WO2019151281A1 - Positive-pressure can - Google Patents

Positive-pressure can Download PDF

Info

Publication number
WO2019151281A1
WO2019151281A1 PCT/JP2019/003066 JP2019003066W WO2019151281A1 WO 2019151281 A1 WO2019151281 A1 WO 2019151281A1 JP 2019003066 W JP2019003066 W JP 2019003066W WO 2019151281 A1 WO2019151281 A1 WO 2019151281A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit panel
change amount
maximum depth
positive pressure
depth change
Prior art date
Application number
PCT/JP2019/003066
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 奥村
清澄 眞仁田
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019008810A external-priority patent/JP7212214B2/en
Priority claimed from JP2019008808A external-priority patent/JP7210822B2/en
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2019151281A1 publication Critical patent/WO2019151281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/18Cans, casks, barrels, or drums characterised by shape of polygonal cross-section

Definitions

  • the present invention relates to a positive pressure can in which an internal pressure acts on the can body, such as a can for beer, strawberry high and other carbonated beverages, a can filled with an inert gas that prevents oxidation of the contents, and in particular, the can
  • the present invention relates to a positive pressure can that has a polyhedral wall composed of a plurality of unit panels in the body, and in a sealed state, the unit panels bulge outward due to internal pressure, restores the original shape when opened, and emits a restoring sound when restored.
  • a positive pressure can as described in Patent Document 1 is known.
  • This positive pressure can is provided with a can body having a can body and a can lid for sealing the can body in a positive pressure state. It is composed of a large number of unit panels with a folding structure partitioned by.
  • the unit panel has a shape in which the can body is partially recessed, elastically deforms in a direction that the recess becomes smaller due to internal pressure acting on the can body, and is restored to the original recessed shape when the can lid is opened. Yes. In this way, when the contents are sealed, the unevenness due to the depression of the unit panel is small due to the internal pressure. The product value was given.
  • a first object of the present invention is to provide a positive pressure can in which a restoration sound of a unit panel constituting a polyhedral wall is increased, and an auditory effect is added simultaneously with a visual effect of restoration of the unit panel.
  • the second object of the present invention is to provide a positive pressure can that can be reduced to such an extent that the restored sound of the unit panel constituting the polyhedral wall is not a concern.
  • one invention constituting the first invention group is: A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body
  • the unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened.
  • the maximum value of the maximum depth change amount of the unit panel is set to 0.75 mm or more and 1.2 mm or less.
  • the unit panel does not need to be surrounded by the boundary ridgeline, and includes a case where at least a part of the unit panel is partitioned by the boundary ridgeline.
  • the maximum value of the maximum depth change amount of each unit panel is controlled to be 0.75 mm or more, so that a restored sound having a size that can be easily heard even after the gas emission sound is heard is generated. be able to. Accordingly, an auditory effect is added at the same time as a visual effect restored by the unit panel, and an effect when the unevenness appears synergistically can be enhanced.
  • the maximum depth change greatly changes and the change is visually noticeable, the effect of attracting attention and making the sound sensitive and listening to the restored sound is high. Further, in order to increase the maximum depth change amount, it is necessary to enlarge the unit panel, and the visual effect can be enhanced by greatly changing the large unit panel in addition to the depth.
  • another invention constituting the first invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, wherein at least a part of the can body is convex. It has a polyhedral wall composed of a large number of unit panels partitioned by boundary ridgelines, and the unit panel is indented inward of the can body in a free state, and the depression is small due to internal pressure acting on the can body.
  • a positive pressure can with a structure that is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and restored when it is restored,
  • An average value of the maximum depth change amount for the unit panel in which the maximum depth change amount is 0.4 mm or more is set in a range of 0.54 mm or more and 0.75 mm or less. Since some unit panels may not be restored when opened, the effect of unit panels that are not restored can be excluded by removing unit panels whose maximum depth change is less than 0.4 mm. Can be accurately evaluated. By using the average value in this way, it is possible to realize a positive pressure can that can stably evaluate the maximum amount of change in depth and obtain a stable restoration sound of a certain level or more.
  • Still another invention constituting the first invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, and at least a part of the can body is convex.
  • the unit panel has a polyhedral wall composed of a large number of unit panels partitioned by boundary ridge lines, and the unit panel has a shape recessed inward of the can body in a free state, and a recess is formed by an internal pressure acting on the can body.
  • a positive pressure can with a configuration that deforms in a smaller direction, restores the original shape when the can lid is opened, and generates a restoration sound when restoring
  • the invention of the first invention group can be configured as follows. 1) The sound pressure level of the restored sound when the positive pressure can is opened is set to 75 dB or more at a position 40 cm away from the can body. The gas emission sound is about 70 dB, and if it is about 75 dB, the sound level is sufficiently audible even after the gas emission sound. 2) The polyhedral wall is 25% or more of the area of the can body. In this way, the sound pressure level can be effectively increased. 3) The unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on the center plane passing through the central axis of the can body, and 2 located at a symmetrical position with respect to the center plane.
  • the maximum depth change amount is the change amount of the unit panel depth at the midpoint of the horizontal ridge line. In this way, the horizontal ridgeline that has been deformed so that the center swells due to the internal pressure returns to the original shape all at once, so that a clear restoration sound can be generated. In addition to the case where the unit panel is completely elastically restored, the case where the unit panel is partially plastically deformed and does not completely return to the original shape is included.
  • the polyhedral wall has a configuration in which unit panel rows in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body are densely arranged in the circumferential direction of the can body,
  • the number of corners of the cross section passing through the horizontal ridge line of the unit panel is set in the range of 11 to 12 corners.
  • the angle is larger than 12 corners, the size of the unit panel is reduced, so that the maximum depth change amount is reduced.
  • the angle is smaller than 11 corners, the area of the unit panel increases and the maximum depth change amount increases, but the axial load strength at the time of empty can cannot be maintained.
  • the area of the unit panel is set to 130 mm 2 or more and 180 mm 2 or less.
  • the maximum depth change amount is the maximum depth change amount when the internal pressure before opening is 20 to 300 kPa, preferably 120 to 150 kPa.
  • the present invention has found that there is a certain relationship between the maximum depth change amount and the restored sound, and a suitable range of internal pressure is sufficient until the depression of the unit panel becomes close to a cylinder when the internal pressure is applied. The range is such that it is deformed and does not cause plastic deformation as much as possible, and returns to the original hollow shape when the internal pressure is released.
  • a preferable range is 20 to 300 kPa, and a more preferable range is 120 to 150 kPa.
  • the maximum depth change amount increases.
  • the maximum depth change varies depending on the can depth and panel size.
  • the maximum depth change amount is determined by various factors, and the maximum depth change amount is related to the restored sound.
  • This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if it is used at a pressure lower than 120 kPa or a pressure higher than 150 kPa, it shall be included within this range when measured in this pressure range.
  • one invention constituting the second invention group is:
  • a positive pressure can comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, Having a polyhedral wall composed of a large number of unit panels defined by at least part of the can body by convex boundary ridge lines;
  • the unit panel In a free state where no internal pressure is applied, the unit panel has a cross-sectional shape parallel to the central axis of the can body that is recessed in an arc shape inwardly of the can body, and the depression is small due to the internal pressure acting on the can body.
  • the average value of the maximum depth change amount of each unit panel is set in a range of 0.46 mm or more and 1.08 mm or less.
  • the unit panel has a configuration in which at least a part of the unit panel is partitioned by a boundary ridgeline, and includes both a configuration in which a part is opened and a closed configuration in which the entire periphery is surrounded by a boundary ridgeline.
  • the unit panel when the unit panel has a shape in which the cross-sectional shape in the direction parallel to the central axis of the can body is recessed in an arc shape, the amount of elastic strain at the time of internal pressure action increases and is released at a time when the internal pressure is released. If the restoration sound is large and the average value of the maximum depth variation of each unit panel is 0.46 mm or more and 1.08 mm or less, the restoration sound is maintained at a level larger than the gas emission sound 70 dB. I found out that I could do it. As a result, even after the gas emission sound is heard, it is possible to generate a restoration sound that is large enough to be heard, and the visual effect that the unit panel restores, as well as the auditory effect and the effect when irregularities appear.
  • the restoration sound of this panel is related to the size per panel and the number of panels. If the average value of the maximum depth change is large, the sound pressure level per panel increases, but it is necessary to increase the size of the panel, so the number of panels decreases and the overall restored sound decreases. To go. If the average value of the maximum depth change amount is 1.08 mm or less, the restoration sound can be maintained at a level higher than the gas emission sound 70B even if the number of panels is reduced. If the average value of the maximum depth change amount is small, the sound pressure level per panel becomes small, but the size of the panel can be reduced to increase the number of panels, and the overall restored sound can be increased. it can.
  • another invention constituting the second invention group is a positive pressure can provided with a can body having a can body and a can lid for sealing the can body in a positive pressure state.
  • a polyhedral wall composed of a large number of unit panels defined by at least part of the can body by convex boundary ridge lines;
  • the unit panel In a free state where no internal pressure is applied, the unit panel has a cross-sectional shape parallel to the central axis of the can body that is recessed in an arc shape inwardly of the can body, and the depression is small due to the internal pressure acting on the can body.
  • the maximum value of the maximum depth change amount is set in a range of 0.59 mm or more and 1.31 mm or less. In this way, by using the maximum value and the average value of the maximum depth change amount, it is possible to realize a positive pressure can in which the maximum depth change amount is stable, the maximum value is large, and a larger restoration sound can be obtained.
  • the invention of the second invention group can be configured as follows. 1) The sound pressure level of the restored sound is set to 75 dB or more at a position 40 cm away from the can body.
  • the gas emission sound is about 70 dB, and if it is about 75 dB, the sound level is sufficiently audible even after the gas emission sound.
  • the polyhedral wall is 25% or more of the area of the can body. In this way, the sound pressure level can be effectively increased.
  • the unit panel In the free state where no internal pressure is applied, the unit panel has a shape in which the center of the unit panel has a cross-sectional shape perpendicular to the central axis of the can body that is recessed inward of the can body with respect to a straight line. It has become.
  • the average value of the maximum depth change amount is related to the size of the unit panel, and the larger the unit panel size is, the larger the maximum depth change amount is.
  • the relationship between the number of unit panels and the number of unit panels is such that the larger the unit panel size, the smaller the number of unit panels.
  • the number of unit panels is set to 65 or more and 117 or less. Even if the number of unit panels is larger than 117, the size of the unit panel becomes too small and the restored sound does not increase.
  • the polyhedron wall in the free state has a plurality of wavy curved surfaces in the circumferential direction in which peaks and troughs are alternately formed in the axial direction, and the wavy curved surfaces are in relation to the central plane passing through the central axis of the can body
  • the boundary ridge lines of the symmetrical shape are partitioned by the corrugated ridge lines, the narrow part of the interval between the corrugated ridge lines is a peak part of a corrugated curved surface, the wide part is a valley part, the unit panel is This is a region from the top of one crest of a corrugated curved surface to the top of the next crest through a trough, and the top and bottom unit panels are divided by the top of the crest.
  • the maximum depth change amount is the maximum depth change amount when the internal pressure before opening is 20 to 300 kPa, preferably 120 to 150 kPa.
  • the present invention has found that there is a certain relationship between the maximum depth change amount and the restored sound, and a suitable range of internal pressure is sufficient until the depression of the unit panel becomes close to a cylinder when the internal pressure is applied.
  • the range is such that it is deformed and does not cause plastic deformation as much as possible, and returns to the original depression shape when the internal pressure is released.
  • the preferable range of the internal pressure when measuring the maximum depth change is 20 to 300 kPa, and the more preferable range is as follows. 120 to 150 kPa.
  • This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if the pressure is lower than 120 kPa or higher than 150 kPa, the maximum depth change amount is within the range described in the claims when measured in this pressure range.
  • one invention constituting the third invention group is: A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body
  • the unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened.
  • a positive pressure can that is restored and emits a restoration sound when restored
  • the maximum value of the maximum depth change amount of the unit panel is set to 0.54 mm or less.
  • the unit panel does not need to be surrounded by the boundary ridgeline, and includes a case where at least a part of the unit panel is partitioned by the boundary ridgeline.
  • a tearing sound of the can lid due to the pull tab and a gas releasing sound when the gas escapes are heard loudly, and then a restoring sound is heard. This restored sound may be heard multiple times, and is an anxious sound when attention is paid.
  • another invention constituting the third invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, and at least a part of the can body is convex. It has a polyhedral wall composed of a large number of unit panels partitioned by boundary ridgelines, and the unit panel is indented inward of the can body in a free state, and the depression is small due to internal pressure acting on the can body.
  • the unit panel whose maximum depth change of the unit panel is 0.4 mm or more
  • the average value of the maximum depth change amount is about 0.45 mm or less. Since the variation becomes large when the maximum value of the maximum depth change amount is used as a reference, the average value of the maximum depth change amount of the unit panel was examined. However, it was found that not all unit panels are completely restored, and some unit panels may not be restored, and simply taking an average value is not clear.
  • the average value excluding the unit panel whose maximum depth change is less than 0.4 mm can be excluded, so that the influence of the unit panel that is not restored can be excluded, and the restoration form of the polyhedral wall can be accurately evaluated. I found out that I can do it.
  • the average value in this way, it is possible to realize a positive pressure can that can stably evaluate the maximum amount of change in depth and obtain a stable restoration sound of a certain level or more.
  • the maximum value of the maximum depth change amount is less than 0.4 mm, the sound pressure level is sufficiently low.
  • another invention constituting the third invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, and at least a part of the can body It has a polyhedral wall composed of a large number of unit panels defined by convex boundary ridge lines, and the unit panels are indented inward of the can body in a free state, and by the internal pressure acting on the can body
  • a positive pressure can with a configuration that deforms in the direction that the dent becomes smaller, restores the original shape when the can lid is opened, and generates a restoration sound when restoring
  • the unit panel is configured so that an average value of a maximum depth change amount is less than 0.4 mm.
  • the average value of unit panels with a maximum depth change of 0.4 mm or more is set to 0.45 mm or less, and the maximum value of the maximum depth change is between 0.4 mm and 0.45 mm, naturally The average value is less than 0.45 mm.
  • the average value is configured to be less than 0.4 mm.
  • the invention of the third invention group can be configured as follows. 1) When the average value of the maximum depth change amount of the unit panel is less than 0.4 mm, it is set to be 0.15 mm or more and less than 0.4 mm. In this range, you can hear the sound, but it will be small enough not to bother you. 2) The average value of the maximum depth change amount of the unit panel is set to 0.15 mm or less. If it is made small to this range, it can be set as the level which cannot be heard completely. 3) The sound pressure level of the restored sound when the positive pressure can is opened is set to 72 dB or less at a position 40 cm away from the can body.
  • the gas emission sound is about 70 dB, and if it is about 70 dB and 72 dB or less, it becomes a level that does not matter. Preferably, it is set to 70 dB or less.
  • the polyhedral wall is 75% or less of the area of the can body.
  • the unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and 2 located symmetrically with respect to the central plane.
  • the maximum change depth is a change in unit panel depth at the midpoint of the horizontal ridge line. In this way, the rigidity of the boundary ridge line of the unit panel is high, and the horizontal ridge line that was deformed so that the center swells due to the internal pressure returns to the original shape at once, but the maximum depth change is small, so the restoration sound is reduced. can do.
  • the polyhedral wall has a configuration in which unit panel rows in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body are densely arranged in the circumferential direction of the can body,
  • the number of corners of the cross section passing through the horizontal ridge line of the unit panel is set in the range of 14 to 16 corners.
  • the unit panel has a shape in which a cross-sectional shape parallel to the central axis of the can body is recessed in an arc shape. In the case of an arc, the unit panel is easily deformed.
  • the maximum depth change amount is the maximum depth change amount when the internal pressure before opening is 20 to 300 kPa, preferably 120 to 150 kPa.
  • the panel depth in the internal pressure acting state becomes shallow, and the difference from the panel depth in the internal pressure released state increases, and as a result, the maximum depth change amount increases.
  • the present invention has found that there is a certain relationship between the maximum depth change amount and the restored sound, and a suitable range of internal pressure is sufficient until the depression of the unit panel becomes close to a cylinder when the internal pressure is applied.
  • the range is such that it is deformed and does not cause plastic deformation as much as possible, and returns to the original depression shape when the internal pressure is released.
  • the preferable range of the internal pressure when measuring the maximum depth change is 20 to 300 kPa, and the more preferable range is as follows. 120 to 150 kPa.
  • This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if the pressure is lower than 120 kPa or higher than 150 kPa, the maximum depth change amount is within the range described in the claims when measured in this pressure range.
  • FIG. 1 shows a positive pressure can according to Embodiment 1 of the invention of the first invention group, (A) is a front view of an internal pressure acting state, (B) is a front view of an internal pressure released state, (C) is an enlarged schematic perspective view of a portion C in (B), and (D) is a sectional view taken along the line DD in (B).
  • 2 shows a unit panel of the positive pressure can shown in FIG. 1, in which (A) is a front view, (B) is a cross-sectional view taken along line BB of (A), and (C) is a cross-sectional view of C—
  • FIG. 3A is a diagram showing a method for measuring the maximum depth change amount of the positive pressure can of the present invention, and FIG.
  • FIG. 3B is a diagram showing a method for measuring the restoration sound of the positive pressure can.
  • 4A is a graph showing the relationship between the maximum value of the maximum depth change amount of the unit panel and the restored sound
  • FIG. 4B is a graph showing the relationship between the average value of the maximum depth change amount of 0.4 mm or more and the restored sound
  • FIG. 5A is a graph showing the relationship between the average value of the maximum depth change amount of all unit panels and the restored sound
  • FIG. 5B is a graph showing the relationship between the average value of the maximum depth change amount of 0.3 mm or more and the restored sound.
  • 6A and 6B show a positive pressure can according to Embodiment 1 of the invention of the second invention group, in which FIG.
  • FIG. 6A is a front view of an internal pressure acting state
  • FIG. 6B is a front view of an internal pressure released state
  • (C) is a diagram showing one undulating surface of (B)
  • (D) is a sectional view taken along line DD of (C)
  • (E) is a sectional view taken along line EE of (B).
  • FIG. 7 shows a unit panel of the positive pressure can in FIG. 6, where (A) is a front view, (B) is a cross-sectional view along line BB of (A), and (C) is C—
  • FIG. 8 (A) and 8 (B) are front views of the internal pressure action state showing a configuration in which the number of unit panels is changed with respect to the positive pressure can in FIG.
  • FIG. 9A and 9B show a positive pressure can according to Embodiment 2 of the invention of the second invention group, in which FIG. 9A is a front view of an internal pressure acting state, FIG. 9B is a front view of an internal pressure released state, (C) is a diagram showing one undulating surface of (B), (D) is a sectional view taken along line DD of (C), and (E) is a sectional view taken along line EE of (B).
  • FIG. 10 shows a unit panel of the positive pressure can in FIG.
  • FIG. 11A is a diagram showing a method for measuring the maximum depth change amount of the positive pressure can of the present invention
  • FIG. 11B is a diagram showing a method for measuring the restoration sound of the positive pressure can.
  • FIG. 12 is a graph showing the relationship between the average value of the maximum depth change amount of the unit panel and the sound pressure level of the restored sound.
  • FIG. 13A is a graph showing the relationship between the number of unit panels and the average value of the maximum depth change amount, and FIG.
  • FIG. 13B is the average value of the maximum depth change amount and (the size of restored sound / number of panels). It is a graph which shows the relationship.
  • FIG. 14 is a graph showing the relationship between the maximum value of the maximum depth change of the unit panel and the sound pressure level of the restored sound.
  • FIG. 15 shows a positive pressure can according to Embodiment 1 of the invention of the third invention group, (A) is a front view in an internal pressure action state, (B) is a front view in an internal pressure release state, (C) is an enlarged schematic perspective view of a portion C in (B), and (D) is a sectional view taken along the line DD in (B).
  • FIG. 16 shows a unit panel of the positive pressure can in FIG.
  • FIG. 17 shows a positive pressure can according to Embodiment 2 of the present invention, in which (A) is a front view of an internal pressure acting state, (B) is a front view of an internal pressure released state, and (C) is (B). (D) is a sectional view taken along the line DD of (C), and (E) is a sectional view taken along the line EE of (B).
  • FIG. 18 shows a unit panel of the positive pressure can in FIG.
  • FIG. 19A is a diagram showing a method for measuring the maximum depth change amount of the positive pressure can of the present invention
  • FIG. 19B is a diagram showing a method for measuring the restoration sound of the positive pressure can.
  • FIG. 20 is a graph showing the relationship between the maximum value of the maximum depth change amount of the unit panel and the sound pressure level of the restored sound.
  • FIG. 21 is a graph showing the relationship between the average value of the maximum depth change amount and the restored sound, excluding unit panels whose maximum depth change amount is less than 0.4 mm.
  • FIG. 22A shows the relationship between the average value of the maximum depth change amount of all the unit panels and the restored sound
  • FIG. 22B shows the relationship between the average value excluding the unit panel whose maximum depth change amount is less than 0.3 mm and the restored sound. It is a graph which shows.
  • FIG. 1A and 1B show a positive pressure can according to Embodiment 1 of the first group of the invention.
  • FIG. 1A shows an internal pressure acting state
  • FIG. 1B shows an internal pressure released state.
  • the positive pressure can 1 includes a bottomed cylindrical can body 2 having a can body 21 and a can lid 3 that seals the can body 2 in a positive pressure state, and a polyhedral wall 4 is provided on at least a part of the can body 21.
  • the can body 2 includes a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23, and a can lid 3 at the mouth of the upper end of the neck portion 22.
  • the positive pressure can 1 is a squeezed iron can made of aluminum alloy, and generally has a capacity of 160 to 500 ml, a can internal pressure of 20 to 300 [kPa] at 5 ° C., and a plate thickness of the can body 21 of 0.075. It is used in the range of 0.135 [mm], can body diameter 50-70 [mm], and can height 90-170 [mm].
  • the polyhedron wall 4 is formed into a concavo-convex shape by a folding structure without changing the circumference of the can body 21, and is composed of a large number of unit panels 5 partitioned by folds of oblique ridge lines 51. That is, a predetermined number of unit panels 5 are arranged in a direction parallel to the central axis N of the can body 21 (hereinafter simply referred to as an axial direction) to form a panel row 50, and the panel row 50 is arranged in the circumferential direction of the can body 21.
  • the configuration is arranged all around.
  • the phase in the axial direction of the unit panels 5 of the panel rows 50 adjacent to each other is shifted by half the axial length of the unit panels 5 and the unit panels 5 are densely arranged in the axial direction and the circumferential direction.
  • the polyhedral wall 4 is provided in a strip shape in the middle of the axial direction of the can body 21, and the upper and lower regions of the polyhedral wall 4 are cylindrical surfaces having no irregularities.
  • the area of the polyhedral wall 4 is about 50% with respect to the can body in the illustrated example, it is preferable that the area of the polyhedral wall 4 is 25% or more of the can body in consideration of the restored sound.
  • FIG. 1C is an enlarged view of a portion C in FIG.
  • the unit panel 5 faces the inside of the can with a valley fold horizontal ridge line 52 positioned on a plane perpendicular to the central axis N of the can body 21 as a boundary. It is recessed so that it bends in a square shape. Since the adjacent panel rows 50 are displaced in the axial direction by half the length of the unit panel 5, the unit panels 5 of the panel rows 50 located every other circumferential direction are in the same phase in the axial direction, The horizontal ridge line 52 is connected via a common vertex 53.
  • the cross section cut in the direction orthogonal to the central axis N of the can body 21 at the position of the horizontal ridgeline 52 of the unit panel 5 has a regular polygonal shape as shown in FIG.
  • the shape is a dodecagon, but is not limited to a dodecagon.
  • the corners of the vertex 53 are chamfered.
  • the horizontal ridge line 52 is described in a straight line in the illustrated example, but when the can is empty and when the internal pressure is released, it is about ⁇ 0.5 mm, a convex arc shape inside the can, or a convex shape outside the can. It may be a curved shape such as an arc.
  • each unit panel 5 is caused to have an arc shape in which the horizontal ridge line 52 follows the cylindrical surface of the can body as shown by a two-dot chain line in FIG. 1C due to the internal pressure acting on the can body 21.
  • the oblique ridge line 51 is also deformed so as to follow the cylindrical surface of the can body 21, but is simply illustrated as a straight line in FIG.
  • an internal gas is released from the opening portion to generate a gas emission sound, and the oblique ridge line 51 and the horizontal ridge line 52 of each unit panel 5 are instantaneously formed into a linear shape.
  • the concavo-convex shape appears and a restored sound is generated by the impact.
  • Various factors such as the shape, area, and plate thickness of the unit panel 5 can be considered as the factors that determine the magnitude of the restored sound.
  • the present inventors have intensively studied, and as a result, have determined the depth of the unit panel 5 as the depth. It has been found that there is a correlation with the maximum depth change amount, which is the amount of change in.
  • FIG. 2A is a front view of the unit panel 5
  • FIG. 2B is a sectional view taken along the line BB in FIG. 2A
  • FIG. 2C is a sectional view taken along the line CC in FIG. 2B and 2C
  • the broken line indicates the internal pressure acting state
  • the solid line indicates the restored state when the internal pressure is released.
  • the panel depth of the unit panel 5 in the first embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the vertex 53a and the vertex 53c to the midpoint m of the horizontal ridge line 52.
  • the change amount dmax is the change amount of the panel depth in the internal pressure acting state and the internal pressure release state.
  • the unit panel 5 has a rhombus shape defined by four oblique ridge lines 51, and vibrates like a drum having the four oblique ridge lines 51 as a frame. The restoration sound appears.
  • This unit panel 5 includes a total of four vertices 53a and 53c positioned on a central plane M passing through the central axis N of the can body 21 and two vertices 53b and 53d positioned symmetrically with respect to the central plane M. Has two vertices.
  • These four vertices 53a to 53d are located on a virtual cylindrical surface Y (indicated by a two-dot chain line in FIG. 2B) that substantially coincides with the cylindrical surface constituting the can body 21, and a free state in which no internal pressure is applied. Then, as shown by the solid line in FIG. 2 (B), the inner side of the can body 21 is formed in a U shape by the transverse ridgeline 52 of the valley fold connecting the vertices 53b and 53d located at symmetrical positions with respect to the center plane M. The structure is bent and recessed. In the internal pressure acting state, as indicated by broken lines in FIG.
  • the upper triangular portion 5A and the lower triangular portion 5B are deformed so as to extend in the axial direction, and the middle point m of the horizontal ridge line 52 is the upper and lower apexes. It is displaced to a position close to the line connecting 53a and 53c.
  • the unit panel 5 is restored to the shape of a dogleg and the midpoint m of the horizontal ridge line 52 returns to the deepest part.
  • FIG. 2C the shape is restored from a broken arc to a solid straight line.
  • the midpoint m is the portion where the unit panel 5 is most displaced, and the change in the panel depth at the midpoint m is defined as the maximum depth change dmax, and the maximum value of the maximum depth change dmax of all the unit panels 5 is evaluated.
  • the maximum value of the maximum depth change amount dmax is set to 0.75 mm or more and 1.2 mm or less.
  • the maximum depth change amount dmax When the maximum depth change amount dmax is small, the restored sound is small and is lost in the immediately preceding gas emission sound, but by setting the maximum value of the maximum depth change amount dmax of all unit panels to 0.75 mm or more, Even after the gas emission sound, it is possible to generate a restoration sound that is sufficiently easy to hear.
  • the sound pressure level of the restoration sound at the time of opening was able to be about 75 dB or more at a position 40 cm away from the can body. .
  • the gas emission sound is about 70 dB, which is a sound level that can be sufficiently heard.
  • the maximum depth change amount dmax when the maximum depth change amount dmax is increased, a restoration sound is likely to sound. However, since the depth of the horizontal ridge line 52 of the unit panel 5 is increased, the axial load strength when empty can is reduced. If the upper limit of the maximum value of the maximum depth change amount is 1.2 mm or less, the restoration sound can be increased while maintaining the axial load strength at the time of the empty can. Further, the average value of the maximum depth change amount dmax for the unit panel having the maximum depth change amount of 0.4 mm or more can be set to 0.54 mm or more and 0.75 mm or less. When the average value is used in this way, the maximum depth change amount of each unit panel can be averaged and evaluated.
  • the maximum value of the maximum depth change amount dmax is set to 0.75 mm or more and 1.2 mm or less, and the average value of the maximum depth change amount for the unit panel having the maximum depth change amount of 0.40 mm or more is 0. It can also be set in the range of .54 mm or more and 0.75 mm or less.
  • the average value of the maximum depth change amount dmax for the unit panel having the maximum depth change amount of 0.4 mm or more is preferably set to 0.57 mm or more and 0.75 mm or less. In this way, by using the maximum value and the average value of the maximum depth change amount, it is possible to realize a positive pressure can in which unevenness is increased and the visual effect is high, and a large restoration sound is stably generated.
  • the maximum depth change amount dmax tends to increase as the unit panel 5 increases. If the body diameter of the can body 21 is the same, the size of the unit panel 5 is geometrically determined by the number of corners of the cross section shown in FIG. 1 (C). Becomes smaller. Conversely, the smaller the number of corners, the larger the unit panel 5 becomes, and the easier it is to deform, and the maximum depth change amount dmax increases. For example, when the can body diameter is in the range of 50 to 70 mm, the maximum value of the maximum depth change amount dmax can be set in the range of 0.75 mm or more and 1.2 mm or less if the angle is set to about 11 corners or 12 corners.
  • the average value of the maximum depth change amount for the unit panel having the maximum depth change amount of 0.40 mm or more can be set in a range of 0.54 mm or more and 0.75 mm or less.
  • the area of the unit panel 5 is preferably set to 130 mm 2 or more and 180 mm 2 or less at 11 and 12 corners.
  • the maximum depth change amount dmax is within the above range, it may be 13 corners.
  • the area of the unit panel 5 is an area in a flatly developed state, that is, an area obtained by adding up the areas of the upper triangular portion 5A and the lower triangular portion 5B of the unit panel 5.
  • the maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty.
  • the panel depth at the time of empty can can be adjusted by curving the horizontal ridge line 52 in an arc shape inside or outside the can. That is, if the arc is curved inside the can, the maximum depth change dmax is increased, and if the arc is curved outside the can, the maximum depth change dmax is decreased.
  • Example 1 Number of corners: 13 corners, number of panels: 91, empty can depth: 0.81 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 2 Number of corners: 13 corners, number of panels: 91, empty can depth 0.85 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 3 Number of corners: 13 corners, number of panels: 91, empty can depth 0.89 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 4 Number of corners: 13 corners, number of panels: 91, empty can depth 0.92 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 5 Number of corners: 11
  • the panel depth measurement method is such that the bottom side of the positive pressure can 1 is held horizontally by a vacuum, and the digimatic indicator 100 (“Digimatic” is a registered trademark of Mitutoyo Corporation). ) Is vertically applied to the apex 53 so that its height is zero, the positive pressure can 1 is slid in the direction of the central axis N, and the digimatic indicator 100 is moved to the middle point m of the horizontal ridge 53. In addition, the height is obtained by placing the probe 101 on the middle point m of the horizontal ridge line 53. Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically.
  • Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically.
  • a horizontal movement mechanism 104 that holds the positive pressure can 1 and moves it horizontally along the central axis N of the positive pressure can 1 is provided below the digimatic indicator 100 of the stand 102.
  • the horizontal movement mechanism 104 includes a holding portion 105 that holds the mouth portion of the positive pressure can 1 and a telescopic portion 106 such as a cylinder mechanism or a feed screw mechanism that moves the holding portion 105 horizontally.
  • the panel depth is obtained for all the unit panels 5, and the difference between the panel depths in the internal pressure applied state and the internal pressure release state of each unit panel 5 is defined as the maximum depth change amount dmax, the maximum value, and the maximum depth change amount of each unit panel. The average value of dmax was calculated.
  • the average value is an average value of the maximum depth change amounts for the unit panels excluding the unit panel whose maximum depth change amount dmax is less than 0.4 mm.
  • Each sample has three cans, and regarding the maximum value of the maximum depth change amount, the average value of the three maximum cans is (ave), the maximum value is (max), and the minimum value is (min).
  • the average value of the maximum depth change amount dmax of each unit panel the average value with respect to 3 cans of measurement is (ave), the maximum value is (max), and the minimum value is (min).
  • Digimatic indicator manufactured by Mitutoyo Corporation, model number ID-C1012, and probe 101 used by Mitutoyo Corporation, model number 137413 were used. On the other hand, as shown in FIG.
  • the sound level of the restored sound was measured by installing a noise meter 120 at a position 40 cm away from the can.
  • This 40 cm is a distance L between the microphone 121 and the positive pressure can 1.
  • the meaning of 40 cm means the approximate distance between the can and the ear when actually opened.
  • the sound level meter 120 was placed on the floor, and the microphone 121 was held at a height of about 60 cm from the floor by the stand 122.
  • the measured value is obtained as time axis waveform data.
  • the frequency weighting characteristic is A characteristic
  • the time weighting characteristic is F.
  • the number of measurements is 3 cans, and the average value is the measurement result.
  • model number NL-42 manufactured by Rion Co., Ltd. is used, and a wind screen WS-10 is attached to the tip of the microphone 121.
  • FIG. 4A shows the relationship between the maximum value of the maximum depth change amount and the volume of the restored sound
  • FIG. 4B shows the average value of the maximum depth change amount of 0.4 mm or more in the unit panel.
  • the relationship of the magnitude of the restored sound is shown.
  • FIG. 5 (A) shows the relationship between the average value of the maximum depth change amount of all unit panels and the magnitude of the restored sound
  • FIG. 5 (B) shows the average value when the maximum depth change amount is 0.3 mm or more.
  • samples 1 to 6 are shown as S1 to S6, respectively.
  • the sample 5 (S5) and the sample 6 (S6) of the present invention have a large three-dimensional shape with a large change of at least 0.74 mm to 0.86 mm, and A restored sound of 76 dB or more is obtained.
  • the unit panels of Samples 5 and 6 of the present invention are 11 corners, which is larger than the 13 corners of Samples 1 to 4 of the comparative example, not only deep but also a wide range changes greatly and changes visually. Because it stands out, it is attracting attention, making it sensitive to sound and listening to the restored sound.
  • the maximum depth change amount is up to 0.74 mm in the sample 4 (S4). Then, it is up to 0.66 mm.
  • the restored sound is also between 72 dB and 78 dB and does not exceed 75 dB. From these results, when the maximum value of the maximum depth change amount dmax is evaluated and the maximum value of the maximum depth change amount dmax is 0.75 mm or more, a deep three-dimensional shape is obtained by changing greatly, and A large restoration sound of 76 dB or more can be obtained.
  • the sound pressure level when the score is broken is about 60 dB, the gas emission sound is 70 dB, and if the gas emission sound is 70 dB higher than the gas emission sound by 5 dB or more, the sound pressure level is about twice as large as the gas emission sound.
  • the number of cross-sectional angles is between 11 and 13 and 12 is included. Even with 13 corners, if the maximum value of the maximum depth change amount is set to 0.75 mm or more, the unevenness becomes deep and clear, and the visual effect is enhanced and a large restoration sound can be obtained.
  • Axial load strength In order to increase the maximum depth change amount, it is necessary to enlarge the unit panel. If the unit panel is made larger, the axial load strength at the time of the empty can tends to decrease. If the upper limit is set to about 1.2 mm, the axial load strength at the time of the empty can can be maintained.
  • the average value for the unit panel having the maximum depth change amount of 0.3 mm or more and the average value for the unit panel having the maximum depth change amount of 0.4 mm or more are calculated and graphed as shown in FIG. B) and FIG. 5B.
  • sample 5 (S5) and sample 6 (S6) are in a range where they intersect with sample 1 to sample 4, and are unclear.
  • FIG. 5 (B) shows that when a unit panel of 0.4 mm or more is extracted, as shown in FIG.
  • sample 5 (S5) and sample 6 (S6) escape from the range where sample 1 to sample 4 intersect, and sample 5 It was found that the maximum depth change amount (average value) of (S5) and Sample 6 (S6) is larger than the maximum depth change amount (average value) of Sample 1 to Sample 4, and is clearly divided.
  • the average value of the unit panel having a maximum depth variation of 0.4 mm or more is 0.57 mm to 0.67 mm for the sample 5 (S5) and the sample 5 (S6) of the present invention.
  • Samples 1 (S1) to 4 (S4) of Comparative Example were 0.48 to 0.53 mm. From these results, if the average value of unit panels with a maximum depth change of 0.4 mm or more is set to 0.54 mm or more, preferably 0.57 mm or more, the influence of unit panels that are not completely restored is excluded.
  • sample 5 (S5) and sample 6 (S6) of the present invention can be distinguished from sample 1 (S1) to sample 4 (S4) of the comparative example.
  • the threshold value does not become too large as in the case of using the maximum value of the maximum depth change amount, and the maximum depth change amount can be stably evaluated, and a stable restoration above a certain level.
  • a positive pressure can that can produce sound can be realized.
  • the upper limit when evaluating with the maximum value is set to about 0.75 mm as about 60% of the upper limit with respect to 1.2 mm, Axial load strength during empty can can be maintained.
  • the maximum value of the maximum depth change amount for the unit panel in which the maximum value of the maximum depth change amount of the unit panel is in the range of 0.75 mm to 1.2 mm and the maximum depth change amount is 0.4 mm or more is , 0.54 mm or more and 0.75 mm or less can also be set. In this way, it is possible to realize a positive pressure can in which the maximum depth change amount is stable, the maximum value is large, and a larger and stable restoration sound can be obtained.
  • the unit panel which comprises a polyhedral wall it is not restricted to the bent rhombus shape of the said Embodiment 1,
  • a folding structure it is a shape dented inward of the can body, and a hollow is small by the internal pressure which acts on a can body. It can be applied to various patterns that are deformed in a direction to be restored to the original shape when the can lid is opened.
  • FIG. 06 shows the positive pressure can according to the first embodiment of the present invention of the second group.
  • FIG. 06 (A) shows the internal pressure acting state
  • FIG. 06 (B) shows the internal pressure released state.
  • the positive pressure can 1 includes a bottomed cylindrical can body 2 having a can body 21 and a can lid 3 that seals the can body 2 in a positive pressure state.
  • a polyhedral wall 24 is provided on at least a part of the can body 21. Have.
  • the can body 2 includes a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23, and a can lid 3 at the mouth of the upper end of the neck portion 22. Is tightened.
  • the positive pressure can 1 is a squeezed iron can made of an aluminum alloy, and generally has a capacity of 160 to 500 ml, a can internal pressure of 20 to 300 [kPa] at 5 ° C., and the thickness of the thinnest portion of the can body 21. Is 0.075 to 0.135 [mm], the can body diameter is 50 to 70 [mm], and the can height is 90 to 170 [mm].
  • the polyhedral wall 24 is formed with a plurality of corrugated curved surfaces 30 in which crests 26 and troughs 27 are alternately formed in the axial direction.
  • the corrugated curved surface 30 is partitioned by waveform ridge lines 251 and 252 that are symmetrical with respect to the center plane M passing through the center axis N of the can body 21.
  • a narrow part between the ridge lines 251 and 252 is a peak part 26 of the undulating curved surface 30, and a wide part is a valley part 27.
  • the unit panel 25 is a region from the top part 26a of one peak part 26 of the undulating curved surface 30 to the top part 26a of the next peak part 26 through the valley part 27.
  • the top part 26a of the peak part 26 allows the upper and lower unit panels 25 to be It is divided. That is, in this embodiment, the entire circumference of the unit panel 25 is not demarcated by the corrugated ridge lines 251 and 252, but a part of the unit panel 25 is open and is divided by the top portion 26 a of the peak portion 26. .
  • interval of the waveform ridge lines 251 and 252 may contact, and in that case, the perimeter is divided by the boundary ridgeline.
  • the phase in the axial direction of the unit panels 25 of the corrugated curved surfaces 30 and 30 that are adjacent to each other is shifted by half the axial length of the unit panels, and the unit panels 25 are densely arranged in the axial direction and the circumferential direction.
  • the cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 is a cross section (horizontal cross section) cut in the direction orthogonal to the central axis N of the can body 21 at the position of the top portion 26a of the peak portion 26.
  • the part of the top part 26a of the peak part 26 is narrow, and the intermediate position of the unit panel 25 becomes a polygonal shape wide.
  • the horizontal cross section at the intermediate position of the unit panel 25 is recessed in an arc shape toward the inside of the can body 21 with respect to the straight line shape with no internal pressure applied.
  • 13 unit panels 25 are formed across the crest 26, but the number of wavy curved surfaces 30 is 26, and the adjacent wavy curved surfaces 30, 30 are offset by half phase.
  • the horizontal cross section at the position of the top 26a of the 26 is 13 planes.
  • the unit panel 25 is formed with four undulating curved surfaces 30 and three undulating curved surfaces 30 alternately, and the number of unit panels 25 is 91 in total.
  • the polyhedron wall 24 is provided in a strip shape in the middle of the can body 21 in the axial direction, and the upper and lower regions of the polyhedron wall 24 are cylindrical surfaces having no irregularities.
  • the area of the polyhedral wall 24 is about 70% with respect to the cylindrical portion excluding the neck portion 22 of the can body 21, but considering the magnitude of the restored sound, it is 25% or more of the can body. Preferably, it is suitable to be 50% or more.
  • the polyhedral wall 24 is a cylindrical surface having no irregularities as a whole, as shown in FIG.
  • Each unit panel 25 is deformed into an arc shape in the horizontal cross section, and the depression is eliminated.
  • FIG. 06 (B) each unit panel 25 is restored to its original shape, and a restoration sound is emitted when the unit panel 25 is restored.
  • the unit panel 25 is curved in both the direction parallel to and perpendicular to the central axis N of the can body 21, the amount of elastic strain during the internal pressure action increases, and is released at a time when the internal pressure is released.
  • the restoration sound is loud.
  • FIG. 07A is a front view of the unit panel 25
  • FIG. 07B is a cross-sectional view taken along the line BB in FIG. 7A
  • the broken line indicates the internal pressure acting state
  • the solid line indicates the restored state when the internal pressure is released.
  • the panel depth of the unit panel 5 in this embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the two upper and lower apexes 26a to the panel center m2, and the maximum depth variation dmax is The change amount of the panel depth in the internal pressure acting state and the internal pressure released state. As shown in FIG.
  • the unit panel 5 is a pair that does not cross each other in the region from the top 26a of one peak 26 of the undulating curved surface 30 to the top 26a of the next peak 26 through the valley 27.
  • waveform ridge lines 251 and 252 are divided by waveform ridge lines 251 and 252.
  • the corrugated ridge lines 251 and 252 are formed by alternately and repeatedly forming concave arc ridge lines 251b and 252b and convex arc ridge lines 251a and 252a in the axial direction.
  • the convex arc ridge lines 251a and 252a are symmetrically opposed to each other.
  • the concave arc ridge lines 251b and 252b are opposed to each other in a barrel shape, and the upper and lower peak portions 26 are opposed to the apexes a1 and a2 of the convex arc ridge lines 251a and 252a and gradually narrow. It becomes the shape that becomes.
  • the vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located at the top part 26a of the peak part 26 of the corrugated curved surface 30, and there is no ridge line that becomes a crease on the top and bottom of the unit panel 25. It is divided.
  • the positions of the vertices b1 and b2 that are the maximum widths of the concave arc ridge lines 251b and 252b are located at the apex 26a of the peak portion 26 of the adjacent unit panel 25, and the concave arc ridge lines 251b and 252b of the unit panel 25 are located.
  • the vertices b1 and b2 and the vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located on a virtual cylindrical surface that substantially coincides with the cylindrical surface of the can body 21.
  • the virtual cylindrical surface corresponds to the position of the broken line when the internal pressure is applied to the unit panel 25 in FIGS. 07 (B) and (C).
  • the panel center m2 of the unit panel 25 is an intersection with the virtual horizontal line X on the center plane M and connecting the vertices b1 and b2 of the concave arc ridge lines 251b and 252b having the maximum width. This is the deepest portion of the valley portion 27 of the curved surface 30 from the virtual cylindrical surface.
  • the panel center m2 is also an intermediate position between the top portions 26a and 26a of the upper and lower mountain portions 26.
  • the panel center m2 has a shape that is recessed in an arc toward the inside of the can body 21, as indicated by the solid line in FIG.
  • the unit panel 25 that is recessed in an arc shape is deformed so as to extend in parallel with the central axis N of the can body 21, and the panel center m2 is It is displaced to a position close to the line connecting the top portions 26a, 26a of the peak portion 26.
  • the internal pressure is released, as indicated by a solid line in FIG.
  • the unit panel 5 is restored to an arc shape, and the panel center m2 returns to the deepest part.
  • the arc shape is restored from the arc shape of the broken line to the inside of the solid line.
  • the panel center m2 is the portion of the unit panel 25 that is most displaced, and the amount of change in the panel depth when the panel center m2 is in the internal pressure applied state and the internal pressure released state is the maximum depth change amount dmax.
  • the average value of the maximum depth change amount dmax is set in a range of 0.46 mm or more and 1.08 mm or less. This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions.
  • the boundary ridge lines are arc-shaped waveform ridge lines 251 and 252 having no corners, and the maximum depth change amount dmax is greatly changed, and a larger restoration sound is generated. Since it is easily deformed, the interval between the gas emission sound and the restoration sound is shortened, but it can be sufficiently heard.
  • the restoration area that is deformed when each unit panel 25 is restored is a virtual arc 31 (two-dot chain line in the figure) passing through the recess boundary ridge line 251b constituting the valley 27 as shown in FIG.
  • the shape is basically a perfect circle, but may be elliptical due to the restriction of the axial range of the polyhedral wall.
  • the restoration sound is a level larger than the gas emission sound 70 dB. It was found that it can be maintained.
  • the average value of the maximum depth change amount dmax is related to the size of the unit panel 25. The larger the size of the unit panel 25 is, the larger the maximum depth change amount dmax is.
  • the relationship between the size of the unit panel 25 and the number of unit panels 25 is such that the larger the unit panel size, the smaller the number of unit panels 25.
  • the restored sound of this panel is related to the size per unit panel 25 and the number of panels. If the average value of the maximum depth change dmax is large, the sound pressure level per panel is large. However, since it is necessary to increase the size of the unit panel 25, the number of panels decreases, and the restoration sound as a whole decreases. If it is 1.08 mm or less, the restoration sound can be maintained at a level higher than the gas emission sound 70B even if the number of panels is reduced.
  • the panel size can be reduced to increase the number of panels, and the overall restored sound can be increased. Can do. However, there is a limit, and if it is 0.46 mm or more, the restored sound can be increased.
  • the number of unit panels 25 is 91 in this example, but is preferably set to 65 or more and 117 or less. If the number of unit panels 25 is greater than 117, the size of the unit panel 25 will be too small and the restored sound will not be too great. On the other hand, if the number is less than 65, the panel can be enlarged, but the number of the panels is reduced, and the restoration sound is lowered.
  • FIG. 08A shows an example with 65 unit panels
  • FIG. 08B shows an example with 117 units.
  • the number of undulating curved surfaces 30 is 26 as in FIG. 06
  • the number of unit panels 25 of adjacent undulating curved surfaces 30 is different by one.
  • one less side wavy curved surface is 30 (n) and one more side wavy curved surface is 30 (n + 1)
  • the unit panel 25 has two wavy curved surfaces 30 (n).
  • Three wavy curved surfaces 30 (n + 1) are alternately arranged in the circumferential direction.
  • 117 shown in FIG.
  • the unit panel 25 has four wavy curved surfaces 30 (n) and five wavy curved surfaces 30 (n + 1) arranged alternately in the circumferential direction.
  • the size of the unit panel 25 decreases as the number of panels increases. That is, the unit panel 25 having 65 panels is the largest (FIG. 08A), the unit panel 25 having 91 panels is intermediate (FIG. 06A), and the unit panel 25 having 117 panels is present. It is the smallest (FIG. 08 (B)).
  • the area of the polyhedral wall 24 is about 70% with respect to the cylindrical portion excluding the neck portion 22, as in the case of 91 in FIG.
  • 08C to E show the sizes of the unit panels 25 in comparison.
  • g is the maximum horizontal width of the valley 27 of each unit panel 25
  • h is the minimum width of the unit panel 25 (minimum width of the peak 26)
  • i is the axial length. It shall be distinguished by including a number.
  • the maximum width g is the dimension between the vertices b1 and b2 in FIG. 07 (A)
  • the minimum width h is the dimension between the vertices a1 and a2 in FIG. 07 (A).
  • the axial length i is a dimension between the top portions 26a and 26a of the upper and lower peaks 26 in FIG.
  • the maximum width g is g (65)> g (91)> g (117) And the axial length i is i (65)> i (91)> i (117) And it gets smaller as the number of panels increases.
  • the minimum horizontal width h is h (65) ⁇ h (91) ⁇ h (117) And it increases as the number of panels increases. Since the number of wavy curved surfaces is 26, the sum of the maximum width g and the minimum width h is the same for all 65, 91, and 117, and the ratio of the maximum width g to the minimum width h is different. ing. Further, as described above, the restoration region that is deformed when each unit panel 25 is restored is a virtual arc 31 (two-dot chain line in FIG.
  • the setting of the number of the unit panels 25 in this embodiment is based on the assumption that the can height and the body diameter are the same and the number of wavy curved surfaces 30 is constant (26 faces). By changing the direction length i, the number of unit panels in each corrugated curved surface 30 is changed, thereby setting the number of panels of the entire can.
  • the axial length i is shortened, and when the number of panels is decreased, the axial length i is increased.
  • the area S of the restoration region and the area S1 of the unit panel 25 are determined by the axial length i. Since the polyhedral wall 24 is basically a folded structure and has a constant circumference, and the shape and size of each unit panel 25 are the same, for example, the maximum width g and the minimum width h are independent of the shape of the unit panel 25. Regardless of the dimensions, if the can body diameter is D, the unit panel area S1 is determined by the following relationship.
  • the number of 65, 91, and 117 panels described above is an example in which the number of panels is increased by one for each corrugated curved surface 30, and the number of panels is increased by 26 in stages. However, if the axial length i of the corrugated curved surface 30 is dimensionally allowed for the can body, the number of panels can be increased while the axial length i of the unit panel 25 remains the same. .
  • the maximum depth change dmax of the unit panel 25 is affected by the size of the restoration area, that is, the axial length i related to the area S of the restoration area and the maximum width g. This axial length i correlates with the number of unit panels 25.
  • the axial length i is shortened and the maximum width g is also reduced, so that the maximum depth change amount dmax is reduced. If the number is small, the axial length i becomes long and the maximum width g can be made large, so that the maximum depth change amount dmax becomes large.
  • the number of wavy curved surfaces 30 is 26, but the number of wavy curved surfaces 30 may be changed.
  • the maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty. That is, the horizontal section of the trough 27 (the section perpendicular to the central axis N of the can body 21) has an arc shape that is recessed toward the inside of the can body 21, but the degree of curvature is changed so as to be empty.
  • the maximum depth change amount dmax can be adjusted. That is, if the panel depth at the time of an empty can is increased, the maximum depth change amount dmax is increased, and if the panel depth at the time of an empty can is decreased, the maximum depth change amount dmax is decreased.
  • the horizontal cross section in the valley portion 27 may be curved in a straight line shape or in an arc shape outside the straight line shape. In this way, the maximum depth change amount dmax can be further reduced.
  • FIG. 09 shows an example in which the cross-sectional shape of the unit panel 25 in a direction orthogonal to the central axis N of the can body passes through the center of the unit panel 25 in a free state where no internal pressure is applied (empty can state). Yes.
  • the cross section (horizontal cross section) cut in the direction orthogonal to the central axis N of the can body 21 at the position of the top portion 26a of the mountain portion 26 is a portion of the top portion 26a of the mountain portion 26 as shown in FIG. Is narrow, and the middle position of the unit panel 25 is a polygonal shape with straight sides.
  • twelve unit panels 25 are formed with the mountain portion 26 interposed therebetween. Since the number of the corrugated curved surfaces 30 is 24 and the adjacent corrugated curved surfaces 30 and 30 are shifted by half phase, the horizontal cross section at the position of the top portion 26a of the peak portion 26 is twelve.
  • the unit panel 25 has four wavy curved surfaces 30 and three wavy curved surfaces 30 alternately formed in a total of 24, and the number of unit panels 25 is 84 in total.
  • FIG. 10 is a detailed view of the unit panel of FIG. 10A is a front view of the unit panel 25, FIG. 10B is a sectional view taken along the line BB of FIG. 10A, and FIG. 10C is a sectional view taken along the line CC of FIG. 10B and 10C, the broken line indicates the internal pressure acting state, and the solid line indicates the restored state when the internal pressure is released.
  • the panel depth of the unit panel 5 in the second embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the upper and lower two top portions 26a to the panel center m2, and the maximum depth change amount dmax. Is the amount of change in the panel depth in the internal pressure acting state and the internal pressure released state.
  • the panel center m2 has a shape that is recessed in an arc toward the inside of the can body 21.
  • the unit panel 25 that is recessed in an arc shape is deformed so as to extend in parallel with the central axis N of the can body 21, and the panel center m2 is It is displaced to a position close to the line connecting the top portions 26a, 26a of the peak portion 26.
  • the internal pressure is released, as indicated by a solid line in FIG.
  • the unit panel 5 is restored to an arc shape, and the panel center m2 returns to the deepest part.
  • the shape is restored from a broken arc shape to a solid straight line shape.
  • the boundary ridge lines are arc-shaped waveform ridge lines 251 and 251 as in the first embodiment.
  • the maximum depth change amount dmax changes greatly, and a large restored sound is generated.
  • the restored sound is more than the gas emission sound 70 dB. Can be maintained at a large level.
  • the number of unit panels 25 is set to 65 or more and 117 or less as in the first embodiment.
  • the wavy surface 30 is 24 surfaces, for example, as shown in FIG. 08 (B) of the first embodiment, the combination of 4 and 5 wavy curved surfaces is 108, and 117 or less. It becomes a range.
  • the combination of 2 and 3 corrugated surfaces shown in FIG. 08 (A) is 60, which is less than 65.
  • the combination of 3 and 3 corrugated surfaces it becomes 72, It can be 65 or more.
  • the number of undulating curved surfaces may be 26 as in the first embodiment. In that case, the number of unit panels is the same as in the first embodiment, and 65 (FIG. 06), 91. (FIG. 08A) 117 structures (FIG. 08B) can be employed.
  • the evaluation test of the restored sound will be described.
  • the horizontal cross-sectional shape of the unit panel is a shape recessed inward of the can body in a free state where no internal pressure is applied as described in the first embodiment.
  • Sample 1 Number of corrugated curved surfaces: 26, panel area S: 82 mm 2 , number of panels: 117, polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change amount becomes large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
  • Example 2 Number of corrugated curved surfaces: 26, panel area S: 109 mm 2 , number of panels: 91, polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change amount becomes large.
  • the number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
  • Sample 3 The number of corrugated curved surfaces: 26, the panel area S: 138 mm 2 , the number of panel panels: 65, the polyhedral wall area: 60% of the can body, and the panel depth was adjusted so that the maximum depth change amount was large.
  • the number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
  • Example 4 Number of corrugated curved surfaces: 26, panel area S: 109 mm 2 , number of panels: 91, polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change amount becomes large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
  • Test conditions The conditions of the evaluation test are as follows. ⁇ Temperature: 5 °C storage (Liquid temperature is 6.5-8 °C), ⁇ Can internal pressure: 120-150kPa ⁇ Thickness of can body: 0.092-0.122mm ⁇ Can barrel diameter: 66.5-67mm ⁇ Can height: 121.8-122.2mm ⁇ Contents: 350ml (Test method) The maximum depth change amount dmax is obtained by measuring the panel depth when the internal pressure is applied, then measuring the panel depth when the internal pressure is released, and measuring the difference. As shown in FIG.
  • the panel depth is measured by holding the bottom of the positive pressure can 1 horizontally with a vacuum, and a digimatic indicator 100 (“Digimatic” is a registered trademark of Mitutoyo Corporation). ) Is vertically applied to the top portion 26a of the peak portion 26 so that its height is zero, the positive pressure can 1 is slid in the direction of the central axis N, and the digimatic indicator 100 is moved to the valley of each unit panel 25. In accordance with the panel center m ⁇ b> 2 of the portion 27, the height is read and obtained by placing the measuring element 101 against the panel center m ⁇ b> 2 of the valley portion 27.
  • Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically.
  • a horizontal movement mechanism 104 that holds the positive pressure can 1 and moves it horizontally along the central axis N of the positive pressure can 1 is provided below the digimatic indicator 100 of the stand 102.
  • the horizontal movement mechanism 104 includes a holding portion 105 that holds the mouth portion of the positive pressure can 1 and a telescopic portion 106 such as a cylinder mechanism or a feed screw mechanism that moves the holding portion 105 horizontally.
  • the panel depth is obtained for all the unit panels 25, and the difference between the panel depths in the internal pressure action state and the internal pressure release state of each unit panel 25 is defined as the maximum depth change amount dmax, and the average value of the maximum depth change amounts dmax of each unit panel is determined. calculate.
  • the number of measurements was 3 cans, and the average value (ave), maximum value (max), and minimum value (min) of the average value and the maximum value of the maximum depth change amount dmax of each unit panel were obtained.
  • Digimatic indicator manufactured by Mitutoyo Corporation, model number ID-C1012, and probe 101 used by Mitutoyo Corporation, model number 137413 were used. For sample 4, it is only the maximum value. On the other hand, as shown in FIG.
  • the restoration sound was measured by installing a noise meter 120 at a position 40 cm away from the can and measuring the loudness.
  • This 40 cm is a distance L between the microphone 121 and the positive pressure can 1.
  • the meaning of 40 cm means the approximate distance between the can and the ear when actually opened.
  • the sound level meter 120 was placed on the floor, and the microphone 121 was held at a height of about 60 cm from the floor by the stand 122.
  • the measured value is obtained as time axis waveform data.
  • the frequency weighting characteristic is A characteristic
  • the time weighting characteristic is F.
  • the number of measurements was 3 cans, and the average value (ave), maximum value (max), and minimum value (min) of the restored sound were determined.
  • As the sound level meter 120 model number NL-42 manufactured by Rion Co., Ltd. is used, and a wind screen WS-10 is attached to the tip of the microphone 121. (Measurement result)
  • the measurement results are as shown in Table 2.
  • the average value of the maximum depth change amount is the minimum value (min): 0.76 mm, the maximum value (max): 0.77 mm, and the average value (ave) 6: 0.76 mm.
  • the volume of the restored sound was 80 to 81 dB, and (the volume of the restored sound / number of panels) was 0.88 to 0.89 dB.
  • the average value of the maximum depth change amount is restored as the minimum value (min): 1.06 mm, the maximum value (max): 1.08 mm, and the average value (ave): 1.07 mm.
  • the volume of sound was 76 to 78 dB, and (the volume of restored sound / number of panels) was 1.17 to 1.20 dB.
  • FIG. 12 is a graph showing the measurement results with the average value of the maximum depth change amount on the horizontal axis and the restored sound on the vertical axis.
  • Sample 1 (117 panels) is indicated by a circle ( ⁇ ), sample 2 (91 panels) by a square ( ⁇ ), and sample 3 (65 panels) by a triangle ( ⁇ ). That is, the restored sound has a sound pressure level of 76 dB to 83 dB when the average value of the maximum depth change amount dmax is 0.46 mm to 1.08 mm including the minimum value and the maximum value.
  • the sound pressure level at the time of breaking the score is about 60 dB
  • the gas emission sound is 70 dB
  • the sample 1 (76 dB) having the lowest restoration sound is 6 B higher than the gas emission sound and can clearly recognize the restoration sound. did it. If it is 5 dB or more larger than 70 dB of the gas emission sound, the sound pressure level becomes about twice as large as that of the gas emission sound and becomes clear.
  • FIG. 13A is a graph showing the relationship between the number of panels and the average value of the maximum depth change amount
  • FIG. 13B is the relationship between the average value of the maximum depth change amount and (the size of restored sound / number of panels). It is a graph which shows.
  • the average value of the maximum depth change amount dmax is in a proportional relationship that decreases linearly as the number of panels increases.
  • the following equation approximates the relationship between the average value (ave) of the average value of the maximum depth change amount dmax and the number of panels (N) by a straight line F with a slope of K1 and an intercept of M1 (least square method). .
  • the relationship between the average value of the maximum depth change amount dmax and the restored sound is calculated by calculating (the volume of restored sound (Q) / number of panels (N)). As the average value of the amount dmax increases, the proportional relationship increases linearly.
  • the following equation approximates the relationship between the average value of (the volume of restored sound (Q) / number of panels (N)) and the maximum amount of change in depth (dmax) by a straight line G with a slope of K2 and an intercept of M2. (Least square method).
  • the maximum value of the maximum depth change amount is the minimum value (min): 0.59 mm
  • the volume of the restored sound is 80 It was ⁇ 83 dB.
  • the maximum value of the maximum depth change amount is the minimum value (min): 0.94 mm
  • the volume of the restored sound is 80 -81 dB.
  • the maximum value of the maximum depth change amount is the minimum value (min): 1.28 mm, the maximum value (max): 1.31 mm, the average value (ave): 1.30 mm, and the volume of the restored sound is 76. It was -78 dB.
  • the average value (ave) of the maximum value of the maximum depth change amount was 1.00 mm, and the volume of the restored sound was 83 dB. That is, regarding the maximum value of the maximum depth change amount dmax, the restored sound has a sound pressure level of 76 dB to 83 dB within a range of 0.59 mm to 1.31 mm including the minimum value and the maximum value. .
  • the restored sound can be clearly recognized with respect to the gas emission sound.
  • the number of unit panels in each undulating curved surface 30 is changed by changing the axial length i of each unit panel 25 on the assumption that the number of undulating curved surfaces 30 is constant.
  • the present invention is not limited to such a positive pressure can, and the number of wavy curved surfaces and unit panel panels are described.
  • the average value of the maximum depth change amount of each unit panel is 0.46 mm or more and 1.08 mm or less, or the maximum value of the maximum depth change amount of the unit panel is 0.
  • the present invention can be widely applied to all positive pressure cans set in a range of 59 mm or more and 1.31 mm or less.
  • the boundary ridge line has a waveform shape
  • the waveform shape not only the waveform shape but also a zigzag shape, a rectangular wave shape, can do.
  • FIGS. 15A and 15B show a positive pressure can according to Embodiment 1 of the third invention group.
  • FIG. 15A shows an internal pressure acting state
  • FIG. 15B shows an internal pressure released state.
  • the positive pressure can 1 includes a bottomed cylindrical can body 2 having a can body 21 and a can lid 3 that seals the can body 2 in a positive pressure state, and a polyhedral wall 4 is provided on at least a part of the can body 21.
  • the can body 2 includes a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23, and a can lid 3 at the mouth of the upper end of the neck portion 22. Is tightened.
  • the positive pressure can 1 is a squeezed iron can made of aluminum alloy, and generally has a capacity of 160 to 500 ml, a can internal pressure of 20 to 300 [kPa] at 5 ° C., and a plate thickness of the can body 21 of 0.075. It is used in the range of 0.135 [mm], can body diameter 50-70 [mm], and can height 90-170 [mm].
  • the polyhedron wall 4 is formed into a concavo-convex shape by a folding structure without changing the circumference of the can body 21, and is composed of a large number of unit panels 5 partitioned by folds of oblique ridge lines 51. That is, a predetermined number of unit panels 5 are arranged in a direction parallel to the central axis N of the can body 21 (hereinafter simply referred to as an axial direction) to form a panel row 50, and the panel row 50 is arranged in the circumferential direction of the can body 21.
  • the configuration is arranged all around.
  • the phase in the axial direction of the unit panels 5 of the panel rows 50 adjacent to each other is shifted by half the axial length of the unit panels 5 and the unit panels 5 are densely arranged in the axial direction and the circumferential direction.
  • the polyhedral wall 4 is provided in a strip shape in the middle of the axial direction of the can body 21, and the upper and lower regions of the polyhedral wall 4 are cylindrical surfaces having no irregularities.
  • the area of the polyhedral wall 4 is about 50% with respect to the can body in the illustrated example, it is preferable to set it to 75% or less of the can body in consideration of the restored sound.
  • FIG. 15C is an enlarged view of a portion C in FIG.
  • the unit panel 5 bends in a dogleg shape toward the inside of the can with a valley fold horizontal ridge line 52 positioned on a plane orthogonal to the central axis N of the can body 21 as a boundary. It is so depressed. Since the adjacent panel rows 50 are displaced in the axial direction by half the length of the unit panel 5, the unit panels 5 of the panel rows 50 located every other circumferential direction are in the same phase in the axial direction, The horizontal ridge line 52 is connected via a common vertex 53.
  • the cross section cut in the direction orthogonal to the central axis N of the can body 21 at the position of the horizontal ridgeline 52 of the unit panel 5 is a regular polygon as shown in FIG. In the illustrated example, it is a 14-sided shape, but it is not limited to a 14-sided shape. The corners of the vertex 53 are chamfered.
  • the horizontal ridge line 52 is described as a straight line in the illustrated example, but in an internal pressure release state and an empty can state, about ⁇ 0.5 mm, a convex arc shape inward of the can, or convex outward of the can It may be a curved shape such as an arc shape.
  • each unit panel 5 is caused to have an arc shape in which the horizontal ridge line 52 follows the cylindrical surface of the can body as shown by a two-dot chain line in FIG. 15C due to the internal pressure acting on the can body 21.
  • the oblique ridge line 51 is also deformed so as to follow the cylindrical surface of the can body 21, but is simply illustrated as a straight line in FIG.
  • an internal gas is released from the opening portion to generate a gas emission sound, and the oblique ridge line 51 and the horizontal ridge line 52 of each unit panel 5 are instantaneously formed into a linear shape.
  • the concavo-convex shape appears and a restored sound is generated by the impact.
  • Various factors such as the shape, area, and plate thickness of the unit panel 5 can be considered as factors for determining the size of the restored sound.
  • the present inventors have determined the depth of the shape of the unit panel 5. It was found that there is a correlation with the maximum depth change, which is the change.
  • FIG. 16A is a front view of the unit panel 5
  • FIG. 16B is a sectional view taken along the line BB in FIG. 16A
  • FIG. 16C is a sectional view taken along the line CC in FIG.
  • the broken line indicates the internal pressure acting state
  • the solid line indicates the restored state when the internal pressure is released.
  • the panel depth of the unit panel 5 in the first embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the vertex 53a and the vertex 53c to the midpoint m of the horizontal ridge line 52.
  • the change amount dmax is the change amount of the panel depth in the internal pressure acting state and the internal pressure release state.
  • the unit panel 5 has a rhombus shape defined by four oblique ridge lines 51, and vibrates like a drum having the four oblique ridge lines 51 as a frame. The restoration sound appears.
  • This unit panel 5 includes a total of four vertices 53a and 53c positioned on a central plane M passing through the central axis N of the can body 21 and two vertices 53b and 53d positioned symmetrically with respect to the central plane M. Has two vertices.
  • These four vertices 53a to 53d are located on a virtual cylindrical surface Y (indicated by a two-dot chain line in FIG. 16B) that substantially coincides with the cylindrical surface constituting the can body 21, and a free state in which no internal pressure is applied. Then, as shown by the solid line in FIG. 16 (B), the valley fold horizontal ridgeline 52 connecting the vertices 53b and 53d located at symmetrical positions with respect to the center plane M is connected inwardly to the can body 21 in the axial direction. It is the structure which bent and bent in the shape of a. In the internal pressure acting state, as shown by a broken line in FIG.
  • the upper triangular portion 5A and the lower triangular portion 5B are deformed so as to extend in the axial direction, and the middle point m of the horizontal ridge line 52 is the upper and lower apexes. It is displaced to a position close to the line connecting 53a and 53c.
  • the unit panel 5 is restored to the shape of a dogleg and the midpoint m of the horizontal ridge line 52 returns to the deepest part.
  • FIG. 16 (C) the shape is restored from a broken arc shape to a solid straight line shape.
  • the midpoint m is the portion where the unit panel 5 is most displaced, and the change in the panel depth at the midpoint m is the maximum depth change dmax, and the maximum value of the maximum depth change dmax of the unit panel is 0.54 mm or less. It is comprised so that.
  • the restored sound that can be heard after the gas emission sound is a sound that does not bother the gas emission sound.
  • the sound pressure level can be set to a range smaller than 75 dB and further about 70 dB or less at a position 40 cm away from the can body 21. Further, in the case of evaluating with the average value of the maximum depth change amount dmax of the unit panel, the unit panel whose maximum depth change amount dmax is 0.4 mm or more from the measurement results of the evaluation test described later (FIGS. 21 and 22).
  • the average value of the maximum depth change amount dmax is set to 0.45 mm or less.
  • the average value of the maximum depth change amount dmax is less than 0.4 mm.
  • the average value of the maximum depth change amount dmax is less than 0.4 mm and 0.15 mm or more, sound can be heard, but it becomes small enough not to bother.
  • the average value of the maximum depth change amount of the unit panel is less than 0.15 mm, it is possible to achieve a level at which it cannot be heard completely.
  • the maximum depth change amount dmax tends to be smaller as the unit panel 5 is smaller. If the body diameter of the can body 21 is the same, the size of the unit panel 5 is geometrically determined by the number of corners of the cross section shown in FIG. 15C, and the maximum depth change amount dmax increases as the number of corners increases. Becomes smaller. Conversely, the smaller the number of corners, the larger the unit panel 5 becomes, and the easier it is to deform, and the maximum depth change amount dmax increases. For example, when the can barrel diameter is in the range of 50 to 70 mm, it is preferable to set the corner from 14 to 16 corners.
  • the panel molding becomes difficult when the can body diameter D is in the range of 50 to 70 mm.
  • the angle is set from about 14 to 16 corners, the maximum value of the maximum depth change amount dmax is 0.54 mm or less, or the average value of the maximum depth change amount dmax of the unit panel having the maximum depth change amount dmax of 0.4 mm or more is It can be configured to be 0.45 mm or less.
  • the average value of the maximum depth change amount dmax can be set to about 0.15 mm so as to be less than 0.15 mm or more than 0.15 mm. Even if the length of the horizontal ridge line 52 is determined geometrically, the panel area varies depending on the vertical dimension.
  • the angle from 14 to 16 corners is set to 80 mm 2 or more and 120 mm 2 or less. is there. If it is smaller than 80 mm 2 , it becomes difficult to form a panel, and if it is larger than 120 mm 2 , the maximum depth change amount becomes large and the restored sound becomes large.
  • the area of the unit panel 5 is an area in a flatly developed state, that is, an area obtained by adding up the areas of the upper triangular portion 5A and the lower triangular portion 5B of the unit panel 5.
  • the maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty.
  • the panel depth at the time of empty can can be adjusted by curving the horizontal ridge line 52 in an arc shape inside or outside the can. That is, if the arc is curved inside the can, the maximum depth change amount dmax increases, and if the arc is curved outside the can, the maximum depth change amount dmax decreases.
  • FIG. 17 shows a positive pressure can according to the second embodiment.
  • FIG. 17 (A) shows an internal pressure acting state
  • FIG. 17 (B) shows an internal pressure released state.
  • the unit panel 5 is configured by a panel that is recessed in a fold shape of the straight horizontal ridgeline 52, but in the second embodiment, the central axis of the can body 21 of the unit panel 25
  • the cross-sectional shape in the direction parallel to N is a panel configuration that is recessed in an arc shape.
  • the polyhedral wall 24 is formed with a plurality of corrugated curved surfaces 30 in which crests 26 and troughs 27 are alternately formed in the axial direction.
  • the wavy curved surface 30 is partitioned by waveform ridges 251 and 252 that are symmetrical with respect to the center plane M passing through the center axis N of the can body 21.
  • a narrow part between the ridge lines 251 and 252 is a peak part 26 of the undulating curved surface 30, and a wide part is a valley part 27.
  • the unit panel 25 is a region from the top part 26a of one peak part 26 of the undulating curved surface 30 to the top part 26a of the next peak part 26 through the valley part 27.
  • the top part 26a of the peak part 26 allows the upper and lower unit panels 25 to be It is divided. That is, in the second embodiment, the entire circumference of the unit panel 25 is not demarcated by the corrugated ridge lines 251 and 252, but a part of the unit panel 25 is open and is divided by the top portion 26 a of the peak portion 26. Yes. In this example, although it is divided by the peak part 26, the part with the narrow space
  • the phase in the axial direction of the unit panels 25 of the corrugated curved surfaces 30 and 30 that are adjacent to each other is shifted by half the axial length of the unit panels, and the unit panels 25 are densely arranged in the axial direction and the circumferential direction.
  • the cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 is linear at any position, for example, a cross section cut in the direction orthogonal to the central axis N of the can body 21 at the position of the top portion 26a of the peak portion 26.
  • the apex portion 26a of the peak portion 26 is narrow and the unit panel 25 has a wide intermediate position.
  • twelve unit panels 25 are formed across the mountain portion 26, but the number is not limited to twelve.
  • the cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 has a circular cross section at the valley portion 27 on the inner side or the outer side of the can as will be described later in [Adjustment of Maximum Depth Change dmax]. It may be curved in an arc and is not limited to a straight line.
  • the polyhedral wall 4 is a cylindrical surface having no irregularities as a whole, as shown in FIG.
  • each unit panel 25 is viewed, it is deformed into an arc shape in the horizontal cross section, and the depression is eliminated.
  • FIG. 17B When the can lid 3 is opened, as shown in FIG. 17B, each unit panel 25 is restored to its original shape, and a restoration sound is emitted when the unit panel 25 is restored.
  • the restored sound has a correlation with the maximum depth change amount of the unit panel 25 as in the first embodiment.
  • FIG. 18A is a front view of the unit panel 25
  • FIG. 18B is a sectional view taken along the line BB in FIG. 18A
  • FIG. 18C is a sectional view taken along the line CC in FIG.
  • the broken line indicates the internal pressure acting state
  • the solid line indicates the restored state when the internal pressure is released.
  • the panel depth of the unit panel 5 in the second embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the upper and lower two top portions 26a to the panel center m2, and the maximum depth change amount dmax.
  • the unit panel 5 is a pair that does not cross each other in the region from the top 26a of one peak 26 of the undulating curved surface 30 to the top 26a of the next peak 26 through the valley 27.
  • the corrugated ridge lines 251 and 252 are formed by alternately and repeatedly forming concave arc ridge lines 251b and 252b and convex arc ridge lines 251a and 252a in the axial direction.
  • the convex arc ridge lines 251a and 252a are symmetrically opposed to each other.
  • the concave arc ridge lines 251b and 252b are opposed to each other in a barrel shape, and the upper and lower peak portions 26 are opposed to the apexes a1 and a2 of the convex arc ridge lines 251a and 252a and gradually narrow. It becomes the shape that becomes.
  • the vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located at the top part 26a of the peak part 26 of the corrugated curved surface 30, and there is no ridge line that becomes a crease on the top and bottom of the unit panel 25. It is divided.
  • the positions of the vertices b1 and b2 that are the maximum widths of the concave arc ridge lines 251b and 252b are located at the tops 26a of the peak portions 26 of the adjacent unit panels 25, and the concave arc ridge lines 251b and 252b of the unit panel 25 are located.
  • the vertices b1 and b2 and the vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located on one virtual cylindrical surface that substantially coincides with the cylindrical surface of the can body 21.
  • the panel center m2 of the unit panel 25 is an intersection with the virtual horizontal line X on the center plane M and connecting the vertices b1 and b2 of the concave arc ridge lines 251b and 252b having the maximum width. This is the deepest portion of the valley portion 27 of the curved surface 30 from the virtual cylindrical surface.
  • the panel center m2 is also an intermediate position between the top portions 26a and 26a of the upper and lower mountain portions 26.
  • the panel center m2 has a shape that is recessed in an arc toward the inside of the can body 21.
  • the unit panel 25 that is recessed in an arc shape is deformed so as to extend in parallel with the central axis N of the can body 21, and the panel center m2 is It is displaced to a position close to the line connecting the top portions 26a, 26a of the peak portion 26.
  • the internal pressure is released, as indicated by a solid line in FIG.
  • the unit panel 5 is restored to an arc shape, and the panel center m2 returns to the deepest part.
  • the arc shape of a broken line is restored to a solid straight line shape.
  • the panel center m2 is the portion of the unit panel 25 that is most displaced, and the panel depth change amount in the panel center m2 internal pressure applied state and the internal pressure release state is the maximum depth change amount dmax, and the maximum depth change amount dmax. If the maximum value is set to 0.54 mm or less, the restored sound can be made sufficiently lower in volume than the gas emission sound. In the case of an arc-shaped panel, since there are few unit panels that are not restored, if the average value of the maximum depth change amount is reduced to less than 0.4 mm and at least 0.15 mm or less, the volume is sufficiently low.
  • the maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty.
  • the cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 is linear at any position, the can is curved by curving the cross section at the valley portion 27 inside or outside the can.
  • the panel depth can be adjusted. That is, if the arc is curved inside the can, the maximum depth change dmax is increased, and if the arc is curved outside the can, the maximum depth change dmax is decreased.
  • the panel center m2 in the internal pressure acting state may be displaced to a position outside the line connecting the two upper and lower apexes 26a.
  • Example 1 Number of corners: 13 corners, number of panels: 91, empty can depth: 0.81 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 2 Number of corners: 13 corners, number of panels: 91, empty can depth: 0.85 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 3 Number of corners: 13 corners, number of panels: 91, empty can depth: 0.89 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 4 Number of corners: 13 corners, number of panels: 91, empty can depth: 0.92 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
  • Sample 5 Number of corners: 11 corners, number of panels: 66, empty can depth: 1.38 mm, unit panel area: 177 mm 2 , polyhedral wall area: 70% of
  • the number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
  • the conditions of the evaluation test are as follows. ⁇ Temperature: 5 °C storage (Liquid temperature is 6.5-8 °C), ⁇ Can internal pressure: 120-150kPa ⁇ Thickness of can body 0.092 ⁇ 0.122mm ⁇ Can barrel diameter: 66.5-67mm ⁇ Can height: 121.8-122.2mm ⁇ Contents: 350ml (Test method) The maximum depth change amount dmax is obtained by measuring the panel depth when the internal pressure is applied, then measuring the panel depth when the internal pressure is released, and measuring the difference. As shown in FIG.
  • the panel depth measurement method is such that the bottom side of the positive pressure can 1 is held horizontally by a vacuum, and the digimatic indicator 100 (“Digimatic” is a registered trademark of “Mitutoyo Co., Ltd.”). ) Is vertically applied to the apex 53 so that its height is zero, the positive pressure can 1 is slid in the direction of the central axis N, and the digimatic indicator 100 is moved to the middle point m of the horizontal ridge 53. In addition, the height is obtained by placing the probe 101 on the middle point m of the horizontal ridge line 53. Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically.
  • Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically.
  • a horizontal movement mechanism 104 that holds the positive pressure can 1 and moves it horizontally along the central axis N of the positive pressure can 1 is provided below the digimatic indicator 100 of the stand 102.
  • the horizontal movement mechanism 104 includes a holding portion 105 that holds the mouth portion of the positive pressure can 1 and a telescopic portion 106 such as a cylinder mechanism or a feed screw mechanism that moves the holding portion 105 horizontally.
  • the panel depth is obtained for all the unit panels 5, and the difference between the panel depths in the internal pressure applied state and the internal pressure release state of each unit panel 5 is defined as the maximum depth change amount dmax, the maximum value, and the maximum depth change amount of each unit panel. The average value of dmax was calculated.
  • the average value is the average value of the maximum depth change amount for the unit panels excluding the unit panel whose maximum depth change amount dmax is less than 0.4 mm, and the unit excluding the unit panel whose maximum depth change amount dmax is less than 0.3 mm.
  • the average value of the maximum depth change amount for the panel and the average value obtained for all the unit panels without excluding the unit panel are calculated based on the dimension of the maximum depth change amount dmax.
  • Each sample has three cans, and regarding the maximum value of the maximum depth change amount, the average value of the three maximum cans is (ave), the maximum value is (max), and the minimum value is (min).
  • the average value of the maximum depth change amount dmax of each unit panel is (ave), the maximum value is (max), and the minimum value is (min). Digimatic indicator manufactured by Mitutoyo Corporation, model number ID-C1012, and probe 101 used by Mitutoyo Corporation, model number 137413 were used.
  • the sound level of the restored sound was measured by installing a noise meter 120 at a position 40 cm away from the can. This 40 cm is a distance L between the microphone 121 and the positive pressure can 1. The meaning of 40 cm means the approximate distance between the can and the ear when actually opened.
  • the sound level meter 120 was placed on the floor, and the microphone 121 was held at a height of about 60 cm from the floor by the stand 122.
  • the measured value is obtained as time axis waveform data.
  • the frequency weighting characteristic is A characteristic
  • the time weighting characteristic is F.
  • the number of measurements was 3 cans, and the average value (ave), maximum value (max), and minimum value (min) of the restored sound were determined.
  • model number NL-42 manufactured by Rion Co., Ltd. is used, and a wind screen WS-10 is attached to the tip of the microphone 121.
  • FIG. 20 and 21 are graphs of the data in Table 3.
  • FIG. 20 shows the relationship between the maximum value of the maximum depth change amount and the magnitude of the restored sound
  • FIG. 21 shows the relationship between the average value of the maximum depth change amount and the magnitude of the restored sound.
  • samples 1 to 7 are shown as S1 to S7, respectively.
  • the maximum value of the maximum depth change amount and the volume of the restored sound will be described.
  • the maximum value of the maximum depth change amount is in the range of 0.74 mm to 0.86 mm
  • the restored sound is as large as 76 dB to 80 dB. .
  • the average value of the maximum depth change amount is in the range of 0.55 mm to 0.74 mm, and the restored sound is in the range of 72 dB to 79 dB.
  • the maximum value of the maximum depth change amount is 1.00 mm, and the restored sound is 83 dB.
  • the maximum value of the maximum depth change is in the range of 0.22 mm to 0.31 mm, and is in the range of 43 dB to 46 dB, which is almost inaudible. .
  • the points of the maximum depth change amount and the average value of the restored sound of the 11-corner samples 5 (S5) and 6 (S6) are g1, the 13-corner samples 1 (S1) to 4 (S4)
  • the point of the depth change amount and the average value of the restored sound is g2
  • the straight line passing through g1 and g2 and the sample 8 is G1
  • Sample 1 (S1) to Sample 4 (S4) have a smaller maximum depth change amount and a smaller restored sound.
  • the average value of the maximum depth change amount for sample 7 (S7) is g3
  • the straight line passing through the average point g2 of the 13 corner samples 1 (S1) to 4 (S4) is G2
  • the maximum depth change amount is further reduced toward the 16th corner, and the restored sound is greatly reduced.
  • the gradient of this straight line G2 is larger than the gradient of G1. If the straight line G1 reaches 0.55 mm, which is the minimum value of the maximum depth change amount of the 13 corner samples 1 (S1) to 4 (S4), it falls below 75 dB, and at 0.54 mm, it drops to about 73 dB.
  • the 0.54 mm line falls below 70 dB of the gas emission sound and decreases to about 66 dB.
  • the restoration sound decreases in the range closer to the straight line G2 than the straight line G1 as the maximum depth change amount decreases, and if the maximum value of the maximum depth change amount of the unit panel is 0.54 mm or less, It drops to the level before and after the sound emission.
  • the sample 8 is an arc panel and is different from the samples 1 to 7, but the relationship between the maximum depth change amount and the restored sound is on the G1 line and behaves similarly according to the maximum depth change amount.
  • Sample 8 has 26 corrugated surfaces and is similar to the 13-corner cross section of samples 1 to 4, but the maximum depth change and restored sound are large. When the maximum depth change amount is reduced, the number of corrugated surfaces is increased.
  • the average value for the unit panel having the maximum depth change amount of 0.3 mm or more and the average value for the unit panel having the maximum depth change amount of 0.4 mm or more are calculated and graphed. 22 (B).
  • sample 5 (S5) and sample 6 (S6) are in a range where they intersect with sample 1 to sample 4, and are unclear.
  • FIG. 22 (B) shows that when a unit panel of 0.4 mm or more is extracted, as shown in FIG.
  • sample 5 (S5) and sample 6 (S6) escape from the range where sample 1 to sample 4 intersect, and sample 5 (S5) It was also found that the maximum depth change amount (average value) of Sample 6 (S6) was larger than the maximum depth change amount (average value) of Sample 1 to Sample 4, and was clearly divided. Therefore, in calculating the average value of the maximum depth change amount of each can, the unit panel whose maximum depth change amount is less than 0.4 mm is excluded, and the influence of the unit panel that is not restored is excluded. In sample 7 (S7), all unit panels have been restored, taking the average value of the maximum depth change amount without restriction, and excluding samples 1 (S1) to 6 (S6) less than 0.4 mm Shall be handled in the same way. As shown in FIG.
  • the average value of the maximum depth change amount is in the range of 0.57 mm to 0.67 mm, and the restored sound is 76 dB. It is as large as ⁇ 80 dB.
  • the average value of the maximum depth change amount is in the range of 0.48 mm to 0.53 mm, and the restored sound is in the range of 72 dB to 78 dB. .
  • the average value of the maximum depth change amount is in the range of 0.17 mm to 0.20 mm, and is in the range of 43 dB to 46 dB, which is almost inaudible.
  • the maximum depth change amount and the average value of the restored sound of the 11 corner samples 5 (S5) and 6 (S6) are the maximum points of the 11th and 13th corner samples 1 (S1) to 4 (S4).
  • the point of the depth change amount and the average value of the restored sound is g12, and the straight line passing through g11 and g12 is G11, the sample 1 of 13 corners (sample 5 (S5) and sample 6 (S6)) In S1) to Sample 4 (S4), the maximum amount of change in depth is smaller, and the restored sound is also smaller. Further, assuming that the average value of the maximum depth change amount for sample 7 (S7) is g13, and the straight line passing through the average point g12 of the 13 corner samples 1 (S1) to 4 (S4) is G12, On the other hand, the maximum depth change amount is further reduced toward the 16th corner, and the restored sound is greatly reduced. The gradient of this straight line G12 is larger than the gradient of G11.
  • the 0.45 mm line is reduced to the vicinity of 71 dB, which is the same level as the gas emission sound, and is in a range where the restoration sound is not anxious.
  • the restoration sound is considered to decrease in a range closer to the straight line G12 than the straight line G11 as the maximum depth change amount decreases, and the average of the maximum depth change amount of the unit panel in which the maximum depth change amount is 0.4 mm or more. If the value is 0.45 mm or less, the value drops below 75 dB to a level close to the gas emission sound.
  • the gas emission sound is about 70 dB, and if it is 72 dB or less, it becomes a level that does not matter. Preferably, it is set to 70 dB or less.
  • the average value of the unit panel with a maximum depth change of 0.4 mm or more is set to 0.45 mm or more, and the maximum value of the maximum depth change is between 0.4 mm and 0.45 mm. Of course, the average value is less than 0.45 mm.
  • the average value may be configured to be less than 0.4 mm. Further, as shown in FIG.
  • the average value of the maximum depth change amount when the average value of the maximum depth change amount reaches 0.15 mm, it becomes smaller than 40 dB, which is almost inaudible. Therefore, if the average value of the maximum depth change amount is set to be 0.15 mm or more and less than 0.4 mm, a sound can be heard, but the level can be reduced to a level that does not matter. Further, if the average value of the maximum depth change amount of the unit panel is set to 0.15 mm or less, a level that cannot be completely heard can be obtained. In the case of an arc-shaped unit panel, although there is only data of sample 8, if the average value of the maximum depth change is reduced to less than 0.4 mm and at least 0.15 mm or less, it is sufficient for the gas emission sound. The volume is low.
  • the average value of the maximum depth change amount is 0.45 mm or less if the angle is between 14 and 16 angles, or about 14, 15 and 16 angles.
  • the unit panel constituting the polyhedral wall is not limited to the bent rhombus shape of the first embodiment and the arc shape of the second embodiment.
  • the present invention can be applied to various patterns that are deformed in a direction in which the dent is reduced by the acting internal pressure and are restored to the original shape when the can lid is opened.
  • 1 positive pressure can 2 can body 21 can body, 22 neck part, 23 bottom part, 3 Can lid 4 Polyhedral wall 5 Unit panel 5A Upper triangular portion, 5B Lower triangular portion 51 Diagonal ridge line, 52 Horizontal ridge line, 53 (53a to 53d) Vertex 50 Panel row 6: Tab 100 Digimatic indicator 120 Sound level meter M Center plane N Center axis dmax Maximum depth change m Middle point m2 of horizontal ridge line Panel center 24 Polyhedron wall 25 Unit panel 251 252 Waveform ridge line, 30 Corrugated curved surface 26 Mountain, 26a Top 27 Valley

Abstract

Provided is a positive-pressure can in which the restoration sound of a polyhedral wall is increased and which imparts an auditory effect at the same time as the visual effect of a unit panel being restored, or a positive-pressure can in which it is possible to reduce the restoration sound to an extent that the same can be ignored. The maximum value of a maximum depth change quantity of a unit panel is set within the range of 0.75-1.2 mm, or the average value of the maximum depth change quantity for the unit panel for which the maximum depth change quantity is 0.4 mm or greater is set within the range of 0.54-0.75 mm. In addition, the average value of the maximum depth change quantity of each unit panel is set within the range of 0.46-1.08 mm, the unit panel being such that the cross-sectional shape in a direction parallel to the center axis of a can barrel is depressed in a circular arc toward the inner side of the can barrel in a free state in which no internal pressure is added. In addition, the maximum value of the maximum depth change quantity of the unit panel is configured to be 0.54 mm or less, or the average value of the maximum depth change quantity for the unit panel for which the maximum value of the maximum depth change quantity is 0.4 mm or greater is configured to be 0.45 mm or less.

Description

陽圧缶Positive pressure can
 本発明は、たとえば、ビール、酎ハイ等の炭酸系飲料用の缶、内容物の酸化を防ぐ不活性ガスが封入された缶等、缶胴に内圧が作用する陽圧缶に関し、特に、缶胴に複数の単位パネルによって構成される多面体壁を有し、密封状態では単位パネルが内圧によって外側に膨らみ、開封時に元の形状に復元し、復元する際に復元音を発する陽圧缶に関する。 The present invention relates to a positive pressure can in which an internal pressure acts on the can body, such as a can for beer, strawberry high and other carbonated beverages, a can filled with an inert gas that prevents oxidation of the contents, and in particular, the can The present invention relates to a positive pressure can that has a polyhedral wall composed of a plurality of unit panels in the body, and in a sealed state, the unit panels bulge outward due to internal pressure, restores the original shape when opened, and emits a restoring sound when restored.
 従来のこの種の陽圧缶としては、たとえば、特許文献1に記載のような陽圧缶が知られている。
 この陽圧缶は、缶胴を有する缶本体と、缶本体を陽圧状態で密閉する缶蓋とを備え、缶胴の少なくとも一部に多面体壁を有し、多面体壁は凸条の境界稜線で区画された折り構造の多数の単位パネルで構成されている。単位パネルは、缶胴を部分的に窪ませた形状で、缶胴に作用する内圧によって窪みが小さくなる方向に弾性変形し、缶蓋の開封時に元の窪んだ形状に復元するようになっている。
 このように、内容物を密封した状態では、内圧によって単位パネルの窪みによる凹凸が小さく、開封すると、窪み形状が復元し、缶胴の剛性を向上させると共に、視覚的に使用者に強い印象を与え、商品価値を高めるものであった。
As a conventional positive pressure can of this type, for example, a positive pressure can as described in Patent Document 1 is known.
This positive pressure can is provided with a can body having a can body and a can lid for sealing the can body in a positive pressure state. It is composed of a large number of unit panels with a folding structure partitioned by. The unit panel has a shape in which the can body is partially recessed, elastically deforms in a direction that the recess becomes smaller due to internal pressure acting on the can body, and is restored to the original recessed shape when the can lid is opened. Yes.
In this way, when the contents are sealed, the unevenness due to the depression of the unit panel is small due to the internal pressure. The product value was given.
特許第3915450号公報Japanese Patent No. 3915450
 本発明者等は、この多面体壁を有する陽圧缶の商品価値をさらに高めるべく、鋭意研究した結果、開封時に単位パネルの形状が元の形状に復元する際に聞こえる復元音に着目した。
 検討の結果、単位パネル復元時のデプス変化量が復元音と関係があるということがわかった。
 本発明の第1の目的は、多面体壁を構成する単位パネルの復元音を大きくし、単位パネルが復元する視覚的効果と同時に聴覚的効果を加えた陽圧缶を提供することにある。
 本発明の第2の目的は、多面体壁を構成する単位パネルの復元音を気にならない程度に小さくし得る陽圧缶を提供することにある。
As a result of earnest research to further increase the commercial value of a positive pressure can having a polyhedral wall, the present inventors have focused on the restoration sound that can be heard when the unit panel is restored to its original shape when opened.
As a result of the examination, it was found that the amount of depth change when restoring the unit panel is related to the restored sound.
A first object of the present invention is to provide a positive pressure can in which a restoration sound of a unit panel constituting a polyhedral wall is increased, and an auditory effect is added simultaneously with a visual effect of restoration of the unit panel.
The second object of the present invention is to provide a positive pressure can that can be reduced to such an extent that the restored sound of the unit panel constituting the polyhedral wall is not a concern.
[課題を解決するための手段(第1の発明群)]
 上記第1の目的を達成するために、第1の発明群を構成する一つの発明は、
 缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
 前記単位パネルの最大デプス変化量の最大値が、0.75mm以上1.2mm以下に設定されていることを特徴とする。
 単位パネルは、全周が境界稜線で囲まれている必要はなく、単位パネルの少なくとも一部が境界稜線で区画されている場合も含まれる。
 現行の製品についても、復元音が聞こえているものの、プルタブによる缶蓋の引き裂き音と、ガスが抜ける際のガス放出音が大きく先に聞こえ、その後に復元音が聞こえるために、使用者の注意を引き難い。
 本発明によれば、前記各単位パネルの最大デプス変化量の最大値を0.75mm以上に制御することによって、ガス放出音が聞こえた後でも、十分に聞き取りやすい大きさの復元音を生じさせることができる。これにより、単位パネルが復元する視覚的効果と同時に聴覚的効果が加わり、相乗的に凹凸が現れる際の効果を高めることができる。特に、最大デプス変化量が大きく変化し、視覚的に変化が際立つので、注意を惹かれ、音についても敏感になって復元音を聞き取る効果が高い。また、最大デプス変化量を大きくするには単位パネルを大きくする必要があり、深さに加えて大きい単位パネルが大きく変化することにより視覚的効果を高めることができる。一方、単位パネルを大きくすると、空缶時の軸荷重強度が低下する傾向にあり、最大デプス変化量の最大値の上限を1.2mm以下とすることにより、空缶時の軸荷重強度を維持することができる。
 また、第1の発明群を構成する他の発明は、缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
 最大デプス変化量が0.4mm以上となる前記単位パネルについての最大デプス変化量の平均値が、0.54mm以上0.75mm以下の範囲に設定されていることを特徴とする。
 一部の単位パネルは開封時に復元しない場合があるため、最大デプス変化量が0.4mm未満の単位パネルを除くことにより、復元しない単位パネルの影響を除外することができ、多面体壁の復元形態を、正確に評価することができる。
 このように平均値を用いることで、最大デプス変化量を安定して評価でき、一定以上の安定した復元音が得られる陽圧缶を実現できる。
 空缶時の軸荷重強度については、最大値で評価する場合の上限値1.2mmに対して、平均値で0.75mm程度に設定しておけばよい。
 また、第1の発明群を構成するさらに他の発明は、缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
 前記単位パネルの最大デプス変化量の最大値が、0.75mm以上1.2mm以下に設定され、かつ、最大デプス変化量が0.4mm以上となる前記単位パネルについての最大デプス変化量の平均値が、0.54mm以上0.75mm以下の範囲に設定されていることを特徴とする。
 このように最大デプス変化量の最大値と平均値を用いることにより、最大デプス変化量が安定し、しかも最大値が大きく、より大きな復元音が得られる陽圧缶を実現できる。
[Means for Solving the Problem (First Invention Group)]
In order to achieve the first object, one invention constituting the first invention group is:
A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
The maximum value of the maximum depth change amount of the unit panel is set to 0.75 mm or more and 1.2 mm or less.
The unit panel does not need to be surrounded by the boundary ridgeline, and includes a case where at least a part of the unit panel is partitioned by the boundary ridgeline.
Although the restoration sound is also heard for the current product, the tearing sound of the can lid due to the pull tab and the gas emission sound when the gas escapes are heard first, and then the restoration sound is heard. Is difficult to pull.
According to the present invention, the maximum value of the maximum depth change amount of each unit panel is controlled to be 0.75 mm or more, so that a restored sound having a size that can be easily heard even after the gas emission sound is heard is generated. be able to. Accordingly, an auditory effect is added at the same time as a visual effect restored by the unit panel, and an effect when the unevenness appears synergistically can be enhanced. In particular, since the maximum depth change greatly changes and the change is visually noticeable, the effect of attracting attention and making the sound sensitive and listening to the restored sound is high. Further, in order to increase the maximum depth change amount, it is necessary to enlarge the unit panel, and the visual effect can be enhanced by greatly changing the large unit panel in addition to the depth. On the other hand, when the unit panel is enlarged, the axial load strength at the time of empty can tends to decrease, and the upper limit of the maximum value of the maximum depth change amount is set to 1.2 mm or less to maintain the axial load strength at the time of empty can. can do.
Further, another invention constituting the first invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, wherein at least a part of the can body is convex. It has a polyhedral wall composed of a large number of unit panels partitioned by boundary ridgelines, and the unit panel is indented inward of the can body in a free state, and the depression is small due to internal pressure acting on the can body. In a positive pressure can with a structure that is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and restored when it is restored,
An average value of the maximum depth change amount for the unit panel in which the maximum depth change amount is 0.4 mm or more is set in a range of 0.54 mm or more and 0.75 mm or less.
Since some unit panels may not be restored when opened, the effect of unit panels that are not restored can be excluded by removing unit panels whose maximum depth change is less than 0.4 mm. Can be accurately evaluated.
By using the average value in this way, it is possible to realize a positive pressure can that can stably evaluate the maximum amount of change in depth and obtain a stable restoration sound of a certain level or more.
About the axial load intensity | strength at the time of an empty can, what is necessary is just to set to about 0.75 mm by an average value with respect to the upper limit of 1.2 mm in the case of evaluating with a maximum value.
Still another invention constituting the first invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, and at least a part of the can body is convex. The unit panel has a polyhedral wall composed of a large number of unit panels partitioned by boundary ridge lines, and the unit panel has a shape recessed inward of the can body in a free state, and a recess is formed by an internal pressure acting on the can body. In a positive pressure can with a configuration that deforms in a smaller direction, restores the original shape when the can lid is opened, and generates a restoration sound when restoring,
The maximum value of the maximum depth change amount of the unit panel in which the maximum value of the maximum depth change amount of the unit panel is set to 0.75 mm or more and 1.2 mm or less and the maximum depth change amount is 0.4 mm or more. Is set in a range of 0.54 mm or more and 0.75 mm or less.
In this way, by using the maximum value and the average value of the maximum depth change amount, it is possible to realize a positive pressure can in which the maximum depth change amount is stable, the maximum value is large, and a larger restoration sound can be obtained.
 また、上記第1の発明群の発明は次のように構成することができる。
 1)陽圧缶の開封時の前記復元音の音圧レベルを、前記缶胴から40cm離れた位置において、75dB以上に設定する。
 ガス放出音は70dB程度であり、75dB程度あれば、ガス放出音の後でも十分に聞き取れる音のレベルとなる。
 2)多面体壁は、缶胴の面積の25%以上とする。
 このようにすれば、効果的に音圧レベルを上げることができる。
 3)単位パネルは前記境界稜線としての斜め稜線によって区画される菱形形状で、前記缶胴の中心軸線を通る中心面上に位置する2つの頂点と、中心面に対して対称位置に位置する2つの頂点の計4つの頂点を有し、内圧が加わらない自由状態で、前記中心面に対して対称位置に位置する頂点を結ぶ谷折りの横稜線によって、前記缶胴の内方に屈曲して窪んだ構成となっており、前記最大デプス変化量は、前記横稜線の中点における単位パネルデプスの変化量とする。
 このようにすれば、内圧で中央が膨らむように変形していた横稜線が一気に元の形状に戻るので、鮮明な復元音を生成することができる。なお、単位パネルが完全に弾性復元する場合だけでなく、一部塑性変形して、完全には元の形状に戻らない場合も含まれる。
 4)前記多面体壁は、複数の前記単位パネルが前記缶胴の中心軸線と平行方向に並んだ単位パネル列が、前記缶胴の周方向に全周的に密に配列された構成で、前記単位パネルの横稜線を通る断面の角数が、11角から12角の範囲に設定されている。
 12角より大きいと、単位パネルの大きさが小さくなるために、最大デプス変化量が小さくなる。一方、11角より小さいと、単位パネルの面積が大きくなり、最大デプス変化量が大きくなるものの、空缶時の軸荷重強度が維持できなくなる。
 5)単位パネルの面積は、130mm以上で180mm以下に設定される。
 130mmより小さいと、変形しにくくなるので、最大デプス変化量が小さくなり、180mmより大きいと、最大デプス変化量は大きくなるものの、空缶時の軸荷重強度が維持できなくなる。
 6)最大デプス変化量は、開封前の内圧が20~300kPaにおける最大デプス変化量、好適には120~150kPaとする。
 本発明は、最大デプス変化量と復元音の間に一定の関係があることを見出したもので、内圧の好適な範囲としては、内圧作用時に、単位パネルの窪みが円筒に近くなるまで十分に変形させ、しかも塑性変形をできるだけ生じさせず、内圧開放時に元の窪み形状まで復帰させる程度の範囲であり、好ましい範囲としては20~300kPa、より好ましい範囲としては、120~150kPaとする。
 内圧が高くなると、内圧作用状態のパネルデプスが浅くなり、内圧開放状態のパネルデプスとの差が大きくなり、結果的に最大デプス変化量は大きくなる。最大デプス変化量は空缶デプスやパネルサイズによっても変わる。
様々な要因で最大デプス変化量が決まり、その最大デプス変化量が復元音に関係する。
 この内圧の条件設定は、陽圧缶の使用範囲を制限するものではなく測定時の条件を設定するものである。たとえば、120kPaより低圧、あるいは150kPaより高圧で使用されているとしても、この圧力範囲で測定したときに、この範囲となるものを含むものとする。
The invention of the first invention group can be configured as follows.
1) The sound pressure level of the restored sound when the positive pressure can is opened is set to 75 dB or more at a position 40 cm away from the can body.
The gas emission sound is about 70 dB, and if it is about 75 dB, the sound level is sufficiently audible even after the gas emission sound.
2) The polyhedral wall is 25% or more of the area of the can body.
In this way, the sound pressure level can be effectively increased.
3) The unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on the center plane passing through the central axis of the can body, and 2 located at a symmetrical position with respect to the center plane. It has a total of four vertices, and in a free state where no internal pressure is applied, it is bent inward of the can body by a lateral fold line of valley folds connecting vertices located at symmetrical positions with respect to the center plane. The maximum depth change amount is the change amount of the unit panel depth at the midpoint of the horizontal ridge line.
In this way, the horizontal ridgeline that has been deformed so that the center swells due to the internal pressure returns to the original shape all at once, so that a clear restoration sound can be generated. In addition to the case where the unit panel is completely elastically restored, the case where the unit panel is partially plastically deformed and does not completely return to the original shape is included.
4) The polyhedral wall has a configuration in which unit panel rows in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body are densely arranged in the circumferential direction of the can body, The number of corners of the cross section passing through the horizontal ridge line of the unit panel is set in the range of 11 to 12 corners.
When the angle is larger than 12 corners, the size of the unit panel is reduced, so that the maximum depth change amount is reduced. On the other hand, if the angle is smaller than 11 corners, the area of the unit panel increases and the maximum depth change amount increases, but the axial load strength at the time of empty can cannot be maintained.
5) The area of the unit panel is set to 130 mm 2 or more and 180 mm 2 or less.
If it is smaller than 130 mm 2 , it becomes difficult to deform, so that the maximum depth change amount becomes small. If it is larger than 180 mm 2 , the maximum depth change amount becomes large, but the axial load strength at the time of empty can cannot be maintained.
6) The maximum depth change amount is the maximum depth change amount when the internal pressure before opening is 20 to 300 kPa, preferably 120 to 150 kPa.
The present invention has found that there is a certain relationship between the maximum depth change amount and the restored sound, and a suitable range of internal pressure is sufficient until the depression of the unit panel becomes close to a cylinder when the internal pressure is applied. The range is such that it is deformed and does not cause plastic deformation as much as possible, and returns to the original hollow shape when the internal pressure is released. A preferable range is 20 to 300 kPa, and a more preferable range is 120 to 150 kPa.
When the internal pressure increases, the panel depth in the internal pressure acting state becomes shallow, and the difference from the panel depth in the internal pressure released state increases, and as a result, the maximum depth change amount increases. The maximum depth change varies depending on the can depth and panel size.
The maximum depth change amount is determined by various factors, and the maximum depth change amount is related to the restored sound.
This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if it is used at a pressure lower than 120 kPa or a pressure higher than 150 kPa, it shall be included within this range when measured in this pressure range.
[発明の効果(第1の発明群)]
 本第1の発明群の発明によれば、多面体壁を構成する単位パネルの復元音を大きくし、単位パネルが復元する視覚的効果と同時に聴覚的効果を加えた陽圧缶を実現することができる。
[Effect of the invention (first invention group)]
According to the invention of the first invention group, it is possible to increase the restoration sound of the unit panel constituting the polyhedral wall, and to realize a positive pressure can that adds an auditory effect at the same time as the visual effect that the unit panel restores. it can.
[課題を解決するための手段(第2の発明群)]
 また、上記第1の目的を達成するために、第2の発明群を構成する一つの発明は、
 缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備えた陽圧缶において、
 前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、
 前記単位パネルは、内圧が加わらない自由状態では前記缶胴の中心軸線と平行方向の断面形状が缶胴の内方に円弧状に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成で、
 前記各単位パネルの最大デプス変化量の平均値が、0.46mm以上で、かつ、1.08mm以下の範囲に設定されていることを特徴とする。
 単位パネルは、単位パネルの少なくとも一部が境界稜線で区画された構成で、一部が開いた構成と、全周が境界稜線で囲まれた閉じた構成の両方が含まれる。
 本発明のように、単位パネルが、缶胴の中心軸線と平行方向の断面形状が円弧状に窪んだ形状の場合には、内圧作用時の弾性歪量が大きくなり、内圧解放時に一気に開放されて復元音が大きく、前記各単位パネルの最大デプス変化量の平均値が、0.46mm以上で、かつ、1.08mm以下としておけば、復元音をガス放出音70dBよりも大きいレベルに維持することができることがわかった。
 これにより、ガス放出音が聞こえた後でも、十分に聞き取りやすい大きさの復元音を生じさせることができ、単位パネルが復元する視覚的効果と同時に聴覚的効果が加わり、凹凸が現れる際の効果を高めることができる。
 このパネルの復元音は、パネル1個当たりの大きさとパネル数に関係している。
 最大デプス変化量の平均値が大きいと、パネル1個当たりの音圧レベルは大きくなるが、パネルの大きさを大きくする必要があるので、パネル数が少なくなり、全体としての復元音が低下していく。最大デプス変化量の平均値が1.08mm以下であれば、パネル数が少なくなっても、復元音をガス放出音70Bよりも大きいレベルに維持することができる。
 最大デプス変化量の平均値が小さいと、パネル1個当たりの音圧レベルが小さくなるが、パネルの大きさを小さくしてパネル数を増やすことができ、全体としての復元音を大きくすることができる。ただ、限界があり、0.46mm以上であれば、復元音を大きくすることができる。
 また、本第2の発明群を構成する他の発明は、缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備えた陽圧缶において、
 前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、
 前記単位パネルは、内圧が加わらない自由状態では前記缶胴の中心軸線と平行方向の断面形状が缶胴の内方に円弧状に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成で、
 前記最大デプス変化量の最大値が、0.59mm以上で、かつ、1.31mm以下の範囲に設定されていることを特徴とする。
 このように最大デプス変化量の最大値と平均値を用いることにより、最大デプス変化量が安定し、しかも最大値が大きく、より大きな復元音が得られる陽圧缶を実現できる。
[Means for Solving the Problem (Second Invention Group)]
In order to achieve the first object, one invention constituting the second invention group is:
In a positive pressure can comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state,
Having a polyhedral wall composed of a large number of unit panels defined by at least part of the can body by convex boundary ridge lines;
In a free state where no internal pressure is applied, the unit panel has a cross-sectional shape parallel to the central axis of the can body that is recessed in an arc shape inwardly of the can body, and the depression is small due to the internal pressure acting on the can body. It is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and a restoration sound is emitted when restoring,
The average value of the maximum depth change amount of each unit panel is set in a range of 0.46 mm or more and 1.08 mm or less.
The unit panel has a configuration in which at least a part of the unit panel is partitioned by a boundary ridgeline, and includes both a configuration in which a part is opened and a closed configuration in which the entire periphery is surrounded by a boundary ridgeline.
As in the present invention, when the unit panel has a shape in which the cross-sectional shape in the direction parallel to the central axis of the can body is recessed in an arc shape, the amount of elastic strain at the time of internal pressure action increases and is released at a time when the internal pressure is released. If the restoration sound is large and the average value of the maximum depth variation of each unit panel is 0.46 mm or more and 1.08 mm or less, the restoration sound is maintained at a level larger than the gas emission sound 70 dB. I found out that I could do it.
As a result, even after the gas emission sound is heard, it is possible to generate a restoration sound that is large enough to be heard, and the visual effect that the unit panel restores, as well as the auditory effect and the effect when irregularities appear. Can be increased.
The restoration sound of this panel is related to the size per panel and the number of panels.
If the average value of the maximum depth change is large, the sound pressure level per panel increases, but it is necessary to increase the size of the panel, so the number of panels decreases and the overall restored sound decreases. To go. If the average value of the maximum depth change amount is 1.08 mm or less, the restoration sound can be maintained at a level higher than the gas emission sound 70B even if the number of panels is reduced.
If the average value of the maximum depth change amount is small, the sound pressure level per panel becomes small, but the size of the panel can be reduced to increase the number of panels, and the overall restored sound can be increased. it can. However, there is a limit, and if it is 0.46 mm or more, the restored sound can be increased.
Further, another invention constituting the second invention group is a positive pressure can provided with a can body having a can body and a can lid for sealing the can body in a positive pressure state.
Having a polyhedral wall composed of a large number of unit panels defined by at least part of the can body by convex boundary ridge lines;
In a free state where no internal pressure is applied, the unit panel has a cross-sectional shape parallel to the central axis of the can body that is recessed in an arc shape inwardly of the can body, and the depression is small due to the internal pressure acting on the can body. It is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and a restoration sound is emitted when restoring,
The maximum value of the maximum depth change amount is set in a range of 0.59 mm or more and 1.31 mm or less.
In this way, by using the maximum value and the average value of the maximum depth change amount, it is possible to realize a positive pressure can in which the maximum depth change amount is stable, the maximum value is large, and a larger restoration sound can be obtained.
 また、本第2の発明群の発明は次のように構成することができる。
 1)前記復元音の音圧レベルを、前記缶胴から40cm離れた位置において、75dB以上に設定する。
 ガス放出音は70dB程度であり、75dB程度あれば、ガス放出音の後でも十分に聞き取れる音のレベルとなる。
 2)多面体壁は、缶胴の面積の25%以上とする。
 このようにすれば、効果的に音圧レベルを上げることができる。
 3)前記単位パネルは、内圧が加わらない自由状態において、前記単位パネルの中心を前記缶胴の中心軸線と直交方向の断面形状が、直線状に対して前記缶胴の内方に窪んだ形状となっている。
 缶胴の中心軸線と平行方向と直交方向の両方に湾曲しているので、内圧作用時の弾性歪量がより大きくなり、復元音がより大きくなる。
 4)前記最大デプス変化量の平均値の大きさは、前記単位パネルの大きさと関係し、前記単位パネルの大きさが大きい方が前記最大デプス変化量が大きくなる関係で、前記単位パネルの大きさと単位パネルの数との関係は、前記単位パネルの大きさが大きい方が、前記単位パネルの個数は少なくなる関係となっている。
 5)前記単位パネルの個数は、65個以上で117個以下に設定されている。
 単位パネルの個数を117より大きくしても、単位パネルの大きさが小さくなりすぎ、復元音が大きくならない。また、65個より少ないと、単位パネルを大きくすることができるが個数が少なくなり、復元音が大きくならない。
 6)自由状態の多面体壁は、軸方向に山部と谷部が交互に形成される波打ち曲面が、周方向に複数形成され、前記波打ち曲面は、缶胴の中心軸線を通る中心面に対して対称形状の前記境界稜線を構成する波形稜線で区画されており、前記波形稜線間の間隔の狭い部分が波打ち曲面の山部、間隔の広い部分が谷部となっており、前記単位パネルは、波打ち曲面の一つの山部の頂部から谷部を経て次の山部の頂部までの領域であり、山部の頂部によって、上下の単位パネルが区分される構成である。
 このような波打ち曲面構成の場合、特に、復元音を大きくすることができる。
 7)最大デプス変化量は開封前の内圧が20~300kPaにおける最大デプス変化量、好ましくは120~150kPaとする。
 内圧が高くなると、内圧作用状態のパネルデプスが浅くなり、内圧開放状態のパネルデプスとの差が大きくなり、結果的に最大デプス変化量は大きくなる。
 本発明は、最大デプス変化量と復元音の間に一定の関係があることを見出したもので、内圧の好適な範囲としては、内圧作用時に、単位パネルの窪みが円筒に近くなるまで十分に変形させ、しかも塑性変形をできるだけ生じさせず、内圧開放時に元の窪み形状まで復帰させる程度の範囲であり、最大デプス変化量測定時の好ましい内圧の範囲としては20~300kPa、より好ましい範囲としては、120~150kPaとする。
 この内圧の条件設定は、陽圧缶の使用範囲を制限するものではなく測定時の条件を設定するものである。たとえば、120kPaより低圧、あるいは150kPaより高圧で使用されているとしても、この圧力範囲で測定したときに、最大デプス変化量が請求項に記載の範囲となるものを含むものとする。
The invention of the second invention group can be configured as follows.
1) The sound pressure level of the restored sound is set to 75 dB or more at a position 40 cm away from the can body.
The gas emission sound is about 70 dB, and if it is about 75 dB, the sound level is sufficiently audible even after the gas emission sound.
2) The polyhedral wall is 25% or more of the area of the can body.
In this way, the sound pressure level can be effectively increased.
3) In the free state where no internal pressure is applied, the unit panel has a shape in which the center of the unit panel has a cross-sectional shape perpendicular to the central axis of the can body that is recessed inward of the can body with respect to a straight line. It has become.
Since it is curved both in the direction parallel to and perpendicular to the central axis of the can body, the amount of elastic strain during the action of internal pressure becomes larger and the restored sound becomes larger.
4) The average value of the maximum depth change amount is related to the size of the unit panel, and the larger the unit panel size is, the larger the maximum depth change amount is. The relationship between the number of unit panels and the number of unit panels is such that the larger the unit panel size, the smaller the number of unit panels.
5) The number of unit panels is set to 65 or more and 117 or less.
Even if the number of unit panels is larger than 117, the size of the unit panel becomes too small and the restored sound does not increase. On the other hand, when the number is less than 65, the unit panel can be enlarged, but the number is reduced and the restored sound does not increase.
6) The polyhedron wall in the free state has a plurality of wavy curved surfaces in the circumferential direction in which peaks and troughs are alternately formed in the axial direction, and the wavy curved surfaces are in relation to the central plane passing through the central axis of the can body The boundary ridge lines of the symmetrical shape are partitioned by the corrugated ridge lines, the narrow part of the interval between the corrugated ridge lines is a peak part of a corrugated curved surface, the wide part is a valley part, the unit panel is This is a region from the top of one crest of a corrugated curved surface to the top of the next crest through a trough, and the top and bottom unit panels are divided by the top of the crest.
In the case of such a wavy curved surface configuration, in particular, the restoration sound can be increased.
7) The maximum depth change amount is the maximum depth change amount when the internal pressure before opening is 20 to 300 kPa, preferably 120 to 150 kPa.
When the internal pressure increases, the panel depth in the internal pressure acting state becomes shallow, and the difference from the panel depth in the internal pressure released state increases, and as a result, the maximum depth change amount increases.
The present invention has found that there is a certain relationship between the maximum depth change amount and the restored sound, and a suitable range of internal pressure is sufficient until the depression of the unit panel becomes close to a cylinder when the internal pressure is applied. The range is such that it is deformed and does not cause plastic deformation as much as possible, and returns to the original depression shape when the internal pressure is released. The preferable range of the internal pressure when measuring the maximum depth change is 20 to 300 kPa, and the more preferable range is as follows. 120 to 150 kPa.
This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if the pressure is lower than 120 kPa or higher than 150 kPa, the maximum depth change amount is within the range described in the claims when measured in this pressure range.
[発明の効果(第2の発明群)]
 第2発明群の発明によれば、多面体壁を構成する単位パネルの復元音を大きくし、単位パネルが復元する視覚的効果と同時に聴覚的効果を加えた陽圧缶を実現することができる。
[Effect of invention (second invention group)]
According to the invention of the second invention group, it is possible to realize a positive pressure can in which the restoration sound of the unit panel constituting the polyhedral wall is increased, and the auditory effect is added simultaneously with the visual effect of restoration of the unit panel.
[課題を解決するための手段(第3の発明群)]
 上記第2の目的を達成するために、第3の発明群を構成する一つの発明は、
 缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
 前記単位パネルの最大デプス変化量の最大値が、0.54mm以下に設定されていることを特徴とする。
 単位パネルは、全周が境界稜線で囲まれている必要はなく、単位パネルの少なくとも一部が境界稜線で区画されている場合も含まれる。
 従来の陽圧缶については、プルタブによる缶蓋の引き裂き音と、ガスが抜ける際のガス放出音が大きく聞こえ、その後に復元音が聞こえている。この復元音は、複数回聞こえることもあり、注意すると気になる音であった。
 最大デプス変化量の最大値を0.54mm以下とすることによって、ガス放出音の後に聞こえる復元音を、ガス放出音に紛れて気にならない音のレベルまで小さくすることができる。
 また、第3の発明群を構成する他の発明は、缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、 前記単位パネルの最大デプス変化量が0.4mm以上となる単位パネルについての最大デプス変化量の平均値が0.45mm以下となるように構成されていることを特徴とする。
 最大デプス変化量の最大値を基準とするとばらつきが大きくなるので、単位パネルの最大デプス変化量の平均値をとることを検討した。しかし、全ての単位パネルが完全に復元されるわけではなく、一部の単位パネルが復元しない場合もあり、単純に平均値をとっても明確にならないことがわかった。検討の結果、最大デプス変化量が0.4mm未満となる単位パネルを除外した平均値とすることにより、復元しない単位パネルの影響を除外することができ、多面体壁の復元形態を、正確に評価することができることがわかった。
 このように平均値を用いることで、最大デプス変化量を安定して評価でき、一定以上の安定した復元音が得られる陽圧缶を実現できる。
 最大デプス変化量の最大値が0.4mm未満の場合は、音圧レベルは十分に低くなっている。
 また、第3の発明群を構成する、さらに他の発明としては、缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
 前記単位パネルの最大デプス変化量の平均値が0.4mm未満となるように構成されていることを特徴とする。 最大デプス変化量の0.4mm以上の単位パネルの平均値について、0.45mm以下に設定しており、最大デプス変化量の最大値が0.4mmから0.45mmの間にある場合は、当然、平均値は0.45mm未満となる。
 最大デプス変化量が0.4mm以上の単位パネルが無い場合には、復元しない単位パネルが少なく、全ての単位パネルの最大デプス変化量の平均値で評価するものとする。平均値は、0.4mmを超えることは無いので、0.4mm未満となるように構成される。
[Means for Solving the Problem (Third Invention Group)]
In order to achieve the second object, one invention constituting the third invention group is:
A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
The maximum value of the maximum depth change amount of the unit panel is set to 0.54 mm or less.
The unit panel does not need to be surrounded by the boundary ridgeline, and includes a case where at least a part of the unit panel is partitioned by the boundary ridgeline.
With regard to the conventional positive pressure can, a tearing sound of the can lid due to the pull tab and a gas releasing sound when the gas escapes are heard loudly, and then a restoring sound is heard. This restored sound may be heard multiple times, and is an anxious sound when attention is paid.
By setting the maximum value of the maximum depth change amount to 0.54 mm or less, the restoration sound that can be heard after the gas emission sound can be reduced to a sound level that is not bothered by the gas emission sound.
Further, another invention constituting the third invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, and at least a part of the can body is convex. It has a polyhedral wall composed of a large number of unit panels partitioned by boundary ridgelines, and the unit panel is indented inward of the can body in a free state, and the depression is small due to internal pressure acting on the can body. In a positive pressure can that is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and that produces a restoring sound when restored, the unit panel whose maximum depth change of the unit panel is 0.4 mm or more The average value of the maximum depth change amount is about 0.45 mm or less.
Since the variation becomes large when the maximum value of the maximum depth change amount is used as a reference, the average value of the maximum depth change amount of the unit panel was examined. However, it was found that not all unit panels are completely restored, and some unit panels may not be restored, and simply taking an average value is not clear. As a result of the examination, the average value excluding the unit panel whose maximum depth change is less than 0.4 mm can be excluded, so that the influence of the unit panel that is not restored can be excluded, and the restoration form of the polyhedral wall can be accurately evaluated. I found out that I can do it.
By using the average value in this way, it is possible to realize a positive pressure can that can stably evaluate the maximum amount of change in depth and obtain a stable restoration sound of a certain level or more.
When the maximum value of the maximum depth change amount is less than 0.4 mm, the sound pressure level is sufficiently low.
Further, another invention constituting the third invention group includes a can body having a can body and a can lid for sealing the can body in a positive pressure state, and at least a part of the can body It has a polyhedral wall composed of a large number of unit panels defined by convex boundary ridge lines, and the unit panels are indented inward of the can body in a free state, and by the internal pressure acting on the can body In a positive pressure can with a configuration that deforms in the direction that the dent becomes smaller, restores the original shape when the can lid is opened, and generates a restoration sound when restoring,
The unit panel is configured so that an average value of a maximum depth change amount is less than 0.4 mm. When the average value of unit panels with a maximum depth change of 0.4 mm or more is set to 0.45 mm or less, and the maximum value of the maximum depth change is between 0.4 mm and 0.45 mm, naturally The average value is less than 0.45 mm.
When there is no unit panel having a maximum depth change amount of 0.4 mm or more, the number of unit panels that are not restored is small, and the average value of the maximum depth change amounts of all unit panels is evaluated. Since the average value does not exceed 0.4 mm, the average value is configured to be less than 0.4 mm.
 また、第3の発明群の発明は次のように構成することができる。
 1)単位パネルの最大デプス変化量の平均値を0.4mm未満とする場合に、0.15mm以上で0.4mm未満となるように設定する。
 この範囲では、音が聞こえるが、気にならない程度に小さくなる。
 2)前記単位パネルの最大デプス変化量の平均値を0.15mm以下とする。
 この範囲まで小さくすれば、完全に聞こえないレベルとすることができる。
 3)前記陽圧缶の開封時の前記復元音の音圧レベルを、前記缶胴から40cm離れた位置において、72dB以下に設定する。
 ガス放出音は70dB程度であり、70dB程度、72dB以下であれば、気にならないレベルとなる。好ましくは70dB以下に設定する。
 4)前記多面体壁は、缶胴の面積の75%以下とする。
 5)単位パネルは前記境界稜線としての斜め稜線によって区画される菱形形状で、前記缶胴の中心軸線を通る中心面上に位置する2つの頂点と、中心面に対して対称位置に位置する2つの頂点の計4つの頂点を有し、内圧が加わらない自由状態で、前記中心面に対して対称位置に位置する頂点を結ぶ谷折りの横稜線によって、前記缶胴の内方に屈曲して窪んだ構成となっており、前記最大変化デプス量は、前記横稜線の中点における単位パネルデプスの変化量とする。
 このようにすれば、単位パネルの境界稜線の剛性が高く、内圧で中央が膨らむように変形していた横稜線が一気に元の形状に戻るものの、最大デプス変化量が小さいので、復元音を低減することができる。なお、単位パネルが完全に弾性復元する場合だけでなく、一部塑性変形して、完全には元の形状に戻らない場合も含まれる。
 6)前記多面体壁は、複数の前記単位パネルが前記缶胴の中心軸線と平行方向に並んだ単位パネル列が、前記缶胴の周方向に全周的に密に配列された構成で、前記単位パネルの横稜線を通る断面の角数が、14角から16角の範囲に設定されている。
 14角より小さくなると、単位パネルの面積が大きくなり、最大デプス変化量が大きくなって、復元音が気になる大きさとなる。
 一方、16角より大きいと、単位パネルの大きさが小さくなるために、成形が困難となる。よって14角から16角とすることが好適である。
 7)単位パネルの面積は、80mm以上で120mm以下に設定される。
 80mmより小さいと、パネル成形が困難となり、120mmより大きいと、最大デプス変化量は大きくなり、復元音が大きくなる。
 8)単位パネルは、前記缶胴の中心軸線と平行方向の断面形状が円弧状に窪んだ形状となっている。
 円弧状の場合単位パネルが変形しやすいが、最大デプス変化量の平均値を0.45mm以下とすれば、復元音を気にならないレベルまで小さくすることができる。 9)最大デプス変化量は、開封前の内圧が20~300kPaにおける最大デプス変化量、好適には120~150kPaとする。
 内圧が高くなると、内圧作用状態のパネルデプスが浅くなり、内圧開放状態のパネルデプスとの差が大きくなり、結果的に最大デプス変化量は大きくなる。
 本発明は、最大デプス変化量と復元音の間に一定の関係があることを見出したもので、内圧の好適な範囲としては、内圧作用時に、単位パネルの窪みが円筒に近くなるまで十分に変形させ、しかも塑性変形をできるだけ生じさせず、内圧開放時に元の窪み形状まで復帰させる程度の範囲であり、最大デプス変化量測定時の好ましい内圧の範囲としては20~300kPa、より好ましい範囲としては、120~150kPaとする。
 この内圧の条件設定は、陽圧缶の使用範囲を制限するものではなく測定時の条件を設定するものである。たとえば、120kPaより低圧、あるいは150kPaより高圧で使用されているとしても、この圧力範囲で測定したときに、最大デプス変化量が請求項に記載の範囲となるものを含むものとする。
The invention of the third invention group can be configured as follows.
1) When the average value of the maximum depth change amount of the unit panel is less than 0.4 mm, it is set to be 0.15 mm or more and less than 0.4 mm.
In this range, you can hear the sound, but it will be small enough not to bother you.
2) The average value of the maximum depth change amount of the unit panel is set to 0.15 mm or less.
If it is made small to this range, it can be set as the level which cannot be heard completely.
3) The sound pressure level of the restored sound when the positive pressure can is opened is set to 72 dB or less at a position 40 cm away from the can body.
The gas emission sound is about 70 dB, and if it is about 70 dB and 72 dB or less, it becomes a level that does not matter. Preferably, it is set to 70 dB or less.
4) The polyhedral wall is 75% or less of the area of the can body.
5) The unit panel has a rhombus shape defined by the oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and 2 located symmetrically with respect to the central plane. It has a total of four vertices, and in a free state where no internal pressure is applied, it is bent inward of the can body by a lateral fold line of valley folds connecting vertices located at symmetrical positions with respect to the center plane. The maximum change depth is a change in unit panel depth at the midpoint of the horizontal ridge line.
In this way, the rigidity of the boundary ridge line of the unit panel is high, and the horizontal ridge line that was deformed so that the center swells due to the internal pressure returns to the original shape at once, but the maximum depth change is small, so the restoration sound is reduced. can do. In addition to the case where the unit panel is completely elastically restored, the case where the unit panel is partially plastically deformed and does not completely return to the original shape is included.
6) The polyhedral wall has a configuration in which unit panel rows in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body are densely arranged in the circumferential direction of the can body, The number of corners of the cross section passing through the horizontal ridge line of the unit panel is set in the range of 14 to 16 corners.
When the angle is smaller than 14 corners, the area of the unit panel is increased, the maximum amount of change in depth is increased, and the restored sound is anxious.
On the other hand, if it is larger than 16 corners, the size of the unit panel becomes small, so that molding becomes difficult. Therefore, it is preferable to set the angle from 14 to 16.
7) The area of the unit panel is set to 80 mm 2 or more and 120 mm 2 or less.
If it is smaller than 80 mm 2 , it becomes difficult to form a panel, and if it is larger than 120 mm 2 , the maximum depth change amount becomes large and the restored sound becomes large.
8) The unit panel has a shape in which a cross-sectional shape parallel to the central axis of the can body is recessed in an arc shape.
In the case of an arc, the unit panel is easily deformed. However, if the average value of the maximum depth change amount is set to 0.45 mm or less, the restored sound can be reduced to a level that does not matter. 9) The maximum depth change amount is the maximum depth change amount when the internal pressure before opening is 20 to 300 kPa, preferably 120 to 150 kPa.
When the internal pressure increases, the panel depth in the internal pressure acting state becomes shallow, and the difference from the panel depth in the internal pressure released state increases, and as a result, the maximum depth change amount increases.
The present invention has found that there is a certain relationship between the maximum depth change amount and the restored sound, and a suitable range of internal pressure is sufficient until the depression of the unit panel becomes close to a cylinder when the internal pressure is applied. The range is such that it is deformed and does not cause plastic deformation as much as possible, and returns to the original depression shape when the internal pressure is released. The preferable range of the internal pressure when measuring the maximum depth change is 20 to 300 kPa, and the more preferable range is as follows. 120 to 150 kPa.
This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if the pressure is lower than 120 kPa or higher than 150 kPa, the maximum depth change amount is within the range described in the claims when measured in this pressure range.
[発明の効果(第3の発明群)]
 第3の発明群の発明によれば、多面体壁を構成する単位パネルの復元音を気にならない程度に小さくすることができる。
[Effect of invention (third invention group)]
According to the invention of the third invention group, the restoration sound of the unit panel constituting the polyhedral wall can be made small enough not to be concerned.
図1は、本第1の発明群の発明の実施の形態1に係る陽圧缶を示すもので、(A)は内圧作用状態の正面図、(B)は内圧開放状態の正面図、(C)は(B)のC部の拡大概略斜視図、(D)は(B)のD-D線断面図である。FIG. 1 shows a positive pressure can according to Embodiment 1 of the invention of the first invention group, (A) is a front view of an internal pressure acting state, (B) is a front view of an internal pressure released state, (C) is an enlarged schematic perspective view of a portion C in (B), and (D) is a sectional view taken along the line DD in (B). 図2は、図1の陽圧缶の単位パネルを示すもので、(A)は正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。2 shows a unit panel of the positive pressure can shown in FIG. 1, in which (A) is a front view, (B) is a cross-sectional view taken along line BB of (A), and (C) is a cross-sectional view of C— FIG. 図3(A)は、本発明の陽圧缶の最大デプス変化量の測定方法を示す図、(B)は陽圧缶の復元音の測定方法を示す図である。FIG. 3A is a diagram showing a method for measuring the maximum depth change amount of the positive pressure can of the present invention, and FIG. 3B is a diagram showing a method for measuring the restoration sound of the positive pressure can. 図4(A)は単位パネルの最大デプス変化量の最大値と復元音の関係、(B)は0.4mm以上の最大デプス変化量の平均値と復元音の関係を示すグラフである。4A is a graph showing the relationship between the maximum value of the maximum depth change amount of the unit panel and the restored sound, and FIG. 4B is a graph showing the relationship between the average value of the maximum depth change amount of 0.4 mm or more and the restored sound. 図5(A)は全ての単位パネルの最大デプス変化量の平均値と復元音の関係、(B)は0.3mm以上の最大デプス変化量の平均値と復元音の関係を示すグラフである。FIG. 5A is a graph showing the relationship between the average value of the maximum depth change amount of all unit panels and the restored sound, and FIG. 5B is a graph showing the relationship between the average value of the maximum depth change amount of 0.3 mm or more and the restored sound. . 図6は、本第2の発明群の発明の実施の形態1に係る陽圧缶を示すもので、(A)は内圧作用状態の正面図、(B)は内圧解放状態の正面図、(C)は(B)の一つの波打ち曲面を示す図、(D)は(C)のD-D線断面図、(E)は(B)のE―E線断面図である。6A and 6B show a positive pressure can according to Embodiment 1 of the invention of the second invention group, in which FIG. 6A is a front view of an internal pressure acting state, FIG. 6B is a front view of an internal pressure released state, (C) is a diagram showing one undulating surface of (B), (D) is a sectional view taken along line DD of (C), and (E) is a sectional view taken along line EE of (B). 図7は、図6の陽圧缶の単位パネルを示すもので、(A)は正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。FIG. 7 shows a unit panel of the positive pressure can in FIG. 6, where (A) is a front view, (B) is a cross-sectional view along line BB of (A), and (C) is C— FIG. 図8(A),(B)は、図06の陽圧缶に対して単位パネルのパネル数を変えた構成を示す内圧作用状態の正面図、(C)~(E)は、単位パネルのパネル数と単位パネルの大きさの相違を示す説明図である。8 (A) and 8 (B) are front views of the internal pressure action state showing a configuration in which the number of unit panels is changed with respect to the positive pressure can in FIG. 06, and (C) to (E) are views of the unit panel. It is explanatory drawing which shows the difference in the number of panels and the size of a unit panel. 図9は、本第2の発明群の発明の実施の形態2に係る陽圧缶を示すもので、(A)は内圧作用状態の正面図、(B)は内圧解放状態の正面図、(C)は(B)の一つの波打ち曲面を示す図、(D)は(C)のD-D線断面図、(E)は(B)のE―E線断面図である。9A and 9B show a positive pressure can according to Embodiment 2 of the invention of the second invention group, in which FIG. 9A is a front view of an internal pressure acting state, FIG. 9B is a front view of an internal pressure released state, (C) is a diagram showing one undulating surface of (B), (D) is a sectional view taken along line DD of (C), and (E) is a sectional view taken along line EE of (B). 図10は、図9の陽圧缶の単位パネルを示すもので、(A)は正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。FIG. 10 shows a unit panel of the positive pressure can in FIG. 9, where (A) is a front view, (B) is a cross-sectional view along line BB in (A), and (C) is a cross-sectional view along C-- in (A). FIG. 図11(A)は、本発明の陽圧缶の最大デプス変化量の測定方法を示す図、(B)は陽圧缶の復元音の測定方法を示す図である。FIG. 11A is a diagram showing a method for measuring the maximum depth change amount of the positive pressure can of the present invention, and FIG. 11B is a diagram showing a method for measuring the restoration sound of the positive pressure can. 図12は、単位パネルの最大デプス変化量の平均値と復元音の音圧レベルの関係を示すグラフである。FIG. 12 is a graph showing the relationship between the average value of the maximum depth change amount of the unit panel and the sound pressure level of the restored sound. 図13(A)は、単位パネルのパネル数と最大デプス変化量の平均値の関係を示すグラフ、図13(B)は最大デプス変化量の平均値と(復元音の大きさ/パネル個数)との関係を示すグラフである。FIG. 13A is a graph showing the relationship between the number of unit panels and the average value of the maximum depth change amount, and FIG. 13B is the average value of the maximum depth change amount and (the size of restored sound / number of panels). It is a graph which shows the relationship. 図14は、単位パネルの最大デプス変化量の最大値と復元音の音圧レベルの関係を示すグラフである。FIG. 14 is a graph showing the relationship between the maximum value of the maximum depth change of the unit panel and the sound pressure level of the restored sound. 図15は、本第3の発明群の発明の実施の形態1に係る陽圧缶を示すもので、(A)は内圧作用状態の正面図、(B)は内圧開放状態の正面図、(C)は(B)のC部の拡大概略斜視図、(D)は(B)のD-D線断面図である。FIG. 15 shows a positive pressure can according to Embodiment 1 of the invention of the third invention group, (A) is a front view in an internal pressure action state, (B) is a front view in an internal pressure release state, (C) is an enlarged schematic perspective view of a portion C in (B), and (D) is a sectional view taken along the line DD in (B). 図16は、図15の陽圧缶の単位パネルを示すもので、(A)は正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。FIG. 16 shows a unit panel of the positive pressure can in FIG. 15, where (A) is a front view, (B) is a cross-sectional view along line BB in (A), and (C) is a cross-sectional view along C-- in (A). FIG. 図17は、本発明の実施の形態2に係る陽圧缶を示すもので、(A)は内圧作用状態の正面図、(B)は内圧解放状態の正面図、(C)は(B)の一つの波打ち曲面を示す図、(D)は(C)のD-D線断面図、(E)は(B)のE―E線断面図である。FIG. 17 shows a positive pressure can according to Embodiment 2 of the present invention, in which (A) is a front view of an internal pressure acting state, (B) is a front view of an internal pressure released state, and (C) is (B). (D) is a sectional view taken along the line DD of (C), and (E) is a sectional view taken along the line EE of (B). 図18は、図17の陽圧缶の単位パネルを示すもので、(A)は正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。FIG. 18 shows a unit panel of the positive pressure can in FIG. 17, where (A) is a front view, (B) is a cross-sectional view along line BB in (A), and (C) is a cross-sectional view along C-- in (A). FIG. 図19(A)は、本発明の陽圧缶の最大デプス変化量の測定方法を示す図、(B)は陽圧缶の復元音の測定方法を示す図である。FIG. 19A is a diagram showing a method for measuring the maximum depth change amount of the positive pressure can of the present invention, and FIG. 19B is a diagram showing a method for measuring the restoration sound of the positive pressure can. 図20は、単位パネルの最大デプス変化量の最大値と復元音の音圧レベルの関係を示すグラフである。FIG. 20 is a graph showing the relationship between the maximum value of the maximum depth change amount of the unit panel and the sound pressure level of the restored sound. 図21は、最大デプス変化量が0.4mm未満の単位パネルを除外した最大デプス変化量の平均値と復元音の関係を示すグラフである。FIG. 21 is a graph showing the relationship between the average value of the maximum depth change amount and the restored sound, excluding unit panels whose maximum depth change amount is less than 0.4 mm. 図22(A)は全ての単位パネルの最大デプス変化量の平均値と復元音の関係、(B)は最大デプス変化量が0.3mm未満の単位パネルを除外した平均値と復元音の関係を示すグラフである。FIG. 22A shows the relationship between the average value of the maximum depth change amount of all the unit panels and the restored sound, and FIG. 22B shows the relationship between the average value excluding the unit panel whose maximum depth change amount is less than 0.3 mm and the restored sound. It is a graph which shows.
 以下に本発明を図示の実施形態に基づいて詳細に説明する。
 この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。
 以下の説明は、第1の発明群の発明、第2発明群の発明、第3発明群の発明の順番に説明するものとし、各発明群の発明の実施形態が複数ある場合には、実施形態の番号を、各群の発明の実施形態として1から連番として説明する。また、各実施形態において、同一の構成部分については、同一の符号を付して説明するものとする。[第1群の発明の実施形態1]
 図1は、本第1群の発明の実施形態1に係る陽圧缶を示すもので、図1(A)は内圧作用状態、図1(B)は内圧開放状態を示している。
 陽圧缶1は、缶胴21を有する有底筒状の缶本体2と、缶本体2を陽圧状態で密閉する缶蓋3とを備え、缶胴21の少なくとも一部に多面体壁4を有している。缶本体2は、ストレートに延びる円筒形状の缶胴21と、缶胴21の上端の径を絞ったネック部22と、底部23とを有する構成で、ネック部22上端の口部に缶蓋3が巻締め固定されている。
 陽圧缶1は、アルミ合金製の絞りしごき缶であり、一般的に、その容量は160ml~500ml、5℃における缶内圧が20~300[kPa]、缶胴21の板厚が0.075~0.135[mm]、缶胴径が50~70[mm]、缶高さが90~170[mm]の範囲で使用されている。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
The dimensions, materials, shapes, and relative arrangements of the components described in this embodiment should be changed as appropriate according to the configuration of the apparatus to which the invention is applied and various conditions. The present invention is not intended to be limited to the following embodiments.
The following explanation will be given in the order of the invention of the first invention group, the invention of the second invention group, and the invention of the third invention group. When there are a plurality of embodiments of the invention of each invention group, The number of a form is demonstrated from 1 to a serial number as an embodiment of the invention of each group. Further, in each embodiment, the same components will be described with the same reference numerals. [Embodiment 1 of the first group of the invention]
1A and 1B show a positive pressure can according to Embodiment 1 of the first group of the invention. FIG. 1A shows an internal pressure acting state, and FIG. 1B shows an internal pressure released state.
The positive pressure can 1 includes a bottomed cylindrical can body 2 having a can body 21 and a can lid 3 that seals the can body 2 in a positive pressure state, and a polyhedral wall 4 is provided on at least a part of the can body 21. Have. The can body 2 includes a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23, and a can lid 3 at the mouth of the upper end of the neck portion 22. Is tightened.
The positive pressure can 1 is a squeezed iron can made of aluminum alloy, and generally has a capacity of 160 to 500 ml, a can internal pressure of 20 to 300 [kPa] at 5 ° C., and a plate thickness of the can body 21 of 0.075. It is used in the range of 0.135 [mm], can body diameter 50-70 [mm], and can height 90-170 [mm].
 多面体壁4は、缶胴21の周長は変化させずに折り構造によって凹凸形状としたもので、斜め稜線51の折り目で区画された多数の単位パネル5で構成されている。すなわち、所定数の単位パネル5が缶胴21の中心軸線Nと平行方向(以下、単に軸方向という)に配列されてパネル列50を構成し、このパネル列50が缶胴21の周方向に全周的に配列された構成となっている。互いに隣り合うパネル列50の単位パネル5の軸方向の位相は、単位パネル5の軸方向の長さの半分だけずらして配列され、単位パネル5が軸方向及び周方向に密に配列されている。
 多面体壁4は、この例では、缶胴21の軸方向中途部分に、帯状に設けられ、多面体壁4の上部及び下部領域は、凹凸の無い円筒面となっている。多面体壁4の面積は、図示例では缶胴に対して50%程度となっているが、復元音を考慮し、缶胴の25%以上とすることが、好適である。
The polyhedron wall 4 is formed into a concavo-convex shape by a folding structure without changing the circumference of the can body 21, and is composed of a large number of unit panels 5 partitioned by folds of oblique ridge lines 51. That is, a predetermined number of unit panels 5 are arranged in a direction parallel to the central axis N of the can body 21 (hereinafter simply referred to as an axial direction) to form a panel row 50, and the panel row 50 is arranged in the circumferential direction of the can body 21. The configuration is arranged all around. The phase in the axial direction of the unit panels 5 of the panel rows 50 adjacent to each other is shifted by half the axial length of the unit panels 5 and the unit panels 5 are densely arranged in the axial direction and the circumferential direction. .
In this example, the polyhedral wall 4 is provided in a strip shape in the middle of the axial direction of the can body 21, and the upper and lower regions of the polyhedral wall 4 are cylindrical surfaces having no irregularities. Although the area of the polyhedral wall 4 is about 50% with respect to the can body in the illustrated example, it is preferable that the area of the polyhedral wall 4 is 25% or more of the can body in consideration of the restored sound.
 図1(C)は、図1(B)のC部拡大図である。
 単位パネル5は、内圧が作用しない自由状態(空缶時及び内圧解放時)では、缶胴21の中心軸線Nと直交する面上に位置する谷折りの横稜線52を境界として缶内部に向かって、くの字状に屈曲するように窪んでいる。隣り合うパネル列50は、単位パネル5の長さの半分だけ軸方向にずれているので、周方向に一つ置きに位置するパネル列50の単位パネル5は、軸方向に同一位相にあり、横稜線52が、共通する頂点53を介してつながっている。したがって、単位パネル5の横稜線52の位置で、缶胴21の中心軸線Nと直交方向に切断した断面は、図1(D)に示すように、正多角形状となる。図示例では、12角形状となっているが、12角形に限定されない。なお、頂点53の角は、面取りされている。また、横稜線52については、図示例では直線状に記載しているが、空缶時及び内圧解放時に、±0.5mm程度、缶内方に凸の円弧状、あるいは缶外方に凸の円弧状等の曲線形状となっていてもよい。
 内圧作用状態では、個々の単位パネル5は、缶胴21に作用する内圧によって、図1(C)の二点鎖線で示すように、横稜線52が缶胴の円筒面に倣った円弧状に変形する。斜め稜線51についても、缶胴21の円筒面に倣うように変形するが、図1(C)では、簡易的に直線として記載している。
 そして、缶蓋3のタブ6を引き起こして開封すると、開封部から内部のガスが放出されてガス放出音が生じると共に、個々の単位パネル5の斜め稜線51及び横稜線52が直線形状に瞬間的に復元し、凹凸形状が現れると共に、その衝撃によって復元音が発生する。
 復元音の大きさを決定する要因は、単位パネル5の形状、面積、板厚等、種々の要因が考えられるが、本発明者等は、鋭意検討した結果、単位パネル5の形状の、デプスの変化量である最大デプス変化量と相関関係があることを見出した。
FIG. 1C is an enlarged view of a portion C in FIG.
In a free state where the internal pressure does not act (when empty cans and when internal pressure is released), the unit panel 5 faces the inside of the can with a valley fold horizontal ridge line 52 positioned on a plane perpendicular to the central axis N of the can body 21 as a boundary. It is recessed so that it bends in a square shape. Since the adjacent panel rows 50 are displaced in the axial direction by half the length of the unit panel 5, the unit panels 5 of the panel rows 50 located every other circumferential direction are in the same phase in the axial direction, The horizontal ridge line 52 is connected via a common vertex 53. Therefore, the cross section cut in the direction orthogonal to the central axis N of the can body 21 at the position of the horizontal ridgeline 52 of the unit panel 5 has a regular polygonal shape as shown in FIG. In the illustrated example, the shape is a dodecagon, but is not limited to a dodecagon. The corners of the vertex 53 are chamfered. Further, the horizontal ridge line 52 is described in a straight line in the illustrated example, but when the can is empty and when the internal pressure is released, it is about ± 0.5 mm, a convex arc shape inside the can, or a convex shape outside the can. It may be a curved shape such as an arc.
In the internal pressure acting state, each unit panel 5 is caused to have an arc shape in which the horizontal ridge line 52 follows the cylindrical surface of the can body as shown by a two-dot chain line in FIG. 1C due to the internal pressure acting on the can body 21. Deform. The oblique ridge line 51 is also deformed so as to follow the cylindrical surface of the can body 21, but is simply illustrated as a straight line in FIG.
Then, when the tab 6 of the can lid 3 is opened to open the gas, an internal gas is released from the opening portion to generate a gas emission sound, and the oblique ridge line 51 and the horizontal ridge line 52 of each unit panel 5 are instantaneously formed into a linear shape. As a result, the concavo-convex shape appears and a restored sound is generated by the impact.
Various factors such as the shape, area, and plate thickness of the unit panel 5 can be considered as the factors that determine the magnitude of the restored sound. The present inventors have intensively studied, and as a result, have determined the depth of the unit panel 5 as the depth. It has been found that there is a correlation with the maximum depth change amount, which is the amount of change in.
 以下、図2を参照して、単位パネル5の最大デプス変化量について説明する。
 図2(A)は、単位パネル5の正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。図2(B),(C)において、破線は内圧作用状態、実線が内圧解放時の復元状態を示している。
 この実施形態1における単位パネル5のパネルデプスは、頂点53aと頂点53cを結ぶ線から、横稜線52の中点mまでの、缶胴21の中心軸線Nと直交方向の距離であり、最大デプス変化量dmaxは、内圧作用状態および内圧開放状態における前記パネルデプスの変化量である。
 単位パネル5は、図2(A)に示すように、4つの斜め稜線51によって区画される菱形形状で、4つの斜め稜線51をフレームとするドラムのように振動し、この振動によって空気が振動して復元音が発現する。
 この単位パネル5は、缶胴21の中心軸線Nを通る中心面M上に位置する2つの頂点53a、53cと、中心面Mに対して対称位置に位置する2つの頂点53b、53dの計4つの頂点を有している。これら4つの頂点53a~53dは、缶胴21を構成する円筒面とほぼ一致する仮想円筒面Y(図2(B)中、二点鎖線で示す)上に位置し、内圧が加わらない自由状態で、中心面Mに対して対称位置に位置する頂点53b、53dを結ぶ谷折りの横稜線52によって、図2(B)の実線で示すように、くの字状に缶胴21の内方に屈曲して窪んだ構成となっている。
 内圧作用状態では、図2(B)に破線で示すように、上方三角形部分5Aと下方三角形部分5Bが、軸方向に延ばされるように変形し、横稜線52の中点mが、上下の頂点53a,53cを結ぶ線に近い位置まで変位する。横断面で見ると、図2(C)に破線で示すように、円弧状に変形している。
 一方、内圧が開放されると、図2(B)に実線で示すように、単位パネル5は、くの字形状に復元し、横稜線52の中点mは最深部に戻る。横断面で見ると、図2(C)に示すように、破線の円弧状から実線の直線状に復元する。
 この中点mが単位パネル5の最も大きく変位する部分で、この中点mにおけるパネルデプスの変化量を最大デプス変化量dmaxとし、全単位パネル5の最大デプス変化量dmaxの最大値で評価して、最大デプス変化量dmaxの最大値が、0.75mm以上1.2mm以下に設定される。
Hereinafter, the maximum depth change amount of the unit panel 5 will be described with reference to FIG.
2A is a front view of the unit panel 5, FIG. 2B is a sectional view taken along the line BB in FIG. 2A, and FIG. 2C is a sectional view taken along the line CC in FIG. 2B and 2C, the broken line indicates the internal pressure acting state, and the solid line indicates the restored state when the internal pressure is released.
The panel depth of the unit panel 5 in the first embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the vertex 53a and the vertex 53c to the midpoint m of the horizontal ridge line 52. The change amount dmax is the change amount of the panel depth in the internal pressure acting state and the internal pressure release state.
As shown in FIG. 2A, the unit panel 5 has a rhombus shape defined by four oblique ridge lines 51, and vibrates like a drum having the four oblique ridge lines 51 as a frame. The restoration sound appears.
This unit panel 5 includes a total of four vertices 53a and 53c positioned on a central plane M passing through the central axis N of the can body 21 and two vertices 53b and 53d positioned symmetrically with respect to the central plane M. Has two vertices. These four vertices 53a to 53d are located on a virtual cylindrical surface Y (indicated by a two-dot chain line in FIG. 2B) that substantially coincides with the cylindrical surface constituting the can body 21, and a free state in which no internal pressure is applied. Then, as shown by the solid line in FIG. 2 (B), the inner side of the can body 21 is formed in a U shape by the transverse ridgeline 52 of the valley fold connecting the vertices 53b and 53d located at symmetrical positions with respect to the center plane M. The structure is bent and recessed.
In the internal pressure acting state, as indicated by broken lines in FIG. 2B, the upper triangular portion 5A and the lower triangular portion 5B are deformed so as to extend in the axial direction, and the middle point m of the horizontal ridge line 52 is the upper and lower apexes. It is displaced to a position close to the line connecting 53a and 53c. When viewed in a cross section, as shown by a broken line in FIG.
On the other hand, when the internal pressure is released, as indicated by a solid line in FIG. 2 (B), the unit panel 5 is restored to the shape of a dogleg and the midpoint m of the horizontal ridge line 52 returns to the deepest part. When viewed in a cross section, as shown in FIG. 2C, the shape is restored from a broken arc to a solid straight line.
The midpoint m is the portion where the unit panel 5 is most displaced, and the change in the panel depth at the midpoint m is defined as the maximum depth change dmax, and the maximum value of the maximum depth change dmax of all the unit panels 5 is evaluated. Thus, the maximum value of the maximum depth change amount dmax is set to 0.75 mm or more and 1.2 mm or less.
 最大デプス変化量dmaxが小さいと復元音の大きさは小さく、直前のガス放出音に紛れてしまうが、全単位パネルの最大デプス変化量dmaxの最大値を0.75mm以上に設定することによって、ガス放出音の後でも、十分に聞き取りやすい復元音を生じさせることができる。
 開放時時における多面体壁の各単位パネルの復元音については、実験によれば、開封時の復元音の音圧レベルが、缶胴から40cm離れた位置において、75dB程度以上とすることができた。ガス放出音は70dB程度であり、十分に聞き取れる音のレベルとなる。
 一方、最大デプス変化量dmaxを大きくすると復元音が鳴りやすくなるものの、単位パネル5の横稜線52の深さが深くなるので、空缶時における軸荷重強度が低下してしまう。最大デプス変化量の最大値の上限が1.2mm以下であれば、空缶時の軸荷重強度を維持しつつ、復元音を大きくすることができる。
 また、最大デプス変化量が0.4mm以上の単位パネルについての最大デプス変化量dmaxの平均値が、0.54mm以上0.75mm以下に設定することもできる。
 このように平均値を用いれば、各単位パネルの最大デプス変化量を平均化して評価できる。一部の単位パネルでは完全に復元しない場合もあるため、最大デプス変化量が0.4mm未満の単位パネルを除いた平均値をとることにより、完全に復元しない単位パネルの影響を除外することができる。
 また、最大デプス変化量dmaxの最大値が、0.75mm以上1.2mm以下に設定され、かつ、最大デプス変化量が0.40mm以上の単位パネルについての最大デプス変化量の平均値が、0.54mm以上0.75mm以下の範囲に設定することもできる。
 最大デプス変化量が0.4mm以上の単位パネルについての最大デプス変化量dmaxの平均値としては、好ましくは、0.57mm以上0.75mm以下に設定される。
 このように最大デプス変化量の最大値と平均値を用いることにより、凹凸が大きくなって視覚的効果が高く、安定して大きな復元音を生じる陽圧缶を実現することができる。
When the maximum depth change amount dmax is small, the restored sound is small and is lost in the immediately preceding gas emission sound, but by setting the maximum value of the maximum depth change amount dmax of all unit panels to 0.75 mm or more, Even after the gas emission sound, it is possible to generate a restoration sound that is sufficiently easy to hear.
Regarding the restoration sound of each unit panel of the polyhedral wall at the time of opening, according to an experiment, the sound pressure level of the restoration sound at the time of opening was able to be about 75 dB or more at a position 40 cm away from the can body. . The gas emission sound is about 70 dB, which is a sound level that can be sufficiently heard.
On the other hand, when the maximum depth change amount dmax is increased, a restoration sound is likely to sound. However, since the depth of the horizontal ridge line 52 of the unit panel 5 is increased, the axial load strength when empty can is reduced. If the upper limit of the maximum value of the maximum depth change amount is 1.2 mm or less, the restoration sound can be increased while maintaining the axial load strength at the time of the empty can.
Further, the average value of the maximum depth change amount dmax for the unit panel having the maximum depth change amount of 0.4 mm or more can be set to 0.54 mm or more and 0.75 mm or less.
When the average value is used in this way, the maximum depth change amount of each unit panel can be averaged and evaluated. Since some unit panels may not be completely restored, taking the average value excluding unit panels whose maximum depth change is less than 0.4 mm may exclude the effects of unit panels that are not completely restored. it can.
In addition, the maximum value of the maximum depth change amount dmax is set to 0.75 mm or more and 1.2 mm or less, and the average value of the maximum depth change amount for the unit panel having the maximum depth change amount of 0.40 mm or more is 0. It can also be set in the range of .54 mm or more and 0.75 mm or less.
The average value of the maximum depth change amount dmax for the unit panel having the maximum depth change amount of 0.4 mm or more is preferably set to 0.57 mm or more and 0.75 mm or less.
In this way, by using the maximum value and the average value of the maximum depth change amount, it is possible to realize a positive pressure can in which unevenness is increased and the visual effect is high, and a large restoration sound is stably generated.
[多面体壁4の角数と最大デプス変化量dmaxの関係] 
 最大デプス変化量dmaxは、単位パネル5が大きいほど、大きくなる傾向にある。単位パネル5の大きさは、缶胴21の胴径が同じであれば、図1(C)に示した横断面の角数によって幾何学的に決まり、角数が多いほど最大デプス変化量dmaxが小さくなる。逆に角数が少ないほど、単位パネル5が大きくなって変形しやすく、最大デプス変化量dmaxが大きくなる。たとえば、缶胴径が50~70mmの範囲の場合、11角、12角程度に設定すれば、最大デプス変化量dmaxの最大値を、0.75mm以上1.2mm以下の範囲に設定することができる。また、最大デプス変化量が0.40mm以上の単位パネルについての最大デプス変化量の平均値について、0.54mm以上0.75mm以下の範囲に設定することができる。
 特に、11角、12角で、単位パネル5の面積を、130mm以上で180mm以下に設定することが好ましい。もっとも、最大デプス変化量dmaxが上記範囲に入っていれば、13角であってもよい。
 ここで、単位パネル5の面積は、平面的に展開した状態の面積、すなわち、単位パネル5の上方三角形部分5Aと下方三角形部分5Bの面積を足し合わせた面積である。
[Relationship between number of corners of polyhedral wall 4 and maximum depth change dmax]
The maximum depth change amount dmax tends to increase as the unit panel 5 increases. If the body diameter of the can body 21 is the same, the size of the unit panel 5 is geometrically determined by the number of corners of the cross section shown in FIG. 1 (C). Becomes smaller. Conversely, the smaller the number of corners, the larger the unit panel 5 becomes, and the easier it is to deform, and the maximum depth change amount dmax increases. For example, when the can body diameter is in the range of 50 to 70 mm, the maximum value of the maximum depth change amount dmax can be set in the range of 0.75 mm or more and 1.2 mm or less if the angle is set to about 11 corners or 12 corners. it can. Further, the average value of the maximum depth change amount for the unit panel having the maximum depth change amount of 0.40 mm or more can be set in a range of 0.54 mm or more and 0.75 mm or less.
In particular, the area of the unit panel 5 is preferably set to 130 mm 2 or more and 180 mm 2 or less at 11 and 12 corners. However, as long as the maximum depth change amount dmax is within the above range, it may be 13 corners.
Here, the area of the unit panel 5 is an area in a flatly developed state, that is, an area obtained by adding up the areas of the upper triangular portion 5A and the lower triangular portion 5B of the unit panel 5.
[最大デプス変化量dmaxの調整]
 最大デプス変化量dmaxは、たとえば、空缶時のパネルデプスを調整することによって調整可能である。横稜線52を、缶の内側あるいは外側に円弧状に湾曲させることで空缶時のパネルデプスを調整することができる。すなわち、缶の内側に円弧状に湾曲させれば、最大デプス変化量dmaxは大きくなり、缶の外側に円弧状に湾曲させれば最大デプス変化量dmaxを小さくなる。
[Adjustment of maximum depth change amount dmax]
The maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty. The panel depth at the time of empty can can be adjusted by curving the horizontal ridge line 52 in an arc shape inside or outside the can. That is, if the arc is curved inside the can, the maximum depth change dmax is increased, and if the arc is curved outside the can, the maximum depth change dmax is decreased.
[評価試験]
 以下に、復元音の評価試験について説明する。
 評価試験は、単位パネルが菱形形状の次のサンプルを用意した。
(サンプル1)角数:13角、パネル個数:91個、空缶デプス:0.81mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル2)角数:13角、パネル個数:91個、空缶デプス0.85mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル3)角数:13角、パネル個数:91個、空缶デプス0.89mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル4)角数:13角、パネル個数:91個、空缶デプス0.92mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル5)角数:11角、パネル個数:66個、空缶デプス1.38mm、単位パネル面積:177mm、多面体壁面積:缶胴の70%
(サンプル6)角数:11角、パネル個数:66個、空缶デプス1.45mm、単位パネル面積:177mm、多面体壁面積:缶胴の70%
(試験条件)
 評価試験の条件は、次の通りである。
 ・温度:5℃保管(液温は6.5~8℃)、
 ・缶内圧:120~150kPa
 ・缶胴の板厚0.092~0.122mm
 ・缶胴径:66.5~67mm
 ・缶高さ:121.8~122.2mm
・内容量:350ml
(試験方法)
 最大デプス変化量dmaxは、内圧作用状態(5°C:開封前の内圧が120~150kPa)でのパネルデプスを測定し、次に内圧開放状態でのパネルデプスを測定し、その差を計測して求める。パネルデプスの測定方法は、図3(A)に示すように、陽圧缶1のボトム側をバキュームにより水平に保持し、デジマチックインジゲータ100(「デジマチック」は「株式会社ミツトヨ」の登録商標)の測定子101を、垂直に頂点53に当ててその高さをゼロ点とし、陽圧缶1を中心軸線N方向にスライドさせ、デジマチックインジゲータ100を横稜線53の中点mの位置に合わせ、測定子101を横稜線53の中点mに当てて高さを読み取って求める。
 デジマチックインジケータ100は、水平の台上に垂直に立設されるスタンド102に固定される支持腕103に支持され、姿勢を垂直に保持される。一方、スタンド102のデジマチックインジケータ100の下方位置に、陽圧缶1を保持し、陽圧缶1の中心軸線Nに沿って水平に移動させる水平移動機構104が設けられている。水平移動機構104は、陽圧缶1の口部を保持する保持部105と、保持部105を水平に移動させるシリンダ機構や送りねじ機構等の伸縮部106とを備えた構成となっている。
 パネルデプスは全ての単位パネル5で求め、各単位パネル5の内圧作用状態および内圧開放状態でのパネルデプスの差を最大デプス変化量dmaxとし、その最大値、さらに各単位パネルの最大デプス変化量dmaxの平均値を算出した。平均値は、最大デプス変化量dmaxが0.4mm未満の単位パネルを除いた単位パネルについての最大デプス変化量の平均値である。各サンプルは3缶ずつで、最大デプス変化量の最大値については、最大値の3缶の平均値を(ave)、最大値を(max)、最小値を(min)としている。また、各単位パネルの最大デプス変化量dmaxの平均値については、測定数3缶に対する平均値を(ave)、最大値を(max)、最小値を(min)としている。デジマチックインジゲータは、「株式会社ミツトヨ」製、型番ID-C1012、測定子101は、「株式会社ミツトヨ」製、型番137413を用いた。
 一方、復元音の測定は、図3(B)に示すように、缶から40cm離した位置で騒音計120を設置し、音の大きさを測定した。この40cmは、マイク121と陽圧缶1と間の距離Lである。40cmの意味は、実際の開口時の缶と耳のおおよその距離を意味している。また、騒音計120は、床置きとし、台122によって、マイク121の高さを、床から60cm程度の高さに保持した。測定値は時間軸の波形データとして得られる。陽圧缶1を開口すると、始めにプルタブによる缶蓋の引き裂き音が発生し、次いでガス放出音、復元音の順に発生するので、復元音の部分の波形データの最大値を復元音の音圧レベルとしている。周波数重み付け特性はA特性で、時間重み付け特性はFとしている。測定数は3缶で、その平均値を測定結果としている。
 騒音計120としては、「リオン株式会社」製、型番NL-42を用い、マイク121の先端にはウインドスクリーンWS-10を取り付けている。
[Evaluation test]
Hereinafter, the evaluation test of the restored sound will be described.
In the evaluation test, the following sample having a rhombus unit panel was prepared.
(Sample 1) Number of corners: 13 corners, number of panels: 91, empty can depth: 0.81 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 2) Number of corners: 13 corners, number of panels: 91, empty can depth 0.85 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 3) Number of corners: 13 corners, number of panels: 91, empty can depth 0.89 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 4) Number of corners: 13 corners, number of panels: 91, empty can depth 0.92 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 5) Number of corners: 11 corners, number of panels: 66, empty can depth 1.38 mm, unit panel area: 177 mm 2 , polyhedral wall area: 70% of can body
(Sample 6) Number of corners: 11 corners, number of panels: 66, empty can depth 1.45 mm, unit panel area: 177 mm 2 , polyhedral wall area: 70% of can body
(Test conditions)
The conditions of the evaluation test are as follows.
・ Temperature: 5 ℃ storage (Liquid temperature is 6.5-8 ℃),
・ Can internal pressure: 120-150kPa
・ Thickness of can body 0.092 ~ 0.122mm
・ Can barrel diameter: 66.5-67mm
・ Can height: 121.8-122.2mm
・ Contents: 350ml
(Test method)
For the maximum depth change dmax, measure the panel depth in the internal pressure action state (5 ° C: the internal pressure before opening is 120 to 150 kPa), then measure the panel depth in the internal pressure release state, and measure the difference. Ask. As shown in FIG. 3A, the panel depth measurement method is such that the bottom side of the positive pressure can 1 is held horizontally by a vacuum, and the digimatic indicator 100 (“Digimatic” is a registered trademark of Mitutoyo Corporation). ) Is vertically applied to the apex 53 so that its height is zero, the positive pressure can 1 is slid in the direction of the central axis N, and the digimatic indicator 100 is moved to the middle point m of the horizontal ridge 53. In addition, the height is obtained by placing the probe 101 on the middle point m of the horizontal ridge line 53.
Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically. On the other hand, a horizontal movement mechanism 104 that holds the positive pressure can 1 and moves it horizontally along the central axis N of the positive pressure can 1 is provided below the digimatic indicator 100 of the stand 102. The horizontal movement mechanism 104 includes a holding portion 105 that holds the mouth portion of the positive pressure can 1 and a telescopic portion 106 such as a cylinder mechanism or a feed screw mechanism that moves the holding portion 105 horizontally.
The panel depth is obtained for all the unit panels 5, and the difference between the panel depths in the internal pressure applied state and the internal pressure release state of each unit panel 5 is defined as the maximum depth change amount dmax, the maximum value, and the maximum depth change amount of each unit panel. The average value of dmax was calculated. The average value is an average value of the maximum depth change amounts for the unit panels excluding the unit panel whose maximum depth change amount dmax is less than 0.4 mm. Each sample has three cans, and regarding the maximum value of the maximum depth change amount, the average value of the three maximum cans is (ave), the maximum value is (max), and the minimum value is (min). In addition, regarding the average value of the maximum depth change amount dmax of each unit panel, the average value with respect to 3 cans of measurement is (ave), the maximum value is (max), and the minimum value is (min). Digimatic indicator manufactured by Mitutoyo Corporation, model number ID-C1012, and probe 101 used by Mitutoyo Corporation, model number 137413 were used.
On the other hand, as shown in FIG. 3B, the sound level of the restored sound was measured by installing a noise meter 120 at a position 40 cm away from the can. This 40 cm is a distance L between the microphone 121 and the positive pressure can 1. The meaning of 40 cm means the approximate distance between the can and the ear when actually opened. The sound level meter 120 was placed on the floor, and the microphone 121 was held at a height of about 60 cm from the floor by the stand 122. The measured value is obtained as time axis waveform data. When the positive pressure can 1 is opened, a tearing sound of the can lid due to the pull tab is generated first, and then the gas emission sound and the restoration sound are generated in this order. The level. The frequency weighting characteristic is A characteristic, and the time weighting characteristic is F. The number of measurements is 3 cans, and the average value is the measurement result.
As the sound level meter 120, model number NL-42 manufactured by Rion Co., Ltd. is used, and a wind screen WS-10 is attached to the tip of the microphone 121.
(測定結果)
 測定結果は、表1に示す通りである。
(Measurement result)
The measurement results are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図4及び図5は、表1のデータをグラフ化したものである。図4(A)には、最大デプス変化量の最大値と復元音の大きさの関係、図4(B)は、単位パネルの内の最大デプス変化量が0.4mm以上のものの平均値と復元音の大きさの関係が示されている。図5(A)には、すべての単位パネルの最大デプス変化量の平均値と復元音の大きさの関係、図5(B)には、最大デプス変化量が0.3mm以上のものの平均値と復元音の大きさの関係が示されている。各グラフにおいて、サンプル1~サンプル6を、それぞれS1~S6として示している。
 まず、図4(A)を参照して、最大デプス変化量の最大値と復元音の大きさの関係について説明する。
 最大デプス変化量の最大値については、本発明のサンプル5(S5)とサンプル6(S6)については、少なくとも0.74mm~0.86mmと大きく変化して深い立体形状が得られると共に、かつ、76dB以上の復元音を得られている。しかも、本発明のサンプル5,6の単位パネルは11角で、比較例のサンプル1~サンプル4の13角に比べて大きいために、深いだけでなく広い範囲が大きく変化し、視覚的に変化が際立つので、注意を惹かれ、音についても敏感になって復元音を聞き取る効果が高い。
 一方、比較例のサンプル3(S3)とサンプル4(S4)については、復元音は75dBを超えているものの、最大デプス変化量は、サンプル4(S4)で、0.74mmまでで、サンプル3では0.66mmまでである。また、サンプル1(S1)とサンプル2(S2)については、復元音についても72dBから78dBの間であり、75dBを超えない場合が生じている。
 これらの結果から、最大デプス変化量dmaxの最大値で評価して、最大デプス変化量dmaxの最大値が、0.75mm以上であれば、大きく変化して深い立体形状が得られると共に、かつ、76dB以上の大きい復元音を得ることができる。スコア破断時の音圧レベルは、約60dB、ガス放出音は、70dBであり、ガス放出音の70dBに対して5dB以上大きければ、音圧レベルは、ガス放出音に対して2倍程度大きくなり、明瞭となる。
 なお、単位パネルが菱形形状の場合、断面角数が11角と13角の間、12角のものも含まれる。また、13角であっても、最大デプス変化量の最大値を0.75mm以上とすれば、凹凸が深く鮮明となり、視覚的効果を高めると共に、大きな復元音を得ることができる。
[軸荷重強度]
 また、最大デプス変化量を大きくするには単位パネルを大きくする必要がある。単位パネルを大きくすると、空缶時の軸荷重強度が低下する傾向にあり、上限を1.2mm程度に設定しておけば、空缶時の軸荷重強度を維持することができる。
4 and 5 are graphs of the data in Table 1. FIG. 4A shows the relationship between the maximum value of the maximum depth change amount and the volume of the restored sound, and FIG. 4B shows the average value of the maximum depth change amount of 0.4 mm or more in the unit panel. The relationship of the magnitude of the restored sound is shown. FIG. 5 (A) shows the relationship between the average value of the maximum depth change amount of all unit panels and the magnitude of the restored sound, and FIG. 5 (B) shows the average value when the maximum depth change amount is 0.3 mm or more. And the magnitude of the restored sound. In each graph, samples 1 to 6 are shown as S1 to S6, respectively.
First, with reference to FIG. 4A, the relationship between the maximum value of the maximum depth change amount and the volume of the restored sound will be described.
Regarding the maximum value of the maximum depth change amount, the sample 5 (S5) and the sample 6 (S6) of the present invention have a large three-dimensional shape with a large change of at least 0.74 mm to 0.86 mm, and A restored sound of 76 dB or more is obtained. Moreover, since the unit panels of Samples 5 and 6 of the present invention are 11 corners, which is larger than the 13 corners of Samples 1 to 4 of the comparative example, not only deep but also a wide range changes greatly and changes visually. Because it stands out, it is attracting attention, making it sensitive to sound and listening to the restored sound.
On the other hand, for the sample 3 (S3) and the sample 4 (S4) of the comparative example, although the restored sound exceeds 75 dB, the maximum depth change amount is up to 0.74 mm in the sample 4 (S4). Then, it is up to 0.66 mm. In addition, with respect to sample 1 (S1) and sample 2 (S2), the restored sound is also between 72 dB and 78 dB and does not exceed 75 dB.
From these results, when the maximum value of the maximum depth change amount dmax is evaluated and the maximum value of the maximum depth change amount dmax is 0.75 mm or more, a deep three-dimensional shape is obtained by changing greatly, and A large restoration sound of 76 dB or more can be obtained. The sound pressure level when the score is broken is about 60 dB, the gas emission sound is 70 dB, and if the gas emission sound is 70 dB higher than the gas emission sound by 5 dB or more, the sound pressure level is about twice as large as the gas emission sound. To be clear.
In addition, when a unit panel is a rhombus shape, the number of cross-sectional angles is between 11 and 13 and 12 is included. Even with 13 corners, if the maximum value of the maximum depth change amount is set to 0.75 mm or more, the unevenness becomes deep and clear, and the visual effect is enhanced and a large restoration sound can be obtained.
[Axial load strength]
In order to increase the maximum depth change amount, it is necessary to enlarge the unit panel. If the unit panel is made larger, the axial load strength at the time of the empty can tends to decrease. If the upper limit is set to about 1.2 mm, the axial load strength at the time of the empty can can be maintained.
 次に、図4(B)、図5(A)及び図5(B)を参照して、最大デプス変化量の平均値と復元音の大きさの関係について説明する。
 図4(A)のように最大デプス変化量の最大値を用いる場合、ばらつきが大きくなる可能性があるので、単位パネルの最大デプス変化量の平均値をとることを検討した。しかし、全ての単位パネルの最大デプス変化量の平均値をとると、図5(A)に示すように、本発明のサンプル5(S5),サンプル6(S6)が、比較例のサンプル(S1)~サンプル4(S4)よりも、最大デプス変化量の平均値は小さいという反対の結果となった。この結果を検討した結果、全ての単位パネルが完全に復元されるわけではなく、一部の単位パネルについて、復元が不完全なものがあるためということがわかった。そこで、0.3mm以上の最大デプス変化量となる単位パネルについての平均値、0.4mm以上の最大デプス変化量となった単位パネルについての平均値について算出し、グラフとしたのが図4(B)と図5(B)である。
 0.3mm以上の単位パネルを抽出したものでは、図5(B)に示すように、サンプル5(S5)およびサンプル6(S6)が、サンプル1~サンプル4と交錯する範囲となり、判然としないが、0.4mm以上の単位パネルを抽出すると、図4(B)に示すように、サンプル5(S5)およびサンプル6(S6)が、サンプル1~サンプル4と交錯する範囲を脱し、サンプル5(S5)およびサンプル6(S6)の最大デプス変化量(平均値)が、サンプル1~サンプル4の最大デプス変化量(平均値)よりも大きく、明確に分かれることが分かった。
Next, with reference to FIG. 4B, FIG. 5A, and FIG. 5B, the relationship between the average value of the maximum depth change amount and the magnitude of the restored sound will be described.
When using the maximum value of the maximum depth change amount as shown in FIG. 4A, there is a possibility that the variation becomes large. Therefore, it was considered to take an average value of the maximum depth change amount of the unit panel. However, when taking the average value of the maximum depth change amounts of all the unit panels, as shown in FIG. 5A, the sample 5 (S5) and the sample 6 (S6) of the present invention are compared with the sample (S1) of the comparative example. ) To Sample 4 (S4), and the opposite result is that the average value of the maximum change in depth is smaller. As a result of examining this result, it was found that not all unit panels were completely restored, and some unit panels were not fully restored. Therefore, the average value for the unit panel having the maximum depth change amount of 0.3 mm or more and the average value for the unit panel having the maximum depth change amount of 0.4 mm or more are calculated and graphed as shown in FIG. B) and FIG. 5B.
In the case of extracting a unit panel of 0.3 mm or more, as shown in FIG. 5 (B), sample 5 (S5) and sample 6 (S6) are in a range where they intersect with sample 1 to sample 4, and are unclear. However, when a unit panel of 0.4 mm or more is extracted, as shown in FIG. 4B, sample 5 (S5) and sample 6 (S6) escape from the range where sample 1 to sample 4 intersect, and sample 5 It was found that the maximum depth change amount (average value) of (S5) and Sample 6 (S6) is larger than the maximum depth change amount (average value) of Sample 1 to Sample 4, and is clearly divided.
 図4(B)によれば、最大デプス変化量の0.4mm以上の単位パネルの平均値は、本発明のサンプル5(S5)とサンプル5(S6)については、0.57mm~0.67mmであるのに対して、比較例のサンプルサンプル1(S1)~サンプル4(S4)は、0.48~0.53mmであった。
 これらの結果から、最大デプス変化量が0.4mm以上の単位パネルの平均値を、0.54mm以上、好ましくは0.57mm以上に設定すれば、完全に復元しない単位パネルの影響を除外することができ、最大値と同様に、本発明のサンプル5(S5)及びサンプル6(S6)を、比較例のサンプル1(S1)~サンプル4(S4)と区別することができる。
 このように平均値を用いることで、最大デプス変化量の最大値を用いる場合のように、閾値が大きくなりすぎることがなく、最大デプス変化量を安定して評価でき、一定以上の安定した復元音が得られる陽圧缶を実現できる。
 また、空缶時の軸荷重強度を考慮すると、最大値で評価する場合の上限がを1.2mmに対して、平均値では、その6割程度として0.75mm程度に設定しておけば、空缶時の軸荷重強度を維持することができる。
 なお、単位パネルの最大デプス変化量の最大値が0.75mm以上1.2mm以下の範囲で、かつ、最大デプス変化量が0.4mm以上となる単位パネルについての最大デプス変化量の平均値が、0.54mm以上0.75mm以下の範囲を満たすように設定することもできる。
 このようにすれば、最大デプス変化量が安定し、しかも最大値が大きく、より大きな安定した復元音が得られる陽圧缶を実現できる。
 なお、多面体壁を構成する単位パネルについては、上記実施形態1の屈曲した菱形形状に限られず、折り構造によって、缶胴の内方に窪んだ形状で、缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元する種々のパターンに適用可能である。
According to FIG. 4B, the average value of the unit panel having a maximum depth variation of 0.4 mm or more is 0.57 mm to 0.67 mm for the sample 5 (S5) and the sample 5 (S6) of the present invention. In contrast, Samples 1 (S1) to 4 (S4) of Comparative Example were 0.48 to 0.53 mm.
From these results, if the average value of unit panels with a maximum depth change of 0.4 mm or more is set to 0.54 mm or more, preferably 0.57 mm or more, the influence of unit panels that are not completely restored is excluded. Similarly to the maximum value, sample 5 (S5) and sample 6 (S6) of the present invention can be distinguished from sample 1 (S1) to sample 4 (S4) of the comparative example.
By using the average value in this way, the threshold value does not become too large as in the case of using the maximum value of the maximum depth change amount, and the maximum depth change amount can be stably evaluated, and a stable restoration above a certain level. A positive pressure can that can produce sound can be realized.
In addition, when considering the axial load strength at the time of empty cans, the upper limit when evaluating with the maximum value is set to about 0.75 mm as about 60% of the upper limit with respect to 1.2 mm, Axial load strength during empty can can be maintained.
The maximum value of the maximum depth change amount for the unit panel in which the maximum value of the maximum depth change amount of the unit panel is in the range of 0.75 mm to 1.2 mm and the maximum depth change amount is 0.4 mm or more is , 0.54 mm or more and 0.75 mm or less can also be set.
In this way, it is possible to realize a positive pressure can in which the maximum depth change amount is stable, the maximum value is large, and a larger and stable restoration sound can be obtained.
In addition, about the unit panel which comprises a polyhedral wall, it is not restricted to the bent rhombus shape of the said Embodiment 1, By a folding structure, it is a shape dented inward of the can body, and a hollow is small by the internal pressure which acts on a can body. It can be applied to various patterns that are deformed in a direction to be restored to the original shape when the can lid is opened.
 次に、第2の発明群を構成する発明を図示の実施形態に基づいて詳細に説明する。
[第2の発明群の実施形態1]
 図06は、本第2群の発明の実施形態1に係る陽圧缶を示すもので、図06(A)は内圧作用状態、図06(B)は内圧開放状態を示している。
 陽圧缶1は、缶胴21を有する有底筒状の缶本体2と、缶本体2を陽圧状態で密閉する缶蓋3とを備え、缶胴21の少なくとも一部に多面体壁24を有している。缶本体2は、ストレートに延びる円筒形状の缶胴21と、缶胴21の上端の径を絞ったネック部22と、底部23とを有する構成で、ネック部22上端の口部に缶蓋3が巻締め固定されている。
 陽圧缶1は、アルミ合金製の絞りしごき缶であり、一般的に、その容量は160ml~500ml、5℃における缶内圧が20~300[kPa]、缶胴21の最薄部の板厚が0.075~0.135[mm]、缶胴径が50~70[mm]、缶高さが90~170[mm]の範囲で使用されている。
Next, the invention constituting the second invention group will be described in detail based on the illustrated embodiment.
[Embodiment 1 of the second invention group]
FIG. 06 shows the positive pressure can according to the first embodiment of the present invention of the second group. FIG. 06 (A) shows the internal pressure acting state, and FIG. 06 (B) shows the internal pressure released state.
The positive pressure can 1 includes a bottomed cylindrical can body 2 having a can body 21 and a can lid 3 that seals the can body 2 in a positive pressure state. A polyhedral wall 24 is provided on at least a part of the can body 21. Have. The can body 2 includes a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23, and a can lid 3 at the mouth of the upper end of the neck portion 22. Is tightened.
The positive pressure can 1 is a squeezed iron can made of an aluminum alloy, and generally has a capacity of 160 to 500 ml, a can internal pressure of 20 to 300 [kPa] at 5 ° C., and the thickness of the thinnest portion of the can body 21. Is 0.075 to 0.135 [mm], the can body diameter is 50 to 70 [mm], and the can height is 90 to 170 [mm].
 多面体壁24には、軸方向に山部26と谷部27が交互に形成される波打ち曲面30が、周方向に複数形成されている。この波打ち曲面30は、図06(C),(D)に示すように、缶胴21の中心軸線Nを通る中心面Mに対して対称形状の波形稜線251,252で区画されており、波形稜線251,252間の間隔の狭い部分が波打ち曲面30の山部26となり、間隔の広い部分が谷部27となっている。単位パネル25は、波打ち曲面30の一つの山部26の頂部26aから谷部27を経て次の山部26の頂部26aまでの領域で、山部26の頂部26aによって、上下の単位パネル25が区分される。すなわち、この実施形態では、波形稜線251,252によって単位パネル25の全周が画定されるのではなく、一部は開いた構成で、山部26の頂部26aによって区分されるようになっている。この例では、山部26で区分されているが、波形稜線251,252の間隔が狭い部分が接触していてもよく、その場合には全周が境界稜線によって区画される。
 互いに隣り合う波打ち曲面30,30の単位パネル25の軸方向の位相は、単位パネルの軸方向長さの半分だけずれており、単位パネル25が軸方向及び周方向に密に配列されている。
The polyhedral wall 24 is formed with a plurality of corrugated curved surfaces 30 in which crests 26 and troughs 27 are alternately formed in the axial direction. As shown in FIGS. 06 (C) and (D), the corrugated curved surface 30 is partitioned by waveform ridge lines 251 and 252 that are symmetrical with respect to the center plane M passing through the center axis N of the can body 21. A narrow part between the ridge lines 251 and 252 is a peak part 26 of the undulating curved surface 30, and a wide part is a valley part 27. The unit panel 25 is a region from the top part 26a of one peak part 26 of the undulating curved surface 30 to the top part 26a of the next peak part 26 through the valley part 27. The top part 26a of the peak part 26 allows the upper and lower unit panels 25 to be It is divided. That is, in this embodiment, the entire circumference of the unit panel 25 is not demarcated by the corrugated ridge lines 251 and 252, but a part of the unit panel 25 is open and is divided by the top portion 26 a of the peak portion 26. . In this example, although it is divided by the peak part 26, the part with the narrow space | interval of the waveform ridge lines 251 and 252 may contact, and in that case, the perimeter is divided by the boundary ridgeline.
The phase in the axial direction of the unit panels 25 of the corrugated curved surfaces 30 and 30 that are adjacent to each other is shifted by half the axial length of the unit panels, and the unit panels 25 are densely arranged in the axial direction and the circumferential direction.
 波打ち曲面30の、缶胴21の中心軸線Nと直交方向の断面は、山部26の頂部26aの位置で缶胴21の中心軸線Nと直交方向に切断した断面(水平断面)は、図06(E)に示すように、山部26の頂部26aの部分が狭く、単位パネル25の中間位置が広い多角形状となっている。単位パネル25の中間位置の水平断面は、内圧が加わっていない状態で、直線状に対して、缶胴21の内方に向かって円弧状に窪んでいる。図示例では、山部26を挟んで単位パネル25が13面形成されているが、波打ち曲面30の数としては26面あり、隣り合う波打ち曲面30,30は半位相ずれているので、山部26の頂部26aの位置での水平断面は13面となる。また、図示例では、単位パネル25が4個の波打ち曲面30と、3個の波打ち曲面30が交互に形成されており、単位パネル25の数は全部で91個となっている。
 多面体壁24は、図示例では、缶胴21の軸方向中途部分に、帯状に設けられ、多面体壁24の上部及び下部領域は、凹凸の無い円筒面となっている。多面体壁24の面積は、図示例では、缶胴21のネック部22を除いた円筒部分に対して70%程度となっているが、復元音の大きさを考慮し、缶胴の25%以上、好ましくは50%以上とすることが、好適である。
 多面体壁24は、内圧作用状態では、図06(A)に示すように、各波打ち曲面30が軸方向に直線的に変形し、全体として凹凸の無い円筒面となる。各単位パネル25は、水平断面において、円弧状に変形し、窪みがなくなる。
 そして、缶蓋3の開封時に、図06(B)に示すように、各単位パネル25は元の形状に復元し、復元する際に復元音を発する構成となっている。
 この実施形態では、単位パネル25が、缶胴21の中心軸線Nと平行方向と直交方向の両方に湾曲しているので、内圧作用時の弾性歪量が大きくなり、内圧解放時に一気に開放されて復元音が大きい。
The cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 is a cross section (horizontal cross section) cut in the direction orthogonal to the central axis N of the can body 21 at the position of the top portion 26a of the peak portion 26. As shown to (E), the part of the top part 26a of the peak part 26 is narrow, and the intermediate position of the unit panel 25 becomes a polygonal shape wide. The horizontal cross section at the intermediate position of the unit panel 25 is recessed in an arc shape toward the inside of the can body 21 with respect to the straight line shape with no internal pressure applied. In the illustrated example, 13 unit panels 25 are formed across the crest 26, but the number of wavy curved surfaces 30 is 26, and the adjacent wavy curved surfaces 30, 30 are offset by half phase. The horizontal cross section at the position of the top 26a of the 26 is 13 planes. Further, in the illustrated example, the unit panel 25 is formed with four undulating curved surfaces 30 and three undulating curved surfaces 30 alternately, and the number of unit panels 25 is 91 in total.
In the illustrated example, the polyhedron wall 24 is provided in a strip shape in the middle of the can body 21 in the axial direction, and the upper and lower regions of the polyhedron wall 24 are cylindrical surfaces having no irregularities. In the illustrated example, the area of the polyhedral wall 24 is about 70% with respect to the cylindrical portion excluding the neck portion 22 of the can body 21, but considering the magnitude of the restored sound, it is 25% or more of the can body. Preferably, it is suitable to be 50% or more.
As shown in FIG. 06 (A), the polyhedral wall 24 is a cylindrical surface having no irregularities as a whole, as shown in FIG. Each unit panel 25 is deformed into an arc shape in the horizontal cross section, and the depression is eliminated.
When the can lid 3 is opened, as shown in FIG. 06 (B), each unit panel 25 is restored to its original shape, and a restoration sound is emitted when the unit panel 25 is restored.
In this embodiment, since the unit panel 25 is curved in both the direction parallel to and perpendicular to the central axis N of the can body 21, the amount of elastic strain during the internal pressure action increases, and is released at a time when the internal pressure is released. The restoration sound is loud.
 この単位パネル25の変形状態について、図07を参照して、詳細に説明する。
 図07(A)は、単位パネル25の正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。図07(B),(C)において、破線は内圧作用状態、実線が内圧解放時の復元状態を示している。
 この実施形態における単位パネル5のパネルデプスは、上下の2つの頂部26aを結ぶ線から、パネル中心m2までの、缶胴21の中心軸線Nと直交方向の距離であり、最大デプス変化量dmaxは、内圧作用状態および内圧開放状態における前記パネルデプスの変化量である。
 単位パネル5は、図07(A)に示すように、波打ち曲面30の一つの山部26の頂部26aから谷部27を経て次の山部26の頂部26aまでの領域で、互いに交差しない一対の波形稜線251,252によって区画されている。
 波形稜線251,252は、軸方向に、凹円弧稜線251b、252bと凸円弧稜線251a,252aが交互に繰り返し形成されるもので、中心面Mに対して、互いの凹円弧稜線251b、252bと凸円弧稜線251a,252aが対称的に対向している。谷部27の領域では、凹円弧稜線251b,252bが対向して樽形状に、上下の山部26は、凸円弧稜線251a,252aの頂点a1、a2までの部分が対向し、徐々に幅狭になる形状となっている。
 この凸円弧稜線251a,252aの頂点a1,a2は、波打ち曲面30の山部26の頂部26aに位置するもので、単位パネル25の上下に折り目となる稜線はなく、山部26の頂部26aで区分されている。また、凹円弧稜線251b,252bの最大幅となる頂点b1,b2の位置は、隣接する単位パネル25の山部26の頂部26aが位置しており、単位パネル25の凹円弧稜線251b,252bの頂点b1,b2と、凸円弧稜線251a,252aの頂点a1,a2は、缶胴21の円筒面とほぼ一致する仮想円筒面上に位置している。仮想円筒面は、図07(B),(C)の単位パネル25の内圧作用時の破線の位置に対応する。
 単位パネル25のパネル中心m2は、中心面M上であって、最大幅となる凹円弧稜線251b,252bの頂点b1,b2を結ぶ仮想横線Xとの交点であり、単位パネル25を構成する波打ち曲面30の谷部27の、仮想円筒面からの最深部である。また、このパネル中心m2は、上下の山部26の頂部26a,26aの中間位置でもある。
The deformation state of the unit panel 25 will be described in detail with reference to FIG.
FIG. 07A is a front view of the unit panel 25, FIG. 07B is a cross-sectional view taken along the line BB in FIG. 7A, and FIG. In FIGS. 07 (B) and (C), the broken line indicates the internal pressure acting state, and the solid line indicates the restored state when the internal pressure is released.
The panel depth of the unit panel 5 in this embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the two upper and lower apexes 26a to the panel center m2, and the maximum depth variation dmax is The change amount of the panel depth in the internal pressure acting state and the internal pressure released state.
As shown in FIG. 07 (A), the unit panel 5 is a pair that does not cross each other in the region from the top 26a of one peak 26 of the undulating curved surface 30 to the top 26a of the next peak 26 through the valley 27. Are divided by waveform ridge lines 251 and 252.
The corrugated ridge lines 251 and 252 are formed by alternately and repeatedly forming concave arc ridge lines 251b and 252b and convex arc ridge lines 251a and 252a in the axial direction. The convex arc ridge lines 251a and 252a are symmetrically opposed to each other. In the region of the valley portion 27, the concave arc ridge lines 251b and 252b are opposed to each other in a barrel shape, and the upper and lower peak portions 26 are opposed to the apexes a1 and a2 of the convex arc ridge lines 251a and 252a and gradually narrow. It becomes the shape that becomes.
The vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located at the top part 26a of the peak part 26 of the corrugated curved surface 30, and there is no ridge line that becomes a crease on the top and bottom of the unit panel 25. It is divided. Further, the positions of the vertices b1 and b2 that are the maximum widths of the concave arc ridge lines 251b and 252b are located at the apex 26a of the peak portion 26 of the adjacent unit panel 25, and the concave arc ridge lines 251b and 252b of the unit panel 25 are located. The vertices b1 and b2 and the vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located on a virtual cylindrical surface that substantially coincides with the cylindrical surface of the can body 21. The virtual cylindrical surface corresponds to the position of the broken line when the internal pressure is applied to the unit panel 25 in FIGS. 07 (B) and (C).
The panel center m2 of the unit panel 25 is an intersection with the virtual horizontal line X on the center plane M and connecting the vertices b1 and b2 of the concave arc ridge lines 251b and 252b having the maximum width. This is the deepest portion of the valley portion 27 of the curved surface 30 from the virtual cylindrical surface. The panel center m2 is also an intermediate position between the top portions 26a and 26a of the upper and lower mountain portions 26.
 パネル中心m2は、図07(B)の実線で示すように、缶胴21の内方に向かって円弧状に窪んだ形状となっている。内圧作用状態では、図07(B)に破線で示すように、円弧状に窪んだ単位パネル25が,缶胴21の中心軸線Nと平行に延ばされるように変形し、パネル中心m2が、上下の山部26の頂部26a,26aを結ぶ線に近い位置まで変位する。水平断面で見ると、図07(C)に破線で示すように、円弧状に変形している。
 一方、内圧が開放されると、図07(B)に実線で示すように、単位パネル5は、円弧形状に復元し、パネル中心m2は最深部に戻る。水平断面で見ると、図09(C)に示すように、破線の円弧状から実線の容器内方に窪む円弧形状に復元する。
 このパネル中心m2が単位パネル25の最も大きく変位する部分であり、このパネル中心m2の内圧作用状態および内圧開放状態における前記パネルデプスの変化量が、最大デプス変化量dmaxであり、各単位パネルの最大デプス変化量dmaxの平均値が、0.46mm以上で、かつ、1.08mm以下の範囲に設定される。
 この内圧の条件設定は、陽圧缶の使用範囲を制限するものではなく測定時の条件を設定するものである。たとえば、120kPaより低圧、あるいは150kPaより高圧で使用されているとしても、この圧力範囲で測定したときに、この範囲となるものを含むものとする。
 本実施形態では、境界稜線が角の無い円弧形状の波形稜線251,252であり、最大デプス変化量dmaxが大きく変化し、より大きな復元音が生成される。変形しやすいために、ガス放出音と復元音の間隔が短くなるが、充分に聞き取ることができる。
 なお、各単位パネル25が復元する際に変形する復元領域は、図07(A)に示すように、谷部27を構成する凹部境界稜線251bを通る仮想円弧31(図中、二点鎖線)で囲まれた領域であり、単位パネル25の領域よりも狭い領域である。形状は真円を基本とするが、多面体壁の軸方向範囲の制約から楕円状となる場合もある。
 後述の評価試験結果に示す通り、最大デプス変化量dmaxの平均値を、0.46mm以上で、かつ、1.08mm以下の範囲に設定することにより、復元音をガス放出音70dBよりも大きいレベルに維持できることがわかった。最大デプス変化量dmaxの平均値の大きさは、単位パネル25の大きさと関係し、単位パネル25の大きさが大きい方が最大デプス変化量dmaxが大きくなる関係となっている。また、単位パネル25の大きさと単位パネル25の数との関係は、単位パネルの大きさが大きい方が、単位パネル25の個数は少なくなる関係となっている。
 鋭意研究した結果、このパネルの復元音は、単位パネル25の1個当たりの大きさとパネル数に関係しており、最大デプス変化量dmaxの平均値が大きいと、パネル1個当たりの音圧レベルは大きくなるが、単位パネル25の大きさを大きくする必要があるので、パネル数が少なくなり、全体としての復元音が低下していく。1.08mm以下であれば、パネル数が少なくなっても、復元音をガス放出音70Bよりも大きいレベルに維持することができる。
 最大デプス変化量dmaxの平均値が小さいと、パネル1個当たりの音圧レベルが小さくなるが、パネルの大きさを小さくしてパネル数を増やすことができ、全体としての復元音を大きくすることができる。ただ、限界があり、0.46mm以上であれば、復元音を大きくすることができる。
 単位パネル25のパネル数としては、この例では91個であるが、65個以上で117個以下に設定することが好ましい。
 単位パネル25の個数が117より大きくなると、単位パネル25の大きさが小さくなり過ぎ、復元音があまり大きくならない。また、65個より少ないと、パネルは大きくできるが個数が少なくなり、復元音が低下する。
The panel center m2 has a shape that is recessed in an arc toward the inside of the can body 21, as indicated by the solid line in FIG. In the internal pressure acting state, as indicated by a broken line in FIG. 07 (B), the unit panel 25 that is recessed in an arc shape is deformed so as to extend in parallel with the central axis N of the can body 21, and the panel center m2 is It is displaced to a position close to the line connecting the top portions 26a, 26a of the peak portion 26. When viewed in a horizontal section, as shown by a broken line in FIG.
On the other hand, when the internal pressure is released, as indicated by a solid line in FIG. 07 (B), the unit panel 5 is restored to an arc shape, and the panel center m2 returns to the deepest part. When viewed in the horizontal cross section, as shown in FIG. 09C, the arc shape is restored from the arc shape of the broken line to the inside of the solid line.
The panel center m2 is the portion of the unit panel 25 that is most displaced, and the amount of change in the panel depth when the panel center m2 is in the internal pressure applied state and the internal pressure released state is the maximum depth change amount dmax. The average value of the maximum depth change amount dmax is set in a range of 0.46 mm or more and 1.08 mm or less.
This internal pressure condition setting does not limit the range of use of the positive pressure can, but sets the measurement conditions. For example, even if it is used at a pressure lower than 120 kPa or a pressure higher than 150 kPa, it shall be included within this range when measured in this pressure range.
In the present embodiment, the boundary ridge lines are arc-shaped waveform ridge lines 251 and 252 having no corners, and the maximum depth change amount dmax is greatly changed, and a larger restoration sound is generated. Since it is easily deformed, the interval between the gas emission sound and the restoration sound is shortened, but it can be sufficiently heard.
Note that the restoration area that is deformed when each unit panel 25 is restored is a virtual arc 31 (two-dot chain line in the figure) passing through the recess boundary ridge line 251b constituting the valley 27 as shown in FIG. , And is narrower than the area of the unit panel 25. The shape is basically a perfect circle, but may be elliptical due to the restriction of the axial range of the polyhedral wall.
As shown in the evaluation test results to be described later, by setting the average value of the maximum depth change amount dmax to a range of 0.46 mm or more and 1.08 mm or less, the restoration sound is a level larger than the gas emission sound 70 dB. It was found that it can be maintained. The average value of the maximum depth change amount dmax is related to the size of the unit panel 25. The larger the size of the unit panel 25 is, the larger the maximum depth change amount dmax is. The relationship between the size of the unit panel 25 and the number of unit panels 25 is such that the larger the unit panel size, the smaller the number of unit panels 25.
As a result of diligent research, the restored sound of this panel is related to the size per unit panel 25 and the number of panels. If the average value of the maximum depth change dmax is large, the sound pressure level per panel is large. However, since it is necessary to increase the size of the unit panel 25, the number of panels decreases, and the restoration sound as a whole decreases. If it is 1.08 mm or less, the restoration sound can be maintained at a level higher than the gas emission sound 70B even if the number of panels is reduced.
If the average value of the maximum depth change dmax is small, the sound pressure level per panel decreases, but the panel size can be reduced to increase the number of panels, and the overall restored sound can be increased. Can do. However, there is a limit, and if it is 0.46 mm or more, the restored sound can be increased.
The number of unit panels 25 is 91 in this example, but is preferably set to 65 or more and 117 or less.
If the number of unit panels 25 is greater than 117, the size of the unit panel 25 will be too small and the restored sound will not be too great. On the other hand, if the number is less than 65, the panel can be enlarged, but the number of the panels is reduced, and the restoration sound is lowered.
 この単位パネルの個数を変えた例を、図08を参照して説明する。
 図08(A)は単位パネルが65個の例、図08(B)は117個の例を示している。
 いずれも、波打ち曲面30の数は、図06と同様に26面であり、隣り合う波打ち曲面30の単位パネル25の個数が1つ異なる構成となっている。一つ少ない側の波打ち曲面を30(n)、一つ多い側の波打ち曲面を30(n+1)とすると、65個の場合は、単位パネル25が2個の波打ち曲面30(n)と、3個の波打ち曲面30(n+1)が周方向に交互に配列されている。図08(B)に示す117個の場合には、単位パネル25が4個の波打ち曲面30(n)と5個の波打ち曲面30(n+1)が周方向に交互に配列されている。
 図示するように、パネル数が多くなるにつれて、単位パネル25の大きさが小さくなっている。すなわち、パネル数が65の単位パネル25が最も大きく(図08(A))、パネル数が91個の単位パネル25が中間(図06(A))、パネル数が117個の単位パネル25が最も小さくなっている(図08(B))。
 多面体壁24の面積は、図08(B)の117個の場合は、図06に示した91個の場合と同様に、ネック部22を除いた円筒部分に対して70%程度となっているが、図08(A)の65個の場合は、波打ち曲面30が短く、60%程度となっている。
 図08(C)~(E)には、各単位パネル25の大きさを比較して示している。
 図では、各単位パネル25の谷部27の水平方向の最大幅をg、単位パネル25の最小幅(山部26の最小幅)をh、軸方向長さをiとし、それぞれカッコ書きでパネル数を入れて区別するものとする。最大幅gは、上記した図07(A)における頂点b1、b2間の寸法、最小幅hは、図07(A)における頂点a1,a2間の寸法である。また、軸方向長さiは、図07(A)における、上下の山部26の頂部26a,26a間の寸法である。
 最大幅gは、
 g(65)>g(91)>g(117)
であり、軸方向長さiは、
 i(65)>i(91)>i(117)
と、パネル数が多くなるにしたがって小さくなっている。
 一方、水平方向の最小幅hは、
 h(65)<h(91)<h(117)
と、パネル数が多くなるにしたがって大きくなっている。
 波打ち曲面の面数は26面なので、最大幅gと最小幅hを足し合わせた値は、65個、91個、117個のいずれも同一であり、最大幅gと最小幅hの比率が異なっている。
 また、各単位パネル25が復元する際に変形する復元領域は、上記したように、谷部27を構成する凹部境界稜線251bを通る仮想円弧31(図07(A)中、2点鎖線)で囲まれた領域であり、この谷部27を含む復元領域の面積をSとすると、復元領域の面積Sも、
 S(65)>S(91)>S(117)
と、パネル数が多くなるにしたがって小さくなっている。
 要するに、この実施形態における単位パネル25のパネル数の設定は、缶高さ及び胴径が同一で、波打ち曲面30の面数が一定(26面)の缶を前提とし、各単位パネル25の軸方向長さiを変えることによって、各波打ち曲面30中の単位パネルの数を変更することにより、缶全体のパネル数を設定している。すなわち、パネル数を増やす場合には、軸方向長さiを短くし、パネル数を減らす場合には、軸方向長さiを長くしている。復元領域の面積S及び単位パネル25の面積S1は、軸方向長さiによって定まり、短いと面積が小さく、長いと面積が大きくなる。多面体壁24は、基本的に折り構造で周長は一定であり、各単位パネル25の形状および大きさは同じなので、単位パネル25の形状に関わらず、たとえば、最大幅gや最小幅hの寸法に関わらず、缶の胴径をDとすると、単位パネル面積S1は、次の関係で定まる。
 S1=π*D*i/26
 上記した65個、91個、117個のパネル数は、各波打ち曲面30に一つずつ増やした例で、パネル数としては、段階的に26ずつ増えている。しかし、波打ち曲面30の軸方向長さiが缶胴に対して寸法的に許されれば、単位パネル25の軸方向長さiが同じ長さのままで、パネル数を増やすことも可能である。
 単位パネル25の最大デプス変化量dmaxは、復元領域の大きさ、すなわち、復元領域の面積Sに関わる軸方向長さiと、最大幅gに影響を受ける。この軸方向長さiが単位パネル25の数と相関関係があり、数が多いと軸方向長さiが短くなり、最大幅gも小さくなるので、最大デプス変化量dmaxは小さくなる。また、数が少ないと、軸方向長さiは長くなり、最大幅gも大きくとれるので、最大デプス変化量dmaxは大きくなる。
 なお、上記実施形態では、波打ち曲面30の面数を26面としているが、波打ち曲面30の面数を変えても構わない。
An example in which the number of unit panels is changed will be described with reference to FIG.
FIG. 08A shows an example with 65 unit panels, and FIG. 08B shows an example with 117 units.
In any case, the number of undulating curved surfaces 30 is 26 as in FIG. 06, and the number of unit panels 25 of adjacent undulating curved surfaces 30 is different by one. Assuming that one less side wavy curved surface is 30 (n) and one more side wavy curved surface is 30 (n + 1), in the case of 65, the unit panel 25 has two wavy curved surfaces 30 (n). Three wavy curved surfaces 30 (n + 1) are alternately arranged in the circumferential direction. In the case of 117 shown in FIG. 08 (B), the unit panel 25 has four wavy curved surfaces 30 (n) and five wavy curved surfaces 30 (n + 1) arranged alternately in the circumferential direction.
As shown in the figure, the size of the unit panel 25 decreases as the number of panels increases. That is, the unit panel 25 having 65 panels is the largest (FIG. 08A), the unit panel 25 having 91 panels is intermediate (FIG. 06A), and the unit panel 25 having 117 panels is present. It is the smallest (FIG. 08 (B)).
In the case of 117 in FIG. 08B, the area of the polyhedral wall 24 is about 70% with respect to the cylindrical portion excluding the neck portion 22, as in the case of 91 in FIG. However, in the case of 65 pieces in FIG.
FIGS. 08C to E show the sizes of the unit panels 25 in comparison.
In the figure, g is the maximum horizontal width of the valley 27 of each unit panel 25, h is the minimum width of the unit panel 25 (minimum width of the peak 26), and i is the axial length. It shall be distinguished by including a number. The maximum width g is the dimension between the vertices b1 and b2 in FIG. 07 (A), and the minimum width h is the dimension between the vertices a1 and a2 in FIG. 07 (A). The axial length i is a dimension between the top portions 26a and 26a of the upper and lower peaks 26 in FIG.
The maximum width g is
g (65)> g (91)> g (117)
And the axial length i is
i (65)> i (91)> i (117)
And it gets smaller as the number of panels increases.
On the other hand, the minimum horizontal width h is
h (65) <h (91) <h (117)
And it increases as the number of panels increases.
Since the number of wavy curved surfaces is 26, the sum of the maximum width g and the minimum width h is the same for all 65, 91, and 117, and the ratio of the maximum width g to the minimum width h is different. ing.
Further, as described above, the restoration region that is deformed when each unit panel 25 is restored is a virtual arc 31 (two-dot chain line in FIG. 07A) passing through the recess boundary ridge line 251b that constitutes the valley portion 27. If the area of the restoration region including the valley 27 is S, the area S of the restoration region is
S (65)> S (91)> S (117)
And it gets smaller as the number of panels increases.
In short, the setting of the number of the unit panels 25 in this embodiment is based on the assumption that the can height and the body diameter are the same and the number of wavy curved surfaces 30 is constant (26 faces). By changing the direction length i, the number of unit panels in each corrugated curved surface 30 is changed, thereby setting the number of panels of the entire can. That is, when the number of panels is increased, the axial length i is shortened, and when the number of panels is decreased, the axial length i is increased. The area S of the restoration region and the area S1 of the unit panel 25 are determined by the axial length i. Since the polyhedral wall 24 is basically a folded structure and has a constant circumference, and the shape and size of each unit panel 25 are the same, for example, the maximum width g and the minimum width h are independent of the shape of the unit panel 25. Regardless of the dimensions, if the can body diameter is D, the unit panel area S1 is determined by the following relationship.
S1 = π * D * i / 26
The number of 65, 91, and 117 panels described above is an example in which the number of panels is increased by one for each corrugated curved surface 30, and the number of panels is increased by 26 in stages. However, if the axial length i of the corrugated curved surface 30 is dimensionally allowed for the can body, the number of panels can be increased while the axial length i of the unit panel 25 remains the same. .
The maximum depth change dmax of the unit panel 25 is affected by the size of the restoration area, that is, the axial length i related to the area S of the restoration area and the maximum width g. This axial length i correlates with the number of unit panels 25. If the number is large, the axial length i is shortened and the maximum width g is also reduced, so that the maximum depth change amount dmax is reduced. If the number is small, the axial length i becomes long and the maximum width g can be made large, so that the maximum depth change amount dmax becomes large.
In the above embodiment, the number of wavy curved surfaces 30 is 26, but the number of wavy curved surfaces 30 may be changed.
[最大デプス変化量dmaxの調整]
 最大デプス変化量dmaxは、たとえば、空缶時のパネルデプスを調整することによって調整可能である。すなわち、谷部27の水平断面(缶胴21の中心軸線Nと直交方向の断面)は缶胴21の内方に向かって窪む円弧形状となっているが、この湾曲度合を変化させて空缶時のパネルデプスを変化させることによって、最大デプス変化量dmaxを調整することができる。すなわち、空缶時のパネルデプスを大きくすれば、最大デプス変化量dmaxが大きくなり、空缶時のパネルデプスを小さくすれば最大デプス変化量dmaxは小さくなる。
 さらに、谷部27における水平断面を直線状、あるいは直線状より外側に円弧状に湾曲させてもよく、このようにすれば、最大デプス変化量dmaxをより小さくすることができる。
[Adjustment of maximum depth change amount dmax]
The maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty. That is, the horizontal section of the trough 27 (the section perpendicular to the central axis N of the can body 21) has an arc shape that is recessed toward the inside of the can body 21, but the degree of curvature is changed so as to be empty. By changing the panel depth at the time of the can, the maximum depth change amount dmax can be adjusted. That is, if the panel depth at the time of an empty can is increased, the maximum depth change amount dmax is increased, and if the panel depth at the time of an empty can is decreased, the maximum depth change amount dmax is decreased.
Furthermore, the horizontal cross section in the valley portion 27 may be curved in a straight line shape or in an arc shape outside the straight line shape. In this way, the maximum depth change amount dmax can be further reduced.
[第2群の発明の実施形態2]
 以下、図09及び図10を参照して、谷部27における水平断面を直線状とした例について説明する(実施形態2)。以下の説明では、主として上記実施形態1と異なる点についてのみ説明するものとし、同一の構成部分については、同一の符号を付してその説明は省略する。
 図09は、内圧が加わらない自由状態(空缶状態)において、単位パネル25の中心を通り缶胴の中心軸線Nと直交方向の単位パネル25の断面形状を、直線状とした例を示している。
 この場合、山部26の頂部26aの位置で缶胴21の中心軸線Nと直交方向に切断した断面(水平断面)は、図09(E)に示すように、山部26の頂部26aの部分が狭く、単位パネル25の中間位置が広い直線状の辺を備えた多角形状となっている。
 図示例では、山部26を挟んで単位パネル25が12面形成されている。波打ち曲面30の数としては24面であり、隣り合う波打ち曲面30,30は半位相ずれているので、山部26の頂部26aの位置での水平断面は12面となる。また、単位パネル25が4個の波打ち曲面30と、3個の波打ち曲面30が交互に計24面形成されており、単位パネル25の数は全部で84個である。
[Embodiment 2 of the second group of the invention]
Hereinafter, with reference to FIGS. 09 and 10, an example in which the horizontal section in the valley portion 27 is linear will be described (Embodiment 2). In the following description, only differences from the first embodiment will be mainly described, and the same components are denoted by the same reference numerals and description thereof is omitted.
FIG. 09 shows an example in which the cross-sectional shape of the unit panel 25 in a direction orthogonal to the central axis N of the can body passes through the center of the unit panel 25 in a free state where no internal pressure is applied (empty can state). Yes.
In this case, the cross section (horizontal cross section) cut in the direction orthogonal to the central axis N of the can body 21 at the position of the top portion 26a of the mountain portion 26 is a portion of the top portion 26a of the mountain portion 26 as shown in FIG. Is narrow, and the middle position of the unit panel 25 is a polygonal shape with straight sides.
In the illustrated example, twelve unit panels 25 are formed with the mountain portion 26 interposed therebetween. Since the number of the corrugated curved surfaces 30 is 24 and the adjacent corrugated curved surfaces 30 and 30 are shifted by half phase, the horizontal cross section at the position of the top portion 26a of the peak portion 26 is twelve. In addition, the unit panel 25 has four wavy curved surfaces 30 and three wavy curved surfaces 30 alternately formed in a total of 24, and the number of unit panels 25 is 84 in total.
 図10は、図09の単位パネルの詳細図である。
 図10(A)は、単位パネル25の正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。図10(B),(C)において、破線は内圧作用状態、実線が内圧解放時の復元状態を示している。
この実施形態2における単位パネル5のパネルデプスは、上下の2つの頂部26aを結ぶ線から、パネル中心m2までの、缶胴21の中心軸線Nと直交方向の距離であり、最大デプス変化量dmaxは、内圧作用状態および内圧開放状態における前記パネルデプスの変化量である。
FIG. 10 is a detailed view of the unit panel of FIG.
10A is a front view of the unit panel 25, FIG. 10B is a sectional view taken along the line BB of FIG. 10A, and FIG. 10C is a sectional view taken along the line CC of FIG. 10B and 10C, the broken line indicates the internal pressure acting state, and the solid line indicates the restored state when the internal pressure is released.
The panel depth of the unit panel 5 in the second embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the upper and lower two top portions 26a to the panel center m2, and the maximum depth change amount dmax. Is the amount of change in the panel depth in the internal pressure acting state and the internal pressure released state.
 パネル中心m2は、図10(B)の実線で示すように、缶胴21の内方に向かって円弧状に窪んだ形状となっている。内圧作用状態では、図10(B)に破線で示すように、円弧状に窪んだ単位パネル25が,缶胴21の中心軸線Nと平行に延ばされるように変形し、パネル中心m2が、上下の山部26の頂部26a,26aを結ぶ線に近い位置まで変位する。水平断面で見ると、図10(C)に破線で示すように、円弧状に変形している。
 一方、内圧が開放されると、図10(B)に実線で示すように、単位パネル5は、円弧形状に復元し、パネル中心m2は最深部に戻る。水平断面で見ると、図10(C)に示すように、破線の円弧状から実線の直線状に復元する。
 このように、単位パネル25の中心m2を通る単位パネル25の水平方向断面を直線状とした場合でも、実施形態1と同様に、境界稜線が角の無い円弧形状の波形稜線251,251であり、最大デプス変化量dmaxは、大きく変化し、大きな復元音が生成される。
 この実施形態2においても、各単位パネルの最大デプス変化量dmaxの平均値を、0.46mm以上で、かつ、1.08mm以下の範囲に設定することにより、復元音をガス放出音70dBよりも大きいレベルに維持できる。
 本実施形態2でも、単位パネル25のパネル数は、上記実施形態1と同様に、65個以上で117個以下に設定される。図示例では、波打ち局面30が24面であるので、たとえば、実施形態1の図08(B)に示したように、4個と5個の波打ち曲面の組み合わせでは108個で、117個以下の範囲となる。図08(A)に示した2個と3個の波打ち曲面の組み合わせでは60個となり、65個を下回ってしまうが、たとえば、3個と3個の波打ち曲面の組み合わせとすれば72個となり、65個以上とすることができる。
 もちろん、波打ち曲面の数を、実施形態1と同様に26面としてもよく、その場合には、単位パネルのパネル数を、実施形態1と同様の構成とし、65個(図06)、91個(図08(A))、117個(図08(B))の構成とすることができる。
As shown by the solid line in FIG. 10B, the panel center m2 has a shape that is recessed in an arc toward the inside of the can body 21. In the internal pressure acting state, as indicated by a broken line in FIG. 10B, the unit panel 25 that is recessed in an arc shape is deformed so as to extend in parallel with the central axis N of the can body 21, and the panel center m2 is It is displaced to a position close to the line connecting the top portions 26a, 26a of the peak portion 26. When viewed in a horizontal section, as shown by a broken line in FIG.
On the other hand, when the internal pressure is released, as indicated by a solid line in FIG. 10B, the unit panel 5 is restored to an arc shape, and the panel center m2 returns to the deepest part. When viewed in a horizontal section, as shown in FIG. 10 (C), the shape is restored from a broken arc shape to a solid straight line shape.
Thus, even when the horizontal cross section of the unit panel 25 passing through the center m2 of the unit panel 25 is a straight line, the boundary ridge lines are arc-shaped waveform ridge lines 251 and 251 as in the first embodiment. The maximum depth change amount dmax changes greatly, and a large restored sound is generated.
Also in the second embodiment, by setting the average value of the maximum depth change amount dmax of each unit panel to be in the range of 0.46 mm or more and 1.08 mm or less, the restored sound is more than the gas emission sound 70 dB. Can be maintained at a large level.
Also in the second embodiment, the number of unit panels 25 is set to 65 or more and 117 or less as in the first embodiment. In the illustrated example, since the wavy surface 30 is 24 surfaces, for example, as shown in FIG. 08 (B) of the first embodiment, the combination of 4 and 5 wavy curved surfaces is 108, and 117 or less. It becomes a range. The combination of 2 and 3 corrugated surfaces shown in FIG. 08 (A) is 60, which is less than 65. For example, if the combination of 3 and 3 corrugated surfaces is used, it becomes 72, It can be 65 or more.
Of course, the number of undulating curved surfaces may be 26 as in the first embodiment. In that case, the number of unit panels is the same as in the first embodiment, and 65 (FIG. 06), 91. (FIG. 08A) 117 structures (FIG. 08B) can be employed.
[評価試験]
 以下に、復元音の評価試験について説明する。
 評価試験は、次の4つのサンプルを用意した。いずれも、実施形態1に記載の、内圧が加わらない自由状態において、単位パネルの水平断面形状が、直線状に対して缶胴の内方に窪んだ形状となっている構成である。
(サンプル1)波打ち曲面数:26面、パネル面積S:82mm、パネル数:117個、多面体壁面積:缶胴の70%、最大デプス変化量が大きくなるようにパネルデプスを調整。波打ち曲面数は高さが半位相ずれた面も1面と数える。
(サンプル2)波打ち曲面数:26面、パネル面積S:109mm、パネル数:91個、多面体壁面積:缶胴の70%、最大デプス変化量が大きくなるようにパネルデプスを調整。波打ち曲面数は高さが半位相ずれた面も1面と数える。
(サンプル3)波打ち曲面数:26面、パネル面積S:138mm、パネすル数:65個、多面体壁面積:缶胴の60%、最大デプス変化量が大きくなるようにパネルデプスを調整。波打ち曲面数は高さが半位相ずれた面も1面と数える。
(サンプル4)波打ち曲面数:26面、パネル面積S:109mm、パネル数:91個、多面体壁面積:缶胴の70%、最大デプス変化量が大きくなるようにパネルデプスを調整。波打ち曲面数は高さが半位相ずれた面も1面と数える。
[Evaluation test]
Hereinafter, the evaluation test of the restored sound will be described.
For the evaluation test, the following four samples were prepared. In either case, the horizontal cross-sectional shape of the unit panel is a shape recessed inward of the can body in a free state where no internal pressure is applied as described in the first embodiment.
(Sample 1) Number of corrugated curved surfaces: 26, panel area S: 82 mm 2 , number of panels: 117, polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change amount becomes large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
(Sample 2) Number of corrugated curved surfaces: 26, panel area S: 109 mm 2 , number of panels: 91, polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change amount becomes large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
(Sample 3) The number of corrugated curved surfaces: 26, the panel area S: 138 mm 2 , the number of panel panels: 65, the polyhedral wall area: 60% of the can body, and the panel depth was adjusted so that the maximum depth change amount was large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
(Sample 4) Number of corrugated curved surfaces: 26, panel area S: 109 mm 2 , number of panels: 91, polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change amount becomes large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
(試験条件)
 評価試験の条件は、次の通りである。
 ・温度:5℃保管(液温は6.5~8℃)、
 ・缶内圧:120~150kPa
 ・缶胴の板厚:0.092~0.122mm
 ・缶胴径:66.5~67mm
 ・缶高さ:121.8~122.2mm
 ・内容量:350ml
(試験方法)
 最大デプス変化量dmaxは、内圧作用状態でのパネルデプスを測定し、次に内圧開放状態でのパネルデプスを測定し、その差を計測して求める。パネルデプスの測定方法は、図11(A)に示すように、陽圧缶1のボトム側をバキュームにより水平に保持し、デジマチックインジゲータ100(「デジマチック」は「株式会社ミツトヨ」の登録商標)の測定子101を、垂直に山部26の頂部26aに当ててその高さをゼロ点とし、陽圧缶1を中心軸線N方向にスライドさせ、デジマチックインジゲータ100を各単位パネル25の谷部27のパネル中心m2に合わせ、測定子101を谷部27のパネル中心m2に当てて高さを読み取って求める。
 デジマチックインジケータ100は、水平の台上に垂直に立設されるスタンド102に固定される支持腕103に支持され、姿勢を垂直に保持される。一方、スタンド102のデジマチックインジケータ100の下方位置に、陽圧缶1を保持し、陽圧缶1の中心軸線Nに沿って水平に移動させる水平移動機構104が設けられている。水平移動機構104は、陽圧缶1の口部を保持する保持部105と、保持部105を水平に移動させるシリンダ機構や送りねじ機構等の伸縮部106とを備えた構成となっている。
 パネルデプスは全ての単位パネル25で求め、各単位パネル25の内圧作用状態および内圧開放状態でのパネルデプスの差を最大デプス変化量dmaxとし、各単位パネルの最大デプス変化量dmaxの平均値を計算する。測定数は3缶で、各単位パネルの最大デプス変化量dmaxの平均値と最大値の、測定数3缶に対する平均値(ave)、最大値(max)、最小値(min)を求めた。デジマチックインジゲータは、「株式会社ミツトヨ」製、型番ID-C1012、測定子101は、「株式会社ミツトヨ」製、型番137413を用いた。サンプル4については、最大値のみである。
 一方、復元音の測定は、図10(B)に示すように、缶から40cm離した位置で騒音計120を設置し、音の大きさを測定した。この40cmは、マイク121と陽圧缶1と間の距離Lである。40cmの意味は、実際の開口時の缶と耳のおおよその距離を意味している。また、騒音計120は、床置きとし、台122によって、マイク121の高さを、床から60cm程度の高さに保持した。測定値は時間軸の波形データとして得られる。陽圧缶1を開口すると、始めにプルタブによる缶蓋の引き裂き音が発生し、次いでガス放出音、復元音の順に発生するので、復元音の部分の波形データの最大値を復元音の音圧レベルとしている。周波数重み付け特性はA特性で、時間重み付け特性はFとしている。測定数は3缶で、復元音の平均値(ave)、最大値(max)、最小値(min)を求めた。
 騒音計120としては、「リオン株式会社」製、型番NL-42を用い、マイク121の先端にはウインドスクリーンWS-10を取り付けている。
(測定結果)
 測定結果は、表2に示す通りである。
(Test conditions)
The conditions of the evaluation test are as follows.
・ Temperature: 5 ℃ storage (Liquid temperature is 6.5-8 ℃),
・ Can internal pressure: 120-150kPa
・ Thickness of can body: 0.092-0.122mm
・ Can barrel diameter: 66.5-67mm
・ Can height: 121.8-122.2mm
・ Contents: 350ml
(Test method)
The maximum depth change amount dmax is obtained by measuring the panel depth when the internal pressure is applied, then measuring the panel depth when the internal pressure is released, and measuring the difference. As shown in FIG. 11 (A), the panel depth is measured by holding the bottom of the positive pressure can 1 horizontally with a vacuum, and a digimatic indicator 100 (“Digimatic” is a registered trademark of Mitutoyo Corporation). ) Is vertically applied to the top portion 26a of the peak portion 26 so that its height is zero, the positive pressure can 1 is slid in the direction of the central axis N, and the digimatic indicator 100 is moved to the valley of each unit panel 25. In accordance with the panel center m <b> 2 of the portion 27, the height is read and obtained by placing the measuring element 101 against the panel center m <b> 2 of the valley portion 27.
Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically. On the other hand, a horizontal movement mechanism 104 that holds the positive pressure can 1 and moves it horizontally along the central axis N of the positive pressure can 1 is provided below the digimatic indicator 100 of the stand 102. The horizontal movement mechanism 104 includes a holding portion 105 that holds the mouth portion of the positive pressure can 1 and a telescopic portion 106 such as a cylinder mechanism or a feed screw mechanism that moves the holding portion 105 horizontally.
The panel depth is obtained for all the unit panels 25, and the difference between the panel depths in the internal pressure action state and the internal pressure release state of each unit panel 25 is defined as the maximum depth change amount dmax, and the average value of the maximum depth change amounts dmax of each unit panel is determined. calculate. The number of measurements was 3 cans, and the average value (ave), maximum value (max), and minimum value (min) of the average value and the maximum value of the maximum depth change amount dmax of each unit panel were obtained. Digimatic indicator manufactured by Mitutoyo Corporation, model number ID-C1012, and probe 101 used by Mitutoyo Corporation, model number 137413 were used. For sample 4, it is only the maximum value.
On the other hand, as shown in FIG. 10 (B), the restoration sound was measured by installing a noise meter 120 at a position 40 cm away from the can and measuring the loudness. This 40 cm is a distance L between the microphone 121 and the positive pressure can 1. The meaning of 40 cm means the approximate distance between the can and the ear when actually opened. The sound level meter 120 was placed on the floor, and the microphone 121 was held at a height of about 60 cm from the floor by the stand 122. The measured value is obtained as time axis waveform data. When the positive pressure can 1 is opened, a tearing sound of the can lid due to the pull tab is generated first, and then the gas emission sound and the restoration sound are generated in this order. The level. The frequency weighting characteristic is A characteristic, and the time weighting characteristic is F. The number of measurements was 3 cans, and the average value (ave), maximum value (max), and minimum value (min) of the restored sound were determined.
As the sound level meter 120, model number NL-42 manufactured by Rion Co., Ltd. is used, and a wind screen WS-10 is attached to the tip of the microphone 121.
(Measurement result)
The measurement results are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(最大デプス変化量の平均値と復元音との関係) 
 まず、サンプル1-3を用いて、最大デプス変化量の平均値と復元音の大きさとの関係について説明する。
 パネル数が117個のサンプル1では、最大デプス変化量の平均値が最小値(min):0.46mm、最大値(max):0.47mm、平均値(ave):0.46mmで、復元音の大きさは80~83dB、(復元音の大きさ/パネル個数)は、0.68~0.71dBであった。
 パネル数が91個のサンプル2では、最大デプス変化量の平均値が最小値(min):0.76mm、最大値(max):0.77mm、平均値(ave)6:0.76mmで、復元音の大きさは80~81dB、(復元音の大きさ/パネル個数)は、0.88~0.89dBであった。
 パネル数が65個のサンプル3では、最大デプス変化量の平均値が最小値(min):1.06mm、最大値(max):1.08mm、平均値(ave):1.07mmで、復元音の大きさは76~78dB、(復元音の大きさ/パネル個数)は、1.17~1.20dBであった。
 なお、表2における(復元音の大きさ/パネル個数)は、復元音の大きさをパネル個数で単純に割った値であり、各パネル1個が独立した音源と考えたときの、各パネル1個の音圧レベルのdB値を反映したものではない。測定された復元音が、各パネル1個の音圧レベルの和として計算すると、各パネル1個当たりの音圧レベルは、サンプル1が61.3dB、サンプル2では61.4dB、サンプル3では57.9dBである。
 図12は、測定結果を、最大デプス変化量の平均値を横軸に、復元音を縦軸にとったグラフである。サンプル1(パネル数117個)を丸(〇)、サンプル2(パネル数91個)を四角(□)、サンプル3(パネル数65個)を三角(△)で示している。
 すなわち、最大デプス変化量dmaxの平均値について、最小値と最大値を含めて、0.46mm~1.08mmにおいて、復元音は、76dB~83dBの音圧レベルが得られている。
 スコア破断時の音圧レベルは、約60dB、ガス放出音は70dBであり、復元音が最低のサンプル1(76dB)でも、ガス放出音に対して6B高く、明瞭に復元音を認識することができた。
 ガス放出音の70dBに対して5dB以上大きければ、音圧レベルは、ガス放出音に対して2倍程度大きくなり、明瞭となる。
(Relationship between average value of maximum depth change and restoration sound)
First, the relationship between the average value of the maximum depth change amount and the volume of the restored sound will be described using Sample 1-3.
In Sample 1 having 117 panels, the average value of the maximum depth change amount is the minimum value (min): 0.46 mm, the maximum value (max): 0.47 mm, and the average value (ave): 0.46 mm. The volume of sound was 80 to 83 dB, and (the volume of restored sound / number of panels) was 0.68 to 0.71 dB.
In the sample 2 with 91 panels, the average value of the maximum depth change amount is the minimum value (min): 0.76 mm, the maximum value (max): 0.77 mm, and the average value (ave) 6: 0.76 mm. The volume of the restored sound was 80 to 81 dB, and (the volume of the restored sound / number of panels) was 0.88 to 0.89 dB.
In sample 3 having 65 panels, the average value of the maximum depth change amount is restored as the minimum value (min): 1.06 mm, the maximum value (max): 1.08 mm, and the average value (ave): 1.07 mm. The volume of sound was 76 to 78 dB, and (the volume of restored sound / number of panels) was 1.17 to 1.20 dB.
In Table 2, (Restored sound volume / number of panels) is a value obtained by simply dividing the restored sound volume by the number of panels. Each panel is considered to be an independent sound source. It does not reflect the dB value of one sound pressure level. When the measured restored sound is calculated as the sum of the sound pressure levels of each panel, the sound pressure level per panel is 61.3 dB for sample 1, 61.4 dB for sample 2, and 57 for sample 3. .9 dB.
FIG. 12 is a graph showing the measurement results with the average value of the maximum depth change amount on the horizontal axis and the restored sound on the vertical axis. Sample 1 (117 panels) is indicated by a circle (◯), sample 2 (91 panels) by a square (□), and sample 3 (65 panels) by a triangle (Δ).
That is, the restored sound has a sound pressure level of 76 dB to 83 dB when the average value of the maximum depth change amount dmax is 0.46 mm to 1.08 mm including the minimum value and the maximum value.
The sound pressure level at the time of breaking the score is about 60 dB, the gas emission sound is 70 dB, and even the sample 1 (76 dB) having the lowest restoration sound is 6 B higher than the gas emission sound and can clearly recognize the restoration sound. did it.
If it is 5 dB or more larger than 70 dB of the gas emission sound, the sound pressure level becomes about twice as large as that of the gas emission sound and becomes clear.
 図13(A)は、パネル数と最大デプス変化量の平均値の関係を示すグラフ、図13(B)は最大デプス変化量の平均値と(復元音の大きさ/パネル個数)との関係を示すグラフである。
 図13(A)に示すように、パネル数が65個から117個の範囲で、最大デプス変化量dmaxの平均値は、パネル数が増加すると、直線的に減少する比例関係にある。次式は、最大デプス変化量dmaxの平均値の平均値(ave)とパネル数(N)の関係を、勾配をK1、切片をM1とする直線Fで近似したものである(最小自乗法)。
 dmax(ave)=K1*N+M1
 Nはパネル数
 K1=-0.012(mm/個)
 M1=1.86
 上記勾配K1はそのままで、M1を、1.80≦M1≦1.90の範囲とすれば、最大デプス変化量dmaxの平均値の平均値(ave)、最大値(max)及び最小値(min)は、すべて、上記数式の範囲に含まれる。
 したがって、パネル数が65個から117個の範囲で、dmaxとNの関係が、上記範囲内であれば、復元音が76dB以上となる。
 一方、最大デプス変化量dmaxの平均値と復元音の関係は、図13(B)に示すように、(復元音の大きさ(Q)/パネル個数(N))を計算すると、最大デプス変化量dmaxの平均値が増加すると直線的に増加する比例関係となった。次式は、(復元音の大きさ(Q)/パネル個数(N))と最大デプス変化量(dmax)の平均値の関係を、勾配をK2、切片をM2とする直線Gで近似したものである(最小自乗法)。
 Q/N(dB/個)=K2*dmax+M2
 K2=0.77
 M2=0.33
 上記勾配K2はそのままで、M2を、0.29≦M2≦0.37の範囲とすれば、Q/Nの平均値(ave)、最大値(max)及び最小値(min)は、すべて、上記数式の範囲に含まれる。
 これらの関係式から、パネル数が65~117の範囲で、最大デプス変化量が決まれば、パネル数及び復元音の大きさを予測することができる。また、パネル数、復元音及びパネル数に応じて、最大デプス変化量の適正量を予測することができ、最大デプス変化量の調整幅を数値的に設定することが可能となる。
13A is a graph showing the relationship between the number of panels and the average value of the maximum depth change amount, and FIG. 13B is the relationship between the average value of the maximum depth change amount and (the size of restored sound / number of panels). It is a graph which shows.
As shown in FIG. 13A, in the range of 65 to 117 panels, the average value of the maximum depth change amount dmax is in a proportional relationship that decreases linearly as the number of panels increases. The following equation approximates the relationship between the average value (ave) of the average value of the maximum depth change amount dmax and the number of panels (N) by a straight line F with a slope of K1 and an intercept of M1 (least square method). .
dmax (ave) = K1 * N + M1
N is the number of panels K1 = -0.012 (mm / piece)
M1 = 1.86
If the gradient K1 is kept as it is and M1 is in the range of 1.80 ≦ M1 ≦ 1.90, the average value (ave), maximum value (max), and minimum value (min) of the average value of the maximum depth change amount dmax ) Are all included in the range of the above formula.
Therefore, if the number of panels is in the range of 65 to 117 and the relationship between dmax and N is within the above range, the restored sound is 76 dB or more.
On the other hand, as shown in FIG. 13B, the relationship between the average value of the maximum depth change amount dmax and the restored sound is calculated by calculating (the volume of restored sound (Q) / number of panels (N)). As the average value of the amount dmax increases, the proportional relationship increases linearly. The following equation approximates the relationship between the average value of (the volume of restored sound (Q) / number of panels (N)) and the maximum amount of change in depth (dmax) by a straight line G with a slope of K2 and an intercept of M2. (Least square method).
Q / N (dB / piece) = K2 * dmax + M2
K2 = 0.77
M2 = 0.33
If the gradient K2 is kept as it is and M2 is in the range of 0.29 ≦ M2 ≦ 0.37, the average value (ave), maximum value (max) and minimum value (min) of Q / N are all It is included in the range of the above formula.
From these relational expressions, if the maximum depth change amount is determined in the range of 65 to 117 panels, the number of panels and the volume of restored sound can be predicted. Further, an appropriate amount of the maximum depth change amount can be predicted according to the number of panels, the restored sound, and the number of panels, and the adjustment range of the maximum depth change amount can be set numerically.
(最大デプス変化量の最大値と復元音との関係)
 次に、図14を参照して、最大デプス変化量の最大値と復元音の大きさとの関係について説明する。
 サンプル1では、最大デプス変化量の最大値が最小値(min):0.59mm、最大値(max):0.65mm、平均値(ave):0.62mmで、復元音の大きさは80~83dBであった。
 サンプル2では、最大デプス変化量の最大値が最小値(min):0.94mm、最大値(max):0.95mm、平均値(ave):0.94mmで、復元音の大きさは80~81dBであった。
 サンプル3では、最大デプス変化量の最大値が最小値(min):1.28mm、最大値(max):1.31mm、平均値(ave):1.30mmで、復元音の大きさは76~78dBであった。
 サンプル4では、最大デプス変化量の最大値の平均値(ave):1.00mmで、復元音の大きさは83dBであった。
 すなわち、最大デプス変化量dmaxの最大値については、最小値と最大値を含めて、0.59mm以上1.31mm以下の範囲において、復元音は、76dB~83dBの音圧レベルが得られている。
 このように最大デプス変化量dmaxで設定しても、ガス放出音に対して明瞭に復元音を認識することができる。
(Relationship between maximum depth change and restoration sound)
Next, the relationship between the maximum value of the maximum depth change amount and the volume of the restored sound will be described with reference to FIG.
In sample 1, the maximum value of the maximum depth change amount is the minimum value (min): 0.59 mm, the maximum value (max): 0.65 mm, the average value (ave): 0.62 mm, and the volume of the restored sound is 80 It was ˜83 dB.
In the sample 2, the maximum value of the maximum depth change amount is the minimum value (min): 0.94 mm, the maximum value (max): 0.95 mm, the average value (ave): 0.94 mm, and the volume of the restored sound is 80 -81 dB.
In sample 3, the maximum value of the maximum depth change amount is the minimum value (min): 1.28 mm, the maximum value (max): 1.31 mm, the average value (ave): 1.30 mm, and the volume of the restored sound is 76. It was -78 dB.
In sample 4, the average value (ave) of the maximum value of the maximum depth change amount was 1.00 mm, and the volume of the restored sound was 83 dB.
That is, regarding the maximum value of the maximum depth change amount dmax, the restored sound has a sound pressure level of 76 dB to 83 dB within a range of 0.59 mm to 1.31 mm including the minimum value and the maximum value. .
Thus, even if the maximum depth change amount dmax is set, the restored sound can be clearly recognized with respect to the gas emission sound.
 なお、上記実施形態では、波打ち曲面30の面数が一定の缶を前提とし、各単位パネル25の軸方向長さiを変えることによって、各波打ち曲面30中の単位パネルの数を変更することにより、缶全体のパネル数を設定するような構成の陽圧缶について説明したが、本発明は、このような陽圧缶に限定されるものではなく、波打ち曲面の面数や単位パネルのパネル数に関わらず、要するに、各単位パネルの最大デプス変化量の平均値が、0.46mm以上で、かつ、1.08mm以下の範囲、あるいは単位パネルの最大デプス変化量の最大値が、0.59mm以上、かつ、1.31mm以下の範囲に設定されている陽圧缶全般に広く適用可能である。
 また、多面体壁を構成する単位パネルについて、上記実施形態1,2では、境界稜線が波形形状の場合について説明したが、波形形状に限らず、ジグザグ状、矩形波状、種々の周期的な形状とすることができる。
In the above embodiment, the number of unit panels in each undulating curved surface 30 is changed by changing the axial length i of each unit panel 25 on the assumption that the number of undulating curved surfaces 30 is constant. However, the present invention is not limited to such a positive pressure can, and the number of wavy curved surfaces and unit panel panels are described. In short, the average value of the maximum depth change amount of each unit panel is 0.46 mm or more and 1.08 mm or less, or the maximum value of the maximum depth change amount of the unit panel is 0. The present invention can be widely applied to all positive pressure cans set in a range of 59 mm or more and 1.31 mm or less.
In addition, regarding the unit panels constituting the polyhedral wall, in the first and second embodiments, the case where the boundary ridge line has a waveform shape has been described. However, not only the waveform shape but also a zigzag shape, a rectangular wave shape, can do.
 次に、本発明の第3の発明群を図示の実施形態に基づいて詳細に説明する。
[第3の発明群の実施形態1]
 図15は、本第3の発明群の実施形態1に係る陽圧缶を示すもので、図15(A)は内圧作用状態、図15(B)は内圧開放状態を示している。
 陽圧缶1は、缶胴21を有する有底筒状の缶本体2と、缶本体2を陽圧状態で密閉する缶蓋3とを備え、缶胴21の少なくとも一部に多面体壁4を有している。缶本体2は、ストレートに延びる円筒形状の缶胴21と、缶胴21の上端の径を絞ったネック部22と、底部23とを有する構成で、ネック部22上端の口部に缶蓋3が巻締め固定されている。
 陽圧缶1は、アルミ合金製の絞りしごき缶であり、一般的に、その容量は160ml~500ml、5℃における缶内圧が20~300[kPa]、缶胴21の板厚が0.075~0.135[mm]、缶胴径が50~70[mm]、缶高さが90~170[mm]の範囲で使用されている。
Next, a third invention group of the present invention will be described in detail based on the illustrated embodiment.
[Embodiment 1 of Third Invention Group]
FIGS. 15A and 15B show a positive pressure can according to Embodiment 1 of the third invention group. FIG. 15A shows an internal pressure acting state, and FIG. 15B shows an internal pressure released state.
The positive pressure can 1 includes a bottomed cylindrical can body 2 having a can body 21 and a can lid 3 that seals the can body 2 in a positive pressure state, and a polyhedral wall 4 is provided on at least a part of the can body 21. Have. The can body 2 includes a cylindrical can body 21 extending straight, a neck portion 22 with a reduced diameter at the upper end of the can body 21, and a bottom portion 23, and a can lid 3 at the mouth of the upper end of the neck portion 22. Is tightened.
The positive pressure can 1 is a squeezed iron can made of aluminum alloy, and generally has a capacity of 160 to 500 ml, a can internal pressure of 20 to 300 [kPa] at 5 ° C., and a plate thickness of the can body 21 of 0.075. It is used in the range of 0.135 [mm], can body diameter 50-70 [mm], and can height 90-170 [mm].
 多面体壁4は、缶胴21の周長は変化させずに折り構造によって凹凸形状としたもので、斜め稜線51の折り目で区画された多数の単位パネル5で構成されている。すなわち、所定数の単位パネル5が缶胴21の中心軸線Nと平行方向(以下、単に軸方向という)に配列されてパネル列50を構成し、このパネル列50が缶胴21の周方向に全周的に配列された構成となっている。互いに隣り合うパネル列50の単位パネル5の軸方向の位相は、単位パネル5の軸方向の長さの半分だけずらして配列され、単位パネル5が軸方向及び周方向に密に配列されている。
 多面体壁4は、この例では、缶胴21の軸方向中途部分に、帯状に設けられ、多面体壁4の上部及び下部領域は、凹凸の無い円筒面となっている。多面体壁4の面積は、図示例では缶胴に対して50%程度となっているが、復元音を考慮し、缶胴の75%以下とすることが、好適である。
The polyhedron wall 4 is formed into a concavo-convex shape by a folding structure without changing the circumference of the can body 21, and is composed of a large number of unit panels 5 partitioned by folds of oblique ridge lines 51. That is, a predetermined number of unit panels 5 are arranged in a direction parallel to the central axis N of the can body 21 (hereinafter simply referred to as an axial direction) to form a panel row 50, and the panel row 50 is arranged in the circumferential direction of the can body 21. The configuration is arranged all around. The phase in the axial direction of the unit panels 5 of the panel rows 50 adjacent to each other is shifted by half the axial length of the unit panels 5 and the unit panels 5 are densely arranged in the axial direction and the circumferential direction. .
In this example, the polyhedral wall 4 is provided in a strip shape in the middle of the axial direction of the can body 21, and the upper and lower regions of the polyhedral wall 4 are cylindrical surfaces having no irregularities. Although the area of the polyhedral wall 4 is about 50% with respect to the can body in the illustrated example, it is preferable to set it to 75% or less of the can body in consideration of the restored sound.
 図15(C)は、図15(B)のC部拡大図である。
 単位パネル5は、内圧が作用しない自由状態では、缶胴21の中心軸線Nと直交する面上に位置する谷折りの横稜線52を境界として缶内部に向かって、くの字状に屈曲するように窪んでいる。隣り合うパネル列50は、単位パネル5の長さの半分だけ軸方向にずれているので、周方向に一つ置きに位置するパネル列50の単位パネル5は、軸方向に同一位相にあり、横稜線52が、共通する頂点53を介してつながっている。したがって、単位パネル5の横稜線52の位置で、缶胴21の中心軸線Nと直交方向に切断した断面は、図15(D)に示すように、正多角形状となる。図示例では14角形状となっているが、14角形に限定されない。なお、頂点53の角は、面取りされている。また、横稜線52については、図示例では直線状に記載しているが、内圧解放状態及び空缶状態で、±0.5mm程度、缶内方に凸の円弧状、あるいは缶外方に凸の円弧状等の曲線形状となっていてもよい。
 内圧作用状態では、個々の単位パネル5は、缶胴21に作用する内圧によって、図15(C)の二点鎖線で示すように、横稜線52が缶胴の円筒面に倣った円弧状に変形する。斜め稜線51についても、缶胴21の円筒面に倣うように変形するが、図15(C)では、簡易的に直線として記載している。
 そして、缶蓋3のタブ6を引き起こして開封すると、開封部から内部のガスが放出されてガス放出音が生じると共に、個々の単位パネル5の斜め稜線51及び横稜線52が直線形状に瞬間的に復元し、凹凸形状が現れると共に、その衝撃によって復元音が発生する。
 復元音の大きさを決定する要因は、単位パネル5の形状、面積、板厚等、種々の要因が考えられるが、本発明者等は、鋭意検討した結果、単位パネル5の形状のデプスの変化量である最大デプス変化量と相関関係があることを見出した。
FIG. 15C is an enlarged view of a portion C in FIG.
In a free state where the internal pressure does not act, the unit panel 5 bends in a dogleg shape toward the inside of the can with a valley fold horizontal ridge line 52 positioned on a plane orthogonal to the central axis N of the can body 21 as a boundary. It is so depressed. Since the adjacent panel rows 50 are displaced in the axial direction by half the length of the unit panel 5, the unit panels 5 of the panel rows 50 located every other circumferential direction are in the same phase in the axial direction, The horizontal ridge line 52 is connected via a common vertex 53. Therefore, the cross section cut in the direction orthogonal to the central axis N of the can body 21 at the position of the horizontal ridgeline 52 of the unit panel 5 is a regular polygon as shown in FIG. In the illustrated example, it is a 14-sided shape, but it is not limited to a 14-sided shape. The corners of the vertex 53 are chamfered. In addition, the horizontal ridge line 52 is described as a straight line in the illustrated example, but in an internal pressure release state and an empty can state, about ± 0.5 mm, a convex arc shape inward of the can, or convex outward of the can It may be a curved shape such as an arc shape.
In the internal pressure acting state, each unit panel 5 is caused to have an arc shape in which the horizontal ridge line 52 follows the cylindrical surface of the can body as shown by a two-dot chain line in FIG. 15C due to the internal pressure acting on the can body 21. Deform. The oblique ridge line 51 is also deformed so as to follow the cylindrical surface of the can body 21, but is simply illustrated as a straight line in FIG.
Then, when the tab 6 of the can lid 3 is opened to open the gas, an internal gas is released from the opening portion to generate a gas emission sound, and the oblique ridge line 51 and the horizontal ridge line 52 of each unit panel 5 are instantaneously formed into a linear shape. As a result, the concavo-convex shape appears and a restored sound is generated by the impact.
Various factors such as the shape, area, and plate thickness of the unit panel 5 can be considered as factors for determining the size of the restored sound. However, as a result of intensive studies, the present inventors have determined the depth of the shape of the unit panel 5. It was found that there is a correlation with the maximum depth change, which is the change.
 以下、図16を参照して、単位パネル5の最大デプス変化量について説明する。
 図16(A)は、単位パネル5の正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。図16(B),(C)において、破線は内圧作用状態、実線が内圧解放時の復元状態を示している。
 この実施形態1における単位パネル5のパネルデプスは、頂点53aと頂点53cを結ぶ線から、横稜線52の中点mまでの、缶胴21の中心軸線Nと直交方向の距離であり、最大デプス変化量dmaxは、内圧作用状態および内圧開放状態における前記パネルデプスの変化量である。
 単位パネル5は、図16(A)に示すように、4つの斜め稜線51によって区画される菱形形状で、4つの斜め稜線51をフレームとするドラムのように振動し、この振動によって空気が振動して復元音が発現する。
 この単位パネル5は、缶胴21の中心軸線Nを通る中心面M上に位置する2つの頂点53a、53cと、中心面Mに対して対称位置に位置する2つの頂点53b、53dの計4つの頂点を有している。これら4つの頂点53a~53dは、缶胴21を構成する円筒面とほぼ一致する仮想円筒面Y(図16(B)中、二点鎖線で示す)上に位置し、内圧が加わらない自由状態で、中心面Mに対して対称位置に位置する頂点53b、53dを結ぶ谷折りの横稜線52によって、図16(B)の実線で示すように、軸方向に缶胴21の内方にくの字状に屈曲して窪んだ構成となっている。
 内圧作用状態では、図16(B)に破線で示すように、上方三角形部分5Aと下方三角形部分5Bが、軸方向に延ばされるように変形し、横稜線52の中点mが、上下の頂点53a,53cを結ぶ線に近い位置まで変位する。横断面で見ると、図16(C)に破線で示すように、円弧状に変形している。
 一方、内圧が開放されると、図16(B)に実線で示すように、単位パネル5は、くの字形状に復元し、横稜線52の中点mは最深部に戻る。横断面で見ると、図16(C)に示すように、破線の円弧状から実線の直線状に復元する。 この中点mが単位パネル5の最も大きく変位する部分で、この中点mにおけるパネルデプスの変化量を最大デプス変化量dmaxとし、単位パネルの最大デプス変化量dmaxの最大値が0.54mm以下となるように構成される。
Hereinafter, the maximum depth change amount of the unit panel 5 will be described with reference to FIG.
16A is a front view of the unit panel 5, FIG. 16B is a sectional view taken along the line BB in FIG. 16A, and FIG. 16C is a sectional view taken along the line CC in FIG. In FIGS. 16B and 16C, the broken line indicates the internal pressure acting state, and the solid line indicates the restored state when the internal pressure is released.
The panel depth of the unit panel 5 in the first embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the vertex 53a and the vertex 53c to the midpoint m of the horizontal ridge line 52. The change amount dmax is the change amount of the panel depth in the internal pressure acting state and the internal pressure release state.
As shown in FIG. 16A, the unit panel 5 has a rhombus shape defined by four oblique ridge lines 51, and vibrates like a drum having the four oblique ridge lines 51 as a frame. The restoration sound appears.
This unit panel 5 includes a total of four vertices 53a and 53c positioned on a central plane M passing through the central axis N of the can body 21 and two vertices 53b and 53d positioned symmetrically with respect to the central plane M. Has two vertices. These four vertices 53a to 53d are located on a virtual cylindrical surface Y (indicated by a two-dot chain line in FIG. 16B) that substantially coincides with the cylindrical surface constituting the can body 21, and a free state in which no internal pressure is applied. Then, as shown by the solid line in FIG. 16 (B), the valley fold horizontal ridgeline 52 connecting the vertices 53b and 53d located at symmetrical positions with respect to the center plane M is connected inwardly to the can body 21 in the axial direction. It is the structure which bent and bent in the shape of a.
In the internal pressure acting state, as shown by a broken line in FIG. 16B, the upper triangular portion 5A and the lower triangular portion 5B are deformed so as to extend in the axial direction, and the middle point m of the horizontal ridge line 52 is the upper and lower apexes. It is displaced to a position close to the line connecting 53a and 53c. When viewed in a cross section, as shown by a broken line in FIG.
On the other hand, when the internal pressure is released, as indicated by a solid line in FIG. 16B, the unit panel 5 is restored to the shape of a dogleg and the midpoint m of the horizontal ridge line 52 returns to the deepest part. When viewed in a cross section, as shown in FIG. 16 (C), the shape is restored from a broken arc shape to a solid straight line shape. The midpoint m is the portion where the unit panel 5 is most displaced, and the change in the panel depth at the midpoint m is the maximum depth change dmax, and the maximum value of the maximum depth change dmax of the unit panel is 0.54 mm or less. It is comprised so that.
 後述する評価試験の測定結果(図20)より、最大デプス変化量dmaxの最大値を0.54mm以下とすることによって、ガス放出音の後に聞こえる復元音を、ガス放出音に近い気にならない音のレベルまで小さくすることができる。音圧レベルとしては、缶胴21から40cm離れた位置において、75dBより小さい範囲、さらに70dB程度以下にすることができる。 また、単位パネルの最大デプス変化量dmaxの平均値で評価する場合には、後述する評価試験の測定結果(図21、図22)より、最大デプス変化量dmaxが0.4mm以上となる単位パネルについての最大デプス変化量dmaxの平均値を0.45mm以下とする。
 最大デプス変化量dmaxが0.4mm以上となる単位パネルが無い場合には、最大デプス変化量dmaxの平均値が0.4mm未満とする。特に、最大デプス変化量dmaxの平均値が0.4mm未満で0.15mm以上とすれば、音が聞こえるが、気にならない程度に小さくなる。
 さらに、単位パネルの最大デプス変化量の平均値を0.15mm未満としておけば、完全に聞こえないレベルとすることができる。
From the measurement result of the evaluation test described later (FIG. 20), by setting the maximum value of the maximum depth change amount dmax to 0.54 mm or less, the restored sound that can be heard after the gas emission sound is a sound that does not bother the gas emission sound. Can be reduced to the level of. The sound pressure level can be set to a range smaller than 75 dB and further about 70 dB or less at a position 40 cm away from the can body 21. Further, in the case of evaluating with the average value of the maximum depth change amount dmax of the unit panel, the unit panel whose maximum depth change amount dmax is 0.4 mm or more from the measurement results of the evaluation test described later (FIGS. 21 and 22). The average value of the maximum depth change amount dmax is set to 0.45 mm or less.
When there is no unit panel in which the maximum depth change amount dmax is 0.4 mm or more, the average value of the maximum depth change amount dmax is less than 0.4 mm. In particular, if the average value of the maximum depth change amount dmax is less than 0.4 mm and 0.15 mm or more, sound can be heard, but it becomes small enough not to bother.
Furthermore, if the average value of the maximum depth change amount of the unit panel is less than 0.15 mm, it is possible to achieve a level at which it cannot be heard completely.
[多面体壁4の角数と最大デプス変化量dmaxの関係]
 最大デプス変化量dmaxは、単位パネル5が小さいほど、小さくなる傾向にある。単位パネル5の大きさは、缶胴21の胴径が同じであれば、図15(C)に示した横断面の角数によって幾何学的に決まり、角数が多いほど最大デプス変化量dmaxが小さくなる。逆に角数が少ないほど、単位パネル5が大きくなって変形しやすく、最大デプス変化量dmaxが大きくなる。たとえば、缶胴径が50~70mmの範囲の場合、14角から16角とすることが好適である。断面角数が16角より大きくなると、缶胴径Dが50~70mmの範囲ではパネル成形が困難となる。14角から16角程度に設定すれば、最大デプス変化量dmaxの最大値を0.54mm以下、あるいは最大デプス変化量dmaxが0.4mm以上の単位パネルの最大デプス変化量dmaxの平均値が、0.45mm以下となるように構成することができる。また、16角程度とすれば、最大デプス変化量dmaxの平均値を0.15mm程度に設定し0.15mm未満あるいは0.15mm以上となるように構成することもできる。
 また、横稜線52の長さが幾何学的に決まっても、パネル面積は、縦寸法で変わってくるので、14角から16角で、80mm以上で120mm以下に設定することが好適である。80mmより小さいと、パネル成形が困難となり、120mmより大きいと、最大デプス変化量は大きくなり、復元音が大きくなる。
 ここで、単位パネル5の面積は、平面的に展開した状態の面積、すなわち、単位パネル5の上方三角形部分5Aと下方三角形部分5Bの面積を足し合わせた面積である。
[Relationship between number of corners of polyhedral wall 4 and maximum depth change dmax]
The maximum depth change amount dmax tends to be smaller as the unit panel 5 is smaller. If the body diameter of the can body 21 is the same, the size of the unit panel 5 is geometrically determined by the number of corners of the cross section shown in FIG. 15C, and the maximum depth change amount dmax increases as the number of corners increases. Becomes smaller. Conversely, the smaller the number of corners, the larger the unit panel 5 becomes, and the easier it is to deform, and the maximum depth change amount dmax increases. For example, when the can barrel diameter is in the range of 50 to 70 mm, it is preferable to set the corner from 14 to 16 corners. If the cross-sectional angle is larger than 16, the panel molding becomes difficult when the can body diameter D is in the range of 50 to 70 mm. If the angle is set from about 14 to 16 corners, the maximum value of the maximum depth change amount dmax is 0.54 mm or less, or the average value of the maximum depth change amount dmax of the unit panel having the maximum depth change amount dmax of 0.4 mm or more is It can be configured to be 0.45 mm or less. If the angle is about 16 corners, the average value of the maximum depth change amount dmax can be set to about 0.15 mm so as to be less than 0.15 mm or more than 0.15 mm.
Even if the length of the horizontal ridge line 52 is determined geometrically, the panel area varies depending on the vertical dimension. Therefore, it is preferable to set the angle from 14 to 16 corners to 80 mm 2 or more and 120 mm 2 or less. is there. If it is smaller than 80 mm 2 , it becomes difficult to form a panel, and if it is larger than 120 mm 2 , the maximum depth change amount becomes large and the restored sound becomes large.
Here, the area of the unit panel 5 is an area in a flatly developed state, that is, an area obtained by adding up the areas of the upper triangular portion 5A and the lower triangular portion 5B of the unit panel 5.
[最大デプス変化量dmaxの調整]
 最大デプス変化量dmaxは、たとえば、空缶時のパネルデプスを調整することによって調整可能である。横稜線52を、缶の内側あるいは外側に円弧状に湾曲させることで空缶時のパネルデプスを調整することができる。すなわち、缶の内側に円弧状に湾曲させれば、最大デプス変化量dmaxは大きくなり、缶の外側に円弧状に湾曲させれば最大デプス変化量dmaxは小さくなる。
[Adjustment of maximum depth change amount dmax]
The maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty. The panel depth at the time of empty can can be adjusted by curving the horizontal ridge line 52 in an arc shape inside or outside the can. That is, if the arc is curved inside the can, the maximum depth change amount dmax increases, and if the arc is curved outside the can, the maximum depth change amount dmax decreases.
[実施形態2]
 次に、図17及び図18を参照して、本発明の実施形態2について説明する。以下の説明では、上記実施形態と異なる点についてのみ説明するものとし、同一の部分については同一の符号を付して説明を省略する。
 図17は、実施形態2に係る陽圧缶を示すもので、図15と同様に、図17(A)は内圧作用状態を示し、図17(B)は内圧解放状態を示している。
 実施形態1では、単位パネル5が、直線的な横稜線52の折り目でくの字状に窪んだパネルによって構成されているが、実施形態2では、単位パネル25の、缶胴21の中心軸線Nと平行方向の断面形状が円弧状に窪んだパネル構成となっている。
[Embodiment 2]
Next, Embodiment 2 of the present invention will be described with reference to FIGS. 17 and 18. In the following description, only different points from the above embodiment will be described, and the same portions are denoted by the same reference numerals and description thereof is omitted.
FIG. 17 shows a positive pressure can according to the second embodiment. As in FIG. 15, FIG. 17 (A) shows an internal pressure acting state, and FIG. 17 (B) shows an internal pressure released state.
In the first embodiment, the unit panel 5 is configured by a panel that is recessed in a fold shape of the straight horizontal ridgeline 52, but in the second embodiment, the central axis of the can body 21 of the unit panel 25 The cross-sectional shape in the direction parallel to N is a panel configuration that is recessed in an arc shape.
 多面体壁24には、軸方向に山部26と谷部27が交互に形成される波打ち曲面30が、周方向に複数形成されている。この波打ち曲面30は、図15(C),(D)に示すように、缶胴21の中心軸線Nを通る中心面Mに対して対称形状の波形稜線251,252で区画されており、波形稜線251,252間の間隔の狭い部分が波打ち曲面30の山部26となり、間隔の広い部分が谷部27となっている。単位パネル25は、波打ち曲面30の一つの山部26の頂部26aから谷部27を経て次の山部26の頂部26aまでの領域で、山部26の頂部26aによって、上下の単位パネル25が区分される。すなわち、この実施形態2では、波形稜線251,252によって単位パネル25の全周が画定されるのではなく、一部は開いた構成で、山部26の頂部26aによって区分されるようになっている。この例では、山部26で区分されているが、波形稜線251,252の間隔が狭い部分が接触していてもよく、その場合には全周が境界稜線によって区画される。
 互いに隣り合う波打ち曲面30,30の単位パネル25の軸方向の位相は、単位パネルの軸方向長さの半分だけずれており、単位パネル25が軸方向及び周方向に密に配列されている。
The polyhedral wall 24 is formed with a plurality of corrugated curved surfaces 30 in which crests 26 and troughs 27 are alternately formed in the axial direction. As shown in FIGS. 15C and 15D, the wavy curved surface 30 is partitioned by waveform ridges 251 and 252 that are symmetrical with respect to the center plane M passing through the center axis N of the can body 21. A narrow part between the ridge lines 251 and 252 is a peak part 26 of the undulating curved surface 30, and a wide part is a valley part 27. The unit panel 25 is a region from the top part 26a of one peak part 26 of the undulating curved surface 30 to the top part 26a of the next peak part 26 through the valley part 27. The top part 26a of the peak part 26 allows the upper and lower unit panels 25 to be It is divided. That is, in the second embodiment, the entire circumference of the unit panel 25 is not demarcated by the corrugated ridge lines 251 and 252, but a part of the unit panel 25 is open and is divided by the top portion 26 a of the peak portion 26. Yes. In this example, although it is divided by the peak part 26, the part with the narrow space | interval of the waveform ridge lines 251 and 252 may contact, and in that case, the perimeter is divided by the boundary ridgeline.
The phase in the axial direction of the unit panels 25 of the corrugated curved surfaces 30 and 30 that are adjacent to each other is shifted by half the axial length of the unit panels, and the unit panels 25 are densely arranged in the axial direction and the circumferential direction.
 波打ち曲面30の、缶胴21の中心軸線Nと直交方向の断面はどの位置でも直線状で、たとえば、山部26の頂部26aの位置で缶胴21の中心軸線Nと直交方向に切断した断面は、図17(E)に示すように、山部26の頂部26aの部分が狭く、単位パネル25の中間位置が広い多角形状となっている。図示例では、山部26を挟んで単位パネル25が12面形成されているが、12面に限定されない。また、波打ち曲面30の、缶胴21の中心軸線Nと直交方向の断面は、後述する[最大デプス変化量dmaxの調整]にあるように、谷部27における断面を缶の内側あるいは外側に円弧状に湾曲させる場合もあり、直線状に限定されない。
 多面体壁4は、内圧作用状態では、図17(A)に示すように、各波打ち曲面30が軸方向に直線的に変形し、全体として凹凸の無い円筒面となる。各単位パネル25について見ると、水平断面において、円弧状に変形し、窪みがなくなる。そして、缶蓋3の開封時に、図17(B)に示すように、各単位パネル25は元の形状に復元し、復元する際に復元音を発する構成となっている。
 この実施形態2においても、復元音は、実施形態1と同様に、単位パネル25の最大デプス変化量と相関関係がある。
The cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 is linear at any position, for example, a cross section cut in the direction orthogonal to the central axis N of the can body 21 at the position of the top portion 26a of the peak portion 26. As shown in FIG. 17E, the apex portion 26a of the peak portion 26 is narrow and the unit panel 25 has a wide intermediate position. In the illustrated example, twelve unit panels 25 are formed across the mountain portion 26, but the number is not limited to twelve. Further, the cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 has a circular cross section at the valley portion 27 on the inner side or the outer side of the can as will be described later in [Adjustment of Maximum Depth Change dmax]. It may be curved in an arc and is not limited to a straight line.
As shown in FIG. 17A, the polyhedral wall 4 is a cylindrical surface having no irregularities as a whole, as shown in FIG. When each unit panel 25 is viewed, it is deformed into an arc shape in the horizontal cross section, and the depression is eliminated. When the can lid 3 is opened, as shown in FIG. 17B, each unit panel 25 is restored to its original shape, and a restoration sound is emitted when the unit panel 25 is restored.
Also in the second embodiment, the restored sound has a correlation with the maximum depth change amount of the unit panel 25 as in the first embodiment.
 以下、図18を参照して、単位パネル25の最大デプス変化量dmaxについて説明する。
 図18(A)は、単位パネル25の正面図、(B)は(A)のB-B線断面図、(C)は(A)のC-C線断面図である。図16と同様に、図18(B),(C)において、破線は内圧作用状態、実線が内圧解放時の復元状態を示している。
 この実施形態2における単位パネル5のパネルデプスは、上下の2つの頂部26aを結ぶ線から、パネル中心m2までの、缶胴21の中心軸線Nと直交方向の距離であり、最大デプス変化量dmaxは、内圧作用状態および内圧開放状態における前記パネルデプスの変化量である。
 単位パネル5は、図18(A)に示すように、波打ち曲面30の一つの山部26の頂部26aから谷部27を経て次の山部26の頂部26aまでの領域で、互いに交差しない一対の波形稜線251,252によって区画されている。
 波形稜線251,252は、軸方向に、凹円弧稜線251b、252bと凸円弧稜線251a,252aが交互に繰り返し形成されるもので、中心面Mに対して、互いの凹円弧稜線251b、252bと凸円弧稜線251a,252aが対称的に対向している。谷部27の領域では、凹円弧稜線251b,252bが対向して樽形状に、上下の山部26は、凸円弧稜線251a,252aの頂点a1、a2までの部分が対向し、徐々に幅狭になる形状となっている。
 この凸円弧稜線251a,252aの頂点a1,a2は、波打ち曲面30の山部26の頂部26aに位置するもので、単位パネル25の上下に折り目となる稜線はなく、山部26の頂部26aで区分されている。また、凹円弧稜線251b,252bの最大幅となる頂点b1,b2の位置は、隣接する単位パネル25の山部26の頂部26aが位置しており、単位パネル25の凹円弧稜線251b,252bの頂点b1,b2と、凸円弧稜線251a,252aの頂点a1,a2は、缶胴21の円筒面とほぼ一致する一つの仮想円筒面上に位置している。
 単位パネル25のパネル中心m2は、中心面M上であって、最大幅となる凹円弧稜線251b,252bの頂点b1,b2を結ぶ仮想横線Xとの交点であり、単位パネル25を構成する波打ち曲面30の谷部27の、仮想円筒面からの最深部である。また、このパネル中心m2は、上下の山部26の頂部26a,26aの中間位置でもある。
Hereinafter, the maximum depth change amount dmax of the unit panel 25 will be described with reference to FIG.
18A is a front view of the unit panel 25, FIG. 18B is a sectional view taken along the line BB in FIG. 18A, and FIG. 18C is a sectional view taken along the line CC in FIG. As in FIG. 16, in FIGS. 18B and 18C, the broken line indicates the internal pressure acting state, and the solid line indicates the restored state when the internal pressure is released.
The panel depth of the unit panel 5 in the second embodiment is a distance in a direction orthogonal to the central axis N of the can body 21 from the line connecting the upper and lower two top portions 26a to the panel center m2, and the maximum depth change amount dmax. Is the amount of change in the panel depth in the internal pressure acting state and the internal pressure released state.
As shown in FIG. 18A, the unit panel 5 is a pair that does not cross each other in the region from the top 26a of one peak 26 of the undulating curved surface 30 to the top 26a of the next peak 26 through the valley 27. Are divided by waveform ridge lines 251 and 252.
The corrugated ridge lines 251 and 252 are formed by alternately and repeatedly forming concave arc ridge lines 251b and 252b and convex arc ridge lines 251a and 252a in the axial direction. The convex arc ridge lines 251a and 252a are symmetrically opposed to each other. In the region of the valley portion 27, the concave arc ridge lines 251b and 252b are opposed to each other in a barrel shape, and the upper and lower peak portions 26 are opposed to the apexes a1 and a2 of the convex arc ridge lines 251a and 252a and gradually narrow. It becomes the shape that becomes.
The vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located at the top part 26a of the peak part 26 of the corrugated curved surface 30, and there is no ridge line that becomes a crease on the top and bottom of the unit panel 25. It is divided. Further, the positions of the vertices b1 and b2 that are the maximum widths of the concave arc ridge lines 251b and 252b are located at the tops 26a of the peak portions 26 of the adjacent unit panels 25, and the concave arc ridge lines 251b and 252b of the unit panel 25 are located. The vertices b1 and b2 and the vertices a1 and a2 of the convex arc ridge lines 251a and 252a are located on one virtual cylindrical surface that substantially coincides with the cylindrical surface of the can body 21.
The panel center m2 of the unit panel 25 is an intersection with the virtual horizontal line X on the center plane M and connecting the vertices b1 and b2 of the concave arc ridge lines 251b and 252b having the maximum width. This is the deepest portion of the valley portion 27 of the curved surface 30 from the virtual cylindrical surface. The panel center m2 is also an intermediate position between the top portions 26a and 26a of the upper and lower mountain portions 26.
 パネル中心m2は、図18(B)の実線で示すように、缶胴21の内方に向かって円弧状に窪んだ形状となっている。内圧作用状態では、図18(B)に破線で示すように、円弧状に窪んだ単位パネル25が,缶胴21の中心軸線Nと平行に延ばされるように変形し、パネル中心m2が、上下の山部26の頂部26a,26aを結ぶ線に近い位置まで変位する。横断面で見ると、図18(C)に破線で示すように、円弧状に変形している。
 一方、内圧が開放されると、図18(B)に実線で示すように、単位パネル5は、円弧形状に復元し、パネル中心m2は最深部に戻る。横断面で見ると、図18(C)に示すように、破線の円弧状から実線の直線状に復元する。
 このパネル中心m2が単位パネル25の最も大きく変位する部分であり、このパネル中心m2内圧作用状態および内圧開放状態における前記パネルデプスの変化量が、最大デプス変化量dmaxであり、最大デプス変化量dmaxの最大値を0.54mm以下に設定すれば、復元音はガス放出音より十分に低い音量とすることができる。円弧状のパネルの場合には、復元しない単位パネルが少ないので、最大デプス変化量の平均値が、0.4mm未満、少なくとも0.15mm以下まで低くすれば、十分に低い音量となる。
As shown by the solid line in FIG. 18B, the panel center m2 has a shape that is recessed in an arc toward the inside of the can body 21. In the internal pressure acting state, as indicated by a broken line in FIG. 18B, the unit panel 25 that is recessed in an arc shape is deformed so as to extend in parallel with the central axis N of the can body 21, and the panel center m2 is It is displaced to a position close to the line connecting the top portions 26a, 26a of the peak portion 26. When viewed in a cross section, as shown by a broken line in FIG.
On the other hand, when the internal pressure is released, as indicated by a solid line in FIG. 18B, the unit panel 5 is restored to an arc shape, and the panel center m2 returns to the deepest part. When viewed in a cross section, as shown in FIG. 18C, the arc shape of a broken line is restored to a solid straight line shape.
The panel center m2 is the portion of the unit panel 25 that is most displaced, and the panel depth change amount in the panel center m2 internal pressure applied state and the internal pressure release state is the maximum depth change amount dmax, and the maximum depth change amount dmax. If the maximum value is set to 0.54 mm or less, the restored sound can be made sufficiently lower in volume than the gas emission sound. In the case of an arc-shaped panel, since there are few unit panels that are not restored, if the average value of the maximum depth change amount is reduced to less than 0.4 mm and at least 0.15 mm or less, the volume is sufficiently low.
[最大デプス変化量dmaxの調整]
 本実施形態2についても実施形態1と同様に、最大デプス変化量dmaxは、たとえば、空缶時のパネルデプスを調整することによって調整可能である。波打ち曲面30の、缶胴21の中心軸線Nと直交方向の断面はどの位置でも直線状となっているが、谷部27における断面を缶の内側あるいは外側に円弧状に湾曲させることで空缶時のパネルデプスを調整することができる。すなわち、缶の内側に円弧状に湾曲させれば、最大デプス変化量dmaxは大きくなり、缶の外側に円弧状に湾曲させれば最大デプス変化量dmaxを小さくなる。断面を缶の内側に湾曲させた場合は、内圧作用状態でのパネル中心m2は、上下の2つの頂部26aを結ぶ線よりも外側の位置まで変位する場合もある。
[Adjustment of maximum depth change amount dmax]
In the second embodiment, as in the first embodiment, the maximum depth change amount dmax can be adjusted, for example, by adjusting the panel depth when empty. Although the cross section of the corrugated curved surface 30 in the direction orthogonal to the central axis N of the can body 21 is linear at any position, the can is curved by curving the cross section at the valley portion 27 inside or outside the can. The panel depth can be adjusted. That is, if the arc is curved inside the can, the maximum depth change dmax is increased, and if the arc is curved outside the can, the maximum depth change dmax is decreased. When the cross section is curved to the inside of the can, the panel center m2 in the internal pressure acting state may be displaced to a position outside the line connecting the two upper and lower apexes 26a.
[評価試験]
 以下に、復元音の評価試験について説明する。 評価試験は、単位パネルが菱形形状の次のサンプルを用意した。サンプル1~6が比較例、サンプル7が本発明のサンプルである。さらにサンプル8として、実施形態2と同一形態の単位パネルが円弧形状のサンプルを用意した。(サンプル1)角数:13角、パネル個数:91個、空缶デプス:0.81mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル2)角数:13角、パネル個数:91個、空缶デプス:0.85mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル3)角数:13角、パネル個数:91個、空缶デプス:0.89mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル4)角数:13角、パネル個数:91個、空缶デプス:0.92mm、単位パネル面積:126mm、多面体壁面積:缶胴の68%
(サンプル5)角数:11角、パネル個数:66個、空缶デプス:1.38mm、単位パネル面積:177mm、多面体壁面積:缶胴の70%
(サンプル6)角数:11角、パネル個数:66個、空缶デプス:1.45mm、単位パネル面積:177mm、多面体壁面積:缶胴の70%
(サンプル7)角数:16角、パネル個数:144個、空缶デプス:0.83mm、単位パネル面積:83mm2、多面体壁面積:缶胴の70%(サンプル8)波打ち曲面数:26面、単位パネル面積:109mm2、多面体壁面積:缶胴の70%、最大デプス変化量が大きくなるようにパネルデプスを調整。波打ち曲面数は高さが半位相ずれた面も1面と数える。
(試験条件)
 評価試験の条件は、次の通りである。
 ・温度:5℃保管(液温は6.5~8℃)、
 ・缶内圧:120~150kPa
 ・缶胴の板厚0.092~0.122mm
 ・缶胴径:66.5~67mm
 ・缶高さ:121.8~122.2mm
 ・内容量:350ml
(試験方法)
 最大デプス変化量dmaxは、内圧作用状態でのパネルデプスを測定し、次に内圧開放状態でのパネルデプスを測定し、その差を計測して求める。パネルデプスの測定方法は、図19(A)に示すように、陽圧缶1のボトム側をバキュームにより水平に保持し、デジマチックインジゲータ100(「デジマチック」は「株式会社ミツトヨ」の登録商標)の測定子101を、垂直に頂点53に当ててその高さをゼロ点とし、陽圧缶1を中心軸線N方向にスライドさせ、デジマチックインジゲータ100を横稜線53の中点mの位置に合わせ、測定子101を横稜線53の中点mに当てて高さを読み取って求める。
 デジマチックインジケータ100は、水平の台上に垂直に立設されるスタンド102に固定される支持腕103に支持され、姿勢を垂直に保持される。一方、スタンド102のデジマチックインジケータ100の下方位置に、陽圧缶1を保持し、陽圧缶1の中心軸線Nに沿って水平に移動させる水平移動機構104が設けられている。水平移動機構104は、陽圧缶1の口部を保持する保持部105と、保持部105を水平に移動させるシリンダ機構や送りねじ機構等の伸縮部106とを備えた構成となっている。 パネルデプスは全ての単位パネル5で求め、各単位パネル5の内圧作用状態および内圧開放状態でのパネルデプスの差を最大デプス変化量dmaxとし、その最大値、さらに各単位パネルの最大デプス変化量dmaxの平均値を算出した。平均値は、最大デプス変化量dmaxが0.4mm未満の単位パネルを除いた単位パネルについての最大デプス変化量の平均値と、最大デプス変化量dmaxが0.3mm未満の単位パネルを除いた単位パネルについての最大デプス変化量の平均値と、最大デプス変化量dmaxの寸法によって単位パネルを除外しないで単位パネル全てについて求めた平均値についても算出している。各サンプルは3缶ずつで、最大デプス変化量の最大値については、最大値の3缶の平均値を(ave)、最大値を(max)、最小値を(min)としている。また、各単位パネルの最大デプス変化量dmaxの平均値については、測定数3缶に対する平均値を(ave)、最大値を(max)、最小値を(min)としている。デジマチックインジゲータは、「株式会社ミツトヨ」製、型番ID-C1012、測定子101は、「株式会社ミツトヨ」製、型番137413を用いた。
 一方、復元音の測定は、図19(B)に示すように、缶から40cm離した位置で騒音計120を設置し、音の大きさを測定した。この40cmは、マイク121と陽圧缶1と間の距離Lである。40cmの意味は、実際の開口時の缶と耳のおおよその距離を意味している。また、騒音計120は、床置きとし、台122によって、マイク121の高さを、床から60cm程度の高さに保持した。測定値は時間軸の波形データとして得られる。陽圧缶1を開口すると、始めにプルタブによる缶蓋の引き裂き音が発生し、次いでガス放出音、復元音の順に発生するので、復元音の部分の波形データの最大値を復元音の音圧レベルとしている。周波数重み付け特性はA特性で、時間重み付け特性はFとしている。測定数は3缶で、復元音の平均値(ave)、最大値(max)、最小値(min)を求めた。
 騒音計120としては、「リオン株式会社」製、型番NL-42を用い、マイク121の先端にはウインドスクリーンWS-10を取り付けている。
[Evaluation test]
Hereinafter, the evaluation test of the restored sound will be described. In the evaluation test, the following sample having a rhombus unit panel was prepared. Samples 1 to 6 are comparative examples, and sample 7 is a sample of the present invention. Further, as the sample 8, a sample in which the unit panel having the same form as that of the second embodiment has an arc shape was prepared. (Sample 1) Number of corners: 13 corners, number of panels: 91, empty can depth: 0.81 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 2) Number of corners: 13 corners, number of panels: 91, empty can depth: 0.85 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 3) Number of corners: 13 corners, number of panels: 91, empty can depth: 0.89 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 4) Number of corners: 13 corners, number of panels: 91, empty can depth: 0.92 mm, unit panel area: 126 mm 2 , polyhedral wall area: 68% of can body
(Sample 5) Number of corners: 11 corners, number of panels: 66, empty can depth: 1.38 mm, unit panel area: 177 mm 2 , polyhedral wall area: 70% of can body
(Sample 6) Number of corners: 11 corners, number of panels: 66, empty can depth: 1.45 mm, unit panel area: 177 mm 2 , polyhedral wall area: 70% of can body
(Sample 7) Number of corners: 16 squares, number of panels: 144, empty can depth: 0.83 mm, unit panel area: 83 mm 2, polyhedral wall area: 70% of can body (sample 8) number of corrugated surfaces: 26 Unit panel area: 109 mm 2 , polyhedral wall area: 70% of can body, panel depth adjusted so that maximum depth change is large. The number of corrugated surfaces is also counted as one surface whose height is half-phase shifted.
(Test conditions)
The conditions of the evaluation test are as follows.
・ Temperature: 5 ℃ storage (Liquid temperature is 6.5-8 ℃),
・ Can internal pressure: 120-150kPa
・ Thickness of can body 0.092 ~ 0.122mm
・ Can barrel diameter: 66.5-67mm
・ Can height: 121.8-122.2mm
・ Contents: 350ml
(Test method)
The maximum depth change amount dmax is obtained by measuring the panel depth when the internal pressure is applied, then measuring the panel depth when the internal pressure is released, and measuring the difference. As shown in FIG. 19A, the panel depth measurement method is such that the bottom side of the positive pressure can 1 is held horizontally by a vacuum, and the digimatic indicator 100 (“Digimatic” is a registered trademark of “Mitutoyo Co., Ltd.”). ) Is vertically applied to the apex 53 so that its height is zero, the positive pressure can 1 is slid in the direction of the central axis N, and the digimatic indicator 100 is moved to the middle point m of the horizontal ridge 53. In addition, the height is obtained by placing the probe 101 on the middle point m of the horizontal ridge line 53.
Digimatic indicator 100 is supported by support arm 103 that is fixed to stand 102 that is erected vertically on a horizontal base, and the posture is held vertically. On the other hand, a horizontal movement mechanism 104 that holds the positive pressure can 1 and moves it horizontally along the central axis N of the positive pressure can 1 is provided below the digimatic indicator 100 of the stand 102. The horizontal movement mechanism 104 includes a holding portion 105 that holds the mouth portion of the positive pressure can 1 and a telescopic portion 106 such as a cylinder mechanism or a feed screw mechanism that moves the holding portion 105 horizontally. The panel depth is obtained for all the unit panels 5, and the difference between the panel depths in the internal pressure applied state and the internal pressure release state of each unit panel 5 is defined as the maximum depth change amount dmax, the maximum value, and the maximum depth change amount of each unit panel. The average value of dmax was calculated. The average value is the average value of the maximum depth change amount for the unit panels excluding the unit panel whose maximum depth change amount dmax is less than 0.4 mm, and the unit excluding the unit panel whose maximum depth change amount dmax is less than 0.3 mm. The average value of the maximum depth change amount for the panel and the average value obtained for all the unit panels without excluding the unit panel are calculated based on the dimension of the maximum depth change amount dmax. Each sample has three cans, and regarding the maximum value of the maximum depth change amount, the average value of the three maximum cans is (ave), the maximum value is (max), and the minimum value is (min). In addition, regarding the average value of the maximum depth change amount dmax of each unit panel, the average value with respect to 3 cans of measurement is (ave), the maximum value is (max), and the minimum value is (min). Digimatic indicator manufactured by Mitutoyo Corporation, model number ID-C1012, and probe 101 used by Mitutoyo Corporation, model number 137413 were used.
On the other hand, as shown in FIG. 19B, the sound level of the restored sound was measured by installing a noise meter 120 at a position 40 cm away from the can. This 40 cm is a distance L between the microphone 121 and the positive pressure can 1. The meaning of 40 cm means the approximate distance between the can and the ear when actually opened. The sound level meter 120 was placed on the floor, and the microphone 121 was held at a height of about 60 cm from the floor by the stand 122. The measured value is obtained as time axis waveform data. When the positive pressure can 1 is opened, a tearing sound of the can lid due to the pull tab is generated first, and then the gas emission sound and the restoration sound are generated in this order. The level. The frequency weighting characteristic is A characteristic, and the time weighting characteristic is F. The number of measurements was 3 cans, and the average value (ave), maximum value (max), and minimum value (min) of the restored sound were determined.
As the sound level meter 120, model number NL-42 manufactured by Rion Co., Ltd. is used, and a wind screen WS-10 is attached to the tip of the microphone 121.
(測定結果) 測定結果は、表3に示す通りである。 (Measurement results) The measurement results are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図20及び図21は、表3のデータをグラフ化したものである。
 図20には、最大デプス変化量の最大値と復元音の大きさの関係が示され、図21には、最大デプス変化量の平均値と復元音の大きさの関係が示されている。各グラフにおいて、サンプル1~サンプル7を、それぞれS1~S7として示している。
 まず、図20を参照して、最大デプス変化量の最大値と復元音の大きさの関係について説明する。
 比較例の11角のサンプル5(S5)とサンプル6(S6)については、最大デプス変化量の最大値は0.74mm~0.86mmの範囲で、復元音が76dB~80dBと大きくなっている。一方、13角のサンプル1(S1)~サンプル4(S4)については、最大デプス変化量の平均値は0.55mm~0.74mmの範囲で、復元音は72dB~79dBの範囲となっている。サンプル8(S8)については、最大デプス変化量の最大値が、1.00mmで、復元音は83dBである。
 一方、本発明品に係るサンプル7(S7)については、最大デプス変化量の最大値は0.22mm~0.31mmの範囲で、43dB~46dBの範囲と、ほぼ聞こえない範囲まで小さくなっている。
 図20において、11角のサンプル5(S5)およびサンプル6(S6)の最大デプス変化量と復元音の平均値の点をg1、13角のサンプル1(S1)~サンプル4(S4)の最大デプス変化量と復元音の平均値の点をg2とし、g1とg2及びサンプル8を通る直線をG1とすると、11角のサンプル5(S5)とサンプル6(S6)に対して、13角のサンプル1(S1)~サンプル4(S4)の方が、最大デプス変化量が小さく、復元音も小さくなっている。
 さらに、サンプル7(S7)についての、最大デプス変化量の平均値をg3とし、13角のサンプル1(S1)~サンプル4(S4)の平均点g2を通る直線をG2とすると、13角に対して16角に向けて、最大デプス変化量がさらに小さくなり、復元音も大きく低下している。この直線G2の勾配はG1の勾配よりも大きくなっている。
 仮に、直線G1が13角のサンプル1(S1)~サンプル4(S4)の最大デプス変化量の最小値の0.55mmに達すると75dBより下回り、0.54mmでは、73dB程度まで低下する。また、直線G2では、0.54mmのラインでは、ガス放出音の70dBを下回り、66dB程度まで低下し、復元音が全く気にならない範囲となる。実際には、復元音は、最大デプス変化量の低下に伴って、直線G1より直線G2に近い範囲で低下し、単位パネルの最大デプス変化量の最大値が0.54mm以下であれば、ガス放出音の前後のレベルまでに低下する。サンプル8は円弧パネルでサンプル1~7とは異なるが、最大デプス変化量と復元音の関係については、G1のライン上にあり、最大デプス変化量に応じて同様の挙動をする。サンプル8は、波打ち曲面が26面で、サンプル1~4の断面角型の13角に類似するが、最大デプス変化量及び復元音については大きくなっている。最大デプス変化量を小さくする場合には、波打ち曲面の数を増やす対応となる。
20 and 21 are graphs of the data in Table 3.
FIG. 20 shows the relationship between the maximum value of the maximum depth change amount and the magnitude of the restored sound, and FIG. 21 shows the relationship between the average value of the maximum depth change amount and the magnitude of the restored sound. In each graph, samples 1 to 7 are shown as S1 to S7, respectively.
First, with reference to FIG. 20, the relationship between the maximum value of the maximum depth change amount and the volume of the restored sound will be described.
For the 11-corner sample 5 (S5) and sample 6 (S6) of the comparative example, the maximum value of the maximum depth change amount is in the range of 0.74 mm to 0.86 mm, and the restored sound is as large as 76 dB to 80 dB. . On the other hand, for sample 1 (S1) to sample 4 (S4) of 13 corners, the average value of the maximum depth change amount is in the range of 0.55 mm to 0.74 mm, and the restored sound is in the range of 72 dB to 79 dB. . For sample 8 (S8), the maximum value of the maximum depth change amount is 1.00 mm, and the restored sound is 83 dB.
On the other hand, for sample 7 (S7) according to the present invention, the maximum value of the maximum depth change is in the range of 0.22 mm to 0.31 mm, and is in the range of 43 dB to 46 dB, which is almost inaudible. .
In FIG. 20, the points of the maximum depth change amount and the average value of the restored sound of the 11-corner samples 5 (S5) and 6 (S6) are g1, the 13-corner samples 1 (S1) to 4 (S4) When the point of the depth change amount and the average value of the restored sound is g2, and the straight line passing through g1 and g2 and the sample 8 is G1, 13 corners of the 11 corner samples 5 (S5) and 6 (S6). Sample 1 (S1) to Sample 4 (S4) have a smaller maximum depth change amount and a smaller restored sound.
Further, assuming that the average value of the maximum depth change amount for sample 7 (S7) is g3, and the straight line passing through the average point g2 of the 13 corner samples 1 (S1) to 4 (S4) is G2, On the other hand, the maximum depth change amount is further reduced toward the 16th corner, and the restored sound is greatly reduced. The gradient of this straight line G2 is larger than the gradient of G1.
If the straight line G1 reaches 0.55 mm, which is the minimum value of the maximum depth change amount of the 13 corner samples 1 (S1) to 4 (S4), it falls below 75 dB, and at 0.54 mm, it drops to about 73 dB. In the straight line G2, the 0.54 mm line falls below 70 dB of the gas emission sound and decreases to about 66 dB. Actually, the restoration sound decreases in the range closer to the straight line G2 than the straight line G1 as the maximum depth change amount decreases, and if the maximum value of the maximum depth change amount of the unit panel is 0.54 mm or less, It drops to the level before and after the sound emission. The sample 8 is an arc panel and is different from the samples 1 to 7, but the relationship between the maximum depth change amount and the restored sound is on the G1 line and behaves similarly according to the maximum depth change amount. Sample 8 has 26 corrugated surfaces and is similar to the 13-corner cross section of samples 1 to 4, but the maximum depth change and restored sound are large. When the maximum depth change amount is reduced, the number of corrugated surfaces is increased.
 次に、図21及び図22を参照して、最大デプス変化量の平均値と復元音の大きさの関係について説明する。
 図20のように、最大デプス変化量の最大値を用いる場合、ばらつきが大きくなる可能性があるので、単位パネルの最大デプス変化量の平均値をとることを検討した。しかし、全ての単位パネルの最大デプス変化量の平均値をとると、図22(A)に示すように、本発明のサンプル5(S5),サンプル6(S6)が、比較例のサンプル(S1)~サンプル4(S4)よりも、最大デプス変化量の平均値は小さいという反対の結果となった。この結果を検討した結果、全ての単位パネルが完全に復元されるわけではなく、一部の単位パネルについて、復元が不完全なものがあるためということがわかった。そこで、0.3mm以上の最大デプス変化量となる単位パネルについての平均値、0.4mm以上の最大デプス変化量となる単位パネルについての平均値について算出し、グラフとしたのが図21と図22(B)である。
 0.3mm以上の単位パネルを抽出したものでは、図22(B)に示すように、サンプル5(S5)およびサンプル6(S6)が、サンプル1~サンプル4と交錯する範囲となり、判然としないが、0.4mm以上の単位パネルを抽出すると、図21に示すように、サンプル5(S5)およびサンプル6(S6)が、サンプル1~サンプル4と交錯する範囲を脱し、サンプル5(S5)およびサンプル6(S6)の最大デプス変化量(平均値)が、サンプル1~サンプル4の最大デプス変化量(平均値)よりも大きく、明確に分かれることが分かった。
 そこで、各缶の最大デプス変化量の平均値の算出にあたって、最大デプス変化量が0.4mm未満の単位パネルを除外し、復元しない単位パネルの影響を排除するものとした。サンプル7(S7)は、全ての単位パネルが復元しており、制限なしの最大デプス変化量の平均値をとり、サンプル1(S1)~サンプル6(S6)の0.4mm未満を除外したデータと同等に扱うものとする。
 図21に示すように、比較例の11角のサンプル5(S5)とサンプル6(S6)については、最大デプス変化量の平均値は0.57mm~0.67mmの範囲で、復元音が76dB~80dBと大きくなっている。一方、13角のサンプル1(S1)~サンプル4(S4)については、最大デプス変化量の平均値は0.48mm~0.53mmの範囲で、復元音は72dB~78dBの範囲となっている。
 本発明品に係るサンプル7(S7)については、最大デプス変化量の平均値は0.17mm~0.20mmの範囲で、43dB~46dBの範囲と、ほぼ聞こえない範囲まで小さくなっている。
 図21において、11角のサンプル5(S5)とサンプル6(S6)の最大デプス変化量と復元音の平均値の点をg11、13角のサンプル1(S1)~サンプル4(S4)の最大デプス変化量と復元音の平均値の点をg12とし、g11とg12を通る直線をG11とすると、11角のサンプル5(S5)とサンプル6(S6)に対して、13角のサンプル1(S1)~サンプル4(S4)の方が、最大デプス変化量が小さく、復元音も小さくなっている。
 さらに、サンプル7(S7)についての、最大デプス変化量の平均値をg13とし、13角のサンプル1(S1)~サンプル4(S4)の平均点g12を通る直線をG12とすると、13角に対して16角に向けて、最大デプス変化量がさらに小さくなり、復元音も大きく低下している。この直線G12の勾配はG11の勾配よりも大きくなっている。
Next, with reference to FIG. 21 and FIG. 22, the relationship between the average value of the maximum depth change amount and the volume of the restored sound will be described.
As shown in FIG. 20, when the maximum value of the maximum depth change amount is used, there is a possibility that the variation becomes large. Therefore, it was considered to take an average value of the maximum depth change amount of the unit panel. However, if the average value of the maximum depth change amounts of all the unit panels is taken, as shown in FIG. 22A, sample 5 (S5) and sample 6 (S6) of the present invention are compared with sample (S1) of the comparative example. ) To Sample 4 (S4), and the opposite result is that the average value of the maximum change in depth is smaller. As a result of examining this result, it was found that not all unit panels were completely restored, and some unit panels were not fully restored. Therefore, the average value for the unit panel having the maximum depth change amount of 0.3 mm or more and the average value for the unit panel having the maximum depth change amount of 0.4 mm or more are calculated and graphed. 22 (B).
In the case where a unit panel of 0.3 mm or more is extracted, as shown in FIG. 22 (B), sample 5 (S5) and sample 6 (S6) are in a range where they intersect with sample 1 to sample 4, and are unclear. However, when a unit panel of 0.4 mm or more is extracted, as shown in FIG. 21, sample 5 (S5) and sample 6 (S6) escape from the range where sample 1 to sample 4 intersect, and sample 5 (S5) It was also found that the maximum depth change amount (average value) of Sample 6 (S6) was larger than the maximum depth change amount (average value) of Sample 1 to Sample 4, and was clearly divided.
Therefore, in calculating the average value of the maximum depth change amount of each can, the unit panel whose maximum depth change amount is less than 0.4 mm is excluded, and the influence of the unit panel that is not restored is excluded. In sample 7 (S7), all unit panels have been restored, taking the average value of the maximum depth change amount without restriction, and excluding samples 1 (S1) to 6 (S6) less than 0.4 mm Shall be handled in the same way.
As shown in FIG. 21, for the 11-corner samples 5 (S5) and 6 (S6) of the comparative example, the average value of the maximum depth change amount is in the range of 0.57 mm to 0.67 mm, and the restored sound is 76 dB. It is as large as ~ 80 dB. On the other hand, for the 13 corner samples 1 (S1) to 4 (S4), the average value of the maximum depth change amount is in the range of 0.48 mm to 0.53 mm, and the restored sound is in the range of 72 dB to 78 dB. .
For sample 7 (S7) according to the present invention, the average value of the maximum depth change amount is in the range of 0.17 mm to 0.20 mm, and is in the range of 43 dB to 46 dB, which is almost inaudible.
In FIG. 21, the maximum depth change amount and the average value of the restored sound of the 11 corner samples 5 (S5) and 6 (S6) are the maximum points of the 11th and 13th corner samples 1 (S1) to 4 (S4). If the point of the depth change amount and the average value of the restored sound is g12, and the straight line passing through g11 and g12 is G11, the sample 1 of 13 corners (sample 5 (S5) and sample 6 (S6)) In S1) to Sample 4 (S4), the maximum amount of change in depth is smaller, and the restored sound is also smaller.
Further, assuming that the average value of the maximum depth change amount for sample 7 (S7) is g13, and the straight line passing through the average point g12 of the 13 corner samples 1 (S1) to 4 (S4) is G12, On the other hand, the maximum depth change amount is further reduced toward the 16th corner, and the restored sound is greatly reduced. The gradient of this straight line G12 is larger than the gradient of G11.
 直線G12では、0.45mmのラインでは、ガス放出音と同程度の71dB付近まで低下しており、復元音が気にならない範囲となる。復元音は、最大デプス変化量の低下に伴って、直線G11より直線G12に近い範囲で低下するものと考えられ、最大デプス変化量が0.4mm以上となる単位パネルの最大デプス変化量の平均値が、0.45mm以下であれば、75dBを切って、ガス放出音に近いレベルまで低下する。ガス放出音は70dB程度であり、72dB以下であれば、気にならないレベルとなる。好ましくは70dB以下に設定する。 一方、最大デプス変化量の0.4mm以上の単位パネルの平均値について、0.45mm以上に設定しており、最大デプス変化量の最大値が0.4mmから0.45mmの間にある場合は、当然、平均値は0.45mm未満となる。
 最大デプス変化量が0.4mm以上の単位パネルが無い場合には、復元しない単位パネルの影響が小さく、全ての単位パネルの最大デプス変化量の平均値で評価するものとする。平均値は、0.4mmを超えることは無いので、0.4mm未満となるように構成すればよい。
 また、図21に示すように、最大デプス変化量の平均値が0.15mmに達すると40dBより小さくなり、ほとんど聞こえないレベルとなっている。したがって、最大デプス変化量の平均値を、0.15mm以上で0.4mm未満となるように設定すれば、音が聞こえるが、気にならない程度に小さくなるレベルとすることができる。
 また、単位パネルの最大デプス変化量の平均値を0.15mm以下としておけば、完全に聞こえないレベルとすることができる。
 円弧状の単位パネルの場合には、サンプル8のデータしかないものの、最大デプス変化量の平均値が、0.4mm未満、少なくとも0.15mm以下まで低くすれば、ガス放出音に対して十分に低い音量となる。
 断面角数では、14角と16角の間、14角,15角、16角程度であれば、最大デプス変化量の平均値は0.45mm以下となる。
 なお、多面体壁を構成する単位パネルについては、上記実施形態1の屈曲した菱形形状、実施形態2の円弧形状に限られず、折り構造によって、缶胴の内方に窪んだ形状で、缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元する種々のパターンに適用可能である。
In the straight line G12, the 0.45 mm line is reduced to the vicinity of 71 dB, which is the same level as the gas emission sound, and is in a range where the restoration sound is not anxious. The restoration sound is considered to decrease in a range closer to the straight line G12 than the straight line G11 as the maximum depth change amount decreases, and the average of the maximum depth change amount of the unit panel in which the maximum depth change amount is 0.4 mm or more. If the value is 0.45 mm or less, the value drops below 75 dB to a level close to the gas emission sound. The gas emission sound is about 70 dB, and if it is 72 dB or less, it becomes a level that does not matter. Preferably, it is set to 70 dB or less. On the other hand, the average value of the unit panel with a maximum depth change of 0.4 mm or more is set to 0.45 mm or more, and the maximum value of the maximum depth change is between 0.4 mm and 0.45 mm. Of course, the average value is less than 0.45 mm.
When there is no unit panel having a maximum depth change amount of 0.4 mm or more, the influence of the unit panel that is not restored is small, and the evaluation is made by the average value of the maximum depth change amounts of all the unit panels. Since the average value does not exceed 0.4 mm, the average value may be configured to be less than 0.4 mm.
Further, as shown in FIG. 21, when the average value of the maximum depth change amount reaches 0.15 mm, it becomes smaller than 40 dB, which is almost inaudible. Therefore, if the average value of the maximum depth change amount is set to be 0.15 mm or more and less than 0.4 mm, a sound can be heard, but the level can be reduced to a level that does not matter.
Further, if the average value of the maximum depth change amount of the unit panel is set to 0.15 mm or less, a level that cannot be completely heard can be obtained.
In the case of an arc-shaped unit panel, although there is only data of sample 8, if the average value of the maximum depth change is reduced to less than 0.4 mm and at least 0.15 mm or less, it is sufficient for the gas emission sound. The volume is low.
In terms of the number of cross-sectional angles, the average value of the maximum depth change amount is 0.45 mm or less if the angle is between 14 and 16 angles, or about 14, 15 and 16 angles.
The unit panel constituting the polyhedral wall is not limited to the bent rhombus shape of the first embodiment and the arc shape of the second embodiment. The present invention can be applied to various patterns that are deformed in a direction in which the dent is reduced by the acting internal pressure and are restored to the original shape when the can lid is opened.
1  陽圧缶、
2  缶本体
 21  缶胴、22  ネック部、23  底部、
3  缶蓋
4  多面体壁
5  単位パネル
 5A  上方三角形部分、5B  下方三角形部分
 51  斜め稜線、52  横稜線、53(53a~53d)  頂点
50 パネル列
6    :タブ
100  デジマチックインジケータ
120  騒音計
M    中心面
N    中心軸線
dmax 最大デプス変化量
m    横稜線の中点
m2   パネル中心
24  多面体壁
25  単位パネル
 251,252  波形稜線、
30  波打ち曲面
 26  山部、26a  頂部
 27  谷部
1 positive pressure can,
2 can body 21 can body, 22 neck part, 23 bottom part,
3 Can lid 4 Polyhedral wall 5 Unit panel 5A Upper triangular portion, 5B Lower triangular portion 51 Diagonal ridge line, 52 Horizontal ridge line, 53 (53a to 53d) Vertex 50 Panel row 6: Tab 100 Digimatic indicator 120 Sound level meter M Center plane N Center axis dmax Maximum depth change m Middle point m2 of horizontal ridge line Panel center 24 Polyhedron wall 25 Unit panel 251 252 Waveform ridge line,
30 Corrugated curved surface 26 Mountain, 26a Top 27 Valley

Claims (33)

  1.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
     前記単位パネルの最大デプス変化量の最大値が、0.75mm以上1.2mm以下に設定されていることを特徴とする陽圧缶。
    A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
    The positive pressure can characterized in that the maximum value of the maximum depth change amount of the unit panel is set to 0.75 mm or more and 1.2 mm or less.
  2.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
     最大デプス変化量が0.4mm以上の前記単位パネルについての最大デプス変化量の平均値が、0.54mm以上0.75mm以下の範囲に設定されていることを特徴とする陽圧缶。
    A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
    The positive pressure can characterized in that the average value of the maximum depth change amount for the unit panel having a maximum depth change amount of 0.4 mm or more is set in a range of 0.54 mm or more and 0.75 mm or less.
  3.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
     前記単位パネルの最大デプス変化量の最大値が、0.75mm以上1.2mm以下に設定され、かつ、最大デプス変化量が0.4mm以上の前記単位パネルについての最大デプス変化量の平均値が、0.54mm以上0.75mm以下の範囲に設定されていることを特徴とする陽圧缶。
    A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
    The maximum value of the maximum depth change amount of the unit panel is set to 0.75 mm or more and 1.2 mm or less, and the average value of the maximum depth change amount for the unit panel whose maximum depth change amount is 0.4 mm or more is A positive pressure can characterized by being set in a range of 0.54 mm to 0.75 mm.
  4.  前記復元音の音圧レベルが、前記缶胴から40cm離れた位置において、75dB以上に設定されていることを特徴とする請求項1乃至3のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 1 to 3, wherein a sound pressure level of the restored sound is set to 75 dB or more at a position 40 cm away from the can body.
  5.  前記多面体壁は、缶胴の面積の25%以上である請求項1乃至4のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 1 to 4, wherein the polyhedral wall is 25% or more of an area of the can body.
  6.  前記単位パネルは前記境界稜線としての斜め稜線によって区画される菱形形状で、前記缶胴の中心軸線を通る中心面上に位置する2つの頂点と、中心面に対して対称位置に位置する2つの頂点の計4つの頂点を有し、内圧が加わらない自由状態で、前記中心面に対して対称位置に位置する頂点を結ぶ谷折りの横稜線によって、前記缶胴の内方に屈曲して窪んだ構成となっており、
     前記最大デプス変化量は、前記横稜線の中点における単位パネルデプスの変化量である請求項1乃至5のいずれか1項に記載の陽圧缶。
    The unit panel has a rhombus shape defined by oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and two symmetric positions with respect to the central plane It has a total of four vertices, and is bent inwardly of the can body by a transverse ridge line of valley folds connecting vertices located symmetrically with respect to the center plane in a free state where no internal pressure is applied. It has a configuration
    The positive pressure can according to any one of claims 1 to 5, wherein the maximum depth change amount is a change amount of a unit panel depth at a midpoint of the horizontal ridge line.
  7.  前記多面体壁は、複数の前記単位パネルが前記缶胴の中心軸線と平行方向に並んだ単位パネル列が、前記缶胴の周方向に全周的に密に配列された構成で、
     前記単位パネルの横稜線を通る断面の角数が、11角から12角の範囲に設定されている請求項6に記載の陽圧缶。
    The polyhedral wall has a configuration in which a plurality of unit panels arranged in a direction parallel to the central axis of the can body are densely arranged all around in the circumferential direction of the can body,
    The positive pressure can according to claim 6, wherein the number of corners of the cross section passing through the horizontal ridge line of the unit panel is set in a range of 11 to 12 corners.
  8.  前記単位パネルの面積は、130mm2以上で180mm2以下に設定されている請求項7に記載の陽圧缶。 The positive pressure can according to claim 7, wherein an area of the unit panel is set to 130 mm 2 or more and 180 mm 2 or less.
  9.  前記最大デプス変化量は、開封前の内圧が20~300kPaにおける最大デプス変化量である請求項1乃至8のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 1 to 8, wherein the maximum depth change amount is a maximum depth change amount when an internal pressure before opening is 20 to 300 kPa.
  10.  前記開封前の内圧が120~150kPaである請求項9に記載の陽圧缶。 The positive pressure can according to claim 9, wherein the internal pressure before opening is 120 to 150 kPa.
  11.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備えた陽圧缶において、
     前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、
     前記単位パネルは、内圧が加わらない自由状態では前記缶胴の中心軸線と平行方向の断面形状が缶胴の内方に円弧状に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成で、
     前記各単位パネルの最大デプス変化量の平均値が、0.46mm以上で、かつ、1.08mm以下の範囲に設定されていることを特徴とする陽圧缶。
    In a positive pressure can comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state,
    Having a polyhedral wall composed of a large number of unit panels defined by at least part of the can body by convex boundary ridge lines;
    In a free state where no internal pressure is applied, the unit panel has a cross-sectional shape parallel to the central axis of the can body that is recessed in an arc shape inwardly of the can body, and the depression is small due to the internal pressure acting on the can body. It is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and a restoration sound is emitted when restoring,
    The positive pressure can characterized in that the average value of the maximum depth change amount of each unit panel is set in a range of 0.46 mm or more and 1.08 mm or less.
  12.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備えた陽圧缶において、
     前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、
     前記単位パネルは、内圧が加わらない自由状態では前記缶胴の中心軸線と平行方向の断面形状が缶胴の内方に円弧状に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成で、
     前記最大デプス変化量の最大値が、0.59mm以上で、かつ、1.31mm以下の範囲に設定されていることを特徴とする陽圧缶。
    In a positive pressure can comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state,
    Having a polyhedral wall composed of a large number of unit panels defined by at least part of the can body by convex boundary ridge lines;
    In a free state where no internal pressure is applied, the unit panel has a cross-sectional shape parallel to the central axis of the can body that is recessed in an arc shape inwardly of the can body, and the depression is small due to the internal pressure acting on the can body. It is deformed in the direction to be restored, restored to its original shape when the can lid is opened, and a restoration sound is emitted when restoring,
    The positive pressure can characterized in that the maximum value of the maximum depth change amount is set in a range of 0.59 mm or more and 1.31 mm or less.
  13.  前記復元音の音圧レベルが、前記缶胴から40cm離れた位置において、75dB以上に設定されていることを特徴とする請求項11又は12に記載の陽圧缶。 The positive pressure can according to claim 11 or 12, wherein a sound pressure level of the restored sound is set to 75 dB or more at a position 40 cm away from the can body.
  14.  前記多面体壁は、缶胴の面積の25%以上である請求項11乃至13のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 11 to 13, wherein the polyhedral wall is 25% or more of an area of the can body.
  15.  前記単位パネルは、内圧が加わらない自由状態において、前記単位パネルの中心を通る前記缶胴の中心軸線と直交方向の断面形状が、直線状に対して前記缶胴の内方に窪んだ形状となっている請求項11乃至14のいずれか1項に記載の陽圧缶。 The unit panel has a shape in which a cross-sectional shape perpendicular to the central axis of the can body passing through the center of the unit panel is recessed inward of the can body in a free state where no internal pressure is applied. The positive pressure can according to any one of claims 11 to 14.
  16.  前記最大デプス変化量の平均値の大きさは、前記単位パネルの大きさと関係し、前記単位パネルの大きさが大きい方が前記最大デプス変化量が大きくなる関係で、前記単位パネルの大きさと単位パネルの数との関係は、前記単位パネルの大きさが大きい方が、前記単位パネルの個数は少なくなる関係となっている請求項11乃至15のいずれか1項に記載の陽圧缶。 The average value of the maximum depth change amount is related to the size of the unit panel, and the larger the unit panel size is, the larger the maximum depth change amount is. 16. The positive pressure can according to claim 11, wherein a relationship between the number of the panels and the number of the unit panels is smaller as the size of the unit panel is larger.
  17.  前記単位パネルの個数は、65個以上で117個以下に設定されている請求項11乃至16のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 11 to 16, wherein the number of the unit panels is set to 65 or more and 117 or less.
  18.  自由状態の前記多面体壁は、軸方向に山部と谷部が交互に形成される波打ち曲面が、周方向に複数形成され、前記波打ち曲面は、缶胴の中心軸線を通る中心面に対して対称形状の前記境界稜線を構成する波形稜線で区画されており、前記波形稜線間の間隔の狭い部分が波打ち曲面の山部、間隔の広い部分が谷部となっており、前記単位パネルは、前記波打ち曲面の一つの山部の頂部から谷部を経て次の山部の頂部までの領域であり、山部の頂部によって、上下の単位パネルが区分される構成である請求項11乃至17のいずれか1項に記載の陽圧缶。 The polyhedral wall in a free state has a plurality of undulating curved surfaces in the circumferential direction in which peaks and valleys are alternately formed in the axial direction, and the undulating curved surface is in relation to a central plane passing through the central axis of the can body The boundary ridge lines that form the symmetrical boundary ridge lines are partitioned, a narrow portion of the gap between the waveform ridge lines is a peak portion of a corrugated curved surface, a wide interval portion is a valley portion, the unit panel is The region of the corrugated curved surface is a region from the top of one peak to the top of the next peak through the valley, and the upper and lower unit panels are divided by the top of the peak. The positive pressure can of any one of Claims.
  19.  前記最大デプス変化量は、開封前の内圧が20~300kPaにおける最大デプス変化量である請求項11乃至18のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 11 to 18, wherein the maximum depth change amount is a maximum depth change amount when an internal pressure before opening is 20 to 300 kPa.
  20.  前記開封前の内圧が120~150kPaである請求項19に記載の陽圧缶。 The positive pressure can according to claim 19, wherein the internal pressure before opening is 120 to 150 kPa.
  21.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
     前記単位パネルの最大デプス変化量の最大値が、0.54mm以下となるように構成されていることを特徴とする陽圧缶。
    A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
    The positive pressure can characterized in that the maximum value of the maximum depth change amount of the unit panel is 0.54 mm or less.
  22.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
     前記単位パネルの最大デプス変化量が0.4mm以上となる単位パネルについての最大デプス変化量の平均値が0.45mm以下となるように構成されていることを特徴とする陽圧缶。
    A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
    A positive pressure can characterized in that an average value of a maximum depth change amount for a unit panel in which a maximum depth change amount of the unit panel is 0.4 mm or more is 0.45 mm or less.
  23.  缶胴を有する缶本体と、該缶本体を陽圧状態で密閉する缶蓋とを備え、前記缶胴の少なくとも一部に凸状の境界稜線によって区画された多数の単位パネルで構成される多面体壁を有し、前記単位パネルは、自由状態では缶胴の内方に窪んだ形状で、前記缶胴に作用する内圧によって窪みが小さくなる方向に変形し、缶蓋の開封時に元の形状に復元し、復元する際に復元音を発する構成の陽圧缶において、
     前記単位パネルの最大デプス変化量が0.4mm未満の単位パネルのみで構成されており、前記単位パネルの最大デプス変化量の平均値が0.4mm未満となるように構成されていることを特徴とする陽圧缶。
    A polyhedron comprising a can body having a can body and a can lid for sealing the can body in a positive pressure state, and comprising a large number of unit panels defined by convex boundary ridges at least at a part of the can body The unit panel has a shape that is recessed inward of the can body in a free state, and is deformed in a direction in which the recess is reduced by an internal pressure acting on the can body, and returns to its original shape when the can lid is opened. In a positive pressure can that is restored and emits a restoration sound when restored,
    The unit panel has a maximum depth change amount of less than 0.4 mm, and the unit panel has a maximum depth change amount of less than 0.4 mm. A positive pressure can.
  24.  前記単位パネルの最大デプス変化量の平均値が0.15mm以上で0.4mm未満となるように構成されている請求項23に記載の陽圧缶。 The positive pressure can according to claim 23, wherein an average value of a maximum depth change amount of the unit panel is 0.15 mm or more and less than 0.4 mm.
  25.  前記単位パネルの最大デプス変化量の平均値が0.15mm未満となるように構成されている請求項23に記載の陽圧缶。 24. The positive pressure can according to claim 23, wherein an average value of a maximum depth change amount of the unit panel is less than 0.15 mm.
  26.  前記陽圧缶の開封時の前記復元音の音圧レベルを、前記缶胴から40cm離れた位置において、72dB以下に設定した請求項21乃至25のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 21 to 25, wherein a sound pressure level of the restored sound when the positive pressure can is opened is set to 72 dB or less at a position 40 cm away from the can body.
  27.  前記多面体壁は、缶胴の面積の75%以下とする請求項21乃至26のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 21 to 26, wherein the polyhedral wall is 75% or less of an area of the can body.
  28.  前記単位パネルは前記境界稜線としての斜め稜線によって区画される菱形形状で、前記缶胴の中心軸線を通る中心面上に位置する2つの頂点と、中心面に対して対称位置に位置する2つの頂点の計4つの頂点を有し、内圧が加わらない自由状態で、前記中心面に対して対称位置に位置する頂点を結ぶ谷折りの横稜線によって、前記缶胴の内方に屈曲して窪んだ構成となっており、前記最大デプス変化量は、前記横稜線の中点における単位パネルデプスの変化量とする請求項21乃至27のいずれか1項に記載の陽圧缶。 The unit panel has a rhombus shape defined by oblique ridgelines as the boundary ridgelines, two vertices located on a central plane passing through the central axis of the can body, and two symmetric positions with respect to the central plane It has a total of four vertices, and is bent inwardly of the can body by a transverse ridge line of valley folds connecting vertices located symmetrically with respect to the center plane in a free state where no internal pressure is applied. The positive pressure can according to any one of claims 21 to 27, wherein the maximum depth change amount is a change amount of a unit panel depth at a midpoint of the horizontal ridge line.
  29.  前記多面体壁は、複数の前記単位パネルが前記缶胴の中心軸線と平行方向に並んだ単位パネル列が、前記缶胴の周方向に全周的に密に配列された構成で、前記単位パネルの横稜線を通る断面の角数が、14角から16角の範囲に設定されている請求項28に記載の陽圧缶。 The polyhedral wall has a configuration in which a plurality of the unit panels are arranged in a direction parallel to the central axis of the can body, and the unit panel row is densely arranged in the circumferential direction of the can body. 29. The positive pressure can according to claim 28, wherein the number of corners of the cross section passing through the horizontal ridge line is set in a range of 14 to 16 corners.
  30.  前記単位パネルの面積は、80mm2以上で120mm2以下に設定されている請求項29に記載の陽圧缶。 30. The positive pressure can according to claim 29, wherein an area of the unit panel is set to 80 mm 2 or more and 120 mm 2 or less.
  31.  前記単位パネルは、前記缶胴の中心軸線と平行方向の断面形状が円弧状に窪んだ形状となっている請求項21乃至27のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 21 to 27, wherein the unit panel has a shape in which a cross-sectional shape in a direction parallel to a central axis of the can body is recessed in an arc shape.
  32.  最大デプス変化量は、開封前の内圧が20~300kPaにおける最大デプス変化量である請求項21乃至31のいずれか1項に記載の陽圧缶。 The positive pressure can according to any one of claims 21 to 31, wherein the maximum depth change amount is a maximum depth change amount when the internal pressure before opening is 20 to 300 kPa.
  33.  前記開封前の内圧が120~150kPaである請求項32に記載の陽圧缶。 The positive pressure can according to claim 32, wherein the internal pressure before opening is 120 to 150 kPa.
PCT/JP2019/003066 2018-01-30 2019-01-30 Positive-pressure can WO2019151281A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018-014035 2018-01-30
JP2018013794 2018-01-30
JP2018014035 2018-01-30
JP2018-013794 2018-01-30
JP2019-008808 2019-01-22
JP2019-008810 2019-01-22
JP2019008810A JP7212214B2 (en) 2018-01-30 2019-01-22 positive pressure can
JP2019008782A JP7212213B2 (en) 2018-01-30 2019-01-22 positive pressure can
JP2019-008782 2019-01-22
JP2019008808A JP7210822B2 (en) 2018-01-30 2019-01-22 positive pressure can

Publications (1)

Publication Number Publication Date
WO2019151281A1 true WO2019151281A1 (en) 2019-08-08

Family

ID=67478710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003066 WO2019151281A1 (en) 2018-01-30 2019-01-30 Positive-pressure can

Country Status (1)

Country Link
WO (1) WO2019151281A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180228A (en) * 1989-08-31 1991-08-06 Toyo Seikan Kaisha Ltd Canning can and its manufacture
JPH0457733A (en) * 1990-06-22 1992-02-25 Kuwabara Yasunaga Lid-sealed type plastic container and its manufacture
JPH075128B2 (en) * 1991-07-04 1995-01-25 東洋製罐株式会社 Thin metal container with excellent deformation resistance and decorative effect
JPH11208634A (en) * 1998-01-23 1999-08-03 Ueno Hiroshi Container
JP2005075448A (en) * 2003-09-03 2005-03-24 Daiwa Can Co Ltd Easy openable can lid
JP2006306500A (en) * 2005-03-31 2006-11-09 Mitsubishi Materials Corp Can body
JP2016050040A (en) * 2014-08-29 2016-04-11 東洋製罐株式会社 Polyhedral periphery wall can
JP2016155595A (en) * 2015-02-26 2016-09-01 東洋製罐株式会社 Polyhedral periphery wall can

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180228A (en) * 1989-08-31 1991-08-06 Toyo Seikan Kaisha Ltd Canning can and its manufacture
JPH0457733A (en) * 1990-06-22 1992-02-25 Kuwabara Yasunaga Lid-sealed type plastic container and its manufacture
JPH075128B2 (en) * 1991-07-04 1995-01-25 東洋製罐株式会社 Thin metal container with excellent deformation resistance and decorative effect
JPH11208634A (en) * 1998-01-23 1999-08-03 Ueno Hiroshi Container
JP2005075448A (en) * 2003-09-03 2005-03-24 Daiwa Can Co Ltd Easy openable can lid
JP2006306500A (en) * 2005-03-31 2006-11-09 Mitsubishi Materials Corp Can body
JP2016050040A (en) * 2014-08-29 2016-04-11 東洋製罐株式会社 Polyhedral periphery wall can
JP2016155595A (en) * 2015-02-26 2016-09-01 東洋製罐株式会社 Polyhedral periphery wall can

Similar Documents

Publication Publication Date Title
EP0566775B1 (en) Method and apparatus for making an embossed web
US5529563A (en) Method for embossing webs
US20150360086A1 (en) Golf ball dimple profile
TWI795576B (en) Glass plate suitable for image display device
ES2676536T3 (en) Corrugated food product of high amplitude and manufacturing process
WO2019151281A1 (en) Positive-pressure can
WO2018100704A1 (en) Absorber, method for manufacturing same, and absorbent article
JP2019208854A5 (en)
JP7210822B2 (en) positive pressure can
JP7212213B2 (en) positive pressure can
AU647233B2 (en) Method for embossing webs
US20160175658A1 (en) Golf ball dimple profile
JPS59152142A (en) Non-circular liquid-tight pasteboard vessel
RU2138347C1 (en) Roll grooved pass in tube rolling mill
US20160175657A1 (en) Golf ball dimple profile
JP7346909B2 (en) positive pressure can
CN112492479B (en) Miniature microphone dust keeper and MEMS microphone
US20020104216A1 (en) Tapered fin and method of forming the same
US20220096118A1 (en) Medical material needle
JP2002068538A (en) Web winding method
US20160175656A1 (en) Golf ball dimple profile
JPH0415512A (en) Measuring method for flatness of strip
JP3370385B2 (en) Dull finish stainless steel plate
US20190076703A1 (en) Golf ball dimple profile
Hao et al. Vibrations of the guinea pig organ of Corti in the apical turn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746633

Country of ref document: EP

Kind code of ref document: A1