらに上流側から、標準ガスボンベによりアセトアルデヒドを上流濃度10ppmとなるように添加し、消臭性繊維シートの上流側と下流側とにおいてエアをサンプリングし、赤外吸光式連続モニターを使用してそれぞれのアセトアルデヒド濃度を経時的に測定し、次式にて除去効率を算出する。
アセトアルデヒド除去効率(%)=[(C-C)/C]×100
:上流側のアセトアルデヒド濃度(=10ppm)
C:下流側のアセトアルデヒド濃度(ppm)
アセトアルデヒドの添加開始から100秒後の除去効率を初期除去効率とし、100秒後以降の除去効率を経時的に測定する。また、上流側の濃度と下流側の濃度との差が5%になるまでの吸着量を吸着容量として評価する。
A 12 cm square size flat plate-like deodorant fiber sheet is attached to a 10 cm square size experimental duct, and air at a temperature of 23 ° C. and a humidity of 50% RH is blown into the duct at a speed of 0.2 m / sec. Furthermore, from the upstream side, acetaldehyde was added to the upstream concentration of 10 ppm with a standard gas cylinder, air was sampled on the upstream side and the downstream side of the deodorant fiber sheet, and each infrared absorption type continuous monitor was used. The acetaldehyde concentration is measured over time, and the removal efficiency is calculated by the following formula.
Acetaldehyde removal efficiency (%) = [(C 0 -C) / C 0 ] × 100
C 0 : upstream acetaldehyde concentration (= 10 ppm)
C: Downstream acetaldehyde concentration (ppm)
The removal efficiency after 100 seconds from the start of addition of acetaldehyde is taken as the initial removal efficiency, and the removal efficiency after 100 seconds is measured over time. Further, the amount of adsorption until the difference between the upstream concentration and the downstream concentration becomes 5% is evaluated as the adsorption capacity.
 さらに、この除去率が5%になるまで流通、濃度測定を続けた消臭性繊維シートについて、アセトアルデヒドを含有しない温度23℃、湿度50%RHのクリーンな空気を0.2m/secの速度で送風し、消臭性繊維シートの下流の吹き出しエアの臭気強度を、5人のモニターが、表4に示す判断基準を用いた6段階臭気判定法にて判定し、5人の判定結果の算術平均値をアセトアルデヒド脱離評価の指標とする。なお、算術平均が小さいほど、消臭性繊維シートの二次発臭はより高度に抑制されているといえる。 Furthermore, about the deodorant fiber sheet which continued distribution | circulation and density | concentration measurement until this removal rate became 5%, the clean air of the temperature 23 degreeC and humidity 50% RH which do not contain acetaldehyde is 0.2 m / sec. The odor intensity of the blown air that is blown and downstream of the deodorant fiber sheet is judged by a five-person monitor using a six-step odor judgment method using the judgment criteria shown in Table 4, and the arithmetic result of the judgment results of the five persons The average value is used as an index for evaluating acetaldehyde elimination. In addition, it can be said that the secondary odor of a deodorant fiber sheet is suppressed more highly, so that arithmetic mean is small.
 (11)低極性ガスの動的吸着性能および脱離抑制性能
 低極性ガスとしてトルエンのガスを使用した。
100℃で2時間、乾燥庫で加熱前処理した平板状の消臭性繊維シートを実験用のカラムに取り付け、カラムに温度23℃、湿度50%RHの空気を0.2m/secの速度で送風する。さらに上流側から、パーミエーターによりトルエンを揮発させ上流濃度80ppmとなるように添加し、消臭性繊維シートの上流側と下流側とにおいてエアをサンプリングし、赤外吸光式連続モニターを使用してそれぞれのトルエン濃度を経時的に測定し、次式にて除去効率を算出する。
トルエン除去効率(%)=[(C-C)/C]×100
:上流側の濃度(=80ppm)
C :下流側のトルエン濃度(ppm)
トルエン添加開始から3分後の除去効率を初期除去効率とし、初期除去効率の比較を行った。3分後以降の除去効率を経時的に測定する。また、上流側の濃度と下流側の濃度との差が5%になるまでの吸着量を吸着容量として評価する。
(11) Dynamic adsorption performance and desorption suppression performance of low polarity gas Toluene gas was used as the low polarity gas.
A flat deodorant fiber sheet pretreated by heating in a drying cabinet at 100 ° C. for 2 hours was attached to the experimental column, and air at a temperature of 23 ° C. and humidity of 50% RH was applied to the column at a speed of 0.2 m / sec. Blow. Further, from the upstream side, toluene is volatilized by a permeator and added so that the upstream concentration becomes 80 ppm, air is sampled on the upstream side and downstream side of the deodorant fiber sheet, and an infrared absorption type continuous monitor is used. The respective toluene concentrations are measured over time, and the removal efficiency is calculated by the following formula.
Toluene removal efficiency (%) = [(C 0 -C) / C 0 ] × 100
C 0 : upstream concentration (= 80 ppm)
C: Toluene concentration (ppm) on the downstream side
The removal efficiency 3 minutes after the start of toluene addition was defined as the initial removal efficiency, and the initial removal efficiency was compared. The removal efficiency after 3 minutes is measured over time. Further, the amount of adsorption until the difference between the upstream concentration and the downstream concentration becomes 5% is evaluated as the adsorption capacity.
 さらに、この除去率が5%になるまで流通、濃度測定を続けた消臭性繊維シートについて、トルエンを含有しない温度23℃、湿度50%RHのクリーンな空気を0.2m/secの速度で送風し、サンプル出口側のガス濃度を赤外吸光式連続モニターにて測定する。二次発臭現象は脱離の総容量ではなく、瞬間的に吐き出される最大ピーク値が臭気閾値を越えるかどうかが重要となるため、脱離抑制性能の評価は、この脱離抑制性能の試験時に計測された最大ガス濃度を用い、この最大ガス濃度が小さいほどガス吸着剤の脱離抑制性能は優れるとの評価とする。 Furthermore, about the deodorant fiber sheet which continued distribution | circulation and density | concentration measurement until this removal rate became 5%, clean air with a temperature of 23 degreeC and humidity 50% RH which does not contain toluene is 0.2 m / sec. Air is blown, and the gas concentration on the sample outlet side is measured with an infrared absorption type continuous monitor. The secondary odor phenomenon is not the total capacity of desorption, but it is important whether the maximum peak value instantaneously exhaled exceeds the odor threshold. The maximum gas concentration measured occasionally is used, and the smaller the maximum gas concentration, the better the desorption suppression performance of the gas adsorbent.
 また、サンプルの下流の吹き出しエアの臭気強度を、5人のモニターが、以下に示す判断基準を用いた6段階臭気判定法にて判定する。
5:強烈な臭い
4:強い臭い
3:楽に関知できる臭い
2:何の臭いかわかる弱い臭い
1:やっと関知できる臭い
0:無臭
5人の判定結果の算術平均値をトルエン脱離評価の指標とする。なお、算術平均が小さいほど、消臭性繊維シートの二次発臭はより高度に抑制されているといえる。
In addition, the odor intensity of the blown air downstream of the sample is determined by a five-step monitor using a six-stage odor determination method using the following criteria.
5: Intense odor 4: Strong odor 3: Easy odor 2: Weak odor 1 To do. In addition, it can be said that the secondary odor of a deodorant fiber sheet is suppressed more highly, so that arithmetic mean is small.
 (12)脱離判定
 アセトアルデヒドガスおよびトルエンガスの6段階臭気判定法による算術平均値とトルエン脱離最大濃度から脱離臭気に関する総合判定を行う。尚、総合判定はA(特に優れる)、B(優れる)、C(改善を有する)、D(好ましくない)の4段階で行った。判定基準は以下のとおりである。
A: トルエン脱離最大濃度が1.5ppm以下であり、かつアセトアルデヒドガスおよびトルエンガスのいずれのガスにおいても6段階臭気判定法が0.6以下である場合、
B: トルエン脱離最大濃度が1.5ppm超え2.0ppm以下の範囲であり、かつアセトアルデヒドガスおよびトルエンガスのいずれのガスにおいても6段階臭気判定法が0.6超え1.0以下である場合、
C: トルエン脱離最大濃度が2.0ppm超え~5.0ppm以下の範囲であり、かつアセトアルデヒドガスおよびトルエンガスのいずれのガスにおいても6段階臭気判定法が1.0超え2.5以下である場合、
D: トルエン脱離最大濃度が5.0ppm超えであり、かつアセトアルデヒドガスおよびトルエンガスのいずれかのガスにおいても6段階臭気判定法で2.5超えである場合。
(13)本発明のガス吸着剤および対比用のガス吸着剤の準備
 i.ガス吸着剤Aの作製
 (ゼオライト)
 まず、アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、この混合物を100℃で加熱し、ゼオライトを得た。次に、このゼオライトを110℃の硝酸アンモニウム溶液で処理し、さらに、このゼオライトを750℃の過熱水蒸気にて焼成処理した。得られたゼオライトはプロトン型のY型ゼオライトであった。このゼオライトの蛍光X線分光分析により測定したSiO/Al含有モル比は5.4であり、窒素吸脱着法により測定した比表面積は690m/gであった。そして、このゼオライトを原料とし結着剤にアルミナゾルを使用し、ハイスピードミキサー法により平均粒径230μmに造粒したゼオライトを使用した。造粒後のゼオライトの比表面積は600m/g、平均細孔直径は17.0Åであった。なお、プロトン型のY型ゼオライトとは、カチオン交換サイトがプロトン(H)であるY型ゼオライトのことを言う。
(12) Desorption determination A comprehensive determination on desorption odor is performed from the arithmetic average value of the 6-step odor determination method of acetaldehyde gas and toluene gas and the maximum concentration of toluene desorption. The comprehensive judgment was performed in four stages: A (particularly excellent), B (excellent), C (having improvement), and D (not preferred). The judgment criteria are as follows.
A: When the maximum toluene desorption concentration is 1.5 ppm or less and the 6-step odor determination method is 0.6 or less in any of acetaldehyde gas and toluene gas,
B: When the maximum concentration of toluene desorption is in the range of 1.5 ppm to 2.0 ppm, and the 6-step odor determination method is 0.6 to 1.0 in both acetaldehyde gas and toluene gas ,
C: The maximum toluene desorption concentration is in the range of 2.0 ppm to 5.0 ppm, and the 6-step odor determination method is 1.0 to 2.5 in both acetaldehyde gas and toluene gas. If
D: The maximum concentration of toluene desorption is over 5.0 ppm, and in any gas of acetaldehyde gas and toluene gas is over 2.5 in the 6-step odor determination method.
(13) Preparation of gas adsorbent of the present invention and gas adsorbent for comparison i. Preparation of gas adsorbent A (Zeolite)
First, sodium aluminate and sodium silicate were mixed to obtain a mixture, and then the mixture was heated at 100 ° C. to obtain zeolite. Next, the zeolite was treated with an ammonium nitrate solution at 110 ° C., and the zeolite was calcined with superheated steam at 750 ° C. The obtained zeolite was a proton type Y zeolite. This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 5.4, and a specific surface area measured by nitrogen adsorption / desorption method was 690 m 2 / g. And this zeolite was used as a raw material, alumina sol was used as a binder, and zeolite granulated to an average particle size of 230 μm by a high speed mixer method was used. The specific surface area of the granulated zeolite was 600 m 2 / g and the average pore diameter was 17.0 mm. The proton-type Y-type zeolite refers to a Y-type zeolite whose cation exchange site is proton (H + ).
 (水溶性の酸ヒドラジド化合物)
水への溶解度8.0%のアジピン酸ジヒドラジド(大塚化学社製)を用いた。
(Water-soluble acid hydrazide compound)
Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
 (ゼオライトA)
前記アジピン酸ジヒドラジド8.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記造粒後のゼオライト40.0質量%に対しスプレーにて噴霧して付着した後に110℃で5時間乾燥し、ガス吸着剤Aを得た。
(Zeolite A)
An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to 40.0% by mass of the zeolite after granulation and then dried at 110 ° C. for 5 hours to obtain a gas adsorbent A.
 ii.ガス吸着剤Bの作製
 (ゼオライト)
 まず、アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、この混合物を100℃で加熱し、ゼオライトを得た。次に、このゼオライトを110℃の硝酸アンモニウム溶液で処理し、さらに、このゼオライトを750℃の過熱水蒸気にて焼成処理した。得られたゼオライトはプロトン型のY型ゼオライトであった。このゼオライトの蛍光X線分光分析により測定したSiO/Al含有モル比は7.2であり、窒素吸脱着法により測定した比表面積は650m/gであった。そして、このゼオライトを原料とし、結着剤にアルミナゾルを使用し、ハイスピードミキサー法により平均粒径230μmに造粒したゼオライトを使用した。造粒後のゼオライトの比表面積は580m/g、平均細孔直径は16.5Åであった。
ii. Preparation of gas adsorbent B (Zeolite)
First, sodium aluminate and sodium silicate were mixed to obtain a mixture, and then the mixture was heated at 100 ° C. to obtain zeolite. Next, the zeolite was treated with an ammonium nitrate solution at 110 ° C., and the zeolite was calcined with superheated steam at 750 ° C. The obtained zeolite was a proton type Y zeolite. This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 7.2, and a specific surface area measured by nitrogen adsorption / desorption method was 650 m 2 / g. And this zeolite was used as a raw material, alumina sol was used as a binder, and zeolite granulated to an average particle size of 230 μm by a high speed mixer method was used. The specific surface area of the zeolite after granulation was 580 m 2 / g, and the average pore diameter was 16.5 mm.
 (水溶性の酸ヒドラジド化合物)
水への溶解度8.0%のアジピン酸ジヒドラジド(大塚化学社製)を用いた。
(Water-soluble acid hydrazide compound)
Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
 (ガス吸着剤B)
前記アジピン酸ジヒドラジド8.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記造粒後のゼオライト40.0質量%に対しスプレーにて噴霧して付着した後に110℃で5時間乾燥し、ガス吸着剤Bを得た。
(Gas adsorbent B)
An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to 40.0% by mass of the zeolite after granulation and then dried at 110 ° C. for 5 hours to obtain a gas adsorbent B.
 iii.ガス吸着剤Cの作製
 (ゼオライト)
 まず、アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、この混合物を100℃で加熱し、ゼオライトを得た。次に、このゼオライトを110℃の硝酸アンモニウム溶液で処理し、さらに、このゼオライトを750℃の過熱水蒸気にて焼成処理した。得られたゼオライトは、プロトン型のY型ゼオライトであった。このゼオライトの蛍光X線分光分析により測定したSiO/Al含有モル比は5.4であり、窒素吸脱着法により測定した比表面積は690m/gであった。そして、このゼオライトを原料とし、結着剤にアルミナゾルを使用し、ハイスピードミキサー法により平均粒径230μmに造粒したゼオライトを使用した。造粒後のゼオライトの比表面積は600m/g、平均細孔直径は17.0Åであった。
iii. Preparation of gas adsorbent C (Zeolite)
First, sodium aluminate and sodium silicate were mixed to obtain a mixture, and then the mixture was heated at 100 ° C. to obtain zeolite. Next, the zeolite was treated with an ammonium nitrate solution at 110 ° C., and the zeolite was calcined with superheated steam at 750 ° C. The obtained zeolite was a proton type Y zeolite. This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 5.4, and a specific surface area measured by nitrogen adsorption / desorption method was 690 m 2 / g. And this zeolite was used as a raw material, alumina sol was used as a binder, and zeolite granulated to an average particle size of 230 μm by a high speed mixer method was used. The specific surface area of the granulated zeolite was 600 m 2 / g and the average pore diameter was 17.0 mm.
 (水溶性の酸ヒドラジド化合物)
水への溶解度27.3%のコハク酸ジヒドラジド(日本ファインケム社製)を用いた。
(Water-soluble acid hydrazide compound)
Succinic acid dihydrazide (manufactured by Nippon Finechem Co., Ltd.) having a solubility in water of 27.3% was used.
 (ガス吸着剤C)
前記コハク酸ジヒドラジド20.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記造粒後のゼオライト40.0質量%に対しスプレーにて噴霧して付着した後に110℃で5時間乾燥し、ガス吸着剤Cを得た。
(Gas adsorbent C)
An aqueous solution in which 20.0% by mass of the succinic dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to 40.0% by mass of the granulated zeolite, and dried at 110 ° C. for 5 hours to obtain a gas adsorbent C.
 iv.ガス吸着剤Dの作製
 (ゼオライト)
 市販されているSiO/Al含有モル比38.0、比表面積340m/gであるZSM-5型ゼオライトを原料とし、結着剤にアルミナゾルを使用し、ハイスピードミキサー法により平均粒径230μmに造粒したゼオライトを使用した。造粒後のゼオライトの比表面積は300m/g、平均細孔直径は18.4Åであった。
iv. Preparation of gas adsorbent D (Zeolite)
Commercially available ZSM-5 type zeolite with a SiO 2 / Al 2 O 3 content molar ratio of 38.0 and specific surface area of 340 m 2 / g is used as a raw material, alumina sol is used as a binder, and averaged by a high speed mixer method. Zeolite granulated to a particle size of 230 μm was used. The specific surface area of the granulated zeolite was 300 m 2 / g, and the average pore diameter was 18.4 mm.
 (水溶性の酸ヒドラジド化合物)
水への溶解度8.0%のアジピン酸ジヒドラジド(大塚化学社製)を用いた。
(Water-soluble acid hydrazide compound)
Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
 (ガス吸着剤D)
前記アジピン酸ジヒドラジド8.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記造粒後のゼオライト40.0質量%に対しスプレーにて噴霧して付着した後に110℃で5時間乾燥し、ガス吸着剤Dを得た。
(Gas adsorbent D)
An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed onto 40.0% by mass of the granulated zeolite by spraying, and then dried at 110 ° C. for 5 hours to obtain a gas adsorbent D.
 v.ガス吸着剤Eの作製
 (ゼオライト)
 まず、アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、この混合物を100℃で加熱し、ゼオライトを得た。次に、このゼオライトを110℃の硝酸アンモニウム溶液で処理し、さらに、このゼオライトを750℃の過熱水蒸気にて焼成処理した。得られたゼオライトはプロトン型のY型ゼオライトであった。このゼオライトの蛍光X線分光分析により測定したSiO/Al含有モル比は5.4であり、窒素吸脱着法により測定した比表面積は690m/gであった。
v. Preparation of gas adsorbent E (Zeolite)
First, sodium aluminate and sodium silicate were mixed to obtain a mixture, and then the mixture was heated at 100 ° C. to obtain zeolite. Next, the zeolite was treated with an ammonium nitrate solution at 110 ° C., and the zeolite was calcined with superheated steam at 750 ° C. The obtained zeolite was a proton type Y zeolite. This zeolite had a SiO 2 / Al 2 O 3 -containing molar ratio measured by fluorescent X-ray spectroscopic analysis of 5.4, and a specific surface area measured by nitrogen adsorption / desorption method was 690 m 2 / g.
 vi.ガス吸着剤Fの作製
 (ゼオライト)
 SiO/Al含有モル比2.0であり、カチオン基としてアルカリ金属イオンNaを有するA型ゼオライト(ナトリウム型のA型ゼオライト)を使用した。なお、カチオン基としてアルカリ金属イオンNaを有するA型ゼオライト(ナトリウム型のA型ゼオライト)とは、カチオン交換サイトがNaであるA型ゼオライトのことを言う。
vi. Preparation of gas adsorbent F (Zeolite)
A-type zeolite (sodium-type A-type zeolite) having a SiO 2 / Al 2 O 3 -containing molar ratio of 2.0 and having an alkali metal ion Na + as a cationic group was used. The A-type zeolite having the alkali metal ion Na + as a cationic group (sodium-type A-type zeolite) means an A-type zeolite having a cation exchange site of Na + .
 viiガス吸着剤Gの作製
 (ゼオライト)
 SiO/Al含有モル比25.0、比表面積680m/gであるアンモニウムイオンNH を有するY型ゼオライトを使用した。なお、アンモニウムイオンNH を有するY型ゼオライトとは、カチオン交換サイトがNH であるY型ゼオライトのことを言う。
Production of vii gas adsorbent G (Zeolite)
A Y-type zeolite having ammonium ion NH 4 + having a SiO 2 / Al 2 O 3 -containing molar ratio of 25.0 and a specific surface area of 680 m 2 / g was used. The Y-type zeolite having ammonium ion NH 4 + refers to a Y-type zeolite having a cation exchange site of NH 4 + .
 viii.活性炭A
  JIS K1474法 による平均粒子径220μm、比表面積1100m/gのヤシ殻活性炭を用いた。
viii. Activated carbon A
Coconut shell activated carbon having an average particle diameter of 220 μm and a specific surface area of 1100 m 2 / g according to JIS K1474 method was used.
 ix.活性炭B
 (活性炭)
 JIS K1474法 による平均粒子径220μm、比表面積1200m/gのヤシ殻活性炭を用いた。
ix. Activated carbon B
(Activated carbon)
Coconut shell activated carbon having an average particle size of 220 μm and a specific surface area of 1200 m 2 / g according to JIS K1474 method was used.
 (付着薬剤)
 水への溶解度8.0%のアジピン酸ジヒドラジド(大塚化学社製)を用いた。
(Adhesive drug)
Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
 (活性炭B)
 前記アジピン酸ジヒドラジド8.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記活性炭に40.0質量%に対しスプレーにて噴霧して付着した後に110℃で5時間乾燥し、活性炭Bを得た。
(Activated carbon B)
An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to 40.0% by mass of the activated carbon and dried at 110 ° C. for 5 hours to obtain activated carbon B.
 x.活性炭C
 JIS K1474法 による平均粒子径220μm、比表面積1200m/gのヤシ殻活性炭を用いた。
x. Activated carbon C
Coconut shell activated carbon having an average particle size of 220 μm and a specific surface area of 1200 m 2 / g according to JIS K1474 method was used.
 xi.多孔質シリカA
 (無機多孔質体)
JIS K1474法 による平均粒子径200μm、比表面積700m/g、平均細孔径60Åのシリカゲル(AGCエスアイテック社製)を用いた。
xi. Porous silica A
(Inorganic porous material)
Silica gel (manufactured by AGC S-Tech Co., Ltd.) having an average particle size of 200 μm, a specific surface area of 700 m 2 / g and an average pore size of 60 mm according to JIS K1474 method was used.
 (酸ヒドラジド化合物)
水への溶解度8.0%のアジピン酸ジヒドラジド(大塚化学社製)を用いた。
(Acid hydrazide compound)
Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
 (多孔質シリカA)
前記アジピン酸ジヒドラジド8.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記多孔質シリカに40.0質量%に対しスプレーにて噴霧して付着した後に110℃で4時間乾燥し、多孔質シリカAを得た。
(Porous silica A)
An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to 40.0% by mass of the porous silica, followed by drying at 110 ° C. for 4 hours to obtain porous silica A.
 xii.多孔質体シリカB
 (無機多孔質体)
JIS K1474法 による平均粒子径200μm、比表面積30m/g、平均細孔径1000Åのシリカゲル(AGCエスアイテック社製)を用いた。
xii. Porous silica B
(Inorganic porous material)
Silica gel (manufactured by AGC S-Tech Co., Ltd.) having an average particle diameter of 200 μm, a specific surface area of 30 m 2 / g and an average pore diameter of 1000 mm according to JIS K1474 method was used.
 (酸ヒドラジド化合物)
水への溶解度8.0%のアジピン酸ジヒドラジド(大塚化学社製)を用いた。
(Acid hydrazide compound)
Adipic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.) having a solubility in water of 8.0% was used.
 (多孔質シリカB)
前記アジピン酸ジヒドラジド8.0質量%を純水100.0質量%に完全に溶解した水溶液を調整した。その後、該水溶液を前記多孔質シリカに40.0質量%に対しスプレーにて噴霧して付着した後に110℃で4時間乾燥し、多孔質シリカBを得た。
(Porous silica B)
An aqueous solution in which 8.0% by mass of the adipic acid dihydrazide was completely dissolved in 100.0% by mass of pure water was prepared. Thereafter, the aqueous solution was sprayed on and adhered to the porous silica by 40.0% by mass, and dried at 110 ° C. for 4 hours to obtain porous silica B.
 (14)実施例、比較例
[実施例1]
 (不織布a)
 湿式抄紙方法により、ポリエステル繊維とビニロン繊維から構成された目付30g/mの繊維集積体を作製した。該繊維集積体をスチレンアクリル重合体と難燃剤としてのリン酸メラミンの分散液に含浸後、乾燥熱処理して目付け50g/m、厚み0.42mmの不織布aを作製した。
(14) Examples and Comparative Examples [Example 1]
(Nonwoven fabric a)
A fiber aggregate having a basis weight of 30 g / m 2 composed of polyester fiber and vinylon fiber was produced by a wet papermaking method. The fiber assembly was impregnated with a dispersion of a styrene acrylic polymer and melamine phosphate as a flame retardant, and then subjected to a dry heat treatment to produce a nonwoven fabric a having a basis weight of 50 g / m 2 and a thickness of 0.42 mm.
 (不織布b)
 熱可塑性樹脂として、融点163℃のポリプロピレン樹脂を用い、それに帯電安定剤を添加したポリプロピレン樹脂組成物を使用した。押出機およびギヤポンプ、メルトブロー口金、圧縮空気発生装置および空気加熱機、捕集コンベア、および巻取機からなる装置を用いて、メルトブロー不織布を製造した。
(Nonwoven fabric b)
As the thermoplastic resin, a polypropylene resin composition having a melting point of 163 ° C. and a charge stabilizer added thereto was used. The melt blown nonwoven fabric was manufactured using the apparatus which consists of an extruder and a gear pump, a melt blow nozzle, a compressed air generator and an air heater, a collection conveyor, and a winder.
 メルトブロー繊維流を捕集ドラムに対し、シート進行方向側に傾けて捕集するように噴射流量を調整しシート化した後、純水サクション法によってエレクトレット加工を行い、目付けが30g/m、平均繊維径が6.2μm、厚みが0.20mmの不織布bを得た。 After adjusting the spray flow rate so as to collect the meltblown fiber stream with respect to the collecting drum while tilting it toward the sheet traveling direction, it is electret processed by the pure water suction method, the basis weight is 30 g / m 2 , and the average A nonwoven fabric b having a fiber diameter of 6.2 μm and a thickness of 0.20 mm was obtained.
 (消臭性繊維シート)
 前記ガス吸着剤Aと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを70/30(ゼオライト/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量50g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートAを作製した。ガス吸着材の構成等を表1に示す。消臭性繊維シートの物性および性能を表3に示す。
(Deodorant fiber sheet)
The gas adsorbent A and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive were weighed in a mass ratio of 70/30 (zeolite / low density polyethylene), After stirring with a shaker, the mixture was uniformly sprayed onto the nonwoven fabric a so as to have a total amount of 50 g / m 2. The hot melt adhesive was melted in a drying oven at 150 ° C., and the nonwoven fabric b was covered from the hot press. Thus, a deodorant fiber sheet A was prepared, and the composition and the like of the gas adsorbent are shown in Table 1. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [実施例2]
 (消臭性繊維シート)
 前記ガス吸着剤Bと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを73.7/26.3(ガス吸着剤B/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量95g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートBを作製した。ガス吸着材の構成等を表1に示す。消臭性繊維シートの物性および性能を表3に示す。
[Example 2]
(Deodorant fiber sheet)
73.7 / 26.3 (gas adsorbent B / low density polyethylene) of the gas adsorbent B and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. Weighed at a mass ratio, stirred with a shaker, and then uniformly spread on the nonwoven fabric a so as to have a total amount of 95 g / m 2. In a state where the hot melt adhesive was dissolved in a drying oven at 150 ° C. Then, the nonwoven fabric b was covered and heat-pressed to produce a deodorant fiber sheet B. The composition and the like of the gas adsorbent are shown in Table 1. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [実施例3]
 (消臭性繊維シート)
 前記ガス吸着剤Aおよび活性炭Aを含むガス吸着剤と、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))と、を55.6/15.9/28.6(ガス吸着剤A/活性炭A/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量63g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートCを作製した。ガス吸着材の構成等を表1に示す。消臭性繊維シートの物性および性能を表3に示す。
[Example 3]
(Deodorant fiber sheet)
55.6 / 15.9 / 28 gas adsorbent including the gas adsorbent A and activated carbon A and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. .6 (gas adsorbent A / activated carbon A / low density polyethylene) was weighed, stirred with a shaker, and then uniformly spread on the nonwoven fabric a to a total amount of 63 g / m 2. In a state where the hot melt adhesive was dissolved in a drying oven at 0 ° C., the non-woven fabric b was covered and hot pressed to produce a deodorant fiber sheet C. The composition of the gas adsorbent and the like are shown in Table 1. Table 3 shows the physical properties and performance of the fiber sheet.
 [実施例4]
 (消臭性繊維シート)
 前記ガス吸着剤Aおよび活性炭Bと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを55.6/15.9/28.6(ガス吸着剤A/活性炭B/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量63g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートDを作製した。ガス吸着材の構成等を表1に示す。消臭性繊維シートの物性および性能を表3に示す。
[Example 4]
(Deodorant fiber sheet)
55.6 / 15.9 / 28.6 (gas adsorbent) of the gas adsorbent A and activated carbon B and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. (A / activated carbon B / low density polyethylene) and weighed with a shaker and sprayed uniformly on the nonwoven fabric a to a total amount of 63 g / m 2. Hot in a drying oven at 150 ° C. In a state where the melt adhesive was dissolved, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet D. The composition of the gas adsorbent, etc. are shown in Table 1. Physical properties and performance of the deodorant fiber sheet Is shown in Table 3.
 [実施例5]
 (消臭性繊維シート)
 前記ガス吸着剤Eとアジピン酸ジヒドラジドとスチレンアクリルバインダーを43.5/21.7/34.8の質量比となるよう純水に均一分散した水溶液中に不織布aを含浸後、乾燥することで目付73g/mの不織布シートcを得た。前記不織布cの上に低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を7g/mとなるように均一に散布した。130℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートEを作製した。ガス吸着材の構成等を表1に示す。消臭性繊維シートの物性および性能を表3に示す。
[Example 5]
(Deodorant fiber sheet)
By impregnating the nonwoven fabric a in an aqueous solution in which the gas adsorbent E, adipic acid dihydrazide and styrene acrylic binder are uniformly dispersed in pure water so as to have a mass ratio of 43.5 / 21.7 / 34.8, and then drying. A nonwoven fabric sheet c having a basis weight of 73 g / m 2 was obtained. Low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) was uniformly sprayed on the non-woven fabric c so as to be 7 g / m 2. The hot melt adhesive was melted in a 130 ° C. drying oven. In this state, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet E. The composition and the like of the gas adsorbent are shown in Table 1. The physical properties and performance of the deodorant fiber sheet are shown in Table 3. .
 [比較例1]
 (消臭性繊維シート)
 前記活性炭Bと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを70.0/30.0(活性炭B/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量50g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートFを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 1]
(Deodorant fiber sheet)
The mass ratio of the activated carbon B and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive is 70.0 / 30.0 (activated carbon B / low density polyethylene). After weighing and stirring with a shaker, it was uniformly sprayed on the nonwoven fabric a so as to have a total amount of 50 g / m 2. In a state where the hot-melt adhesive was dissolved in a drying oven at 150 ° C., the nonwoven fabric b was coated thereon. The deodorant fiber sheet F was produced by covering with heat and the composition of the gas adsorbent is shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [比較例2]
 (消臭性繊維シート)
 前記活性炭Cと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを70.0/30.0(活性炭C/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量265g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートGを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 2]
(Deodorant fiber sheet)
The mass ratio of the activated carbon C and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive is 70.0 / 30.0 (activated carbon C / low density polyethylene). After weighing and stirring with a shaker, it was uniformly sprayed on the non-woven fabric a so as to have a total amount of 265 g / m 2. A non-woven fabric b was formed on the hot melt adhesive in a drying oven at 150 ° C. The deodorant fiber sheet G was manufactured by covering with heat and the composition of the gas adsorbent is shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [比較例3]
 (消臭性繊維シート)
 前記多孔質シリカAと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を70.0/30.0(多孔質シリカA/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量50g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートHを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 3]
(Deodorant fiber sheet)
Mass of the porous silica A and low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) 70.0 / 30.0 (porous silica A / low-density polyethylene) as a hot melt adhesive The mixture was weighed in a ratio and stirred with a shaker, and then uniformly spread on the nonwoven fabric a so as to have a total amount of 50 g / m 2. From the state in which the hot melt adhesive was dissolved in a drying oven at 150 ° C. The nonwoven fabric b was covered and heat-pressed to produce a deodorant fiber sheet H. The composition and the like of the gas adsorbent are shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [比較例4]
 (消臭性繊維シート)
 前記多孔質シリカBと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を70.0/30.0(多孔質シリカB/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量50g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭繊維シートIを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 4]
(Deodorant fiber sheet)
Mass of low-density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) 70.0 / 30.0 (porous silica B / low-density polyethylene) as a hot melt adhesive with the porous silica B The mixture was weighed in a ratio and stirred with a shaker, and then uniformly spread on the nonwoven fabric a so as to have a total amount of 50 g / m 2. From the state in which the hot melt adhesive was dissolved in a drying oven at 150 ° C. The nonwoven fabric b was covered and heat pressed to produce a deodorant fiber sheet I. The composition of the gas adsorbent, etc. are shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [比較例5]
 (消臭性繊維シート)
 前記多孔質シリカAおよび活性炭Cを含むガス吸着剤と、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を55.6/15.9/28.6(多孔質シリカA/活性炭C/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量63g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートJを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 5]
(Deodorant fiber sheet)
A gas adsorbent containing the porous silica A and activated carbon C, and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999)) 55.6 / 15.9 / 28.6 as a hot melt adhesive. Weighed at a mass ratio of (porous silica A / activated carbon C / low density polyethylene), stirred with a shaker, and then uniformly spread on the nonwoven fabric a so that the total amount was 63 g / m 2 . In a state where the hot-melt adhesive was dissolved in a drying oven, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet J. The composition of the gas adsorbent, etc. are shown in Table 2. The deodorant fiber sheet. Table 3 shows the physical properties and performance.
 [比較例6]
 (消臭性繊維シート)
 前記ガス吸着剤Dと、ホットメルト接着剤として低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))とを70.0/30.0(ガス吸着剤D/低密度ポリエチレン)の質量比にて秤量し、シェーカーにて攪拌後、前記不織布aの上に総量50g/mとなるように均一に散布した。150℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートKを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 6]
(Deodorant fiber sheet)
70.0 / 30.0 (gas adsorbent D / low density polyethylene) of the gas adsorbent D and low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) as a hot melt adhesive. Weighed at a mass ratio, stirred with a shaker, and then uniformly spread on the nonwoven fabric a so as to have a total amount of 50 g / m 2. In a state where the hot melt adhesive was dissolved in a drying oven at 150 ° C. Then, the nonwoven fabric b was covered and heat-pressed to produce a deodorant fiber sheet K. The composition of the gas adsorbent and the like are shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3.
 [比較例7]
 (消臭性繊維シート)
 前記ガス吸着剤Fとアジピン酸ジヒドラジドとスチレンアクリルバインダーとを43.5/21.7/34.8の質量比となるよう純水に均一分散した水溶液中に不織布aを含浸後、乾燥することで目付73g/mの不織布シートdを得た。前記不織布dの上に低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を7g/mとなるように均一に散布した。130℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートLを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 7]
(Deodorant fiber sheet)
Impregnating the nonwoven fabric a in an aqueous solution in which the gas adsorbent F, adipic acid dihydrazide and styrene acrylic binder are uniformly dispersed in pure water so as to have a mass ratio of 43.5 / 21.7 / 34.8, and then drying. A nonwoven fabric sheet d having a basis weight of 73 g / m 2 was obtained. Low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) was uniformly sprayed on the nonwoven fabric d so as to be 7 g / m 2. The hot melt adhesive was melted in a 130 ° C. drying oven. In this state, the nonwoven fabric b was covered and heat pressed to produce a deodorant fiber sheet L. The composition of the gas adsorbent, etc. are shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3. .
 [比較例8]
 (消臭性繊維シート)
 前記ガス吸着剤Gとアジピン酸ジヒドラジドとスチレンアクリルバインダーを43.5/21.7/34.8の質量比となるよう純水に均一分散した水溶液中に不織布aを含浸後、乾燥することで目付73g/mの不織布シートeを得た。前記不織布eの上に低密度ポリエチレン(融点98℃、MI200g/10min(JIS K7210(1999))を7g/mとなるように均一に散布した。130℃の乾燥オーブンでホットメルト接着剤を溶かした状態でその上から不織布bをかぶせ熱プレスして消臭性繊維シートMを作製した。ガス吸着材の構成等を表2に示す。消臭性繊維シートの物性および性能を表3に示す。
[Comparative Example 8]
(Deodorant fiber sheet)
By impregnating the nonwoven fabric a into an aqueous solution in which the gas adsorbent G, adipic acid dihydrazide and styrene acrylic binder are uniformly dispersed in pure water so as to have a mass ratio of 43.5 / 21.7 / 34.8, and then drying. A nonwoven fabric sheet e having a basis weight of 73 g / m 2 was obtained. Low density polyethylene (melting point 98 ° C., MI 200 g / 10 min (JIS K7210 (1999))) was uniformly sprayed on the nonwoven fabric e so as to be 7 g / m 2. The hot melt adhesive was melted in a 130 ° C. drying oven. In this state, the nonwoven fabric b was covered and hot pressed to produce a deodorant fiber sheet M. The composition of the gas adsorbent and the like are shown in Table 2. The physical properties and performance of the deodorant fiber sheet are shown in Table 3. .
 (15)実施例まとめ
 実施例1および2のガス吸着剤はアジピン酸ジヒドラジドを付着したSiO/Alモル比が2以上20以下の範囲にあり、Y型ゼオライトを有していた。活性炭を使用している比較例1のガス吸着剤に比べて、低沸点アルデヒド類の代表成分であるアセトアルデヒドの初期除去効率、吸着容量ともに優れる結果が得られた。吸着飽和後の脱離臭気評価においてアセトアルデヒドガスおよびトルエンガスともに1.0以下とほとんど臭いを発していない結果が得られた。
(15) Summary of Examples The gas adsorbents of Examples 1 and 2 had a SiO 2 / Al 2 O 3 molar ratio in the range of 2 to 20 to which adipic acid dihydrazide was adhered, and had Y-type zeolite. Compared with the gas adsorbent of Comparative Example 1 using activated carbon, the initial removal efficiency and adsorption capacity of acetaldehyde, which is a representative component of low-boiling aldehydes, were excellent. In the evaluation of desorption odor after adsorption saturation, both acetaldehyde gas and toluene gas were 1.0 or less, and almost no odor was generated.
 さらに実施例3および実施例4はさらに少量の活性炭を含ませたものである。アジピン酸ジヒドラジドを付着したゼオライトの効果によりアセトアルデヒド除去性能に優れ、活性炭との複合効果によりトルエンおよびアセトアルデヒドの吸着飽和後の脱離臭気評価でさらに優れる結果が得られた。実施例4では活性炭にアジピン酸ジヒドラジドを付着しているため、アセトアルデヒドの脱離臭気の改善効果が顕著に表れている。 Furthermore, Example 3 and Example 4 contain a smaller amount of activated carbon. Due to the effect of zeolite with adipic acid dihydrazide attached, it was excellent in acetaldehyde removal performance, and due to the combined effect with activated carbon, more excellent results were obtained in the evaluation of desorption odor after adsorption saturation of toluene and acetaldehyde. In Example 4, since the adipic acid dihydrazide was adhered to the activated carbon, the effect of improving the acetaldehyde desorption odor appeared remarkably.
 実施例5では粒子径5.0μmの微粉末状のゼオライトを不織布にバインダーにより固着した形態を取っているが、実施例1および2同様にアセトアルデヒド除去性能に優れ、吸着飽和後の脱離臭気評価においてアセトアルデヒドガスおよびトルエンガスともに1.0以下とほとんど臭いを発していない良好な結果が得られた。 In Example 5, a fine powdery zeolite having a particle size of 5.0 μm is fixed to a nonwoven fabric with a binder, but as in Examples 1 and 2, it has excellent acetaldehyde removal performance and evaluates desorption odor after adsorption saturation. In Fig. 1, both acetaldehyde gas and toluene gas were 1.0 or less, and good results with almost no odor were obtained.
 一方、ガス吸着剤に活性炭のみを使用した場合、比較例1のとおりアセトアルデヒド除去性能が満足できるレベルではなかった。比較例2に示すように活性炭量を増やすことでアセトアルデヒド除去性能を向上させることは可能であるが、ガス吸着剤量が増えることで消臭繊維シートの圧力損失が上昇するとともに厚みが増える。その結果、エアフィルターユニットとしても圧力損失が大幅に上昇した。さらに多量の活性炭を使用することでアセトアルデヒドやトルエンを物理吸着で吸着濃縮してしまい、温湿度変化等の環境要因によって、濃縮されていた臭気成分が一気に放出されることにより、トルエン脱離最大濃度は18.2ppmまで上昇し、6段階臭気判定法でも4.0であり本来の存在濃度では問題とならなかった臭気成分が悪臭として認知される結果となった。 On the other hand, when only activated carbon was used as the gas adsorbent, as in Comparative Example 1, the acetaldehyde removal performance was not at a satisfactory level. As shown in Comparative Example 2, it is possible to improve the acetaldehyde removal performance by increasing the amount of activated carbon, but increasing the gas adsorbent amount increases the pressure loss of the deodorant fiber sheet and increases the thickness. As a result, the pressure loss significantly increased as an air filter unit. Furthermore, by using a large amount of activated carbon, acetaldehyde and toluene are adsorbed and concentrated by physical adsorption, and concentrated odor components are released all at once due to environmental factors such as temperature and humidity changes. Increased to 18.2 ppm, which was 4.0 even in the 6-step odor determination method, and the odor component that was not a problem at the original concentration was recognized as a bad odor.
 また、比較例3では多孔質シリカにアジピン酸ジヒドラジドを付着することで、少量のガス吸着剤量でもアセトアルデヒド除去性能に優れているが、シリカ特有のメソ孔にトルエンが物理吸着することで、トルエン脱離最大濃度は5.8ppmまで上昇し、6段階臭気判定法でも3.0であり本来の存在濃度では問題とならなかった臭気成分が悪臭として認知される結果となった。 In Comparative Example 3, adipic acid dihydrazide is adhered to porous silica, so that acetaldehyde removal performance is excellent even with a small amount of gas adsorbent. However, toluene is physically adsorbed in mesopores peculiar to silica. The maximum desorption concentration increased to 5.8 ppm, and it was 3.0 even in the 6-step odor determination method. As a result, an odor component that was not a problem at the original concentration was recognized as a bad odor.
 ガス吸着剤に多孔質シリカを使用した場合、比較例4に示すようにメソ孔の細孔径を調整することで脱離性能は改善するが、アセトアルデヒド除去性能が大幅に低下した。比較例5に示すように活性炭と混合することで脱離性能が改善される傾向にあるが、アセトアルデヒドの6段階臭気判定法で2.0を超える結果となっており、脱離抑止については未だに改善が必要なレベルであった。 When porous silica was used as the gas adsorbent, the desorption performance was improved by adjusting the pore diameter of the mesopores as shown in Comparative Example 4, but the acetaldehyde removal performance was greatly reduced. As shown in Comparative Example 5, the desorption performance tends to be improved by mixing with activated carbon, but the result of the acetaldehyde 6-step odor determination method exceeds 2.0. The level needed improvement.
 また、比較例6のガス吸着剤は、SiO/Alモル比が38.0のゼオライトを使用することで、トルエンの物理吸着量が増えてしまい、吸着飽和後の最大脱離濃度が9.3ppmで本来の存在濃度では問題とならなかった臭気成分が悪臭として認知される結果となった。 Further, the gas adsorbent of Comparative Example 6 uses zeolite having a SiO 2 / Al 2 O 3 molar ratio of 38.0, which increases the amount of physical adsorption of toluene, and the maximum desorption concentration after adsorption saturation. As a result, an odor component that was not a problem at the original concentration of 9.3 ppm was recognized as a bad odor.
 比較例7ではA型のゼオライトを使用しているが、細孔径が小さいため、水溶性の酸ヒドラジド化合物が細孔内に入りづらく、かつ、アセトアルデヒドが細孔内に入りづらい構造であるため、アセトアルデヒド除去について充分な性能が得られなかった。 In Comparative Example 7, A-type zeolite is used, but since the pore diameter is small, the water-soluble acid hydrazide compound is difficult to enter the pores, and acetaldehyde is difficult to enter the pores. Sufficient performance for acetaldehyde removal was not obtained.
 比較例8ではY型のゼオライトを使用しているが、SiO/Alモル比が25.0で疎水性が強いため、トルエンの物理吸着量が増え脱離最大濃度が上がった、結晶構造内のカチオン交換サイトがアンモニウムイオンであるためアセトアルデヒド除去性能について充分な性能が得られなかった。 In Comparative Example 8, a Y-type zeolite is used, but since the SiO 2 / Al 2 O 3 molar ratio is 25.0 and the hydrophobicity is strong, the physical adsorption amount of toluene is increased and the maximum desorption concentration is increased. Since the cation exchange site in the crystal structure is ammonium ion, sufficient performance for removing acetaldehyde was not obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明によるガス吸着剤、消臭性繊維シートおよびエアフィルターはVOC成分中の低沸点アルデヒド類の吸着性能に優れ、かつ車室内から発生する低沸点アルデヒド類や低極性ガス類のガス吸着剤からの脱離量が少ないため、特に自動車や鉄道車両等の車室内の空気を清浄化するためのエアフィルターとして好ましく使用される。 The gas adsorbent, deodorant fiber sheet and air filter according to the present invention are excellent in adsorption performance of low-boiling aldehydes in VOC components, and from low-boiling aldehydes and low-polarity gas adsorbents generated from the passenger compartment. In particular, it is preferably used as an air filter for purifying the air in the passenger compartment of automobiles and railway vehicles.

Claims (8)

  1.  プロトン型のY型ゼオライトと水溶性の酸ヒドラジド化合物とを含有し、
     前記プロトン型のY型ゼオライトは、SiOおよびAlを含有し、
     前記プロトン型のY型ゼオライトにおけるSiOとAlとの含有モル比(SiOの含有モル/Alの含有モル)が2以上20以下である、ガス吸着剤。
    Containing a proton type Y zeolite and a water-soluble acid hydrazide compound,
    The proton type Y-type zeolite contains SiO 2 and Al 2 O 3 ,
    A gas adsorbent in which the molar ratio of SiO 2 to Al 2 O 3 in the proton-type Y-type zeolite (containing mole of SiO 2 / containing mole of Al 2 O 3 ) is 2 or more and 20 or less.
  2.  さらに、活性炭を含有する、請求項1に記載のガス吸着剤。 The gas adsorbent according to claim 1, further comprising activated carbon.
  3.  前記活性炭の比表面積が900~1300m/gである、請求項2に記載のガス吸着剤。 The gas adsorbent according to claim 2, wherein the activated carbon has a specific surface area of 900 to 1300 m 2 / g.
  4.  前記活性炭とプロトン型のY型ゼオライトおよび水溶性の酸ヒドラジド化合物との含有質量比(活性炭の含有質量/プロトン型のY型ゼオライトおよび水溶性の酸ヒドラジド化合物の質量の和)が0.05~0.50である、請求項2または3に記載のガス吸着剤。 The mass ratio of the activated carbon to the proton type Y zeolite and the water-soluble acid hydrazide compound (sum of the mass of activated carbon / the mass of the proton type Y zeolite and the water-soluble acid hydrazide compound) is 0.05 to The gas adsorbent according to claim 2 or 3, which is 0.50.
  5.  請求項1~4のいずれかに記載のガス吸着剤を有する、消臭繊維シート。 A deodorant fiber sheet comprising the gas adsorbent according to any one of claims 1 to 4.
  6.  単位面積あたりの前記ガス吸着剤の含有量が10~100g/mである、請求項5に記載の消臭繊維シート。 The deodorant fiber sheet according to claim 5, wherein the content of the gas adsorbent per unit area is 10 to 100 g / m 2 .
  7.  請求項5または6に記載の消臭繊維シートを備える、エアフィルターユニット。 An air filter unit comprising the deodorizing fiber sheet according to claim 5 or 6.
  8.  アルミン酸ナトリウムとケイ酸ナトリウムとを混合し混合物を得た後、前記混合物を90~120℃で加熱し、ゼオライトを得る工程と、
     前記ゼオライトを100~120℃の硝酸アンモニウム溶液で処理する工程と、
     前記ゼオライトを500~800℃の過熱水蒸気にて焼成処理する工程と、
     前記ゼオライトに水溶性の酸ヒドラジド化合物を付着させる工程とを、この順に有する、ガス吸着剤の製造方法。
    A step of mixing sodium aluminate and sodium silicate to obtain a mixture, and then heating the mixture at 90 to 120 ° C. to obtain a zeolite;
    Treating the zeolite with an ammonium nitrate solution at 100-120 ° C .;
    Calcining the zeolite with superheated steam at 500 to 800 ° C .;
    A method for producing a gas adsorbent, comprising the step of adhering a water-soluble acid hydrazide compound to the zeolite in this order.
PCT/JP2019/003069 2018-02-02 2019-01-30 Gas adsorbent, deodorant fiber sheet, and method for preparing gas adsorbent WO2019151283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980011335.4A CN111683745B (en) 2018-02-02 2019-01-30 Gas adsorbent, deodorizing fiber sheet, and method for producing gas adsorbent
JP2019516735A JP7188383B2 (en) 2018-02-02 2019-01-30 Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016951 2018-02-02
JP2018-016951 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019151283A1 true WO2019151283A1 (en) 2019-08-08

Family

ID=67479760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003069 WO2019151283A1 (en) 2018-02-02 2019-01-30 Gas adsorbent, deodorant fiber sheet, and method for preparing gas adsorbent

Country Status (3)

Country Link
JP (1) JP7188383B2 (en)
CN (1) CN111683745B (en)
WO (1) WO2019151283A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485250A (en) * 2020-05-08 2022-12-16 松下知识产权经营株式会社 Glass panel unit, getter material composition, and method for manufacturing glass panel unit
CN115996790A (en) * 2020-09-14 2023-04-21 大金工业株式会社 Adsorbent and granulated material
KR20230069465A (en) * 2021-11-12 2023-05-19 한국화학연구원 Manufacturing method of zeolite composites for volatile organic compounds adsorption-oxidation
JP7434553B2 (en) 2019-12-18 2024-02-20 サビック エスケー ネクスレン カンパニー ピーティーイー リミテッド Method for purifying alpha olefin and composition for purifying alpha olefin therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241713A (en) * 1985-08-12 1987-02-23 Toyo Soda Mfg Co Ltd Firing of ammonium exchanged faujasite type zeolite
JP2008148804A (en) * 2006-12-15 2008-07-03 Suminoe Textile Co Ltd Deodorant having superior cigarette odor removal performance
JP2011084850A (en) * 2009-10-19 2011-04-28 Nisshinbo Holdings Inc Fiber sheet
JP2014064970A (en) * 2012-09-25 2014-04-17 Toyobo Co Ltd Aldehyde remover and filter using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252674B2 (en) * 2004-02-02 2013-07-31 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil desulfurization method
EP2261417B1 (en) * 2008-03-31 2018-08-01 Toray Industries, Inc. Deodorant fibrous structure and air filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241713A (en) * 1985-08-12 1987-02-23 Toyo Soda Mfg Co Ltd Firing of ammonium exchanged faujasite type zeolite
JP2008148804A (en) * 2006-12-15 2008-07-03 Suminoe Textile Co Ltd Deodorant having superior cigarette odor removal performance
JP2011084850A (en) * 2009-10-19 2011-04-28 Nisshinbo Holdings Inc Fiber sheet
JP2014064970A (en) * 2012-09-25 2014-04-17 Toyobo Co Ltd Aldehyde remover and filter using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"General catalogue of synthetic zeolite", TOSOH, 22 February 2016 (2016-02-22), pages 13, XP055628508, Retrieved from the Internet <URL:https://www.tosoh.co.jp/zeolite/tosoh/pdfs/catalog.pdf> [retrieved on 20190326] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434553B2 (en) 2019-12-18 2024-02-20 サビック エスケー ネクスレン カンパニー ピーティーイー リミテッド Method for purifying alpha olefin and composition for purifying alpha olefin therefor
CN115485250A (en) * 2020-05-08 2022-12-16 松下知识产权经营株式会社 Glass panel unit, getter material composition, and method for manufacturing glass panel unit
CN115996790A (en) * 2020-09-14 2023-04-21 大金工业株式会社 Adsorbent and granulated material
KR20230069465A (en) * 2021-11-12 2023-05-19 한국화학연구원 Manufacturing method of zeolite composites for volatile organic compounds adsorption-oxidation
KR102641139B1 (en) 2021-11-12 2024-02-27 한국화학연구원 Manufacturing method of zeolite composites for volatile organic compounds adsorption-oxidation

Also Published As

Publication number Publication date
CN111683745B (en) 2024-01-02
CN111683745A (en) 2020-09-18
JPWO2019151283A1 (en) 2020-12-03
JP7188383B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP7188383B2 (en) Gas adsorbent, deodorant fiber sheet, and method for producing gas adsorbent
TW541200B (en) Filter element, process for producing it and filter using the element
JP5428857B2 (en) Deodorizing fiber structure and air filter
JP6988477B2 (en) Filter media for air purification
KR102129457B1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
WO2016153062A1 (en) Filter material for air filter
JP2009061445A (en) Gas adsorbing sheet
JP2018167155A (en) Adsorbent
JP2013094367A (en) Air cleaning filter material
JP2010253409A (en) Gas adsorbent, filter medium using the same and air filter
JP2008206550A (en) Absorbent sheet
JP6194579B2 (en) Air cleaning media
JP6594609B2 (en) Filter medium for deodorizing filter
JP2013220375A (en) Filter medium
KR20050026065A (en) Filter element, filter and method of using and method of cleaning the smae
JP2009028207A (en) Deodorant sheet and its production method, deodorant, and air filter
JP7017026B2 (en) Deodorizing filter media and filters
CN113795323A (en) Filter medium for filter and filter
JP4935177B2 (en) Adsorbent sheet
JP2015164710A (en) air cleaning filter medium
JP2021112694A (en) Filter medium for air filter, and air filter unit using the same
JP2010125401A (en) Aldehyde removing material
JP2012096129A (en) Filter medium for air cleaning
JP2000262834A (en) Air cleaning filter
WO2023190397A1 (en) Activated carbon deodorizing sheet and filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516735

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748188

Country of ref document: EP

Kind code of ref document: A1