WO2019151201A1 - Graphite material, method for producing same, and use thereof - Google Patents

Graphite material, method for producing same, and use thereof Download PDF

Info

Publication number
WO2019151201A1
WO2019151201A1 PCT/JP2019/002854 JP2019002854W WO2019151201A1 WO 2019151201 A1 WO2019151201 A1 WO 2019151201A1 JP 2019002854 W JP2019002854 W JP 2019002854W WO 2019151201 A1 WO2019151201 A1 WO 2019151201A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
mass
graphitic carbon
area
total
Prior art date
Application number
PCT/JP2019/002854
Other languages
French (fr)
Japanese (ja)
Inventor
崇 寺島
俊介 吉岡
安顕 脇坂
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2019151201A1 publication Critical patent/WO2019151201A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphitic carbon material, a production method thereof, and an application thereof.
  • Graphite includes natural graphite and artificial graphite. Natural graphite is available at low cost. However, since natural graphite is scaly, when it is made into a paste together with a binder and applied to a current collector, the natural graphite is oriented in one direction. When charging with such an electrode, the electrode expands in only one direction, and the performance as an electrode is reduced. Although natural graphite granulated has been proposed, spherical natural graphite is crushed and oriented by pressing during electrode production. Moreover, since the surface of natural graphite was active, a large amount of gas was generated during the initial charge, the initial efficiency was low, and the cycle characteristics were not good. against this background, various graphitic carbon materials have been proposed.
  • Patent Document 1 discloses that the (002) plane spacing (d 002 ) is less than 0.337 nm, the crystallite size (Lc) is 90 nm or more, and 1580 cm ⁇ 1 in an argon ion laser Raman spectrum by wide-angle X-ray diffraction.
  • An electrode carbon material is disclosed in which an R value, which is a peak intensity ratio of 1360 cm ⁇ 1 to a peak intensity, is 0.20 or more and a tap density is 0.75 g / cm 3 or more.
  • Patent Document 2 discloses a graphite particle used for manufacturing a negative electrode for a lithium secondary battery, wherein the graphite particle is formed by integrating a mixture of a graphite particle and an organic binder and a current collector. Used for manufacturing a negative electrode for a lithium secondary battery having a density of 1.5 to 1.9 g / cm 3 , and for a negative electrode of a lithium secondary battery having an aspect ratio of 1.2 to 5 Graphite particles are disclosed.
  • Patent Document 3 discloses a graphite material comprising graphite particles composed of an optically anisotropic structure, an optically isotropic structure, and voids, and satisfying the following conditions (1) and (2): doing.
  • (1) In a cross section of a molded body made of a graphite material, when 10 square areas each having a side of 100 ⁇ m are arbitrarily selected, the total area of optically anisotropic structures in the cross section of the graphite particles appearing in the area (x)
  • (2) Among the optically anisotropic tissue domains in the cross section of arbitrary 100 particles, the maximum value of the length of the long side portion is L max , and the volume-based average particle diameter (D50) measured by the laser diffraction method is L
  • Patent Document 4 is composed of graphite particles composed of an optically anisotropic structure, an optically isotropic structure, and voids, and arbitrarily select 10 square regions each having a side of 100 ⁇ m in a cross section of a molded body made of a graphite material.
  • a sensitive color test plate in a crossed Nicol state
  • an interference color indicating the orientation of the graphite network surface of the optically anisotropic texture domain A graphite material is disclosed in which the total area C min of the smallest one of the total areas of the respective colors of magenta, blue and yellow is 12 to 32% with respect to the total cross-sectional area of the graphite particles.
  • Patent Document 5 is a non-flaky graphite powder produced by graphitizing mesophase pitch as a raw material at a temperature of 2000 ° C. or higher, the optical structure is a mosaic structure, and the C-axis direction in X-ray diffraction is The crystallite spacing d 002 is 0.3358 nm or more, the crystallite size Lc 002 is 100 nm or less, and the intensity ratio (I 1360 / I 1580 ) of two Raman bands of 1360 and 1580 cm ⁇ 1 in the Raman scattering spectrum is 0.
  • Non-aqueous solvent secondary battery using a negative electrode using graphite powder of 1 or more as a carbon material and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent containing propylene carbonate.
  • Patent Document 6 is a non-flaky graphite powder produced using mesophase pitch as a raw material at a temperature of 2000 ° C. or more, wherein the optical structure of the graphite powder is a mosaic structure, and in the C-axis direction in X-ray diffraction. non the size of the crystallite is not more 100nm or less, the intensity ratio of the two Raman bands of 1360 cm -1 and 1580 cm -1 in the Raman scattering spectrum (I 1360 / I 1580) is equal to or less than 0.1
  • a carbon material for a negative electrode of an aqueous solvent secondary battery is disclosed.
  • Patent Document 7 discloses a step of pulverizing and classifying a raw coal composition obtained by coking a heavy oil composition by a delayed coking process, and applying compressive stress and shear stress to the pulverized and classified raw coal composition.
  • a method of producing a graphite material for a negative electrode of a lithium ion secondary battery comprising at least a step of obtaining a material, wherein the raw carbon composition to be pulverized and classified has a ratio of hydrogen atoms H to carbon atoms C, H / C
  • a method for producing a graphite material for a negative electrode of a lithium ion secondary battery having an atomic ratio of 0.30 to 0.50 and a micro strength of 7 to 17% by mass is disclosed.
  • Patent Document 8 is a raw coal composition obtained by coking a heavy oil composition by a delayed coking process, wherein the ratio of hydrogen atom H to carbon atom C, H / C atomic ratio is 0.30 to 0.50,
  • the raw carbon composition of the negative electrode carbon material for a lithium ion secondary battery having a micro strength of 7 to 17% by mass is pulverized to an average particle size of 30 ⁇ m or less, and then carbonized and / or graphitized.
  • the manufacturing method of the negative electrode carbon material for lithium ion secondary batteries characterized by doing is disclosed.
  • JP 2000-340232 A (US 6632569 B1) Japanese Patent Laid-Open No. 10-188959 WO2011 / 049199A JP 2011-184293 A JP 2002-124255 A JP 2000-149946 A WO2012 / 020816A WO2011 / 152426A
  • Carbon materials according to the prior art have sufficiently good cycle capacity maintenance characteristics at high temperatures, input / output characteristics at low temperatures, and resistance to PC (propylene carbonate) electrolyte, which is effective for operation at low temperatures, as required for large batteries. Has not yet reached a balance at a certain level.
  • An object of the present invention is to provide a novel graphitic carbon material.
  • Another object of the present invention is to provide a novel electrode capable of producing an electrode having a good level of energy density characteristics, cycle capacity maintenance characteristics at high temperatures, input / output characteristics at low temperatures, and resistance to PC (propylene carbonate) electrolyte. It is to provide a graphitic carbon material.
  • the present invention includes the following aspects.
  • [1] In measurement of powder X-ray diffraction of graphitic carbon material, (1) The (002) plane average plane distance d 002 is 0.3354 nm or more and 0.3370 nm or less, (2) The crystallite size Lc 112 calculated from the (112) diffraction line is 3.0 nm or more and 6.0 nm or less, and (3) (110) diffraction with respect to the peak intensity I 004 of the (004) diffraction line.
  • the ratio I 110 / I 004 of the peak intensity I 110 of the line is 0.30 or more and 0.67 or less
  • area Da 90 when the 90% total area of isotropic domains is at 0.7 [mu] m 2 or more 30.0 2 below, and (3) cumulative from the smaller the area of each optically isotropic domain
  • the area Dc 10 when the cumulative total is 10% with respect to the total area of the optical isotropic domain is 0.5 ⁇ m 2 or more and 1.0 ⁇ m 2 or less
  • the area Dc 50 when the total is 50% of the total area of the optical isotropic domain is 0.6 ⁇ m 2 or more and 2.0 ⁇ m 2 or less
  • the total is optical or the like.
  • area Dc 90 when the 90% total area of isotropic domains is 0.7 [mu] m 2 or more 14.0 2 below, Graphite Carbon Material.
  • a multi-layer structure including a core layer made of a carbon material (a Carbon Material) and a skin layer made of another carbon material (another Carbon Material) covering the surface, [1] to [6 ]
  • the graphite carbon material as described in any one of.
  • a battery electrode material (Cell Electrode Material) containing particles containing the graphitic carbon material according to any one of [1] to [7].
  • Mean spacing d 002 contains a spherical natural graphite or artificial graphite 0.01-200 parts by weight or less 0.3370nm than 0.3354 nm, battery electrode material.
  • the total amount of asphaltene and resin is 20% by mass to 60% by mass, the amount of sulfur is 0.5% by mass to 6.0% by mass, and the amount of ash is 0.2% by mass.
  • % To 1.0% by mass, carbon source (Carbon Source) is subjected to delayed coking by controlling the furnace heater outlet temperature before the caulking drum to 550 ° C. to 580 ° C., and the micro strength is 20 mass.
  • % To 40% by mass of coke, Crush the obtained coke, Graphitizing the ground coke at a temperature of 2500-3600 ° C., [1] to [6] The method for producing a graphitic carbon material according to any one of [6].
  • the total amount of asphaltene and resin is 20% by mass or more and 60% by mass or less, the amount of sulfur is 0.5% by mass or more and 6.0% by mass or less, and the amount of ash is 0.2% by mass.
  • % To 1.0% by mass the carbon steel raw material is subjected to delayed coking by controlling the furnace heater outlet temperature before the coking drum to 550 ° C. to 580 ° C., and the micro strength is 20% by mass to 40% by mass. % Less coke, Crush the obtained coke, The ground coke is graphitized at a temperature of 2500 to 3600 ° C. to obtain a core layer made of a carbon material, and then the core layer is coated with a skin layer made of another carbon material.
  • a method for producing a graphitic carbon material is produced.
  • the graphitic carbon material of the present invention is suitable as a battery electrode material.
  • the battery electrode material containing particles containing the graphitic carbon material of the present invention is used, energy density characteristics, cycle capacity maintenance characteristics at high temperatures, input / output characteristics at low temperatures, and PC (propylene carbonate) electrolysis at low temperatures A battery having excellent liquid resistance can be obtained.
  • the graphitic carbon material of the present invention can be mass-produced economically.
  • the battery or lithium ion secondary battery of the present invention maintains high cycle characteristics for a long period of time, has excellent high-temperature cycle capacity maintainability, has input / output characteristics suitable for driving a high-power motor at low temperatures, and is high Since it has energy density, it is suitable not only for portable electronic devices but also as a power source for electric tools such as electric drills, battery electric vehicles (BEV), hybrid electric vehicles (HEV), and the like.
  • BEV battery electric vehicles
  • HEV hybrid electric vehicles
  • FIG. 2 is a diagram showing an example of a polarizing microscope image of the multilayer graphitic carbon material obtained in Example 1.
  • the graphitic carbon material of the present invention exhibits the following physical property values in powder X-ray diffraction measurement, Raman spectroscopy measurement and polarization microscope observation.
  • the lower limit of the average spacing d 002 of (002) plane 0.3354 nm, preferably 0.3358Nm, more preferably 0.3360 nm
  • the upper limit of d 002 is, 0.3370 nm, preferably 0.3369Nm, more preferably 0.3368Nm.
  • the lower limit of the crystallite size Lc 112 calculated from the (112) diffraction line is 3.0 nm, preferably 3.5 nm, more preferably The upper limit of Lc 112 is 6.0 nm, preferably 5.5 nm, and more preferably 5.0 nm.
  • the lower limit of the ratio I 110 / I 004 of the peak intensity I 110 of the (110) diffraction line to the peak intensity I 004 of the ( 004 ) diffraction line is 0 .30, preferably 0.35, more preferably 0.40, and the upper limit of the ratio I 110 / I 004 is 0.67.
  • I 004 is the maximum intensity in the range of diffraction angle (2 ⁇ ) from 54.0 degrees to 55.0 degrees
  • I 110 is the maximum in the range of diffraction angle (2 ⁇ ) from 76.5 degrees to 78.0 degrees. It is strength.
  • the lower limit of the crystallite size Lc 002 calculated from the (002) diffraction line is preferably 50 nm, more preferably 52 nm, still more preferably 54 nm.
  • the upper limit of Lc 002 is preferably 80 nm, more preferably 70 nm, and even more preferably 65 nm. As Lc 002 is in the above range, the discharge capacity tends to be higher and the input / output characteristics are better.
  • the powder X-ray diffraction is measured by a known method. Then, a diffraction peak derived from the crystal structure of graphite is extracted from the obtained X-ray diffraction data, and the average interplanar spacing d 002 of the (002) plane and the crystallite size Lc 112 are obtained by a method known to those skilled in the art. calculates a value of (004) the ratio I 110 / I 004 of the peak intensity I 110 of (110) diffraction line to the peak intensity I 004 of diffraction lines, and the crystallite size Lc 002. The calculation method is well known to those skilled in the art. For example, Michio Inagaki, “Carbon”, 1963, No.
  • Graphitic carbon material of the present invention in the measurement of Raman spectroscopy, 1570 the ratio I D / I of the peak intensity I D that exists in the region of ⁇ 1630 cm 1350 to the peak intensity I G existing in the region of -1 ⁇ 1370 cm -1
  • the lower limit of G is 0.05, preferably 0.10, more preferably 0.15
  • the upper limit of the ratio I D / I G is 0.30, preferably 0.25.
  • the measurement of Raman spectroscopy was performed using a laser Raman spectrometer such as JASCO Corporation with an excitation wavelength of 532 nm, an incident slit width of 200 ⁇ m, an exposure time of 3 seconds, an integration count of 2 times, and a diffraction grating of 1800 lines / mm. Perform under conditions. As the ratio I D / I G is smaller, the degree of graphitization tends to be higher.
  • the lower limit of the total area Da 100 of the optical anisotropy domain is the total area of the optical anisotropy domain Da 100 and the total area of the optical isotropic domain in the polarization microscope observation.
  • the total of the Dc 100 65.0% preferably 70.0%, more preferably 75.0% and the upper limit of the total Da 100 of the area of the optically anisotropic domains, optical anisotropy It is 90.0%, preferably 88.0%, more preferably 85.0% with respect to the sum of the total area Da 100 of domains and the total area Dc 100 of optical isotropic domains.
  • Graphitic carbon material of the present invention is the observation with a polarizing microscope, and accumulated from the smaller the area of each of the optical anisotropic domain, the cumulative total becomes 10% with respect to total Da 100 of the area of the optically anisotropic domain the area Da 10 when, 0.5 [mu] m 2 or more 2.0 .mu.m 2 or less, preferably 0.5 [mu] m 2 or more 1.2 [mu] m 2 or less, more preferably 0.5 [mu] m 2 or more 0.9 .mu.m 2 or less.
  • Graphitic carbon material of the present invention is the observation with a polarizing microscope, and accumulated from the smaller the area of each of the optical anisotropic domain, the cumulative total becomes 50% with respect to total Da 100 of the area of the optically anisotropic domain
  • the area Da 50 is 0.6 ⁇ m 2 or more and 4.0 ⁇ m 2 or less, preferably 0.6 ⁇ m 2 or more and 3.0 ⁇ m 2 or less, more preferably 0.6 ⁇ m 2 or more and 2.0 ⁇ m 2 or less.
  • Graphitic carbon material of the present invention is the observation with a polarizing microscope, and accumulated from the smaller the area of each of the optical anisotropic domain, the cumulative total is 90% with respect to total Da 100 of the area of the optically anisotropic domain the area Da 90 when, 0.7 [mu] m 2 or more 30.0 2 or less, preferably 0.7 [mu] m 2 or more 20.0 .mu.m 2 or less, more preferably 0.7 [mu] m 2 or more 10.0 [mu] m 2 or less.
  • the area of each optical isotropic domain is accumulated from the smaller one in the polarization microscope observation, and the total is 10% with respect to the total area Dc 100 of the optical isotropic domain.
  • the area Dc 10 is 0.5 ⁇ m 2 or more and 1.0 ⁇ m 2 or less, preferably 0.7 ⁇ m 2 or more and 0.8 ⁇ m 2 or less, more preferably 0.5 ⁇ m 2 or more and 0.6 ⁇ m 2 or less.
  • the area of each optical isotropic domain is accumulated from the smaller one in the polarization microscope observation, and the total is 50% with respect to the total area Dc 100 of the optical isotropic domain.
  • the area Dc 50 is 0.6 ⁇ m 2 or more and 2.0 ⁇ m 2 or less, preferably 0.6 ⁇ m 2 or more and 1.8 ⁇ m 2 or less, more preferably 0.6 ⁇ m 2 or more and 1.5 ⁇ m 2 or less.
  • the area of each optical isotropic domain is accumulated from the smaller one in the polarization microscope observation, and the total is 90% with respect to the total area Dc 100 of the optical isotropic domain.
  • the area Dc 90 when, 0.7 [mu] m 2 or more 14.0 2 or less, preferably 0.7 [mu] m 2 or more 10.0 [mu] m 2 or less, more preferably 0.7 [mu] m 2 or more 5.0 .mu.m 2 or less.
  • Graphite carbon material is an aggregate of graphite crystallites. Aggregation mode of graphite crystallites in graphitic carbon materials can be observed with a polarizing microscope (Mochida et al., “Structure Control of Carbon Materials”, Functional Materials Science Laboratory, Vol. 4, No. 2, PP 81-88 (1990) , “Latest carbon material experimental technique (analysis / analysis bias)”, Carbon Materials Society of Japan (2001), publication: see the method described in Cypec Corporation, pages 1-8, etc.).
  • the polarizing microscope observation in the present invention is performed as follows.
  • a double-sided adhesive tape is affixed to the bottom of a plastic container having an internal volume of 30 cm 3 , and two cups (about 2 g) of a spatula carbon material are placed thereon.
  • Cold embedding resin (trade name: cold embedding resin # 105, manufacturing company: Japan Composite Co., Ltd., sales company: Marumoto Struers Co., Ltd.) and curing agent (trade name: curing agent (M agent), Manufacturing company: Nippon Oil & Fat Co., Ltd., sales company: Marumoto Struers Co., Ltd.) is added and kneaded for 30 seconds.
  • the obtained kneaded material (about 5 ml) is slowly poured into the container until the height is about 1 cm.
  • the bottom surface of the cured product is polished at a polishing plate rotation speed of 1000 rpm using a polishing plate rotating type polishing machine.
  • the polishing plates are replaced in the order of # 500, # 1000, and # 2000 depending on the polishing degree.
  • it is mirror-polished using alumina (trade name: Baikalox (registered trademark) type 0.3CR, particle size 0.3 ⁇ m, manufacturer: Baikowski, sales company: Baikowski Japan) and carbonized. Take out a cross section of the material.
  • the mirror-polished cured product is fixed on a preparation with clay.
  • the polished surface is observed using a polarizing microscope (for example, OLYMPAS, BX51, etc.) with an objective lens of 50 and a pixel size of 0.5 ⁇ m.
  • a polarizing microscope for example, OLYMPAS, BX51, etc.
  • the optical isotropic domain is detected in a pure magenta image in a polarizing microscope even if the cured product is rotated.
  • the color of the optically anisotropic domain changes depending on the direction of the graphite mesh surface, and is detected in yellow, magenta, and blue images with a polarizing microscope.
  • the resin portion is detected by a black image in a polarizing microscope.
  • a digital camera for example, CAMEDIA C-5050 ZOOM digital camera made by OLYMPUS
  • Connect a digital camera for example, CAMEDIA C-5050 ZOOM digital camera made by OLYMPUS
  • a digital camera for example, CAMEDIA C-5050 ZOOM digital camera made by OLYMPUS
  • An image of 2560 pixels ⁇ 1920 pixels is captured.
  • the captured images are randomly trimmed to 10 squares of 100 ⁇ m ⁇ 100 ⁇ m at random, and these are subjected to image analysis.
  • Color extraction is performed using the three attributes shown in Table 1, luminance (Intensity), hue (Hue), and purity (Purity).
  • the color extraction can be performed using, for example, an image analysis apparatus LUZEX AP manufactured by Nireco Corporation.
  • an area of 1 dot or less is removed using the W-1 command of Eliminate 1 of the logical filter.
  • the area of one optically anisotropic domain is the average of the number of blue, yellow, or magenta pixels in that domain, counted from the respective polarization microscope observation images at rotation angles of 0, 45, and 90 degrees. Calculated from the values, the area of one optical isotropic domain is the number of pure magenta pixels in the domain, counted from the observation images of the respective polarization microscopes at rotation angles of 0, 45 and 90 degrees. Calculated from the average value of
  • the ratio of the total area of the optical anisotropy domain to the sum of the total area of the optical anisotropy domain and the total area of the optical isotropic domain is represented by rotation angles of 0 degrees, 45 degrees, and 90 degrees, respectively. Counted from the observation images of the respective polarization microscopes at the rotation angles of 0 degree, 45 degrees and 90 degrees with respect to the total number of pixels of blue, yellow, magenta and pure magenta, counted from the observation images of the polarization microscope. It can be represented by the ratio of the total number of pixels of blue, yellow and magenta. Similarly, Da 10 , Da 50 and Da 90 , and Dc 10 , Dc 50 and Dc 90 can also be calculated from the number of pixels in the corresponding domain.
  • the lower limit of the BET specific surface area S sa is preferably 1.5 m 2 / g, more preferably 1.7 m 2 / g, still more preferably 1.8 m 2 / g.
  • the upper limit of the specific surface area S sa is preferably 4.0 m 2 / g, more preferably 3.7 m 2 / g, still more preferably 3.5 m 2 / g.
  • the BET specific surface area is measured by a specific surface area measuring apparatus (NOVA 4200e) manufactured by Quantachrome INSTRUMENTS, heated to 300 ° C. as preliminary drying, and after flowing nitrogen gas for 15 minutes, measured by the BET three-point method by nitrogen gas adsorption. be able to.
  • NOVA 4200e specific surface area measuring apparatus manufactured by Quantachrome INSTRUMENTS
  • the lower limit of the volume-based 50% diameter D 50 by the laser diffraction method of the graphitic carbon material of the present invention is preferably 4.0 ⁇ m, more preferably 4.2 ⁇ m, and even more preferably 4.5 ⁇ m.
  • the upper limit of the volume-based 50% diameter D 50 is preferably 20.0 ⁇ m, more preferably 15.0 ⁇ m, and still more preferably 7.0 ⁇ m. As the 50% diameter is within the above range, the amount of side reaction during the initial charge / discharge is suppressed, and the resulting battery tends to have good initial Coulomb efficiency and good input / output characteristics.
  • the 50% diameter D 50 can be measured by, for example, a laser diffraction particle size distribution measuring device master sizer (manufactured by Malvern).
  • the graphitic carbon material of the present invention preferably contains as little secondary particles, that is, aggregates or aggregates of primary particles, from the viewpoint of cycle maintenance characteristics. Therefore, the graphitic carbon material of the present invention has a 50% diameter D p50 obtained by statistically processing the diameter of primary particles measured by electron microscope observation on a volume basis, and 50% of the volume basis by the laser diffraction method.
  • the diameter D 50 is preferably substantially the same.
  • the lower limit of the average circularity R av is preferably 0.86, more preferably 0.87, still more preferably 0.88, and the upper limit of the average circularity R av is preferably Is 0.95, more preferably 0.94, and still more preferably 0.93.
  • the average circularity is measured as follows. First, the graphite carbon material is passed through a 106 ⁇ m filter to remove fine dust.
  • 0.1 g of the graphitic carbon material is added to 20 ml of ion exchange water, 0.1 to 0.5% by mass of a surfactant is added to the ion exchange water, and an ultrasonic cleaner (for example, UT-105S (A sample solution for measurement is obtained by performing a dispersion process for 5 minutes using a sharp manufacturing system, etc.
  • the sample solution for measurement is put into a flow type particle image analyzer FPIA-2100 (manufactured by Sysmex Corporation), and LPF
  • the average circularity was calculated from 10,000 particles in the mode, where the circularity is the area of the projected image of the single graphitic carbon material relative to the circumference of the projected image of the single graphitic carbon material. When the projected image of the graphitic carbon material is a perfect circle, the circularity is 1.00.
  • the lower limit of the tap density [rho T is preferably 0.55 g / cm 3, more preferably 0.65 g / cm 3, more preferably 0.68 g / cm 3, a tap density limit is preferably 1.30 g / cm 3, more preferably 1.10 g / cm 3, more preferably at 0.95 g / cm 3.
  • the tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap. These are measurement methods based on ASTM B527 and JIS K5101-12-2, but the drop height of the auto tap was 5 mm.
  • the graphitic carbon material of the present invention may be a single-layer graphitic carbon material (hereinafter referred to as a single-layer graphitic carbon material) or a multilayer as long as it exhibits the above physical properties. It may be a graphite carbon material having a structure (hereinafter referred to as a multilayer graphitic carbon material).
  • the multilayer graphitic carbon material of the present invention has a multilayer structure including a core layer made of a carbon material and a skin layer made of another carbon material covering the surface thereof, and exhibits the above physical property values.
  • the multilayer graphitic carbon material may further improve the characteristics of the battery depending on the type of carbon material constituting the core layer and the type of carbon material constituting the skin layer.
  • the lower limit of the amount of the skin layer is preferably 0.1 parts by weight, more preferably 0.2 parts by weight, and even more preferably 0.5 parts by weight with respect to 100 parts by weight of the multilayer graphitic carbon material.
  • the upper limit of the amount is preferably 3.0 parts by mass, more preferably 2.0 parts by mass, and even more preferably 1.5 parts by mass with respect to 100 parts by mass of the multilayer graphitic carbon material.
  • the lower limit of the amount of the skin layer can be set from the viewpoint of a good effect that is provided by providing the skin layer, and the upper limit of the amount of the skin layer can be set from the viewpoint of side effects caused by providing the skin layer.
  • Carbon materials constituting the core layer of the multilayer graphitic carbon material are d 002 , Lc 112 , I 110 / I 004 , I D / I G , Da 100 , Dc 100 , Da 10 , Dc 10 , Da 50 , Dc 50 , Da 90 , and Dc 90 , and preferably those in which S sa , D 50 , Lc 002 , R av , and ⁇ T are within the above ranges, for example, the single-layer graphitic carbon material of the present invention. It is preferable.
  • the carbon material constituting the skin layer of the multilayer graphitic carbon material has I D / I G in the above range.
  • the carbon material constituting the skin layer is preferably an optically isotropic carbon material from the viewpoint of input characteristics during charging and characteristics required for a large battery, and specifically, an optically anisotropic domain total Da 100 of area, the total of the sum Dc 100 of the area of the total Da 100 and optically isotropic domains in the area of the optically anisotropic domains, preferably 10% or less, more preferably 5% or less, More preferably, it is 0%.
  • the graphitic carbon material of the present invention is not particularly limited by its production method.
  • a preferred method for producing the graphitic carbon material of the present invention is to subject the carbon raw material (Carbon Source) to delayed coking to obtain coke, pulverize the obtained coke, and pulverize the coke to 2500-3600. Including graphitizing at a temperature of ° C.
  • the carbon raw material used in the production method of the present invention is preferably a crude oil distillation residue such as a crude oil atmospheric distillation residue or a crude oil vacuum distillation residue or a tar obtained by thermal decomposition of crude oil; more preferably a crude oil distillation residue Can be mentioned.
  • the crude oil that is the source of the carbon source is preferably one that contains a large amount of naphthenic hydrocarbons.
  • the carbon raw material (Carbon Source) used in the present invention has a lower limit of the total amount of asphaltenes and resins, preferably 20% by mass, more preferably 25% by mass, and even more preferably 30% by mass.
  • the upper limit of the total amount of the resin is preferably 60% by mass, more preferably 50% by mass, and still more preferably 40% by mass.
  • the asphaltene content is a black-brown, brittle solid, a substance with a condensed polycyclic structure having a small H / C, soluble in benzene, carbon tetrachloride, etc., insoluble in pentane, alcohol, etc. and considered to have a molecular weight of 1000 or more. It is a substance.
  • the resin component is a brown resinous substance and is a compound having a large amount of oxygen and nitrogen.
  • the total amount of asphaltene and resin is measured based on “Asphalt composition analysis method by column chromatography (JPI-5S-22-83)” defined by JPI (Japan Petroleum Institute). Specifically, the carbon source (Carbon Source) is separated into a saturated component, an aromatic component, a resin component, and an asphaltene component and quantified in a column using alumina as a filler.
  • the carbon raw material used in the present invention has a lower limit of the sulfur content, preferably 0.5% by mass, more preferably 0.8% by mass, and still more preferably 1.0% by mass.
  • the upper limit of the amount of the minute is preferably 6.0% by mass, more preferably 4.5% by mass, and further preferably 3.0% by mass.
  • the amount of sulfur can be obtained by analyzing according to JISK2541.
  • the lower limit of the amount of ash is preferably 0.2% by mass, more preferably 0.3% by mass, and the upper limit of the amount of ash is preferably 1. It is 0 mass%, More preferably, it is 0.7 mass%, More preferably, it is 0.5 mass%.
  • the amount of ash is 0.2% by mass or more, crystal development is suppressed during the coking process by the delayed coker, and the optical isotropic domain is appropriately developed. When the optical isotropic domain develops, current input / output characteristics, cycle characteristics, and PC electrolyte resistance tend to be improved as characteristics of the negative electrode material after graphitization.
  • Ash is an oxide containing one or more metal components from magnesium, aluminum, titanium, manganese, cobalt, sodium, nickel, and the like.
  • the carbon raw material (Carbon Source) used in the present invention is preferably not added with FCC (fluid catalytic cracker) residual oil (FCC bottom oil).
  • FCC fluid catalytic cracker
  • the delayed coking process includes heating a carbon raw material in a heating furnace to cause a limited range of thermal decomposition, and then supplying the carbon raw material into a coking drum to generate a coking reaction therein.
  • the furnace heater outlet temperature before the coking drum is controlled to 480 to 500 ° C.
  • the internal pressure of the drum is usually controlled to 100 to 280 kPa (about 15 psig to 40 psig).
  • the furnace heater outlet temperature before the coking drum is controlled to 550 ° C. to 580 ° C.
  • the internal pressure of the drum is preferably 115 to 305 kPa (about 17 psig to 44 psig).
  • coke used for graphitization has the following micro strength.
  • the coke used for graphitization has a lower limit of micro strength of preferably 20% by mass, preferably 23% by mass, more preferably 25% by mass, and an upper limit of micro strength of preferably 40% by mass, more preferably 35%. It is 32 mass%, More preferably, it is 32 mass%.
  • delayed coking of carbon source with the total amount of asphaltene and resin, amount of sulfur and amount of ash within the above ranges is performed.
  • coke having a micro strength within the above range can be obtained, but if the coke obtained by delayed coking does not have a micro strength within the above range, coke having a high micro strength or a low micro strength can be obtained.
  • the microintensity can be adjusted within the above range.
  • the micro strength is an index indicating the bond strength between adjacent crystallites. It is said that unorganized carbon exists between adjacent crystallites, and the unorganized carbon has a function of bonding crystallites. Furthermore, it is said that unorganized carbon has a function of bonding even after graphitization.
  • microstrength When the microstrength is within the above range, it is easy to adjust to a predetermined particle size, the battery charge / discharge rate characteristics are improved, the expansion / contraction due to electrode charge / discharge is reduced, and the battery capacity maintenance characteristics are improved. Tend.
  • a steel cylinder (inner diameter: 25.4 mm, length: 304.8 mm) is charged with 2 g of 20-30 mesh coke and 12 steel balls with a diameter of 5/16 inch (7.9 mm), and both ends of the cylinder are covered with steel. Closed with.
  • the cylinder was attached to a rotating machine so that the rotation axis passed horizontally through the midpoint in the longitudinal direction of the cylinder, and was rotated 800 times at 25 rpm.
  • the lid was opened, the coke was taken out from the cylinder, and sieved with a 48 mesh sieve.
  • the percentage of the mass of coke on the sieve relative to the mass of coke subjected to sieving was defined as microintensity.
  • Coke can be pulverized using a known pulverizer such as a jet mill, a hammer mill, a roller mill, a pin mill, or a vibration mill.
  • a jet mill is preferable from the viewpoint of obtaining a product having an appropriate degree of circularity.
  • the edge portion may be exposed by pulverization, and the edge portion may cause a side reaction during charging and discharging. When pulverization is performed with a low heat history, the edge portion is repaired with high probability by subsequent heat treatment, and side reactions may be suppressed.
  • the pulverized coke may be fired at 500 to 1300 ° C. in a non-oxidizing atmosphere before graphitization. By firing, the gas generated during graphitization can be reduced. Moreover, since the bulk density is reduced by firing, the cost required for graphitization can be reduced.
  • Coke graphitization is performed by heat treatment at a temperature at which amorphous carbon in the coke can be crystallized.
  • the lower limit of the heat treatment temperature for graphitization is preferably 2500 ° C, more preferably 2900 ° C, still more preferably 3000 ° C, and the upper limit is preferably 3500 ° C.
  • a known furnace such as an Atchison furnace can be used.
  • Single layer graphitic carbon material is obtained by graphitization of coke.
  • the obtained single-layer graphitic carbon material has a smooth surface.
  • the single-layer graphitic carbon material is preferably not crushed and pulverized in order to maintain the smoothness of the surface.
  • the multilayer graphitic carbon material can be obtained by a known carbon coating method.
  • a multilayer graphitic carbon material including a core layer made of a single-layer graphitic carbon material and a skin layer made of an optically isotropic carbon material can be obtained as follows.
  • Coal tar pitch or a polymer-containing composition and a single layer graphitic carbon material are mixed and heated in a non-oxidizing atmosphere, preferably at 800 ° C. to 3300 ° C., more preferably at 800 ° C. to 1300 ° C.
  • a carbonaceous material can be obtained.
  • the coal tar pitch those having a volume-based 50% diameter D 50 by laser diffraction of 0.1 to 10 ⁇ m are preferably used.
  • the polymer-containing composition for example, a composition containing a drying oil or a fatty acid thereof and a phenol resin can be used (see Japanese Patent Application Laid-Open Nos. 2003-1000029 and 2005-019397).
  • the battery electrode material of the present invention contains particles containing the graphitic carbon material of the present invention.
  • the battery electrode material of the present invention can be preferably used, for example, as a negative electrode active material, a negative electrode conductivity-imparting material and the like of a lithium ion secondary battery.
  • the battery electrode material of the present invention comprises 100 parts by mass of the graphitic carbon material of the present invention and 0.01 to 200 parts by mass, preferably 0.01 to 100 parts by mass of spherical natural graphite or artificial graphite. Also good. Spherical natural graphite or artificial graphite preferably has an average spacing d 002 is less 0.3370nm than 0.3354 nm. A synergistic effect between the action caused by the graphitic carbon material of the present invention and the action caused by spherical natural graphite or artificial graphite can be expected. For example, when mesocarbon microbeads (MCMB) are used as artificial graphite, the electrode density can be increased and the volume energy density can be improved due to the crushability of MCMB.
  • MCMB mesocarbon microbeads
  • the battery electrode material of the present invention may further contain a conductive additive.
  • the conductive auxiliary agent can serve to impart conductivity to the electrode layer or a buffering action against a volume change upon insertion / extraction of lithium ions.
  • Examples of the conductive aid include carbon materials such as carbon black, carbon nanotube (CNT), carbon nanofiber, and vapor grown carbon fiber (VGCF (registered trademark)).
  • Examples of carbon black include ketjen black, acetylene black, channel black, lamp black, oil furnace black, and thermal black. You may use a conductive support agent individually by 1 type or in combination of 2 or more types.
  • the amount of the conductive assistant is preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 0.5 to 25% by mass with respect to the mass of the battery electrode material.
  • the conductive aid used in preparing the battery electrode material of the present invention is preferably in the form of powder, paste or the like.
  • the battery electrode material of the present invention may further contain a binder.
  • the binder include fluorine polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber polymers such as SBR (styrene butadiene rubber).
  • the amount of the binder is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass in total of the graphitic carbon material of the present invention and spherical natural graphite or artificial graphite battery.
  • the binder used in the preparation of the battery electrode material of the present invention is preferably in the form of powder, solution, emulsion or dispersion.
  • the battery electrode material of the present invention may further contain a liquid medium and may be in the form of a paste.
  • the liquid medium may be derived from a conductive agent in a paste state; a binder in a solution, emulsion, or dispersion state.
  • the liquid medium include known materials suitable for each binder, such as toluene and N-methylpyrrolidone in the case of a fluorine-based polymer; water in the case of SBR; and dimethylformamide and isopropanol.
  • a binder that uses water as the liquid medium it is preferable to use a thickener together.
  • the thickener include polycarboxylic acid, polycarboxylate, carboxymethyl cellulose, carboxymethyl cellulose alkali metal salt and the like. The amount of the liquid medium is set so that the viscosity is easy to apply.
  • the battery electrode material of the present invention is obtained, for example, by supplying the kneaded carbonaceous material of the present invention and, if necessary, a binder, a conductive additive and / or other components simultaneously or in random order to a kneading apparatus and kneading. can get.
  • a kneading apparatus such as a ribbon mixer, a screw type kneader, a Spartan reuser, a Redige mixer, a planetary mixer, a universal mixer, or the like can be used.
  • the electrode of the present invention has a compact layer containing the battery electrode material of the present invention.
  • the compact layer is usually laminated to the current collector.
  • the current collector include foil, mesh, and the like such as aluminum, nickel, copper, and stainless steel.
  • the thickness of the layer of the molded body is preferably 50 to 200 ⁇ m.
  • the molded body layer can be obtained, for example, by applying a paste-like battery electrode material on a current collector, drying, and pressure-molding as necessary. When the paste battery electrode material is applied to the current collector, dried, and pressure-molded, a coating device such as a doctor blade or a bar coater, a drying device, and a press machine can be used.
  • the molded body layer can also be obtained, for example, by pressure molding a granular or powdered negative electrode material together with a current collector.
  • Examples of the pressure molding method include a pressure roll method and a pressure plate method.
  • the pressure during the pressure molding is preferably 1 to 3 t / cm 2 .
  • the density (electrode density) of the molded body layer is preferably 1.3 to 1.7 g / cm 3 .
  • the battery capacity per volume tends to increase, and when the electrode density is increased too much, the cycle characteristics tend to deteriorate.
  • the electrode of the present invention is suitable for a negative electrode of a battery or a negative electrode of a lithium ion secondary battery.
  • the battery or lithium ion secondary battery of the present invention includes the electrode of the present invention.
  • a battery or a lithium ion secondary battery usually includes a negative electrode, an electrolyte, and a positive electrode.
  • the electrode of the present invention is preferably used for the negative electrode.
  • the electrode of the present invention may be used for the positive electrode of the lithium ion secondary battery, but an electrode containing a positive electrode active material is preferably used.
  • the positive electrode active material include lithium-containing transition metal oxides, and preferably lithium and at least one transition metal element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Mo, and W.
  • the positive electrode active material may contain Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like in a range of less than 30 mol% with respect to the transition metal element present.
  • Li a MO 2 (M is at least one element selected from the group consisting of Co, Ni, Fe, and Mn, 0 ⁇ a ⁇ 1.2), or Li b L 2 O 4 (L is an element containing at least Mn.
  • the volume-based 50% diameter D 50 of the positive electrode active material by laser diffraction is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
  • the positive electrode active material has a volume occupied by a particle group having a particle size of 3 ⁇ m or less being 18% or less of the total volume, and a volume occupied by a particle group of 15 ⁇ m or more and 25 ⁇ m or less is the total volume. It is preferable that it is 18% or less.
  • the BET specific surface area of the positive electrode active material is not particularly limited, is preferably 0.01 ⁇ 50m 2 / g, more preferably 0.2m 2 /g ⁇ 1.0m 2 / g.
  • the pH of the supernatant liquid when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a separator may be provided between the positive electrode and the negative electrode.
  • the separator include non-woven fabric, cloth, microporous film, or a combination thereof.
  • the separator is preferably made of a material mainly composed of polyolefin such as polyethylene or polypropylene.
  • organic electrolytes As the electrolyte and electrolyte constituting the lithium ion secondary battery of the present invention, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used, but organic electrolytes are preferred from the viewpoint of electrical conductivity.
  • the organic electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
  • the organic solvent include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethyl 5 glycol monobutyl ether, diethylene glycol dimethyl ether, ethylene glycol phenyl ether, Ethers such as 1,2-dimethoxyethane; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N- Ethylacetamide, N, N-diethylacetamide, N, N-dimethylpropionamide, Amides such as samethyl phosphorylamide; sulfur-containing organic compounds such as dimethyl
  • carbonates such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, esters such as ⁇ -butyrolactone, ethers such as diethyl ether and diethoxyethane, dimethyl sulfoxide, acetonitrile, Tetrahydrofuran and 1,3-dioxolane are preferred; carbonates such as ethylene carbonate and propylene carbonate are more preferred.
  • organic solvents can be used alone or in admixture of two or more.
  • Examples of the electrolyte used for the organic electrolyte include lithium salts.
  • Examples of the lithium salt as the electrolyte include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , and LiN (CF 3 SO 2 ) 2 .
  • polymer solid electrolyte examples include polyethylene oxide derivatives, polymers containing polyethylene oxide derivatives, polypropylene oxide derivatives, polymers containing polypropylene oxide derivatives, phosphate ester polymers, polycarbonate derivatives, polymers containing polycarbonate derivatives, and the like. . There are no restrictions on the selection of members other than those described above necessary for the battery configuration.
  • Viscosity is adjusted by appropriately adding 1.5 parts by mass of carboxymethyl cellulose and water to 100 parts by mass of the graphitic carbon material, and 3.8 parts by mass of an aqueous dispersion of styrene-butadiene rubber fine particles (solid content: 40% by mass).
  • a negative electrode material slurry having sufficient fluidity.
  • the negative electrode material slurry was applied to a high-purity copper foil at a thickness of 150 ⁇ m and vacuum-dried at 70 ° C. for 12 hours.
  • the copper foil on which the negative electrode material coating film was formed was punched out to obtain a rectangular piece of 20 cm 2 .
  • the small piece is sandwiched between super steel press plates and pressed at a pressing pressure of 1 ⁇ 10 2 to 3 ⁇ 10 2 N / mm 2 (1 ⁇ 10 3 to 3 ⁇ 10 3 kg / cm 2 ) to form a negative electrode molded body layer 1 was formed on a copper foil to obtain a negative electrode 1.
  • N-methyl-pyrrolidone is appropriately added to 90 g of Li 3 Ni 1/3 Mn 1/3 Co 1/3 O 2 (D50: 7 ⁇ m), 5 g of carbon black (manufactured by TIMCAL, C45), and 5 g of polyvinylidene fluoride (PVdF). The mixture was stirred while being added to prepare a positive electrode material slurry.
  • the positive electrode material slurry was applied in a uniform thickness on an aluminum foil having a thickness of 20 ⁇ m, and then dried. It was roll-pressed to form a positive electrode molded body layer on the aluminum foil. The aluminum foil on which the positive electrode molded body layer was formed was punched out to obtain a 20 cm 2 rectangular small piece (positive electrode).
  • a Ni tab was attached to the copper foil of the negative electrode 1.
  • An Al tab was attached to the Al foil of the positive electrode.
  • a polypropylene microporous membrane was laminated between the negative electrode molded body layer and the positive electrode molded body layer. This was packed with aluminum laminate leaving one opening.
  • An electrolytic solution (formed by dissolving 1 mol / liter of LiPF 6 in a mixed solution of 2 parts by mass of ethylene carbonate and 3 parts by mass of ethyl methyl carbonate) is injected into the opening, and then the opening is heat-sealed. Was sealed to obtain a bipolar cell.
  • constant voltage charging is performed at 4.15 V until the current value reaches 1.25 mA. It was.
  • Electrolytic solution A LiPF 6 dissolved at 1 mol / liter in a mixed solution consisting of 2 parts by mass of ethylene carbonate and 3 parts by mass of ethyl methyl carbonate was injected into it and sealed with a screw-in type lid. Lithium cell A was obtained.
  • the counter electrode lithium cell A was charged with a constant current from the rest potential to 0.002 V at 0.2 mA. After reaching 0.002 V, constant voltage charging was performed at 0.002 V until 25.4 ⁇ A. The amount of charge A was measured. Thereafter, constant current discharge was performed at 0.2 mA until 1.5 V was reached, and the discharge capacity A was measured. The ratio of the discharge capacity A to the charge amount A was defined as the initial coulomb efficiency [%].
  • Electrolyte B LiPF 6 was dissolved in 1 mol / liter in a mixed solution consisting of 1 part by mass of ethylene carbonate, 3 parts by mass of ethyl methyl carbonate and 1 part by mass of propylene carbonate was poured into the screw-type lid. And the counter electrode lithium cell B was obtained.
  • the counter lithium cell B was charged at a constant current of 0.2 mA from the rest potential to 0.002 V. After reaching 0.002 V, constant voltage charging was performed at 0.002 V until 25.4 ⁇ A. The amount of charged electricity B was measured. Thereafter, constant current discharge was performed at 0.2 mA until 1.5 V was reached, and the discharge capacity B was measured. The ratio of the discharge capacity B to the amount of charge B was defined as PC electrolyte resistance [%].
  • the copper foil on which the negative electrode material coating film was formed was punched out to obtain a round piece of 16 mm ⁇ .
  • the small piece is sandwiched between press plates made of super steel, pressed at a pressing pressure of 2 ⁇ 10 2 N / mm 2 (2 ⁇ 10 3 kg / cm 2 ), and a negative electrode molded body layer 2 is formed on the copper foil.
  • a negative electrode 3 was obtained.
  • the thickness of the negative electrode 3 was measured using a film thickness meter (SMD-565, TECLOCK Co., Ltd.), and the electrode density was calculated from the mass of the negative electrode material coating film.
  • the product of the calculated electrode density and discharge capacity A was defined as the volume energy density.
  • Example 1 A Brazilian crude oil vacuum distillation residue having a specific gravity of 4.2 ° API, an asphaltene content of 17% by mass, a resin content of 21% by mass, a sulfur content of 2.1% by mass, and an ash content of 0.3% by mass is put into a delayed coking apparatus.
  • the furnace heater outlet temperature before the caulking drum was controlled to 570 ° C., and the internal pressure was controlled to about 138 kPa (35 psig) to perform delayed coking.
  • Granular coke having a diameter of about 3 to 8 mm was obtained. This was cooled with water and discharged from the caulking drum. This was heated at 120 ° C. and dried to a moisture content of 0.5% by mass or less.
  • the obtained coke having a micro strength of 30% was pulverized with a bantam mill manufactured by Hosokawa Micron. Subsequently, airflow classification was performed with a turbo classifier TC-15N manufactured by Nisshin Engineering, and coke having a D 50 of 15.5 ⁇ m was obtained. This was pulverized with a jet mill manufactured by Seishin Corporation to obtain coke having a D 50 of 6.6 ⁇ m. Coke having a D 50 of 6.6 ⁇ m was filled into a graphite crucible with a screw lid, and heat-treated at 3100 ° C. in an Atchison furnace to obtain powder of particles containing a single-layer graphitic carbon material. Table 2 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
  • Example 2 To 100 parts by mass of the powder of particles containing the single-layer graphitic carbon material obtained in Example 1, 1.0 part by mass of a powdery isotropic petroleum pitch was added and dry mixed. Subsequently, it heated at 1100 degreeC under argon atmosphere for 1 hour, and obtained the powder of the particle
  • Example 3 Crude oil produced in Brazil in Xinjiang Uygur Autonomous Region with a specific gravity of 3.1 ° API, an asphaltene content of 17% by mass, a resin content of 20% by mass, a sulfur content of 0.8% by mass, and an ash content of 0.4% by mass
  • a powder of particles containing a single layer graphitic carbon material is obtained by the same method as in Example 1 except that the residue is changed to a vacuum distillation residue, and a powder of particles containing a multilayer graphitic carbon material is obtained by using the same method as in Example 2.
  • Got. The powder had no aggregation and consisted only of primary particles.
  • Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
  • Example 4 Brazilian crude oil produced in Liaoning Republic has a specific gravity of 5.2 ° API, an asphaltene content of 22% by mass, a resin content of 17% by mass, a sulfur content of 1.2% by mass, and an ash content of 0.6% by mass.
  • a powder of particles containing a single layer graphitic carbon material is obtained by the same method as in Example 1 except that the residue is changed to a vacuum distillation residue, and a powder of particles containing a multilayer graphitic carbon material is obtained by using the same method as in Example 2.
  • Got. The powder was not aggregated and consisted only of primary particles.
  • Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
  • Example 5 D 50 is obtained coke 5.8 ⁇ m in air classification, to obtain a powder of particles including the single-layer graphitic carbon material in the same manner as in Example 1, except that the supplied directly to the graphitization without jet milling it Using this, a powder of particles containing a multilayer graphitic carbon material was obtained in the same manner as in Example 2. The powder was not aggregated and consisted only of primary particles. Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
  • Example 6 Chopper rotation for 2 minutes with a Henschel mixer using 70 parts by mass of particles containing the single-layer graphitic carbon material obtained in Example 2 and 30 parts by mass of artificial graphite MCMB2528 (graphitization temperature: 2800 ° C.) manufactured by Osaka Gas Co., Ltd. The mixture was stirred at several 2000 rpm to obtain a mixed graphitic carbon material. Table 2 shows the evaluation results of the battery obtained using the mixed graphitic carbon material.
  • Example 7 D 50 is obtained coke 15.5 ⁇ m in air classification, to obtain a powder of particles including the single-layer graphitic carbon material in the same manner as in Example 1, except that the supplied directly to the graphitization without jet milling it It was. The powder was not aggregated and consisted only of primary particles.
  • Table 2 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
  • Example 8 Brazilian crude oil produced in Liaoning Republic has a specific gravity of 5.2 ° API, an asphaltene content of 22% by mass, a resin content of 17% by mass, a sulfur content of 1.2% by mass, and an ash content of 0.6% by mass.
  • a powder of particles containing a single-layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a vacuum distillation residue. The powder was not aggregated and consisted only of primary particles.
  • Table 2 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
  • a Brazilian crude oil vacuum distillation residue has a specific gravity of 3.4 ° API, an asphaltene content of 21% by mass, a resin content of 11% by mass, a sulfur content of 3.3% by mass, and an ash content of 0.2% by mass.
  • a powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a residue. The powder was not aggregated and consisted only of primary particles.
  • Table 3 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
  • a Brazilian crude oil vacuum distillation residue has a specific gravity of 3.0 ° API, an asphaltene content of 28% by mass, a resin content of 11% by mass, a sulfur content of 3.5% by mass, and an ash content of 0.1% by mass.
  • a powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a residue. The powder was not aggregated and consisted only of primary particles.
  • Table 3 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
  • Comparative Example 4 70 parts by mass of particles containing the single-layered graphitic carbon material obtained in Comparative Example 3 and 30 parts by mass of Osaka Gas Artificial Graphite MCMB2528 (graphitization temperature: 2800 ° C.) for 2 minutes using a Henschel mixer, chopper rotation speed The mixture was stirred at 2000 rpm to obtain a mixed graphitic carbon material.
  • Table 3 shows the evaluation results of the battery obtained using the mixed graphitic carbon material.
  • Comparative Example 5 5 parts by mass of coal tar pitch (average particle diameter: 0.5 ⁇ m) is added to 93 parts by mass of the powder of particles containing the single-layer graphitic carbon material obtained in Comparative Example 3, and gas phase method carbon fiber manufactured by Showa Denko KK 2 parts by mass of (VGCF (registered trademark)) was added, and the mixture was stirred for 5 minutes at Hosokawa Micron Mechanofusion at a chopper rotation speed of 2000 rpm to obtain a mixture. This mixture was heat-treated at 1200 ° C. in an argon atmosphere to obtain particles of powder containing the composite graphitic carbon material. The powder was not aggregated and consisted only of primary particles. Table 3 shows the physical properties of the composite graphitic carbon material and the evaluation results of the battery obtained using the composite graphitic carbon material.
  • Comparative Example 6 A phenol resin (“Bellpearl® C-800”; manufactured by Kanebo Co., Ltd.) was heated at 170 ° C. for 3 minutes and then heated at 130 ° C. for 8 hours to be cured. Thereafter, the temperature was raised to 1200 ° C. at a rate of 250 ° C./h in a nitrogen atmosphere and held at 1200 ° C. for 1 hour. Then, it cooled to room temperature and obtained the powder of the particle
  • Table 4 shows the evaluation results of the battery obtained using artificial graphite MCMB (registered trademark) 2528 (graphitization temperature 2800 ° C.) manufactured by Osaka Gas Co., Ltd.
  • the artificial graphite MCMB (registered trademark) 2528 manufactured by Osaka Gas Co., Ltd. had no aggregation and consisted only of primary particles.
  • Comparative Example 8 A crude oil from Brazil, which has a specific gravity of 3.4 ° API, an asphaltene content of 7% by mass, a resin content of 7% by mass, a sulfur content of 0.2% by mass, and an ash content of 0.0% by weight.
  • a powder of particles containing a single-layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a vacuum distillation residue. The powder was not aggregated and consisted only of primary particles.
  • Table 4 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
  • Comparative Example 9 600 g of Chinese natural graphite having a D 50 of 7 ⁇ m was put into a hybridizer NHS1 type manufactured by Nara Machinery, and treated for 3 minutes at a rotor peripheral speed of 60 / m / sec to obtain spherical graphite particles. This operation was repeated to prepare 3 kg of spherical graphite particles. The spherical graphite particles were agglomerated and their D 50 was 15 ⁇ m. 3 kg of spherical graphite particles and 1 kg of petroleum-based tar were put into an M20-type readyge mixer (internal volume 20 liters) manufactured by Matsubo Co., Ltd. and kneaded.
  • M20-type readyge mixer internal volume 20 liters
  • Comparative Example 11 Texas crude oil normal pressure having a specific gravity of 17.0 ° API, an asphaltene content of 8% by mass, a resin content of 6% by mass, a sulfur content of 6.3% by mass and an ash content of 0.1% by mass.
  • a powder of particles containing a single layer graphitic carbon material is obtained by the same method as in Example 1 except that the residue is changed to a distillation residue, and a powder of particles containing a multilayer graphitic carbon material is obtained by using the same method as in Example 2. Obtained. The powder was not aggregated and consisted only of primary particles.
  • Table 4 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
  • Comparative Example 12 Brazilian crude oil vacuum distillation residue, Indonesian crude oil atmospheric pressure with specific gravity 5.0 ° API, asphaltene content 12% by mass, resin content 9% by mass, sulfur content 0.7% by mass, and ash content 0.1% by mass
  • a powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a distillation residue. The powder was not aggregated and consisted only of primary particles.
  • Table 4 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A graphitic carbon material in which d002 is 0.3354 to 0.3370 nm, Lc112 is 3.0 to 6.0 nm, the ratio I110/I004 is 0.30 to 0.67, the ratio ID/IG is 0.05 to 0.30, Da100 is 65.0 to 90.0% relative to the total of Da100 and Dc100, Da10 is 0.5 μm2 to 2.0 μm2, Da50 is 0.6 μm2 to 4.0 μm2, Da90 is 0.7 μm2 to 30.0 μm2, Dc10 is 0.5 μm2 to 1.0 μm2, Dc50 is 0.6 μm2 to 2.0 μm2, and Dc90 is 0.7 μm2 to 14.0 μm2.

Description

黒鉛材料、その製造方法及びその用途Graphite material, its production method and its use
 本発明は、黒鉛質炭素材料、その製造方法及びその用途に関する。 The present invention relates to a graphitic carbon material, a production method thereof, and an application thereof.
 黒鉛には、天然黒鉛と人造黒鉛とがある。天然黒鉛は安価に入手できる。しかし、天然黒鉛は鱗片状を成しているので、バインダとともにペーストにし、それを集電体に塗布すると、天然黒鉛が一方向に配向してしまう。そのような電極で充電すると電極が一方向にのみ膨張し、電極としての性能を低下させる。天然黒鉛を造粒して球状にしたものが提案されているが、電極作製時のプレスによって球状化天然黒鉛が潰れて配向してしまう。また、天然黒鉛の表面がアクティブであるために初回充電時にガスが多量に発生し、初期効率が低く、さらに、サイクル特性も良くなかった。
 このような背景のもと、種々の黒鉛質炭素材料が提案されている。
Graphite includes natural graphite and artificial graphite. Natural graphite is available at low cost. However, since natural graphite is scaly, when it is made into a paste together with a binder and applied to a current collector, the natural graphite is oriented in one direction. When charging with such an electrode, the electrode expands in only one direction, and the performance as an electrode is reduced. Although natural graphite granulated has been proposed, spherical natural graphite is crushed and oriented by pressing during electrode production. Moreover, since the surface of natural graphite was active, a large amount of gas was generated during the initial charge, the initial efficiency was low, and the cycle characteristics were not good.
Against this background, various graphitic carbon materials have been proposed.
 例えば、特許文献1は、広角X線回折法による(002)面の面間隔(d002)が0.337nm未満、結晶子サイズ(Lc)が90nm以上、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1のピーク強度に対する1360cm-1のピーク強度比であるR値が0.20以上、かつタップ密度が0.75g/cm3以上であることを特徴とする電極用炭素材料を開示している。 For example, Patent Document 1 discloses that the (002) plane spacing (d 002 ) is less than 0.337 nm, the crystallite size (Lc) is 90 nm or more, and 1580 cm −1 in an argon ion laser Raman spectrum by wide-angle X-ray diffraction. An electrode carbon material is disclosed in which an R value, which is a peak intensity ratio of 1360 cm −1 to a peak intensity, is 0.20 or more and a tap density is 0.75 g / cm 3 or more.
 特許文献2は、リチウム二次電池用負極を製造するために用いられる黒鉛粒子において、前記黒鉛粒子は、黒鉛粒子及び有機系結着剤の混合物と集電体とを一体化してなる前記混合物の密度が1.5~1.9g/cm3であるリチウム二次電池用負極を製造するために用いられるものであり、かつ、そのアスペクト比が1.2~5であるリチウム二次電池負極用黒鉛粒子を開示している。 Patent Document 2 discloses a graphite particle used for manufacturing a negative electrode for a lithium secondary battery, wherein the graphite particle is formed by integrating a mixture of a graphite particle and an organic binder and a current collector. Used for manufacturing a negative electrode for a lithium secondary battery having a density of 1.5 to 1.9 g / cm 3 , and for a negative electrode of a lithium secondary battery having an aspect ratio of 1.2 to 5 Graphite particles are disclosed.
 特許文献3は、光学異方性組織と光学等方性組織と空隙とで構成された黒鉛粒子からなり、下記(1)および(2)の条件を満足することを特徴とする黒鉛材料を開示している。
(1)黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、光学異方性組織の面積の合計(x)、光学等方性組織の面積の合計(y)及び空隙の面積の合計(z)が以下の関係を満足する;
 x:y:z=50~97:3~50:0~10、かつx+y+z=100、
(2)任意の100粒子の断面における光学異方性組織ドメインのうち、長辺部の長さの最大値をLmax、レーザー回折法により測定した体積基準の平均粒子径(D50)をLaveとした場合、Lmax/Lave≦0.5である。
Patent Document 3 discloses a graphite material comprising graphite particles composed of an optically anisotropic structure, an optically isotropic structure, and voids, and satisfying the following conditions (1) and (2): doing.
(1) In a cross section of a molded body made of a graphite material, when 10 square areas each having a side of 100 μm are arbitrarily selected, the total area of optically anisotropic structures in the cross section of the graphite particles appearing in the area (x) The total area (y) of the optically isotropic tissue and the total area (z) of the voids satisfy the following relationship:
x: y: z = 50 to 97: 3 to 50: 0 to 10, and x + y + z = 100,
(2) Among the optically anisotropic tissue domains in the cross section of arbitrary 100 particles, the maximum value of the length of the long side portion is L max , and the volume-based average particle diameter (D50) measured by the laser diffraction method is L ave In this case, L max / L ave ≦ 0.5.
 特許文献4は、光学異方性組織と光学等方性組織と空隙とで構成された黒鉛粒子からなり、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面に対して、クロスニコル状態での鋭敏色検板を通過させた偏光顕微鏡像において、光学異方性組織ドメインの黒鉛網面の向きを示す干渉色であるマゼンタ、ブルーおよびイエローの各色の面積の合計値のうち、最も小さいものの面積合計値Cminが、前記黒鉛粒子の断面積合計に対して12~32%である黒鉛材料を開示している。 Patent Document 4 is composed of graphite particles composed of an optically anisotropic structure, an optically isotropic structure, and voids, and arbitrarily select 10 square regions each having a side of 100 μm in a cross section of a molded body made of a graphite material. When the cross-section of the graphite particles appearing in the region is passed through a sensitive color test plate in a crossed Nicol state, an interference color indicating the orientation of the graphite network surface of the optically anisotropic texture domain A graphite material is disclosed in which the total area C min of the smallest one of the total areas of the respective colors of magenta, blue and yellow is 12 to 32% with respect to the total cross-sectional area of the graphite particles.
 特許文献5は、メソフェーズピッチを原料として2000℃以上の温度で黒鉛化することによって製造される非鱗片形状の黒鉛粉末であって、光学組織がモザイク組織であり、X線回折におけるC軸方向の結晶子の面間隔d002 が0.3358nm以上、結晶子の大きさLc002 が100nm以下、ラマン散乱スペクトルにおける1360及び1580cm-1 の2つのラマンバンドの強度比(I1360/I1580)が0.1以上である黒鉛粉末を炭素材料として使用した負極と、プロピレンカーボネートを含有する非水溶媒にリチウム塩を溶解した電解液を用いることを特徴とする非水溶媒二次電池を開示している。 Patent Document 5 is a non-flaky graphite powder produced by graphitizing mesophase pitch as a raw material at a temperature of 2000 ° C. or higher, the optical structure is a mosaic structure, and the C-axis direction in X-ray diffraction is The crystallite spacing d 002 is 0.3358 nm or more, the crystallite size Lc 002 is 100 nm or less, and the intensity ratio (I 1360 / I 1580 ) of two Raman bands of 1360 and 1580 cm −1 in the Raman scattering spectrum is 0. Disclosed is a non-aqueous solvent secondary battery using a negative electrode using graphite powder of 1 or more as a carbon material and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent containing propylene carbonate. .
 特許文献6は、メソフェーズピッチを原料として2000℃以上の温度で製造される非鱗片状の黒鉛粉末であって、該黒鉛粉末の光学組織がモザイク組織であり、X線回析におけるC軸方向の結晶子の大きさが100nm以下であり、ラマン散乱スペクトルにおける1360cm-1 および1580cm-1 の2つのラマンバンドの強度比(I1360/I1580)が0.1以上であることを特徴とする非水溶媒二次電池負極用炭素材料を開示している。 Patent Document 6 is a non-flaky graphite powder produced using mesophase pitch as a raw material at a temperature of 2000 ° C. or more, wherein the optical structure of the graphite powder is a mosaic structure, and in the C-axis direction in X-ray diffraction. non the size of the crystallite is not more 100nm or less, the intensity ratio of the two Raman bands of 1360 cm -1 and 1580 cm -1 in the Raman scattering spectrum (I 1360 / I 1580) is equal to or less than 0.1 A carbon material for a negative electrode of an aqueous solvent secondary battery is disclosed.
 特許文献7は、重質油組成物をディレードコーキングプロセスによってコーキング処理して得られる原料炭組成物を粉砕及び分級する工程と、上記粉砕及び分級された原料炭組成物に圧縮応力と剪断応力を付与して黒鉛前駆体を得る工程と、上記黒鉛前駆体を加熱して黒鉛化し、X線広角回折法によって測定される(112)回折線の結晶子の大きさLc112が4nm以上となる黒鉛材料を得る工程とを少なくとも含むリチウムイオン二次電池負極用の黒鉛材料の製造方法であって、上記粉砕及び分級される原料炭組成物が、水素原子Hと炭素原子Cの比率、H/C原子比0.30~0.50を有し、且つマイクロ強度7~17質量%を有するリチウムイオン二次電池負極用の黒鉛材料の製造方法を開示している。 Patent Document 7 discloses a step of pulverizing and classifying a raw coal composition obtained by coking a heavy oil composition by a delayed coking process, and applying compressive stress and shear stress to the pulverized and classified raw coal composition. A step of providing a graphite precursor by heating, graphitizing by heating the graphite precursor, and having a crystallite size Lc 112 of (112) diffraction line measured by X-ray wide angle diffraction method of 4 nm or more A method of producing a graphite material for a negative electrode of a lithium ion secondary battery comprising at least a step of obtaining a material, wherein the raw carbon composition to be pulverized and classified has a ratio of hydrogen atoms H to carbon atoms C, H / C A method for producing a graphite material for a negative electrode of a lithium ion secondary battery having an atomic ratio of 0.30 to 0.50 and a micro strength of 7 to 17% by mass is disclosed.
 特許文献8は、重質油組成物をディレードコーキングプロセスによってコーキング処理した原料炭組成物であって、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%であることを特徴とするリチウムイオン二次電池用負極炭素材料の原料炭組成物を、平均粒子径として30μm以下に粉砕してから炭素化及び/又は黒鉛化することを特徴とするリチウムイオン二次電池用負極炭素材料の製造方法を開示している。 Patent Document 8 is a raw coal composition obtained by coking a heavy oil composition by a delayed coking process, wherein the ratio of hydrogen atom H to carbon atom C, H / C atomic ratio is 0.30 to 0.50, The raw carbon composition of the negative electrode carbon material for a lithium ion secondary battery having a micro strength of 7 to 17% by mass is pulverized to an average particle size of 30 μm or less, and then carbonized and / or graphitized. The manufacturing method of the negative electrode carbon material for lithium ion secondary batteries characterized by doing is disclosed.
特開2000-340232号公報(US 6632569B1)JP 2000-340232 A (US 6632569 B1) 特開平10-188959号公報Japanese Patent Laid-Open No. 10-188959 WO2011/049199AWO2011 / 049199A 特開2011-184293号公報JP 2011-184293 A 特開2002-124255号公報JP 2002-124255 A 特開2000-149946号公報JP 2000-149946 A WO2012/020816AWO2012 / 020816A WO2011/152426AWO2011 / 152426A
 従来技術に係る炭素材料は、大型電池などで要求される高温でのサイクル容量維持特性、低温での入出力特性、さらに低温での動作に有効なPC(プロピレンカーボネート)電解液耐性を十分に良好なレベルでバランスするに至っていない。 Carbon materials according to the prior art have sufficiently good cycle capacity maintenance characteristics at high temperatures, input / output characteristics at low temperatures, and resistance to PC (propylene carbonate) electrolyte, which is effective for operation at low temperatures, as required for large batteries. Has not yet reached a balance at a certain level.
 本発明の目的は、新規な黒鉛質炭素材料を提供することである。 An object of the present invention is to provide a novel graphitic carbon material.
 本発明の別の目的は、エネルギ密度特性、高温でのサイクル容量維持特性、低温での入出力特性、およびPC(プロピレンカーボネート)電解液耐性を良好なレベルで併せ持った電極が作製可能な新規な黒鉛質炭素材料を提供することである。 Another object of the present invention is to provide a novel electrode capable of producing an electrode having a good level of energy density characteristics, cycle capacity maintenance characteristics at high temperatures, input / output characteristics at low temperatures, and resistance to PC (propylene carbonate) electrolyte. It is to provide a graphitic carbon material.
 本発明は以下の態様を包含する。
〔1〕 (A) 黒鉛質炭素材料の粉末X線回折の測定において、
 (1)(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下であり、
 (2)(112)回折線から算出される結晶子の大きさLc112が3.0nm以上6.0nm以下であり、且つ
 (3)(004)回折線のピーク強度I004に対する(110)回折線のピーク強度I110の比I110/I004が0.30以上0.67以下であり、
(B) 黒鉛質炭素材料の波長514.5nmのアルゴンイオンレーザーによるラマン分光の測定において、
 (1)1570~1630cm-1の領域に存在するピーク強度IGに対する1350~1370cm-1の領域に存在するピーク強度IDの比ID/IGが0.05以上0.30以下であり、
(C) 黒鉛質炭素材料の断面中の無作為に選択した100μm×100μmの正方形視野10カ所の偏光顕微鏡観察において、
 (1)光学異方性ドメインの面積の総計Da100が、光学異方性ドメインの面積の総計Da100と光学等方性ドメインの面積の総計Dc100との合計に対して、65.0%以上90.0%以下であり、
 (2)各光学異方性ドメインの面積を小さい方から累計し、
   (a)その累計が光学異方性ドメインの面積の総計に対して10%となるときの面積Da10が0.5μm2以上2.0μm2以下であり、
   (b)その累計が光学異方性ドメインの面積の総計に対して50%となるときの面積Da50が0.6μm2以上4.0μm2以下であり、且つ
   (c)その累計が光学異方性ドメインの面積の総計に対して90%となるときの面積Da90が0.7μm2以上30.0μm2以下であり、且つ
 (3)各光学等方性ドメインの面積を小さい方から累計し、
   (a)その累計が光学等方性ドメインの面積の総計に対して10%となるときの面積Dc10が0.5μm2以上1.0μm2以下であり、
   (b)その累計が光学等方性ドメインの面積の総計に対して50%となるときの面積Dc50が0.6μm2以上2.0μm2以下であり、且つ
   (c)その累計が光学等方性ドメインの面積の総計に対して90%となるときの面積Dc90が0.7μm2以上14.0μm2以下である、
黒鉛質炭素材料(Graphite Carbon Material)。
The present invention includes the following aspects.
[1] (A) In measurement of powder X-ray diffraction of graphitic carbon material,
(1) The (002) plane average plane distance d 002 is 0.3354 nm or more and 0.3370 nm or less,
(2) The crystallite size Lc 112 calculated from the (112) diffraction line is 3.0 nm or more and 6.0 nm or less, and (3) (110) diffraction with respect to the peak intensity I 004 of the (004) diffraction line. The ratio I 110 / I 004 of the peak intensity I 110 of the line is 0.30 or more and 0.67 or less,
(B) In the measurement of Raman spectroscopy by an argon ion laser having a wavelength of 514.5 nm of the graphitic carbon material,
(1) 1570 ratio I D / I G peak intensity I D that exists in the region of ~ 1630 cm 1350 to the peak intensity I G existing in the region of -1 ~ 1370 cm -1 is located at 0.05 to 0.30 ,
(C) In polarization microscope observation of 10 square fields of 100 μm × 100 μm randomly selected in the cross section of the graphitic carbon material,
(1) Total Da 100 of the area of the optically anisotropic domains, relative to the sum of the total Dc 100 of the area of the total Da 100 and optically isotropic domains in the area of the optically anisotropic domain, 65.0% More than 90.0%,
(2) Accumulate the area of each optically anisotropic domain from the smallest,
(a) The area Da 10 when the cumulative total is 10% with respect to the total area of the optically anisotropic domains is 0.5 μm 2 or more and 2.0 μm 2 or less,
(b) The area Da 50 when the cumulative total is 50% of the total area of the optically anisotropic domains is 0.6 μm 2 or more and 4.0 μm 2 or less, and (c) the total is optically different. area Da 90 when the 90% total area of isotropic domains is at 0.7 [mu] m 2 or more 30.0 2 below, and (3) cumulative from the smaller the area of each optically isotropic domain And
(a) The area Dc 10 when the cumulative total is 10% with respect to the total area of the optical isotropic domain is 0.5 μm 2 or more and 1.0 μm 2 or less,
(b) The area Dc 50 when the total is 50% of the total area of the optical isotropic domain is 0.6 μm 2 or more and 2.0 μm 2 or less, and (c) the total is optical or the like. area Dc 90 when the 90% total area of isotropic domains is 0.7 [mu] m 2 or more 14.0 2 below,
Graphite Carbon Material.
〔2〕 BET比表面積Ssaが1.5m2/g以上4.0m2/g以下である、〔1〕に記載の黒鉛質炭素材料。
〔3〕 レーザー回析法による体積基準の50%径D50が4.0μm以上20.0μm以下である、〔1〕または〔2〕に記載の黒鉛質炭素材料。
〔4〕 (002)回折線から算出される結晶子の大きさLc002が50nm以上80nm以下である、〔1〕~〔3〕のいずれかひとつに記載の黒鉛質炭素材料。
〔5〕 平均円形度Ravが0.86以上0.95以下である、〔1〕~〔4〕のいずれかひとつに記載の黒鉛質炭素材料。
〔6〕 タップ密度ρTが0.55g/m3以上1.30g/m3以下である、〔1〕~〔5〕のいずれかひとつに記載の黒鉛質炭素材料。
[2] The graphitic carbon material according to [1], wherein the BET specific surface area S sa is 1.5 m 2 / g or more and 4.0 m 2 / g or less.
[3] The graphitic carbon material according to [1] or [2], wherein a volume-based 50% diameter D 50 by laser diffraction method is 4.0 μm or more and 20.0 μm or less.
[4] The graphitic carbon material according to any one of [1] to [3], wherein a crystallite size Lc 002 calculated from a (002) diffraction line is 50 nm or more and 80 nm or less.
[5] The graphitic carbon material according to any one of [1] to [4], wherein the average circularity R av is 0.86 or more and 0.95 or less.
[6] The graphitic carbon material according to any one of [1] to [5], wherein the tap density ρ T is 0.55 g / m 3 or more and 1.30 g / m 3 or less.
〔7〕 炭素材料(a Carbon Material)からなる芯層と、その表面を覆う他の炭素材料(another Carbon Material)からなる表皮層とを含む多層構造を成している、〔1〕~〔6〕のいずれかひとつに記載の黒鉛質炭素材料。 [7] A multi-layer structure including a core layer made of a carbon material (a Carbon Material) and a skin layer made of another carbon material (another Carbon Material) covering the surface, [1] to [6 ] The graphite carbon material as described in any one of.
〔8〕 〔1〕~〔7〕のいずれかひとつに記載の黒鉛質炭素材料を含む粒子を含有する、電池電極用材料(Cell Electrode Material)。
〔9〕 〔1〕~〔7〕のいずれかひとつに記載の黒鉛質炭素材料100質量部と、
 平均面間隔d002が0.3354nm以上0.3370nm以下である球状天然黒鉛または人造黒鉛0.01~200質量部と
を含有する、電池電極用材料。
〔10〕 バインダをさらに含む、〔8〕~〔9〕のいずれかひとつに記載の電池電極用材料。
[8] A battery electrode material (Cell Electrode Material) containing particles containing the graphitic carbon material according to any one of [1] to [7].
[9] 100 parts by mass of the graphitic carbon material according to any one of [1] to [7],
Mean spacing d 002 contains a spherical natural graphite or artificial graphite 0.01-200 parts by weight or less 0.3370nm than 0.3354 nm, battery electrode material.
[10] The battery electrode material according to any one of [8] to [9], further including a binder.
〔11〕 〔7〕~〔10〕のいずれかひとつに記載の電池電極用材料を含む成形体(compact)の層を有する電極。
〔12〕 〔11〕に記載の電極を含む電池。
〔13〕 〔12〕に記載の電極を含むリチウムイオン二次電池。
[11] An electrode having a compact layer containing the battery electrode material according to any one of [7] to [10].
[12] A battery comprising the electrode according to [11].
[13] A lithium ion secondary battery including the electrode according to [12].
〔14〕 アスファルテン分と樹脂分の合計量が20質量%以上60質量%以下で、硫黄分の量が0.5質量%以上6.0質量%以下で、且つ灰分の量が0.2質量%以上1.0質量%以下である、炭素原料(Carbon Source)に、コーキングドラム前の加熱炉ヒーター出口温度を550℃~580℃に制御して、ディレードコーキングを施して、マイクロ強度が20質量%以上40質量%以下のコークスを得、
 得られたコークスを粉砕し、
 粉砕されたコークスを2500~3600℃の温度で黒鉛化することを含む、
〔1〕~〔6〕のいずれかひとつに記載の黒鉛質炭素材料(Graphite carbon material)の製造方法。
[14] The total amount of asphaltene and resin is 20% by mass to 60% by mass, the amount of sulfur is 0.5% by mass to 6.0% by mass, and the amount of ash is 0.2% by mass. % To 1.0% by mass, carbon source (Carbon Source) is subjected to delayed coking by controlling the furnace heater outlet temperature before the caulking drum to 550 ° C. to 580 ° C., and the micro strength is 20 mass. % To 40% by mass of coke,
Crush the obtained coke,
Graphitizing the ground coke at a temperature of 2500-3600 ° C.,
[1] to [6] The method for producing a graphitic carbon material according to any one of [6].
〔15〕 アスファルテン分と樹脂分の合計量が20質量%以上60質量%以下で、硫黄分の量が0.5質量%以上6.0質量%以下で、且つ灰分の量が0.2質量%以上1.0質量%以下である、炭素原料に、コーキングドラム前の加熱炉ヒーター出口温度を550℃~580℃に制御して、ディレードコーキングを施して、マイクロ強度が20質量%以上40質量%以下のコークスを得、
 得られたコークスを粉砕し、
 粉砕されたコークスを2500~3600℃の温度で黒鉛化して炭素材料からなる芯層を得、次いで
 該芯層に他の炭素材料からなる表皮層を被覆させることを含む、〔7〕に記載の黒鉛質炭素材料の製造方法。
[15] The total amount of asphaltene and resin is 20% by mass or more and 60% by mass or less, the amount of sulfur is 0.5% by mass or more and 6.0% by mass or less, and the amount of ash is 0.2% by mass. % To 1.0% by mass, the carbon steel raw material is subjected to delayed coking by controlling the furnace heater outlet temperature before the coking drum to 550 ° C. to 580 ° C., and the micro strength is 20% by mass to 40% by mass. % Less coke,
Crush the obtained coke,
The ground coke is graphitized at a temperature of 2500 to 3600 ° C. to obtain a core layer made of a carbon material, and then the core layer is coated with a skin layer made of another carbon material. A method for producing a graphitic carbon material.
 本発明の黒鉛質炭素材料は、電池電極用材料として好適である。本発明の黒鉛質炭素材料を含む粒子を含有する電池電極用材料を用いると、エネルギ密度特性、高温でのサイクル容量維持特性、低温での入出力特性、および低温でのPC(プロピレンカーボネート)電解液耐性に優れた電池を得ることができる。
 本発明の製造方法によって、本発明の黒鉛質炭素材料を経済的に量産することができる。
 本発明の電池またはリチウムイオン二次電池は、高いサイクル特性が長期間維持され、高温サイクル容量維持性に優れ、低温でのハイパワーモーターを駆動させるのに好適な入出力特性を有し、高いエネルギ密度を有するので、携帯電子機器だけでなく、電動ドリル等の電動工具、バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)等の電源として好適である。
The graphitic carbon material of the present invention is suitable as a battery electrode material. When the battery electrode material containing particles containing the graphitic carbon material of the present invention is used, energy density characteristics, cycle capacity maintenance characteristics at high temperatures, input / output characteristics at low temperatures, and PC (propylene carbonate) electrolysis at low temperatures A battery having excellent liquid resistance can be obtained.
By the production method of the present invention, the graphitic carbon material of the present invention can be mass-produced economically.
The battery or lithium ion secondary battery of the present invention maintains high cycle characteristics for a long period of time, has excellent high-temperature cycle capacity maintainability, has input / output characteristics suitable for driving a high-power motor at low temperatures, and is high Since it has energy density, it is suitable not only for portable electronic devices but also as a power source for electric tools such as electric drills, battery electric vehicles (BEV), hybrid electric vehicles (HEV), and the like.
実施例1で得られた多層黒鉛質炭素材料の偏光顕微鏡像の一例を示す図である。2 is a diagram showing an example of a polarizing microscope image of the multilayer graphitic carbon material obtained in Example 1. FIG.
 本発明の黒鉛質炭素材料は、粉末X線回折の測定、ラマン分光の測定および偏光顕微鏡観察において、下記のような物性値を示すものである。 The graphitic carbon material of the present invention exhibits the following physical property values in powder X-ray diffraction measurement, Raman spectroscopy measurement and polarization microscope observation.
 本発明の黒鉛質炭素材料は、粉末X線回折の測定において、(002)面の平均面間隔d002の下限が、0.3354nm、好ましくは0.3358nm、より好ましくは0.3360nmであり、d002の上限が、0.3370nm、好ましくは0.3369nm、より好ましくは0.3368nmである。 Graphitic carbon material of the present invention, in the measurement of the powder X-ray diffraction, the lower limit of the average spacing d 002 of (002) plane, 0.3354 nm, preferably 0.3358Nm, more preferably 0.3360 nm, the upper limit of d 002 is, 0.3370 nm, preferably 0.3369Nm, more preferably 0.3368Nm.
 本発明の黒鉛質炭素材料は、粉末X線回折の測定において、(112)回折線から算出される結晶子の大きさLc112の下限が、3.0nm、好ましくは3.5nm、より好ましくは4.0nmであり、Lc112の上限が、6.0nm、好ましくは5.5nm、より好ましくは5.0nmである。 In the graphitic carbon material of the present invention, in powder X-ray diffraction measurement, the lower limit of the crystallite size Lc 112 calculated from the (112) diffraction line is 3.0 nm, preferably 3.5 nm, more preferably The upper limit of Lc 112 is 6.0 nm, preferably 5.5 nm, and more preferably 5.0 nm.
 本発明の黒鉛質炭素材料は、粉末X線回折の測定において、(004)回折線のピーク強度I004に対する(110)回折線のピーク強度I110の比I110/I004の下限が、0.30、好ましくは0.35、より好ましくは0.40であり、比I110/I004の上限が、0.67である。なお、I004は回折角度(2θ)が54.0度~55.0度の範囲における最大強度であり、I110は回折角度(2θ)が76.5度~78.0度の範囲における最大強度である。 In the measurement of powder X-ray diffraction, the lower limit of the ratio I 110 / I 004 of the peak intensity I 110 of the (110) diffraction line to the peak intensity I 004 of the ( 004 ) diffraction line is 0 .30, preferably 0.35, more preferably 0.40, and the upper limit of the ratio I 110 / I 004 is 0.67. I 004 is the maximum intensity in the range of diffraction angle (2θ) from 54.0 degrees to 55.0 degrees, and I 110 is the maximum in the range of diffraction angle (2θ) from 76.5 degrees to 78.0 degrees. It is strength.
 本発明の黒鉛質炭素材料は、粉末X線回折の測定において、(002)回折線から算出される結晶子の大きさLc002の下限が、好ましくは50nm、より好ましくは52nm、さらに好ましくは54nmであり、Lc002の上限が、好ましくは80nm、より好ましくは70nm、さらに好ましくは65nmである。Lc002が上記の範囲内にあるほど、放電容量が高く且つ入出力特性が良好である傾向がある。 In the graphitic carbon material of the present invention, in the powder X-ray diffraction measurement, the lower limit of the crystallite size Lc 002 calculated from the (002) diffraction line is preferably 50 nm, more preferably 52 nm, still more preferably 54 nm. And the upper limit of Lc 002 is preferably 80 nm, more preferably 70 nm, and even more preferably 65 nm. As Lc 002 is in the above range, the discharge capacity tends to be higher and the input / output characteristics are better.
 なお、粉末X線回折の測定は、公知の方法によって行う。そして、得られたX線回折データから、黒鉛の結晶構造に由来する回折ピークを抽出し、当業者において公知の方法によって、(002)面の平均面間隔d002、結晶子の大きさLc112、(004)回折線のピーク強度I004に対する(110)回折線のピーク強度I110の比I110/I004、および結晶子の大きさLc002の値を算出する。算出法は、当業者において周知であり、例えば、稲垣道夫、「炭素」、1963、No.36、25-34頁;Iwashita et al.,Carbon vol.42(2004),p.701-714;https://www.ube-ind.co.jp/usal/documents/x149_145.htm;https://solutions.shimadzu.co.jp/solnavi/solnavi.htmなどに記載されている。 Note that the powder X-ray diffraction is measured by a known method. Then, a diffraction peak derived from the crystal structure of graphite is extracted from the obtained X-ray diffraction data, and the average interplanar spacing d 002 of the (002) plane and the crystallite size Lc 112 are obtained by a method known to those skilled in the art. calculates a value of (004) the ratio I 110 / I 004 of the peak intensity I 110 of (110) diffraction line to the peak intensity I 004 of diffraction lines, and the crystallite size Lc 002. The calculation method is well known to those skilled in the art. For example, Michio Inagaki, “Carbon”, 1963, No. 36, 25-34; Iwashita et al., Carbon vol. 42 (2004), p. 701-714; https://www.ube-ind.co.jp/usal/documents/x149_145.htm; https: // It is described in solutions.shimadzu.co.jp/solnavi/solnavi.htm.
 本発明の黒鉛質炭素材料は、ラマン分光の測定において、1570~1630cm-1の領域に存在するピーク強度IGに対する1350~1370cm-1の領域に存在するピーク強度IDの比ID/IGの下限が、0.05、好ましくは0.10、より好ましくは0.15であり、比ID/IGの上限が、0.30、好ましくは0.25である。
 なお、ラマン分光の測定は、日本分光株式会社製などのレーザーラマン分光測定装置を用いて、励起波長532nm、入射スリット幅200μm、露光時間3秒、積算回数2回、回折格子1800本/mmの条件で行う。比ID/IGが小さいほど黒鉛化度合いが高い傾向がある。
Graphitic carbon material of the present invention, in the measurement of Raman spectroscopy, 1570 the ratio I D / I of the peak intensity I D that exists in the region of ~ 1630 cm 1350 to the peak intensity I G existing in the region of -1 ~ 1370 cm -1 The lower limit of G is 0.05, preferably 0.10, more preferably 0.15, and the upper limit of the ratio I D / I G is 0.30, preferably 0.25.
The measurement of Raman spectroscopy was performed using a laser Raman spectrometer such as JASCO Corporation with an excitation wavelength of 532 nm, an incident slit width of 200 μm, an exposure time of 3 seconds, an integration count of 2 times, and a diffraction grating of 1800 lines / mm. Perform under conditions. As the ratio I D / I G is smaller, the degree of graphitization tends to be higher.
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、光学異方性ドメインの面積の総計Da100の下限が、光学異方性ドメインの面積の総計Da100と光学等方性ドメインの面積の総計Dc100との合計に対して、65.0%、好ましくは70.0%、より好ましくは75.0%であり、光学異方性ドメインの面積の総計Da100の上限が、光学異方性ドメインの面積の総計Da100と光学等方性ドメインの面積の総計Dc100との合計に対して、90.0%、好ましくは88.0%、より好ましくは85.0%である。 In the graphitic carbon material of the present invention, the lower limit of the total area Da 100 of the optical anisotropy domain is the total area of the optical anisotropy domain Da 100 and the total area of the optical isotropic domain in the polarization microscope observation. the total of the Dc 100, 65.0% preferably 70.0%, more preferably 75.0% and the upper limit of the total Da 100 of the area of the optically anisotropic domains, optical anisotropy It is 90.0%, preferably 88.0%, more preferably 85.0% with respect to the sum of the total area Da 100 of domains and the total area Dc 100 of optical isotropic domains.
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、各光学異方性ドメインの面積を小さい方から累計し、その累計が光学異方性ドメインの面積の総計Da100に対して10%となるときの面積Da10が、0.5μm2以上2.0μm2以下、好ましくは0.5μm2以上1.2μm2以下、より好ましくは0.5μm2以上0.9μm2以下である。
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、各光学異方性ドメインの面積を小さい方から累計し、その累計が光学異方性ドメインの面積の総計Da100に対して50%となるときの面積Da50が、0.6μm2以上4.0μm2以下、好ましくは0.6μm2以上3.0μm2以下、より好ましくは0.6μm2以上2.0μm2以下である。
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、各光学異方性ドメインの面積を小さい方から累計し、その累計が光学異方性ドメインの面積の総計Da100に対して90%となるときの面積Da90が、0.7μm2以上30.0μm2以下、好ましくは0.7μm2以上20.0μm2以下、より好ましくは0.7μm2以上10.0μm2以下である。
Graphitic carbon material of the present invention is the observation with a polarizing microscope, and accumulated from the smaller the area of each of the optical anisotropic domain, the cumulative total becomes 10% with respect to total Da 100 of the area of the optically anisotropic domain the area Da 10 when, 0.5 [mu] m 2 or more 2.0 .mu.m 2 or less, preferably 0.5 [mu] m 2 or more 1.2 [mu] m 2 or less, more preferably 0.5 [mu] m 2 or more 0.9 .mu.m 2 or less.
Graphitic carbon material of the present invention is the observation with a polarizing microscope, and accumulated from the smaller the area of each of the optical anisotropic domain, the cumulative total becomes 50% with respect to total Da 100 of the area of the optically anisotropic domain The area Da 50 is 0.6 μm 2 or more and 4.0 μm 2 or less, preferably 0.6 μm 2 or more and 3.0 μm 2 or less, more preferably 0.6 μm 2 or more and 2.0 μm 2 or less.
Graphitic carbon material of the present invention is the observation with a polarizing microscope, and accumulated from the smaller the area of each of the optical anisotropic domain, the cumulative total is 90% with respect to total Da 100 of the area of the optically anisotropic domain the area Da 90 when, 0.7 [mu] m 2 or more 30.0 2 or less, preferably 0.7 [mu] m 2 or more 20.0 .mu.m 2 or less, more preferably 0.7 [mu] m 2 or more 10.0 [mu] m 2 or less.
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、各光学等方性ドメインの面積を小さい方から累計し、その累計が光学等方性ドメインの面積の総計Dc100に対して10%となるときの面積Dc10が、0.5μm2以上1.0μm2以下、好ましくは0.7μm2以上0.8μm2以下、より好ましくは0.5μm2以上0.6μm2以下である。
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、各光学等方性ドメインの面積を小さい方から累計し、その累計が光学等方性ドメインの面積の総計Dc100に対して50%となるときの面積Dc50が、0.6μm2以上2.0μm2以下、好ましくは0.6μm2以上1.8μm2以下、より好ましくは0.6μm2以上1.5μm2以下である。
 本発明の黒鉛質炭素材料は、偏光顕微鏡観察において、各光学等方性ドメインの面積を小さい方から累計し、その累計が光学等方性ドメインの面積の総計Dc100に対して90%となるときの面積Dc90が、0.7μm2以上14.0μm2以下、好ましくは0.7μm2以上10.0μm2以下、より好ましくは0.7μm2以上5.0μm2以下である。
In the graphitic carbon material of the present invention, the area of each optical isotropic domain is accumulated from the smaller one in the polarization microscope observation, and the total is 10% with respect to the total area Dc 100 of the optical isotropic domain. The area Dc 10 is 0.5 μm 2 or more and 1.0 μm 2 or less, preferably 0.7 μm 2 or more and 0.8 μm 2 or less, more preferably 0.5 μm 2 or more and 0.6 μm 2 or less.
In the graphitic carbon material of the present invention, the area of each optical isotropic domain is accumulated from the smaller one in the polarization microscope observation, and the total is 50% with respect to the total area Dc 100 of the optical isotropic domain. The area Dc 50 is 0.6 μm 2 or more and 2.0 μm 2 or less, preferably 0.6 μm 2 or more and 1.8 μm 2 or less, more preferably 0.6 μm 2 or more and 1.5 μm 2 or less.
In the graphitic carbon material of the present invention, the area of each optical isotropic domain is accumulated from the smaller one in the polarization microscope observation, and the total is 90% with respect to the total area Dc 100 of the optical isotropic domain. the area Dc 90 when, 0.7 [mu] m 2 or more 14.0 2 or less, preferably 0.7 [mu] m 2 or more 10.0 [mu] m 2 or less, more preferably 0.7 [mu] m 2 or more 5.0 .mu.m 2 or less.
 黒鉛質炭素材料は、黒鉛結晶子の集合体である。黒鉛質炭素材料中の黒鉛結晶子の集合形式を偏光顕微鏡にて観察することができる(持田ら「炭素材料の組織制御」機能物質科学研究所報告第4巻第2号PP81~88(1990)、「最新の炭素材料実験技術(分析・解析偏)」炭素材料学会偏(2001年),出版:サイペック株式会社,1~8頁等に記載の方法を参照)。
 本発明における偏光顕微鏡観察は、次のようにして行う。
 まず、内容積30cm3のプラスチック製容器内の底に両面粘着テープを貼り、その上にスパチュラ2杯(約2g)の炭素材料を載せる。冷間埋込樹脂(商品名:冷間埋込樹脂#105、製造会社:ジャパンコンポジット(株)、販売会社:丸本ストルアス(株))に硬化剤(商品名:硬化剤(M剤)、製造会社:日本油脂(株)、販売会社:丸本ストルアス(株))を加え、30秒間練る。得られた混練物(5ml程度)を前記容器に高さ約1cmになるまでゆっくりと流し入れる。1日静置して混練物を硬化させる。硬化物を容器から取り出す。硬化物の底面に貼り付いている両面粘着テープを剥がす。研磨板回転式の研磨機を用いて硬化物の底面を研磨板回転数1000rpmで研磨する。研磨板は、研磨度合に応じて、♯500、♯1000、♯2000の順に交換する。最後に、アルミナ(商品名:バイカロックス(Baikalox;登録商標) タイプ0.3CR、粒子径0.3μm、製造会社:バイコウスキー、販売会社:バイコウスキージャパン)を用いて鏡面研磨して炭素材料の断面を出す。
 鏡面研磨された硬化物をプレパラート上に粘土で固定する。研磨面を偏光顕微鏡(例えば、OLYMPAS社製、BX51など)を用いて、対物レンズ×50、ピクセルサイズが0.5μmとなる倍率で観察する。
 直交ニコルにおいて全体がピュアマゼンタとなる波長を用いた場合、光学等方性ドメインは硬化物を回転させても偏光顕微鏡においてピュアマゼンタの像にて検出される。光学異方性ドメインは硬化物を回転させると、黒鉛網面の方向に応じて色が変化し、偏光顕微鏡においてイエロー、マゼンタ、およびブルーの像にて検出される。樹脂の部分は偏光顕微鏡においてブラックの像にて検出される。
 デジタルカメラ(例えば、OLYMPUS製CAMEDIA  C-5050  ZOOMデジタルカメラなど)をアタッチメントで偏光顕微鏡に接続し、回転角度0度、45度および90度における偏光顕微鏡の観察像を撮影モードHQ2560×1920、シャッタータイム1.6秒で撮影する。2560ピクセル×1920ピクセルの画像を取り込む。取り込んだ画像から、無作為に10カ所、100μm×100μmの正方形にトリミングして、それらを画像解析の対象とする。
 色の抽出は、表1に示す輝度(Intensity)、色相(Hue)および純度(Purity)の3属性にて行う。色の抽出は、例えば、株式会社ニレコ製画像解析装置LUZEX APを用いて行うこともできる。ノイズ除去のため、ロジカルフィルタのELIMINATE1のW-1コマンドを用い、1ドット以下の領域を除去する。
 一つの光学異方性ドメインの面積は、回転角度0度、45度および90度における、それぞれの偏光顕微鏡の観察像からカウントされる、そのドメイン内にあるブルー、イエローまたはマゼンタのピクセル数の平均値から算出し、一つの光学等方性ドメインの面積は、回転角度0度、45度および90度における、それぞれの偏光顕微鏡の観察像からカウントされる、そのドメイン内にあるピュアマゼンタのピクセル数の平均値から算出する。
Graphite carbon material is an aggregate of graphite crystallites. Aggregation mode of graphite crystallites in graphitic carbon materials can be observed with a polarizing microscope (Mochida et al., “Structure Control of Carbon Materials”, Functional Materials Science Laboratory, Vol. 4, No. 2, PP 81-88 (1990) , “Latest carbon material experimental technique (analysis / analysis bias)”, Carbon Materials Society of Japan (2001), publication: see the method described in Cypec Corporation, pages 1-8, etc.).
The polarizing microscope observation in the present invention is performed as follows.
First, a double-sided adhesive tape is affixed to the bottom of a plastic container having an internal volume of 30 cm 3 , and two cups (about 2 g) of a spatula carbon material are placed thereon. Cold embedding resin (trade name: cold embedding resin # 105, manufacturing company: Japan Composite Co., Ltd., sales company: Marumoto Struers Co., Ltd.) and curing agent (trade name: curing agent (M agent), Manufacturing company: Nippon Oil & Fat Co., Ltd., sales company: Marumoto Struers Co., Ltd.) is added and kneaded for 30 seconds. The obtained kneaded material (about 5 ml) is slowly poured into the container until the height is about 1 cm. Allow to stand for 1 day to cure the kneaded product. Remove the cured product from the container. Remove the double-sided adhesive tape attached to the bottom of the cured product. The bottom surface of the cured product is polished at a polishing plate rotation speed of 1000 rpm using a polishing plate rotating type polishing machine. The polishing plates are replaced in the order of # 500, # 1000, and # 2000 depending on the polishing degree. Finally, it is mirror-polished using alumina (trade name: Baikalox (registered trademark) type 0.3CR, particle size 0.3 μm, manufacturer: Baikowski, sales company: Baikowski Japan) and carbonized. Take out a cross section of the material.
The mirror-polished cured product is fixed on a preparation with clay. The polished surface is observed using a polarizing microscope (for example, OLYMPAS, BX51, etc.) with an objective lens of 50 and a pixel size of 0.5 μm.
In the case of using a wavelength that is entirely pure magenta in crossed Nicols, the optical isotropic domain is detected in a pure magenta image in a polarizing microscope even if the cured product is rotated. When the cured product is rotated, the color of the optically anisotropic domain changes depending on the direction of the graphite mesh surface, and is detected in yellow, magenta, and blue images with a polarizing microscope. The resin portion is detected by a black image in a polarizing microscope.
Connect a digital camera (for example, CAMEDIA C-5050 ZOOM digital camera made by OLYMPUS) to the polarizing microscope with an attachment, and take an observation image of the polarizing microscope at rotation angles of 0 °, 45 ° and 90 ° in the shooting mode HQ2560 × 1920, shutter time Shoot in 1.6 seconds. An image of 2560 pixels × 1920 pixels is captured. The captured images are randomly trimmed to 10 squares of 100 μm × 100 μm at random, and these are subjected to image analysis.
Color extraction is performed using the three attributes shown in Table 1, luminance (Intensity), hue (Hue), and purity (Purity). The color extraction can be performed using, for example, an image analysis apparatus LUZEX AP manufactured by Nireco Corporation. In order to remove noise, an area of 1 dot or less is removed using the W-1 command of Eliminate 1 of the logical filter.
The area of one optically anisotropic domain is the average of the number of blue, yellow, or magenta pixels in that domain, counted from the respective polarization microscope observation images at rotation angles of 0, 45, and 90 degrees. Calculated from the values, the area of one optical isotropic domain is the number of pure magenta pixels in the domain, counted from the observation images of the respective polarization microscopes at rotation angles of 0, 45 and 90 degrees. Calculated from the average value of
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 光学異方性ドメインの面積の総計と光学等方性ドメインの面積の総計との合計に対する、光学異方性ドメインの面積の総計の比は、回転角度0度、45度および90度における、それぞれの偏光顕微鏡の観察像からカウントされる、ブルー、イエロー、マゼンタおよびピュアマゼンタのピクセル数の総計に対する、回転角度0度、45度および90度における、それぞれの偏光顕微鏡の観察像からカウントされる、ブルー、イエローおよびマゼンタのピクセル数の総計の比によって表わすことができる。
 同様に、Da10、Da50およびDa90、並びにDc10、Dc50およびDc90も、それらに対応するドメイン内のピクセル数から算出することができる。
The ratio of the total area of the optical anisotropy domain to the sum of the total area of the optical anisotropy domain and the total area of the optical isotropic domain is represented by rotation angles of 0 degrees, 45 degrees, and 90 degrees, respectively. Counted from the observation images of the respective polarization microscopes at the rotation angles of 0 degree, 45 degrees and 90 degrees with respect to the total number of pixels of blue, yellow, magenta and pure magenta, counted from the observation images of the polarization microscope. It can be represented by the ratio of the total number of pixels of blue, yellow and magenta.
Similarly, Da 10 , Da 50 and Da 90 , and Dc 10 , Dc 50 and Dc 90 can also be calculated from the number of pixels in the corresponding domain.
 本発明の黒鉛質炭素材料は、BET比表面積Ssaの下限が、好ましくは1.5m2/g、より好ましくは1.7m2/g、さらに好ましくは1.8m2/gであり、BET比表面積Ssaの上限が、好ましくは4.0m2/g、より好ましくは3.7m2/g、さらに好ましくは3.5m2/gである。
 BET比表面積が上記範囲内にあるほど、初回充放電時の副反応の発生量が抑えられ、得られる電池は良好な初回クーロン効率および良好な入出力特性を有する傾向がある。なお、BET比表面積は、Quantachrome INSTRUMENTS社製比表面積測定装置(NOVA 4200e)を用い、予備乾燥として300℃に加熱し、15分間窒素ガスを流した後、窒素ガス吸着によるBET3点法によって測定することができる。
In the graphitic carbon material of the present invention, the lower limit of the BET specific surface area S sa is preferably 1.5 m 2 / g, more preferably 1.7 m 2 / g, still more preferably 1.8 m 2 / g. The upper limit of the specific surface area S sa is preferably 4.0 m 2 / g, more preferably 3.7 m 2 / g, still more preferably 3.5 m 2 / g.
As the BET specific surface area is within the above range, the amount of side reaction during the initial charge / discharge is suppressed, and the resulting battery tends to have good initial Coulomb efficiency and good input / output characteristics. The BET specific surface area is measured by a specific surface area measuring apparatus (NOVA 4200e) manufactured by Quantachrome INSTRUMENTS, heated to 300 ° C. as preliminary drying, and after flowing nitrogen gas for 15 minutes, measured by the BET three-point method by nitrogen gas adsorption. be able to.
 本発明の黒鉛質炭素材料は、レーザー回折法による体積基準の50%径D50の下限が、好ましくは4.0μm、より好ましくは4.2μm、さらに好ましくは4.5μmであり、レーザー回折法による体積基準の50%径D50の上限が、好ましくは20.0μm、より好ましくは15.0μm、さらに好ましくは7.0μmである。50%径が上記範囲内にあるほど、初回充放電時の副反応の発生量が抑えられ、得られる電池は良好な初回クーロン効率および良好な入出力特性を有する傾向がある。なお、50%径D50は、例えば、レーザー回折式粒度分布測定器マスターサイザー(マルバーン製)で測定することができる。
 本発明の黒鉛質炭素材料は、サイクル維持特性の観点から、2次粒子、すなわち、1次粒子の集合体または凝集体をできるだけ含まないことが好ましい。よって、本発明の黒鉛質炭素材料は、電子顕微鏡観察によって測定される一次粒子の直径を体積基準にて統計処理して得られる50%径Dp50が、上記レーザー回折法による体積基準の50%径D50と、ほぼ同じであることが好ましい。
The lower limit of the volume-based 50% diameter D 50 by the laser diffraction method of the graphitic carbon material of the present invention is preferably 4.0 μm, more preferably 4.2 μm, and even more preferably 4.5 μm. The upper limit of the volume-based 50% diameter D 50 is preferably 20.0 μm, more preferably 15.0 μm, and still more preferably 7.0 μm. As the 50% diameter is within the above range, the amount of side reaction during the initial charge / discharge is suppressed, and the resulting battery tends to have good initial Coulomb efficiency and good input / output characteristics. The 50% diameter D 50 can be measured by, for example, a laser diffraction particle size distribution measuring device master sizer (manufactured by Malvern).
The graphitic carbon material of the present invention preferably contains as little secondary particles, that is, aggregates or aggregates of primary particles, from the viewpoint of cycle maintenance characteristics. Therefore, the graphitic carbon material of the present invention has a 50% diameter D p50 obtained by statistically processing the diameter of primary particles measured by electron microscope observation on a volume basis, and 50% of the volume basis by the laser diffraction method. The diameter D 50 is preferably substantially the same.
 本発明の黒鉛質炭素材料は、平均円形度Ravの下限が、好ましくは0.86、より好ましくは0.87、さらに好ましくは0.88であり、平均円形度Ravの上限が、好ましくは0.95、より好ましくは0.94、さらに好ましくは0.93である。平均円形度が上記範囲内にあるほど、得られる電池は良好な入出力特性を有する傾向がある。
 平均円形度は、つぎのようにして測定する。先ず、黒鉛質炭素材料を106μmのフィルターに通して微細なゴミを取り除く。該黒鉛質炭素材料0.1gを20mlのイオン交換水中に添加し、イオン交換水に対して界面活性剤0.1~0.5質量%を加え、超音波洗浄機(例えば、UT-105S(シャープマニファクチャリングシステム社製など)を用い5分間の分散処理を施して測定用試料溶液を得る。測定用試料溶液をフロー式粒子像分析装置FPIA-2100(シスメックス社製)に投入し、LPFモードで10000個の粒子から平均円形度を求めた。なお、円形度とは、一粒の黒鉛質炭素材料の投影像の周長に対する、当該一粒の黒鉛質炭素材料の投影像の面積と同じ面積を持つ真円の周の長さの比である。黒鉛質炭素材料の投影像が真円であるとき、円形度は1.00となる。
In the graphitic carbon material of the present invention, the lower limit of the average circularity R av is preferably 0.86, more preferably 0.87, still more preferably 0.88, and the upper limit of the average circularity R av is preferably Is 0.95, more preferably 0.94, and still more preferably 0.93. As the average circularity is within the above range, the obtained battery tends to have better input / output characteristics.
The average circularity is measured as follows. First, the graphite carbon material is passed through a 106 μm filter to remove fine dust. 0.1 g of the graphitic carbon material is added to 20 ml of ion exchange water, 0.1 to 0.5% by mass of a surfactant is added to the ion exchange water, and an ultrasonic cleaner (for example, UT-105S ( A sample solution for measurement is obtained by performing a dispersion process for 5 minutes using a sharp manufacturing system, etc. The sample solution for measurement is put into a flow type particle image analyzer FPIA-2100 (manufactured by Sysmex Corporation), and LPF The average circularity was calculated from 10,000 particles in the mode, where the circularity is the area of the projected image of the single graphitic carbon material relative to the circumference of the projected image of the single graphitic carbon material. When the projected image of the graphitic carbon material is a perfect circle, the circularity is 1.00.
 本発明の黒鉛質炭素材料は、タップ密度ρTの下限が、好ましくは0.55g/cm3、より好ましくは0.65g/cm3、さらに好ましくは0.68g/cm3であり、タップ密度の上限が、好ましくは1.30g/cm3、より好ましくは1.10g/cm3、さらに好ましくは0.95g/cm3である。タップ密度ρTが上記範囲内にあるほど、より高いエネルギ密度およびより高い入出力特性を有する電池を得やすい傾向がある。タップ密度は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。これらはASTM B527およびJIS K5101-12-2に準拠した測定方法であるが、オートタップの落下高さは5mmとした。 Graphitic carbon material of the present invention, the lower limit of the tap density [rho T is preferably 0.55 g / cm 3, more preferably 0.65 g / cm 3, more preferably 0.68 g / cm 3, a tap density limit is preferably 1.30 g / cm 3, more preferably 1.10 g / cm 3, more preferably at 0.95 g / cm 3. As the tap density ρ T is in the above range, a battery having a higher energy density and higher input / output characteristics tends to be obtained. The tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap. These are measurement methods based on ASTM B527 and JIS K5101-12-2, but the drop height of the auto tap was 5 mm.
 本発明の黒鉛質炭素材料は、上記のような物性値を示すものであれば、単層構造の黒鉛質炭素材料(以下、単層黒鉛質炭素材料という。)であってもよいし、多層構造の黒鉛質炭素材料(以下、多層黒鉛質炭素材料という。)であってもよい。 The graphitic carbon material of the present invention may be a single-layer graphitic carbon material (hereinafter referred to as a single-layer graphitic carbon material) or a multilayer as long as it exhibits the above physical properties. It may be a graphite carbon material having a structure (hereinafter referred to as a multilayer graphitic carbon material).
 本発明の多層黒鉛質炭素材料は、炭素材料からなる芯層とその表面を覆う他の炭素材料からなる表皮層とを含む多層構造を成し且つ上記のような物性値を示すものである。
 多層黒鉛質炭素材料は、芯層を構成する炭素材料の種類および表皮層を構成する炭素材料の種類に応じて、電池の特性をさらに向上させることがある。
 表皮層の量の下限は、多層黒鉛質炭素材料100質量部に対して、好ましくは0.1質量部、より好ましくは0.2質量部、さらに好ましくは0.5質量部であり、表皮層の量の上限は、多層黒鉛質炭素材料100質量部に対して、好ましくは3.0質量部、より好ましくは2.0質量部、さらに好ましくは1.5質量部である。表皮層の量の下限は表皮層を設けることによって齎される良い作用の観点で設定でき、表皮層の量の上限は表皮層を設けることによって引き起こされる副作用の観点で設定できる。
The multilayer graphitic carbon material of the present invention has a multilayer structure including a core layer made of a carbon material and a skin layer made of another carbon material covering the surface thereof, and exhibits the above physical property values.
The multilayer graphitic carbon material may further improve the characteristics of the battery depending on the type of carbon material constituting the core layer and the type of carbon material constituting the skin layer.
The lower limit of the amount of the skin layer is preferably 0.1 parts by weight, more preferably 0.2 parts by weight, and even more preferably 0.5 parts by weight with respect to 100 parts by weight of the multilayer graphitic carbon material. The upper limit of the amount is preferably 3.0 parts by mass, more preferably 2.0 parts by mass, and even more preferably 1.5 parts by mass with respect to 100 parts by mass of the multilayer graphitic carbon material. The lower limit of the amount of the skin layer can be set from the viewpoint of a good effect that is provided by providing the skin layer, and the upper limit of the amount of the skin layer can be set from the viewpoint of side effects caused by providing the skin layer.
 多層黒鉛質炭素材料の芯層を構成する炭素材料は、d002、Lc112、I110/I004、ID/IG、Da100、Dc100、Da10、Dc10、Da50、Dc50、Da90、およびDc90、ならびに好ましくはSsa、D50、Lc002、Rav、およびρTが、上記した範囲内にあるもの、例えば、本発明の単層黒鉛質炭素材料、であることが好ましい。 Carbon materials constituting the core layer of the multilayer graphitic carbon material are d 002 , Lc 112 , I 110 / I 004 , I D / I G , Da 100 , Dc 100 , Da 10 , Dc 10 , Da 50 , Dc 50 , Da 90 , and Dc 90 , and preferably those in which S sa , D 50 , Lc 002 , R av , and ρ T are within the above ranges, for example, the single-layer graphitic carbon material of the present invention. It is preferable.
 多層黒鉛質炭素材料の表皮層を構成する炭素材料は、ID/IGが上記した範囲内にあるものである。表皮層を構成する炭素材料は、充電時の入力特性および大型電池に要求される特性の観点から、光学等方性の炭素材料であることが好ましく、具体的には、光学異方性ドメインの面積の総計Da100が、光学異方性ドメインの面積の総計Da100と光学等方性ドメインの面積の総計Dc100との合計に対して、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは0%である。 The carbon material constituting the skin layer of the multilayer graphitic carbon material has I D / I G in the above range. The carbon material constituting the skin layer is preferably an optically isotropic carbon material from the viewpoint of input characteristics during charging and characteristics required for a large battery, and specifically, an optically anisotropic domain total Da 100 of area, the total of the sum Dc 100 of the area of the total Da 100 and optically isotropic domains in the area of the optically anisotropic domains, preferably 10% or less, more preferably 5% or less, More preferably, it is 0%.
 本発明の黒鉛質炭素材料は、その製造方法によって特に制限されない。本発明の黒鉛質炭素材料(Graphite Carbon Material)の好ましい製造方法は、炭素原料(Carbon Source)にディレードコーキングを施してコークスを得、得られたコークスを粉砕し、粉砕されたコークスを2500~3600℃の温度で黒鉛化することを含む。 The graphitic carbon material of the present invention is not particularly limited by its production method. A preferred method for producing the graphitic carbon material of the present invention is to subject the carbon raw material (Carbon Source) to delayed coking to obtain coke, pulverize the obtained coke, and pulverize the coke to 2500-3600. Including graphitizing at a temperature of ° C.
 本発明の製造方法に用いられる炭素原料(Carbon Source)としては、好ましくは原油常圧蒸留残渣、原油減圧蒸留残渣などの原油蒸留残渣または原油の熱分解によって得られるタール;より好ましくは原油蒸留残渣を挙げることができる。炭素原料(Carbon Source)の元になる原油としては、ナフテン系炭化水素を多く含むものが好ましい。 The carbon raw material used in the production method of the present invention is preferably a crude oil distillation residue such as a crude oil atmospheric distillation residue or a crude oil vacuum distillation residue or a tar obtained by thermal decomposition of crude oil; more preferably a crude oil distillation residue Can be mentioned. The crude oil that is the source of the carbon source is preferably one that contains a large amount of naphthenic hydrocarbons.
 本発明に用いられる炭素原料(Carbon Source)は、アスファルテン分と樹脂分の合計量の下限が、好ましくは20質量%、より好ましくは25質量%、さらに好ましくは30質量%であり、アスファルテン分と樹脂分の合計量の上限が、好ましくは60質量%、より好ましくは50質量%、さらに好ましくは40質量%である。
 なお、アスファルテン分は、黒褐色の脆い固体で、H/Cの小さな縮合多環構造の物質であり、ベンゼン、四塩化炭素等に可溶、ペンタン、アルコール等には不溶で分子量は1000以上と考えられる物質である。チオフェン環、ナフテン環、芳香族環等の多環化合物を主体とした硫黄化合物、ピロール環、ピリジン環を主体とする窒素化合物等を含む。また、樹脂分は、褐色樹脂状物質で、酸素、窒素分が多い化合物である。アスファルテン分と樹脂分の合計量は、JPI(石油学会)で規定する「アスファルトのカラムクロマトグラフィーによる組成分析法(JPI-5S-22-83)」に基づいて測定する。具体的には、アルミナを充填材とするカラムにて、炭素原料(Carbon Source)を、飽和分、芳香族分、樹脂分、およびアスファルテン分に分離し定量する。
The carbon raw material (Carbon Source) used in the present invention has a lower limit of the total amount of asphaltenes and resins, preferably 20% by mass, more preferably 25% by mass, and even more preferably 30% by mass. The upper limit of the total amount of the resin is preferably 60% by mass, more preferably 50% by mass, and still more preferably 40% by mass.
The asphaltene content is a black-brown, brittle solid, a substance with a condensed polycyclic structure having a small H / C, soluble in benzene, carbon tetrachloride, etc., insoluble in pentane, alcohol, etc. and considered to have a molecular weight of 1000 or more. It is a substance. It includes sulfur compounds mainly composed of polycyclic compounds such as thiophene rings, naphthene rings, and aromatic rings, nitrogen compounds mainly composed of pyrrole rings and pyridine rings. The resin component is a brown resinous substance and is a compound having a large amount of oxygen and nitrogen. The total amount of asphaltene and resin is measured based on “Asphalt composition analysis method by column chromatography (JPI-5S-22-83)” defined by JPI (Japan Petroleum Institute). Specifically, the carbon source (Carbon Source) is separated into a saturated component, an aromatic component, a resin component, and an asphaltene component and quantified in a column using alumina as a filler.
 本発明に用いられる炭素原料(Carbon Source)は、硫黄分の量の下限が、好ましくは0.5質量%、より好ましくは0.8質量%、さらに好ましくは1.0質量%であり、硫黄分の量の上限が、好ましくは6.0質量%、より好ましくは4.5質量%、さらに好ましくは3.0質量%である。なお、硫黄分の量は、JISK2541にしたがって分析することによって得られる。 The carbon raw material used in the present invention has a lower limit of the sulfur content, preferably 0.5% by mass, more preferably 0.8% by mass, and still more preferably 1.0% by mass. The upper limit of the amount of the minute is preferably 6.0% by mass, more preferably 4.5% by mass, and further preferably 3.0% by mass. In addition, the amount of sulfur can be obtained by analyzing according to JISK2541.
 本発明に用いられる炭素原料(Carbon Source)は、灰分の量の下限が、好ましくは0.2質量%、より好ましくは0.3質量%であり、灰分の量の上限が、好ましくは1.0質量%、より好ましくは0.7質量%、さらに好ましくは0.5質量%である。灰分の量が0.2質量%以上の場合、ディレードコーカーによるコーキング処理中に結晶発達が抑えられ光学等方性ドメインが適度に発達する。光学等方性ドメインが発達すると、黒鉛化処理後の負極材の特性として、電流入出力特性、サイクル特性、PC電解液耐性が向上する傾向がある。灰分の量が1.0質量%以下の場合、光学異方性ドメインが適度に発達し黒鉛化後の結晶性が良くなる。結晶性が良くなると、高い放電容量、高い電極密度が得られる傾向がある。なお、灰分の量は、JISM8812にしたがって分析することによって得られる。灰分は、マグネシウム、アルミニウム、チタン、マンガン、コバルト、ナトリウム、およびニッケルなどから1又は2以上の金属成分を含む酸化物である。 In the carbon raw material (Carbon Source) used in the present invention, the lower limit of the amount of ash is preferably 0.2% by mass, more preferably 0.3% by mass, and the upper limit of the amount of ash is preferably 1. It is 0 mass%, More preferably, it is 0.7 mass%, More preferably, it is 0.5 mass%. When the amount of ash is 0.2% by mass or more, crystal development is suppressed during the coking process by the delayed coker, and the optical isotropic domain is appropriately developed. When the optical isotropic domain develops, current input / output characteristics, cycle characteristics, and PC electrolyte resistance tend to be improved as characteristics of the negative electrode material after graphitization. When the amount of ash is 1.0% by mass or less, the optically anisotropic domain is appropriately developed and the crystallinity after graphitization is improved. When the crystallinity is improved, high discharge capacity and high electrode density tend to be obtained. The amount of ash can be obtained by analyzing according to JISM8812. Ash is an oxide containing one or more metal components from magnesium, aluminum, titanium, manganese, cobalt, sodium, nickel, and the like.
 本発明に用いられる炭素原料(Carbon Source)は、FCC(流動接触分解装置)の残渣油(FCCボトム油)が添加されていないものであることが好ましい。 The carbon raw material (Carbon Source) used in the present invention is preferably not added with FCC (fluid catalytic cracker) residual oil (FCC bottom oil).
 ディレードコーキングプロセスは、加熱炉によって炭素原料を加熱して限定的範囲の熱分解を起こさせ、次いでコーキングドラム内に供給して、この内部でコーキング反応を発生させることを含むものである。従来方法においては、コーキングドラム前の加熱炉ヒーター出口温度を480~500℃に、ドラム内圧力を通常100~280kPa(約15psig~40psig)に制御していた。これに対して、本発明においては、コーキングドラム前の加熱炉ヒーター出口温度を550℃~580℃に、ドラム内圧力を好ましくは115~305kPa(約17psig~44psig)に制御する。 The delayed coking process includes heating a carbon raw material in a heating furnace to cause a limited range of thermal decomposition, and then supplying the carbon raw material into a coking drum to generate a coking reaction therein. In the conventional method, the furnace heater outlet temperature before the coking drum is controlled to 480 to 500 ° C., and the internal pressure of the drum is usually controlled to 100 to 280 kPa (about 15 psig to 40 psig). On the other hand, in the present invention, the furnace heater outlet temperature before the coking drum is controlled to 550 ° C. to 580 ° C., and the internal pressure of the drum is preferably 115 to 305 kPa (about 17 psig to 44 psig).
 アスファルテン分と樹脂分の合計量、硫黄分の量、および灰分の量が、上記のような範囲にある炭素原料(Carbon Source)に、上記のような条件にてディレードコーキングを施すと、コークスを得ることができる。このコークスは粒状である。従来方式のコーキングで得られるコークスが水流で輪切りにしなければならなかったことからも、コークスの性状が異なることは明らかである。また、このコークスは、光学等方性ドメインの発達が適度に抑制され、かつ光学異方性ドメインの発達が適度に進行しており、黒鉛化したときに、結晶性が良好となる。 When carbon dioxide (Carbon Source), in which the total amount of asphaltene and resin, sulfur, and ash are within the above ranges, is subjected to delayed coking under the above conditions, coke is Can be obtained. This coke is granular. It is clear that the properties of coke are different from the fact that coke obtained by conventional coking had to be cut into water streams. In addition, the development of the optically isotropic domain is moderately suppressed and the development of the optically anisotropic domain is moderately progressed in this coke, and the crystallinity becomes good when graphitized.
 本発明の製造方法においては、黒鉛化に供するコークスが、以下のようなマイクロ強度を有する。黒鉛化に供するコークスは、マイクロ強度の下限が、好ましくは20質量%、好ましくは23質量%、より好ましくは25質量%であり、マイクロ強度の上限が、好ましくは40質量%、より好ましくは35質量%、さらに好ましくは32質量%である。
 アスファルテン分と樹脂分の合計量、硫黄分の量、灰分の量が、上記のような範囲にある炭素原料(Carbon Source)を、上記のような条件にてディレードコーキングを行うと、ほとんどの場合に、上記の範囲内のマイクロ強度を有するコークスが得られるが、上記ディレードコーキングによって得られたコークスが上記の範囲内のマイクロ強度を有しない場合、高いマイクロ強度または低いマイクロ強度を有するコークスなどをそれに混合して、上記の範囲内にマイクロ強度を調節することができる。
 マイクロ強度は隣接する結晶子間の結合強さを示す指標である。隣接する結晶子の間には未組織炭素が存在し、その未組織炭素が結晶子を結合させる機能を有していると言われている。さらに、未組織炭素は黒鉛化後においても結合させる機能を有していると言われている。マイクロ強度が上記範囲内にあると、所定の粒度に調整しやすく、電池の充放電レート特性が向上し、電極の充放電に伴う膨張収縮が小さくなり、且つ電池の容量維持特性が向上するという傾向がある。
In the production method of the present invention, coke used for graphitization has the following micro strength. The coke used for graphitization has a lower limit of micro strength of preferably 20% by mass, preferably 23% by mass, more preferably 25% by mass, and an upper limit of micro strength of preferably 40% by mass, more preferably 35%. It is 32 mass%, More preferably, it is 32 mass%.
In most cases, delayed coking of carbon source (Carbon Source) with the total amount of asphaltene and resin, amount of sulfur and amount of ash within the above ranges is performed. In addition, coke having a micro strength within the above range can be obtained, but if the coke obtained by delayed coking does not have a micro strength within the above range, coke having a high micro strength or a low micro strength can be obtained. When mixed, the microintensity can be adjusted within the above range.
The micro strength is an index indicating the bond strength between adjacent crystallites. It is said that unorganized carbon exists between adjacent crystallites, and the unorganized carbon has a function of bonding crystallites. Furthermore, it is said that unorganized carbon has a function of bonding even after graphitization. When the microstrength is within the above range, it is easy to adjust to a predetermined particle size, the battery charge / discharge rate characteristics are improved, the expansion / contraction due to electrode charge / discharge is reduced, and the battery capacity maintenance characteristics are improved. Tend.
 マイクロ強度は、以下の方法によって測定する。鋼製シリンダー(内径25.4mm、長さ304.8mm)に20メッシュ~30メッシュのコークス2gと直径5/16inch(7.9mm)の鋼球12個を入れ、シリンダーの両端を鋼製の蓋で閉じた。シリンダーの長さ方向中点を回転軸が水平に通るように、シリンダーを回転機に取り付け、25rpmで800回まわした。蓋を開け、シリンダーからコークスを取り出し、48メッシュ篩でふるい分けした。ふるい分けに供したコークスの質量に対する篩上のコークスの質量の百分率をマイクロ強度と定義した。 Measure the micro strength by the following method. A steel cylinder (inner diameter: 25.4 mm, length: 304.8 mm) is charged with 2 g of 20-30 mesh coke and 12 steel balls with a diameter of 5/16 inch (7.9 mm), and both ends of the cylinder are covered with steel. Closed with. The cylinder was attached to a rotating machine so that the rotation axis passed horizontally through the midpoint in the longitudinal direction of the cylinder, and was rotated 800 times at 25 rpm. The lid was opened, the coke was taken out from the cylinder, and sieved with a 48 mesh sieve. The percentage of the mass of coke on the sieve relative to the mass of coke subjected to sieving was defined as microintensity.
 コークスの粉砕は、ジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等の公知の粉砕機が用いて行うことができる。これらのうち、適度な円形度のものが得られるという観点から、ジェットミルが好ましい。また、コークスの粉砕はできるだけ低い熱履歴で行うことが好ましい。熱履歴が低いほど円形度が大きくなりやすい。粉砕によってエッジ部が露出し、そのエッジ部が充放電時に副反応を引き起こさせることがある。低い熱履歴で粉砕を行うと、後の加熱処理によって高確率でエッジ部が修復され、副反応を抑制できることがある。 Coke can be pulverized using a known pulverizer such as a jet mill, a hammer mill, a roller mill, a pin mill, or a vibration mill. Among these, a jet mill is preferable from the viewpoint of obtaining a product having an appropriate degree of circularity. Moreover, it is preferable to grind coke with the heat history as low as possible. The lower the heat history, the greater the circularity. The edge portion may be exposed by pulverization, and the edge portion may cause a side reaction during charging and discharging. When pulverization is performed with a low heat history, the edge portion is repaired with high probability by subsequent heat treatment, and side reactions may be suppressed.
 粉砕されたコークスは、黒鉛化する前に、非酸化性雰囲気下、500~1300℃で、焼成してもよい。焼成によって、黒鉛化時に発生するガスを低減できる。また、焼成によって、嵩密度が低下するので、黒鉛化に要するコストを低減できる。 The pulverized coke may be fired at 500 to 1300 ° C. in a non-oxidizing atmosphere before graphitization. By firing, the gas generated during graphitization can be reduced. Moreover, since the bulk density is reduced by firing, the cost required for graphitization can be reduced.
 コークスの黒鉛化は、コークス中の無定形炭素を結晶化することができる温度にて熱処理することにより行う。黒鉛化のための熱処理温度は、下限が、好ましくは2500℃、より好ましくは2900℃、さらに好ましくは3000℃であり、上限が好ましくは3500℃である。黒鉛化においては、アチソン炉などの公知の炉を用いることができる。コークスの黒鉛化によって単層黒鉛質炭素材料が得られる。得られた単層黒鉛質炭素材料はその表面が滑らかである。単層黒鉛質炭素材料は表面の滑らかさを維持するために解砕および粉砕をしないことが好ましい。 Coke graphitization is performed by heat treatment at a temperature at which amorphous carbon in the coke can be crystallized. The lower limit of the heat treatment temperature for graphitization is preferably 2500 ° C, more preferably 2900 ° C, still more preferably 3000 ° C, and the upper limit is preferably 3500 ° C. In the graphitization, a known furnace such as an Atchison furnace can be used. Single layer graphitic carbon material is obtained by graphitization of coke. The obtained single-layer graphitic carbon material has a smooth surface. The single-layer graphitic carbon material is preferably not crushed and pulverized in order to maintain the smoothness of the surface.
 多層黒鉛質炭素材料は、公知の炭素被覆方法によって得ることができる。例えば、単層黒鉛質炭素材料からなる芯層と光学等方性の炭素材料からなる表皮層とを含む多層黒鉛質炭素材料は、次のようにして得ることができる。
 コールタールピッチまたは重合体含有組成物と単層黒鉛質炭素材料とを混合し、非酸化性雰囲気下、好ましくは800℃~3300℃、より好ましくは800℃~1300℃で加熱することにより多層黒鉛質炭素材料を得ることができる。コールタールピッチとしてはレーザー回析法による体積基準の50%径D50が0.1~10μmであるものが好ましく用いられる。重合体含有組成物としては、例えば、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を用いることができる(特開2003-100293号公報、特開2005-019397号公報参照)。
The multilayer graphitic carbon material can be obtained by a known carbon coating method. For example, a multilayer graphitic carbon material including a core layer made of a single-layer graphitic carbon material and a skin layer made of an optically isotropic carbon material can be obtained as follows.
Coal tar pitch or a polymer-containing composition and a single layer graphitic carbon material are mixed and heated in a non-oxidizing atmosphere, preferably at 800 ° C. to 3300 ° C., more preferably at 800 ° C. to 1300 ° C. A carbonaceous material can be obtained. As the coal tar pitch, those having a volume-based 50% diameter D 50 by laser diffraction of 0.1 to 10 μm are preferably used. As the polymer-containing composition, for example, a composition containing a drying oil or a fatty acid thereof and a phenol resin can be used (see Japanese Patent Application Laid-Open Nos. 2003-1000029 and 2005-019397).
 本発明の電池電極用材料は、本発明の黒鉛質炭素材料を含む粒子を含有するものである。本発明の電池電極用材料は、例えば、リチウムイオン二次電池の負極活物質、負極導電付与材などとして、好ましく用いることができる。 The battery electrode material of the present invention contains particles containing the graphitic carbon material of the present invention. The battery electrode material of the present invention can be preferably used, for example, as a negative electrode active material, a negative electrode conductivity-imparting material and the like of a lithium ion secondary battery.
 本発明の電池電極用材料は、本発明の黒鉛質炭素材料100質量部と球状天然黒鉛または人造黒鉛0.01~200質量部、好ましくは0.01~100質量部とを含むものであってもよい。球状天然黒鉛または人造黒鉛は、平均面間隔d002が0.3354nm以上0.3370nm以下であることが好ましい。本発明の黒鉛質炭素材料によって齎される作用と球状天然黒鉛または人造黒鉛によって齎される作用との相乗効果が期待できる。例えば、人造黒鉛としてメソカーボンマイクロビーズ(MCMB)を用いた場合には、MCMBが有する潰れ性により、電極密度が上がり、体積エネルギ密度を向上させることができる。 The battery electrode material of the present invention comprises 100 parts by mass of the graphitic carbon material of the present invention and 0.01 to 200 parts by mass, preferably 0.01 to 100 parts by mass of spherical natural graphite or artificial graphite. Also good. Spherical natural graphite or artificial graphite preferably has an average spacing d 002 is less 0.3370nm than 0.3354 nm. A synergistic effect between the action caused by the graphitic carbon material of the present invention and the action caused by spherical natural graphite or artificial graphite can be expected. For example, when mesocarbon microbeads (MCMB) are used as artificial graphite, the electrode density can be increased and the volume energy density can be improved due to the crushability of MCMB.
 本発明の電池電極用材料は、導電助剤をさらに含んでいてもよい。
 導電助剤は、電極層に対し導電性またはリチウムイオンの挿入・脱離における体積変化に対する緩衝作用を付与する役目を果たすことができる。導電助剤としては、カーボンブラック、カーボンナノチューブ(CNT)、カーボンナノファイバー、気相成長炭素繊維(VGCF(登録商標))等の炭素材料を挙げることができる。カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等を挙げることができる。導電助剤は1種単独でまたは2種以上を組合せて使用してもよい。
 導電助剤の量は、電池電極用材料の質量に対して、好ましくは0.5~50質量%、より好ましくは0.5~30質量%、さらに好ましくは0.5~25質量%である。本発明の電池電極用材料の調製の際に使用する導電助剤は、粉末、ペーストなどの状態のものが好ましく用いられる。
The battery electrode material of the present invention may further contain a conductive additive.
The conductive auxiliary agent can serve to impart conductivity to the electrode layer or a buffering action against a volume change upon insertion / extraction of lithium ions. Examples of the conductive aid include carbon materials such as carbon black, carbon nanotube (CNT), carbon nanofiber, and vapor grown carbon fiber (VGCF (registered trademark)). Examples of carbon black include ketjen black, acetylene black, channel black, lamp black, oil furnace black, and thermal black. You may use a conductive support agent individually by 1 type or in combination of 2 or more types.
The amount of the conductive assistant is preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 0.5 to 25% by mass with respect to the mass of the battery electrode material. . The conductive aid used in preparing the battery electrode material of the present invention is preferably in the form of powder, paste or the like.
 本発明の電池電極用材料は、バインダをさらに含有するものであってもよい。バインダとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)等のゴム系ポリマー等を挙げることができる。バインダの量は、本発明の黒鉛質炭素材料と球状天然黒鉛または人造黒鉛電池との合計100質量部に対して、好ましくは1~30質量部、より好ましくは3~20質量部である。本発明の電池電極用材料の調製の際に使用するバインダは、粉末、溶液、エマルジョンまたはディスパージョンの状態のものが好ましく用いられる。 The battery electrode material of the present invention may further contain a binder. Examples of the binder include fluorine polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber polymers such as SBR (styrene butadiene rubber). The amount of the binder is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass in total of the graphitic carbon material of the present invention and spherical natural graphite or artificial graphite battery. The binder used in the preparation of the battery electrode material of the present invention is preferably in the form of powder, solution, emulsion or dispersion.
 本発明の電池電極用材料は、液媒体をさらに含有し、ペースト状を成していてもよい。液媒体は、ペースト状態の導電助剤;溶液、エマルジョンまたはディスパージョンの状態のバインダなどに由来するものであってもよい。液媒体としては、各々のバインダに適した公知のもの、例えばフッ素系ポリマーの場合はトルエン、N-メチルピロリドン等;SBRの場合は水等;その他にジメチルホルムアミド、イソプロパノール等が挙げられる。液媒体として水を使用するバインダの場合は、増粘剤を併用することが好ましい。増粘剤としては、ポリカルボン酸、ポリカルボン酸塩、カルボキシメチルセルロース、カルボキシメチルセルロースアルカリ金属塩などを挙げることができる。液媒体の量は塗布しやすい粘度となるように設定される。 The battery electrode material of the present invention may further contain a liquid medium and may be in the form of a paste. The liquid medium may be derived from a conductive agent in a paste state; a binder in a solution, emulsion, or dispersion state. Examples of the liquid medium include known materials suitable for each binder, such as toluene and N-methylpyrrolidone in the case of a fluorine-based polymer; water in the case of SBR; and dimethylformamide and isopropanol. In the case of a binder that uses water as the liquid medium, it is preferable to use a thickener together. Examples of the thickener include polycarboxylic acid, polycarboxylate, carboxymethyl cellulose, carboxymethyl cellulose alkali metal salt and the like. The amount of the liquid medium is set so that the viscosity is easy to apply.
 本発明の電池電極用材料は、例えば、本発明の黒鉛質炭素材料と必要に応じてバインダ、導電助剤および/または他の成分などとを同時に若しくは順不同に混練装置に供給し混練することによって得られる。混練においては、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の混練装置を用いることができる。 The battery electrode material of the present invention is obtained, for example, by supplying the kneaded carbonaceous material of the present invention and, if necessary, a binder, a conductive additive and / or other components simultaneously or in random order to a kneading apparatus and kneading. can get. In the kneading, for example, a kneading apparatus such as a ribbon mixer, a screw type kneader, a Spartan reuser, a Redige mixer, a planetary mixer, a universal mixer, or the like can be used.
 本発明の電極は、本発明の電池電極用材料を含む成形体(compact)の層を有するものである。成形体(compact)層は、通常、集電体に積層される。
 集電体としては、例えば、アルミニウム、ニッケル、銅、ステンレス鋼等の箔、メッシュなどが挙げられる。成形体の層の厚さは、好ましくは50~200μmである。
 成形体層は、例えば、ペースト状電池電極用材料を集電体上に塗布し、乾燥させ、必要に応じて加圧成形することによって得ることができる。集電体にペースト状電池電極用材料を塗布、乾燥および加圧成形する際には、ドクターブレード、バーコーター等などの塗布装置、乾燥装置、およびプレス機を用いることができる。また、成形体層は、例えば、顆粒または粉末状の負極材を集電体とともに加圧成形することによっても、得ることができる。加圧成形法としては、加圧ロール式、加圧プレート式などの成形法を挙げることができる。加圧成形するときの圧力は1~3t/cm2が好ましい。
The electrode of the present invention has a compact layer containing the battery electrode material of the present invention. The compact layer is usually laminated to the current collector.
Examples of the current collector include foil, mesh, and the like such as aluminum, nickel, copper, and stainless steel. The thickness of the layer of the molded body is preferably 50 to 200 μm.
The molded body layer can be obtained, for example, by applying a paste-like battery electrode material on a current collector, drying, and pressure-molding as necessary. When the paste battery electrode material is applied to the current collector, dried, and pressure-molded, a coating device such as a doctor blade or a bar coater, a drying device, and a press machine can be used. The molded body layer can also be obtained, for example, by pressure molding a granular or powdered negative electrode material together with a current collector. Examples of the pressure molding method include a pressure roll method and a pressure plate method. The pressure during the pressure molding is preferably 1 to 3 t / cm 2 .
 成形体層の密度(電極密度)は、好ましくは1.3~1.7g/cm3である。一般に、電極密度が高くなるほど体積あたりの電池容量が大きくなる傾向があり、電極密度を高くしすぎるとサイクル特性が低下する傾向がある。本発明の電池電極用材料を用いると電極密度を高くしてもサイクル特性の低下が小さいので、高い電極密度で且つ良好なサイクル特性を実現できる電極を得ることができる。本発明の電極は、電池の負極、またはリチウムイオン二次電池の負極に好適である。 The density (electrode density) of the molded body layer is preferably 1.3 to 1.7 g / cm 3 . Generally, as the electrode density increases, the battery capacity per volume tends to increase, and when the electrode density is increased too much, the cycle characteristics tend to deteriorate. When the battery electrode material of the present invention is used, even if the electrode density is increased, the deterioration of the cycle characteristics is small, so that an electrode capable of realizing a high electrode density and good cycle characteristics can be obtained. The electrode of the present invention is suitable for a negative electrode of a battery or a negative electrode of a lithium ion secondary battery.
 本発明の電池またはリチウムイオン二次電池は、本発明の電極を含む。電池またはリチウムイオン二次電池は、通常、負極、電解質、及び正極を含む。
 リチウムイオン二次電池においては、負極に、本発明の電極が好ましく用いられる。
 リチウムイオン二次電池の正極には、本発明の電極を用いてもよいが、正極活物質を含む電極が好ましく用いられる。正極活物質として、リチウム含有遷移金属酸化物を挙げることができ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、MoおよびWからなる群から選ばれる少なくとも1つの遷移金属元素とリチウム元素とを主として含有する酸化物であって、リチウム元素の遷移金属元素に対するモル比が0.3~2.2の化合物を挙げることができ、より好ましくはV、Cr、Mn、Fe、CoおよびNiからなる群から選ばれる少なくとも1つの遷移金属元素とリチウム元素とを主として含有する酸化物であって、リチウム元素の遷移金属元素に対するモル比が0.3~2.2の化合物を挙げることができる。正極活物質は、主として存在する遷移金属元素に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。
 上記のリチウム含有遷移金属酸化物の中で、一般式LiaMO2(MはCo、Ni、Fe、およびMnからなる群から選ばれる少なくとも1つの元素、0<a≦1.2)、またはLib24(Lは少なくともMnを含む元素。0<b≦2)で表わされ且つスピネル構造を有するものから選ばれる少なくとも1つが好ましく; 一般式Licd1-d2(MはCo、Ni、FeおよびMnからなる群から選ばれる少なくとも1つの元素、DはMで選択された元素以外で且つCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、BおよびPからなる群から選ばれる少なくとも1つの元素、c=0~1.2、d=0.5~1)、またはLie(Lf1-f24(LはMn元素、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、BおよびPからなる群から選ばれる少なくとも1つの元素、e=0~2、f=1~0.2)で表わされ且つスピネル構造を有するものから選ばれる少なくとも1つが特に好ましい。
The battery or lithium ion secondary battery of the present invention includes the electrode of the present invention. A battery or a lithium ion secondary battery usually includes a negative electrode, an electrolyte, and a positive electrode.
In the lithium ion secondary battery, the electrode of the present invention is preferably used for the negative electrode.
The electrode of the present invention may be used for the positive electrode of the lithium ion secondary battery, but an electrode containing a positive electrode active material is preferably used. Examples of the positive electrode active material include lithium-containing transition metal oxides, and preferably lithium and at least one transition metal element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Mo, and W. And an oxide mainly containing an element, wherein the molar ratio of lithium element to transition metal element is 0.3 to 2.2, more preferably V, Cr, Mn, Fe, Co and An oxide mainly containing at least one transition metal element selected from the group consisting of Ni and a lithium element, wherein the molar ratio of the lithium element to the transition metal element is 0.3 to 2.2. it can. The positive electrode active material may contain Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like in a range of less than 30 mol% with respect to the transition metal element present.
Among the lithium-containing transition metal oxides, a general formula Li a MO 2 (M is at least one element selected from the group consisting of Co, Ni, Fe, and Mn, 0 <a ≦ 1.2), or Li b L 2 O 4 (L is an element containing at least Mn. 0 <b ≦ 2) and at least one selected from those having a spinel structure is preferred; General formula Li c M d D 1-d O 2 (M is at least one element selected from the group consisting of Co, Ni, Fe and Mn, D is an element other than the element selected from M, and Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag , W, Ga, In, Sn, Pb, Sb, Sr, B, and P, at least one element selected from the group consisting of c = 0 to 1.2, d = 0.5 to 1), or Li e ( L f E 1-f) 2 O 4 (L is Mn element, E is Co At least one element selected from the group consisting of Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag, W, Ga, In, Sn, Pb, Sb, Sr, B and P, e = 0 to 2, Particularly preferred is at least one selected from those represented by f = 1 to 0.2) and having a spinel structure.
 リチウム含有遷移金属酸化物の具体例として、LigCoO2、LigNiO2、LigMnO2、LigCohNi1-h2、LigCoi1-iz、LigCoiFe1-i2、LigMn24、LigMnjCo2-j4、LigMnjNi2-j4、LigMnj2-j4、LigMnjFe2-j4(ここで、g=0.02~1.2、h=0.1~0.9、i=0.8~0.98、j=1.6~1.96、z=2.01~2.3)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LigCoO2、LigNiO2、LigMnO2、LigCohNi1-h2、LigMn24、LigCol1-lz(g=0.02~1.2、h=0.1~0.9、l=0.9~0.98、z=2.01~2.3)が挙げられる。 Specific examples of the lithium-containing transition metal oxide include Li g CoO 2 , Li g NiO 2 , Li g MnO 2 , Li g Co h Ni 1-h O 2 , Li g Co i V 1-i O z , Li g. Co i Fe 1-i O 2 , Li g Mn 2 O 4, Li g Mn j Co 2-j O 4, Li g Mn j Ni 2-j O 4, Li g Mn j V 2-j O 4, Li g Mn j Fe 2-j O 4 (where g = 0.02 to 1.2, h = 0.1 to 0.9, i = 0.8 to 0.98, j = 1.6 to 1) .96, z = 2.01 to 2.3). Most preferred lithium-containing transition metal oxides include Li g CoO 2 , Li g NiO 2 , Li g MnO 2 , Li g Co h Ni 1 -h O 2 , Li g Mn 2 O 4 , Li g Co l V 1. -l O z (g = 0.02 to 1.2, h = 0.1 to 0.9, l = 0.9 to 0.98, z = 2.01 to 2.3).
 正極活物質のレーザー回折法による体積基準の50%径D50は特に限定されないが、0.1~50μmが好ましい。正極活物質は、レーザー回折法により測定される粒度分布において、粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が全体積の18%以下であることが好ましい。
 正極活物質のBET比表面積は特に限定されないが、好ましくは0.01~50m2/g、より好ましくは0.2m2/g~1.0m2/gである。
 正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHは、7以上12以下であることが好ましい。
The volume-based 50% diameter D 50 of the positive electrode active material by laser diffraction is not particularly limited, but is preferably 0.1 to 50 μm. In the particle size distribution measured by a laser diffraction method, the positive electrode active material has a volume occupied by a particle group having a particle size of 3 μm or less being 18% or less of the total volume, and a volume occupied by a particle group of 15 μm or more and 25 μm or less is the total volume. It is preferable that it is 18% or less.
Although the BET specific surface area of the positive electrode active material is not particularly limited, is preferably 0.01 ~ 50m 2 / g, more preferably 0.2m 2 /g~1.0m 2 / g.
The pH of the supernatant liquid when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
 リチウムイオン二次電池では正極と負極との間にセパレータを設けることがある。セパレータとしては、例えば、不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。セパレータは、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした材料からなるものが好ましい。 In a lithium ion secondary battery, a separator may be provided between the positive electrode and the negative electrode. Examples of the separator include non-woven fabric, cloth, microporous film, or a combination thereof. The separator is preferably made of a material mainly composed of polyolefin such as polyethylene or polypropylene.
 本発明のリチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できるが、電気伝導性の観点から有機電解液が好ましい。 As the electrolyte and electrolyte constituting the lithium ion secondary battery of the present invention, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used, but organic electrolytes are preferred from the viewpoint of electrical conductivity.
 有機電解液は、電解質を有機溶媒に溶解させてなるものである。有機溶媒としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレ5グリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル、1,2-ジメトキシエタン等のエーテル;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄有機化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2-メトキシテトラヒドロフラン、1,3-ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート等のカーボネート類;γ-ブチロラクトン等のエステル類;N-メチルピロリドン;アセトニトリル、ニトロメタン等の他の有機溶媒を挙げることができる。これらのうち、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート等のカーボネート類、γ-ブチロラクトン等のエステル類、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン、1,3-ジオキソランが好ましく; エチレンカーボネート、プロピレンカーボネート等のカーボネート類がより好ましい。これらの有機溶媒は、単独でまたは2種以上を混合して使用することができる。 The organic electrolytic solution is obtained by dissolving an electrolyte in an organic solvent. Examples of the organic solvent include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethyl 5 glycol monobutyl ether, diethylene glycol dimethyl ether, ethylene glycol phenyl ether, Ethers such as 1,2-dimethoxyethane; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N- Ethylacetamide, N, N-diethylacetamide, N, N-dimethylpropionamide, Amides such as samethyl phosphorylamide; sulfur-containing organic compounds such as dimethyl sulfoxide and sulfolane; dialkyl ketones such as methyl ethyl ketone and methyl isobutyl ketone; cyclic ethers such as ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran and 1,3-dioxolane Carbonates such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate and vinylene carbonate; esters such as γ-butyrolactone; N-methylpyrrolidone; other organic solvents such as acetonitrile and nitromethane . Among these, carbonates such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, esters such as γ-butyrolactone, ethers such as diethyl ether and diethoxyethane, dimethyl sulfoxide, acetonitrile, Tetrahydrofuran and 1,3-dioxolane are preferred; carbonates such as ethylene carbonate and propylene carbonate are more preferred. These organic solvents can be used alone or in admixture of two or more.
 有機電解液に用いられる電解質としては、リチウム塩が挙げられる。電解質としてのリチウム塩としては、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等が挙げられる。 Examples of the electrolyte used for the organic electrolyte include lithium salts. Examples of the lithium salt as the electrolyte include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , and LiN (CF 3 SO 2 ) 2 .
 高分子固体電解質としては、ポリエチレンオキサイド誘導体、ポリエチレンオキサイド誘導体を含む重合体、ポリプロピレンオキサイド誘導体、ポリプロピレンオキサイド誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体、ポリカーボネート誘導体を含む重合体等が挙げられる。
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
Examples of the polymer solid electrolyte include polyethylene oxide derivatives, polymers containing polyethylene oxide derivatives, polypropylene oxide derivatives, polymers containing polypropylene oxide derivatives, phosphate ester polymers, polycarbonate derivatives, polymers containing polycarbonate derivatives, and the like. .
There are no restrictions on the selection of members other than those described above necessary for the battery configuration.
 以下に本発明について代表的な例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明の範囲はこれらに何等制限されるものではない。 Hereinafter, representative examples of the present invention will be shown to describe the present invention more specifically. Note that these are merely illustrative examples, and the scope of the present invention is not limited thereto.
 実施例および比較例においては、次のような方法で、粉末X線回折の測定、および電池の評価を行った。 In Examples and Comparative Examples, powder X-ray diffraction measurement and battery evaluation were performed by the following methods.
<粉末X線回折の測定>
 炭素粉末試料をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で粉末X線回折の測定を行った。
 XRD装置:Rigaku製SmartLab
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:5.0度~100度
 スキャンスピード:10.0deg./min.
 得られた波形に対し、平滑化、バックグラウンド除去、Kα2除去を行い、プロファイルフィッティングを行った。
<Measurement of powder X-ray diffraction>
A carbon powder sample was filled in a glass sample plate (sample plate window 18 × 20 mm, depth 0.2 mm), and powder X-ray diffraction was measured under the following conditions.
XRD device: Rigaku SmartLab
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measurement range: 5.0 degrees to 100 degrees Scan speed: 10.0 deg. / Min.
The obtained waveform was subjected to smoothing, background removal, Kα2 removal, and profile fitting.
<高温サイクル容量維持率および低温入出力特性の測定>
 黒鉛質炭素材料100質量部にカルボキシメチルセルロース1.5質量部及び水を適宜加えて粘度を調節し、これに、スチレン-ブタジエンゴム微粒子の水分散液(固形分40質量%)3.8質量部を加え、撹拌して、充分な流動性を有する負極材スラリーを得た。ドクターブレードを用いて、負極材スラリーを高純度銅箔上に150μm厚にて塗布し、70℃で12時間真空乾燥させた。負極材塗膜の形成された銅箔を打ち抜き20cm2の長方形小片を得た。該小片を超鋼製プレス板で挟み、プレス圧1×102~3×102N/mm2(1×103~3×103kg/cm2)にてプレスし、負極成形体層1を銅箔上に形成して、負極1を得た。
 Li3Ni1/3Mn1/3Co1/32(D50:7μm)90g、カーボンブラック(TIMCAL社製、C45)5g、およびポリフッ化ビニリデン(PVdF)5gにN-メチル-ピロリドンを適宜加えながら撹拌し、正極材スラリーを作製した。ロールコーターを用いて、正極材スラリーを厚さ20μmのアルミニウム箔上に均一な厚さで塗布し、次いで乾燥させた。それをロールプレスして、正極成形体層をアルミニウム箔上に形成した。正極成形体層の形成されたアルミニウム箔を打ち抜き20cm2の長方形小片(正極)を得た。
 負極1の銅箔にNiタブを取り付けた。正極のAl箔にAlタブを取り付けた。ポリプロピレン製微多孔膜を負極成形体層および正極成形体層の間に挟んで積層させた。これをアルミニウムラミネートにより開口部を一カ所残してパックした。これに、開口部から、電解液(エチレンカーボネート2質量部及びエチルメチルカーボネート3質量部の混合液に、LiPF6を1モル/リットル溶解してなる)を注入し、次いで開口部を熱融着により封止して、2極セルを得た。
<Measurement of high temperature cycle capacity retention and low temperature input / output characteristics>
Viscosity is adjusted by appropriately adding 1.5 parts by mass of carboxymethyl cellulose and water to 100 parts by mass of the graphitic carbon material, and 3.8 parts by mass of an aqueous dispersion of styrene-butadiene rubber fine particles (solid content: 40% by mass). Was added and stirred to obtain a negative electrode material slurry having sufficient fluidity. Using a doctor blade, the negative electrode material slurry was applied to a high-purity copper foil at a thickness of 150 μm and vacuum-dried at 70 ° C. for 12 hours. The copper foil on which the negative electrode material coating film was formed was punched out to obtain a rectangular piece of 20 cm 2 . The small piece is sandwiched between super steel press plates and pressed at a pressing pressure of 1 × 10 2 to 3 × 10 2 N / mm 2 (1 × 10 3 to 3 × 10 3 kg / cm 2 ) to form a negative electrode molded body layer 1 was formed on a copper foil to obtain a negative electrode 1.
N-methyl-pyrrolidone is appropriately added to 90 g of Li 3 Ni 1/3 Mn 1/3 Co 1/3 O 2 (D50: 7 μm), 5 g of carbon black (manufactured by TIMCAL, C45), and 5 g of polyvinylidene fluoride (PVdF). The mixture was stirred while being added to prepare a positive electrode material slurry. Using a roll coater, the positive electrode material slurry was applied in a uniform thickness on an aluminum foil having a thickness of 20 μm, and then dried. It was roll-pressed to form a positive electrode molded body layer on the aluminum foil. The aluminum foil on which the positive electrode molded body layer was formed was punched out to obtain a 20 cm 2 rectangular small piece (positive electrode).
A Ni tab was attached to the copper foil of the negative electrode 1. An Al tab was attached to the Al foil of the positive electrode. A polypropylene microporous membrane was laminated between the negative electrode molded body layer and the positive electrode molded body layer. This was packed with aluminum laminate leaving one opening. An electrolytic solution (formed by dissolving 1 mol / liter of LiPF 6 in a mixed solution of 2 parts by mass of ethylene carbonate and 3 parts by mass of ethyl methyl carbonate) is injected into the opening, and then the opening is heat-sealed. Was sealed to obtain a bipolar cell.
 60℃に設定した恒温槽中で、2極セルに、レストポテンシャルから0.002Vまで0.2mA/cm2で定電流充電を行った。0.002Vに達した後0.002Vで定電圧充電を行った。そして電流値が25.4μAに低下した時点で充電を止めた。次いで、電流密度0.2mA/cm2で定電流放電を行い、電圧1.5Vでカットオフした。この充放電を200サイクル繰り返した。
 初回放電容量に対する200サイクル時放電容量の割合を算出し、それを高温サイクル容量維持率とした。
 (高温サイクル容量維持率(%))
    =(200サイクル時放電容量)/(初回放電容量)×100
In a thermostat set at 60 ° C., constant current charging was performed at 0.2 mA / cm 2 from a rest potential to 0.002 V in a two-pole cell. After reaching 0.002V, constant voltage charging was performed at 0.002V. The charging was stopped when the current value dropped to 25.4 μA. Next, constant current discharge was performed at a current density of 0.2 mA / cm 2 and cut off at a voltage of 1.5V. This charging / discharging was repeated 200 cycles.
The ratio of the discharge capacity at 200 cycles to the initial discharge capacity was calculated and used as the high temperature cycle capacity retention rate.
(High temperature cycle capacity maintenance rate (%))
= (Discharge capacity at 200 cycles) / (initial discharge capacity) × 100
 -20℃に設定した恒温槽中で、2極セルに、レストポテンシャルから4.15Vまで0.1C(=約2.5mA)で定電流充電を行い、4.15Vに達した後、電流値1.25mAになるまで4.15Vで定電圧充電を行った。その後、0.2C(=約5mA)で2.8Vになるまで定電流放電を行って、0.2Cにおける放電容量を計測した。
 次いで、4.15Vになるまで0.1C(=約2.5mA)で定電流充電を行い、4.15Vに達した後、電流値1.25mAになるまで4.15Vで定電圧充電を行った。その後、0.5C(=約12.5mA)で2.8Vになるまで定電流放電を行って、0.5Cにおける放電容量を計測した。
 次いで、4.15Vになるまで0.1C(=約2.5mA)で定電流充電を行い、4.15Vに達した後、電流値1.25mAになるまで4.15Vで定電圧充電を行った。その後、0.1C(=約2.5mA)で2.8Vになるまで定電流放電を行って、0.1Cにおける放電容量を計測した。
 次いで、4.15Vになるまで0.2Cで定電流充電を行って、0.2Cにおける充電容量を計測した。0.1C(=約2.5mA)で2.8Vになるまで定電流放電を行った。その後、4.15Vになるまで0.5Cで定電流充電を行って、0.5Cにおける充電容量を計測した。0.1C(=約2.5mA)で2.8Vになるまで定電流放電を行った。その後、4.15Vまで0.1Cで定電流充電を行って0.1Cにおける充電容量を計測した。
 0.1Cにおける放電容量に対する0.2Cにおける放電容量の比(0.2C放電率)、0.1Cにおける放電容量に対する0.5Cにおける放電容量の比(0.5C放電率)、0.1Cにおける充電容量に対する0.2Cにおける充電容量の比(0.2C充電率)、0.1Cにおける充電容量に対する0.5Cにおける充電容量の比(0.5C充電率)、をそれぞれ算出した。結果を表に示す。
In a thermostatic chamber set at -20 ° C, the 2-pole cell was charged with constant current from the rest potential to 4.15V at 0.1C (= about 2.5mA), and after reaching 4.15V, the current value Constant voltage charging was performed at 4.15 V until 1.25 mA. Then, constant current discharge was performed until it became 2.8V at 0.2 C (= about 5 mA), and the discharge capacity at 0.2 C was measured.
Next, constant current charging is performed at 0.1 C (= about 2.5 mA) until reaching 4.15 V. After reaching 4.15 V, constant voltage charging is performed at 4.15 V until the current value reaches 1.25 mA. It was. Then, constant current discharge was performed until it became 2.8 V at 0.5 C (= about 12.5 mA), and the discharge capacity at 0.5 C was measured.
Next, constant current charging is performed at 0.1 C (= about 2.5 mA) until reaching 4.15 V. After reaching 4.15 V, constant voltage charging is performed at 4.15 V until the current value reaches 1.25 mA. It was. Then, constant current discharge was performed until it became 2.8V at 0.1 C (= about 2.5 mA), and the discharge capacity at 0.1 C was measured.
Next, constant current charging was performed at 0.2 C until 4.15 V, and the charging capacity at 0.2 C was measured. Constant current discharge was performed until it became 2.8 V at 0.1 C (= about 2.5 mA). Thereafter, constant current charging was performed at 0.5 C until 4.15 V, and the charging capacity at 0.5 C was measured. Constant current discharge was performed until it became 2.8 V at 0.1 C (= about 2.5 mA). Thereafter, constant current charging was performed at 0.1 C up to 4.15 V, and the charging capacity at 0.1 C was measured.
Ratio of discharge capacity at 0.2C to discharge capacity at 0.1C (0.2C discharge rate), ratio of discharge capacity at 0.5C to discharge capacity at 0.1C (0.5C discharge rate), at 0.1C The ratio of the charge capacity at 0.2C to the charge capacity (0.2C charge rate) and the ratio of the charge capacity at 0.5C to the charge capacity at 0.1C (0.5C charge rate) were calculated. The results are shown in the table.
<放電容量および初回クーロン効率の測定>
 負極材塗膜の形成された銅箔を打ち抜き16mmφの円形小片を得た。該小片を超鋼製プレス板で挟み、プレス圧1×102N/mm2(1×103kg/cm2)にてプレスし、負極成形体層2を銅箔上に形成して、負極2を得た。
 ポリプロピレン製セル(内径約18mm)内に、負極2、セパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))および16mmφの金属リチウム箔をこの順で入れ、積層させた。それに電解液A(エチレンカーボネート2質量部及びエチルメチルカーボネート3質量部からなる混合液に、LiPF6を1モル/リットル溶解してなる)を注入し、ねじ込み式のフタで封止して、対極リチウムセルAを得た。
<Measurement of discharge capacity and initial coulomb efficiency>
The copper foil on which the negative electrode material coating film was formed was punched out to obtain a round piece of 16 mmφ. The small piece is sandwiched between super steel press plates, pressed at a press pressure of 1 × 10 2 N / mm 2 (1 × 10 3 kg / cm 2 ), and a negative electrode molded body layer 2 is formed on the copper foil. A negative electrode 2 was obtained.
In a polypropylene cell (inner diameter of about 18 mm), a negative electrode 2, a separator (polypropylene microporous film (Cell Guard 2400)) and a 16 mmφ metal lithium foil were placed in this order and laminated. Electrolytic solution A (LiPF 6 dissolved at 1 mol / liter in a mixed solution consisting of 2 parts by mass of ethylene carbonate and 3 parts by mass of ethyl methyl carbonate) was injected into it and sealed with a screw-in type lid. Lithium cell A was obtained.
 25℃に設定した恒温槽内で、対極リチウムセルAに、レストポテンシャルから0.002Vまで0.2mAで定電流充電を行った。0.002Vに達した後、25.4μAになるまで0.002Vで定電圧充電を行った。充電電気量Aを計測した。その後、1.5Vになるまで0.2mAで定電流放電を行って、放電容量Aを計測した。充電電気量Aに対する放電容量Aの比を初回クーロン効率[%]とした。 In a thermostat set to 25 ° C., the counter electrode lithium cell A was charged with a constant current from the rest potential to 0.002 V at 0.2 mA. After reaching 0.002 V, constant voltage charging was performed at 0.002 V until 25.4 μA. The amount of charge A was measured. Thereafter, constant current discharge was performed at 0.2 mA until 1.5 V was reached, and the discharge capacity A was measured. The ratio of the discharge capacity A to the charge amount A was defined as the initial coulomb efficiency [%].
<PC電解液耐性>
 ポリプロピレン製セル(内径約18mm)内に、負極2、セパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))および16mmφの金属リチウム箔をこの順で入れ、積層させた。それに電解液B(エチレンカーボネート1質量部、エチルメチルカーボネート3質量部及びプロピレンカーボネート1質量部からなる混合液に、LiPF6を1モル/リットル溶解してなる。)を注入し、ねじ込み式のフタで封止して、対極リチウムセルBを得た。
<PC electrolyte resistance>
In a polypropylene cell (inner diameter of about 18 mm), a negative electrode 2, a separator (polypropylene microporous film (Cell Guard 2400)) and a 16 mmφ metal lithium foil were placed in this order and laminated. Electrolyte B (LiPF 6 was dissolved in 1 mol / liter in a mixed solution consisting of 1 part by mass of ethylene carbonate, 3 parts by mass of ethyl methyl carbonate and 1 part by mass of propylene carbonate) was poured into the screw-type lid. And the counter electrode lithium cell B was obtained.
 25℃に設定した恒温槽内で、対極リチウムセルBに、レストポテンシャルから0.002Vまで0.2mAで定電流充電を行った。0.002Vに達した後、25.4μAになるまで0.002Vで定電圧充電を行った。充電電気量Bを計測した。その後、1.5Vになるまで0.2mAで定電流放電を行って、放電容量Bを計測した。充電電気量Bに対する放電容量Bの比をPC電解液耐性[%]とした。 In a constant temperature bath set at 25 ° C., the counter lithium cell B was charged at a constant current of 0.2 mA from the rest potential to 0.002 V. After reaching 0.002 V, constant voltage charging was performed at 0.002 V until 25.4 μA. The amount of charged electricity B was measured. Thereafter, constant current discharge was performed at 0.2 mA until 1.5 V was reached, and the discharge capacity B was measured. The ratio of the discharge capacity B to the amount of charge B was defined as PC electrolyte resistance [%].
<電極密度および体積エネルギ密度の測定>
 負極材塗膜の形成された銅箔を打ち抜き16mmφの円形小片を得た。該小片を超鋼製プレス板で挟み、プレス圧2×102N/mm2(2×103kg/cm2)にてプレスし、負極成形体層2を銅箔上に形成して、負極3を得た。
 負極3の厚さを、膜厚計(SMD-565、(株)TECLOCK)を用いて測定し、負極材塗膜の質量から、電極密度を算出した。算出された電極密度と放電容量Aとの積を体積エネルギ密度とした。
<Measurement of electrode density and volume energy density>
The copper foil on which the negative electrode material coating film was formed was punched out to obtain a round piece of 16 mmφ. The small piece is sandwiched between press plates made of super steel, pressed at a pressing pressure of 2 × 10 2 N / mm 2 (2 × 10 3 kg / cm 2 ), and a negative electrode molded body layer 2 is formed on the copper foil. A negative electrode 3 was obtained.
The thickness of the negative electrode 3 was measured using a film thickness meter (SMD-565, TECLOCK Co., Ltd.), and the electrode density was calculated from the mass of the negative electrode material coating film. The product of the calculated electrode density and discharge capacity A was defined as the volume energy density.
実施例1
 比重4.2°API、アスファルテン分17質量%、樹脂分21質量%、硫黄分2.1質量%、および灰分0.3質量%である、ブラジル産原油減圧蒸留残渣を、ディレードコーキング装置に投入し、コーキングドラム前の加熱炉ヒーター出口温度を570℃に、内部圧力を約138kPa(35psig)に制御して、ディレードコーキングを施した。直径約3~8mmの粒状のコークスを得た。これを水冷してコーキングドラムから排出した。これを120℃で加熱し、水分含有率0.5質量%以下まで乾燥させた。得られたマイクロ強度30%のコークスをホソカワミクロン製バンタムミルで粉砕した。次いで日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級してD50が15.5μmのコークスを得た。これをセイシン企業製ジェットミルで粉砕してD50が6.6μmのコークスを得た。
 D50が6.6μmのコークスをネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて3100℃で加熱処理して、単層黒鉛質炭素材料を含む粒子の粉末を得た。
 単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 1
A Brazilian crude oil vacuum distillation residue having a specific gravity of 4.2 ° API, an asphaltene content of 17% by mass, a resin content of 21% by mass, a sulfur content of 2.1% by mass, and an ash content of 0.3% by mass is put into a delayed coking apparatus. The furnace heater outlet temperature before the caulking drum was controlled to 570 ° C., and the internal pressure was controlled to about 138 kPa (35 psig) to perform delayed coking. Granular coke having a diameter of about 3 to 8 mm was obtained. This was cooled with water and discharged from the caulking drum. This was heated at 120 ° C. and dried to a moisture content of 0.5% by mass or less. The obtained coke having a micro strength of 30% was pulverized with a bantam mill manufactured by Hosokawa Micron. Subsequently, airflow classification was performed with a turbo classifier TC-15N manufactured by Nisshin Engineering, and coke having a D 50 of 15.5 μm was obtained. This was pulverized with a jet mill manufactured by Seishin Corporation to obtain coke having a D 50 of 6.6 μm.
Coke having a D 50 of 6.6 μm was filled into a graphite crucible with a screw lid, and heat-treated at 3100 ° C. in an Atchison furnace to obtain powder of particles containing a single-layer graphitic carbon material.
Table 2 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
実施例2
 実施例1で得られた単層黒鉛質炭素材料を含む粒子の粉末100質量部に、粉末状の等方性石油系ピッチ1.0質量部を加え、乾式混合した。次いで、アルゴン雰囲気下、1100℃にて1時間加熱して、多層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。多層黒鉛質炭素材料の物性、および多層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。また、多層黒鉛質炭素材料Aの偏光顕微鏡像の一例を図1に示す。
Example 2
To 100 parts by mass of the powder of particles containing the single-layer graphitic carbon material obtained in Example 1, 1.0 part by mass of a powdery isotropic petroleum pitch was added and dry mixed. Subsequently, it heated at 1100 degreeC under argon atmosphere for 1 hour, and obtained the powder of the particle | grains containing a multilayer graphitic carbon material. The powder was not aggregated and consisted only of primary particles. Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material. An example of a polarizing microscope image of the multilayer graphitic carbon material A is shown in FIG.
実施例3
 ブラジル産原油減圧蒸留残渣を、比重3.1°API、アスファルテン分17質量%、樹脂分20質量%、硫黄分0.8質量%、および灰分0.4質量%である、中国新疆ウイグル自治区産原油減圧蒸留残渣に変えた以外は実施例1と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得、それを用いて実施例2と同じ方法で多層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。多層黒鉛質炭素材料の物性、および多層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 3
Crude oil produced in Brazil in Xinjiang Uygur Autonomous Region with a specific gravity of 3.1 ° API, an asphaltene content of 17% by mass, a resin content of 20% by mass, a sulfur content of 0.8% by mass, and an ash content of 0.4% by mass A powder of particles containing a single layer graphitic carbon material is obtained by the same method as in Example 1 except that the residue is changed to a vacuum distillation residue, and a powder of particles containing a multilayer graphitic carbon material is obtained by using the same method as in Example 2. Got. The powder had no aggregation and consisted only of primary particles. Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
実施例4
 ブラジル産原油減圧蒸留残渣を、比重5.2°API、アスファルテン分22質量%、樹脂分17質量%、硫黄分1.2質量%、および灰分0.6質量%である、中国遼寧省産原油減圧蒸留残渣に変えた以外は実施例1と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得、それを用いて実施例2と同じ方法で多層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。多層黒鉛質炭素材料の物性、および多層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 4
Brazilian crude oil produced in Liaoning Province has a specific gravity of 5.2 ° API, an asphaltene content of 22% by mass, a resin content of 17% by mass, a sulfur content of 1.2% by mass, and an ash content of 0.6% by mass. A powder of particles containing a single layer graphitic carbon material is obtained by the same method as in Example 1 except that the residue is changed to a vacuum distillation residue, and a powder of particles containing a multilayer graphitic carbon material is obtained by using the same method as in Example 2. Got. The powder was not aggregated and consisted only of primary particles. Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
実施例5
 気流分級においてD50が5.8μmのコークスを得、それをジェットミル粉砕せずにそのまま黒鉛化に供した以外は実施例1と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得、それを用いて実施例2と同じ方法で多層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。多層黒鉛質炭素材料の物性、および多層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 5
D 50 is obtained coke 5.8μm in air classification, to obtain a powder of particles including the single-layer graphitic carbon material in the same manner as in Example 1, except that the supplied directly to the graphitization without jet milling it Using this, a powder of particles containing a multilayer graphitic carbon material was obtained in the same manner as in Example 2. The powder was not aggregated and consisted only of primary particles. Table 2 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
実施例6
 実施例2で得られた単層黒鉛質炭素材料を含む粒子の粉末70質量部と大阪ガス社製人造黒鉛MCMB2528(黒鉛化温度2800℃)30質量部とをヘンシェルミキサーにて2分間、チョッパー回転数2000rpmで攪拌して混合黒鉛質炭素材料を得た。混合黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 6
Chopper rotation for 2 minutes with a Henschel mixer using 70 parts by mass of particles containing the single-layer graphitic carbon material obtained in Example 2 and 30 parts by mass of artificial graphite MCMB2528 (graphitization temperature: 2800 ° C.) manufactured by Osaka Gas Co., Ltd. The mixture was stirred at several 2000 rpm to obtain a mixed graphitic carbon material. Table 2 shows the evaluation results of the battery obtained using the mixed graphitic carbon material.
実施例7
 気流分級においてD50が15.5μmのコークスを得、それをジェットミル粉砕せずにそのまま黒鉛化に供した以外は実施例1と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 7
D 50 is obtained coke 15.5μm in air classification, to obtain a powder of particles including the single-layer graphitic carbon material in the same manner as in Example 1, except that the supplied directly to the graphitization without jet milling it It was. The powder was not aggregated and consisted only of primary particles. Table 2 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
実施例8
 ブラジル産原油減圧蒸留残渣を、比重5.2°API、アスファルテン分22質量%、樹脂分17質量%、硫黄分1.2質量%、および灰分0.6質量%である、中国遼寧省産原油減圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表2に示す。
Example 8
Brazilian crude oil produced in Liaoning Province has a specific gravity of 5.2 ° API, an asphaltene content of 22% by mass, a resin content of 17% by mass, a sulfur content of 1.2% by mass, and an ash content of 0.6% by mass. A powder of particles containing a single-layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a vacuum distillation residue. The powder was not aggregated and consisted only of primary particles. Table 2 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
比較例1
 ブラジル産原油減圧蒸留残渣を、比重3.4°API、アスファルテン分21質量%、樹脂分11質量%、硫黄分3.3質量%、および灰分0.2質量%である、ベネズエラ産原油減圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表3に示す。
Comparative Example 1
A Brazilian crude oil vacuum distillation residue has a specific gravity of 3.4 ° API, an asphaltene content of 21% by mass, a resin content of 11% by mass, a sulfur content of 3.3% by mass, and an ash content of 0.2% by mass. A powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a residue. The powder was not aggregated and consisted only of primary particles. Table 3 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
比較例2
 ブラジル産原油減圧蒸留残渣を、比重0.7°API、アスファルテン分15質量%、樹脂分14質量%、硫黄分5.3質量%、および灰分0.1質量%である、メキシコ産原油常圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表3に示す。
Comparative Example 2
Mexican crude oil atmospheric pressure with a Brazilian crude oil vacuum distillation residue having a specific gravity of 0.7 ° API, an asphaltene content of 15% by mass, a resin content of 14% by mass, a sulfur content of 5.3% by mass, and an ash content of 0.1% by mass A powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a distillation residue. The powder was not aggregated and consisted only of primary particles. Table 3 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
比較例3
 ブラジル産原油減圧蒸留残渣を、比重3.0°API、アスファルテン分28質量%、樹脂分11質量%、硫黄分3.5質量%、および灰分0.1質量%である、カリフォルニア産原油減圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表3に示す。
Comparative Example 3
A Brazilian crude oil vacuum distillation residue has a specific gravity of 3.0 ° API, an asphaltene content of 28% by mass, a resin content of 11% by mass, a sulfur content of 3.5% by mass, and an ash content of 0.1% by mass. A powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a residue. The powder was not aggregated and consisted only of primary particles. Table 3 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
比較例4
 比較例3で得られた単層黒鉛質炭素材料を含む粒子の粉末70質量部と大阪ガス製人造黒鉛MCMB2528(黒鉛化温度2800℃)30質量部とをヘンシェルミキサーにて2分間、チョッパー回転数2000rpmで攪拌して、混合黒鉛質炭素材料を得た。混合黒鉛質炭素材料を用いて得られた電池の評価結果を表3に示す。
Comparative Example 4
70 parts by mass of particles containing the single-layered graphitic carbon material obtained in Comparative Example 3 and 30 parts by mass of Osaka Gas Artificial Graphite MCMB2528 (graphitization temperature: 2800 ° C.) for 2 minutes using a Henschel mixer, chopper rotation speed The mixture was stirred at 2000 rpm to obtain a mixed graphitic carbon material. Table 3 shows the evaluation results of the battery obtained using the mixed graphitic carbon material.
比較例5
 比較例3で得られた単層黒鉛質炭素材料を含む粒子の粉末93質量部に、コールタールピッチ(平均粒子径0.5μm)5質量部を加え、さらに昭和電工社製気相法炭素繊維(VGCF(登録商標))2質量部を加えて、ホソカワミクロン製メカノフュージョンにて5分間、チョッパー回転数2000rpmで攪拌して、混合物を得た。この混合物を、アルゴン雰囲気下、1200℃で熱処理して、複合黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。複合黒鉛質炭素材料の物性、および複合黒鉛質炭素材料を用いて得られた電池の評価結果を表3に示す。
Comparative Example 5
5 parts by mass of coal tar pitch (average particle diameter: 0.5 μm) is added to 93 parts by mass of the powder of particles containing the single-layer graphitic carbon material obtained in Comparative Example 3, and gas phase method carbon fiber manufactured by Showa Denko KK 2 parts by mass of (VGCF (registered trademark)) was added, and the mixture was stirred for 5 minutes at Hosokawa Micron Mechanofusion at a chopper rotation speed of 2000 rpm to obtain a mixture. This mixture was heat-treated at 1200 ° C. in an argon atmosphere to obtain particles of powder containing the composite graphitic carbon material. The powder was not aggregated and consisted only of primary particles. Table 3 shows the physical properties of the composite graphitic carbon material and the evaluation results of the battery obtained using the composite graphitic carbon material.
比較例6
 フェノール樹脂(「ベルパール(登録商標)C-800」;鐘紡(株)製)を170℃で3分間熱し、次いで130℃で8時間熱して、硬化させた。その後、窒素雰囲気中、250℃/hの速度で、1200℃まで昇温し、1200℃で1時間保持した。その後、室温まで冷却してフェノール樹脂焼成炭を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。フェノール樹脂焼成炭の物性、およびフェノール樹脂焼成炭を用いて得られた電池の評価結果を表3に示す。
Comparative Example 6
A phenol resin (“Bellpearl® C-800”; manufactured by Kanebo Co., Ltd.) was heated at 170 ° C. for 3 minutes and then heated at 130 ° C. for 8 hours to be cured. Thereafter, the temperature was raised to 1200 ° C. at a rate of 250 ° C./h in a nitrogen atmosphere and held at 1200 ° C. for 1 hour. Then, it cooled to room temperature and obtained the powder of the particle | grains containing a phenol resin calcination charcoal. The powder was not aggregated and consisted only of primary particles. Table 3 shows the physical properties of the phenol resin calcined charcoal and the evaluation results of the battery obtained using the phenol resin calcined charcoal.
比較例7
 大阪ガス社製人造黒鉛MCMB(登録商標)2528(黒鉛化温度2800℃)を用いて得られた電池の評価結果を表4に示す。なお、大阪ガス社製人造黒鉛MCMB(登録商標)2528は凝集がなく、1次粒子のみからなるものであった。
Comparative Example 7
Table 4 shows the evaluation results of the battery obtained using artificial graphite MCMB (registered trademark) 2528 (graphitization temperature 2800 ° C.) manufactured by Osaka Gas Co., Ltd. The artificial graphite MCMB (registered trademark) 2528 manufactured by Osaka Gas Co., Ltd. had no aggregation and consisted only of primary particles.
比較例8
 ブラジル産原油減圧蒸留残渣を、比重3.4°API、アスファルテン分7質量%、樹脂分7質量%、硫黄分は0.2質量%、および灰分は0.0重量%である、アラビア産原油減圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表4に示す。
Comparative Example 8
A crude oil from Brazil, which has a specific gravity of 3.4 ° API, an asphaltene content of 7% by mass, a resin content of 7% by mass, a sulfur content of 0.2% by mass, and an ash content of 0.0% by weight. A powder of particles containing a single-layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a vacuum distillation residue. The powder was not aggregated and consisted only of primary particles. Table 4 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
比較例9
 D50が7μmの中国産天然黒鉛600gを奈良機械製ハイブリダイザーNHS1型に投入し、ローター周速度60/m/secにて3分間処理して、球状黒鉛粒子を得た。この操作を繰り返して、球状黒鉛粒子3kgを用意した。該球状黒鉛粒子は凝集しており、そのD50は15μmであった。
 球状黒鉛粒子3kgと石油系タール1kgを、(株)マツボー製のM20型レディゲミキサー(内容積20リットル)に投入し、混練した。続いて、窒素雰囲気下にて700℃まで昇温して脱タール処理した。その後、1300℃まで昇温して熱処理を行った。得られた熱処理物をピンミルにて解砕し、次いで分級処理によって粗粒子を除去して、複合黒鉛粒子の粉末を得た。該粉末を用いて得られた電池の評価結果を表4に示す。
Comparative Example 9
600 g of Chinese natural graphite having a D 50 of 7 μm was put into a hybridizer NHS1 type manufactured by Nara Machinery, and treated for 3 minutes at a rotor peripheral speed of 60 / m / sec to obtain spherical graphite particles. This operation was repeated to prepare 3 kg of spherical graphite particles. The spherical graphite particles were agglomerated and their D 50 was 15 μm.
3 kg of spherical graphite particles and 1 kg of petroleum-based tar were put into an M20-type readyge mixer (internal volume 20 liters) manufactured by Matsubo Co., Ltd. and kneaded. Subsequently, the temperature was raised to 700 ° C. in a nitrogen atmosphere, and detarring was performed. Then, it heated up to 1300 degreeC and heat-processed. The obtained heat-treated product was pulverized with a pin mill, and then coarse particles were removed by classification to obtain composite graphite particle powder. Table 4 shows the evaluation results of the battery obtained using the powder.
比較例10
 ブラジル産原油減圧蒸留残渣を、比重8.0°API、アスファルテン分9質量%、樹脂分9質量%、硫黄分0.4質量%、および灰分0.0質量%である、イラン産原油常圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表4に示す。
Comparative Example 10
Brazilian crude oil vacuum distillation residue has an Iranian crude oil atmospheric pressure having a specific gravity of 8.0 ° API, an asphaltene content of 9% by mass, a resin content of 9% by mass, a sulfur content of 0.4% by mass, and an ash content of 0.0% by mass. A powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a distillation residue. The powder was not aggregated and consisted only of primary particles. Table 4 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
比較例11
 ブラジル産原油減圧蒸留残渣を、比重17.0°API、アスファルテン分8質量%、樹脂分6質量%、硫黄分6.3質量%、および灰分0.1質量%である、テキサス産原油常圧蒸留残渣に変えた以外は実施例1と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得、それを用いて実施例2と同じ方法で多層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。多層黒鉛質炭素材料の物性、および多層黒鉛質炭素材料を用いて得られた電池の評価結果を表4に示す。
Comparative Example 11
Texas crude oil normal pressure having a specific gravity of 17.0 ° API, an asphaltene content of 8% by mass, a resin content of 6% by mass, a sulfur content of 6.3% by mass and an ash content of 0.1% by mass. A powder of particles containing a single layer graphitic carbon material is obtained by the same method as in Example 1 except that the residue is changed to a distillation residue, and a powder of particles containing a multilayer graphitic carbon material is obtained by using the same method as in Example 2. Obtained. The powder was not aggregated and consisted only of primary particles. Table 4 shows the physical properties of the multilayer graphitic carbon material and the evaluation results of the battery obtained using the multilayer graphitic carbon material.
比較例12:
 ブラジル産原油減圧蒸留残渣を、比重5.0°API、アスファルテン分12質量%、樹脂分9質量%、硫黄分0.7質量%、および灰分0.1質量%である、インドネシア産原油常圧蒸留残渣に変えた以外は実施例7と同じ方法で単層黒鉛質炭素材料を含む粒子の粉末を得た。該粉末は凝集がなく、1次粒子のみからなるものであった。単層黒鉛質炭素材料の物性、および単層黒鉛質炭素材料を用いて得られた電池の評価結果を表4に示す。
Comparative Example 12:
Brazilian crude oil vacuum distillation residue, Indonesian crude oil atmospheric pressure with specific gravity 5.0 ° API, asphaltene content 12% by mass, resin content 9% by mass, sulfur content 0.7% by mass, and ash content 0.1% by mass A powder of particles containing a single layer graphitic carbon material was obtained in the same manner as in Example 7 except that the residue was changed to a distillation residue. The powder was not aggregated and consisted only of primary particles. Table 4 shows the physical properties of the single-layer graphitic carbon material and the evaluation results of the battery obtained using the single-layer graphitic carbon material.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果は、本発明の黒鉛質炭素材料を用いると、低温入出力特性、高温サイクル容量維持特性およびPC電解液耐性に優れる電池が得られることを示している。 The above results indicate that when the graphitic carbon material of the present invention is used, a battery having excellent low-temperature input / output characteristics, high-temperature cycle capacity maintenance characteristics and PC electrolyte resistance can be obtained.

Claims (15)

  1. (A) 黒鉛質炭素材料の粉末X線回折の測定において、
     (1)(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下であり、
     (2)(112)回折線から算出される結晶子の大きさLc112が3.0nm以上6.0nm以下であり、且つ
     (3)(004)回折線のピーク強度I004に対する(110)回折線のピーク強度I110の比I110/I004が0.30以上0.67以下であり、

    (B) 黒鉛質炭素材料の波長514.5nmのアルゴンイオンレーザーによるラマン分光の測定において、
     (1)1570~1630cm-1の領域に存在するピーク強度IGに対する1350~1370cm-1の領域に存在するピーク強度IDの比ID/IGが0.05以上0.30以下であり、

    (C) 黒鉛質炭素材料の断面中の無作為に選択した100μm×100μmの正方形視野10カ所の偏光顕微鏡観察において、
     (1)光学異方性ドメインの面積の総計Da100が、光学異方性ドメインの面積の総計Da100と光学等方性ドメインの面積の総計Dc100との合計に対して、65.0%以上90.0%以下であり、
     (2)各光学異方性ドメインの面積を小さい方から累計し、
       (a)その累計が光学異方性ドメインの面積の総計に対して10%となるときの面積Da10が0.5μm2以上2.0μm2以下であり、
       (b)その累計が光学異方性ドメインの面積の総計に対して50%となるときの面積Da50が0.6μm2以上4.0μm2以下であり、且つ
       (c)その累計が光学異方性ドメインの面積の総計に対して90%となるときの面積Da90が0.7μm2以上30.0μm2以下であり、且つ
     (3)各光学等方性ドメインの面積を小さい方から累計し、
       (a)その累計が光学等方性ドメインの面積の総計に対して10%となるときの面積Dc10が0.5μm2以上1.0μm2以下であり、
       (b)その累計が光学等方性ドメインの面積の総計に対して50%となるときの面積Dc50が0.6μm2以上2.0μm2以下であり、且つ
       (c)その累計が光学等方性ドメインの面積の総計に対して90%となるときの面積Dc90が0.7μm2以上14.0μm2以下である、

    黒鉛質炭素材料。
    (A) In measurement of powder X-ray diffraction of graphitic carbon material,
    (1) The (002) plane average plane distance d 002 is 0.3354 nm or more and 0.3370 nm or less,
    (2) The crystallite size Lc 112 calculated from the (112) diffraction line is 3.0 nm or more and 6.0 nm or less, and (3) (110) diffraction with respect to the peak intensity I 004 of the (004) diffraction line. The ratio I 110 / I 004 of the peak intensity I 110 of the line is 0.30 or more and 0.67 or less,

    (B) In the measurement of Raman spectroscopy by an argon ion laser having a wavelength of 514.5 nm of the graphitic carbon material,
    (1) 1570 ratio I D / I G peak intensity I D that exists in the region of ~ 1630 cm 1350 to the peak intensity I G existing in the region of -1 ~ 1370 cm -1 is located at 0.05 to 0.30 ,

    (C) In polarization microscope observation of 10 square fields of 100 μm × 100 μm randomly selected in the cross section of the graphitic carbon material,
    (1) Total Da 100 of the area of the optically anisotropic domains, relative to the sum of the total Dc 100 of the area of the total Da 100 and optically isotropic domains in the area of the optically anisotropic domain, 65.0% More than 90.0%,
    (2) Accumulate the area of each optically anisotropic domain from the smallest,
    (a) The area Da 10 when the cumulative total is 10% with respect to the total area of the optically anisotropic domains is 0.5 μm 2 or more and 2.0 μm 2 or less,
    (b) The area Da 50 when the cumulative total is 50% of the total area of the optically anisotropic domains is 0.6 μm 2 or more and 4.0 μm 2 or less, and (c) the total is optically different. area Da 90 when made 90% with respect to total area of the isotropic domains is at 0.7 [mu] m 2 or more 30.0 2 below, and (3) cumulative from the smaller the area of each optically isotropic domain And
    (a) The area Dc 10 when the cumulative total is 10% with respect to the total area of the optical isotropic domain is 0.5 μm 2 or more and 1.0 μm 2 or less,
    (b) The area Dc 50 when the total is 50% of the total area of the optical isotropic domain is 0.6 μm 2 or more and 2.0 μm 2 or less, and (c) the total is optical or the like. area Dc 90 when the 90% total area of isotropic domains is 0.7 [mu] m 2 or more 14.0 2 below,

    Graphite carbon material.
  2.  BET比表面積Ssaが1.5m2/g以上4.0m2/g以下である、請求項1に記載の黒鉛質炭素材料。 The graphitic carbon material according to claim 1, wherein the BET specific surface area S sa is 1.5 m 2 / g or more and 4.0 m 2 / g or less.
  3.  レーザー回析法による体積基準の50%径D50が4.0μm以上20.0μm以下である、請求項1または2に記載の黒鉛質炭素材料。 3. The graphitic carbon material according to claim 1, wherein a volume-based 50% diameter D 50 by laser diffraction is from 4.0 μm to 20.0 μm.
  4.  (002)回折線から算出される結晶子の大きさLc002が50nm以上80nm以下である、請求項1~3のいずれかひとつに記載の黒鉛質炭素材料。 (002) The size Lc 002 of crystallite calculated from the diffraction line is 50nm or more 80nm or less, graphitic carbon material according to any one of claims 1-3.
  5.  平均円形度Ravが0.86以上0.95以下である、請求項1~4のいずれかひとつに記載の黒鉛質炭素材料。 The graphitic carbon material according to any one of claims 1 to 4, having an average circularity R av of 0.86 to 0.95.
  6.  タップ密度ρTが0.55g/m3以上1.30g/m3以下である、請求項1~5のいずれかひとつに記載の黒鉛質炭素材料。 6. The graphitic carbon material according to claim 1, wherein the tap density ρ T is 0.55 g / m 3 or more and 1.30 g / m 3 or less.
  7.  炭素材料からなる芯層と、その表面を覆う他の炭素材料からなる表皮層とを含む多層構造を成している、請求項1~6のいずれかひとつに記載の黒鉛質炭素材料。 The graphitic carbon material according to any one of claims 1 to 6, wherein the graphitic carbon material has a multilayer structure including a core layer made of a carbon material and a skin layer made of another carbon material covering the surface thereof.
  8.  請求項1~7のいずれかひとつに記載の黒鉛質炭素材料を含む粒子を含有する、電池電極用材料。 A battery electrode material comprising particles containing the graphitic carbon material according to any one of claims 1 to 7.
  9.  請求項1~7のいずれかひとつに記載の黒鉛質炭素材料100質量部と、
     平均面間隔d002が0.3354nm以上0.3370nm以下である球状天然黒鉛または人造黒鉛0.01~200質量部と
    を含有する、電池電極用材料。
    100 parts by mass of graphitic carbon material according to any one of claims 1 to 7,
    Mean spacing d 002 contains a spherical natural graphite or artificial graphite 0.01-200 parts by weight or less 0.3370nm than 0.3354 nm, battery electrode material.
  10.  バインダをさらに含む、請求項8~9のいずれかひとつに記載の電池電極用材料。 The battery electrode material according to any one of claims 8 to 9, further comprising a binder.
  11.  請求項8~10のいずれかひとつに記載の電池電極用材料を含む成形体の層を有する電極。 An electrode having a layer of a molded body containing the battery electrode material according to any one of claims 8 to 10.
  12.  請求項11に記載の電極を含む電池。 A battery comprising the electrode according to claim 11.
  13.  請求項11に記載の電極を含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the electrode according to claim 11.
  14.  アスファルテン分と樹脂分の合計量が20質量%以上60質量%以下で、硫黄分の量が0.5質量%以上6.0質量%以下で、且つ灰分の量が0.2質量%以上1.0質量%以下である、炭素原料に、コーキングドラム前の加熱炉ヒーター出口温度を550℃~580℃に制御して、ディレードコーキングを施して、マイクロ強度が20質量%以上40質量%以下のコークスを得、
     得られたコークスを粉砕し、
     粉砕されたコークスを2500~3600℃の温度で黒鉛化することを含む、
    請求項1~6のいずれかひとつに記載の黒鉛質炭素材料の製造方法。
    The total amount of asphaltene and resin is 20% by mass to 60% by mass, the amount of sulfur is 0.5% by mass to 6.0% by mass, and the amount of ash is 0.2% by mass to 1%. The carbon raw material, which is 0.0 mass% or less, is subjected to delayed coking by controlling the furnace heater outlet temperature before the coking drum to 550 ° C. to 580 ° C., and the micro strength is 20 mass% or more and 40 mass% or less. Get coke,
    Crush the obtained coke,
    Graphitizing the ground coke at a temperature of 2500-3600 ° C.,
    The method for producing a graphitic carbon material according to any one of claims 1 to 6.
  15.  アスファルテン分と樹脂分の合計量が20質量%以上60質量%以下で、硫黄分の量が0.5質量%以上6.0質量%以下で、且つ灰分の量が0.2質量%以上1.0質量%以下である、炭素原料に、コーキングドラム前の加熱炉ヒーター出口温度を550℃~580℃に制御して、ディレードコーキングを施して、マイクロ強度が20質量%以上40質量%以下のコークスを得、
     得られたコークスを粉砕し、
     粉砕されたコークスを2500~3600℃の温度で黒鉛化して炭素材料からなる芯層を得、次いで
     該芯層に他の炭素材料からなる表皮層を被覆させることを含む、
    請求項7に記載の黒鉛質炭素材料の製造方法。
    The total amount of asphaltene and resin is 20% by mass to 60% by mass, the amount of sulfur is 0.5% by mass to 6.0% by mass, and the amount of ash is 0.2% by mass to 1%. The carbon raw material, which is 0.0 mass% or less, is subjected to delayed coking by controlling the furnace heater outlet temperature before the coking drum to 550 ° C. to 580 ° C., and the micro strength is 20 mass% or more and 40 mass% or less. Get coke,
    Crush the obtained coke,
    Including graphitizing the pulverized coke at a temperature of 2500 to 3600 ° C. to obtain a core layer made of a carbon material, and then coating the core layer with a skin layer made of another carbon material,
    The manufacturing method of the graphitic carbon material of Claim 7.
PCT/JP2019/002854 2018-01-30 2019-01-29 Graphite material, method for producing same, and use thereof WO2019151201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013425A JP2021068491A (en) 2018-01-30 2018-01-30 Graphite material, manufacturing method thereof, and application thereof
JP2018-013425 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019151201A1 true WO2019151201A1 (en) 2019-08-08

Family

ID=67479255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002854 WO2019151201A1 (en) 2018-01-30 2019-01-29 Graphite material, method for producing same, and use thereof

Country Status (3)

Country Link
JP (1) JP2021068491A (en)
TW (1) TW201940424A (en)
WO (1) WO2019151201A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137909A1 (en) * 2018-12-26 2020-07-02 昭和電工株式会社 Graphite material for negative electrode of lithium-ion secondary battery
CN112930610A (en) * 2020-02-19 2021-06-08 杰富意化学株式会社 Carbon material for negative electrode of lithium ion secondary battery, method for producing same, and negative electrode and lithium ion secondary battery using same
WO2021166359A1 (en) * 2020-02-19 2021-08-26 Jfeケミカル株式会社 Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702316B (en) * 2022-03-23 2023-05-30 湖南大学 Preparation method and application of low-cost high-purity graphite material
CN116314612B (en) * 2023-05-11 2023-08-18 中创新航科技集团股份有限公司 Negative electrode plate and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296814A (en) * 1994-04-28 1995-11-10 Kureha Chem Ind Co Ltd Secondary battery electrode graphite material and its manufacture
JP2002063902A (en) * 2000-08-16 2002-02-28 Kawasaki Steel Corp Carbon material manufacturing method and lithium ion secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2011152426A1 (en) * 2010-05-31 2011-12-08 Jx日鉱日石エネルギー株式会社 Coking coal compound for anode material of lithium ion secondary battery
JP2014011085A (en) * 2012-06-29 2014-01-20 Mt Carbon Co Ltd Graphite material for lithium ion secondary battery negative electrode, lithium ion secondary battery using the same, and method for producing graphite material for lithium ion secondary battery
JP2015069818A (en) * 2013-09-27 2015-04-13 昭和電工株式会社 Coke, electrode active material and battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296814A (en) * 1994-04-28 1995-11-10 Kureha Chem Ind Co Ltd Secondary battery electrode graphite material and its manufacture
JP2002063902A (en) * 2000-08-16 2002-02-28 Kawasaki Steel Corp Carbon material manufacturing method and lithium ion secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2011152426A1 (en) * 2010-05-31 2011-12-08 Jx日鉱日石エネルギー株式会社 Coking coal compound for anode material of lithium ion secondary battery
JP2014011085A (en) * 2012-06-29 2014-01-20 Mt Carbon Co Ltd Graphite material for lithium ion secondary battery negative electrode, lithium ion secondary battery using the same, and method for producing graphite material for lithium ion secondary battery
JP2015069818A (en) * 2013-09-27 2015-04-13 昭和電工株式会社 Coke, electrode active material and battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137909A1 (en) * 2018-12-26 2020-07-02 昭和電工株式会社 Graphite material for negative electrode of lithium-ion secondary battery
CN112930610A (en) * 2020-02-19 2021-06-08 杰富意化学株式会社 Carbon material for negative electrode of lithium ion secondary battery, method for producing same, and negative electrode and lithium ion secondary battery using same
JP6924917B1 (en) * 2020-02-19 2021-08-25 Jfeケミカル株式会社 Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
WO2021166359A1 (en) * 2020-02-19 2021-08-26 Jfeケミカル株式会社 Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP2021180186A (en) * 2020-02-19 2021-11-18 Jfeケミカル株式会社 Carbon material for negative electrode of lithium ion secondary battery and manufacturing method thereof, as well as negative electrode and lithium ion secondary battery employing the same
EP3896758A4 (en) * 2020-02-19 2022-01-05 JFE Chemical Corporation Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same

Also Published As

Publication number Publication date
JP2021068491A (en) 2021-04-30
TW201940424A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP5641613B2 (en) Graphite material, carbon material for battery electrode, and battery
KR102132618B1 (en) Negative electrode material for lithium ion batteries and uses thereof
US9099745B2 (en) Graphite carbon composite material, carbon material for battery electrodes, and batteries
JP5461746B1 (en) Carbon material, carbon material for battery electrode, and battery
WO2019151201A1 (en) Graphite material, method for producing same, and use thereof
US9099742B2 (en) Graphite material, carbon material for battery electrodes, and batteries
WO2018047939A1 (en) Negative electrode material for lithium ion secondary cell
JP6472933B2 (en) Graphite material and secondary battery electrode using the same
WO2014119776A1 (en) Graphite powder for negative electrode active material of lithium-ion secondary battery
WO2015016182A1 (en) Carbon material, cell electrode material, and cell
WO2015182560A1 (en) Carbon material, method for manufacturing same, and application of same
US10377633B2 (en) Carbon material, method for producing same, and use for same
WO2021002384A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP