JPH0457733A - Lid-sealed type plastic container and its manufacture - Google Patents

Lid-sealed type plastic container and its manufacture

Info

Publication number
JPH0457733A
JPH0457733A JP2162931A JP16293190A JPH0457733A JP H0457733 A JPH0457733 A JP H0457733A JP 2162931 A JP2162931 A JP 2162931A JP 16293190 A JP16293190 A JP 16293190A JP H0457733 A JPH0457733 A JP H0457733A
Authority
JP
Japan
Prior art keywords
container
constituent unit
container body
plastic
plastic container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2162931A
Other languages
Japanese (ja)
Other versions
JPH0755703B2 (en
Inventor
Masao Ishinabe
雅夫 石鍋
Muneki Yamada
山田 宗機
Hiroo Ikegami
裕夫 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16293190A priority Critical patent/JPH0755703B2/en
Publication of JPH0457733A publication Critical patent/JPH0457733A/en
Publication of JPH0755703B2 publication Critical patent/JPH0755703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a major improvement in the strength to deformation under external pressure (or reduction in internal pressure) and add a fine characteristic appearance by juxtaposition of constituent unit planes in which the ridgeline-forming boundaries and their intersections jut out from the barrel relatively in relation to the constituent unit planes, and the constituent unit planes set contiguously in the axial direction of the barrel are ranged with a phase difference. CONSTITUTION:Quadrangles as constituent unit planes constitute a multiplane wall. In this multiplane wall, each of the constituent unit planes consists of substantially a rhombus and is gently curved in the form of an outward convex along the plane lines connecting (a)-(c) and (b)-(d) (along the plane lines connecting apexes and extending in the axial and circumferential directions). These constituent unit planes form the side of the container by their contiguous juxtaposition in the circumferential direction as well as in the axial direction with a phase difference of l/2. But the ridgeline-forming boundaries of the constituent unit planes of the multiplane wall are not arranged in the axial direction of the container. The juxtaposition of quadrangular constituent unit planes in this manner brings about an improvement much greater than is expected in their strength to deformation of the barrel under external pressure (or reduction in internal pressure).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンド部蓋封着型プラスチック容器、例えばヒ
ートシール容器やプラスチック缶に関するものであり、
より詳細には、外圧に対して座屈等が生じ難く、内容物
充填後の冷却過程或いはその後の保存中に於ける減圧変
形などに対する優れた耐性を有するエンド部蓋封看プラ
スチック容器及びその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a plastic container with a sealed end lid, such as a heat seal container or a plastic can.
More specifically, a plastic container with an end lid that is resistant to buckling due to external pressure and has excellent resistance to deformation under reduced pressure during the cooling process after filling the contents or during subsequent storage, and the manufacture thereof. Regarding the method.

(従来の技術) ヒートシールにより密封性能を付与したプラスチック容
器としては、熱可塑性樹脂から成形した容器本体と、金
属箔の両面に熱可塑性樹脂フィルムを積層した蓋とから
なり、容器本体は通常側が円筒状あるいは切頭円錐筒状
に成形され、そのエンド部にはフランジが形成され、こ
のフランジ面に前記蓋がピートシールされる。また、容
器本体は、熱可塑性樹脂の他に金属箔などを積層したも
のが用いられる場合がある。
(Prior art) A plastic container that has been given sealing performance by heat sealing consists of a container body molded from thermoplastic resin and a lid made of metal foil laminated with thermoplastic resin film on both sides. It is formed into a cylindrical shape or a truncated conical tube shape, and a flange is formed at the end thereof, and the lid is peat-sealed to the flange surface. Further, the container body may be made of a layered material such as metal foil in addition to thermoplastic resin.

また、プラスチック容器胴と金属製蓋とそれらの係合′
a部同士で巻締めして成るいわゆるプラスチック缶は実
公昭37−25894号公報にも見られる通り古くから
知られており、プラスチック容器胴はパイプからブロー
成形したり、カップ素材をブロー成形成いはしごき加工
して成形している。
In addition, the engagement between the plastic container body and the metal lid
So-called plastic cans, which are made by wrapping the A parts together, have been known for a long time, as seen in Japanese Utility Model Publication No. 37-25894, and the plastic container body can be made by blow molding from a pipe or by blow molding a cup material. It is molded by ladder processing.

プラスチック容器に用いる樹脂としては、ポリエステル
、ポリアミド、ポリカーボネート、ポリ塩化ビニリデン
、アクリロニトリル重合体、スチレン系樹脂、ポリプロ
ピレン、及びエチレンビニルアルコール等が挙げられ、
これらのものが用途に応じて単独、ブレンドまたは多層
化等して用いられる。
Examples of resins used for plastic containers include polyester, polyamide, polycarbonate, polyvinylidene chloride, acrylonitrile polymer, styrene resin, polypropylene, and ethylene vinyl alcohol.
These materials may be used alone, in a blend, or in a multilayered form depending on the purpose.

(発明が解決しようとする問題点) 通常、プラスチックボトル(エンド部を蓋で封じ着けな
いもの)の胴部には、周方向或いは軸方向にビードが形
成され外部から押圧に対する補強がなされて藝る。しか
しながら、胴部に周状のビード或いは軸方向のビードを
設けたとしても5 温度変化による減圧変形及び押圧変
形が容易に生じる。減圧変形は容器の外観を損なうが、
プラスチンク缶の場合は回復不能な変形となる場合があ
る。
(Problem to be solved by the invention) Usually, the body of a plastic bottle (one whose end is not sealed with a lid) has beads formed in the circumferential or axial direction to provide reinforcement against external pressure. Ru. However, even if a circumferential bead or an axial bead is provided on the body, decompression deformation and press deformation due to temperature changes easily occur. Decompression deformation damages the appearance of the container, but
In the case of plastic cans, irreversible deformation may occur.

また、押圧変形、減圧変形は容器の座屈を伴い容器破壊
の誘因になる。
In addition, pressure deformation and depressurization deformation cause the container to buckle and cause the container to break.

プラスチック容器においては、素材コストを低減させ且
つ容器自体を軽量化することを目的として、素材の厚み
を回込的に薄くすべく多くの努力が払われている。しか
し、プラスチック容器の肉厚を更に薄くすれば現在以上
に容器に座屈が生じるのは明かである。
In the case of plastic containers, many efforts are being made to reduce the thickness of the material in order to reduce the material cost and to make the container itself lighter. However, it is clear that if the wall thickness of the plastic container is made even thinner, the container will buckle even more than it currently does.

また、缶等の巻締め時においては、通常缶胴は内容物が
入った状態で外側から把持される。缶が金属等のスチー
ルの場合は所定の剛性を有しているため問題ないが、プ
ラスチック缶等の場合には把持加減に微妙な訓整を要し
、把持が強すぎる場合には缶胴に異形変形成いは座屈変
形が生じ巻締めが困難となる。
Furthermore, when sealing a can or the like, the can body is usually gripped from the outside while the contents are inside. If the can is made of metal or other steel, there is no problem as it has a certain level of rigidity, but if it is a plastic can, delicate training is required to grip the can, and if the can is gripped too tightly, the can body may become damaged. Unusual deformation or buckling deformation occurs, making it difficult to tighten.

従って、本発明の目的は、従来のビードに代わる新規補
強構造が導入され、外圧(乃至内部減圧)による変形強
度が著しく向上し、外観特性が良好で、しかもプラスチ
ック缶においては缶巻締め時の操作が容易となるエンド
部蓋封着型プラスチック容器を提供すること及びその製
造方法を提供することにある。
Therefore, an object of the present invention is to introduce a new reinforcing structure to replace the conventional bead, which significantly improves the deformation strength due to external pressure (or internal depressurization), and has good appearance characteristics. It is an object of the present invention to provide a plastic container with a sealed end lid that is easy to operate, and to provide a method for manufacturing the same.

本発明の他の目的は、プラスチック容器外面が多面体に
基づく特異な立体感と美観とを備え、内容物の喫飲等に
際して把持も容易であり、しかも打痕に対する耐性をも
有しているエンド部蓋封看型プラスチック容器を提供す
ることにある。
Another object of the present invention is that the outer surface of the plastic container has a unique three-dimensional effect and aesthetic appearance based on a polyhedron, is easy to grasp when drinking the contents, and is resistant to dents. An object of the present invention is to provide a plastic container with a closed lid.

(問題を解決するための手段) 本発明によれば、エンド部に蓋等が、接着、ヒートシー
ル或いは巻締めによって封着されるプラスチック容器に
おいて、 容器胴は円筒或いは切願円錐筒状であり、該容器胴の少
なくとも一部に周状多面体壁が形成され、該多面体壁は
構成単位面と、構成単位面同士が接する境界稜線及び境
界稜線同士が交わる交叉部を有し、該境界12線及び交
叉部は構成単位面に比べて相対的に容器胴外側に凸とな
っており、構成単位面の隣合った容器側一方向配列が位
相差をなして配置されていることを特徴とする外圧に対
して耐変形性を有するエンド部封着型プラスチック容器
が提供される。
(Means for Solving the Problem) According to the present invention, in a plastic container in which a lid or the like is sealed to an end portion by adhesion, heat sealing, or seaming, the container body has a cylindrical or conical shape, A circumferential polyhedral wall is formed in at least a portion of the container body, and the polyhedral wall has a constituent unit face, a boundary ridgeline where the constituent unit faces touch each other, and an intersection where the boundary ridgelines intersect, and the boundary 12 line and The intersecting part is relatively convex to the outside of the container body compared to the structural unit surface, and the adjacent container side unidirectional arrangement of the structural unit surface is arranged with a phase difference. Provided is an end-sealed plastic container that is resistant to deformation.

本発明によればまた、エンド部に蓋等が接着、ヒートシ
ール或いは巻締めによって封着されるプラスチック容器
の製造方法において、容器胴素材を円筒或いは切頭円錐
筒状に形成すると共に、該容器胴の外側に割型を配し、
容器胴内部から圧力をかけて容器側壁を割型内面に押し
つけて、容器胴の少なくとも一部に周状多面体壁を形成
し、且つ該多面体壁が構成単位面と、構成単位面同士が
接する境界稜線及び境界I2&&同士が交わる交叉部を
有し、該境界稜線及び交叉部は構成単位面に比べて相対
的に容器胴外側に凸となっており、構成単位面の隣合っ
た容器胴軸方向配列が位相差をなして配置するように、
該割型で周状多面体壁を形成することを特徴とするエン
ド部蓋封着型プラスチック容器の製造方法が提供される
According to the present invention, there is also a method for manufacturing a plastic container in which a lid or the like is sealed to the end portion by adhesion, heat sealing, or seaming, in which the container body material is formed into a cylindrical or truncated conical shape, and the container A split mold is placed on the outside of the body,
Pressure is applied from inside the container body to press the container side wall against the inner surface of the split mold to form a circumferential polyhedral wall on at least a portion of the container body, and the polyhedral wall forms a boundary between a constituent unit surface and a boundary where the constituent unit surfaces contact each other. It has an intersection where the ridge line and the boundary I2&& intersect with each other, and the boundary ridge line and the intersection are relatively convex to the outside of the container body compared to the constituent unit plane, and the boundary ridge line and the intersection part are relatively convex to the outside of the container body compared to the constituent unit plane in the axial direction of the container body adjacent to the constituent unit plane. So that the arrays are arranged with a phase difference,
There is provided a method for manufacturing an end-lid sealed plastic container, characterized in that a circumferential polyhedral wall is formed using the split mold.

(作用) 本発明は、プラスチック容器胴、特に円筒状或いは切頭
円錐筒状のものに多面体壁を形成するものであり、この
多面体壁の構成単位を境界稜線及び交叉点より相対的に
内部に向けて凸となるように形成し、その単位面の隣合
った容器M軸方向配列を位相、特に1/2の位相差をな
して形成することにより、容器が外圧に対して極めて耐
変形性を有するという知見に基づくものである。しかも
、容器胴の全面だけでなく、一部に形成した場合、特に
容器胴の中央部に形成した場合には十分な耐変形性を有
することを見いたし、また、このような場合、容器胴の
全面に対して周状多面体壁が10%以上であれば充分な
作用効果を見ることができる。
(Function) The present invention forms a polyhedral wall on a plastic container body, particularly one having a cylindrical shape or a truncated conical shape. By forming the unit surfaces so that they are convex and arranging adjacent containers in the M-axis direction with a phase, especially a phase difference of 1/2, the containers are extremely resistant to deformation against external pressure. This is based on the knowledge that In addition, we have found that when it is formed not only on the entire surface of the container body but also on a part of the container body, especially when it is formed in the center of the container body, it has sufficient deformation resistance. If the circumferential polyhedral wall accounts for 10% or more of the entire surface, sufficient effects can be obtained.

これらの多面体壁は容器胴の複数の位置に簡単に形成す
ることができるものであり、本発明においては前記容器
胴の周に存在する構成単位面の数が重要であり、周に存
在する構成単位面の数nは容4#側軸方向に位相してい
るものを含めないで数えたものが3以上、特に3乃至1
4の範囲にあることが重要である。特に後述する四辺形
に於いては4乃至12が望ましく、六角形に於いては3
乃至10が望ましい。
These polyhedral walls can be easily formed at multiple positions on the container body, and in the present invention, the number of constituent unit faces present around the circumference of the container body is important, and the number of constituent unit faces present around the circumference is important. The number n of unit surfaces is 3 or more, especially 3 to 1, not including those that are phased in the axial direction on the 4# side.
It is important that the value be within the range of 4. In particular, 4 to 12 is preferable for quadrilaterals, which will be described later, and 3 for hexagons.
A value between 10 and 10 is desirable.

第4図はプラスチック缶胴の空容器耐外圧比(構成単位
面を施した場合とそれをしなかった場合の比)とn数と
の関係時線区である。第4図に示すようにnの増加と共
に作用効果の低下がみられ、nが14を越えると空容器
耐外圧の作用効果がほとんどみられない。一方、nが3
を下回る場合ではプラスチック缶胴に充分な多面壁面を
形成することができず、また、田面での曲げが激しくな
るため外観も悪くする。尚、容器胴は円筒状であっても
、切頭円錐状であってもよい。
FIG. 4 shows the relationship between the empty container external pressure resistance ratio of the plastic can body (the ratio of the case where the structural unit surface is applied and the case where it is not applied) and the number n. As shown in FIG. 4, as n increases, the effect decreases, and when n exceeds 14, the effect of the empty container's external pressure resistance is hardly seen. On the other hand, n is 3
If it is less than 100 ml, it will not be possible to form a sufficient multifaceted wall surface on the plastic can body, and the appearance will be poor because the surface will be severely bent. Note that the container body may be cylindrical or truncated conical.

プラスチック容a膳に施される構成単位面は後述するよ
うに四辺形、六角形、角部が丸くなったほぼ円に近いも
のであっても、前述したように多面壁が内部に凸となっ
た構成単位面からなり、それが位相、特にほぼ1/2位
相した構成単位面で形成されていると、十分な耐変形性
を有するものである。
Even if the constituent unit surfaces applied to the plastic tray are quadrilaterals, hexagons, or almost circular with rounded corners, as described below, the multifaceted walls are convex inward as described above. If it is formed of constituent unit planes that are in phase, especially constituent unit planes that are approximately 1/2 in phase, it will have sufficient deformation resistance.

このような構成でくぼませた容量用に於いて、通常の従
来の容器胴を側面から見た場合、容器胴の輪郭は軸方向
にiII線となって現れるが、’Wi 5−B図、第8
図、第12−B図及び第18図に示すように構成単位面
は軸方向が湾曲やV形状のくぼみとなって表れる。この
ような単位面の構成と。
When a conventional conventional container body is viewed from the side for a recessed capacity with such a configuration, the outline of the container body appears as an iii line in the axial direction, but the outline of the container body appears as an iii line in the axial direction. 8th
As shown in FIGS. 12-B and 18, the constituent unit surfaces appear curved in the axial direction or as V-shaped depressions. With the configuration of such a unit surface.

はぼ1/2の位相配置は容器胴に耐変形性を付与し、し
かも多面体壁形成前の容器胴表面積と多面体壁形成後の
容器胴表面積とを実質的にほぼ等しく保ちながら成形が
可能となる。このような多面体壁を有するプラスチック
容器の胴は押圧に対しても減圧に対しても耐変形性かあ
り耐座屈性がある。しかもプラスチック缶の場合、巻締
め部の周辺にこのような多面体壁を形成したとき巻締め
時の把持が容易になる。
The half-shaped phase arrangement imparts deformation resistance to the container body, and also enables molding while keeping the surface area of the container body before the formation of the polyhedral wall substantially equal to the surface area of the container body after the formation of the polyhedral wall. Become. The body of a plastic container having such a polyhedral wall is resistant to deformation and buckling, both under pressure and under reduced pressure. Moreover, in the case of plastic cans, when such a polyhedral wall is formed around the seaming part, it becomes easier to hold the plastic can during seaming.

(発明の好ましい実施態様) 以下、添付図面に従って本発明に係るエンド部蓋封着型
プラスチック容器の好ましい実施態様を詳説する。
(Preferred Embodiments of the Invention) Hereinafter, preferred embodiments of the end lid sealed plastic container according to the present invention will be described in detail with reference to the accompanying drawings.

本発明に係るプラスチック容器は、$1図に示すように
パイプを延伸しく第1図(A))、  プロー成形にか
け(311図(B))、フランジング加工をして(II
11図(C))容器胴素材が形成される。また、場合に
よっては+  92図に示すように射出成形カップをし
ごき(II2図(A))、カットしく1r2図(B))
、ブロー成形しく12図(C))、フランジング加工を
して(1r2図(D))一端閉塞型容器胴素材が形成さ
れる。これらは主にプラスチック缶として使用できる。
As shown in Figure 1, the plastic container according to the present invention is produced by stretching a pipe (Figure 1 (A)), subjecting it to plow molding (Figure 311 (B)), and performing flanging (II).
Figure 11(C)) A container body material is formed. In addition, in some cases, the injection molded cup may be squeezed as shown in Figure 92 (Figure II2 (A)) or cut (Figure 1r2 (B)).
Then, blow molding is performed (Figure 12 (C)) and flanging is performed (Figure 1r2 (D)) to form a container body material with one end closed. These can primarily be used as plastic cans.

また、113図に示すように一枚の熱可塑性樹脂を熟成
形(サーモフォーミング:真空成形、圧空成形、真空/
圧空成形)し、断面台形状の切頭円錐状の容器素材(第
3図(B))を成形することができる。この容器素材に
はエンド部にフランジが形成され蓋がヒートシールされ
るようになっている。
In addition, as shown in Figure 113, a sheet of thermoplastic resin can be aged (thermoforming: vacuum forming, pressure forming, vacuum/
A truncated conical container material (FIG. 3(B)) with a trapezoidal cross section can be formed by air pressure forming). This container material has a flange formed at the end so that the lid can be heat-sealed.

このような容器素材の外側周囲には、図示しない割型が
配され、割型の形状は後述するそれぞれの多面壁の形状
に合わせて構成される。tFJ型を配したのち容器素材
内が加圧されて容器側壁が割型に密着し、後述する多面
体壁を有するプラスチック容器が成形される。尚1割型
はII l II (B)、第2!ill (C)のプ
ロー成形時に配してもよい。又、多面体壁は射出成形、
熱成形、プレス成形、ブロー成形によって成形した一端
閉塞型容器胴素材に後加工によって形成する事も可能で
ある。すなわち容器胴を胴素材樹脂により最適な温度に
加温後、雄型/4型を使用して多面的壁を形成する事が
出采る。
A split mold (not shown) is disposed around the outside of such a container material, and the shape of the split mold is configured to match the shape of each multifaceted wall, which will be described later. After placing the tFJ mold, the inside of the container material is pressurized so that the side walls of the container come into close contact with the split molds, forming a plastic container having a polyhedral wall, which will be described later. In addition, the 10% type is II l II (B), the second! It may be placed during blow molding of ill (C). In addition, the polyhedral wall is injection molded,
It is also possible to form it by post-processing on a one-end closed type container body material formed by thermoforming, press molding, or blow molding. That is, after the container body is heated to the optimum temperature by the body material resin, a multifaceted wall is formed using the male mold/4 mold.

以下、各種構成単位面の特徴を示す。The characteristics of various structural unit surfaces are shown below.

先ず、本発明においては多面体壁の構成単位面を四辺形
で構成したちのある。即ち、多面壁面では、第6rgJ
(a)(b)に示すように構成単位面がほぼひし形に成
っており、a−C及びb−dを結ぶ面線沿い(頂点と頂
点とを結ぶ軸及び周方向に延びる面線沿い。)は、滑ら
かに湾曲部に成っており、この湾曲部は内向きに凸とな
っている。
First, in the present invention, the constituent unit faces of the polyhedral wall are constructed of quadrilaterals. That is, on a multifaceted wall surface, the 6th rgJ
As shown in (a) and (b), the constituent unit surfaces are approximately diamond-shaped, and along the surface line connecting a-C and b-d (along the surface line extending in the axis and circumferential direction connecting the vertices). ) forms a smoothly curved part, and this curved part is convex inward.

このような構成単位面は周方向に隣合って配列されると
共に、軸方向に172の位相差をなして配列されて容a
側面を形成している。しかし、このような多面壁面の構
成単位の境界稜線は容器の軸方向に沿わせて配置されて
おらず、四辺形構成単位面においてはこのような配置が
、容器胴の外圧(叉は胴肉の減圧)による変形強度に予
想外の向上をもたらす。このメカニズムについては定か
でないが、ひし形構成単位面が容器側壁に交互にがつち
り導入組み込まれるためであることが理解される。
Such constituent unit surfaces are arranged adjacent to each other in the circumferential direction, and are arranged with a phase difference of 172 in the axial direction, so that the capacity a
forming the sides. However, the boundary ridges of the structural units of such multifaceted wall surfaces are not arranged along the axial direction of the container, and in the case of quadrilateral structural unit surfaces, this arrangement is difficult to avoid due to the external pressure (or body wall) of the container body. This results in an unexpected improvement in the deformation strength due to the decompression of Although the mechanism for this is not clear, it is understood that it is because the rhombic structural unit surfaces are alternately introduced and incorporated into the side wall of the container.

第6図に示すように多面壁面はひし形abcdが構成単
位面となっている。ひし形における各辺ab、bc、c
d、daは容器側面に形成される境界稜線による辺であ
り、これらの結合交叉部は外向きに凸となる頂点a、 
 b、  c、dである。また、前述のようにbdを結
ぶ線部は滑らかな湾曲部となっており、尚、ひし形寸法
は、bdの長さをWとし、aCの高さLとすると、W及
びLは構成単位面の最大巾及び軸方向の最大長さとなる
As shown in FIG. 6, the constituent unit surfaces of the multifaceted wall surface are rhombuses abcd. Each side ab, bc, c of a diamond
d and da are sides formed by the boundary ridge line formed on the side surface of the container, and their joint intersection is an outwardly convex vertex a,
b, c, d. In addition, as mentioned above, the line connecting bd is a smooth curved part, and the rhombus dimension is the length of bd is W and the height of aC is L, W and L are the constituent unit planes. The maximum width and maximum length in the axial direction.

W及びLの関係は、本発明の容器詰用缶の強度を高める
上で重要であると共に、容器の外観も大きく影響するも
のである。即ち、WとLどの関係は、0. 2≦L /
 w≦4であることが望ましく、これは四辺形の構成単
位面に限らず、六角形等の構成単位面においても同様で
ある。119図に示すようにL / wが前記範囲を越
えると、容器の外観には余り問題はないが、本来の目的
である容器ρ外圧が低下する。一方、L / wが前記
範囲より小さい場合には、容器耐外圧が良好であるもの
の容1sjll自体は軸圧縮による変形が生じやすい。
The relationship between W and L is important in increasing the strength of the container can of the present invention, and also greatly affects the appearance of the container. That is, the relationship between W and L is 0. 2≦L/
It is desirable that w≦4, and this is true not only for quadrilateral structural unit surfaces but also for hexagonal and other structural unit surfaces. As shown in Figure 119, when L/w exceeds the above range, there is no problem with the appearance of the container, but the external pressure of the container ρ, which is the original purpose, decreases. On the other hand, if L/w is smaller than the above range, although the container has good external pressure resistance, the container itself is likely to be deformed due to axial compression.

これは、−船釣なパイプ材の使用であれば問題ないが、
容器胴にとっては重要な問題であることが理解される。
This is not a problem if you use pipe material for boat fishing, but
It is understood that this is an important issue for container bodies.

また、L / wがこのような範囲以下では外観も悪く
なり、容器表面の印刷像の見栄え等を悪くする虞がある
Furthermore, if L/w is below this range, the appearance will be poor, and there is a risk that the appearance of the printed image on the surface of the container will be deteriorated.

また、第5−C図に示すひし形の構成単位面の各頂点a
、  b叉はdは、実質的に径方向に最も突出し、容器
胴の中心0の半径rの円周上にほぼ位置し、構成単位面
の湾曲部のひし形の中央部(b−dの中点)は径の内方
向に最も位置している。
In addition, each vertex a of the rhombic constituent unit surface shown in Figure 5-C
, b or d substantially protrudes most in the radial direction, is located approximately on the circumference of the center 0 of the container body and has a radius r, and is located at the center of the rhombus of the curved part of the constituent unit surface (between b and d). point) is located most inward of the diameter.

本発明において、各辺が頂点を結ぶ稜線となり、しかも
ひし形の中央部が湾曲されて谷部となり、この多面壁面
を容器胴に形成させると、多面壁面形成前の容器胴表面
積と多面壁面形成後の容器胴表面積とを実質的に等しく
保つことができる。
In the present invention, each side becomes a ridgeline connecting the vertices, and the central part of the rhombus is curved to form a trough, and when this multifaceted wall is formed on the container body, the container body surface area before and after the multifaceted wall is formed. The surface area of the container body can be kept substantially equal to the surface area of the container body.

このようなプラスチック容器は、減圧耐性、押圧附性共
に向上し、第5−B図に示す巻締め部における金属蓋の
封着が簡単にできる。また、周方向の谷部は滑らかな湾
曲であり、外観上デザインを付す場合の再現性がよく見
栄えが向上し、容器内での内容物の残留が従来の円筒容
器と同様にほとんどない。尚、第7図は日清状の缶容器
について示したが、第8図に示すように切頭円錐筒状の
ヒートシール蓋付き容器に多面体壁を形成した場合でも
同様な作用を有している。
Such a plastic container has improved resistance to reduced pressure and pressure resistance, and the metal lid can be easily sealed at the seaming portion shown in FIG. 5-B. In addition, the circumferential troughs are smoothly curved, which improves the reproducibility of external designs and improves the appearance, and there is almost no residual content inside the container, similar to conventional cylindrical containers. Although Fig. 7 shows a Nissin-like can container, the same effect can be obtained even when a polyhedral wall is formed on a truncated conical cylindrical container with a heat-sealed lid, as shown in Fig. 8. There is.

また、本発明のプラスチック容器においては、構成単位
面の中央部の深さfid (多面壁を有しないとしたと
きの容器胴外周面からくぼまされたりが重要である。容
器胴の半径をrとすると、前記構成単位面の交叉点部は
成形上若干の誤差がでるがほぼこの容器胴の半径上に位
置する。一方、周方向の交叉点部同士bdを結ぶ線(四
辺形においては構成単位面の最大巾Wとなる。)上の中
点から容器胴の中心0までの距離をSとする。この場合
構成単位面の深さを表す指標として容器胴の半径rとS
との差をd、=r−sとすると、構成単位面の深さdは
0. 5≦d/d、≦2であることが重要である。
In addition, in the plastic container of the present invention, it is important that the depth fid of the central part of the constituent unit surface (which is depressed from the outer circumferential surface of the container body when it does not have a multifaceted wall) is defined as the radius of the container body. Then, the intersection point of the structural unit plane is located approximately on the radius of this container body, although there is a slight error in forming.On the other hand, the line connecting the intersection points bd in the circumferential direction (in the case of a quadrilateral, the structural unit (The maximum width of the surface is W.) Let S be the distance from the midpoint on the top to the center 0 of the container body.In this case, the radius r and S of the container body are used as an index representing the depth of the constituent unit surface.
If the difference between the It is important that 5≦d/d and ≦2.

第10図は構成単位面における深さ比d/d、と空容器
耐外圧との関係をプロットした図である。
FIG. 10 is a diagram plotting the relationship between the depth ratio d/d in the structural unit plane and the external pressure resistance of the empty container.

第10図に示すように構成単位面の深さadが前記関係
の範囲より小さいと、第4図に示す充分な外圧に対する
耐性作用が得られない。一方、深さAdが前記範囲より
大であると、容器の軸方向からの座屈が生じやすい。更
に印刷上の外観も悪化する。
As shown in FIG. 10, if the depth ad of the structural unit surface is smaller than the range of the above relationship, sufficient resistance against external pressure as shown in FIG. 4 cannot be obtained. On the other hand, if the depth Ad is larger than the above range, buckling in the axial direction of the container is likely to occur. Furthermore, the printed appearance also deteriorates.

また、d、は構成単位面の最大巾Wと密接に関係してお
り、Wは前述した軸方向の最大長さLと関係している。
Further, d is closely related to the maximum width W of the constituent unit surface, and W is related to the maximum length L in the axial direction described above.

よって、深さtelはこれらW及びLと密接な関係にあ
り、これらの長さによってその許容範囲も変化するもの
である。例えば、四辺形の構成単位面においては、d、
=r−sであり、s = r cos(π/n)+ w
=2  rsin(π/ n )より、d、 =1/2
・w (sin(π/n)) −” (1−cos(π
/n))となり、dつが最大巾Wと周方向に存在する構
成単位面の数nによって決定されることが理解され。
Therefore, the depth tel is closely related to these W and L, and its permissible range also changes depending on these lengths. For example, in the constituent unit plane of a quadrilateral, d,
= r - s, and s = r cos(π/n) + w
=2 From rsin(π/n), d, =1/2
・w (sin(π/n)) −” (1-cos(π
/n)), and it is understood that d is determined by the maximum width W and the number n of constituent unit surfaces present in the circumferential direction.

深さ量dはWが大きくなればそのとりうる範囲が大きな
値となり、nが大きくなればそのとりうる範囲も小さく
なる。
As W becomes larger, the possible range of the depth d becomes larger, and as n becomes larger, the possible range becomes smaller.

このような構成単位面の効果は第7図に示すように容器
胴の中央部に形成したものについても見られ、このよう
に中央部に形成したものは端部のみに形成したもの比べ
作用効果が大となる傾向にある。また、第7図の容器に
おいては少なくとも容器胴全面に対して10%以上形成
されることが好ましく、このような形成面積においては
前述した作用効果が充分に見られる。
This effect of the structural unit surface can also be seen when the unit surface is formed in the center of the container body, as shown in Figure 7, and the effect of the structure formed in the center is greater than that formed only at the ends. tends to be large. Further, in the container shown in FIG. 7, it is preferable that at least 10% or more of the entire surface of the container body is formed, and the above-mentioned effects can be sufficiently observed in such a forming area.

また、構成単位面が四辺形となる状態から更に進めて、
前記jI6図の構成単位面である四辺形の中央部に完全
な折り目を形成してjlll−A図及び第12−A図に
示すように最が構成単位面を二等辺三角形とすることを
特徴とすることができる。
Also, proceeding further from the state where the constituent unit surface is a quadrilateral,
The feature is that a complete fold is formed in the center of the quadrilateral which is the constituent unit plane in the above-mentioned figure jI6, so that the constituent unit plane at the end becomes an isosceles triangle as shown in figure jll-A and figure 12-A. It can be done.

この場合の構成単位面の軸断面はV形状になっており、
1112−A図に示すように、二等辺三角形ABCが最
小面構成単位(基本面構成単位)となっており、この二
等辺三角形における各辺AB、BC及びCAはそれぞれ
2個の二等辺三角形で共有される関係となっている。尚
、この二等辺三角形の形状及び寸法は、底辺BCの長さ
をW、その三角形の高さをhとして以下表示するものと
する。
In this case, the axial cross section of the constituent unit surface is V-shaped,
As shown in Figure 1112-A, the isosceles triangle ABC is the minimum surface unit (basic surface unit), and each side AB, BC, and CA of this isosceles triangle are two isosceles triangles. It is a shared relationship. The shape and dimensions of this isosceles triangle will be expressed below with the length of the base BC being W and the height of the triangle being h.

本発明における最小面構成単位の配置では、頂点2が容
器胴の径外方向に最も突出した位置にあり、底辺3が容
器胴の径内方向にくぼんだ位置にあり、対辺4.4はそ
れらの中間の位置にあり、これらで構成される多面体は
、対4.4を稜線とし、底辺3を谷とした多面体壁と言
うことができる。
In the arrangement of the minimum surface constituent units in the present invention, the apex 2 is at the most protruding position in the radially outward direction of the container body, the base 3 is in the position concave in the radially inward direction of the container body, and the opposite sides 4 and 4 are The polyhedron composed of these can be said to be a polyhedral wall with the pair 4.4 as the ridgeline and the base 3 as the valley.

またこのような場合においても、2h/w(h= 1/
2L )の関係、及び構成単位面のn数は四辺形と同様
な値の範囲であることが重要であり、このような場合に
容器耐外圧性が充分に発揮される。
Also in such a case, 2h/w (h= 1/
It is important that the relationship of 2L) and the number n of the constituent unit planes be in the same value range as that of a quadrilateral, and in such cases the external pressure resistance of the container is fully exhibited.

また、このような構成単位面に於いては、構成単位面の
深さ量dは成形上の若干の誤差を無視するとほぼd、に
等しくなっており、多面体形成前の容器胴表面積と多面
体形成後の容器胴表面積とを実質等しく保つことが可能
であり、構成単位面内の厚み分布が均一になり容器耐外
圧性が充分に発揮される。
In addition, in such a constituent unit surface, the depth d of the constituent unit surface is approximately equal to d, ignoring slight errors in forming, and the surface area of the container body before polyhedron formation and the polyhedron formation It is possible to keep the surface area of the subsequent container body substantially equal, and the thickness distribution within the plane of the structural unit becomes uniform, so that the container exhibits sufficient external pressure resistance.

更に、前記!12図の構成単位面を強化するために、く
ぼみである構成単位面を軸方向に沿って一部曲げてもよ
い(1113図)。このような構成単位面に於いては、
構成単位面の深さ量dは成形上の若干の誤差を無視する
とほぼ2dつまでにすることが可能であり、第4図に示
す空容器耐外圧の向上が大となり機械的強度が充分に達
成され、加工後の容器体に残留する応力も著しく少なく
、レトルト殺菌やその後の経時における容器の収縮率を
抑制することが出来、幾何学的外観を充分に維持され把
持にすぐれている。
Furthermore, the above! In order to strengthen the structural unit surface shown in FIG. 12, the structural unit surface, which is a depression, may be partially bent along the axial direction (FIG. 1113). In terms of such constituent units,
The depth d of the constituent unit surface can be reduced to approximately 2d if slight errors in molding are ignored, and the external pressure resistance of the empty container shown in Fig. 4 is greatly improved and the mechanical strength is sufficient. This has been achieved, and the stress remaining in the container body after processing is extremely small, the shrinkage rate of the container during retort sterilization and subsequent aging can be suppressed, the geometric appearance is sufficiently maintained, and the grip is excellent.

また1本発明においては構成単位面を六角形とすること
ができる。この場合も、構l!i単位面である六角形は
容器胴軸方向に対して、内部に向けてくぼみがあり、第
14図または@ 15図に示すように各構成単位面は軸
方向に対してほぼ172位相して配置される。また、こ
のような構成単位を持つ容器胴においても周に存在する
単位面の数nが重要であり、その数nは3乃至14であ
ることが望ましい。そして、このような構成にあっても
、L/wの比が重要であり、0. 2≦L / w≦4
であることが望ましい。また、この場合の構成単位面の
最大巾は第15図のように必ずしも構成単位面の交叉点
部でなく、境界稜線上の点同士を結ぶ長さとなる場合が
あり、しかも軸方向の最大長さLは第14図に示すよう
に必ずしも構成単位面の交叉点部ではなく、境界稜線上
の点同士を結ぶ長さとなる。更に、このような構成単位
面の深さ量dも前記四辺形のものと同様にd、の関係で
前記範囲を満たすことが望ましい。なお、d、における
Wの関係は、前述のように第15図にあっては稜線上の
点同士を結ぶ最大巾である。
Further, in one aspect of the present invention, the constituent unit planes can be hexagonal. In this case, too! The hexagonal shape, which is the i unit surface, has a depression toward the inside with respect to the axial direction of the container body, and as shown in Figure 14 or @ 15, each constituent unit surface has approximately 172 phases in the axial direction. Placed. Also, in a container body having such a structural unit, the number n of unit surfaces present around the circumference is important, and it is desirable that the number n is 3 to 14. Even in such a configuration, the L/w ratio is important, and 0. 2≦L/w≦4
It is desirable that In addition, the maximum width of the constituent unit planes in this case is not necessarily the intersection of the constituent unit planes as shown in Figure 15, but may be the length connecting points on the boundary ridge line, and the maximum width in the axial direction. As shown in FIG. 14, the length L is not necessarily the intersection point of the constituent unit planes, but is the length that connects the points on the boundary ridge line. Further, it is desirable that the depth d of such a constituent unit surface satisfies the above range in the same manner as that of the quadrilateral. Note that the relationship of W in d is the maximum width connecting points on the ridgeline in FIG. 15 as described above.

更に、$16UgJ乃至第17図に示すように各構成単
位面の境界稜線部30及び境界稜線同士が交わる頂点3
2を鋭角な角部とすることなく一定の曲率半径Rを有す
るように形成することができる。
Furthermore, as shown in FIG.
2 can be formed to have a constant radius of curvature R without having an acute corner.

またRは板厚を及び容@Mの半径りに基づいて関係付け
ることができ、Rはt≦R≦(2/3) Dであること
か望ましい。また、境界稜線部付近のこのような曲げは
1つのカーブ、即ち12線付近に曲げRの最大箇所が1
箇所のみであってもよく、また、複数の一定の曲げRを
有したものが複数箇所分散して存在していても問題ない
が、稜線付近に形成されるRは前記範囲にあることが望
ましい。
Further, R can be related to the plate thickness and the radius of the volume @M, and it is desirable that R satisfies t≦R≦(2/3)D. In addition, such bending near the boundary ridgeline is one curve, that is, the maximum bending radius is 1 near the 12th line.
It may be only at one location, or there is no problem even if there are multiple fixed bending R in multiple locations, but it is desirable that the R formed near the ridge line is within the above range. .

尚、第18図に示すように構成単位面が四辺形である場
合に於いてもRを形成することができるのはいうまでも
ない。
It goes without saying that R can be formed even when the constituent unit planes are quadrilaterals as shown in FIG.

本発明は、プラスチック樹脂等を筒状に成形し。In the present invention, plastic resin or the like is molded into a cylindrical shape.

この容器胴の両端を天地蓋と巻締して成る所謂スリーピ
ース缶や、樹脂をブロー成形に付し、この有底容器胴の
上端に蓋を巻締して成る所謂ツーピース缶が使用できる
。更に、プラスチック樹脂を切頭円錐筒状に成形し、こ
の容器の上端にフランジ面を形成し、該フランジに蓋を
ヒートシールしたものが使用できる。
A so-called three-piece can, in which both ends of the container body are secured to a top and bottom lid, or a so-called two-piece can, in which resin is blow-molded and a lid is secured to the upper end of the bottomed container body, can be used. Furthermore, a container can be used in which a plastic resin is molded into a truncated conical tube shape, a flange surface is formed at the upper end of the container, and a lid is heat-sealed to the flange.

容器樹脂 本発明では、容器樹脂として、ポリエステル、ポリプロ
ピレン系樹脂、ポリカーボネート、スチレン系樹脂、ナ
イロン系樹脂等が広く適用できる。
Container Resin In the present invention, polyester, polypropylene resin, polycarbonate, styrene resin, nylon resin, etc. can be widely used as the container resin.

このなかでも特に熱可塑性ポリエステルが望ましい。ま
た、バリアー性を保持するため、容器胴はプラスチック
とアルミ箔、ブリキ箔等を積層したラミネートであって
もよい。
Among these, thermoplastic polyester is particularly desirable. Further, in order to maintain barrier properties, the container body may be a laminate of plastic, aluminum foil, tin foil, or the like.

本発明の容器胴にあっては押圧耐性があるため。This is because the container body of the present invention has pressure resistance.

プラスチック缶用容器の巻締め時に耐え得る容器胴の剛
性を物理的にかなり向上できる。
Physically, the rigidity of the container body that can withstand the tightening of plastic can containers can be significantly improved.

金属蓋及びヒートシール蓋 本発明において、金属蓋は、錫鍍鋼板、ティン・フリー
・スチール(電解クロム酸処理間@)等の各種表面処理
鋼板やアルミニウム等の軽金属から成り、表面に、エポ
キシ−フェノール系塗料、エポキシ−ウレア系塗料、エ
ポキシ−アクリル系塗料、エポキシ−ビニル系塗料、ビ
ニル−フェノール系塗料等の保護塗膜を設けたものが使
用される。このような缶蓋の周囲には、容器胴の巻締め
用端部と係合させるための周状溝部を設け、この溝内に
密封用ゴム組成物がライニングされる。また、缶蓋のセ
ンターパネル部には、それ自体公知の易開封性機構を設
けることができる。
Metal lid and heat-sealed lid In the present invention, the metal lid is made of various surface-treated steel sheets such as tin-plated steel sheets and tin-free steel (electrolytic chromic acid treated @), and light metals such as aluminum, and is coated with epoxy on the surface. A coating provided with a protective coating such as a phenol paint, an epoxy-urea paint, an epoxy-acrylic paint, an epoxy-vinyl paint, or a vinyl-phenol paint is used. A circumferential groove is provided around the periphery of such a can lid for engagement with the seaming end of the container body, and this groove is lined with a sealing rubber composition. Further, the center panel portion of the can lid can be provided with a known easy-opening mechanism.

ヒートシール蓋としては、それ自体公知の金属箔の両面
を熱可塑性樹脂フィルムでラミネートした積層体を用い
ることができる。
As the heat-sealing lid, a laminate in which both surfaces of a metal foil, which is known per se, are laminated with thermoplastic resin films can be used.

(実施例) 実施例及び比較例を以下に示す。(Example) Examples and comparative examples are shown below.

固有粘度0.95のポリエチレンテレフタレート(PE
T)を使用して、 ドローコーンで押出方向に一軸延伸
しながら溶融押出パイプ成形し、内径39.5m+11
.厚み0.4mff1.長さ150!lrsの両端開放
パイプを成形した。次いでこのパイプの両lN10mm
づつを除いた部分を赤外線にて約105℃に加熱後、両
端部を把持出来る割型(ブロー成形型)を使用し、端部
一方より加圧(25に4/c+1’)空気を吹き込み半
径方向に膨らましくブロー成形)胴部外径が50mm両
端開両端開放パイプした。この中空管の両端部10wn
づつを100℃に赤外線にて急速加熱し、フランジダイ
スにてフランジを成形し、Wtmに金属蓋を二重巻締し
、胴部がPETのプラスチック缶を成形したー 前記ブロー成形を行う際、成形される両面開放中空管の
軸方向中央部に80+n+幅で全周に渡って、第5−A
、第5−C2及び第6図に示す最小面構成単位(円周方
向8個連なり、L/Wの比が0.96゜深み比d/do
が0.95)を形成出来る割型を使用した場合を実施例
1とし、最小面構成単位を賦与しない単なる円筒管を成
形する為の割型を使用した場合を比較例1とした。
Polyethylene terephthalate (PE) with an intrinsic viscosity of 0.95
T) was used to form a melt extrusion pipe while uniaxially stretching in the extrusion direction with a draw cone, and the inner diameter was 39.5 m + 11 mm.
.. Thickness 0.4mff1. Length 150! A lrs pipe with both ends open was molded. Next, both lN10mm of this pipe
After heating the part except for the part to about 105℃ with infrared rays, use a split mold (blow molding mold) that can hold both ends, and blow pressurized air (25 to 4/c + 1') from one end to make the radius. A pipe with an outer diameter of 50 mm and both ends open was made. Both ends of this hollow tube 10wn
Each was rapidly heated to 100°C with infrared rays, a flange was formed using a flange die, a metal lid was double-sealed to the WTM, and a plastic can with a PET body was formed - when performing the above blow molding, A fifth-A is placed in the axial center of the double-sided open hollow tube to be formed, with a width of 80+n+ over the entire circumference.
, Minimum surface structural unit shown in 5-C2 and FIG.
Example 1 is a case in which a split mold capable of forming 0.95) is used, and Comparative Example 1 is a case in which a split mold for forming a simple cylindrical tube that does not provide a minimum surface unit is used.

上記実施例1及び比較例1で成形したプラスチック缶に
外圧を加え缶胴部の耐外圧力で測定したところ、実施例
1の缶胴は0.95kz/cm2を示し、比較例1の缶
胴は0.3J/cIl!2を示した。
When external pressure was applied to the plastic cans molded in Example 1 and Comparative Example 1 and the external pressure resistance of the can body was measured, the can body of Example 1 showed 0.95 kHz/cm2, and the can body of Comparative Example 1 is 0.3J/cIl! 2 was shown.

(発明の効果) 本発明によれば、プラスチック容器の胴部に特定の多面
体壁を形成したので、プラスチック容器は押圧耐性及び
減圧耐性が向上し、しかも座屈などが生じ難いため容器
の破壊が防止される。また。
(Effects of the Invention) According to the present invention, since a specific polyhedral wall is formed in the body of the plastic container, the plastic container has improved pressure resistance and reduced pressure resistance, and is less likely to buckle, thereby preventing the container from breaking. Prevented. Also.

プラスチック缶においては、巻締め時の把持が簡単とな
り製造作業が容易である。
Plastic cans are easy to grip when tightening, making manufacturing work easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明に係るプラスチック缶の製
造工程図、 113図は、本発明に係るヒートシール用容器の製造工
程図、 114図は、プラスチック容器の空容器附外圧比(構成
単位面を施した場合と施さない場合の比)とn値を変化
させたときの特性線図、 第5−A図、第5−B図及び第5−C図は、本発明に係
るプラスチック容器の四辺形を構成単位面とする説明用
の側面図、縦断面図及び水平断面図、 I!6図(a)及び(b)は本発明に係るプラスチック
容器の側面に形成される構成単位面の平面図及び断面図
、 1!7図は第5図の構成単位面を中央部にのみ施した缶
用プラスチック容器の側面図、 II8図はヒートシール用容器に多面体壁を施した断面
図、 jI9図はプラスチック容器のL / w値を変化させ
たときの空容器耐外正比の特性線図、第10図はプラス
チック容器における構成単位面の深み比d/d、と空容
器耐外圧強度との特性線図。 第11図は本発明に係るプラスチック容器の容器胴に形
成される別の態様の二等辺三角形単位面の説明図、 第12−A図、第12−B図はfJ5図における別の態
様を示した説明用の側面図及び縦断面図、第13図は@
12図の構成単位面を更に変えた別の態様の缶用プラス
チック容器の側面図、第14図及び第15図は六角形を
構成朧位面とする本発明に係る缶用プラスチック容器の
部分側面図、 第16図及び第17図はRを有する六角形構成単位面と
する本発明における缶用プラスチック容器の部分側面図
、 IJ18図はRを有する四辺形構成単位面とする本発明
に於ける缶用プラスチック容器の部分側面図である。 1:構成単位面 2:頂点 3:底辺 4:境界稜線 20:構成単位面 30:境 界稜M  32:頂点。
1 and 2 are manufacturing process diagrams for a plastic can according to the present invention, Figure 113 is a manufacturing process diagram for a heat-sealing container according to the present invention, and Figure 114 is an empty container external pressure ratio of a plastic container ( The characteristic diagrams, Figure 5-A, Figure 5-B, and Figure 5-C when changing the n value and the ratio of the case where the structural unit surface is applied and the case where it is not applied are related to the present invention. An explanatory side view, vertical cross-sectional view, and horizontal cross-sectional view with a quadrilateral plane of a plastic container as a constituent unit surface, I! Figures 6 (a) and (b) are a plan view and a sectional view of the structural unit surface formed on the side surface of the plastic container according to the present invention, and Figures 1 and 7 show the structural unit surface of Figure 5 formed only in the center. Fig. II8 is a cross-sectional view of a heat-sealable container with a polyhedral wall, and Fig. JI9 is a characteristic diagram of the positive external ratio of empty containers when the L/W value of the plastic container is changed. , FIG. 10 is a characteristic diagram of the depth ratio d/d of the structural unit surface in a plastic container and the external pressure resistance strength of the empty container. FIG. 11 is an explanatory diagram of another aspect of the isosceles triangular unit surface formed on the container body of the plastic container according to the present invention, and FIGS. 12-A and 12-B show another aspect in FIG. fJ5. The explanatory side view and vertical sectional view, Figure 13 are @
A side view of another embodiment of a plastic container for cans in which the structural unit surface of FIG. 12 is further changed, and FIGS. 14 and 15 are partial side views of the plastic container for cans according to the present invention having a hexagonal hazy structure surface. Figures 16 and 17 are partial side views of a plastic container for cans according to the present invention in which the unit surface is a hexagonal unit having R, and Figure IJ18 is a partial side view of a plastic container for a can in the present invention in which the unit surface is a hexagonal unit having an R. It is a partial side view of a plastic container for cans. 1: Constituent unit surface 2: Vertex 3: Base 4: Boundary edge 20: Constituent unit surface 30: Boundary edge M 32: Vertex.

Claims (1)

【特許請求の範囲】 (1)エンド部に蓋等が接着、ヒートシール或いは巻締
めによって封着されるプラスチック容器において、 容器胴は円筒或いは切頭円錐筒状であり、 該容器胴の少なくとも一部に周状多面体壁が形成され、
該多面体壁は構成単位面と、構成単位面同士が接する境
界稜線及び境界稜線同士が交わる交叉部を有し、該境界
稜線及び交叉部は構成単位面に比べて相対的に容器胴外
側に凸となっており、構成単位面の隣合った容器胴軸方
向配列が位相差をなして配置されていることを特徴とす
る外圧に対して耐変形性を有し、かつ局部的な押し圧耐
性を向上せしめたエンド部封着型プラスチック容器。 (2)前記容器胴のエンド部に蓋が巻締めにより取り付
けられることを特徴とする請求項第1項記載の缶用プラ
スチック容器。 (3)前記容器胴のエンド部にフランジ面が形成され、
該フランジ面に蓋をヒートシールしてなる請求項第1項
記載のプラスチック容器。 (4)前記容器胴の周に存在する構成単位面の数であつ
て、且つ容器軸方向に位相していない構成単位面の数が
3乃至14であることを特徴とする請求項第1項乃至第
3項記載のプラスチック容器。 (5)前記構成単位面の容器胴軸方向の最大長さをLと
し、構成単位面の容器側周方向の最大巾をwとし、該L
及びwが0.2≦L/w≦4の関係を満たすことを特徴
とする請求項第1項乃至第4項記載のプラスチック容器
。 (6)前記構成単位面の容器胴周方向に最大巾をとった
ときの交点同士を結ぶ線或いは対向する境界稜線上の点
同士を結ぶ線の中点から容器胴の中心までの距離をsと
し、該交点或いは該境界線上の点から中心までの距離を
rとし、 該r−sの差をd_0とすると、前記構成単位面のくぼ
む深み量dはd_0の関係で次式の範囲内を満たすこと
を特徴とする請求項第1項乃至第5項記載のプラスチッ
ク容器。 0.5≦d/d_0≦2 (7)前記構成単位面は四辺形で、各辺が前記境界稜線
となり、該境界稜線が容器胴軸方向に沿わないように配
置され、且つ容器内部に向けて湾曲して凸となっている
ことを特徴とした請求項第1項乃至第6項記載のプラス
チック容器。 (8)前記構成単位面は、四辺形で各辺が前記境界稜線
となり、軸断面がほぼV状に折り曲げられて容器内部に
向けて凸となり、構成単位面が更に2個の二等辺三角形
から構成されてなることを特徴とした請求項第1項乃至
第6項記載のプラスチック容器。 (9)前記構成単位面が六角形で、各辺が前記境界稜線
となり、容器内部に向けて湾曲して凸となつていること
を特徴とした請求項第1項乃至第6項記載のプラスチッ
ク容器。 (10)前記構成単位面同士が接する境界稜線部はなだ
らかな一定のR(曲率半径)を有する一箇所曲げ或いは
複数箇所曲げ部であつて該Rが板厚t及び缶胴半径Dに
対してt≦R≦(2/3)Dの範囲を満たすことを特徴
とする請求項第7項乃至第9項記載のプラスチック容器
。 (11)エンド部に蓋等が接着、ヒートシール或いは巻
締めによって封着されるプラスチック容器の製造方法に
おいて、 容器胴素材を円筒或いは切頭円錐筒状に形成すると共に
、 該容器胴の外側に割型を配し、容器胴内部から圧力をか
けて容器側壁を割型内面に押しつけて、容器胴の少なく
とも一部に周状多面体壁を形成し、且つ 該多面体壁が構成単位面と、構成単位面同士が接する境
界稜線及び境界稜線同士が交わる交叉部を有し、該境界
稜線及び交叉部は構成単位面に比べて相対的に容器胴外
側に凸となつており、構成単位面の隣合った容器胴軸方
向配列が位相差をなして配置するように、該割型で周状
多面体壁を形成することを特徴とするエンド部蓋封着型
プラスチック容器の製造方法。
[Scope of Claims] (1) A plastic container in which a lid or the like is sealed to the end portion by adhesion, heat sealing, or seaming, wherein the container body has a cylindrical or truncated conical shape, and at least one part of the container body A circumferential polyhedral wall is formed in the
The polyhedral wall has constituent unit faces, boundary edges where the constituent unit faces touch each other, and intersections where the boundary edges intersect, and the boundary edges and intersections are relatively convex to the outside of the container body compared to the constituent unit faces. It has deformation resistance against external pressure and is characterized by the fact that adjacent constituent unit surfaces are arranged in the axial direction of the container body with a phase difference. A plastic container with a sealed end. (2) The plastic can container according to claim 1, wherein a lid is attached to the end portion of the container body by seaming. (3) a flange surface is formed at the end portion of the container body;
2. The plastic container according to claim 1, wherein a lid is heat-sealed to the flange surface. (4) The number of constituent unit faces existing around the circumference of the container body and which are out of phase in the container axial direction is from 3 to 14. to the plastic container described in item 3. (5) The maximum length of the structural unit surface in the axial direction of the container body is L, the maximum width of the structural unit surface in the circumferential direction of the container side is w, and L
5. The plastic container according to claim 1, wherein: and w satisfy the relationship: 0.2≦L/w≦4. (6) The distance from the center of the container body to the line connecting the intersection points of the constituent unit surfaces or the line connecting points on the opposing boundary ridge lines to the center of the container body is s. If the distance from the intersection point or a point on the boundary line to the center is r, and the difference between r and s is d_0, then the depth d of the concave surface of the constituent unit surface is within the range of the following equation in relation to d_0. 6. The plastic container according to claim 1, wherein the plastic container is filled with a plastic container. 0.5≦d/d_0≦2 (7) The constituent unit surface is quadrilateral, each side is the boundary ridgeline, and the boundary ridgeline is arranged not along the axial direction of the container body, and is oriented toward the inside of the container. 7. The plastic container according to claim 1, wherein the plastic container is curved and convex. (8) The constituent unit surface is a quadrilateral with each side serving as the boundary ridgeline, the axial cross section is bent into a substantially V shape and becomes convex toward the inside of the container, and the constituent unit surface is further formed from two isosceles triangles. A plastic container according to any one of claims 1 to 6, characterized in that the plastic container is constructed as follows. (9) The plastic according to any one of claims 1 to 6, wherein the structural unit surface is hexagonal, each side serving as the boundary edge, and curved and convex toward the inside of the container. container. (10) The boundary ridgeline where the constituent unit surfaces touch each other is a single or multiple bent portion having a gentle constant R (radius of curvature), and the R is curved in relation to the plate thickness t and the can body radius D. 10. The plastic container according to claim 7, wherein the plastic container satisfies the range t≦R≦(2/3)D. (11) In a method for manufacturing a plastic container in which a lid or the like is sealed to the end portion by adhesion, heat sealing, or seaming, the container body material is formed into a cylindrical or truncated conical shape, and the outside of the container body is A split mold is disposed, and pressure is applied from inside the container body to press the container side wall against the inner surface of the split mold to form a circumferential polyhedral wall on at least a portion of the container body, and the polyhedral wall has a configuration with a constituent unit surface. It has a boundary ridge line where the unit surfaces touch each other and an intersection part where the boundary ridge lines intersect, and the boundary ridge line and the intersection part are relatively convex to the outside of the container body compared to the constituent unit planes, and are adjacent to the constituent unit planes. A method for manufacturing an end-lid sealed plastic container, characterized in that the divided molds form a circumferential polyhedral wall so that the matched container body axial directions are arranged with a phase difference.
JP16293190A 1990-06-22 1990-06-22 Plastic container with metal lid Expired - Fee Related JPH0755703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16293190A JPH0755703B2 (en) 1990-06-22 1990-06-22 Plastic container with metal lid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16293190A JPH0755703B2 (en) 1990-06-22 1990-06-22 Plastic container with metal lid

Publications (2)

Publication Number Publication Date
JPH0457733A true JPH0457733A (en) 1992-02-25
JPH0755703B2 JPH0755703B2 (en) 1995-06-14

Family

ID=15763958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16293190A Expired - Fee Related JPH0755703B2 (en) 1990-06-22 1990-06-22 Plastic container with metal lid

Country Status (1)

Country Link
JP (1) JPH0755703B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406818A1 (en) * 2001-07-17 2004-04-14 Graham Packaging Company, L.P. Plastic container having an inverted active cage
JP2010036942A (en) * 2008-08-01 2010-02-18 Dainippon Printing Co Ltd Plastic bottle
JP2014084142A (en) * 2012-10-23 2014-05-12 Kirin Brewery Co Ltd Plastic bottle and beverage product
WO2015141589A1 (en) * 2014-03-17 2015-09-24 三菱鉛筆株式会社 Writing tool
WO2019151281A1 (en) * 2018-01-30 2019-08-08 東洋製罐株式会社 Positive-pressure can
JP2020200088A (en) * 2019-06-11 2020-12-17 メビウスパッケージング株式会社 Multiple container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026664U (en) * 1973-06-30 1975-03-27
JPS6254697A (en) * 1985-08-30 1987-03-10 ベロ−ビンド・インコ−ポレ−テツド Borer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026664U (en) * 1973-06-30 1975-03-27
JPS6254697A (en) * 1985-08-30 1987-03-10 ベロ−ビンド・インコ−ポレ−テツド Borer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406818A1 (en) * 2001-07-17 2004-04-14 Graham Packaging Company, L.P. Plastic container having an inverted active cage
EP1406818A4 (en) * 2001-07-17 2005-07-27 Graham Packaging Co Plastic container having an inverted active cage
JP2010036942A (en) * 2008-08-01 2010-02-18 Dainippon Printing Co Ltd Plastic bottle
JP2014084142A (en) * 2012-10-23 2014-05-12 Kirin Brewery Co Ltd Plastic bottle and beverage product
WO2015141589A1 (en) * 2014-03-17 2015-09-24 三菱鉛筆株式会社 Writing tool
WO2019151281A1 (en) * 2018-01-30 2019-08-08 東洋製罐株式会社 Positive-pressure can
JP2020200088A (en) * 2019-06-11 2020-12-17 メビウスパッケージング株式会社 Multiple container

Also Published As

Publication number Publication date
JPH0755703B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
KR100186781B1 (en) Packing can
US3137431A (en) Blank for making fibre container
US6032823A (en) Non-round easy-grip composite container
US10252834B2 (en) Rigid structured polymer container
JPH07102417B2 (en) Can for can and method of manufacturing the same
US20070062907A1 (en) Container with improved waist
WO2022064837A1 (en) Container manufacturing method and container manufacturing device
JP3953698B2 (en) Thin-walled blow molded bottle
JPH0457733A (en) Lid-sealed type plastic container and its manufacture
JP6801272B2 (en) Synthetic resin container
GB2137158A (en) Thermoplastics Containers
JPH04327128A (en) Can for canning
WO1985001269A1 (en) Low-cost, full-function container for food, beverages and other products
JPH0516935A (en) Thin metal container with excellent deformation resistance and decorative effect
JPH0826239A (en) Buckling-resistant plastic bottle
JP2000109068A (en) Can lid for can having positive internal pressure
JP4028216B2 (en) Volume-reducing bottle
JP4621376B2 (en) Plastic container
WO2022107471A1 (en) Metal molded body
TWI780864B (en) Manufacturing method of container and manufacturing apparatus of container
JP7331352B2 (en) Synthetic resin container
JPH01254540A (en) Container with metal lid
WO2024042957A1 (en) Container
JP7180339B2 (en) Synthetic resin container
WO2023047737A1 (en) Metal cup

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees