JPH07296814A - Secondary battery electrode graphite material and its manufacture - Google Patents

Secondary battery electrode graphite material and its manufacture

Info

Publication number
JPH07296814A
JPH07296814A JP6111707A JP11170794A JPH07296814A JP H07296814 A JPH07296814 A JP H07296814A JP 6111707 A JP6111707 A JP 6111707A JP 11170794 A JP11170794 A JP 11170794A JP H07296814 A JPH07296814 A JP H07296814A
Authority
JP
Japan
Prior art keywords
pitch
graphite material
secondary battery
aqueous solvent
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6111707A
Other languages
Japanese (ja)
Other versions
JP2948097B2 (en
Inventor
Naohiro Sonobe
直弘 園部
Jiro Masuko
二朗 増子
Takao Iwasaki
隆夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP6111707A priority Critical patent/JP2948097B2/en
Priority to EP94306238A priority patent/EP0646978B1/en
Priority to DE69407526T priority patent/DE69407526T2/en
Priority to US08/295,066 priority patent/US5527643A/en
Priority to CA002131122A priority patent/CA2131122C/en
Publication of JPH07296814A publication Critical patent/JPH07296814A/en
Application granted granted Critical
Publication of JP2948097B2 publication Critical patent/JP2948097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide an electrode graphite material that makes possible a nonaqueous solvent type secondary battery having a large charge and discharge capacity, a high active material utilization factor, a discharge curve of excellent flatness, and a good quick charge and discharge characteristic and to provide a method for manufacturing the material. CONSTITUTION:A graphite material, which is obtained when petroleum, or coal type, tar or pitch is crosslinked and graphitized under reduced pressure or in an inert gas atmosphere at or above 1800 deg.C, has a (002) face whose average layer-to-layer spacing d(002) as determined by X-ray diffraction method is 0.336 to 0.350nm. The size Lc(002) of crystallites in (c)-axis direction is in excess of 15nm and not greater than 50nm and the size La(110) of crystallites in (a)-axis direction is 5-50nm, and an optical anisotropic composition as observed by a polarizing microscope shows a fine mosaic structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池電極用黒鉛質
材料に関するものであり、さらに詳しくは高エネルギー
密度非水溶媒系二次電池の電極材料として好適な黒鉛質
材料およびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite material for a secondary battery electrode, and more specifically, a graphite material suitable as an electrode material for a high energy density non-aqueous solvent secondary battery and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】VTRや小型通信機器等の小型軽量化に
伴い、それらの電源として高エネルギー密度の二次電池
の要求が高まり、非水溶媒系リチウム二次電池が提案さ
れている(例えば、特開昭57−208079号公報、
特開昭62−90863号公報、特開昭62−1220
66号公報、特開平2−66856号公報参照)。これ
らは負極にリチウム金属を用いる代わりに、リチウムを
炭素へドープして使用することにより、デンドライトの
発生に伴う内部ショートの危険性を解消し、充放電サイ
クル特性、貯蔵安定性等を改良したものである。
2. Description of the Related Art With the reduction in size and weight of VTRs and small communication devices, the demand for high energy density secondary batteries as their power source has increased, and nonaqueous solvent type lithium secondary batteries have been proposed (for example, JP-A-57-208079,
JP-A-62-90863, JP-A-62-1220
66, Japanese Patent Laid-Open No. 2-66856). These are the ones in which the risk of internal short circuit due to the generation of dendrites is eliminated by using lithium doped with carbon instead of using lithium metal for the negative electrode, and charge / discharge cycle characteristics, storage stability, etc. are improved. Is.

【0003】ところで、高エネルギー密度の電池を作成
するには負極を構成する炭素材料が多くのリチウムをド
ープ・脱ドープできることが重要である。電池容積当た
りのエネルギー密度を高くするためには、単位重量当た
りの活物質のドープ・脱ドープ容量が大きい炭素材料を
使用し、できるだけ多量の炭素材料を電池の負極に充填
することが重要である。
By the way, in order to produce a battery having a high energy density, it is important that the carbon material forming the negative electrode can dope and dedope a large amount of lithium. In order to increase the energy density per battery volume, it is important to use a carbon material with a large doping / dedoping capacity of the active material per unit weight and to fill the negative electrode of the battery with as much carbon material as possible. .

【0004】上記公知技術においては、非水溶媒系リチ
ウム二次電池の負極用炭素材料として黒鉛、あるいは有
機材料を炭素化して得られる炭素質材料を用いるもので
ある。
In the above-mentioned known technique, graphite or a carbonaceous material obtained by carbonizing an organic material is used as a carbon material for a negative electrode of a non-aqueous solvent type lithium secondary battery.

【0005】黒鉛は真密度が2.27g/cm3 と大き
く、多量の炭素材料を負極に充填する点では有利であ
る。しかしながら、黒鉛にリチウムをドープすることに
より黒鉛層間化合物が形成されるが、c軸方向の結晶子
の大きさが大きいほどドープ・脱ドープにより結晶子に
繰り返し生じる歪みが大きく結晶の破壊が起き易い。そ
のためc軸方向の結晶子の大きな黒鉛構造の発達した黒
鉛質材料を用いて構成した二次電池は充放電の繰り返し
性能が劣る。また、黒鉛へのリチウムのドープ、脱ドー
プ反応は黒鉛のエッジ面より進行するが、a軸方向の結
晶子の大きさの大きな黒鉛質材料ではエッジ面が少ない
ためドープ、脱ドープ反応が遅い。そのため、このよう
な黒鉛質材料を使用した電池においては、急速な充放電
を行なおうとするとドープ容量や脱ドープ容量が急激に
減少したり、過電圧が高くなり電解液の分解が起り易い
という問題もある。
Graphite has a large true density of 2.27 g / cm 3 and is advantageous in filling a large amount of carbon material in the negative electrode. However, the graphite intercalation compound is formed by doping the graphite with lithium. However, the larger the size of the crystallite in the c-axis direction, the more strain is repeatedly generated in the crystallite due to doping / dedoping and the crystal breakage easily occurs. . Therefore, the secondary battery constituted by using a graphite material having a developed graphite structure having a large crystallite in the c-axis direction is inferior in repeated charge / discharge performance. Further, the doping and dedoping reaction of lithium into graphite proceeds from the edge surface of graphite, but in a graphite material having a large crystallite size in the a-axis direction, the dope and dedoping reaction is slow because the edge surface is small. Therefore, in a battery using such a graphite material, when trying to perform rapid charge and discharge, the doping capacity and the dedoping capacity are sharply reduced, or the overvoltage becomes high and the decomposition of the electrolytic solution is likely to occur. There is also.

【0006】また、フェノール樹脂やフラン樹脂を炭素
化して得られる、いわゆる難黒鉛化性炭素材料では、、
単位重量当たりで高いドープ・脱ドープ容量が得られる
が、真密度が1.6g/cm3 程度と小さく、容積当た
りの重量が小さい。そのため、これらの難黒鉛化性炭素
材料を用いて負極を構成した二次電池では、必ずしも容
積当たりのエネルギー密度は高くならない。また、負極
炭素材料にドープされたチリウムが完全には脱ドープさ
れず、多量のリチウムが負極炭素材料中に残り、活物質
であるリチウムが無駄に消費されるという問題がある。
さらに、放電時の電位が放電量とともに低下するという
問題もある。
Further, in the so-called non-graphitizable carbon material obtained by carbonizing phenol resin or furan resin,
A high doping / dedoping capacity can be obtained per unit weight, but the true density is small at about 1.6 g / cm 3, and the weight per volume is small. Therefore, the energy density per volume is not necessarily high in the secondary battery in which the negative electrode is formed by using these non-graphitizable carbon materials. Further, there is a problem in that the thynium doped in the negative electrode carbon material is not completely undoped, a large amount of lithium remains in the negative electrode carbon material, and the active material lithium is wastefully consumed.
Further, there is a problem that the electric potential at the time of discharging decreases with the amount of discharging.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためになされたものであり、真密度が大き
く、単位重量当たりのリチウムのドープ・脱ドープ容量
が大きく、ドープ容量と脱ドープ容量の差として求めら
れる活物質の不可逆容量が小さく、急速充放電による容
量低下が小さく、且つ放電曲線の平坦性に優れた高エネ
ルギー密度の二次電池を可能とする電極用黒鉛質材料及
びその製造方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and has a large true density, a large lithium doping / dedoping capacity per unit weight, and a large doping capacity. Graphite material for electrodes that enables a high energy density secondary battery that has a small irreversible capacity of the active material required as a difference in dedoping capacity, a small capacity decrease due to rapid charge and discharge, and an excellent flatness of discharge curve And its manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明者らは、黒鉛質材
料の微細組織を適切に制御することにより、大きな充放
電容量を有し、急速充放電による容量低下が小さく、充
放電サイクル特性に優れ、不可逆容量の小さい(活物質
利用率の大きい)非水溶媒系二次電池を可能とする黒鉛
質材料が得られることを見出した。
Means for Solving the Problems The present inventors have a large charge / discharge capacity by controlling the microstructure of a graphite material appropriately, the capacity decrease due to rapid charge / discharge is small, and charge / discharge cycle characteristics are improved. It has been found that a graphite material which is excellent in non-aqueous solvent secondary battery with excellent irreversible capacity (high utilization rate of active material) can be obtained.

【0009】すなわち、本発明の非水溶媒系二次電池電
極用黒鉛質材料は、粉末X線回折法により求めた(00
2)面の平均層面間隔(以下「d002 」と略記すること
がある。)が0.336〜0.350nm、c軸方向の
結晶子の大きさ(以下Lc(002) と略記することがあ
る。)が15nmを超え50nm以下、a軸方向の結晶
子の大きさ(以下「La(110) と略記することがあ
る。)が5〜50nmであり、偏光顕微鏡によって観察
される光学的異方性組織の構造が微細なモザイク(fi
ne mosaic)構造であることを特徴とするもの
である。
That is, the graphite material for a non-aqueous solvent type secondary battery electrode of the present invention was obtained by a powder X-ray diffraction method (00
2) The average inter-layer spacing of the planes (hereinafter sometimes abbreviated as “d 002 ”) is 0.336 to 0.350 nm, and the crystallite size in the c-axis direction (hereinafter sometimes abbreviated as Lc (002)). Is more than 15 nm and 50 nm or less, and the size of the crystallite in the a-axis direction (hereinafter sometimes abbreviated as “La (110) .” Is 5 to 50 nm, which is an optical difference observed by a polarization microscope. Mosaic (fi
It is characterized by having a ne mosaic structure.

【0010】このような特性を有する黒鉛質材料は、石
油系又は石炭系のタール若しくはピッチに架橋処理を施
した後、減圧下又は不活性ガス雰囲気中で1800℃以
上で黒鉛化処理をすることによって製造することができ
る。
The graphite material having such characteristics is obtained by subjecting petroleum-based or coal-based tar or pitch to a crosslinking treatment and then subjecting it to a graphitization treatment at 1800 ° C. or higher under reduced pressure or in an inert gas atmosphere. Can be manufactured by.

【0011】[0011]

【発明の具体的説明】本発明の黒鉛質材料が満たすべき
第1の特性は、X線回折法により求めた(002)面の
平均層面間隔d002 が0.336〜0.350nm、c
軸方向の結晶子の大きさLc(002) が15nmを超え5
0nm以下、a軸方向の結晶子の大きさLa(110) が5
〜50nmとなることである。Lc(002) が50nmを
超えるような黒鉛構造の発達した黒鉛質材料を負極材料
として用いた二次電池においては、活物質のドープ・脱
ドープによる黒鉛質物質の崩壊や電解液の分解が起り易
く、好ましくない。またLa(110) が50nmを超える
ような黒鉛質材料では、結晶子のエッジ部が少なくな
り、活物質のドープ、脱ドープ速度が遅くなるので好ま
しくない。また、d002 が0.350nmを超えるよう
な炭素質材料は、放電曲線の平坦性が悪化するので好ま
しくない。好ましくはd002 が0.336〜0.345
nm、Lc(002) が15nmを超え40nm以下、La
(110) が10〜50nm、更に好ましくはd002 が0.
337〜0.342nm、Lc(002)が20〜40n
m、La(110) が15〜50nmである。
DETAILED DESCRIPTION OF THE INVENTION The first characteristic to be satisfied by the graphite material of the present invention is that the average layer spacing d 002 of (002) planes determined by an X-ray diffraction method is 0.336 to 0.350 nm, c
Axial crystallite size Lc (002) exceeds 15 nm 5
0 nm or less, the crystallite size La (110) in the a-axis direction is 5
˜50 nm. In a secondary battery using as a negative electrode a graphite material having a graphite structure with an Lc (002) of more than 50 nm, the graphite material may be decomposed or the electrolyte may be decomposed due to doping or dedoping of the active material. Easy and not preferable. Further, a graphite material having La (110) of more than 50 nm is not preferable because the edge portion of the crystallite is reduced and the doping and dedoping speed of the active material becomes slow. Further, a carbonaceous material having a d 002 of more than 0.350 nm is not preferable because the flatness of the discharge curve deteriorates. Preferably d 002 is 0.336 to 0.345
nm, Lc (002) exceeds 15 nm and 40 nm or less, La
(110) is 10 to 50 nm, and more preferably d 002 is 0.
337-0.342nm, Lc (002) is 20-40n
m and La (110) are 15 to 50 nm.

【0012】本発明の黒鉛質材料が具備すべき第2の特
性は、黒鉛質材料を偏光顕微鏡によって観察したとき、
微細なモザイク構造の光学的異方性組織が観察されるこ
とである。
The second characteristic that the graphite material of the present invention should have is that when the graphite material is observed with a polarizing microscope,
That is, an optically anisotropic structure having a fine mosaic structure is observed.

【0013】この様な構造の黒鉛質材料は、微細な結晶
子が無秩序に配列しており、結晶層間への活物質のドー
プ・脱ドープによる結晶の歪みが全体として等方的にな
り、活物質のドープ・脱ドープによる結晶の崩壊が抑制
される。この様な黒鉛質材料から構成した負極を備える
二次電池は良好な充放電サイクル特性を有する。光学的
異方性組織を構成する異方性単位の寸法は、好ましくは
10μm以下、更に好ましくは5μm以下である。
In the graphite material having such a structure, fine crystallites are randomly arranged, and crystal strain due to doping / dedoping of the active material between the crystal layers becomes isotropic as a whole, so that the active material becomes active. Crystal collapse due to material doping / dedoping is suppressed. The secondary battery including the negative electrode composed of such a graphite material has good charge / discharge cycle characteristics. The dimension of the anisotropic unit constituting the optically anisotropic structure is preferably 10 μm or less, more preferably 5 μm or less.

【0014】黒鉛質材料を用いて二次電池の電極を構成
する場合は、黒鉛質材料を100μm程度以下の微細な
粒子とした後、バインダーを加えて加圧成形したものを
集電体と電気的に接続する方法や、金属箔等の集電体の
表面に黒鉛質材料微粒子とバインダーとからなるペース
ト状の組成物を塗布した後、乾燥する等の方法が採用さ
れている。
When a secondary battery electrode is formed by using a graphite material, the graphite material is made into fine particles of about 100 μm or less, and a binder is added thereto, followed by pressure molding to obtain a current collector and an electric material. And a method in which a paste-like composition composed of fine particles of a graphite material and a binder is applied to the surface of a current collector such as a metal foil and then dried.

【0015】従って、電池容積当たりのエネルギー密度
を高くするためには、黒鉛質材料の真密度が大きいほど
有利である。本発明の黒鉛質材料は、上記d002 、Lc
(002) 、La(110) で定まるように結晶構造を制御した
範囲内で、真密度が1.90g/cm3 以上、好ましく
は2.00g/cm3 以上、更に好ましくは2.10g
/cm3 以上であることが好ましい。
Therefore, in order to increase the energy density per battery volume, it is advantageous that the true density of the graphite material is large. The graphite material of the present invention has the above d 002 , Lc
(002) , within the range where the crystal structure is controlled to be determined by La (110) , the true density is 1.90 g / cm 3 or more, preferably 2.00 g / cm 3 or more, and more preferably 2.10 g.
/ Cm 3 or more is preferable.

【0016】本発明の黒鉛質材料は、例えば以下の方法
により製造することができる。
The graphite material of the present invention can be manufactured, for example, by the following method.

【0017】すなわち、石油系または石炭系のタール若
しくはピッチに架橋処理を施した後、減圧下又は不活性
ガス雰囲気中で1800℃以上で黒鉛化処理を行なう。
That is, after petroleum-based or coal-based tar or pitch is subjected to a crosslinking treatment, it is subjected to a graphitization treatment at 1800 ° C. or higher under reduced pressure or in an inert gas atmosphere.

【0018】タール又はピッチに対する架橋処理は、架
橋処理を行ったタール又はピッチを炭素化ならびに黒鉛
化して得られる黒鉛質材料の微細組織を制御する目的で
行うものである。本発明の方法は、この架橋処理による
架橋の度合い(架橋度)と、後の黒鉛化の条件との組み
合わせによって、得られる黒鉛質材料の微細組織を適切
に制御するものである。
The cross-linking treatment for tar or pitch is carried out for the purpose of controlling the fine structure of the graphite material obtained by carbonizing and graphitizing the cross-linked tar or pitch. The method of the present invention appropriately controls the fine structure of the obtained graphite material by the combination of the degree of crosslinking by this crosslinking treatment (degree of crosslinking) and the conditions for the subsequent graphitization.

【0019】架橋処理を施したタール又はピッチの架橋
度は、このタール又はピッチを、更に例えば窒素気流中
で1000℃で1時間熱処理して得た炭素質の試料を研
磨して、直交ニコル下で例えば1000倍の偏光顕微鏡
観察を行う架橋度判定法により知ることができる。観察
される光学的異方性組織は、架橋度が小さいときはいわ
ゆる流れ構造(例えば後述の比較例1で得られる黒鉛質
材料の偏光顕微鏡写真である図2参照)を示すが、架橋
度が大きくなると微細なモザイク構造(例えば後述の実
施例4で得られる黒鉛質材料の偏光顕微鏡写真である図
1参照)を示すようになる。架橋度の増大に伴い、観察
される光学的異方性組織の異方性単位の寸法が小さくな
り、遂には光学的異方性組織は観察されず、等方性(例
えば後述の比較例2で得られる炭素質材料の偏光顕微鏡
写真である図3参照)となる。架橋処理後に上述の方法
で観察される光学的異方性組織は、その後の熱処理温度
の高低によってはそれ程大きくは変化しない。従って、
最終的に炭素化ないし黒鉛化して得られた炭素または黒
鉛質材料の光学的異方性組織を観察することによって
も、炭素化処理前、すなわち架橋処理後のタール又はピ
ッチの架橋度の判定は可能である。熱処理温度が同一の
場合、架橋度の増大に伴って、一般に熱処理後に得られ
る炭素質材料のd002 は増大、Lc(002) およびLa
(110) は減少する。架橋度が同一の場合は、熱処理温度
の上昇に伴って、一般に得られる炭素質材料のd002
減少、Lc(002) およびLa(110) は増大する。
The degree of cross-linking of the tar or pitch which has been subjected to the cross-linking treatment is determined by further polishing the carbonaceous sample obtained by heat-treating the tar or pitch at, for example, 1000 ° C. for 1 hour in a nitrogen stream, and subjecting it to crossed Nicols. Then, for example, it can be known by a cross-linking degree determination method of observing with a polarization microscope at 1000 times. The observed optically anisotropic structure shows a so-called flow structure when the degree of crosslinking is small (see, for example, FIG. 2 which is a polarization microscope photograph of the graphite material obtained in Comparative Example 1 described later), but the degree of crosslinking is As the size increases, a fine mosaic structure (for example, see FIG. 1, which is a polarization microscope photograph of the graphite material obtained in Example 4 described later) is exhibited. As the degree of cross-linking increases, the size of the anisotropic unit of the optically anisotropic structure observed becomes smaller, and finally the optically anisotropic structure is not observed, and isotropic (for example, Comparative Example 2 described later) 3) which is a polarization micrograph of the carbonaceous material obtained in 1.). The optically anisotropic structure observed by the above method after the crosslinking treatment does not change so much depending on the temperature of the subsequent heat treatment. Therefore,
Finally, by observing the optically anisotropic structure of the carbon or graphitic material obtained by carbonization or graphitization, it is possible to determine the degree of crosslinking of tar or pitch before the carbonization treatment, that is, after the crosslinking treatment. It is possible. When the heat treatment temperature is the same, the d 002 of the carbonaceous material generally obtained after the heat treatment increases with an increase in the degree of crosslinking, and Lc (002) and La are increased.
(110) decreases. When the degree of cross-linking is the same, d 002 and Lc (002) and La (110) of the carbonaceous material generally obtained decrease with increasing heat treatment temperature.

【0020】本発明の方法においては架橋処理は、上述
の架橋度判定法によって観察される炭素質材料の光学的
異方性組織が微細なモザイク構造の組織になる程度に行
い、等方化する以前に止めるものである。架橋処理は、
好ましくは微細モザイク状の光学的異方性組織を構成す
る異方性(モザイク)単位の寸法(長径基準)が10μ
m以下、更に好ましくは5μm以下になるように行う。
異方性単位の下限は、1000倍の偏光顕微鏡写真でモ
ザイク単位が充分確認でき、等方性相と区別できること
である。
In the method of the present invention, the cross-linking treatment is carried out to such an extent that the optically anisotropic structure of the carbonaceous material observed by the above-mentioned method for judging the degree of cross-linking becomes a structure having a fine mosaic structure and isotropic. It will be stopped before. The cross-linking treatment is
Preferably, the dimension (major axis standard) of an anisotropic (mosaic) unit that constitutes the finely mosaic optical anisotropic structure is 10 μm.
m or less, more preferably 5 μm or less.
The lower limit of the anisotropy unit is that the mosaic unit can be sufficiently confirmed in a 1000-fold polarization micrograph and can be distinguished from the isotropic phase.

【0021】本発明の製造方法においては、黒鉛質材料
の原料として、エチレン製造時に副生する石油系のター
ル及びピッチ、石炭乾留時に生成するコールタール、コ
ールタールの低沸点成分を蒸留除去した重質成分やピッ
チ、石炭の液化により得られるタール及びピッチのよう
な石油系又は石炭系のタール若しくはピッチが使用でき
る。また、これらのタール及びピッチの2種以上を混合
して使用してもよい。
In the production method of the present invention, as raw materials for the graphite material, petroleum tar and pitch produced as by-products during ethylene production, coal tar produced during coal carbonization, and low boiling point components of coal tar are removed by distillation. Petroleum-based or coal-based tars or pitches such as quality components, pitch, tar and pitch obtained by liquefaction of coal can be used. Further, two or more of these tars and pitches may be mixed and used.

【0022】タール又はピッチに対する架橋処理は、タ
ール又はピッチに硝酸、硝酸アセチル、硫黄等を加えて
熱処理する方法、タール又はピッチを酸化剤を用いて酸
化する方法等によって行うことができる。酸化剤として
は、O2 、O3 、NO2 、これらを空気、窒素等で希釈
した混合ガス、又は空気等の酸化性気体、あるいは硫
酸、硝酸、過酸化水素水等の酸化性液体を用いることが
できる。
The cross-linking treatment of tar or pitch can be carried out by a method of heat treatment by adding nitric acid, acetyl nitrate, sulfur or the like to tar or pitch, a method of oxidizing tar or pitch with an oxidizing agent, and the like. As the oxidizer, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide solution is used. be able to.

【0023】タール又は低軟化点のピッチに硝酸、硝酸
アセチル、硫黄等を加えて150〜400℃で熱処理し
て架橋処理を行う方法は、原料の炭化率を向上させる作
用も有し、原料からの炭素質材料の取得収率が向上する
ので好ましい方法である。
The method in which nitric acid, acetyl nitrate, sulfur, etc. are added to tar or pitch having a low softening point and subjected to a heat treatment at 150 to 400 ° C. to carry out a crosslinking treatment also has an effect of improving the carbonization rate of the raw material, This is a preferable method because the yield of obtaining the carbonaceous material is improved.

【0024】中でも硝酸を用いる方法は、均一な架橋反
応を行わせることができ、反応の制御も容易で好ましい
方法である。更に硝酸は安価であるため経済的にも有利
である。
Among them, the method using nitric acid is a preferable method because a uniform crosslinking reaction can be carried out and the reaction can be easily controlled. Furthermore, nitric acid is economically advantageous because it is inexpensive.

【0025】硝酸を用いて架橋処理を行う場合、原料の
タール又はピッチに硝酸を添加し、撹拌しながら反応さ
せ、温度を徐々に上昇させ150〜450℃、好ましく
は300〜400℃に10分〜4時間程度保持して反応
させる。タール又はピッチに硝酸を添加すると発熱する
ので、反応の暴走を抑えるため、硝酸を徐々に添加し、
反応系を冷却し、温度を40℃以下に保って1〜3時間
程度反応させた後、昇温することが好ましい。反応の途
中又は反応終了後、反応系に存在する低沸点成分を蒸留
により除去することもできる。低沸点成分を除去するこ
とにより、この後に行われる炭素化・黒鉛化の工程で発
生する揮発分の量を低減し、炭素化・黒鉛化の装置の負
担の軽減、作業性の向上を図ることができる。
When the cross-linking treatment is carried out using nitric acid, nitric acid is added to tar or pitch as a raw material and reacted with stirring, and the temperature is gradually raised to 150 to 450 ° C., preferably 300 to 400 ° C. for 10 minutes. Hold for about 4 hours to react. When nitric acid is added to tar or pitch, heat is generated, so in order to suppress runaway reaction, add nitric acid gradually,
It is preferable that the reaction system is cooled, the temperature is kept at 40 ° C. or lower, the reaction is performed for about 1 to 3 hours, and then the temperature is raised. It is also possible to remove low-boiling components present in the reaction system by distillation during or after the reaction. By removing low-boiling components, it is possible to reduce the amount of volatile components generated in the subsequent carbonization / graphitization process, reduce the burden on the carbonization / graphitization equipment, and improve workability. You can

【0026】使用する硝酸の濃度は特に限定されないが
50〜68%程度が好ましい。硝酸の添加量は、使用す
るタール又はピッチの水素/炭素原子比(H/C)等に
より異なる。前述の架橋度判定法により適正な架橋度の
黒鉛質材料が得られるように、その使用量を増減するこ
とにより、その範囲をほぼ適正に決定することができ
る。
The concentration of nitric acid used is not particularly limited, but is preferably about 50 to 68%. The amount of nitric acid added varies depending on the hydrogen / carbon atomic ratio (H / C) of the tar or pitch used. The range can be determined almost appropriately by increasing or decreasing the amount of the graphite material so that the graphite material having an appropriate degree of crosslinking can be obtained by the above-described method for determining the degree of crosslinking.

【0027】架橋処理の他の方法として、タール又は低
軟化点のピッチを蒸留、エアブローイングその他の方法
で処理したピッチを酸化剤で酸化する方法がある。この
場合ピッチを微粉状、繊維状又はフィルム状に成形した
後酸化する方法も採用され得るが、酸化を均一に又容易
に行うため、以下の方法によることが好ましい。
As another method of cross-linking treatment, there is a method in which tar or pitch having a low softening point is distilled, air-blown or other method is used to oxidize pitch treated with an oxidizing agent. In this case, a method in which the pitch is formed into a fine powder shape, a fiber shape, or a film shape and then oxidized may be adopted, but the following method is preferable in order to uniformly and easily perform the oxidation.

【0028】すなわち石油ピッチ、石炭ピッチ等のピッ
チに対し、添加剤として沸点200℃以上の2乃至3環
の芳香族化合物又はその混合物を加えて加熱混合した
後、成形しピッチ成形体を得る。次にピッチに対し低溶
解度を有しかつ添加剤に対して高溶解度を有する溶剤
で、ピッチ成形体から添加剤を抽出除去せしめ、多孔性
ピッチとした後、酸化剤を用いて酸化する方法である。
That is, to a pitch such as petroleum pitch or coal pitch, an aromatic compound having 2 to 3 rings having a boiling point of 200 ° C. or more or a mixture thereof is added as an additive and heated and mixed to obtain a pitch molded body. Next, with a solvent that has a low solubility in pitch and a high solubility in additives, the additive is extracted and removed from the pitch molded body to form a porous pitch, which is then oxidized using an oxidizing agent. is there.

【0029】上記した芳香族添加剤の目的は、成形後の
ピッチ成形体から該添加剤を抽出除去せしめて成形体を
多孔質となし、酸化による架橋処理を容易にすることに
ある。このような添加剤は、例えばナフタレン、メチル
ナフタレン、フェニルナフタレン、ベンジルナフタレ
ン、メチルアントラセン、フェナンスレン、ビフェニル
等の1種又は2種以上の混合物から選択される。ピッチ
に対する添加量は、ピッチ100重量部に対し10〜5
0重量部の範囲が好ましい。
The purpose of the above-mentioned aromatic additive is to make the molded product porous by extracting and removing the additive from the molded pitch product to facilitate the crosslinking treatment by oxidation. Such additives are selected from, for example, one or a mixture of two or more of naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, biphenyl and the like. The amount added to the pitch is 10 to 5 with respect to 100 parts by weight of the pitch.
A range of 0 parts by weight is preferred.

【0030】ピッチと添加剤の混合は、均一な混合を達
成するため、加熱し溶融状態で行う。ピッチと添加剤の
混合物は、添加剤を混合物から容易に抽出できるように
するため、粒径1mm以下の粒子に成形することが好ま
しい。成形は溶融状態で行ってもよく、また混合物を冷
却後粉砕する等の方法によってもよい。
The pitch and the additives are mixed in a molten state by heating in order to achieve uniform mixing. The mixture of pitch and additive is preferably molded into particles having a particle size of 1 mm or less so that the additive can be easily extracted from the mixture. The molding may be performed in a molten state, or may be performed by a method such as pulverizing after cooling the mixture.

【0031】ピッチと添加剤の混合物から添加剤を抽出
除去するための溶剤としては、ブタン、ペンタン、ヘキ
サン、ヘプタン等の脂肪族炭化水素、ナフサ、ケロシン
等の脂肪族炭化水素主体の混合物、メタノール、エタノ
ール、プロパノール、ブタノール等の脂肪族アルコール
類等が好適である。
Solvents for extracting and removing the additive from the mixture of pitch and the additive include aliphatic hydrocarbons such as butane, pentane, hexane and heptane, a mixture mainly containing aliphatic hydrocarbons such as naphtha and kerosene, and methanol. And aliphatic alcohols such as ethanol, propanol and butanol are preferable.

【0032】このような溶剤でピッチと添加剤の混合物
成形体から添加剤を抽出することによって、成形体の形
状を維持したまま添加剤を成形体から除去することがで
きる。この際に成形体中に添加剤の抜け穴が形成され、
均一な多孔性を有するピッチ成形体が得られるものと推
定される。
By extracting the additive from the mixture of pitch and the additive molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, a through hole for the additive is formed in the molded body,
It is presumed that a pitch compact having uniform porosity can be obtained.

【0033】このようにして得られた多孔性ピッチを、
上述の酸化剤を用いて酸化し、架橋処理を施す。酸化剤
としては、空気又は空気と他のガス例えば燃焼ガス等と
の混合ガスのような酸素を含むガスを用いて、120℃
〜300℃で架橋処理を行うことが簡便であり、経済的
にも有利である。この場合、ピッチの軟化点が低いと、
酸化時にピッチが溶融して酸化が困難となるので、使用
するピッチは軟化点が150℃以上であることが好まし
い。
The porous pitch thus obtained is
Oxidation is performed using the above-mentioned oxidizing agent, and crosslinking treatment is performed. As the oxidant, a gas containing oxygen such as air or a mixed gas of air and another gas such as combustion gas is used, and the temperature is 120 ° C.
It is simple and economically advantageous to carry out the cross-linking treatment at ˜300 ° C. In this case, if the softening point of the pitch is low,
The pitch to be used preferably has a softening point of 150 ° C. or higher because the pitch is melted during oxidation and oxidation becomes difficult.

【0034】架橋処理の程度は前述の架橋度判定法によ
るのが確実であるが、酸素を含むガスを用いて酸化する
場合は、目安として酸化処理後の多孔性ピッチの元素分
析による酸素含有量が1〜5%となるように酸化するこ
とが好ましい。
The degree of the cross-linking treatment is surely based on the above-mentioned cross-linking degree judging method, but when oxidizing with a gas containing oxygen, as a guide, the oxygen content by the elemental analysis of the porous pitch after the oxidation treatment is used. Is preferably 1 to 5%.

【0035】本発明の方法においては、黒鉛化処理は減
圧下又は不活性ガス雰囲気中で1800℃以上、好まし
くは2200℃以上、更に好ましくは2600℃以上で
行う。不活性ガスとしてはアルゴンガス、ヘリウムガス
等をあげることができる。
In the method of the present invention, the graphitization treatment is carried out under reduced pressure or in an inert gas atmosphere at 1800 ° C. or higher, preferably 2200 ° C. or higher, more preferably 2600 ° C. or higher. Examples of the inert gas include argon gas and helium gas.

【0036】黒鉛化処理の温度は架橋度とのかねあいで
決定されるが、1800℃未満では黒鉛化が不十分であ
り好ましくない。
The temperature of the graphitization treatment is determined depending on the degree of cross-linking, but if it is less than 1800 ° C., graphitization is insufficient, which is not preferable.

【0037】黒鉛化処理は、タール又はピッチに架橋処
理を施して得た架橋ピッチを連続的に黒鉛化処理温度ま
で昇温して行なうことも可能であるが、架橋ピッチを1
800℃以下、好ましくは800〜1200℃の温度で
焼成・炭素化を行なった後黒鉛化処理を行なうことが好
ましい。
The graphitization treatment can be carried out by continuously raising the temperature of the crosslinked pitch obtained by subjecting tar or pitch to the crosslinking treatment to the graphitization treatment temperature.
It is preferable to perform graphitization after firing and carbonizing at a temperature of 800 ° C. or lower, preferably 800 to 1200 ° C.

【0038】微粉末状の黒鉛質材料が要求される場合
は、黒鉛化完了後に得られた黒鉛質材料を粉砕すること
も可能であるが、タール又はピッチに上述のようにして
架橋処理を施したもの(架橋ピッチ)を、黒鉛化に先立
ち更に不活性ガス雰囲気中で350〜700℃で熱処理
し重縮合を進めると同時に低沸点成分を除去し、揮発分
を15%以下とした炭素前駆体を得、これを平均粒径1
00μm以下、好ましくは50μm以下に粉砕した後炭
素化処理、黒鉛化処理を行なうことによって微粉末状の
黒鉛質材料を製造することができる。
When a fine powdery graphite material is required, the graphite material obtained after the completion of graphitization can be crushed, but the tar or pitch is subjected to the crosslinking treatment as described above. A carbon precursor whose volatile content is 15% or less, which is obtained by further heat-treating the obtained (crosslinked pitch) in an inert gas atmosphere at 350 to 700 ° C. prior to graphitization to promote polycondensation and at the same time remove low-boiling components. And the average particle size 1
A fine powdery graphite material can be produced by pulverizing to a particle size of 00 μm or less, preferably 50 μm or less and then carbonizing and graphitizing.

【0039】炭素前駆体の揮発分を15%以下とするの
は、炭素化処理時に粉砕粒子の溶融や粉砕粒子同士の融
着が起るのを防止するためである。炭素前駆体の揮発分
は好ましくは10%以下、更に好ましくは5%以下であ
る。
The volatile content of the carbon precursor is set to 15% or less in order to prevent melting of the crushed particles and fusion of the crushed particles during the carbonization treatment. The volatile content of the carbon precursor is preferably 10% or less, more preferably 5% or less.

【0040】炭素化前の炭素前駆体は、炭素化されたも
のに比べて、非常に粉砕が容易で粉砕機の摩耗等も少な
いので、炭素化前に粉砕する方法は非常に有利である。
また炭素前駆体の揮発分を少なくすることは、炭素化工
程でのタールや分解ガスの発生を少なくし、炭素化工程
の負荷が軽減されるので好ましい。
Since the carbon precursor before carbonization is much easier to pulverize and less abrasion of the pulverizer than the carbonized one, the method of pulverizing before carbonization is very advantageous.
Further, reducing the volatile content of the carbon precursor is preferable because it reduces the generation of tar and decomposition gas in the carbonization step and reduces the load of the carbonization step.

【0041】本発明の黒鉛質材料を用いて非水溶媒系二
次電池の電極を構成する場合には、黒鉛質材料を、必要
に応じて平均粒径約5〜100μmの微粒子とした後、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、
ポリエチレン等の非水溶媒に対して安定な結合剤によ
り、例えば、円形あるいは矩形の金属板等からなる導電
性の集電材に接着して厚さが例えば10〜200μmの
層を形成する等の方法により電極を製造する。結合剤の
好ましい添加量は、黒鉛質材料に対して1〜20重量%
である。結合剤の添加量が多すぎると、得られる電極の
電気抵抗が増大し、電池の内部抵抗が大きくなり電池特
性を低下させるので好ましくない。また結合剤の添加量
が少なすぎると、黒鉛質材料粒子相互及び集電材との結
合が不十分となり好ましくない。なお、上記は、比較的
小容量の二次電池についての値であるが、より大容量の
二次電池の形成のためには、上記黒鉛質微粒子と結合剤
の混合物をプレス成形等の方法により、より大なる厚さ
の成形体を製造し、これを集電材と電気的に接続する等
の方法も可能である。
When the electrode of the non-aqueous solvent type secondary battery is formed by using the graphite material of the present invention, the graphite material is made into fine particles having an average particle size of about 5 to 100 μm, if necessary,
Polyvinylidene fluoride, polytetrafluoroethylene,
A method of forming a layer having a thickness of, for example, 10 to 200 μm by bonding to a conductive current collector made of, for example, a circular or rectangular metal plate with a binder that is stable to a non-aqueous solvent such as polyethylene. The electrode is manufactured by. The preferable addition amount of the binder is 1 to 20% by weight based on the graphite material.
Is. If the amount of the binder added is too large, the electrical resistance of the obtained electrode increases, the internal resistance of the battery increases, and the battery characteristics deteriorate, which is not preferable. On the other hand, if the amount of the binder added is too small, the binding between the graphite material particles and the current collector is insufficient, which is not preferable. Note that the above is the value for a relatively small capacity secondary battery, but in order to form a larger capacity secondary battery, a mixture of the graphite fine particles and the binder is formed by a method such as press molding. It is also possible to manufacture a molded body having a larger thickness and electrically connect the molded body to a current collector.

【0042】本発明の黒鉛質材料は、その良好なドープ
特性を利用して、非水溶媒系二次電池の正極材料として
用いることも可能であるが、上述したように、非水溶媒
系二次電池の負極、特にリチウム二次電池の負極活物質
としてのリチウムのドープ用負極、の構成に用いること
が好ましい。
The graphite material of the present invention can be used as a positive electrode material of a non-aqueous solvent type secondary battery by utilizing its good doping property. However, as described above, the non-aqueous solvent type secondary battery can be used. It is preferably used for the constitution of a negative electrode of a secondary battery, particularly a negative electrode for doping lithium as a negative electrode active material of a lithium secondary battery.

【0043】この場合、正極材料としては、LiCoO
2 、LiNiO2 、LiMnO4 等の複合金属カルコゲ
ン化物が好ましく、適当なバインダーと電極に導電性を
付与するための炭素材料とともに成形して、導電性の集
電材上に層形成される。
In this case, the positive electrode material is LiCoO 2.
Complex metal chalcogenides such as 2 , LiNiO 2 and LiMnO 4 are preferable, and they are formed with a suitable binder and a carbon material for imparting conductivity to the electrode to form a layer on the conductive current collector.

【0044】これら正極及び負極との組合せで用いられ
る非水溶媒型電解液は、一般に非水溶媒に電解質を溶解
することにより形成される。非水溶媒としては、例えば
プロピレンカーボネート、エチレンカーボネート、ジメ
チルカーボネート、ジエチルカーボネート、ジメトキシ
エタン、ジエトキシエタン、γ−ブチロラクトン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、スル
ホラン、1,3−ジオキソラン等の有機溶媒の一種また
は二種以上を組合せて用いることが出来る。また電解質
としては、LiClO4 、LiPF6 、LiBF4 、L
iCF3 SO3、LiAsF6 、LiCl、LiBr、
LiB(C6 5 4 、LiN(SO2CF3 2 等が
用いられる。
The non-aqueous solvent type electrolytic solution used in combination with the positive electrode and the negative electrode is generally formed by dissolving an electrolyte in a non-aqueous solvent. As the non-aqueous solvent, for example, one of organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. Alternatively, two or more kinds can be used in combination. Further, as the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , L
iCF 3 SO 3 , LiAsF 6 , LiCl, LiBr,
LiB (C 6 H 5) 4 , LiN (SO 2 CF 3) 2 or the like is used.

【0045】本発明の黒鉛質材料を用いて二次電池を構
成する場合は、非水溶媒としてエチレンカーボネートと
ジエチルカーボネート、ジメチルカーボネート、ジエト
キシエタン等との混合溶媒が好ましく、電解質としては
LiPF6 、LiBF4 が好ましい。エチレンカーボネ
ートとジエチルカーボネートの混合溶媒にLiPF6
LiBF4 又はこれらの両者を溶解させた非水溶媒型電
解液は二次電池の充放電の際の非水溶媒の分解が起こり
にくく特に好ましい。
When a secondary battery is constructed using the graphite material of the present invention, a mixed solvent of ethylene carbonate and diethyl carbonate, dimethyl carbonate, diethoxyethane or the like is preferable as the non-aqueous solvent, and LiPF 6 is used as the electrolyte. , LiBF 4 are preferred. LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate,
A non-aqueous solvent type electrolytic solution in which LiBF 4 or both of them are dissolved is particularly preferable because decomposition of the non-aqueous solvent is less likely to occur during charge / discharge of the secondary battery.

【0046】二次電池は、一般に上記のようにして形成
した正極層と負極層とを、必要に応じて不織布、その他
の多孔質材料等からなる透液性セパレータを介して、対
向させ電解液中に浸漬することにより形成される。
In a secondary battery, generally, the positive electrode layer and the negative electrode layer formed as described above are opposed to each other through a liquid-permeable separator made of a non-woven fabric or other porous material, if necessary. It is formed by immersing in.

【0047】[0047]

【作用及び効果】本発明では、タール又はピッチに架橋
処理を施した後、黒鉛化処理を行なって、得られる黒鉛
質材料の微細組織を適切に制御することにより、高密度
で、高い活物質のドープ・脱ドープ容量を有しながら、
ドープ容量と脱ドープ容量の差として求められる不可逆
容量が小さく、二次電池電極材料として適した黒鉛質材
料を得ることが可能となる。
In the present invention, the tar or pitch is subjected to a cross-linking treatment and then graphitized to appropriately control the fine structure of the resulting graphitic material to obtain a high density and high active material. While having the doping and dedoping capacity of
The irreversible capacity required as the difference between the doping capacity and the dedoping capacity is small, and it is possible to obtain a graphite material suitable as a secondary battery electrode material.

【0048】また、黒鉛質材料の結晶子の大きさを制御
することにより、電極を形成した黒鉛質材料への活物質
のドープ、脱ドープ反応を容易にし、急速なドープ、脱
ドープに伴う容量低下が防止される。
Further, by controlling the size of the crystallite of the graphite material, it is possible to facilitate the doping and dedoping reaction of the active material into the graphite material on which the electrode is formed, and to perform the rapid doping and the capacity associated with the dedoping. The drop is prevented.

【0049】さらに、黒鉛質材料の微細な異方性組織を
無秩序に配列させることにより電極への急速なドープ、
脱ドープ反応を可能にし、さらに活物質のドープ・脱ド
ープ時の結晶子の歪みを小さくし、かつ歪みの方向を分
散させ活物質のドープ・脱ドープによる黒鉛質材料の崩
壊が防止される。
Further, by rapidly arranging the fine anisotropic structure of the graphite material in a disordered manner, the electrode is rapidly doped,
The dedoping reaction is enabled, the strain of the crystallite at the time of doping / dedoping the active material is reduced, and the strain direction is dispersed, so that the collapse of the graphite material due to the doping / dedoping of the active material is prevented.

【0050】従って、本発明の黒鉛質材料は、急速充放
電性に優れ、高エネルギー密度の非水溶媒系二次電池の
電極用黒鉛質材料として優れた特性を有するものであ
る。
Therefore, the graphite material of the present invention has excellent characteristics as a graphite material for an electrode of a high energy density non-aqueous solvent secondary battery, which is excellent in rapid charge / discharge properties.

【0051】なお、本明細書に記載する炭素ないし黒鉛
質材料のd002 、Lc(002) 、La(110) 、真密度、ピ
ッチの揮発分、軟化点の測定及び偏光顕微鏡観察は、以
下のようにして行った。
The measurement of d 002 , Lc (002) , La (110) , true density, volatile content of pitch, softening point and observation under a polarizing microscope of the carbon or graphite material described in the present specification are as follows. I went like this.

【0052】「黒鉛質材料のd002 、Lc(002) および
La(110) 」: 黒鉛質材料粉末をアルミニウム製試料セ
ルに充填し、グラファイトモノクロメーターにより単色
化したCuKα線(波長λ=0.15418nm)を線
源とし、反射式デフラクトメーター法によりX線回折図
形を得る。回折図形の補正には、ローレンツ偏光因子、
吸収因子、原子散乱因子等に関する補正を行わず、Kα
1 、Kα2 の2重線の補正のみをRachinger
の方法により行なった。(002)回折線のピーク位置
は、重心法(回折線の重心位置を求め、これに対応する
2θ値でピーク位置を求める方法)により求め、標準物
質用高純度シリコン粉末の(111)回折線を用いて補
正し、下記Braggの公式よりd002 を計算した。
"D of graphitic material002, Lc(002)and
La(110)": The graphite material powder is mixed with an aluminum sample sample.
Filled in a single color with a graphite monochromator
The converted CuKα line (wavelength λ = 0.15418 nm)
X-ray diffraction diagram by the reflection type diffractometer method as the source
Get the shape. To correct the diffraction pattern, Lorentz polarization factor,
Kα without correction for absorption factor, atomic scattering factor, etc.
1, Kα2Only the correction of the double line of Rachinger
The method was performed. (002) Peak position of diffraction line
Is the center of gravity method (the center of gravity of the diffraction line is determined and the corresponding
2θ value to find the peak position)
Compensation using (111) diffraction line of high-purity silicon powder for quality
Correctly, from the Bragg formula below, d002Was calculated.

【0053】Lc(002) は、炭素質試料の(002)回
折線の半値幅と標準物質用高純度シリコン粉末の(11
1)回折線の半値幅からAlexander曲線を用い
てβ1/2 を求め、下記Scherrerの式により計算
した。ここで、形状因子Kは、0.9とした。
Lc (002) is the full width at half maximum of the (002) diffraction line of the carbonaceous sample and (11 of the high-purity silicon powder for standard substance).
1) β 1/2 was obtained from the half width of the diffraction line using the Alexander curve, and was calculated by the Scherrer's formula below. Here, the shape factor K is 0.9.

【0054】La(110) は、炭素質試料の(110)回
折線の半値幅と標準物質用高純度シリコン粉末の(33
1)回折線の半値幅からAlexander曲線を用い
てβ1/2 を求め、下記Scherrerの式により計算
した。ここで、形状因子Kは、0.9とした。
La (110) is the full width at half maximum of the (110) diffraction line of the carbonaceous sample and (33) of the high-purity silicon powder for standard substances.
1) β 1/2 was obtained from the half width of the diffraction line using the Alexander curve, and was calculated by the Scherrer's formula below. Here, the shape factor K is 0.9.

【0055】 d002 =λ/(2・sinθ) (Braggの公式) L=K・λ/(β1/2 cosθ) (Scherrerの式) 「真密度」:真密度はJIS R7212に定められた
方法に従い、ブタノール法により測定した。
D 002 = λ / (2 · sin θ) (Bragg's formula) L = K · λ / (β 1/2 cos θ) (Scherrer's formula) “True Density”: The true density is defined in JIS R7212. According to the method, it was measured by the butanol method.

【0056】「揮発分」:揮発分はJIS R7212
に定められた方法に準じて測定を行った。ただし、試料
の加熱を800℃、30分間とした。
"Volatile": Volatile is JIS R7212
The measurement was performed according to the method specified in. However, the sample was heated at 800 ° C. for 30 minutes.

【0057】「軟化点」:島津製作所製高化式フローテ
スターを用い、250μm以下に粉砕された試料1gを
直径1mmのノズルを底部に有する断面積1cm2 のシ
リンダーに充填し、9.8N/cm2 (10kg/cm
2 )の加重を加えながら6℃/分の速度で昇温する。温
度の上昇に伴い粉体粒子が軟化し充填率が向上し、試料
粉体の体積は減少するが、ある温度以上では体積の減少
は停止する。さらに昇温を続けるとシリンダー下部のノ
ズルより試料が溶融して流出する。このときの試料粉体
の体積減少が停止する温度をその試料の軟化点と定義す
る。なお軟化点の高い試料においては、ノズルからの試
料の流出が起らない場合もある。
"Softening point": Shimadzu's high-performance floater
Using a star, 1g of sample crushed to 250μm or less
Cross-sectional area of 1 cm with a 1 mm diameter nozzle at the bottom2 Shi
Filling the linder, 9.8N / cm2(10 kg / cm
2) Is added and the temperature is raised at a rate of 6 ° C./min. Warm
With increasing temperature, the powder particles soften and the filling rate improves.
The volume of powder decreases, but the volume decreases above a certain temperature.
Will stop. If the temperature is further raised, the cylinder bottom
The sample melts and flows out from the cheat. Sample powder at this time
Is defined as the softening point of the sample.
It For samples with a high softening point, test from the nozzle.
In some cases, there is no outflow of fees.

【0058】「偏光顕微鏡観察」:試料が粉末状の場合
は、液状エポキシ樹脂に10重量%程度の粉末試料を添
加し、よく混合した後シリコンゴム製の型枠(直径25
mm)に充填し、試料が粒状又は塊状の場合は、試料を
粒径数mmとした後上記型枠に充填した液状エポキシ樹
脂中に数個埋め込み、120℃で24時間保持してエポ
キシ樹脂を硬化させた後、試料が表面に出るように適当
な位置で硬化エポキシ樹脂を切断し切断面を研磨し、直
交ニコル下1000倍で偏光顕微鏡観察を行った。
"Polarization microscope observation": When the sample is in powder form, about 10% by weight of the powder sample is added to the liquid epoxy resin and mixed well, and then the mold made of silicone rubber (diameter 25
mm) and the sample is granular or agglomerated, the sample is made to have a particle size of several mm, embedded in several liquid epoxy resins filled in the above mold, and held at 120 ° C. for 24 hours to remove the epoxy resin. After the curing, the cured epoxy resin was cut at an appropriate position so that the sample was exposed on the surface, the cut surface was polished, and observation with a polarizing microscope was performed under a crossed Nicol at 1000 times.

【0059】光学的異方性組織を構成する異方性単位の
寸法が「Aμm以下」との表現は、上記の偏光顕微鏡観
察によって黒鉛質材料試料の重複しない任意の10領域
を観察し、観察視野中で、異方性単位の寸法の最大の部
分がAμm以上である異方性単位の合計面積が黒鉛質材
料の全面積に占める割合が10%以下となるような光学
的異方性組織中の異方性単位寸法を意味するものであ
る。
The expression that the dimension of the anisotropic unit constituting the optically anisotropic structure is "A μm or less" means that any 10 non-overlapping regions of the graphite material sample are observed by the above-mentioned polarization microscope observation. An optically anisotropic structure in which the total area of anisotropic units in which the maximum dimension of anisotropic units is A μm or more in the visual field is 10% or less of the total area of the graphite material. It means the anisotropic unit size inside.

【0060】[0060]

【実施例】以下、実施例および比較例により、本発明を
更に詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0061】(実施例1)撹拌機付の内容積20リット
ルの反応器に、残留炭素分14.1%、密度1.09g
/cm3 のエチレンボトムオイル15kgを仕込み、撹
拌しながら冷却し温度を40℃以下に保ち、61%硝酸
2kgを添加し2時間反応させた。次に、80℃で1時
間保持したのち、100℃/毎時で380℃まで昇温
し、380℃で2時間反応させたのち冷却して、架橋ピ
ッチを得た。
Example 1 A reactor having an internal volume of 20 liters equipped with a stirrer had a residual carbon content of 14.1% and a density of 1.09 g.
15 kg of ethylene bottom oil of / cm 3 was charged, cooled with stirring to keep the temperature at 40 ° C. or lower, and 2 kg of 61% nitric acid was added and reacted for 2 hours. Next, after holding at 80 ° C. for 1 hour, the temperature was raised to 380 ° C. at 100 ° C./hour, reacted at 380 ° C. for 2 hours and then cooled to obtain a crosslinked pitch.

【0062】この架橋ピッチの収率は、原料のエチレン
ボトムオイルに対して36.1%であった。
The yield of this crosslinked pitch was 36.1% with respect to the raw material ethylene bottom oil.

【0063】この架橋ピッチは軟化点284℃、揮発分
28.3%、酸素含有量0.5%、窒素含有量1.3
%、H/C原子比0.63であった。
This crosslinked pitch has a softening point of 284 ° C., a volatile content of 28.3%, an oxygen content of 0.5%, and a nitrogen content of 1.3.
%, And the H / C atomic ratio was 0.63.

【0064】この架橋ピッチを、窒素気流中で600℃
で1時間熱処理した後、冷却、粉砕し、平均粒径25μ
mの炭素前駆体微粒子を得た。この炭素前駆体微粒子を
窒素気流中で1000℃で1時間炭素化し、さらに、A
r気流中で2800℃で1時間黒鉛化処理し黒鉛質材料
を得た。
This crosslinked pitch was heated to 600 ° C. in a nitrogen stream.
After heat treatment for 1 hour, cool and pulverize, average particle size 25μ
m carbon precursor particles were obtained. The carbon precursor fine particles are carbonized in a nitrogen stream at 1000 ° C. for 1 hour, and further, A
Graphitization treatment was carried out at 2800 ° C. for 1 hour in an air stream to obtain a graphite material.

【0065】得られた黒鉛質材料の特性を後記の表1に
示す。
The characteristics of the obtained graphite material are shown in Table 1 below.

【0066】(実施例2)軟化点210℃、キノリン不
溶分1重量%、H/C原子比0.63%の石油系ピッチ
68kgとナフタレン32kgとを、撹拌翼のついた内
容積300リットルの耐圧容器に仕込み、190℃に加
熱し溶解混合した後、80〜90℃に冷却して押し出
し、直径が約500μmの紐状成形体を得た。ついで、
この紐状成形体を直径と長さの比が約1.5となるよう
に粉砕し、得られた粉砕物を90℃に加熱した0.53
%ポリビニルアルコール(ケン化度88%)水溶液中に
投下し、撹拌分散し、冷却して球状ピッチ成形体を得
た。大部分の水を濾過により除いたのち、球状ピッチ成
形体の約6倍量の重量のn−ヘキサンでピッチ成形体中
のナフタレンを抽出除去した。
Example 2 68 kg of petroleum-based pitch having a softening point of 210 ° C., a quinoline insoluble content of 1% by weight, and an H / C atomic ratio of 0.63% and naphthalene of 32 kg were mixed in an internal volume of 300 liters equipped with a stirring blade. It was charged in a pressure resistant container, heated to 190 ° C., dissolved and mixed, cooled to 80 to 90 ° C. and extruded to obtain a cord-shaped molded body having a diameter of about 500 μm. Then,
This string-shaped molded product was crushed so that the ratio of diameter to length was about 1.5, and the crushed product obtained was heated to 90 ° C. for 0.53.
% Polyvinyl alcohol (saponification degree 88%) aqueous solution, stirred and dispersed, and cooled to obtain a spherical pitch molded body. After removing most of the water by filtration, the naphthalene in the pitch molded body was extracted and removed with n-hexane in an amount of about 6 times the weight of the spherical pitch molded body.

【0067】このようにして得られた球状ピッチ多孔体
を加熱空気を通じながら165℃で1時間保持して酸化
処理を行い、酸化ピッチを得た。
The spherical pitch porous body thus obtained was subjected to an oxidation treatment by holding it at 165 ° C. for 1 hour while passing heated air to obtain oxidized pitch.

【0068】この酸化ピッチの酸素含有率は2%であっ
た。
The oxygen content of this oxidized pitch was 2%.

【0069】この酸化ピッチを、窒素雰囲気中、480
℃で1時間熱処理して揮発分が4.7%の炭素前駆体を
得た。この炭素前駆体を粉砕し、平均粒子径が約25μ
mの炭素前駆体微粒子とした。
This oxide pitch was subjected to 480 in a nitrogen atmosphere.
It heat-processed at 1 degreeC for 1 hour, and the carbon precursor whose volatile matter was 4.7% was obtained. This carbon precursor was crushed to obtain an average particle size of about 25μ.
m of carbon precursor fine particles.

【0070】次に、この炭素前駆体微粒子を窒素気流中
で1000℃で1時間炭素化し、さらに、Ar気流中で
2000℃で1時間黒鉛化処理し黒鉛質材料を得た。
Next, the carbon precursor fine particles were carbonized in a nitrogen stream at 1000 ° C. for 1 hour and further graphitized in an Ar stream at 2000 ° C. for 1 hour to obtain a graphite material.

【0071】得られた黒鉛質材料の特性を後記表1に示
す。
The characteristics of the obtained graphite material are shown in Table 1 below.

【0072】(実施例3〜5)黒鉛化処理温度をそれぞ
れ2400℃(実施例3)、2800℃(実施例4)お
よび3000℃(実施例5)とした以外は実施例2と同
様にしてそれぞれ黒鉛質材料を得た。
(Examples 3 to 5) The same procedure as in Example 2 was carried out except that the graphitization treatment temperatures were 2400 ° C. (Example 3), 2800 ° C. (Example 4) and 3000 ° C. (Example 5), respectively. Graphite materials were obtained respectively.

【0073】得られたこれらの黒鉛質材料の特性を後記
表1に示す。
The characteristics of the obtained graphite materials are shown in Table 1 below.

【0074】上記実施例1〜5で得られた黒鉛質材料
は、偏光顕微鏡観察の結果、いずれも微細モザイク状の
光学的異方性組織を示した。代表的に、実施例4による
黒鉛質材料の偏光顕微鏡写真(1000倍)を図1に示
す。
The graphite materials obtained in the above Examples 1 to 5 all showed a fine mosaic optical anisotropic structure as a result of observation with a polarizing microscope. Representatively, a polarized light micrograph (× 1000) of the graphite material according to Example 4 is shown in FIG. 1.

【0075】(比較例1)実施例2で使用した石油ピッ
チを窒素気流中で600℃で1時間熱処理した後、冷
却、粉砕し平均粒径が25μmの炭素前駆体微粒子を得
た。この炭素前駆体微粒子を窒素気流中で1000℃で
1時間炭素化し、さらに、Ar気流中2800℃で1時
間黒鉛化処理し炭素材料を得た。
(Comparative Example 1) The petroleum pitch used in Example 2 was heat-treated at 600 ° C for 1 hour in a nitrogen stream, cooled and pulverized to obtain carbon precursor fine particles having an average particle diameter of 25 µm. The carbon precursor particles were carbonized in a nitrogen stream at 1000 ° C. for 1 hour, and further graphitized in an Ar stream at 2800 ° C. for 1 hour to obtain a carbon material.

【0076】得られた炭素材料の特性を後記表1に示
す。
The characteristics of the obtained carbon material are shown in Table 1 below.

【0077】この炭素材料を偏光顕微鏡で観察したとこ
ろ、偏光顕微鏡写真(1000倍)を図2に示すように
光学的異方性組織はモザイク構造を示さず、流れ構造を
示した。
When this carbon material was observed with a polarizing microscope, a polarizing microscope photograph (1000 times) showed that the optically anisotropic structure did not show a mosaic structure but a flow structure as shown in FIG.

【0078】(比較例2)実施例2で得た球状ピッチ多
孔体を加熱空気を通じながら260℃で1時間保持して
酸化処理を行い、酸化ピッチを得た。
(Comparative Example 2) The spherical pitch porous body obtained in Example 2 was subjected to an oxidation treatment while being held at 260 ° C for 1 hour while passing heated air to obtain an oxidized pitch.

【0079】この酸化ピッチの酸素含有率は16%であ
った。
The oxygen content of this oxidized pitch was 16%.

【0080】この酸化ピッチを、窒素雰囲気中、600
℃で1時間熱処理したのち、粉砕し、平均粒子径が約2
5μmの炭素前駆体微粒子とした。つぎに、この炭素前
駆体微粒子を窒素気流中で1200℃で1時間炭素化
し、さらに、Ar気流中で2800℃で1時間黒鉛化処
理し炭素材料を得た。
This oxide pitch was adjusted to 600 in a nitrogen atmosphere.
After heat treatment at ℃ for 1 hour, crushed and average particle size is about 2
5 μm carbon precursor fine particles were used. Next, the carbon precursor fine particles were carbonized in a nitrogen stream at 1200 ° C. for 1 hour and further graphitized in an Ar stream at 2800 ° C. for 1 hour to obtain a carbon material.

【0081】この炭素材料を偏光顕微鏡で観察したとこ
ろ、偏光顕微鏡写真(1000倍)を図3に示すように
光学的異方性組織はモザイク構造を示さず、光学的に等
方性を示した。
When this carbon material was observed with a polarization microscope, a polarization microscope photograph (× 1000) showed that the optically anisotropic structure did not show a mosaic structure, as shown in FIG. 3, but showed optical isotropy. .

【0082】この炭素材料の特性を後記表1に示す。The characteristics of this carbon material are shown in Table 1 below.

【0083】(比較例3)平均重合度700のポリ塩化
ビニル(PVC)を比較例1と同様に処理して炭素材料
を得た。
Comparative Example 3 Polyvinyl chloride (PVC) having an average degree of polymerization of 700 was treated in the same manner as in Comparative Example 1 to obtain a carbon material.

【0084】この炭素材料を偏光顕微鏡で観察したとこ
ろ、光学的異方性組織はモザイク構造を示さず、流れ構
造を示した。
When this carbon material was observed with a polarizing microscope, the optically anisotropic structure did not show a mosaic structure but showed a flow structure.

【0085】この炭素材料の特性を後記表1に示す。The characteristics of this carbon material are shown in Table 1 below.

【0086】(比較例4)ポリ塩化ビニリデン(PVD
C)を比較例1と同様に処理して炭素材料を得た。この
炭素材料を偏光顕微鏡で観察したところ、偏光顕微鏡写
真(1000倍)を図4に示すように光学的異方性組織
はモザイク構造を示さず等方性を示した。
(Comparative Example 4) Polyvinylidene chloride (PVD)
C) was treated in the same manner as in Comparative Example 1 to obtain a carbon material. When this carbon material was observed with a polarization microscope, a polarization microscope photograph (1000 times) showed that the optically anisotropic structure was isotropic without showing a mosaic structure as shown in FIG.

【0087】この炭素材料の特性を後記表1に示す。The characteristics of this carbon material are shown in Table 1 below.

【0088】(比較例5)フェノール47.1gに37
%のフォルマリン121.6gを加え60℃に加熱、撹
拌したのち、29%アンモニア水3.8gを滴下し、そ
の後80℃で6時間反応させた。つぎに、これを室温ま
で冷却したのち、6.4gの乳酸を添加し反応液を中和
し飴状の初期縮合物を得た。初期縮合物は、150℃で
12時間縮合させレゾール型レジンとした。このレジン
を窒素気流中500℃で1時間予備焼成し炭素前駆体と
したのち、粉砕し平均粒径25μmの炭素前駆体微粒子
を得た。つぎに、この炭素前駆体微粒子を窒素気流中で
1000℃で1時間炭素化し、さらに、Ar気流中で2
800℃で1時間黒鉛化処理し炭素材料を得た。
(Comparative Example 5) 37% to 47.1 g of phenol.
% Formalin (121.6 g) was added, the mixture was heated to 60 ° C. and stirred, then, 29% aqueous ammonia (3.8 g) was added dropwise, and then the mixture was reacted at 80 ° C. for 6 hours. Next, after cooling this to room temperature, 6.4 g of lactic acid was added to neutralize the reaction liquid to obtain a candy-shaped initial condensate. The initial condensate was condensed at 150 ° C. for 12 hours to give a resol-type resin. This resin was precalcined in a nitrogen stream at 500 ° C. for 1 hour to obtain a carbon precursor, which was then pulverized to obtain carbon precursor fine particles having an average particle size of 25 μm. Next, the carbon precursor fine particles are carbonized in a nitrogen stream at 1000 ° C. for 1 hour, and further carbonized in an Ar stream.
Graphitization treatment was performed at 800 ° C. for 1 hour to obtain a carbon material.

【0089】この炭素材料を偏光顕微鏡で観察したとこ
ろ、光学的異方性組織は観察されず、等方的であった。
When this carbon material was observed with a polarizing microscope, no optically anisotropic structure was observed and it was isotropic.

【0090】この炭素材料の特性を後記表1に示す。The characteristics of this carbon material are shown in Table 1 below.

【0091】(比較例6)マダガスカル産鱗片状天然黒
鉛(日本黒鉛商事(株)CP)を用いた。
(Comparative Example 6) Flake-like natural graphite (Nippon Graphite Trading Co., Ltd. CP) produced in Madagascar was used.

【0092】この天然黒鉛は固定炭素分が97%、灰分
が2%、揮発分が1%、平均粒径7μmである。この天
然黒鉛の特性を後記表1に示す。
This natural graphite has a fixed carbon content of 97%, an ash content of 2%, a volatile content of 1%, and an average particle size of 7 μm. The properties of this natural graphite are shown in Table 1 below.

【0093】(活物質のドープ・脱ドープ試験)上記実
施例及び比較例で得られた各炭素材料を用いて、以下の
ようにして非水溶媒系二次電池を作成し、その特性を評
価した。
(Doping / Undoping Test of Active Material) Using the carbon materials obtained in the above Examples and Comparative Examples, a non-aqueous solvent secondary battery was prepared in the following manner, and its characteristics were evaluated. did.

【0094】本発明の黒鉛質材料は非水溶媒二次電池の
負極として用いるのに適しているが、本発明の効果であ
る電池活物質のドープ容量、脱ドープ容量及び脱ドープ
されずに黒鉛質材料中に残存する量(不可逆容量)を、
対極の性能のバラツキに影響されることなく精度良く評
価するために、特性の安定した大過剰のリチウム金属を
対極(負極)とし、上記で得られた黒鉛質材料を正極と
するリチウム二次電池を構成し、その特性を評価した。
The graphite material of the present invention is suitable for use as the negative electrode of a non-aqueous solvent secondary battery, but the effect of the present invention is to obtain the dope capacity, dedoping capacity and graphite without dedoping of the battery active material. The amount remaining in the quality material (irreversible capacity)
In order to evaluate accurately without being affected by variations in the performance of the counter electrode, a lithium secondary battery using a large excess of lithium metal with stable characteristics as the counter electrode (negative electrode) and the graphite material obtained above as the positive electrode. Was constructed and its characteristics were evaluated.

【0095】すなわち正極(炭素ないし黒鉛質材料電
極)は以下のようにして製造した。上記のようにして製
造した微粒子状炭素ないし黒鉛質材料を90重量部、ポ
リフッ化ビニリデン10重量部に、N−メチル−2−ピ
ロリドンを加えてペースト状とし、銅箔上に均一に塗布
し、乾燥した後、銅箔より剥離させ直径21mmの円板
状に打ち抜く。これを直径21mmのステンレススチー
ル網円板にプレスにより加圧して圧着し正極とした。な
お正極中の炭素材料の量は約40mgになるように調整
した。
That is, the positive electrode (carbon or graphite material electrode) was manufactured as follows. 90 parts by weight of the particulate carbon or graphite material produced as described above, 10 parts by weight of polyvinylidene fluoride, N-methyl-2-pyrrolidone is added to form a paste, and uniformly coated on a copper foil, After drying, it is peeled from the copper foil and punched into a disk shape with a diameter of 21 mm. This was pressed against a stainless steel mesh disk having a diameter of 21 mm by a press to be a pressure-bonded positive electrode. The amount of carbon material in the positive electrode was adjusted to about 40 mg.

【0096】負極には、厚さ1mmの金属リチウム薄板
を直径21mmの円板状に打ち抜いたものを使用した。
As the negative electrode, a metal lithium thin plate having a thickness of 1 mm punched into a disk shape having a diameter of 21 mm was used.

【0097】このようにして製造した正極及び負極を用
い、電解液としてはエチレンカーボネートとジエチルカ
ーボネートを容量比で1:1で混合した混合溶媒に1モ
ル/リットルの割合でLiPF6 を加えたものを使用
し、ポリプロピレン製微細孔膜をセパレータとし非水溶
媒系リチウム二次電池を構成した。
Using the positive electrode and the negative electrode produced as described above, the electrolyte solution was prepared by adding LiPF 6 at a ratio of 1 mol / liter to a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. Was used to form a non-aqueous solvent type lithium secondary battery using a polypropylene microporous membrane as a separator.

【0098】このような構成のリチウム二次電池におい
て炭素材料にリチウムのドーピング、脱ドーピングを行
いそのときの容量を求めた。
In the lithium secondary battery having such a structure, the carbon material was doped with lithium and dedoped to obtain the capacity at that time.

【0099】ドーピングは、端子電圧が10mVに到達
するまでは、1.0mA/cm2 の定電流密度で行い、
端子電圧が10mVに到達した後は、端子電圧10mV
の定電圧で行った。ドーピングのための通電時間は10
時間とした。このときの電気量を使用した炭素材料の重
量で除した値をドープ容量と定義し、mAh/gの単位
で表わした。
Doping is carried out at a constant current density of 1.0 mA / cm 2 until the terminal voltage reaches 10 mV.
After the terminal voltage reaches 10 mV, the terminal voltage is 10 mV
It was carried out at a constant voltage. Conducting time for doping is 10
It was time. The value obtained by dividing the quantity of electricity at this time by the weight of the carbon material used was defined as the dope capacity and expressed in units of mAh / g.

【0100】次に同様にして逆方向に電流を流し炭素材
料にドープされたリチウムを脱ドープした。脱ドーピン
グは、1.0mA/cm2 の定電流密度で端子電圧が
3.0Vに達するまで行った。この時の電気量を使用し
た炭素材料の重量で除した値を脱ドープ容量と定義し、
mAh/gの単位で表わした。
Next, in the same manner, an electric current was passed in the opposite direction to dedope the lithium doped in the carbon material. The dedoping was performed at a constant current density of 1.0 mA / cm 2 until the terminal voltage reached 3.0V. The value obtained by dividing the quantity of electricity at this time by the weight of the carbon material used is defined as the dedoping capacity,
It is expressed in the unit of mAh / g.

【0101】次いでドープ容量と脱ドープ容量との差と
して不可逆容量を求めた。脱ドープ容量をドープ容量で
除した値に100を乗じて、放電効率(%)を求めた。
これは活物質がどれだけ有効に使用されたかを示す値で
ある。
Then, the irreversible capacity was determined as the difference between the doping capacity and the dedoping capacity. The value obtained by dividing the dedoping capacity by the doping capacity was multiplied by 100 to obtain the discharge efficiency (%).
This is a value indicating how effectively the active material was used.

【0102】以上のようにして求めた各炭素材料を正極
としたリチウム二次電池の電池特性を後記表2に示す。
また、各ドープ容量、脱ドープ容量にそれぞれの炭素材
料の真密度を乗じて求めた体積当たりの容量(mAh/
cm3 の単位で表わす。)もあわせて表2に示す。
Table 2 below shows the battery characteristics of the lithium secondary battery in which each carbon material obtained as described above was used as a positive electrode.
Also, the volumetric capacity (mAh / mAh) obtained by multiplying each doping capacity and dedoping capacity by the true density of each carbon material.
Expressed in units of cm 3 . ) Are also shown in Table 2.

【0103】表2から本発明の実施例で得られた黒鉛質
材料を使用した二次電池は比較例2、3、4、5および
6で得た炭素材料を使用した電池と比較しドープ、脱ド
ープ容量がともに大きく、かつ不可逆容量が小さいこと
が分かる。
From Table 2, the secondary batteries using the graphite materials obtained in the examples of the present invention were compared with the batteries using the carbon materials obtained in Comparative Examples 2, 3, 4, 5 and 6, and were doped. It can be seen that both the dedoping capacity is large and the irreversible capacity is small.

【0104】比較例2、4及び5で得られる炭素材料は
表1から明らかなように難黒鉛化性炭素であり、これら
を使用した二次電池では、電極材料の真密度が小さく体
積当たりの容量という観点からも不利であることが分か
る(表2参照)。
The carbon materials obtained in Comparative Examples 2, 4 and 5 are non-graphitizable carbons as is clear from Table 1. In the secondary batteries using these, the true density of the electrode material is small and the It is also found to be disadvantageous in terms of capacity (see Table 2).

【0105】比較例6の天然黒鉛を使用した二次電池で
は、不可逆容量が大きいが、これは天然黒鉛の結晶子が
あまりにも大きいためリチウムが黒鉛層間へは挿入され
にくく、過電圧による電解液の分解に消費された電気量
が不可逆容量として観測されたためと考えられる。
The secondary battery using the natural graphite of Comparative Example 6 has a large irreversible capacity. However, this is because the crystallite of the natural graphite is so large that lithium is difficult to be inserted between the graphite layers, and the electrolyte solution due to overvoltage is generated. It is considered that the amount of electricity consumed for decomposition was observed as irreversible capacity.

【0106】(急速充放電試験)次に本発明及び比較例
で得られた炭素材料を正極とした二次電池の急速充放電
試験を以下の方法で行った。
(Rapid Charge / Discharge Test) Next, a rapid charge / discharge test of a secondary battery having the carbon material obtained in the present invention and the comparative example as a positive electrode was conducted by the following method.

【0107】炭素材料としては、実施例4で得られた黒
鉛質材料及びLc(002) 、La(110) の大きな黒鉛構造
の発達した比較例1、3及び6で得られた炭素材料を使
用して上述のドープ・脱ドープ試験と同様のリチウム二
次電池を構成し比較試験を行った。
As the carbon material, the graphite material obtained in Example 4 and the carbon materials obtained in Comparative Examples 1, 3 and 6 having a large graphite structure of Lc (002) and La (110) were used. Then, a lithium secondary battery similar to the above-mentioned doping / dedoping test was constructed and a comparative test was conducted.

【0108】各電池について、電流密度を0.5mA/
cm2 、1mA/cm2 、2mA/cm2 、3mA/c
2 と変化させてドーピング・脱ドーピングを行った。
For each battery, the current density was 0.5 mA /
cm 2 , 1 mA / cm 2 , 2 mA / cm 2 , 3 mA / c
Doping / de-doping was performed while changing to m 2 .

【0109】ドーピングは、端子電圧が10mVに到達
するまでは、上記の所定の定電流密度(初期電流密度)
でドーピングを行い、端子電圧が10mVに到達した後
は、端子電圧10mVの定電圧でドーピングを行った。
ドーピング時間は、初期電流密度をXmA/cm2
し、ドーピング時間をY時間としたときXとYの積が1
0となるように設定した。脱ドーピングはドーピング時
の初期電流密度と同一の電流密度で行い、端子電圧が
1.5Vに到達した時を終点とした。
Doping is carried out by the above-mentioned predetermined constant current density (initial current density) until the terminal voltage reaches 10 mV.
After the terminal voltage reached 10 mV, the doping was performed at a constant voltage of 10 mV.
When the initial current density is XmA / cm 2 and the doping time is Y hours, the product of X and Y is 1
It was set to 0. The dedoping was performed at the same current density as the initial current density at the time of doping, and the end point was when the terminal voltage reached 1.5V.

【0110】1回目のドーピング・脱ドーピングを行っ
た際の脱ドープ容量と初期電流密度の関係を図5に示
す。
FIG. 5 shows the relationship between the de-doping capacity and the initial current density when the first doping / de-doping is performed.

【0111】表1及び図5を参照すると、本発明の実施
例で得られた偏光顕微鏡によって観察される光学的異方
性組織の構造が微細なモザイク構造を示す黒鉛質材料を
使用した二次電池は、比較例1、3及び6で得られるL
(002) 、La(110) の大きな炭素材料を使用した電池
と比較して高い電流密度で充放電した際の脱ドープ容量
が大きく、急速充放電が可能なことが分かる。
Referring to Table 1 and FIG. 5, the practice of the present invention.
Optical anisotropy observed by a polarizing microscope obtained in the example
Graphite material showing a fine mosaic structure
The secondary batteries used are L obtained in Comparative Examples 1, 3 and 6.
c (002), La(110)Batteries using large carbon materials
Capacity when charged and discharged at a higher current density compared to
Is large, and it can be seen that rapid charge / discharge is possible.

【0112】[0112]

【表1】 [Table 1]

【0113】[0113]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例4で得られる黒鉛質材料の偏光
顕微鏡写真(1000倍)である。
FIG. 1 is a polarizing microscope photograph (1000 ×) of a graphite material obtained in Example 4 of the present invention.

【図2】比較例1で得られる炭素材料の偏光顕微鏡写真
(1000倍)である。
FIG. 2 is a polarization micrograph (× 1000) of the carbon material obtained in Comparative Example 1.

【図3】比較例2で得られる炭素材料の偏光顕微鏡写真
(1000倍)である。
FIG. 3 is a polarization micrograph (× 1000) of the carbon material obtained in Comparative Example 2.

【図4】比較例4で得られる炭素材料の偏光顕微鏡写真
(1000倍)である。
FIG. 4 is a polarization micrograph (× 1000) of the carbon material obtained in Comparative Example 4.

【図5】本発明及び比較例により得られる炭素材料を正
極とした二次電池の電流密度と脱ドープ容量の関係を示
す図である。
FIG. 5 is a diagram showing a relationship between a current density and a dedoping capacity of a secondary battery having a carbon material obtained by the present invention and a comparative example as a positive electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 X線回折法により求めた(002)面の
平均層面間隔d002 が0.336〜0.350nm、c
軸方向の結晶子の大きさLc(002) が15nmを超え5
0nm以下、a軸方向の結晶子の大きさLa(110) が5
〜50nmであり、偏光顕微鏡によって観察される光学
的異方性組織の構造が微細なモザイク構造を示すことを
特徴とする非水溶媒系二次電池電極用黒鉛質材料。
1. The average layer spacing d 002 of (002) planes determined by X-ray diffraction is 0.336 to 0.350 nm, and c
Axial crystallite size Lc (002) exceeds 15 nm 5
0 nm or less, the crystallite size La (110) in the a-axis direction is 5
Graphite material for non-aqueous solvent secondary battery electrodes, characterized in that the structure of the optically anisotropic structure observed by a polarization microscope shows a fine mosaic structure.
【請求項2】 真密度が1.90g/cm3 以上である
ことを特徴とする請求項1に記載の非水溶媒系二次電池
電極用黒鉛質材料。
2. The graphite material for a non-aqueous solvent secondary battery electrode according to claim 1, which has a true density of 1.90 g / cm 3 or more.
【請求項3】 石油系又は石炭系のタール若しくはピッ
チに架橋処理を施した後、減圧下又は不活性ガス雰囲気
中で1800℃以上で黒鉛化処理をすることを特徴とす
るX線回折法により求めた(002)面の平均層面間隔
002 が0.336〜0.350nm、c軸方向の結晶
子の大きさLc(002) が15nmを超え50nm以下、
a軸方向の結晶子の大きさLa(110) が5〜50nmで
あり、偏光顕微鏡によって観察される光学的異方性組織
の構造が微細なモザイク構造を示す非水溶媒系二次電池
電極用黒鉛質材料の製造法。
3. An X-ray diffraction method, characterized in that after petroleum-based or coal-based tar or pitch is subjected to a crosslinking treatment, it is graphitized at 1800 ° C. or higher under reduced pressure or in an inert gas atmosphere. The obtained average layer surface spacing d 002 of the (002) plane is 0.336 to 0.350 nm, and the crystallite size Lc (002) in the c-axis direction is more than 15 nm and 50 nm or less,
For a non-aqueous solvent secondary battery electrode in which the crystallite size La (110) in the a-axis direction is 5 to 50 nm and the structure of the optically anisotropic structure observed by a polarization microscope shows a fine mosaic structure. Graphite material manufacturing method.
【請求項4】 石油系又は石炭系のタール若しくはピッ
チに、硝酸を添加して架橋処理を施すことを特徴とする
請求項3に記載の非水溶媒系二次電池電極用黒鉛質材料
の製造法。
4. The production of a graphite material for a non-aqueous solvent secondary battery electrode according to claim 3, wherein nitric acid is added to petroleum-based or coal-based tar or pitch to carry out a crosslinking treatment. Law.
【請求項5】 石油系又は石炭系のピッチに対し、添加
剤として沸点200℃以上の2乃至3環の芳香族化合物
の1種又は2種以上を加えて加熱混合した後、成形しピ
ッチ成形体を得、次にピッチに対し低溶解度を有しかつ
添加剤に対して高溶解度を有する溶剤で、ピッチ成形体
から添加剤を抽出除去し、得られた多孔性ピッチを酸化
し架橋処理を施すことを特徴とする請求項3に記載の非
水溶媒系二次電池電極用黒鉛質材料の製造法。
5. A pitch forming process comprising adding one or more two or three-ring aromatic compounds having a boiling point of 200 ° C. or higher as an additive to a petroleum-based or coal-based pitch, followed by heating and mixing, and then forming the pitch. Body, and then a solvent having a low solubility in the pitch and a high solubility in the additive is used to extract and remove the additive from the pitch molded body, and oxidize the obtained porous pitch to perform a crosslinking treatment. The method for producing a graphite material for a non-aqueous solvent-based secondary battery electrode according to claim 3, which is performed.
【請求項6】 多孔性ピッチを酸素を含むガスで酸化し
て架橋処理を施すことを特徴とする請求項5に記載の非
水溶媒系二次電池電極用黒鉛質材料の製造法。
6. The method for producing a graphite material for a non-aqueous solvent secondary battery electrode according to claim 5, wherein the porous pitch is oxidized with a gas containing oxygen to carry out a crosslinking treatment.
JP6111707A 1993-09-03 1994-04-28 Graphite material for secondary battery electrode and method for producing the same Expired - Fee Related JP2948097B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6111707A JP2948097B2 (en) 1994-04-28 1994-04-28 Graphite material for secondary battery electrode and method for producing the same
EP94306238A EP0646978B1 (en) 1993-09-03 1994-08-24 Carbonaceous electrode material for secondary battery and process for production thereof
DE69407526T DE69407526T2 (en) 1993-09-03 1994-08-24 Carbon-containing electrode material for secondary battery, and method for its production
US08/295,066 US5527643A (en) 1993-09-03 1994-08-26 Carbonaceous electrode material for secondary battery and process for production thereof
CA002131122A CA2131122C (en) 1993-09-03 1994-08-30 Carbonaceous electrode material for secondary battery and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111707A JP2948097B2 (en) 1994-04-28 1994-04-28 Graphite material for secondary battery electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07296814A true JPH07296814A (en) 1995-11-10
JP2948097B2 JP2948097B2 (en) 1999-09-13

Family

ID=14568122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111707A Expired - Fee Related JP2948097B2 (en) 1993-09-03 1994-04-28 Graphite material for secondary battery electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP2948097B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
US6673492B2 (en) 2000-05-26 2004-01-06 Ube Industries, Ltd. Electrode material for a secondary cell and its production process
US6953640B2 (en) 1996-08-08 2005-10-11 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
JPWO2004034491A1 (en) * 2002-10-11 2006-02-09 Fdk株式会社 Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery
US7662513B2 (en) 1997-08-28 2010-02-16 Samsung Sdi Co., Ltd. Negative electrode active material for lithium-based secondary battery and method of preparing same
WO2012132173A1 (en) * 2011-03-29 2012-10-04 株式会社豊田自動織機 Non-aqueous electrolyte secondary battery and vehicle
KR101418634B1 (en) * 2009-01-21 2014-07-14 가부시끼가이샤 구레하 Method for producing negative electrode material for nonaqueous electrolyte secondary battery
WO2015093894A1 (en) * 2013-12-20 2015-06-25 주식회사 엘지화학 Anode active material, and lithium secondary battery comprising same
KR20150115883A (en) * 2013-02-19 2015-10-14 가부시끼가이샤 구레하 Carbon material for non-aqueous electrolyte secondary battery negative electrode
US10177380B2 (en) 2013-12-20 2019-01-08 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same
WO2019151201A1 (en) * 2018-01-30 2019-08-08 昭和電工株式会社 Graphite material, method for producing same, and use thereof
WO2022257372A1 (en) * 2021-06-10 2022-12-15 国家能源投资集团有限责任公司 Graphite negative electrode material, preparation method therefor and use thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947395B2 (en) 1996-08-08 2011-05-24 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6953640B2 (en) 1996-08-08 2005-10-11 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8129051B2 (en) 1996-08-08 2012-03-06 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
US7288342B2 (en) 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7335447B2 (en) 1996-08-08 2008-02-26 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7378191B2 (en) 1996-08-08 2008-05-27 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7399553B2 (en) 1996-08-08 2008-07-15 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8802297B2 (en) 1996-08-08 2014-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7700239B2 (en) 1996-08-08 2010-04-20 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8580437B2 (en) 1996-08-08 2013-11-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7662513B2 (en) 1997-08-28 2010-02-16 Samsung Sdi Co., Ltd. Negative electrode active material for lithium-based secondary battery and method of preparing same
US7799460B2 (en) 1997-08-28 2010-09-21 Samsung Sdi Co., Ltd. Negative electrode active material for lithium-based secondary battery and method of preparing same
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
US6673492B2 (en) 2000-05-26 2004-01-06 Ube Industries, Ltd. Electrode material for a secondary cell and its production process
JPWO2004034491A1 (en) * 2002-10-11 2006-02-09 Fdk株式会社 Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery
JP4516845B2 (en) * 2002-10-11 2010-08-04 Fdk株式会社 Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery
KR101418634B1 (en) * 2009-01-21 2014-07-14 가부시끼가이샤 구레하 Method for producing negative electrode material for nonaqueous electrolyte secondary battery
JPWO2012132173A1 (en) * 2011-03-29 2014-07-24 株式会社豊田自動織機 Nonaqueous electrolyte secondary battery and vehicle
WO2012132173A1 (en) * 2011-03-29 2012-10-04 株式会社豊田自動織機 Non-aqueous electrolyte secondary battery and vehicle
KR20150115883A (en) * 2013-02-19 2015-10-14 가부시끼가이샤 구레하 Carbon material for non-aqueous electrolyte secondary battery negative electrode
WO2015093894A1 (en) * 2013-12-20 2015-06-25 주식회사 엘지화학 Anode active material, and lithium secondary battery comprising same
US10177380B2 (en) 2013-12-20 2019-01-08 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same
US10964946B2 (en) 2013-12-20 2021-03-30 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same
WO2019151201A1 (en) * 2018-01-30 2019-08-08 昭和電工株式会社 Graphite material, method for producing same, and use thereof
WO2022257372A1 (en) * 2021-06-10 2022-12-15 国家能源投资集团有限责任公司 Graphite negative electrode material, preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP2948097B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JP3502669B2 (en) Carbonaceous material for secondary battery electrode and method for producing the same
JP3653105B2 (en) Carbonaceous material for secondary battery electrode
JP4215633B2 (en) Method for producing composite graphite particles
US5527643A (en) Carbonaceous electrode material for secondary battery and process for production thereof
JP6535467B2 (en) Graphite powder for lithium ion secondary battery negative electrode active material
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3633257B2 (en) Lithium ion secondary battery
KR20060132864A (en) Material for negative electrode of nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and battery
JP3568563B2 (en) Carbonaceous material for secondary battery electrode and method for producing the same
JPWO2016121711A1 (en) Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2948097B2 (en) Graphite material for secondary battery electrode and method for producing the same
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
WO1998034291A1 (en) Lithium ion secondary battery
JP3496901B2 (en) Carbonaceous materials for secondary battery electrodes
US5910383A (en) Production process of carbonaceous material and battery
JPH0992284A (en) Graphite material for secondary battery electrode, its manufacture, and secondary battery
JP3223144B2 (en) Method for producing carbonaceous material and battery
JPH10255799A (en) Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH07235327A (en) Nonaqueous electrolyte secondary battery
JP4421750B2 (en) Carbon material manufacturing method and lithium ion secondary battery
JP2001006670A (en) Bulk mesophase and manufacture thereof
JPH08306359A (en) Anode material for lithium secondary battery and its manufacture
TW201537805A (en) Non-aqueous electrolyte secondary battery
JP2005019096A (en) Nonaqueous secondary battery
JP2002093420A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees