WO2020137909A1 - Graphite material for negative electrode of lithium-ion secondary battery - Google Patents

Graphite material for negative electrode of lithium-ion secondary battery Download PDF

Info

Publication number
WO2020137909A1
WO2020137909A1 PCT/JP2019/050171 JP2019050171W WO2020137909A1 WO 2020137909 A1 WO2020137909 A1 WO 2020137909A1 JP 2019050171 W JP2019050171 W JP 2019050171W WO 2020137909 A1 WO2020137909 A1 WO 2020137909A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphite material
less
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2019/050171
Other languages
French (fr)
Japanese (ja)
Inventor
武内 正隆
祐一 上條
安顕 脇坂
俊介 吉岡
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020137909A1 publication Critical patent/WO2020137909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphite material for a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery and an all-solid-state lithium ion secondary battery using the graphite material as a negative electrode material.
  • lithium-ion secondary batteries have become the mainstream because of their large energy density and long cycle life. Since the functions of mobile devices are diversified and the power consumption is increased, it is required for lithium ion secondary batteries to further increase the energy density thereof and at the same time improve the charge/discharge cycle characteristics.
  • high-output and large-capacity secondary batteries for electric tools such as electric drills and hybrid vehicles.
  • lead secondary batteries, nickel-cadmium secondary batteries, and nickel-hydrogen secondary batteries have been mainly used in this field, but expectations for small, lightweight, high energy density lithium ion secondary batteries are high, and large currents are high.
  • a lithium ion secondary battery having excellent load characteristics (rate characteristics) is required.
  • BEV battery electric vehicles
  • HEV hybrid electric vehicles
  • long-term cycle characteristics for 10 years or more and rate characteristics for driving a high-power motor are mainly required characteristics
  • a high volumetric energy density is required to extend the cruising range, which is severe compared to mobile applications.
  • This lithium-ion secondary battery generally uses a metal oxide such as lithium cobalt oxide or lithium manganate or a composite oxide thereof as a positive electrode active material, a lithium salt as an electrolyte solution, and a graphite as a negative electrode active material. Carbonaceous materials are used. As graphite, there are natural graphite and artificial graphite.
  • Patent Document 1 proposes a method of coating artificial carbon on the surface of natural graphite processed into a spherical shape.
  • the material produced by this method can meet the high capacity, low current and medium cycle characteristics required for mobile applications, etc., it can meet the requirements for large current and long cycle characteristics of large batteries as described above. Very difficult to meet.
  • natural graphite has many metal impurities such as iron, which is problematic in terms of quality stability.
  • ⁇ As artificial graphite those obtained by graphitizing petroleum, coal pitch, coke, etc. can be obtained at relatively low cost.
  • the needle-shaped coke having good crystallinity becomes scaly and is easily oriented.
  • the method described in Patent Document 2 has been successful.
  • not only fine powder of artificial graphite raw material but also fine powder of natural graphite and the like can be used, and it has high capacity and excellent characteristics as the graphite for small lithium ion secondary batteries to date.
  • it is essential to improve productivity with an increase in the amount used, reduce manufacturing cost, control impurities, and improve cycle characteristics and storage characteristics.
  • the negative electrode material using so-called hard carbon or amorphous carbon described in Patent Document 3 has excellent characteristics with respect to a large current, and also has relatively good cycle characteristics.
  • the volume energy density is too low and the price is very expensive, so that it is used only for some special large batteries.
  • An object of the present invention is to provide a graphite material for a lithium-ion secondary battery negative electrode, which can be used to manufacture an electrode having both high cycle characteristics, high rate characteristics, and high energy density required for a large battery.
  • the present invention has the following configurations.
  • the average spacing d002 of (002) planes measured by X-ray diffraction is 0.3354 nm or more and 0.3370 nm or less,
  • the surface roughness calculated from the ratio of the BET surface area to the sphere-converted area calculated from the particle size distribution (BET surface area/sphere-converted area) is 6.0 to 14.0,
  • the ratio of the area of the optically anisotropic domain is 95.0% with respect to the total area of the optically anisotropic domain, the optically isotropic domain and the void of 100.0% measured by observing the cross section of the graphite material with a polarization microscope.
  • the integrated value when the areas of the optically anisotropic domains are integrated in order from the smallest one is the maximum domain area ( ⁇ m 2 ) when n% of the area ( ⁇ m 2 ) of all the optically anisotropic domains is reached.
  • a graphite material for a negative electrode of a lithium ion secondary battery that satisfies the following conditions (1) to (3) when Da(n) (where n represents a numerical value in the range of 0 to 100) is satisfied.
  • the ratio of the area of the void is 1.0% or less with respect to the total area of the optically anisotropic domain, the area of the optically isotropic domain and the area of the void of 100.0%. 1.
  • Db is the maximum domain area ( ⁇ m 2 ) when the total number of optically anisotropic domains arranged in ascending order of area reaches m% of the number of all optically anisotropic domains.
  • the 10% particle diameter (D10) in the volume-based particle diameter distribution measured by a laser diffraction method is 1.0 ⁇ m or more and 16.0 ⁇ m or less, and the 50% particle diameter (D50) is 6.0 ⁇ m or more and 30.0 ⁇ m.
  • the graphite material for a negative electrode of a lithium ion secondary battery according to any one of 1 to 6 above which has a circularity of 0.89 or more and 0.98 or less.
  • a negative electrode for a lithium ion secondary battery containing the negative electrode active material as described in 10 above.
  • a graphite material for a lithium-ion secondary battery which can be used to manufacture an electrode having both high cycle characteristics, high rate characteristics, and high energy density required by a large battery.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an all-solid-state lithium-ion secondary battery in one embodiment of the present invention.
  • graphite material (I) A graphite material for a negative electrode of a lithium ion secondary battery (hereinafter, also referred to as “graphite material (I)”) in one embodiment of the present invention will be described in detail below.
  • the average interplanar spacing d002 of the (002) planes of the graphite material (I) measured by X-ray diffraction is 0.3354 nm or more.
  • 0.3354 nm is the lower limit value of d002 of the graphite crystal.
  • the d002 is preferably 0.3356 nm or more. When the d002 is 0.3356 nm or more, the graphite crystal structure is not overdeveloped, and the cycle characteristics are excellent.
  • d002 is 0.3370 nm or less, preferably 0.3365 nm or less, more preferably 0.3360 nm or less from the viewpoint that the discharge capacity becomes large and a battery satisfying the energy density required for a large battery can be obtained. is there.
  • the crystallite size Lc of the (002) diffraction line of the graphite material (I) measured by X-ray diffraction is preferably 80 nm from the viewpoint that the discharge capacity becomes large and a battery satisfying the energy density required for a large battery can be obtained. Or more, more preferably 90 nm or more, and further preferably 100 nm or more. Further, the Lc(002) is preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, from the viewpoint that the graphite crystal structure does not develop too much and the cycle characteristics are excellent.
  • the graphite crystal plane spacing d002 and the crystallite size Lc can be measured using a powder X-ray diffraction (XRD) method (see Iwashita et al., Carbon vol. 42 (2004), p. 701-714).
  • XRD powder X-ray diffraction
  • the surface roughness of a graphite material is determined by the ratio of the BET surface area to the sphere-converted area calculated from the particle size distribution (BET surface area/sphere-converted area) (Toshio Oshima et al., Journal of Powder Engineering). , Vol. 30, No. 7, (1993) 496-501).
  • the surface roughness of the graphite material (I) is 6.0 or more, preferably 7.0 or more, and more preferably 8.0 or more, from the viewpoint that resistance tends to decrease and rate characteristics tend to improve. Further, the surface roughness is 14.0 or less, preferably 13.0 or less, more preferably 12.0 or less from the viewpoint of suppressing side reactions with the electrolytic solution and excellent cycle characteristics.
  • the BET specific surface area can be determined using a specific surface area meter using a nitrogen gas adsorption method (for example, NOVA-1200 manufactured by Quantachrome).
  • a nitrogen gas adsorption method for example, NOVA-1200 manufactured by Quantachrome.
  • the sphere-converted area ( SD ) calculated from the particle size distribution can be calculated by the following formula based on the data of the particle size distribution obtained by using a laser diffraction type particle size distribution measuring device (for example, Mastersizer manufactured by Malvern Instruments Ltd.). it can.
  • a laser diffraction type particle size distribution measuring device for example, Mastersizer manufactured by Malvern Instruments Ltd.
  • Vi is the relative volume of the particle size category i (average diameter d i ), ⁇ is the particle density, and D is the particle size.
  • a graphite material is a domain that exhibits optical anisotropy (a domain in which crystals have developed and a graphite network plane is arranged.
  • an optically anisotropic domain a domain in which crystals have developed and a graphite network plane is arranged.
  • an optically isotropic domain a domain in which crystals are undeveloped or in which crystal disorder such as hard carbon is large.
  • an optically isotropic domain a domain in which crystals are undeveloped or in which crystal disorder such as hard carbon is large.
  • the domain means a unit region where optical tissues are continuous.
  • the measuring method is according to the method described in Examples.
  • the area of the optically anisotropic domain is 95.0% or more, preferably 96% with respect to the total area of the optically anisotropic domains, optically isotropic domains, and voids of 100.0%. It is 0.0% or more. Since the optically anisotropic domain contributes to insertion/desorption of lithium ions and the like, the energy density becomes large when the content is 95.0% or more. Further, the area of the optically anisotropic domain is 99.0% or less, preferably 98.0% or less, from the viewpoint that an optically isotropic domain can be sufficiently secured and cycle characteristics and rate characteristics are excellent.
  • the area of the optically isotropic domain is 100.0% of the total of the area of the optically anisotropic domain, the area of the optically isotropic domain, and the area of the voids, which is excellent in rate characteristics and cycle characteristics. Therefore, it is preferably 1.0% or more, and more preferably 1.5% or more.
  • the area of the optically isotropic domain is preferably 5.0% or less, and more preferably 4.0% or less, from the viewpoint that the optically anisotropic domain can be sufficiently secured and the energy density is excellent.
  • the area of the voids is preferably 1.0% or less, more preferably 0% with respect to the total of the area of the optically anisotropic domain, the area of the optically isotropic domain, and the area of the voids of 100.0%. It is 0.5% or less, and more preferably 0.3% or less. Since the voids do not directly contribute to charge and discharge, the energy density becomes high when the void content is 1.0% or less.
  • Da(10) is preferably 7 ⁇ m 2 or more, more preferably 8 ⁇ m 2 or more, and Da(10) is preferably 16 ⁇ m 2 or less, more preferably 12 ⁇ m 2 or less.
  • Da(50) is preferably 100 ⁇ m 2 or more, more preferably 150 ⁇ m 2 or more, and Da(50) is preferably 230 ⁇ m 2 or less, more preferably 210 ⁇ m 2 or less.
  • Da (90) is preferably 250 [mu] m 2 or more, more preferably 300 [mu] m 2 or more, also, Da (90) is preferably 450 [mu] m 2 or less, more preferably 420 [mu] m 2 or less.
  • Da(30) is preferably 10 ⁇ m 2 or more, more preferably 20 ⁇ m 2 or more, further preferably 30 ⁇ m 2 or more, and , Da(30) is preferably 90 ⁇ m 2 or less, more preferably 80 ⁇ m 2 or less, still more preferably 70 ⁇ m 2 or less.
  • Db(99.5)/Da(100) is more preferably 0.65 or less, still more preferably 0.55 or less.
  • Lmax/Lave In the optically anisotropic domain of the graphite material (I), the maximum value of the long side length is Lmax, and the 50% particle diameter (D50) in the volume-based particle diameter distribution of the graphite material (I) by the laser diffraction method.
  • Is Lave, Lmax/Lave is preferably 1.00 or less, and more preferably 0.95 or less.
  • Lmax/Lave is 1.00 or less, the optically anisotropic domains are not too large, and the orientation of the carbon network in each domain is not oriented in one direction but is oriented in any direction. The expansion and contraction of the crystallite at that time are dispersed, and as a result, the amount of deformation of the electrode becomes small.
  • the probability of losing electrical contact between particles is reduced even when charging and discharging are repeated, and cycle characteristics are improved.
  • the rate characteristic is also advantageous.
  • the measurement of Love can be performed using a laser diffraction type particle size distribution measuring instrument such as Malvern Mastersizer.
  • Cmin The orientation of the optically anisotropic domain can be confirmed from the change in domain interference color when the sample is rotated from 0 to 45 degrees with respect to the analyzer of the polarization microscope. In this case, depending on the orientation of the domain, it can be classified into three types of interference colors of blue, yellow and magenta. Of the total area of each color, the smallest area ratio is represented by Cmin.
  • the orientation is random, which means that the anisotropic structure does not grow significantly, and when the direction is small, the anisotropic structures are aligned and the anisotropic structure grows greatly.
  • Cmin which represents the randomness of the orientation of the optically anisotropic domain of the graphite material (I), is preferably 20% or less, more preferably 15% or less, still more preferably 12% or less. If Cmin is 20% or less, the anisotropic structure grows sufficiently and the discharge capacity increases.
  • the intensity ratio ID/IG (R value) to the peak intensity (IG) in the range of 1620 cm ⁇ 1 is 0.09 or more, preferably 0.10 or more, more preferably 0.12 or more.
  • ID/IG (R value) is 0.09 or more, the barrier for lithium in/out is lowered, and the current load characteristics are likely to be improved.
  • the ID/IG (R value) is 0.40 or less, preferably 0.30 or less, and more preferably 0 or 20 or less. When ID/IG (R value) is 0.40 or less, excessive exposure of highly active edge portions can be suppressed, and Coulombic efficiency can be increased.
  • the 50% particle size (D50) in the volume-based particle size distribution by the laser diffraction method of the graphite material (I) is preferably 6.0 ⁇ m or more, more preferably 10 ⁇ m. It is at least 0.0 ⁇ m, more preferably at least 15.0 ⁇ m.
  • the D50 is 6.0 ⁇ m or more, the coatability is increased, the production efficiency is improved, and the Coulombic efficiency is easily increased.
  • the D50 is preferably 30.0 ⁇ m or less, more preferably 29.0 ⁇ m or less, and further preferably 27.0 ⁇ m or less from the viewpoint of enhancing rate characteristics.
  • the 10% particle size (D10) in the volume-based particle size distribution of the graphite material (I) measured by the laser diffraction method is preferably 1.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, and further preferably from the viewpoint of enhancing cycle characteristics. Is 7.0 ⁇ m or more.
  • the D10 is preferably 16.0 ⁇ m or less. When the D10 is 16.0 ⁇ m or less, a thin electrode can be manufactured, which is advantageous for increasing the energy density.
  • the 90% particle diameter (D90) in the volume-based particle diameter distribution of the graphite material (I) by the laser diffraction method is preferably 25.0 ⁇ m or more. Further, the D90 is preferably 80.0 ⁇ m or less, more preferably 70.0 ⁇ m or less, and further preferably 50.0 ⁇ m or less, from the viewpoint that a thin electrode can be manufactured and it is advantageous for increasing the energy density. ..
  • the volume-based particle size distribution by the laser diffraction method can be measured with a laser scattering diffraction type particle size distribution measuring device (MASTERSIZER manufactured by MALVERN).
  • MASTERSIZER manufactured by MALVERN.
  • the BET specific surface area of the graphite material (I) is preferably 0.5 m 2 /g or more, more preferably 0.8 m 2 /g or more, further preferably from the viewpoint of enhancing rate characteristics. Is 1.0 m 2 /g or more.
  • the BET specific surface area from the viewpoint that it is possible to increase the coulombic efficiency and cycle characteristics, preferably not more than 6.0 m 2 / g, more preferably 4.0 m 2 / g or less, more preferably 3.0 m 2 / g or less.
  • the BET specific surface area can be measured using the BET specific surface area measuring device described in the examples.
  • Circularity The circularity of the graphite material (I) is preferably 0.89 or more, more preferably 0.90 or more, from the viewpoint that the energy density can be increased. Further, the circularity is preferably 0.98 or less, more preferably 0.96 or less from the viewpoint that the number of particles contact each other and the rate characteristics are improved. The circularity can be measured using the circularity measuring device described in the examples.
  • the uniformity of particle size (D60/D10) in the graphite material (I) is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more, from the viewpoint of excellent electrode coatability of the particles. Is. Further, the uniformity of particle size (D60/D10) is preferably 3.0 or less, more preferably 2.8 or less, and further preferably 2.6 or less. When D60/D10 is 3.0 or less, the uniformity is low, that is, the width of the particle size distribution is narrow, and the electrode density can be increased.
  • D60 is a 60% particle size in the volume-based particle size distribution by the laser diffraction method
  • D10 is a 10% particle size in the volume-based particle size distribution by the laser diffraction method.
  • the amount of surface oxygen between the surface of the particle and 40 nm in the depth direction measured from the peak intensity of O1s obtained by HAX-PES measurement using hard X-ray of 7940 eV, is: It is preferably 0.010% by mass or more, and more preferably 0.015% by mass.
  • the amount of surface oxygen is preferably 0.040 mass% or less, more preferably 0.030 mass% or less. When the amount of surface oxygen is 0.040 mass% or less, the conductivity of the graphite material is not adversely affected and the resistance can be suppressed low, so that the rate characteristics can be maintained high.
  • a method for producing graphite material (I) according to one embodiment of the present invention comprises crushing a carbon material. To obtain carbon particles, and a graphitization step of heat-treating the carbon particles at 2800° C. or more and 3300° C. or less to obtain a graphite material.
  • production method (II) comprises crushing a carbon material. To obtain carbon particles, and a graphitization step of heat-treating the carbon particles at 2800° C. or more and 3300° C. or less to obtain a graphite material.
  • the carbon material is not limited, for example, petroleum pitch, coal pitch, coal coke, petroleum coke, petroleum-derived bulk mesophase carbon, petroleum-derived mesophase microbeads, coal-derived bulk mesophase carbon, coal-derived mesophase microbeads, and mixtures thereof. It is preferably selected from those that have been heat treated. Among them, petroleum-derived bulk mesophase carbon, petroleum-derived mesophase microbeads, coal-derived bulk mesophase carbon, coal-derived mesophase microbeads, petroleum-derived mesophase pitch, coal-derived mesophase pitch, and petroleum coke are more preferable, and petroleum coke is further preferable.
  • Particularly preferred is petroleum coke obtained from crude oil having a paraffin content of 40% or more.
  • the paraffin content is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, a graphite material having a large optically anisotropic domain can be obtained, and high energy density and high cycle characteristics can be obtained. It's easy to get a point battery
  • Paraffin content is obtained from the mass of paraphene component when the total amount of paraffinic component, aromatic component, resin component and asphaltene component of crude oil component is 100% by mass.
  • the TLC-FID method can be used, and it can be measured by Iotroscan (manufactured by LSI Rulece Co., Ltd.).
  • the mass reduction in this temperature range is preferably 0.1% by mass or more.
  • the mass reduction is 0.1% by mass or more, the particle shape is likely to be agglomerate or spherical at the time of pulverization, the electrode is likely to have a high density, and the side reaction with the electrolytic solution is reduced when used as the negative electrode. ..
  • the reason for this is presumed that the component volatilized by heating from 300° C. to 1200° C. stabilizes the crystal of the exposed edge portion during graphitization.
  • the mass reduction is preferably 3.0 mass% or less from the viewpoint that particles after graphitization are less bound to each other and the yield is good.
  • the loss on heating can be measured by using a commercially available device capable of simultaneous differential thermal/thermogravimetric measurement (TG-DTA) at a heating rate of 10° C./min.
  • TG-DTA simultaneous differential thermal/thermogravimetric measurement
  • Seiko Instruments' TGDTAw6300 is used, about 15 mg of a measurement sample is accurately measured, placed on a platinum pan and set in the apparatus, and argon gas is flown at 200 ml/min to 300 at 10° C./min. The temperature is raised from °C to 1200 °C and measured.
  • ⁇ -alumina manufactured by Wako Pure Chemical Industries which has been previously treated at 1500° C. for 3 hours to remove volatile components, is used.
  • [2-2] Crushing Step Although the method of crushing the carbon material is not limited, it can be carried out using a commercially available crusher such as a jet mill, a hammer mill, a roller mill, a pin mill and a vibration mill. It is also possible to use two or more types of these pulverizers and pulverize in two stages. Carbon particles are obtained by crushing the carbon material.
  • a commercially available crusher such as a jet mill, a hammer mill, a roller mill, a pin mill and a vibration mill. It is also possible to use two or more types of these pulverizers and pulverize in two stages. Carbon particles are obtained by crushing the carbon material.
  • the maximum thermal history of the carbon material is preferably 600°C or lower.
  • the maximum heat history is 600° C. or less, the carbon material is not crushed into scales during crushing and a large amount of edge surface is not exposed, and when used as a negative electrode after graphitization, a side reaction with an electrolytic solution occurs. Less.
  • the carbon particles are preferably heat-treated at 800°C or higher and 1500°C or lower.
  • Heat treatment at 800° C. or higher lowers the resistance value during graphitization and increases productivity.
  • the heat treatment temperature is more preferably 900° C. or higher, further preferably 1000° C. or higher.
  • the volatile components of the carbon material appropriately remain and the surface of the graphite material (I) becomes in an appropriate state.
  • the heat treatment temperature is more preferably 1400° C. or lower, still more preferably 1300° C. or lower.
  • the method of heat treatment is not limited, for example, a rotary kiln, a roller hearth kiln, or a batch type baking furnace can be used, and it is preferable to perform the heat treatment in an inert gas atmosphere.
  • the angle of repose of the carbon particles is preferably 30° or more, more preferably 32° or more. If the angle of repose is less than 30°, the fluidity of the carbon material becomes high, so that the carbon material may scatter during charging into the furnace body or powder may be ejected during energization. Further, the angle of repose is preferably 50° or less, more preferably 45° or less, and further preferably 40° or less. When the angle of repose exceeds 50°, the fluidity of the carbon material decreases, the filling property in the furnace body decreases, the productivity decreases, and the energization resistance of the entire furnace may increase extremely.
  • the angle of repose can be measured using a tap denser. Specifically, using KYT-4000 manufactured by Seishin Enterprise Co., Ltd., 50 g of a measurement sample was allowed to freely fall from a dedicated inlet on the upper part of the device, and deposited in a triangular pyramid shape on an attached table, and then the table and the triangular pyramid.
  • the angle of repose can be obtained by measuring the rising angle of the protractor with a protractor.
  • the compression ratio ((solidified bulk density-relaxed bulk density)/relaxed bulk density) calculated from the loosened bulk density (0 times tapping) and the compacted bulk density (tap density) of the carbon particles is 20% or more and 50% or less. preferable. Within this range, it is possible to obtain an electrode slurry which has good fluidity and is easily applied onto the current collector when preparing an electrode slurry kneaded with a binder and a solvent.
  • the loosened bulk density is the density obtained by dropping 100 g of a sample from a height of 20 cm into a graduated cylinder and measuring the volume and mass without applying vibration.
  • the solidified bulk density (tap density) is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a Kantachrome auto tap.
  • the circularity of the carbon particles is preferably 0.89 or more, more preferably 0.90 or more, from the viewpoint that the density can be increased and the heat can be uniformly distributed during graphitization. Further, the circularity is preferably 0.98 or less, more preferably 0.96 or less from the viewpoint of increasing contact between particles and increasing heat generation efficiency during graphitization.
  • the uniformity of the particle size (D60/D10) of the carbon particles is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more.
  • the uniformity is low, that is, the width of the particle size distribution is narrow, and the fluidity during graphitization is high and the heat is easily uniformly distributed.
  • D60/D10 is preferably 3.0 or less, more preferably 2.8 or less, still more preferably 2.6 or less from the viewpoint of good fluidity and excellent transportability.
  • the graphitization step in the production method (II) is not limited, it is preferably carried out by directly applying an electric current to the carbon particles to generate heat.
  • the method of directly passing an electric current through the carbon particles is not limited, but for example, it can be performed using a rectangular parallelepiped furnace body made of ceramic brick and having an open top.
  • a furnace body structure When such a furnace body structure is adopted, heat is uniformly applied to the carbon particles, so that there is an advantage that no aggregation occurs during graphitization. Further, since the temperature distribution is uniform and there is no trap portion for impurity volatilization, a graphite material with few impurities can be obtained.
  • the graphitization treatment is preferably performed in a non-oxidizing atmosphere.
  • a method of performing heat treatment in an atmosphere of an inert gas such as nitrogen gas, or a method of providing a layer for barrier to oxygen on the surface in contact with air can be mentioned.
  • the barrier layer for example, a method of separately providing a carbon plate or a carbon powder layer and consuming oxygen can be cited.
  • the graphitization temperature is preferably 2500° C. or higher, more preferably 2900° C. or higher, even more preferably 3000° C. or higher.
  • the upper limit of the graphitization temperature is preferably 3300° C. or lower from the viewpoint of preventing alteration due to sublimation of the material. It is preferable not to crush or crush the obtained graphite material after the graphitization treatment. By crushing or crushing after graphitization, the edge surface of the surface may be newly exposed and the performance may deteriorate.
  • a graphitization promoter such as a boron compound such as B 4 C or a silicon compound such as SiC.
  • the blending amount is preferably 10 mass ppm or more and 100000 mass ppm or less in the carbon material. This can increase the heat treatment efficiency and productivity of graphitization.
  • Negative Electrode Active Material of Lithium Ion Secondary Battery The negative electrode active material of the lithium ion secondary battery in one embodiment of the present invention (hereinafter also referred to as “negative electrode active material (III)”) is the above graphite material (I). Including.
  • the negative electrode active material (III) is made of the above graphite material (I) or further contains other graphite or carbon material. When containing other graphite or carbon material, it is preferable to add 0.01 to 20.00 parts by mass of the other graphite material or carbon material to 100.00 parts by mass of the graphite material (I). By mixing and using other graphite or carbon materials, a negative electrode active material having excellent characteristics of other graphite or carbon materials while maintaining the excellent characteristics of the graphite material (I) can be obtained. It is possible. From the same viewpoint, it is more preferable to add 0.01 to 10.00 parts by mass. As other graphite or carbon material, spherical natural graphite or artificial graphite is preferable.
  • the amount of carbon fiber blended is preferably 0.01 to 20.00 parts by mass, more preferably 0.500 to 5.00 parts by mass, relative to 100.00 parts by mass of the negative electrode active material (III).
  • carbon fibers examples include PAN-based carbon fibers, pitch-based carbon fibers, organic carbon fibers such as rayon-based carbon fibers, and vapor grown carbon fibers.
  • vapor grown carbon fiber having high crystallinity and high thermal conductivity is particularly preferable.
  • adhering carbon fibers to the surface of the composite carbon particles vapor grown carbon fibers are particularly preferable.
  • a commercially available mixer or stirrer can be used as a device for mixing the composite carbon particles and other materials.
  • mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers and Nauta mixers.
  • Negative Electrode for Lithium Ion Secondary Battery contains the negative electrode active material (III). More specifically, the negative electrode (IV) comprises a current collector and a negative electrode mixture layer formed by applying a negative electrode mixture containing the negative electrode active material (III) and a binder onto the current collector. ..
  • the negative electrode mixture preferably contains a conductive auxiliary agent. Examples of the conductive aid include Denka Black (registered trademark, HS-100), VGCF (registered trademark)-H, and the like.
  • the current collector may be, for example, aluminum, nickel, copper, stainless steel foil, mesh, or the like.
  • the coating thickness of the negative electrode mixture is preferably 50 to 200 ⁇ m.
  • the method of applying the negative electrode mixture is not particularly limited, and examples thereof include a method of applying with a doctor blade or a bar coater and thereafter forming with a roll press or the like.
  • Examples of the pressure molding method include molding methods such as roll pressing and press pressing.
  • the pressure during pressure molding is preferably 1 ⁇ 10 3 to 3 ⁇ 10 3 kg/cm 2 .
  • binder examples include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and SBR (styrene butadiene rubber).
  • Lithium Ion Secondary Battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte.
  • the lithium ion secondary battery in one embodiment of the present invention comprises the above negative electrode (IV).
  • a lithium-containing transition metal oxide is usually used as a positive electrode active material, and preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W.
  • a compound which is an oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium, and whose molar ratio of lithium to the transition metal is 0.3 to 2.2 is used.
  • a separator may be provided between the positive electrode and the negative electrode.
  • the separator include non-woven fabric containing polyolefin such as polyethylene and polypropylene as a main component, cloth, a microporous film, or a combination thereof.
  • electrolytes inorganic solid electrolytes, and polymer solid electrolytes can be used as the electrolyte solution and the electrolyte constituting the lithium ion secondary battery in the preferred embodiment of the present invention, but the organic electrolyte solution from the viewpoint of electrical conductivity is preferable.
  • the all-solid-state lithium-ion secondary battery has a structure in which the positive electrode and the negative electrode are in contact with the solid electrolyte layer.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an all-solid-state lithium ion secondary battery 1 according to this embodiment.
  • the all-solid-state lithium-ion secondary battery 1 includes a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13.
  • the positive electrode 11 has a positive electrode current collector 111 and a positive electrode mixture layer 112.
  • the positive electrode current collector 111 is connected to a positive electrode lead 111a for exchanging charges with an external circuit.
  • the positive electrode current collector 111 is preferably a metal foil, and an aluminum foil is preferably used as the metal foil.
  • the positive electrode mixture layer 112 contains a positive electrode active material, and may further contain a solid electrolyte, a conductive additive, a binder, and the like.
  • the positive electrode active material include rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and LiNi 1/3 Mn 1/3 Co 1/3 O 2 , spinel type active materials such as LiMn 2 O 4.
  • Olivine type active materials such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCuPO 4 and sulfide active materials such as Li 2 S can be used. Further, these active materials may be coated with LTO (Lithium Tin Oxide), carbon or the like.
  • the content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the positive electrode active material. Is more preferable.
  • the content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 125 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. Is more preferable.
  • the conduction aid it is preferable to use a particulate carbonaceous conduction aid or a fibrous carbonaceous conduction aid.
  • a particulate carbonaceous conductive aid Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.), Ketjen Black (registered trademark) (manufactured by Lion Corporation), graphite fine powder SFG series (manufactured by Timcal), graphene Particulate carbon such as can be used.
  • VGCF vapor grown carbon fibers
  • VGCF registered trademark
  • VGCF registered trademark-H (manufactured by Showa Denko KK)
  • carbon nanotubes carbon nanohorns and the like
  • VGCF registered trademark
  • Vapor grown carbon fiber "VGCF (registered trademark)-H" manufactured by Showa Denko KK
  • the content of the conductive additive in the positive electrode mixture layer 112 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, based on 100 parts by mass of the positive electrode active material.
  • the content of the conductive additive in the positive electrode mixture layer 112 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • binder examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, styrene-butadiene rubber, carboxymethyl cellulose and the like.
  • the content of the binder with respect to 100 parts by mass of the positive electrode active material is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 7 parts by mass or less.
  • the solid electrolyte layer 12 is interposed between the positive electrode layer 11 and the negative electrode layer 13, and serves as a medium for moving lithium ions between the positive electrode layer 11 and the negative electrode layer 13.
  • the solid electrolyte layer 12 preferably contains at least one selected from the group consisting of a sulfide solid electrolyte and an oxide solid electrolyte, and more preferably contains a sulfide solid electrolyte.
  • sulfide solid electrolyte examples include sulfide glass, sulfide glass ceramics, Thio-LISICON type sulfide, and the like. More specifically, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S—P 2 S 5 —Z
  • the sulfide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
  • oxide solid electrolyte examples include perovskite, garnet, and LISICON type oxide. More specifically, for example, La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3. N 0.46 (LIPON), Li 3.6 Si 0.6 P 0.4 O 4, Li 1.07 Al 0.69 Ti 1.46 (PO 4) 3, Li 1.5 Al 0.5 Ge 1.5 (PO 4) may be mentioned 3 or the like.
  • the oxide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
  • the negative electrode layer 13 includes a negative electrode current collector 131 and a negative electrode mixture layer 132.
  • the negative electrode current collector 131 is connected to a negative electrode lead 131a for exchanging charges with an external circuit.
  • the negative electrode current collector 131 is preferably a metal foil, and a stainless foil, a copper foil, or an aluminum foil is preferably used as the metal foil.
  • the surface of the current collector may be coated with carbon or the like.
  • the negative electrode mixture layer 132 contains a negative electrode active material, and may also contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like.
  • the composite carbon particles are used as the negative electrode active material.
  • the materials mentioned in the solid electrolyte layer 12 may be used, but the solid electrolyte contained in the solid electrolyte layer 12 or the positive electrode mixture layer may be contained.
  • a material different from the existing solid electrolyte may be used.
  • the content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the negative electrode active material. Is more preferable.
  • the content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 125 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. Is more preferable.
  • the conductive auxiliary agent that may be included in the negative electrode mixture layer 132 the conductive auxiliary agents described in the description of the positive electrode mixture layer 112 can be used, but the conductive auxiliary agent included in the positive electrode mixture layer 112 is used. Different materials may be used.
  • the content of the conductive additive in the negative electrode mixture layer 132 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, with respect to 100 parts by mass of the negative electrode active material.
  • the content of the conductive additive in the negative electrode mixture layer 132 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
  • the binder for example, the materials mentioned in the description of the positive electrode mixture layer 112 can be used, but the binder is not limited to these.
  • the content of the binder based on 100 parts by mass of the negative electrode active material is preferably 0.3 parts by mass or more and 10 parts by mass or less, and 0.5 parts by mass or more and 5 parts by mass or less. More preferable.
  • BET Specific Surface Area BET Specific Surface Area Measuring Device Quantrome NOVA 2200e A 3 g sample was placed in a measurement cell (9 mm ⁇ 135 mm), dried at 300° C. for 1 hour under vacuum, and then measured. N 2 was used as the gas for measuring the BET specific surface area.
  • the obtained mixture (about 5 ml) was slowly poured into the sample container until the height became about 1 cm, and the mixture was allowed to stand for 1 day to cure. Next, the cured sample was taken out and the double-sided tape was peeled off. Then, the surface to be measured was polished using a polishing plate rotary type polishing machine.
  • Polishing was performed by pressing the polishing surface against the rotating surface.
  • the rotation speed of the polishing plate is 1000 rpm.
  • the polishing plate count is #500, #1000, #2000 in this order, and the last is alumina (trade name: Baicalox type 0.3CR, particle size 0.3 ⁇ m, manufacturing company: Baikowski, sales company: Baikou It was mirror-polished using (Ski Japan).
  • the polished sample was fixed on the slide with clay, and 10 spots were randomly observed in a reflection mode using a polarization microscope (BX51, manufactured by OLYMPUS).
  • a square area (100 ⁇ m square) was cut out from the same point at an observation angle of 0° and 45°, and the images of the selected magnifications were subjected to the following analysis for all particles within that range to obtain an average.
  • the color of the optically anisotropic domain changes depending on the orientation of the crystallites, the probability of facing straight ahead is extremely low. Therefore, even if magenta is shown, the wavelength is almost different from that of pure magenta.
  • the optically isotropic domain always exhibits a pure magenta wavelength. Therefore, in the present invention, all of pure magenta is identified as an optical isotropic region.
  • the command of LUZEX AP was used, and the extraction width of each color was set by setting the IHP data as shown in Table 1 below.
  • the W-1 command of ELIMINATE1 of the logical filter is used to remove the area of 1 dot or less.
  • the number of pixels was used to calculate the total number of pixels in the image and the number of pixels of the corresponding color.
  • the area ratio of the portion where the color changed when the sample was rotated 0°, 45°, and 90° with respect to the analyzer of the polarization microscope was calculated as shown in Table 2.
  • the voids of the carbon material mean voids in the particles, and voids between particles are not included.
  • Raman spectroscopic analysis Raman spectroscopic device: JASCO Corporation NRS-5100 Excitation wavelength 532.36Nm, entrance slit width 200 [mu] m, the exposure time of 15 seconds, the number of integrations twice, was measured under the conditions of the diffraction grating 600 / mm, the intensity of the peak in the range of 1300 ⁇ 1400 cm -1 and (ID) The intensity ratio of the intensity (IG) of the peak in the range of 1580 to 1620 cm -1 was defined as the R value (ID/IG).
  • Circularity Circularity measuring device Flow type particle image analyzer FPIA-3000 (manufactured by Sysmex Corporation) The circularity is obtained by dividing the circumference of a circle having the same area as the observed area of a particle image by the circumference of the particle image, and the closer to 1 the closer the circle is to a perfect circle.
  • the graphite material was purified by passing through a filter having an opening of 106 ⁇ m, 0.1 g of the sample was added to 20 ml of ion-exchanged water, and 0.1 to 0.5% by mass of a surfactant was added to uniformly disperse the graphite material.
  • a sample solution for measurement was prepared. Dispersion was performed by using an ultrasonic cleaner UT-105S (manufactured by Sharp Manufacturing System) for 5 minutes. The obtained sample solution for measurement was put into an apparatus, and the median of circularity was calculated from the number-based frequency distribution of circularity analyzed for 10,000 particles in the LPF mode.
  • Electrode preparation, electrode density After adding NMP to the base material stock solution to adjust the viscosity, it was applied on a high-purity copper foil to a thickness of 250 ⁇ m using a doctor blade. This was vacuum dried at 120° C. for 1 hour, punched into 18 mm ⁇ , and the punched electrodes were sandwiched between super steel press plates and pressed against the electrodes at a pressure of 2 t/cm 2 . Then, it was dried at 120° C. for 12 hours in a vacuum dryer to obtain an evaluation electrode. The mass of the active material at this time was divided by the volume of the active material to obtain the electrode density (g/cm 3 ).
  • a battery was manufactured as follows. The following operations were carried out in a dry argon atmosphere with a dew point of -80°C or lower. In a cell with a polypropylene screw-in lid (inner diameter of about 18 mm), a copper foil electrode and a metallic lithium foil prepared in [7-8-2] above were separated with a separator (polypropylene microporous film (Cell Guard 2400)). It was sandwiched and laminated. An electrolytic solution was added to this and a lid was provided to obtain a battery for evaluation. As the electrolytic solution, a mixed solution of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate) in which 1 mol/liter of LiPF 6 was dissolved as an electrolyte was used.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the discharge capacity was defined as the value obtained by dividing the quantity of electricity during the first discharge by the weight of the graphite material for the negative electrode of the lithium-ion secondary battery. Further, the discharge capacity (0.2 C) was multiplied by the electrode density to obtain the volume energy density. Further, the ratio of the charge capacity at the time of initial charge and the discharge capacity at the time of first discharge, that is, the value obtained by expressing the ratio of initial discharge capacity/initial charge capacity in percentage was taken as the Coulombic efficiency.
  • Rate characteristic The rate characteristic was measured in a constant temperature bath set at 25°C.
  • CC constant current: constant current
  • CV constant volt: constant voltage
  • discharge release from carbon
  • a constant-current constant-voltage discharge test was performed at current densities of 0.2 C and 3 C, and cutoff was performed at a voltage of 1.5 V.
  • the value of discharge capacity (3C)/discharge capacity (3C) was defined as the discharge rate characteristic.
  • Example 1 The petroleum coke obtained by using the delayed coking process on a Chinese crude oil having a paraffin content of 45% by mass was used as a carbon material. This was crushed with a Hosokawa Micron bantam mill, air classified with a Nisshin Engineering turbo classifier to D50 of 17.0 ⁇ m, and heat-treated at 1000° C. while flowing nitrogen gas with a Japanese insulator roller hearth kiln to obtain carbon particles 1 Got The physical properties of carbon particles 1 are summarized in Table 3.
  • a ceramic brick was used to form a furnace with a length of 500 mm, a width of 1000 mm, and a depth of 200 mm, and carbon electrode plates of 450 x 180 mm and a thickness of 20 mm were installed on both inner end surfaces.
  • the carbon particles 1 were packed in the furnace and a lid provided with a nitrogen gas inlet and an exhaust port was provided.
  • a transformer was installed, and heating was performed by passing an electric current between the electrode plates for about 5 hours while flowing a nitrogen gas, and graphitized at a maximum temperature of 3200° C. to obtain a graphite material 1.
  • Table 4 shows various physical properties of the obtained graphite material 1 and evaluation results of the lithium ion battery.
  • Example 2 Carbon particles 2 were obtained by the same production method as in Example 1 except that the carbon material was pulverized and classified so that D50 was 15.0 ⁇ m. The physical properties of carbon particles 2 are summarized in Table 3. Next, a graphite material 2 was obtained in the same manner as in Example 1 except that the obtained carbon particles 2 were used. Table 4 shows various physical properties of the obtained graphite material 2 and evaluation results of the lithium ion battery.
  • Example 3 Carbon particles 3 were obtained by the same production method as in Example 1 except that the carbon material was pulverized and classified so that D50 was 24.0 ⁇ m. Table 3 shows the physical properties of the carbon particles 3. Next, a graphite material 3 was obtained in the same manner as in Example 1 except that the obtained carbon particles 3 were used. Table 4 shows various physical properties of the obtained graphite material 3 and evaluation results of the lithium ion battery.
  • Example 4 Carbon particles 4 were obtained by the same production method as in Example 1 except that the carbon material was pulverized and classified so that D50 was 27.0 ⁇ m. Table 3 shows the physical properties of the carbon particles 4. Next, a graphite material 4 was obtained in the same manner as in Example 1 except that the obtained carbon particles 4 were used. Table 4 shows various physical properties of the obtained graphite material 4 and evaluation results of the lithium ion battery.
  • Example 5 The petroleum coke obtained by using the delayed coking process with respect to Chinese crude oil having a paraffin content of 65% by mass was used as a carbon material. This was crushed with a Hosokawa Micron bantam mill, air-flow classified with a Nisshin Engineering turbo classifier to D50 of 23.0 ⁇ m, and heat-treated at 1000° C. while flowing nitrogen gas with a Nippon Insulator roller hearth kiln to produce carbon particles 5 Got Table 3 shows the physical properties of the carbon particles 5. Next, a graphite material 5 was obtained in the same manner as in Example 1 except that the obtained carbon particles 5 were used. Table 4 shows various physical properties of the obtained graphite material 5 and evaluation results of the lithium ion battery.
  • Carbon particles 3 were filled in a graphite crucible with a screw lid and graphitized at a maximum temperature of 3200° C. using an Acheson furnace to obtain a graphite material 10.
  • Table 4 shows various physical properties of the obtained graphite material 10 and evaluation results of the lithium ion battery.
  • the obtained amorphous solid electrolyte is press-molded by a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mm ⁇ and a SUS punch to prepare the solid electrolyte layer 12 as a sheet having a thickness of 960 ⁇ m. ..
  • Negative Electrode Mixture Layer 132 Graphite material 48.5 parts by mass, solid electrolyte (Li 3 PS 4 , D50: 8 ⁇ m) 48.5 parts by mass, VGCF (registered trademark)-H (Showa Denko) (Manufactured by corporation) 3 parts by mass are mixed.
  • the mixture is homogenized by milling at 100 rpm for 1 hour using a planetary ball mill.
  • the homogenized mixture is press-molded at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mm ⁇ and a SUS punch to prepare the negative electrode mixture layer 132 as a sheet having a thickness of 65 ⁇ m.
  • the obtained layered product A was once taken out from the die, and the negative electrode lead 131a, the copper foil (the negative electrode current collector 131), and the layered product A with the negative electrode mixture layer 132 facing downward from the bottom in the die, aluminum.
  • the foil (positive electrode current collector 111) and the positive electrode lead 111a are stacked in this order, and sandwiched with a pressure of 1 MPa (10 kgf/cm 2 ) from both sides of the negative electrode lead 131a side and the positive electrode lead 111a side with a SUS punch, and the negative electrode lead 131a,
  • the copper foil, the laminate A, the aluminum foil, and the positive electrode lead 111a are joined to obtain the all-solid-state lithium ion secondary battery 1.
  • the discharge capacity (mAh) by the first constant current discharge is defined as the discharge capacity Qd1.
  • a value obtained by dividing the discharge capacity Qd1 (mAh) by the mass of the composite material in the negative electrode layer is defined as the discharge capacity density (mAh/g). Further, the ratio of the discharge capacity Qd1 to the charge capacity Qc1 is expressed as a percentage, and 100 ⁇ Qd1/Qc1 is taken as the Coulombic efficiency (%).
  • Cycle characteristics Charge is carried out by constant current charging of 5.0 mA (0.2 C) until it reaches 4.2 V, and then at a constant voltage of 4.2 V, the current value is 1.25 mA (0 C). Constant-voltage charging is performed until it decreases to .05C). The discharge is a constant current discharge of 25 mA (1.0 C) until the voltage reaches 2.75V. These charges and discharges are performed 100 times, and 100 ⁇ Qd100/Qd1 is taken as 100 cycle capacity retention rate (%) (cycle characteristics) as the discharge capacity Qd100 at the 100th time.
  • Table 5 shows the evaluation results of the all-solid-state lithium ion secondary batteries using the graphite materials 1, 6, 9, 11 obtained in the above Examples and Comparative Examples.

Abstract

This graphite material for a negative electrode of a lithium-ion secondary battery: has an average plane interval d002 of (002) planes of 0.3354-0.3370 nm as determined by X-ray diffraction measurement; shows that the ratio ID/IG between an intensity (ID) of a peak within 1300-1400 cm-1 and an intensity (IG) of a peak within 1580-1620 cm-1 as respectively determined by Raman spectroscopic measurement is 0.09-0.40; has a surface roughness of 6.0-14.0; has optically anisotropic domains, the area of which accounts for 95.0-99.0% with respect to 100.0% of the sum total area of the optically anisotropic domains, optically isotropic domains, and voids; and satisfies (1) 5 μm2≤Da(10)≤20 μm2, (2) 40 μm2≤Da(50)≤250 μm2, and (3) 200 μm2≤Da(90)≤500 μm2, where the area of the largest domain is defined as Da(n) when an integrated value obtained by integrating the areas of the optically anisotropic domains sequentially, starting with the smallest one, reaches n % of the total area of all the optically anisotropic domains.

Description

[規則37.2に基づきISAが決定した発明の名称] リチウムイオン二次電池負極用黒鉛材料[Title of invention determined by ISA based on Rule 37.2] Graphite material for negative electrode of lithium-ion secondary battery
 本発明は、リチウムイオン二次電池負極用黒鉛材料、ならびに、その黒鉛材料を負極材に用いたリチウムイオン二次電池および全固体型リチウムイオン二次電池に関する。 The present invention relates to a graphite material for a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery and an all-solid-state lithium ion secondary battery using the graphite material as a negative electrode material.
 携帯機器の電源として、リチウムイオン二次電池がそのエネルギー密度の大きさやサイクル寿命が長いことから主流になっている。携帯機器はその機能が多様化して消費電力が大きくなっているため、リチウムイオン二次電池には、そのエネルギー密度をさらに増加させ、同時に充放電サイクル特性を向上させることが求められている。また最近では、電動ドリル等の電動工具や、ハイブリッド自動車用等、高出力で大容量の二次電池への要求が高まっている。この分野は従来、鉛二次電池、ニッケルカドミウム二次電池、ニッケル水素二次電池が主に使用されているが、小型軽量で高エネルギー密度のリチウムイオン二次電池への期待は高く、大電流負荷特性(レート特性)に優れたリチウムイオン二次電池が求められている。 ▽As a power source for mobile devices, lithium-ion secondary batteries have become the mainstream because of their large energy density and long cycle life. Since the functions of mobile devices are diversified and the power consumption is increased, it is required for lithium ion secondary batteries to further increase the energy density thereof and at the same time improve the charge/discharge cycle characteristics. In addition, recently, there is an increasing demand for high-output and large-capacity secondary batteries for electric tools such as electric drills and hybrid vehicles. Conventionally, lead secondary batteries, nickel-cadmium secondary batteries, and nickel-hydrogen secondary batteries have been mainly used in this field, but expectations for small, lightweight, high energy density lithium ion secondary batteries are high, and large currents are high. A lithium ion secondary battery having excellent load characteristics (rate characteristics) is required.
 特に、バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)等の自動車用途においては、10年以上にわたる長期間のサイクル特性と、ハイパワーモーターを駆動させるためのレート特性とを主たる要求特性とし、さらに航続距離を伸ばすための高い体積エネルギー密度も要求され、モバイル用途に比して過酷なものとなっている。 Particularly, in automobile applications such as battery electric vehicles (BEV) and hybrid electric vehicles (HEV), long-term cycle characteristics for 10 years or more and rate characteristics for driving a high-power motor are mainly required characteristics, Furthermore, a high volumetric energy density is required to extend the cruising range, which is severe compared to mobile applications.
 このリチウムイオン二次電池は、一般に正極活物質にコバルト酸リチウム、マンガン酸リチウムなどの金属酸化物やこれらの複合酸化物が使用され、電解液にリチウム塩が使用され、負極活物質に黒鉛などの炭素質材料が使用されている。黒鉛としては、天然黒鉛と人造黒鉛とがある。 This lithium-ion secondary battery generally uses a metal oxide such as lithium cobalt oxide or lithium manganate or a composite oxide thereof as a positive electrode active material, a lithium salt as an electrolyte solution, and a graphite as a negative electrode active material. Carbonaceous materials are used. As graphite, there are natural graphite and artificial graphite.
 天然黒鉛は一般的に安価であり、高結晶性であるため高容量であるとの利点がある。しかし、形状が鱗片状であるため、バインダーとともにペーストにし、それを集電体に塗布すると、天然黒鉛が一方向に配向してしまう。そのような電極で充電すると電極が一方向にのみ膨張し、電流特性やサイクル寿命など、電極としての性能を低下させる。天然黒鉛を造粒して球状にした球状化天然黒鉛が提案されているが、電極作製時のプレスによって球状化天然黒鉛が潰れて配向してしまう。また、高結晶性の欠点として、天然黒鉛の表面活性が高いために初回充電時にガスが多量に発生し、初期効率が低く、それによって、さらにサイクル寿命が悪化する。これらを解決するため、特許文献1では、球状に加工した天然黒鉛の表面に人造カーボンをコーティングする方法が提案されている。しかし、本方法で作製された材料は、モバイル用途等が要求する高容量、低電流および中サイクル特性については対応可能であるが、上記のような大型電池の大電流および長期サイクル特性といった要求を満たすことは非常に難しい。また、天然黒鉛は鉄などの金属不純物が多く、品質安定性の面でも問題がある。 -Natural graphite is generally inexpensive and has the advantage of high capacity because it is highly crystalline. However, since it is scaly in shape, when it is made into a paste with a binder and applied to a current collector, natural graphite is oriented in one direction. When charged with such an electrode, the electrode expands in only one direction, and the performance as an electrode such as current characteristics and cycle life is deteriorated. Although spheroidized natural graphite obtained by granulating natural graphite into spheres has been proposed, the spheroidized natural graphite is crushed and oriented by the press during electrode production. Further, as a drawback of high crystallinity, a large amount of gas is generated at the time of initial charging due to the high surface activity of natural graphite, and the initial efficiency is low, which further deteriorates the cycle life. In order to solve these problems, Patent Document 1 proposes a method of coating artificial carbon on the surface of natural graphite processed into a spherical shape. However, although the material produced by this method can meet the high capacity, low current and medium cycle characteristics required for mobile applications, etc., it can meet the requirements for large current and long cycle characteristics of large batteries as described above. Very difficult to meet. In addition, natural graphite has many metal impurities such as iron, which is problematic in terms of quality stability.
 人造黒鉛として、石油、石炭ピッチ、コークス等を黒鉛化処理したものは比較的安価に入手できる。しかし、結晶性のよい針状コークスは鱗片状になり配向しやすい。この問題を解決するため、特許文献2に記載された方法が成果を上げている。この方法は、人造黒鉛原料の微粉の他、天然黒鉛等の微粉も使用可能であり、これまでの小型リチウムイオン二次電池用黒鉛としては、高容量で優れた特性を有する。しかし、自動車用途の要求特性を満足するためには、使用量の増加に向けた生産性の向上や製造コスト低減、不純物管理、サイクル特性および保存特性の向上などが必須である。 ▽As artificial graphite, those obtained by graphitizing petroleum, coal pitch, coke, etc. can be obtained at relatively low cost. However, the needle-shaped coke having good crystallinity becomes scaly and is easily oriented. In order to solve this problem, the method described in Patent Document 2 has been successful. In this method, not only fine powder of artificial graphite raw material but also fine powder of natural graphite and the like can be used, and it has high capacity and excellent characteristics as the graphite for small lithium ion secondary batteries to date. However, in order to satisfy the required characteristics for automotive applications, it is essential to improve productivity with an increase in the amount used, reduce manufacturing cost, control impurities, and improve cycle characteristics and storage characteristics.
 また、特許文献3に記載されている、いわゆるハードカーボンや非結晶質カーボンを用いた負極材料は、大電流に対する特性に優れ、また、サイクル特性も比較的良好である。しかし、体積エネルギー密度があまりにも低く、また、価格も非常に高価なため、一部の特殊な大型電池にしか使用されていない。 Further, the negative electrode material using so-called hard carbon or amorphous carbon described in Patent Document 3 has excellent characteristics with respect to a large current, and also has relatively good cycle characteristics. However, the volume energy density is too low and the price is very expensive, so that it is used only for some special large batteries.
特許第3534391号公報Japanese Patent No. 3534391 特許第3361510号公報Japanese Patent No. 3361510 特開平7-320740号公報JP-A-7-320740
 本発明の課題は、大型電池が要求する、高サイクル特性と高レート特性と高エネルギー密度を併せ持った電極が作製可能なリチウムイオン二次電池負極用黒鉛材料を提供することにある。 An object of the present invention is to provide a graphite material for a lithium-ion secondary battery negative electrode, which can be used to manufacture an electrode having both high cycle characteristics, high rate characteristics, and high energy density required for a large battery.
 本発明は以下の構成からなる。
[1]X線回折測定による(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下であり、
 ラマン分光スペクトル測定による1300~1400cm-1の範囲にあるピークの強度(ID)と1580~1620cm-1の範囲にあるピークの強度(IG)との比ID/IG(R値)が0.09以上0.40以下であり、
 粒度分布から算出される球換算面積に対するBET表面積の比(BET表面積/球換算面積)により求められる表面粗さが6.0~14.0であり、
 偏光顕微鏡による黒鉛材料の断面観察から測定される光学異方性ドメイン、光学等方性ドメインおよび空隙の面積の合計100.0%に対して、光学異方性ドメインの面積の割合が95.0~99.0%であり、
 前記光学異方性ドメインの面積を小さいものから順に積算した際の積算値が、全光学異方性ドメインの面積(μm2)のn%に達した際の最大ドメインの面積(μm2)をDa(n)(ただし、nは0~100の範囲の数値を表す。)とした場合、下記条件(1)~(3)を満足するリチウムイオン二次電池負極用黒鉛材料。
(1)5μm2≦Da(10)≦20μm2
(2)40μm2≦Da(50)≦250μm2
(3)200μm2≦Da(90)≦500μm2
[2]前記光学異方性ドメインの面積、前記光学等方性ドメインの面積および前記空隙の面積の合計100.0%に対して、前記空隙の面積の割合が1.0%以下である前記1に記載のリチウムイオン二次電池負極用黒鉛材料。
[3]前記光学異方性ドメインを面積の小さい順に配列させた際の個数の合計が、全光学異方性ドメインの個数のm%に達した際の最大ドメインの面積(μm2)をDb(m)(ただし、mは0~100の範囲の数値を表す。)とした場合、下記条件(4)を満足する前記1または2に記載のリチウムイオン二次電池負極用黒鉛材料。
(4)Db(99.5)/Da(100)≦0.75
[4]前記光学異方性ドメインのうち長辺部の長さの最大値をLmaxとし、レーザー回折法により測定した体積基準の粒子径分布における50%粒子径(D50)をLaveとした場合、Lmax/Laveが1.0以下である前記1~3のいずれか1つに記載のリチウムイオン二次電池負極用黒鉛材料。
[5]レーザー回折法により測定した体積基準の粒子径分布における10%粒子径(D10)が1.0μm以上16.0μm以下であり、50%粒子径(D50)が6.0μm以上30.0μm以下であり、90%粒子径(D90)が25.0μm以上80.0μm以下である前記1~4のいずれか1つに記載のリチウムイオン二次電池電極用黒鉛材料。
[6]BET比表面積が0.5m2/g以上6.0m2/g以下である前記1~5のいずれか1つに記載のリチウムイオン二次電池電極用黒鉛材料。
[7]円形度が0.89以上0.98以下である前記1~6のいずれか1つに記載のリチウムイオン二次電池負極用黒鉛材料。
[8]粒度の均一度(D60/D10)が1.5以上3.0以下である前記1~7のいずれか1つに記載のリチウムイオン二次電池負極用黒鉛材料。
[9]表面酸素量が0.010以上0.030以下である前記1~8のいずれか1つに記載のリチウムイオン二次電池負極用黒鉛材料。
[10]前記1~9のいずれか1つに記載の黒鉛材料を含む負極活物質。
[11]前記10に記載の負極活物質を含むリチウムイオン二次電池用負極。
[12]前記11に記載の負極を用いたリチウムイオン二次電池。
[13]前記11に記載の負極を用いた全固体型リチウムイオン二次電池。
The present invention has the following configurations.
[1] The average spacing d002 of (002) planes measured by X-ray diffraction is 0.3354 nm or more and 0.3370 nm or less,
The ratio ID / IG between peak intensity in the range of 1300 ~ 1400 cm -1 by Raman spectroscopic measurement (ID) and the peak intensity in the range of 1580 ~ 1620cm -1 (IG) ( R value) 0.09 Is 0.40 or less,
The surface roughness calculated from the ratio of the BET surface area to the sphere-converted area calculated from the particle size distribution (BET surface area/sphere-converted area) is 6.0 to 14.0,
The ratio of the area of the optically anisotropic domain is 95.0% with respect to the total area of the optically anisotropic domain, the optically isotropic domain and the void of 100.0% measured by observing the cross section of the graphite material with a polarization microscope. ~99.0%,
The integrated value when the areas of the optically anisotropic domains are integrated in order from the smallest one is the maximum domain area (μm 2 ) when n% of the area (μm 2 ) of all the optically anisotropic domains is reached. A graphite material for a negative electrode of a lithium ion secondary battery that satisfies the following conditions (1) to (3) when Da(n) (where n represents a numerical value in the range of 0 to 100) is satisfied.
(1) 5 μm 2 ≦Da (10) ≦20 μm 2
(2) 40 μm 2 ≦Da (50) ≦250 μm 2
(3) 200 μm 2 ≦Da (90) ≦500 μm 2
[2] The ratio of the area of the void is 1.0% or less with respect to the total area of the optically anisotropic domain, the area of the optically isotropic domain and the area of the void of 100.0%. 1. The graphite material for a lithium ion secondary battery negative electrode according to 1.
[3] Db is the maximum domain area (μm 2 ) when the total number of optically anisotropic domains arranged in ascending order of area reaches m% of the number of all optically anisotropic domains. (M) (where m represents a numerical value in the range of 0 to 100), the graphite material for a lithium ion secondary battery negative electrode according to the above 1 or 2, which satisfies the following condition (4).
(4) Db(99.5)/Da(100)≦0.75
[4] When the maximum value of the length of the long side of the optically anisotropic domain is Lmax and the 50% particle diameter (D50) in the volume-based particle diameter distribution measured by a laser diffraction method is Lave, 4. The graphite material for a negative electrode of a lithium ion secondary battery according to any one of 1 to 3 above, wherein Lmax/Lave is 1.0 or less.
[5] The 10% particle diameter (D10) in the volume-based particle diameter distribution measured by a laser diffraction method is 1.0 μm or more and 16.0 μm or less, and the 50% particle diameter (D50) is 6.0 μm or more and 30.0 μm. The graphite material for a lithium ion secondary battery electrode according to any one of 1 to 4 above, which has a 90% particle diameter (D90) of 25.0 μm or more and 80.0 μm or less.
[6] The graphite material for a lithium ion secondary battery electrode according to any one of 1 to 5 above, which has a BET specific surface area of 0.5 m 2 /g or more and 6.0 m 2 /g or less.
[7] The graphite material for a negative electrode of a lithium ion secondary battery according to any one of 1 to 6 above, which has a circularity of 0.89 or more and 0.98 or less.
[8] The graphite material for a lithium ion secondary battery negative electrode according to any one of 1 to 7 above, wherein the uniformity of particle size (D60/D10) is 1.5 or more and 3.0 or less.
[9] The graphite material for a negative electrode of a lithium ion secondary battery according to any one of 1 to 8 above, wherein the surface oxygen content is 0.010 or more and 0.030 or less.
[10] A negative electrode active material containing the graphite material described in any one of 1 to 9 above.
[11] A negative electrode for a lithium ion secondary battery, containing the negative electrode active material as described in 10 above.
[12] A lithium ion secondary battery using the negative electrode described in 11 above.
[13] An all-solid-state lithium ion secondary battery using the negative electrode described in 11 above.
 本発明によれば、大型電池が要求する、高サイクル特性と高レート特性と高エネルギー密度を併せ持った電極が作製可能なリチウムイオン二次電池用黒鉛材料を得ることができる。 According to the present invention, it is possible to obtain a graphite material for a lithium-ion secondary battery, which can be used to manufacture an electrode having both high cycle characteristics, high rate characteristics, and high energy density required by a large battery.
本発明の一実施態様における全固体型リチウムイオン二次電池の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of an all-solid-state lithium-ion secondary battery in one embodiment of the present invention.
 以下、本発明の実施態様を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[1]黒鉛材料
 本発明の一実施態様におけるリチウムイオン二次電池負極用黒鉛材料(以下「黒鉛材料(I)」ともいう。)を以下で詳細に説明する。
[1] Graphite Material A graphite material for a negative electrode of a lithium ion secondary battery (hereinafter, also referred to as “graphite material (I)”) in one embodiment of the present invention will be described in detail below.
[1-1]d002、Lc
 黒鉛材料(I)のX線回折測定による(002)面の平均面間隔d002は0.3354nm以上である。0.3354nmは黒鉛結晶のd002の下限値である。また、前記d002は0.3356nm以上が好ましい。前記d002が0.3356nm以上であると、黒鉛結晶組織が発達しすぎていないため、サイクル特性に優れる。また、前記d002は、放電容量が大きくなり、大型電池に要求されるエネルギー密度を満足する電池が得られる観点から、0.3370nm以下、好ましくは0.3365nm以下、より好ましくは0.3360nm以下である。
[1-1] d002, Lc
The average interplanar spacing d002 of the (002) planes of the graphite material (I) measured by X-ray diffraction is 0.3354 nm or more. 0.3354 nm is the lower limit value of d002 of the graphite crystal. The d002 is preferably 0.3356 nm or more. When the d002 is 0.3356 nm or more, the graphite crystal structure is not overdeveloped, and the cycle characteristics are excellent. Further, d002 is 0.3370 nm or less, preferably 0.3365 nm or less, more preferably 0.3360 nm or less from the viewpoint that the discharge capacity becomes large and a battery satisfying the energy density required for a large battery can be obtained. is there.
 黒鉛材料(I)のX線回折測定による(002)回折線の結晶子サイズLcは、放電容量が大きくなり、大型電池に要求されるエネルギー密度を満足する電池が得られる観点から、好ましくは80nm以上、より好ましくは90nm以上、さらに好ましくは100nm以上である。また、前記Lc(002)は、黒鉛結晶組織が発達しすぎず、サイクル特性に優れる観点から、好ましくは1000nm以下、より好ましくは500nm以下、さらに好ましくは300nm以下である。 The crystallite size Lc of the (002) diffraction line of the graphite material (I) measured by X-ray diffraction is preferably 80 nm from the viewpoint that the discharge capacity becomes large and a battery satisfying the energy density required for a large battery can be obtained. Or more, more preferably 90 nm or more, and further preferably 100 nm or more. Further, the Lc(002) is preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, from the viewpoint that the graphite crystal structure does not develop too much and the cycle characteristics are excellent.
 黒鉛結晶面間隔d002および結晶子サイズLcは、粉末X線回折(XRD)法を用いて測定することができる(Iwashita et al.,Carbon vol.42(2004),p.701-714参照)。 The graphite crystal plane spacing d002 and the crystallite size Lc can be measured using a powder X-ray diffraction (XRD) method (see Iwashita et al., Carbon vol. 42 (2004), p. 701-714).
[1-2]表面粗さ
 黒鉛材料の表面粗さは、粒度分布から算出される球換算面積に対するBET表面積の比(BET表面積/球換算面積)により求められる(大島敏男など、粉体工学会誌、30巻、7号(1993)496-501参照)。
[1-2] Surface Roughness The surface roughness of a graphite material is determined by the ratio of the BET surface area to the sphere-converted area calculated from the particle size distribution (BET surface area/sphere-converted area) (Toshio Oshima et al., Journal of Powder Engineering). , Vol. 30, No. 7, (1993) 496-501).
 黒鉛材料(I)の表面粗さは、抵抗が下がり、レート特性が向上する傾向が見られる観点から、6.0以上、好ましくは7.0以上、より好ましくは8.0以上である。また、前記表面粗さは、電解液との副反応が抑えられサイクル特性が優れる観点から、14.0以下、好ましくは13.0以下、より好ましくは12.0以下である。 The surface roughness of the graphite material (I) is 6.0 or more, preferably 7.0 or more, and more preferably 8.0 or more, from the viewpoint that resistance tends to decrease and rate characteristics tend to improve. Further, the surface roughness is 14.0 or less, preferably 13.0 or less, more preferably 12.0 or less from the viewpoint of suppressing side reactions with the electrolytic solution and excellent cycle characteristics.
 BET比表面積は、窒素ガス吸着法を用いた比表面積計(例えば、Quantachrome社製NOVA-1200)を用いて決定することができる。 The BET specific surface area can be determined using a specific surface area meter using a nitrogen gas adsorption method (for example, NOVA-1200 manufactured by Quantachrome).
 粒度分布から算出される球換算面積(SD)は、レーザー回折式粒度分布測定装置(例えば、マルバーン社製マスターサイザー)を用いて得られる粒度分布のデータに基づいて次式によって算出することができる。 The sphere-converted area ( SD ) calculated from the particle size distribution can be calculated by the following formula based on the data of the particle size distribution obtained by using a laser diffraction type particle size distribution measuring device (for example, Mastersizer manufactured by Malvern Instruments Ltd.). it can.
Figure JPOXMLDOC01-appb-M000001
 Viは粒径区分i(平均径di)の相対体積、ρは粒子密度、Dは粒径をそれぞれ表す。
Figure JPOXMLDOC01-appb-M000001
Vi is the relative volume of the particle size category i (average diameter d i ), ρ is the particle density, and D is the particle size.
[1-3]偏光顕微鏡による黒鉛材料の光学組織評価
 偏光顕微鏡によって黒鉛材料の光学組織を評価することができる。
[1-3] Optical Structure Evaluation of Graphite Material by Polarization Microscope The optical structure of graphite material can be evaluated by a polarization microscope.
[1-3-1]光学異方性ドメインの面積割合
 黒鉛材料は、光学的に異方性を示すドメイン(結晶が発達し黒鉛網面が整ったドメイン。以下、光学異方性ドメインと記す)と光学的に等方性を示すドメイン(結晶が未発達、もしくはハードカーボンのような結晶の乱れが大きいドメイン。以下、光学等方性ドメインと記す)と空隙とで構成される。ここでドメインとは光学組織が連続している単位領域を示す。測定方法は実施例に記載の方法による。
[1-3-1] Area Ratio of Optically Anisotropic Domain A graphite material is a domain that exhibits optical anisotropy (a domain in which crystals have developed and a graphite network plane is arranged. Hereinafter, referred to as an optically anisotropic domain. ) And an optically isotropic domain (a domain in which crystals are undeveloped or in which crystal disorder such as hard carbon is large. Hereinafter referred to as an optically isotropic domain) and voids. Here, the domain means a unit region where optical tissues are continuous. The measuring method is according to the method described in Examples.
 黒鉛材料(I)では、光学異方性ドメインの面積と光学等方性ドメインの面積と空隙の面積の合計100.0%に対する光学異方性ドメインの面積が95.0%以上、好ましくは96.0%以上である。光学異方性ドメインは、リチウムイオン等の挿入脱離に寄与するため、95.0%以上であるとエネルギー密度が大きくなる。また、前記光学異方性ドメインの面積は、光学等方性ドメインが十分に確保でき、サイクル特性およびレート特性に優れる観点から、99.0%以下、好ましくは98.0%以下である。 In the graphite material (I), the area of the optically anisotropic domain is 95.0% or more, preferably 96% with respect to the total area of the optically anisotropic domains, optically isotropic domains, and voids of 100.0%. It is 0.0% or more. Since the optically anisotropic domain contributes to insertion/desorption of lithium ions and the like, the energy density becomes large when the content is 95.0% or more. Further, the area of the optically anisotropic domain is 99.0% or less, preferably 98.0% or less, from the viewpoint that an optically isotropic domain can be sufficiently secured and cycle characteristics and rate characteristics are excellent.
 黒鉛材料(I)では、光学異方性ドメインの面積と光学等方性ドメインの面積と空隙の面積の合計100.0%に対する光学等方性ドメインの面積は、レート特性およびサイクル特性に優れる観点から、好ましくは1.0%以上、より好ましくは1.5%以上である。また、光学等方性ドメインの面積は、光学異方性ドメインが十分に確保でき、エネルギー密度に優れる観点から、好ましくは5.0%以下、より好ましくは4.0%以下である。 In the graphite material (I), the area of the optically isotropic domain is 100.0% of the total of the area of the optically anisotropic domain, the area of the optically isotropic domain, and the area of the voids, which is excellent in rate characteristics and cycle characteristics. Therefore, it is preferably 1.0% or more, and more preferably 1.5% or more. The area of the optically isotropic domain is preferably 5.0% or less, and more preferably 4.0% or less, from the viewpoint that the optically anisotropic domain can be sufficiently secured and the energy density is excellent.
 黒鉛材料(I)では、光学異方性ドメインの面積と光学等方性ドメインの面積と空隙の面積の合計100.0%に対する空隙の面積は、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下である。空隙は充放電に直接は寄与しないので1.0%以下であると、エネルギー密度が高くなる。 In the graphite material (I), the area of the voids is preferably 1.0% or less, more preferably 0% with respect to the total of the area of the optically anisotropic domain, the area of the optically isotropic domain, and the area of the voids of 100.0%. It is 0.5% or less, and more preferably 0.3% or less. Since the voids do not directly contribute to charge and discharge, the energy density becomes high when the void content is 1.0% or less.
[1-3-2]Da
 黒鉛材料(I)において、光学異方性ドメインの大きさの分布の観点から、光学異方性ドメインの面積を面積が小さい順に積算していった際、その積算値が、全光学異方性ドメインの面積(μm2)のn%に達した際の最大ドメインの面積をDa(n)(ただし、nは0~100の範囲の数値を表す。)とした場合、下記条件(1)~(3)を満たす。
[1-3-2] Da
In the graphite material (I), from the viewpoint of the distribution of the size of the optically anisotropic domains, when the areas of the optically anisotropic domains are integrated in the order of increasing area, the integrated value is the total optical anisotropy. When the maximum domain area when n% of the domain area (μm 2 ) is reached is Da(n) (where n represents a numerical value in the range of 0 to 100), the following conditions (1) to (3) is satisfied.
(1)5μm2≦Da(10)≦20μm2
(2)40μm2≦Da(50)≦250μm2
(3)200μm2≦Da(90)≦500μm2
 条件(1)~(3)を満たすと放電容量、サイクル特性、レート特性をいずれも高くすることができる。
(1) 5 μm 2 ≦Da (10) ≦20 μm 2
(2) 40 μm 2 ≦Da (50) ≦250 μm 2
(3) 200 μm 2 ≦Da (90) ≦500 μm 2
When the conditions (1) to (3) are satisfied, discharge capacity, cycle characteristics, and rate characteristics can all be improved.
 条件(1)において、Da(10)は、好ましくは7μm2以上、より好ましくは8μm2以上であり、また、Da(10)は、好ましくは16μm2以下、より好ましくは12μm2以下である。 In the condition (1), Da(10) is preferably 7 μm 2 or more, more preferably 8 μm 2 or more, and Da(10) is preferably 16 μm 2 or less, more preferably 12 μm 2 or less.
 条件(2)において、Da(50)は、好ましくは100μm2以上、より好ましくは150μm2以上であり、また、Da(50)は、好ましくは230μm2以下、より好ましくは210μm2以下である。 In the condition (2), Da(50) is preferably 100 μm 2 or more, more preferably 150 μm 2 or more, and Da(50) is preferably 230 μm 2 or less, more preferably 210 μm 2 or less.
 条件(3)において、Da(90)は、好ましくは250μm2以上、より好ましくは300μm2以上であり、また、Da(90)は、好ましくは450μm2以下、より好ましくは420μm2以下である。 The condition (3), Da (90) is preferably 250 [mu] m 2 or more, more preferably 300 [mu] m 2 or more, also, Da (90) is preferably 450 [mu] m 2 or less, more preferably 420 [mu] m 2 or less.
 また、条件(1)~(3)に加えて、上記と同様の観点から、Da(30)は、好ましくは10μm2以上、より好ましくは20μm2以上、さらに好ましくは30μm2以上であり、また、Da(30)は、好ましくは90μm2以下、より好ましくは80μm2以下、さらに好ましくは70μm2以下である。 In addition to the conditions (1) to (3), from the same viewpoint as above, Da(30) is preferably 10 μm 2 or more, more preferably 20 μm 2 or more, further preferably 30 μm 2 or more, and , Da(30) is preferably 90 μm 2 or less, more preferably 80 μm 2 or less, still more preferably 70 μm 2 or less.
[1-3-3]Db/Da
 黒鉛材料(I)において、光学異方性ドメインの大きさの分布の観点から、光学異方性ドメインを面積の小さい順に配列させた際、その個数の合計が、全光学異方性ドメインの個数のm%に達した際の最大ドメインの面積値をDb(m)(ただし、mは0~100の範囲の数値を表す。)とした場合、下記条件(4)を満たすことが好ましい。
(4)Db(99.5)/Da(100)≦0.75
[1-3-3] Db/Da
In the graphite material (I), when the optically anisotropic domains are arranged in ascending order of the area from the viewpoint of the distribution of the size of the optically anisotropic domains, the total number thereof is the number of all optically anisotropic domains. When the area value of the maximum domain when it reaches m% is Db(m) (where m represents a numerical value in the range of 0 to 100), the following condition (4) is preferably satisfied.
(4) Db(99.5)/Da(100)≦0.75
 条件(4)を満たすと光学組織ドメインの面積が十分に大きく、大きな放電容量が得られる。同様の観点からDb(99.5)/Da(100)は、より好ましくは0.65以下、さらに好ましくは0.55以下である。 When the condition (4) is satisfied, the area of the optical texture domain is sufficiently large and a large discharge capacity can be obtained. From the same viewpoint, Db(99.5)/Da(100) is more preferably 0.65 or less, still more preferably 0.55 or less.
[1-3-4]Lmax/Lave
 黒鉛材料(I)の光学異方性ドメインのうち、長辺部の長さの最大値をLmaxとし、レーザー回折法による黒鉛材料(I)の体積基準粒子径分布における50%粒子径 (D50)をLaveとした場合、Lmax/Laveは、好ましくは1.00以下、より好ましくは0.95以下である。Lmax/Laveが1.00以下であると、光学異方性ドメインが大きすぎず、一つ一つのドメインにおける炭素網目の向きが一方向に配向せずに任意の方向を向くことから、充放電時の結晶子の膨張収縮が分散され結果として電極の変形量は小さくなる。これにより、充放電を繰り返しても粒子同士の電気的接点を失う確率が低減され、サイクル特性は向上する。また、イオンの出入りする黒鉛のエッジが電極表面に存在する確率も高まる為、レート特性も有利になる。Laveの測定はマルバーン製マスターサイザー等のレーザー回折式粒度分布測定器を使用して測定することができる。
[1-3-4] Lmax/Lave
In the optically anisotropic domain of the graphite material (I), the maximum value of the long side length is Lmax, and the 50% particle diameter (D50) in the volume-based particle diameter distribution of the graphite material (I) by the laser diffraction method. Is Lave, Lmax/Lave is preferably 1.00 or less, and more preferably 0.95 or less. When Lmax/Lave is 1.00 or less, the optically anisotropic domains are not too large, and the orientation of the carbon network in each domain is not oriented in one direction but is oriented in any direction. The expansion and contraction of the crystallite at that time are dispersed, and as a result, the amount of deformation of the electrode becomes small. As a result, the probability of losing electrical contact between particles is reduced even when charging and discharging are repeated, and cycle characteristics are improved. In addition, since the probability that the edges of graphite into and out of ions are present on the electrode surface is increased, the rate characteristic is also advantageous. The measurement of Love can be performed using a laser diffraction type particle size distribution measuring instrument such as Malvern Mastersizer.
[1-3-5]Cmin
 光学異方性ドメインの向きは、偏光顕微鏡の検光子に対してサンプルを0度から45度回転した場合のドメイン干渉色の変化から確認できる。この場合、ドメインの向きにより、ブルー、イエロー、マゼンタの3種の干渉色に分類できるが、各色の面積の合計値のうち、最も小さいものの面積割合をCminと表し、この値が大きいとドメインの向きがランダムであり、異方性組織が大きく成長していないことを示し、小さいと揃っていて異方性組織が大きく成長していることを示す。
[1-3-5] Cmin
The orientation of the optically anisotropic domain can be confirmed from the change in domain interference color when the sample is rotated from 0 to 45 degrees with respect to the analyzer of the polarization microscope. In this case, depending on the orientation of the domain, it can be classified into three types of interference colors of blue, yellow and magenta. Of the total area of each color, the smallest area ratio is represented by Cmin. The orientation is random, which means that the anisotropic structure does not grow significantly, and when the direction is small, the anisotropic structures are aligned and the anisotropic structure grows greatly.
 黒鉛材料(I)の光学異方性ドメインの向きのランダムさを表すCminは、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは12%以下である。Cminが20%以下であると異方性組織が十分に成長し放電容量が高くなる。 Cmin, which represents the randomness of the orientation of the optically anisotropic domain of the graphite material (I), is preferably 20% or less, more preferably 15% or less, still more preferably 12% or less. If Cmin is 20% or less, the anisotropic structure grows sufficiently and the discharge capacity increases.
[1-4]ラマンR値
 黒鉛材料(I)において、ラマン分光スペクトル測定による1300~1400cm-1の範囲(具体的には1360cm-1の付近)にあるピーク強度(ID)と1580cm-1~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IG(R値)は0.09以上、好ましくは0.10以上、より好ましくは0.12以上である。ID/IG(R値)が0.09以上であるとリチウムの出入りの障壁が低くなり、電流負荷特性が向上しやすくなる。また、ID/IG(R値)は0.40以下、好ましくは0.30以下、より好ましくは0,20以下である。ID/IG(R値)が0.40以下であると活性の高いエッジ部分の過度の露出が抑えられ、クーロン効率を高くできる。
[1-4] In the Raman R value graphite material (I), 1580cm -1 ~ a peak intensity (ID) in the range of 1300 ~ 1400 cm -1 by Raman spectroscopic measurement (near the specifically 1360 cm -1) The intensity ratio ID/IG (R value) to the peak intensity (IG) in the range of 1620 cm −1 is 0.09 or more, preferably 0.10 or more, more preferably 0.12 or more. When ID/IG (R value) is 0.09 or more, the barrier for lithium in/out is lowered, and the current load characteristics are likely to be improved. The ID/IG (R value) is 0.40 or less, preferably 0.30 or less, and more preferably 0 or 20 or less. When ID/IG (R value) is 0.40 or less, excessive exposure of highly active edge portions can be suppressed, and Coulombic efficiency can be increased.
[1-5]レーザー回折法による体積基準粒子径分布
 黒鉛材料(I)のレーザー回折法による体積基準粒子径分布における50%粒子径(D50)は、好ましくは6.0μm以上、より好ましくは10.0μm以上、さらに好ましくは15.0μm以上である。前記D50が6.0μm以上であると、塗工性が増すことにより生産効率が向上し、さらにクーロン効率が高くなり易い。また、前記D50は、レート特性を高くする観点から、好ましくは30.0μm以下、より好ましくは29.0μm以下、さらに好ましくは27.0μm以下である。
[1-5] Volume-Based Particle Size Distribution by Laser Diffraction Method The 50% particle size (D50) in the volume-based particle size distribution by the laser diffraction method of the graphite material (I) is preferably 6.0 μm or more, more preferably 10 μm. It is at least 0.0 μm, more preferably at least 15.0 μm. When the D50 is 6.0 μm or more, the coatability is increased, the production efficiency is improved, and the Coulombic efficiency is easily increased. Further, the D50 is preferably 30.0 μm or less, more preferably 29.0 μm or less, and further preferably 27.0 μm or less from the viewpoint of enhancing rate characteristics.
 黒鉛材料(I)のレーザー回折法による体積基準粒子径分布における10%粒子径(D10)は、サイクル特性を高くする観点から、好ましくは1.0μm以上、より好ましくは4.0μm以上、さらに好ましくは7.0μm以上である。また、前記D10は16.0μm以下が好ましい。前記D10が16.0μm以下であると、薄い電極を製造することができ高エネルギー密度化に有利である。 The 10% particle size (D10) in the volume-based particle size distribution of the graphite material (I) measured by the laser diffraction method is preferably 1.0 μm or more, more preferably 4.0 μm or more, and further preferably from the viewpoint of enhancing cycle characteristics. Is 7.0 μm or more. The D10 is preferably 16.0 μm or less. When the D10 is 16.0 μm or less, a thin electrode can be manufactured, which is advantageous for increasing the energy density.
 黒鉛材料(I)のレーザー回折法による体積基準粒子径分布における90%粒子径(D90)は25.0μm以上が好ましい。また、前記D90は、薄い電極を製造することができ高エネルギー密度化に有利であるという観点から、好ましくは80.0μm以下、より好ましくは70.0μm以下、さらに好ましくは50.0μm以下である。 The 90% particle diameter (D90) in the volume-based particle diameter distribution of the graphite material (I) by the laser diffraction method is preferably 25.0 μm or more. Further, the D90 is preferably 80.0 μm or less, more preferably 70.0 μm or less, and further preferably 50.0 μm or less, from the viewpoint that a thin electrode can be manufactured and it is advantageous for increasing the energy density. ..
 レーザー回折法による体積基準粒子径分布はレーザー散乱回折式粒度分布測定装置(MALVERN社製MASTERSIZER)にて測定することができる。 The volume-based particle size distribution by the laser diffraction method can be measured with a laser scattering diffraction type particle size distribution measuring device (MASTERSIZER manufactured by MALVERN).
[1-6]BET比表面積
 黒鉛材料(I)のBET比表面積は、レート特性を高くできる観点から、好ましくは0.5m2/g以上、より好ましくは0.8m2/g以上、さらに好ましくは1.0m2/g以上である。前記BET比表面積は、クーロン効率やサイクル特性を高くすることができるという観点から、好ましくは6.0m2/g以下、より好ましくは4.0m2/g以下、さらに好ましくは3.0m2/g以下である。BET比表面積は実施例に記載のBET比表面積測定装置を用いて測定することができる。
[1-6] BET Specific Surface Area The BET specific surface area of the graphite material (I) is preferably 0.5 m 2 /g or more, more preferably 0.8 m 2 /g or more, further preferably from the viewpoint of enhancing rate characteristics. Is 1.0 m 2 /g or more. The BET specific surface area, from the viewpoint that it is possible to increase the coulombic efficiency and cycle characteristics, preferably not more than 6.0 m 2 / g, more preferably 4.0 m 2 / g or less, more preferably 3.0 m 2 / g or less. The BET specific surface area can be measured using the BET specific surface area measuring device described in the examples.
[1-7]円形度
 黒鉛材料(I)の円形度は、エネルギー密度を高くできるという観点から、好ましくは0.89以上、より好ましくは0.90以上である。また、前記円形度は、粒子同士の接触が多くなりレート特性が高くなる観点から、好ましくは0.98以下、より好ましくは0.96以下である。円形度は実施例に記載の円形度測定装置を用いて測定することができる。
[1-7] Circularity The circularity of the graphite material (I) is preferably 0.89 or more, more preferably 0.90 or more, from the viewpoint that the energy density can be increased. Further, the circularity is preferably 0.98 or less, more preferably 0.96 or less from the viewpoint that the number of particles contact each other and the rate characteristics are improved. The circularity can be measured using the circularity measuring device described in the examples.
[1-8]粒度の均一度(D60/D10)
 黒鉛材料(I)における粒度の均一度(D60/D10)は、粒子の電極塗工性に優れる観点から、好ましくは1.5以上、より好ましくは1.8以上、さらに好ましくは2.0以上である。また、前記粒度の均一度(D60/D10)は、好ましくは3.0以下、より好ましくは2.8以下、さらに好ましくは2.6以下である。D60/D10が3.0以下であると均一度が小さい、すなわち粒度分布の幅が狭いことを示し、電極密度を高くできる。ここで、D60はレーザー回折法による体積基準粒子径分布における60%粒子径であり、D10はレーザー回折法による体積基準粒子径分布における10%粒子径である。
[1-8] Uniformity of particle size (D60/D10)
The uniformity of particle size (D60/D10) in the graphite material (I) is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more, from the viewpoint of excellent electrode coatability of the particles. Is. Further, the uniformity of particle size (D60/D10) is preferably 3.0 or less, more preferably 2.8 or less, and further preferably 2.6 or less. When D60/D10 is 3.0 or less, the uniformity is low, that is, the width of the particle size distribution is narrow, and the electrode density can be increased. Here, D60 is a 60% particle size in the volume-based particle size distribution by the laser diffraction method, and D10 is a 10% particle size in the volume-based particle size distribution by the laser diffraction method.
[1-9]表面酸素量
 黒鉛材料は、粉体への直接通電により黒鉛化すると表面が適度に酸化され表面が安定化され、電解液との副反応が抑えられる。
 黒鉛材料(I)において、7940eVの硬X線を用いたHAX-PES測定により得られるO1sのピーク強度から測定される、粒子の表面から深さ方向に対し40nmまでの間の表面酸素量は、好ましくは0.010質量%以上、より好ましくは0.015質量%である。前記表面酸素量が0.010質量%以上であると、酸化の効果によりクーロン効率が向上する。また、前記表面酸素量は、好ましくは0.040質量%以下、より好ましくは0.030質量%以下である。前記表面酸素量が0.040質量%以下であると黒鉛材料の導電性低下に悪影響を及ぼさず、抵抗を低く抑えられるので、レート特性を高く維持できる。
[1-9] Surface oxygen content When the graphite material is graphitized by direct current application to the powder, the surface is appropriately oxidized and stabilized, and side reactions with the electrolytic solution are suppressed.
In the graphite material (I), the amount of surface oxygen between the surface of the particle and 40 nm in the depth direction, measured from the peak intensity of O1s obtained by HAX-PES measurement using hard X-ray of 7940 eV, is: It is preferably 0.010% by mass or more, and more preferably 0.015% by mass. When the amount of surface oxygen is 0.010 mass% or more, Coulomb efficiency is improved due to the effect of oxidation. The amount of surface oxygen is preferably 0.040 mass% or less, more preferably 0.030 mass% or less. When the amount of surface oxygen is 0.040 mass% or less, the conductivity of the graphite material is not adversely affected and the resistance can be suppressed low, so that the rate characteristics can be maintained high.
[2]リチウムイオン二次電池電極用黒鉛材料の製造方法
 本発明の一実施態様における黒鉛材料(I)の製造方法(以下「製造方法(II)」ともいう。)は、炭素材料を粉砕して炭素粒子を得る工程と、炭素粒子を2800℃以上3300℃以下で熱処理して黒鉛材料を得る黒鉛化工程とを含む。
[2-1]炭素材料
[2] Method for Producing Graphite Material for Lithium Ion Secondary Battery Electrode A method for producing graphite material (I) according to one embodiment of the present invention (hereinafter, also referred to as “production method (II)”) comprises crushing a carbon material. To obtain carbon particles, and a graphitization step of heat-treating the carbon particles at 2800° C. or more and 3300° C. or less to obtain a graphite material.
[2-1] Carbon material
 前記炭素材料は限定されないが、例えば石油ピッチ、石炭ピッチ、石炭コークス、石油コークス、石油由来バルクメソフェーズカーボン、石油由来メソフェーズマイクロビーズ、石炭由来バルクメソフェーズカーボン、石炭由来メソフェーズマイクロビーズ、およびこれらの混合物が熱処理されたものから選択することが好ましい。中でも石油由来バルクメソフェーズカーボン、石油由来メソフェーズマイクロビーズ、石炭由来バルクメソフェーズカーボン、石炭由来メソフェーズマイクロビーズ、石油由来メソフェーズピッチ、石炭由来メソフェーズピッチ、石油コークスがより好ましく、石油コークスがさらに好ましい。特にパラフィン含有量が40%以上の原油から得られた石油コークスが好ましい。パラフィン含有量が好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上であると、光学異方性ドメインの大きな黒鉛材料が得られ、高エネルギー密度、高サイクル特性点の電池が得やすい。 The carbon material is not limited, for example, petroleum pitch, coal pitch, coal coke, petroleum coke, petroleum-derived bulk mesophase carbon, petroleum-derived mesophase microbeads, coal-derived bulk mesophase carbon, coal-derived mesophase microbeads, and mixtures thereof. It is preferably selected from those that have been heat treated. Among them, petroleum-derived bulk mesophase carbon, petroleum-derived mesophase microbeads, coal-derived bulk mesophase carbon, coal-derived mesophase microbeads, petroleum-derived mesophase pitch, coal-derived mesophase pitch, and petroleum coke are more preferable, and petroleum coke is further preferable. Particularly preferred is petroleum coke obtained from crude oil having a paraffin content of 40% or more. When the paraffin content is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, a graphite material having a large optically anisotropic domain can be obtained, and high energy density and high cycle characteristics can be obtained. It's easy to get a point battery
 パラフィン含有量は原油成分のパラフィン成分、芳香族成分、レジン成分、アスファルテン成分の合計量を100質量%としたときのパラフェン成分の質量から求められる。測定方法としてはTLC-FID法を用いて測定することができ、イオトロスキャン(株式会社LSIメディエンス製)にて測定することができる。 Paraffin content is obtained from the mass of paraphene component when the total amount of paraffinic component, aromatic component, resin component and asphaltene component of crude oil component is 100% by mass. As a measuring method, the TLC-FID method can be used, and it can be measured by Iotroscan (manufactured by LSI Medience Co., Ltd.).
 前記炭素材料において、不活性雰囲気下で300℃から1200℃まで加熱した際、この温度領域における質量減少は0.1質量%以上が好ましい。前記質量減少が0.1質量%以上であると、粉砕時に粒子形状が塊状または球状になりやすく、電極を高密度にしやすく、また、負極として用いた場合に電解液との副反応が減少する。この理由としては、300℃から1200℃の加熱によって揮発する成分が、黒鉛化する時に露出したエッジ部分の結晶を安定化すると推定している。また、前記質量減少は、黒鉛化後の粒子同士の結着が少なく、収率が良いという観点から、3.0質量%以下が好ましい。 When the carbon material is heated from 300° C. to 1200° C. in an inert atmosphere, the mass reduction in this temperature range is preferably 0.1% by mass or more. When the mass reduction is 0.1% by mass or more, the particle shape is likely to be agglomerate or spherical at the time of pulverization, the electrode is likely to have a high density, and the side reaction with the electrolytic solution is reduced when used as the negative electrode. .. The reason for this is presumed that the component volatilized by heating from 300° C. to 1200° C. stabilizes the crystal of the exposed edge portion during graphitization. Further, the mass reduction is preferably 3.0 mass% or less from the viewpoint that particles after graphitization are less bound to each other and the yield is good.
 前記加熱減量分は、昇温速度10℃/分で、示差熱-熱重量同時測定(TG-DTA)が行える市販の装置を用いることによって測定することができる。実施例ではセイコーインスツルメント社製 TGDTAw6300を使用し、測定サンプル約15mgを正確に測りとり、白金製パンにのせて装置にセットし、アルゴンガスを200ml/分で流し、10℃/minで300℃から1200℃まで昇温して測定する。リファレンスとして和光純薬製αアルミナを1500℃で3hrあらかじめ処理し、揮発分を除去したものを用いる。 The loss on heating can be measured by using a commercially available device capable of simultaneous differential thermal/thermogravimetric measurement (TG-DTA) at a heating rate of 10° C./min. In the example, Seiko Instruments' TGDTAw6300 is used, about 15 mg of a measurement sample is accurately measured, placed on a platinum pan and set in the apparatus, and argon gas is flown at 200 ml/min to 300 at 10° C./min. The temperature is raised from ℃ to 1200 ℃ and measured. As a reference, α-alumina manufactured by Wako Pure Chemical Industries, which has been previously treated at 1500° C. for 3 hours to remove volatile components, is used.
[2-2]粉砕工程
 前記炭素材料の粉砕方法は限定されないが、ジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等市販の粉砕機を用いて行うことができる。また、これらの粉砕機を2種類以上使用し、2段階で粉砕することもできる。前記炭素材料を粉砕することで炭素粒子を得る。
[2-2] Crushing Step Although the method of crushing the carbon material is not limited, it can be carried out using a commercially available crusher such as a jet mill, a hammer mill, a roller mill, a pin mill and a vibration mill. It is also possible to use two or more types of these pulverizers and pulverize in two stages. Carbon particles are obtained by crushing the carbon material.
 前記炭素材料の最高熱履歴は600℃以下が好ましい。前記最高熱履歴が600℃以下であると、炭素材料を粉砕時に鱗片状に解砕されてエッジ面が多く露出することがなく、黒鉛化後に負極として用いた場合に電解液との副反応が少なくなる。 The maximum thermal history of the carbon material is preferably 600°C or lower. When the maximum heat history is 600° C. or less, the carbon material is not crushed into scales during crushing and a large amount of edge surface is not exposed, and when used as a negative electrode after graphitization, a side reaction with an electrolytic solution occurs. Less.
 前記炭素粒子は800℃以上1500℃以下の熱処理をすることが好ましい。800℃以上で熱処理すると黒鉛化処理時に抵抗値が下がり生産性が上がる。同様の観点から熱処理温度は900℃以上がより好ましく、1000℃以上がさらに好ましい。また、熱処理温度が1500℃以下であると前記炭素材料の揮発分が適度に残存し、黒鉛材料(I)の表面が適切な状態になる。同様の観点から熱処理温度は1400℃以下がより好ましく、1300℃以下がさらに好ましい。熱処理の方法は限定されないが、例えばロータリーキルン、ローラーハースキルン、バッチ式焼成炉を用いることができ、不活性ガス雰囲気で行うことが好ましい。 The carbon particles are preferably heat-treated at 800°C or higher and 1500°C or lower. Heat treatment at 800° C. or higher lowers the resistance value during graphitization and increases productivity. From the same viewpoint, the heat treatment temperature is more preferably 900° C. or higher, further preferably 1000° C. or higher. Further, when the heat treatment temperature is 1500° C. or lower, the volatile components of the carbon material appropriately remain and the surface of the graphite material (I) becomes in an appropriate state. From the same viewpoint, the heat treatment temperature is more preferably 1400° C. or lower, still more preferably 1300° C. or lower. Although the method of heat treatment is not limited, for example, a rotary kiln, a roller hearth kiln, or a batch type baking furnace can be used, and it is preferable to perform the heat treatment in an inert gas atmosphere.
 前記炭素粒子の安息角は、好ましくは30°以上、より好ましくは32°以上である。安息角が30°未満となると炭素材料の流動性が高くなることから、炉体への充填中に飛散したり通電中に粉体が噴出したりする場合がある。また、前記安息角は、好ましくは50°以下、より好ましくは45°以下、さらに好ましくは40°以下である。安息角が50°を超えると炭素材料の流動性が低下するため炉体内での充填性が低くなって生産性が低下し、炉全体の通電抵抗が極端に上がったりする場合がある。 The angle of repose of the carbon particles is preferably 30° or more, more preferably 32° or more. If the angle of repose is less than 30°, the fluidity of the carbon material becomes high, so that the carbon material may scatter during charging into the furnace body or powder may be ejected during energization. Further, the angle of repose is preferably 50° or less, more preferably 45° or less, and further preferably 40° or less. When the angle of repose exceeds 50°, the fluidity of the carbon material decreases, the filling property in the furnace body decreases, the productivity decreases, and the energization resistance of the entire furnace may increase extremely.
 安息角はタップデンサーを用いて測定することができる。具体的には、セイシン企業製KYT-4000を用い、50gの測定用サンプルを装置上部の専用投入口より自由落下させて、付属のテーブル上に三角錐型に堆積させ、次いで前記テーブルと三角錐の立ち上がり角度を分度器により測定し、安息角が求められる。 -The angle of repose can be measured using a tap denser. Specifically, using KYT-4000 manufactured by Seishin Enterprise Co., Ltd., 50 g of a measurement sample was allowed to freely fall from a dedicated inlet on the upper part of the device, and deposited in a triangular pyramid shape on an attached table, and then the table and the triangular pyramid. The angle of repose can be obtained by measuring the rising angle of the protractor with a protractor.
 前記炭素粒子の、緩め嵩密度(0回タッピング)と固め嵩密度(タップ密度)から算出される圧縮率((固め嵩密度-緩め嵩密度)/緩め嵩密度)は20%以上50%以下が好ましい。この範囲にあれば、バインダー及び溶剤と混練した電極スラリーを作製する際に、良好な流動性を持ち集電体上へ塗布しやすい電極スラリーを得ることができる。 The compression ratio ((solidified bulk density-relaxed bulk density)/relaxed bulk density) calculated from the loosened bulk density (0 times tapping) and the compacted bulk density (tap density) of the carbon particles is 20% or more and 50% or less. preferable. Within this range, it is possible to obtain an electrode slurry which has good fluidity and is easily applied onto the current collector when preparing an electrode slurry kneaded with a binder and a solvent.
 緩め嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。また、固め嵩密度(タップ密度)は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。 The loosened bulk density is the density obtained by dropping 100 g of a sample from a height of 20 cm into a graduated cylinder and measuring the volume and mass without applying vibration. The solidified bulk density (tap density) is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a Kantachrome auto tap.
 これらはASTM B527およびJIS K5101-12-2に準拠した測定方法であるが、タップ密度測定におけるオートタップの落下高さは5mmとした。 These are measurement methods based on ASTM B527 and JIS K5101-12-2, but the drop height of the auto tap in tap density measurement was set to 5 mm.
 前記炭素粒子の円形度は、密度を高くできるため黒鉛化時に熱を均一に分布できるという観点から、好ましくは0.89以上、より好ましくは0.90以上である。また、前記円形度は、粒子同士の接触が多くなり黒鉛化時の発熱効率が高くなる観点から、好ましくは0.98以下、より好ましくは0.96以下である。 The circularity of the carbon particles is preferably 0.89 or more, more preferably 0.90 or more, from the viewpoint that the density can be increased and the heat can be uniformly distributed during graphitization. Further, the circularity is preferably 0.98 or less, more preferably 0.96 or less from the viewpoint of increasing contact between particles and increasing heat generation efficiency during graphitization.
 前記炭素粒子の粒度の均一度(D60/D10)は、好ましくは1.5以上、より好ましくは1.8以上、さらに好ましくは2.0以上である。前記D60/D10が1.5以上であると均一度が小さい、すなわち粒度分布の幅が狭いことを示し、黒鉛化時の流動性が高く熱が均一に分布しやすい。また、前記D60/D10は、流動性が良く、輸送性に優れる観点から、好ましくは3.0以下、より好ましくは2.8以下、さらに好ましくは2.6以下である。 The uniformity of the particle size (D60/D10) of the carbon particles is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more. When the D60/D10 is 1.5 or more, the uniformity is low, that is, the width of the particle size distribution is narrow, and the fluidity during graphitization is high and the heat is easily uniformly distributed. Further, D60/D10 is preferably 3.0 or less, more preferably 2.8 or less, still more preferably 2.6 or less from the viewpoint of good fluidity and excellent transportability.
[2-3]黒鉛化工程
 製造方法(II)における黒鉛化工程は限定されないが、上記の炭素粒子に直接電流を流して発熱させることにより行うことが好ましい。
[2-3] Graphitization Step Although the graphitization step in the production method (II) is not limited, it is preferably carried out by directly applying an electric current to the carbon particles to generate heat.
 炭素粒子に直接電流を流す方法は限定されないが、例えば、セラミックスレンガ製で、上方が開口した直方体状の炉体を用いて行うことができる。このような炉体構造を採用すると、炭素粒子に熱が均一に加わるため、黒鉛化の際に凝集が生じないとの利点を有する。また、温度分布が均一で、不純物揮発のトラップ部分がないため不純物の少ない黒鉛材料が得られる。 The method of directly passing an electric current through the carbon particles is not limited, but for example, it can be performed using a rectangular parallelepiped furnace body made of ceramic brick and having an open top. When such a furnace body structure is adopted, heat is uniformly applied to the carbon particles, so that there is an advantage that no aggregation occurs during graphitization. Further, since the temperature distribution is uniform and there is no trap portion for impurity volatilization, a graphite material with few impurities can be obtained.
 黒鉛化処理は、非酸化性雰囲気で行うことが好ましい。例えば、窒素ガス等の不活性ガス雰囲気で熱処理する方法や、空気と接する面に酸素をバリヤする層を設ける方法が挙げられる。バリヤ層としては、例えば、炭素板や炭素粉体層などを別途設け、酸素を消費させる方法などが挙げられる。 The graphitization treatment is preferably performed in a non-oxidizing atmosphere. For example, a method of performing heat treatment in an atmosphere of an inert gas such as nitrogen gas, or a method of providing a layer for barrier to oxygen on the surface in contact with air can be mentioned. As the barrier layer, for example, a method of separately providing a carbon plate or a carbon powder layer and consuming oxygen can be cited.
 黒鉛化処理温度は、2500℃以上が好ましく、2900℃以上がより好ましく、3000℃以上がさらに好ましい。黒鉛化処理温度の上限は、材料の昇華による変質を防ぐ観点から、3300℃以下が好ましい。黒鉛化処理後は、得られた黒鉛材料を解砕または粉砕しないことが好ましい。黒鉛処理化後に解砕または粉砕することで、表面のエッジ面が新たに露出し、性能が低下するおそれがある。 The graphitization temperature is preferably 2500° C. or higher, more preferably 2900° C. or higher, even more preferably 3000° C. or higher. The upper limit of the graphitization temperature is preferably 3300° C. or lower from the viewpoint of preventing alteration due to sublimation of the material. It is preferable not to crush or crush the obtained graphite material after the graphitization treatment. By crushing or crushing after graphitization, the edge surface of the surface may be newly exposed and the performance may deteriorate.
 黒鉛化処理において、B4Cなどのホウ素化合物やSiCなどの珪素化合物のような黒鉛化助触媒を添加することが好ましい。配合量は炭素材料中10質量ppm以上100000質量ppm以下が好ましい。これにより黒鉛化の熱処理効率や生産性を上げることができる。 In the graphitization treatment, it is preferable to add a graphitization promoter such as a boron compound such as B 4 C or a silicon compound such as SiC. The blending amount is preferably 10 mass ppm or more and 100000 mass ppm or less in the carbon material. This can increase the heat treatment efficiency and productivity of graphitization.
[3]リチウムイオン二次電池の負極活物質
 本発明の一実施態様におけるリチウムイオン二次電池の負極活物質(以下「負極活物質(III)」ともいう。)は上記黒鉛材料(I)を含む。
[3] Negative Electrode Active Material of Lithium Ion Secondary Battery The negative electrode active material of the lithium ion secondary battery in one embodiment of the present invention (hereinafter also referred to as “negative electrode active material (III)”) is the above graphite material (I). Including.
 負極活物質(III)は前記黒鉛材料(I)からなるか、あるいはさらに他の黒鉛または炭素材料を含む。他の黒鉛または炭素材料を含む場合、黒鉛材料(I)100.00質量部に対して、他の黒鉛材料または炭素材料を0.01~20.00質量部添加することが好ましい。他の黒鉛または炭素材料を混合して用いることにより、黒鉛材料(I)の優れた特性を維持した状態で、他の黒鉛または炭素材料が有する優れた特性も兼ね備えた負極活物質とすることが可能である。同様の観点から0.01~10.00質量部配合することがより好ましい。他の黒鉛または炭素材料として、球状天然黒鉛や人造黒鉛が好ましい。 The negative electrode active material (III) is made of the above graphite material (I) or further contains other graphite or carbon material. When containing other graphite or carbon material, it is preferable to add 0.01 to 20.00 parts by mass of the other graphite material or carbon material to 100.00 parts by mass of the graphite material (I). By mixing and using other graphite or carbon materials, a negative electrode active material having excellent characteristics of other graphite or carbon materials while maintaining the excellent characteristics of the graphite material (I) can be obtained. It is possible. From the same viewpoint, it is more preferable to add 0.01 to 10.00 parts by mass. As other graphite or carbon material, spherical natural graphite or artificial graphite is preferable.
 また、負極活物質(III)には炭素繊維を配合することが好ましい。炭素繊維の配合量は、前記負極活物質(III)100.00質量部に対して、0.01~20.00質量部が好ましく、0.500~5.00質量部がより好ましい。 Also, it is preferable to mix carbon fiber in the negative electrode active material (III). The amount of carbon fiber blended is preferably 0.01 to 20.00 parts by mass, more preferably 0.500 to 5.00 parts by mass, relative to 100.00 parts by mass of the negative electrode active material (III).
 炭素繊維としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などの有機系カーボンファイバー、気相法炭素繊維などが挙げられる。これらのうち、特に、結晶性が高く、熱伝導性の高い、気相法炭素繊維が好ましい。炭素繊維を複合炭素粒子の表面に接着させる場合には、特に気相法炭素繊維が好ましい。 Examples of carbon fibers include PAN-based carbon fibers, pitch-based carbon fibers, organic carbon fibers such as rayon-based carbon fibers, and vapor grown carbon fibers. Of these, vapor grown carbon fiber having high crystallinity and high thermal conductivity is particularly preferable. In the case of adhering carbon fibers to the surface of the composite carbon particles, vapor grown carbon fibers are particularly preferable.
 複合炭素粒子と他の材料を混合するための装置としては、市販の混合機、攪拌機を用いることができる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を挙げることができる。 As a device for mixing the composite carbon particles and other materials, a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers and Nauta mixers.
[4]リチウムイオン二次電池用負極
 本発明の一実施態様におけるリチウムイオン二次電池用負極(以下「負極(IV)」ともいう。)は、前記負極活物質(III)を含む。より具体的には、負極(IV)は、集電体と、負極活物質(III)およびバインダーを含む負極合剤を該集電体上に塗布して形成された負極合剤層とからなる。負極合剤には導電助剤を含むことが好ましい。導電助剤は例えばデンカブラック(登録商標、HS-100)、VGCF(登録商標)-H等が挙げられる。
[4] Negative Electrode for Lithium Ion Secondary Battery A negative electrode for a lithium ion secondary battery (hereinafter, also referred to as “negative electrode (IV)”) in one embodiment of the present invention contains the negative electrode active material (III). More specifically, the negative electrode (IV) comprises a current collector and a negative electrode mixture layer formed by applying a negative electrode mixture containing the negative electrode active material (III) and a binder onto the current collector. .. The negative electrode mixture preferably contains a conductive auxiliary agent. Examples of the conductive aid include Denka Black (registered trademark, HS-100), VGCF (registered trademark)-H, and the like.
 集電体は、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。負極合剤の塗布厚は、50~200μmとすることが好ましい。負極合剤の塗布方法は特に制限されず、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。 The current collector may be, for example, aluminum, nickel, copper, stainless steel foil, mesh, or the like. The coating thickness of the negative electrode mixture is preferably 50 to 200 μm. The method of applying the negative electrode mixture is not particularly limited, and examples thereof include a method of applying with a doctor blade or a bar coater and thereafter forming with a roll press or the like.
 加圧成形法としては、ロール加圧、プレス加圧等の成形法を挙げることができる。加圧成形するときの圧力は1×103~3×103kg/cm2とすることが好ましい。 Examples of the pressure molding method include molding methods such as roll pressing and press pressing. The pressure during pressure molding is preferably 1×10 3 to 3×10 3 kg/cm 2 .
 バインダーは、例えばポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)が挙げられる。 Examples of the binder include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and SBR (styrene butadiene rubber).
[5]リチウムイオン二次電池
 リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造を有する。本発明の一実施態様におけるリチウムイオン二次電池は、前記負極(IV)を用いてなる。
[5] Lithium Ion Secondary Battery A lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte. The lithium ion secondary battery in one embodiment of the present invention comprises the above negative electrode (IV).
 リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属元素に対するモル比が0.3~2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属に対するモル比が0.3~2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していてもよい。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0.02~1.2)、またはLiy24(Nは少なくともMnを含む。y=0.02~2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。 For a positive electrode of a lithium ion secondary battery, a lithium-containing transition metal oxide is usually used as a positive electrode active material, and preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W. An oxide mainly containing one kind of transition metal element and lithium, wherein a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn, A compound which is an oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium, and whose molar ratio of lithium to the transition metal is 0.3 to 2.2 is used. In addition, you may contain Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B etc. in the range less than 30 mol% with respect to the transition metal which exists mainly. Among the above positive electrode active materials, the general formula Li x MO 2 (M is at least one of Co, Ni, Fe and Mn, x=0.02 to 1.2) or Li y N 2 O 4 (N Contains at least Mn. It is preferable to use at least one material having a spinel structure represented by y=0.02-2).
 リチウムイオン二次電池では正極と負極との間にセパレーターを設けることがある。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。 In a lithium-ion secondary battery, a separator may be provided between the positive electrode and the negative electrode. Examples of the separator include non-woven fabric containing polyolefin such as polyethylene and polypropylene as a main component, cloth, a microporous film, or a combination thereof.
 本発明の好ましい実施態様におけるリチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できるが、電気伝導性の観点から有機電解液が好ましい。 Known electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used as the electrolyte solution and the electrolyte constituting the lithium ion secondary battery in the preferred embodiment of the present invention, but the organic electrolyte solution from the viewpoint of electrical conductivity is preferable.
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。 Note that there are no restrictions on the selection of other necessary members for battery configurations other than the above.
[6]全固体型リチウムイオン二次電池
 全固体型リチウムイオン二次電池は、正極と負極とが固体電解質層と接触した構造を有する。図1は、本実施形態にかかる全固体型リチウムイオン二次電池1の構成の一例を示した概略図である。全固体型リチウムイオン二次電池1は、正極層11と、固体電解質層12と、負極層13とを備える。
[6] All-solid-state lithium-ion secondary battery The all-solid-state lithium-ion secondary battery has a structure in which the positive electrode and the negative electrode are in contact with the solid electrolyte layer. FIG. 1 is a schematic diagram showing an example of the configuration of an all-solid-state lithium ion secondary battery 1 according to this embodiment. The all-solid-state lithium-ion secondary battery 1 includes a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13.
 正極11は、正極集電体111と正極合剤層112とを有する。正極集電体111には、外部回路との電荷の授受を行うための正極リード111aが接続されている。正極集電体111は、金属箔であることが好ましく、金属箔としては、アルミニウム箔を用いることが好ましい。 The positive electrode 11 has a positive electrode current collector 111 and a positive electrode mixture layer 112. The positive electrode current collector 111 is connected to a positive electrode lead 111a for exchanging charges with an external circuit. The positive electrode current collector 111 is preferably a metal foil, and an aluminum foil is preferably used as the metal foil.
 正極合剤層112は、正極活物質を含み、さらに固体電解質、導電助剤、バインダー等を含んでもよい。正極活物質としては、LiCoO2、LiMnO2、LiNiO2、LiVO2、LiNi1/3Mn1/3Co1/32等の岩塩型層状活物質、LiMn24等のスピネル型活物質、LiFePO4、LiMnPO4、LiNiPO4、LiCuPO4等のオリビン型活物質、Li2S等の硫化物活物質等を使用することができる。また、これらの活物質はLTO(Lithium Tin Oxide)や炭素等でコーティングされていてもよい。 The positive electrode mixture layer 112 contains a positive electrode active material, and may further contain a solid electrolyte, a conductive additive, a binder, and the like. Examples of the positive electrode active material include rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and LiNi 1/3 Mn 1/3 Co 1/3 O 2 , spinel type active materials such as LiMn 2 O 4. , Olivine type active materials such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCuPO 4 and sulfide active materials such as Li 2 S can be used. Further, these active materials may be coated with LTO (Lithium Tin Oxide), carbon or the like.
 正極合剤層112に含まれていてもよい固体電解質としては、後述する固体電解質層12で挙げられている材料を用いることができるが、固体電解質層12に含まれている材料と異なる材料を用いてもよい。正極合剤層112における固体電解質の含有量は、正極活物質100質量部に対して、50質量部以上であることが好ましく、70質量部以上であることがより好ましく、80質量部以上であることがさらに好ましい。正極合剤層112における固体電解質の含有量は、正極活物質100質量部に対して、200質量部以下であることが好ましく、150質量部以下であることがより好ましく、125質量部以下であることがさらに好ましい。 As the solid electrolyte that may be contained in the positive electrode mixture layer 112, the materials mentioned in the solid electrolyte layer 12 described later can be used, but a material different from the material contained in the solid electrolyte layer 12 can be used. You may use. The content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the positive electrode active material. Is more preferable. The content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 125 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. Is more preferable.
 導電助剤としては、粒子状炭素質導電助剤または繊維状炭素質導電助剤を用いることが好ましい。粒子状炭素質導電助剤としては、デンカブラック(登録商標)(電気化学工業株式会社製)、ケッチェンブラック(登録商標)(ライオン株式会社製)、黒鉛微粉SFGシリーズ(Timcal社製)、グラフェン等の粒子状炭素を使用することができる。繊維状炭素質導電助剤としては、気相法炭素繊維(VGCF(登録商標)、VGCF(登録商標)‐H(昭和電工株式会社製))、カーボンナノチューブ、カーボンナノホーン等を使用することができる。サイクル特性に優れることから気相法炭素繊維「VGCF(登録商標)‐H」(昭和電工株式会社製)が最も好ましい。正極合剤層112における導電助剤の含有量は、正極活物質100質量部に対して、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましい。正極合剤層112における導電助剤の含有量は、正極活物質100質量部に対して、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。 As the conduction aid, it is preferable to use a particulate carbonaceous conduction aid or a fibrous carbonaceous conduction aid. As the particulate carbonaceous conductive aid, Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.), Ketjen Black (registered trademark) (manufactured by Lion Corporation), graphite fine powder SFG series (manufactured by Timcal), graphene Particulate carbon such as can be used. As the fibrous carbonaceous conductive additive, vapor grown carbon fibers (VGCF (registered trademark), VGCF (registered trademark)-H (manufactured by Showa Denko KK)), carbon nanotubes, carbon nanohorns and the like can be used. .. Vapor grown carbon fiber "VGCF (registered trademark)-H" (manufactured by Showa Denko KK) is most preferable because it has excellent cycle characteristics. The content of the conductive additive in the positive electrode mixture layer 112 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, based on 100 parts by mass of the positive electrode active material. The content of the conductive additive in the positive electrode mixture layer 112 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
 バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリアクリロニトリル、ポリビニルアルコール、スチレン-ブタジエンラバー、カルボキシメチルセルロース等を挙げることができる。 Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, styrene-butadiene rubber, carboxymethyl cellulose and the like.
 正極合剤層112において、正極活物質100質量部に対するバインダーの含有量は、1質量部以上10質量部以下であることが好ましく、1質量部以上7質量部以下であることがより好ましい。 In the positive electrode mixture layer 112, the content of the binder with respect to 100 parts by mass of the positive electrode active material is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 7 parts by mass or less.
 固体電解質層12は、正極層11と負極層13との間に介在し、正極層11と負極層13との間でリチウムイオンを移動させるための媒体となる。固体電解質層12は、硫化物固体電解質及び酸化物固体電解質からなる群から選ばれる少なくとも1つを含有することが好ましく、硫化物固体電解質を含有することがより好ましい。 The solid electrolyte layer 12 is interposed between the positive electrode layer 11 and the negative electrode layer 13, and serves as a medium for moving lithium ions between the positive electrode layer 11 and the negative electrode layer 13. The solid electrolyte layer 12 preferably contains at least one selected from the group consisting of a sulfide solid electrolyte and an oxide solid electrolyte, and more preferably contains a sulfide solid electrolyte.
 硫化物固体電解質としては、硫化物ガラス、硫化物ガラスセラミックス、Thio-LISICON型硫化物などを挙げることができる。より具体的には、例えば、Li2S-P25、Li2S-P25-LiI、Li2S-P25-LiCl、Li2S-P25-LiBr、Li2S-P25-Li2O、Li2S-P25-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B23-LiI、Li2S-SiS2-P25-LiI、Li2S-B23、Li2S-P25-Zmn(式中、m、nは正の数、ZはGe、Zn、Gaのいずれかを表す。)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(式中、x、yは正の数、MはP、Si、Ge、B、Al、Ga、Inのいずれかを表す。)、Li10GeP212、Li3.25Ge0.250.754、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30P25、50LiS2・50GeS2、Li7311、Li3.250.954、Li3PS4、Li2S・P23・P25等を挙げることができる。硫化物固体電解質材料は、非晶質であっても良く、結晶質であっても良く、ガラスセラミックスであってもよい。 Examples of the sulfide solid electrolyte include sulfide glass, sulfide glass ceramics, Thio-LISICON type sulfide, and the like. More specifically, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S—P 2 S 5 —Z m S n (where m and n are positive numbers, Z represents any one of Ge, Zn, and Ga), Li 2 S—GeS 2 , and Li 2 S— SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li x MO y (where x and y are positive numbers, M is P, Si, Ge, B, Al, Ga or In) , Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S.26B 2 S 3 .44LiI, 63Li 2 S.36SiS 2 .1Li 3 PO 4 , 57Li 2 S.38SiS 2 .. 5Li 4 SiO 4 , 70Li 2 S·30P 2 S 5 , 50LiS 2 ·50GeS 2 , Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 , Li 3 PS 4 , Li 2 S·P 2 S 3 ·P 2 S 5 etc. can be mentioned. The sulfide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
 酸化物固体電解質としては、ペロブスカイト、ガーネット、LISICON型酸化物が挙げられる。より具体的には、例えば、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO43、Li7La3Zr212、50Li4SiO4・50Li3BO3、Li2.9PO3.3 0.46 (LIPON)、Li3.6Si0.60.44、Li1.07Al0.69Ti1.46(PO43、Li1.5Al0.5Ge1.5(PO43等を挙げることができる。酸化物固体電解質材料は、非晶質であっても良く、結晶質であっても良く、ガラスセラミックスであっても良い。 Examples of the oxide solid electrolyte include perovskite, garnet, and LISICON type oxide. More specifically, for example, La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3. N 0.46 (LIPON), Li 3.6 Si 0.6 P 0.4 O 4, Li 1.07 Al 0.69 Ti 1.46 (PO 4) 3, Li 1.5 Al 0.5 Ge 1.5 (PO 4) may be mentioned 3 or the like. The oxide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
 負極層13は、負極集電体131と負極合剤層132とを有する。負極集電体131には、外部回路との電荷の授受を行うための負極リード131aが接続されている。負極集電体131は、金属箔であることが好ましく、金属箔としては、ステンレス箔、銅箔またはアルミニウム箔を用いることが好ましい。集電体の表面はカーボン等でコートされていてもよい。 The negative electrode layer 13 includes a negative electrode current collector 131 and a negative electrode mixture layer 132. The negative electrode current collector 131 is connected to a negative electrode lead 131a for exchanging charges with an external circuit. The negative electrode current collector 131 is preferably a metal foil, and a stainless foil, a copper foil, or an aluminum foil is preferably used as the metal foil. The surface of the current collector may be coated with carbon or the like.
 負極合剤層132は、負極活物質を含み、固体電解質、バインダー及び導電助剤等を含んでもよい。負極活物質としては、前記複合炭素粒子が用いられる。 The negative electrode mixture layer 132 contains a negative electrode active material, and may also contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like. The composite carbon particles are used as the negative electrode active material.
 負極合剤層132に含まれていてもよい固体電解質としては、固体電解質層12で挙げられている材料を用いることができるが、固体電解質層12に含まれる固体電解質あるいは正極合剤層に含まれている固体電解質と異なる材料を用いてもよい。負極合剤層132における固体電解質の含有量は、負極活物質100質量部に対して、50質量部以上であることが好ましく、70質量部以上であることがより好ましく、80質量部以上であることがさらに好ましい。負極合剤層132における固体電解質の含有量は、負極活物質100質量部に対して、200質量部以下であることが好ましく、150質量部以下であることがより好ましく、125質量部以下であることがさらに好ましい。 As the solid electrolyte that may be contained in the negative electrode mixture layer 132, the materials mentioned in the solid electrolyte layer 12 may be used, but the solid electrolyte contained in the solid electrolyte layer 12 or the positive electrode mixture layer may be contained. A material different from the existing solid electrolyte may be used. The content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the negative electrode active material. Is more preferable. The content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 125 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. Is more preferable.
 負極合剤層132に含まれていてもよい導電助剤としては、正極合剤層112の説明で挙げられた導電助剤を用いることができるが、正極合剤層112に含まれる導電助剤と異なる材料を用いてもよい。負極合剤層132における導電助剤の含有量は、負極活物質100質量部に対して、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましい。負極合剤層132における導電助剤の含有量は、負極活物質100質量部に対して、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。 As the conductive auxiliary agent that may be included in the negative electrode mixture layer 132, the conductive auxiliary agents described in the description of the positive electrode mixture layer 112 can be used, but the conductive auxiliary agent included in the positive electrode mixture layer 112 is used. Different materials may be used. The content of the conductive additive in the negative electrode mixture layer 132 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, with respect to 100 parts by mass of the negative electrode active material. The content of the conductive additive in the negative electrode mixture layer 132 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
 バインダーは、例えば、正極合剤層112の説明で挙げた材料を用いることができるが、これらに限られない。負極合剤層132において、負極活物質100質量部に対するバインダーの含有量は、0.3質量部以上10質量部以下であることが好ましく、0.5質量部以上5質量部以下であることがより好ましい。 As the binder, for example, the materials mentioned in the description of the positive electrode mixture layer 112 can be used, but the binder is not limited to these. In the negative electrode mixture layer 132, the content of the binder based on 100 parts by mass of the negative electrode active material is preferably 0.3 parts by mass or more and 10 parts by mass or less, and 0.5 parts by mass or more and 5 parts by mass or less. More preferable.
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。 Note that there are no restrictions on the selection of other necessary members for battery configurations other than the above.
 以下、本発明に実施例を具体的に説明する。なお、これらは説明のための単なる例示であって、本発明を限定するものではない。
 実施例及び比較例の黒鉛材料の物性評価方法、電池の作製方法、電池の特性の測定方法、及び各例で用いた黒鉛材料は以下の通りである。
Hereinafter, examples of the present invention will be specifically described. It should be noted that these are merely examples for explanation and do not limit the present invention.
The methods for evaluating the physical properties of the graphite materials of Examples and Comparative Examples, the methods for producing the batteries, the methods for measuring the characteristics of the batteries, and the graphite materials used in each example are as follows.
[7]黒鉛材料の物性評価方法、
[7-1]面間隔d002、Lc
 黒鉛材料と標準シリコン(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下のような条件で測定を行った。
 XRD装置:リガク製SmartLab(登録商標)
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:24.0~30.0deg.
 スキャンスピード:2.0deg./min.
 得られた波形に対し、学振法を適用し面間隔d002、Lcの値を求めた。(Iwashita et al.,Carbon vol.42(2004),p.701-714参照)。
[7] Evaluation method of physical properties of graphite material,
[7-1] Surface spacing d002, Lc
Fill a glass sample plate (sample plate window 18×20 mm, depth 0.2 mm) with a mixture of graphite material and standard silicon (made by NIST) in a mass ratio of 9:1. The measurement was performed under the conditions.
XRD device: Rigaku's SmartLab (registered trademark)
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measuring range: 24.0 to 30.0 deg.
Scan speed: 2.0 deg. /Min.
The Gakushin method was applied to the obtained waveforms to determine the values of the surface spacing d002 and Lc. (See Iwashita et al., Carbon vol. 42 (2004), p.701-714).
[7-2]レーザー回折法による体積基準粒子径、球換算面積算出
 粒度測定装置:Marvern製Mastersizer2000
 5mgのサンプルを容器に入れ、界面活性剤が0.04質量%含まれた水を加えて5分間超音波処理を行った後に測定を行った。
[7-2] Calculation of Volume-Based Particle Diameter and Sphere-Converted Area by Laser Diffraction Method Particle Size Measuring Device: Mastersizer2000 manufactured by Marvern
A 5 mg sample was placed in a container, water containing 0.04% by mass of a surfactant was added, and ultrasonication was performed for 5 minutes, followed by measurement.
[7-3]BET比表面積
 BET比表面積測定装置:Quantachrome製NOVA2200e
 測定セル(9mm×135mm)に3gのサンプルを入れ、300℃、真空条件下で1時間乾燥後、測定を行った。BET比表面積測定用のガスはN2を用いた。
[7-3] BET Specific Surface Area BET Specific Surface Area Measuring Device: Quantrome NOVA 2200e
A 3 g sample was placed in a measurement cell (9 mm×135 mm), dried at 300° C. for 1 hour under vacuum, and then measured. N 2 was used as the gas for measuring the BET specific surface area.
[7-4]光学組織評価
 黒鉛材料の光学組織評価は以下のようにして行った。(最新の炭素材料実験技術(分析・解析偏)炭素材料学会偏(2001年),出版:サイペック株式会社)
[7-4] Evaluation of Optical Texture The optical texture of the graphite material was evaluated as follows. (Latest Carbon Material Experimental Technology (Analysis/Analysis) Japan Society of Carbon Materials (2001), Publishing: Cypec Corporation)
[7-4-1]黒鉛材料の調製
 内容積30cm3のプラスチック製サンプル容器の底に両面テープを貼り、その上にスパチュラ2杯ほど(2g程度)の観察用サンプルを乗せた。冷間埋込樹脂(商品名:冷間埋込樹脂#105,製造会社:ジャパンコンポジット(株),販売会社:丸本ストルアス(株))に硬化剤(商品名:硬化剤(M剤),製造会社:日本油脂(株),販売会社:丸本ストルアス(株))を加え、30秒練った。得られた混合物(5ml程度)を前記サンプル容器に高さ約1cmになるまでゆっくりと流し入れ、1日静置して硬化させた。次に硬化したサンプルを取り出し、両面テープを剥がした。そして、研磨板回転式の研磨機を用いて、測定する面を研磨した。
[7-4-1] Preparation of Graphite Material A double-sided tape was attached to the bottom of a plastic sample container having an internal volume of 30 cm 3 , and about 2 spatulas (about 2 g) of the observation sample were placed on it. Cold embedding resin (trade name: cold embedding resin #105, manufacturing company: Japan Composite Co., Ltd., sales company: Marumoto Struers Co., Ltd.) with a curing agent (product name: curing agent (M agent), Manufacturing company: NOF CORPORATION, sales company: Marumoto Struers Co., Ltd.) were added and kneaded for 30 seconds. The obtained mixture (about 5 ml) was slowly poured into the sample container until the height became about 1 cm, and the mixture was allowed to stand for 1 day to cure. Next, the cured sample was taken out and the double-sided tape was peeled off. Then, the surface to be measured was polished using a polishing plate rotary type polishing machine.
 研磨は、回転面に研磨面を押し付けるように行った。研磨板の回転速度は1000rpmで行う。研磨板の番手は、#500、#1000、#2000の順に行い、最後はアルミナ(商品名:バイカロックス タイプ0.3CR,粒子径0.3μm,製造会社:バイコウスキー,販売会社:バイコウスキージャパン)を用いて鏡面研磨した。
 研磨したサンプルをプレパラート上に粘土で固定し、偏光顕微鏡(OLYMPUS社製、BX51)を用いて反射モードにてランダムに10箇所観察を行った。
Polishing was performed by pressing the polishing surface against the rotating surface. The rotation speed of the polishing plate is 1000 rpm. The polishing plate count is #500, #1000, #2000 in this order, and the last is alumina (trade name: Baicalox type 0.3CR, particle size 0.3 μm, manufacturing company: Baikowski, sales company: Baikou It was mirror-polished using (Ski Japan).
The polished sample was fixed on the slide with clay, and 10 spots were randomly observed in a reflection mode using a polarization microscope (BX51, manufactured by OLYMPUS).
[7-4-2]偏光顕微鏡による黒鉛材料の断面観察
 偏光顕微鏡で観察した画像は、OLYMPUS製CAMEDIA C-5050 ZOOMデジタルカメラをアタッチメントで偏光顕微鏡に接続し、撮影した。撮影モードはHQ2560×1280とし、シャッタータイムは1.6秒で行った。撮影データは、bmp形式で株式会社ニレコ製画像解析装置LUZEX APを用いて読み込んだ。色データの表示形式は、IHPカラーとする(Iは輝度、Hは色相、Pは純度を示す)。画像は2560×1920画素で取込んだ。
[7-4-2] Cross-Section Observation of Graphite Material with Polarization Microscope Images observed with a polarization microscope were taken by connecting a CAMEDIA C-5050 ZOOM digital camera manufactured by OLYMPUS to the polarization microscope with an attachment. The shooting mode was HQ2560×1280, and the shutter time was 1.6 seconds. The photographed data was read in the bmp format using an image analyzer LUZEX AP manufactured by Nireco Corporation. The display format of the color data is IHP color (I indicates luminance, H indicates hue, and P indicates purity). The image was captured at 2560 x 1920 pixels.
 選択した倍率の画像を、観察角度0度と45度においてそれぞれ同じ地点から正方形の領域(100μm四方)を切り抜き、その範囲内の全粒子について以下の解析を行い、平均を求めた。解析に用いている倍率は、対物レンズ×50、1画素=0.05μmで行った。粒子内の領域について、ブルー・イエロー・マゼンタ・ブラック・ピュアマゼンタについて色の抽出を行い、それぞれの面積比をカウントした。光学異方性ドメインは結晶子の向きにより色が変化するが、真正面を向いている確率はきわめて低いため、マゼンタを示しても、波長はピュアマゼンタとは若干異なることがほとんどである。一方、光学等方性ドメインは常にピュアマゼンタの波長を示す。そこで本発明では、ピュアマゼンタはすべて光学等方性領域と認定した。 A square area (100 μm square) was cut out from the same point at an observation angle of 0° and 45°, and the images of the selected magnifications were subjected to the following analysis for all particles within that range to obtain an average. The magnification used in the analysis was an objective lens×50, 1 pixel=0.05 μm. With respect to the area inside the particle, colors were extracted for blue, yellow, magenta, black, and pure magenta, and the area ratio of each was counted. Although the color of the optically anisotropic domain changes depending on the orientation of the crystallites, the probability of facing straight ahead is extremely low. Therefore, even if magenta is shown, the wavelength is almost different from that of pure magenta. On the other hand, the optically isotropic domain always exhibits a pure magenta wavelength. Therefore, in the present invention, all of pure magenta is identified as an optical isotropic region.
 色の抽出については、LUZEX APのコマンドを使用し、各色の抽出幅は、IHPのデータを以下の表1のように設定して行った。また、ノイズ除去のため、ロジカルフィルタのELIMINATE1のW-1コマンドを用い、1ドット以下の領域を除去する。カウントについては、ピクセル数を用い、画像の総和ピクセル数と、該当色ピクセル数を算出した。 For color extraction, the command of LUZEX AP was used, and the extraction width of each color was set by setting the IHP data as shown in Table 1 below. In order to remove noise, the W-1 command of ELIMINATE1 of the logical filter is used to remove the area of 1 dot or less. For counting, the number of pixels was used to calculate the total number of pixels in the image and the number of pixels of the corresponding color.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 光学異方性ドメインとしては、偏光顕微鏡の検光子に対してサンプルを0度、45度、90度回転させた際に色が変化した部分の面積比を表2に示したように算出した。 As the optically anisotropic domain, the area ratio of the portion where the color changed when the sample was rotated 0°, 45°, and 90° with respect to the analyzer of the polarization microscope was calculated as shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
粒子面積(%)=B1+Y1+M1+K1+PM1
光学等方性面積比(%)=PM1
空隙面積比(%)      =K1
光学異方性面積比(%)=100-(光学等方性面積比)-(空隙面積比)
 同様にd45、d90についても算出し、d00とd45とd90の平均値をとり、当該粒子の値とした。
 ここで炭素材料の空隙とは、粒子内の空隙を意味し、粒子間の空隙は含まない。
Figure JPOXMLDOC01-appb-T000003
Particle area (%)=B1+Y1+M1+K1+PM1
Optical isotropic area ratio (%) = PM1
Void area ratio (%) = K1
Optical anisotropic area ratio (%) = 100-(optical isotropic area ratio)-(void area ratio)
Similarly, d45 and d90 were calculated, and the average value of d00, d45, and d90 was taken as the value of the particle.
Here, the voids of the carbon material mean voids in the particles, and voids between particles are not included.
[7-5]ラマン分光分析
 ラマン分光装置:日本分光株式会社NRS-5100
 励起波長532.36nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行い、1300~1400cm-1の範囲にあるピークの強度(ID)と1580~1620cm-1の範囲にあるピークの強度(IG)の強度比をR値(ID/IG)とした。
[7-5] Raman spectroscopic analysis Raman spectroscopic device: JASCO Corporation NRS-5100
Excitation wavelength 532.36Nm, entrance slit width 200 [mu] m, the exposure time of 15 seconds, the number of integrations twice, was measured under the conditions of the diffraction grating 600 / mm, the intensity of the peak in the range of 1300 ~ 1400 cm -1 and (ID) The intensity ratio of the intensity (IG) of the peak in the range of 1580 to 1620 cm -1 was defined as the R value (ID/IG).
[7-6]円形度
 円形度測定装置:フロー式粒子像分析装置FPIA-3000(シスメックス社製)
 円形度とは、観測された粒子像の面積と同面積を有する円の周長を粒子像の周長で割ったものであり、1に近いほど真円に近い。円形度は粒子像の面積をS、周長をLとすると、以下の式で表すことができる。
 円形度=(4πS)1/2/L
[7-6] Circularity Circularity measuring device: Flow type particle image analyzer FPIA-3000 (manufactured by Sysmex Corporation)
The circularity is obtained by dividing the circumference of a circle having the same area as the observed area of a particle image by the circumference of the particle image, and the closer to 1 the closer the circle is to a perfect circle. The circularity can be expressed by the following equation, where S is the area of the particle image and L is the perimeter.
Circularity = (4πS) 1/2 /L
 黒鉛材料を目開き106μmのフィルターを通すことで精製し、その試料0.1gを20mlのイオン交換水中に添加し、界面活性剤0.1~0.5質量%加えることによって均一に分散させ、測定用試料溶液を調製した。分散は超音波洗浄機UT-105S(シャープマニファクチャリングシステム社製)を用い、5分間処理することにより行った。得られた測定用試料溶液を装置に投入し、LPFモードで10000個の粒子に対して解析された円形度の個数基準の度数分布により円形度の中央値を算出した。 The graphite material was purified by passing through a filter having an opening of 106 μm, 0.1 g of the sample was added to 20 ml of ion-exchanged water, and 0.1 to 0.5% by mass of a surfactant was added to uniformly disperse the graphite material. A sample solution for measurement was prepared. Dispersion was performed by using an ultrasonic cleaner UT-105S (manufactured by Sharp Manufacturing System) for 5 minutes. The obtained sample solution for measurement was put into an apparatus, and the median of circularity was calculated from the number-based frequency distribution of circularity analyzed for 10,000 particles in the LPF mode.
[7-7]表面酸素量
 SPring-8(ビームラインBL46XU)に常設の装置を用いて、入射エネルギー7940eVのHAX-PES測定を行い、黒鉛材料表面の酸素量を定量した。測定条件は、C1sのナロースペクトルでは光電子のKinetic Energyが7638~7658eVのエネルギー範囲を測定し、O1sのナロースペクトルでは光電子のKinetic Energyが7396~7416eVのエネルギー範囲を測定した。黒鉛材料表面の酸素量は以下の方法に従って定量した。
[7-7] Surface Oxygen Amount The amount of oxygen on the surface of the graphite material was quantified by performing HAX-PES measurement with an incident energy of 7940 eV using a device permanently installed at SPring-8 (beam line BL46XU). Regarding the measurement conditions, in the narrow spectrum of C1s, the energy range of photoelectron Kinetic Energy was measured from 7638 to 7658 eV, and in the narrow spectrum of O1s, the energy range of photoelectron Kinetic Energy was measured from 7396 to 7416 eV. The amount of oxygen on the surface of the graphite material was quantified according to the following method.
[7-7-1]光電子スペクトルのエネルギー校正
 標準試料として板状のAu試料の測定を行った。Au4fのナロースペクトルとしてKinetic Energyが7648~7859eVのエネルギー範囲を測定し、測定で得られたAu4f7/2のピーク位置とAu4f7/2の理論ピーク位置との差を計算することでBL46XUの常設装置の仕事関数φ値を算出した。算出したφ値を元に、黒鉛材のナロースペクトルのエネルギー校正を行った。
[7-7-1] Energy calibration of photoelectron spectrum A plate-shaped Au sample was measured as a standard sample. Kinetic Energy as narrow spectrum of Au4f measures the energy range of 7648 ~ 7859eV, permanent BL46XU by calculating the difference between the theoretical peak position of the peak position and Au4f 7/2 of Au4f 7/2 obtained in the measurement The work function φ value of the device was calculated. Based on the calculated φ value, energy calibration of the narrow spectrum of the graphite material was performed.
[7-7-2]光電子スペクトル強度の規格化
黒鉛材料のO1sナロースペクトル強度を任意のC1sナロースペクトル強度と測定で得られたC1sナロースペクトル強度をもとに規格化した。ノーマライズ強度x(O1s)は下記式1から算出した。
[式1]
ノーマライズ強度x(O1s)=測定強度(O1s)×任意の強度(C1s)/測定強度(C1s)
[7-7-2] Normalization of photoelectron spectrum intensity The O1s narrow spectrum intensity of the graphite material was normalized based on the arbitrary C1s narrow spectrum intensity and the C1s narrow spectrum intensity obtained by the measurement. The normalized strength x(O1s) was calculated from the following formula 1.
[Formula 1]
Normalized strength x (O1s) = measured strength (O1s) x arbitrary strength (C1s)/measured strength (C1s)
[7-7-3]黒鉛材料表面の酸素量の定量
 上記に基づき、実施例及び比較例の黒鉛材料のノーマライズ強度(O1s)から、黒鉛材料の表面酸素量を下記式2より定量した。ここで、式2における任意の強度(C1s)は式1で用いた値である。
[式2]
黒鉛材料表面酸化量a(mol%)=(ノーマライズ強度x(O1s)/c任意の強度(C1s))×測定積算回数d(C1s)/測定積算回数e(O1s)
[7-7-3] Quantification of oxygen content on graphite material surface Based on the above, the surface oxygen content of the graphite material was quantified by the following formula 2 from the normalized strength (O1s) of the graphite materials of the examples and comparative examples. Here, the arbitrary intensity (C1s) in Expression 2 is the value used in Expression 1.
[Formula 2]
Graphite material surface oxidation amount a (mol%) = (normalized strength x (O1s)/c arbitrary strength (C1s)) x cumulative number of measurements d (C1s) / cumulative number of measurements e (O1s)
 本測定は、非常に高輝度の放射光を用いることで、黒鉛材料表面から40nm程度の深度までの情報を積算している。そのため、黒鉛材料表面の汚染の影響をほとんど受けずに、精度の高い測定結果が得られる。黒鉛材料は主成分の炭素の占める割合が圧倒的に高いため、炭素のC1sナロースペクトル強度から規格化した上記方法による酸素量の算出は妥当である。 -This measurement integrates information from the surface of the graphite material to a depth of about 40 nm by using synchrotron radiation with extremely high brightness. Therefore, highly accurate measurement results can be obtained with almost no influence of contamination on the surface of the graphite material. Since the proportion of carbon as a main component in a graphite material is overwhelmingly high, it is appropriate to calculate the amount of oxygen by the above method standardized from the C1s narrow spectrum intensity of carbon.
[7-8]リチウムイオン二次電池評価
[7-8-1]ペースト作製:
 黒鉛材料100質量部に呉羽化学社製KFポリマーL1320(ポリビニリデンフルオライド(PVDF)を12質量%含有したN-メチルピロリドン(NMP)溶液品)10質量部を加え、プラネタリーミキサーにて混練し、主剤原液とした。
[7-8] Lithium ion secondary battery evaluation [7-8-1] Paste preparation:
To 100 parts by mass of the graphite material, 10 parts by mass of KF polymer L1320 (N-methylpyrrolidone (NMP) solution product containing 12% by mass of polyvinylidene fluoride (PVDF)) manufactured by Kureha Chemical Co., Ltd. was added and kneaded with a planetary mixer. , And the main ingredient stock solution.
[7-8-2]電極作製、電極密度:
 主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて250μm厚に塗布した。これを120℃で1時間真空乾燥し、18mmφに打ち抜き、打ち抜いた電極を超鋼製プレス板で挟み、電極に対して2t/cm2の圧でプレスした。その後、真空乾燥器で120℃、12時間乾燥して、評価用電極とした。このときの活物質質量を活物質の体積で除算し、電極密度(g/cm3)とした。
[7-8-2] Electrode preparation, electrode density:
After adding NMP to the base material stock solution to adjust the viscosity, it was applied on a high-purity copper foil to a thickness of 250 μm using a doctor blade. This was vacuum dried at 120° C. for 1 hour, punched into 18 mmφ, and the punched electrodes were sandwiched between super steel press plates and pressed against the electrodes at a pressure of 2 t/cm 2 . Then, it was dried at 120° C. for 12 hours in a vacuum dryer to obtain an evaluation electrode. The mass of the active material at this time was divided by the volume of the active material to obtain the electrode density (g/cm 3 ).
[7-8-3]電池作製:
 下記のようにして電池を作製した。なお以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
 ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記[7-8-2]で作製した銅箔付き電極と金属リチウム箔をセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層した。これに電解液を加えフタをして評価用電池とした。電解液としてはEC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合液に、電解質としてLiPF6を1モル/リットル溶解したものを使用した。
[7-8-3] Battery preparation:
A battery was manufactured as follows. The following operations were carried out in a dry argon atmosphere with a dew point of -80°C or lower.
In a cell with a polypropylene screw-in lid (inner diameter of about 18 mm), a copper foil electrode and a metallic lithium foil prepared in [7-8-2] above were separated with a separator (polypropylene microporous film (Cell Guard 2400)). It was sandwiched and laminated. An electrolytic solution was added to this and a lid was provided to obtain a battery for evaluation. As the electrolytic solution, a mixed solution of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate) in which 1 mol/liter of LiPF 6 was dissolved as an electrolyte was used.
[7-8-4]放電容量、エネルギー密度、クーロン効率
 25℃に設定した恒温槽内でレストポテンシャルから0.002Vまで0.4mAでCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、カットオフ電流値50.8μAで充電を行った。上限電圧1.5VとしてCCモードで0.4mAで放電を行った。
[7-8-4] Discharge capacity, energy density, Coulomb efficiency CC (constant current: constant current) charging was performed from a rest potential to 0.002 V at 0.4 mA in a thermostat set at 25°C. Next, CV (constant volt: constant voltage) charging was switched at 0.002 V, and charging was performed at a cutoff current value of 50.8 μA. Discharge was performed at 0.4 mA in CC mode with an upper limit voltage of 1.5 V.
 初回放電時の電気量をリチウムイオン二次電池負極用黒鉛材料の重量で割った値を放電容量とした。また、放電容量(0.2C)と電極密度を乗算し、体積エネルギー密度とした。また初回充電時の充電容量と初回放電時の放電容量比率、すなわち初回放電容量/初回充電容量を百分率で表した値をクーロン効率とした。 The discharge capacity was defined as the value obtained by dividing the quantity of electricity during the first discharge by the weight of the graphite material for the negative electrode of the lithium-ion secondary battery. Further, the discharge capacity (0.2 C) was multiplied by the electrode density to obtain the volume energy density. Further, the ratio of the charge capacity at the time of initial charge and the discharge capacity at the time of first discharge, that is, the value obtained by expressing the ratio of initial discharge capacity/initial charge capacity in percentage was taken as the Coulombic efficiency.
[7-8-5]レート特性
 25℃に設定した恒温槽内で行った。充電(黒鉛へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行う。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させた。放電(炭素からの放出)は電流密度0.2Cおよび3Cで定電流定電圧放電試験を行い、電圧1.5Vでカットオフした。放電容量(3C)/放電容量(3C)の値を放電レート特性とした。
[7-8-5] Rate characteristic The rate characteristic was measured in a constant temperature bath set at 25°C. For charging (insertion of lithium into graphite), CC (constant current: constant current) charging is performed from a rest potential to 0.002 V at 0.2 mA/cm 2 . Next, it was switched to CV (constant volt: constant voltage) charging at 0.002 V, and stopped when the current value dropped to 25.4 μA. For discharge (release from carbon), a constant-current constant-voltage discharge test was performed at current densities of 0.2 C and 3 C, and cutoff was performed at a voltage of 1.5 V. The value of discharge capacity (3C)/discharge capacity (3C) was defined as the discharge rate characteristic.
[7-8-6]サイクル特性
 60℃に設定した恒温槽中で充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させた。
[7-8-6] Cycle characteristics Charging (insertion of lithium into carbon) in a constant temperature bath set at 60°C CC (constant current: constant current) from rest potential to 0.002 V at 0.2 mA/cm 2. Charged. Next, it was switched to CV (constant volt: constant voltage) charging at 0.002 V, and stopped when the current value dropped to 25.4 μA.
 放電(黒鉛からの放出)は電流密度1CでCC放電を行い、電圧1.5Vでカットオフした。放電を200サイクル繰り返した。200サイクル目放電容量/1サイクル目放電容量の値をサイクル特性とした。 -Discharge (emission from graphite) was CC discharge at a current density of 1C and cut off at a voltage of 1.5V. The discharge was repeated 200 cycles. The value of the discharge capacity at the 200th cycle/the discharge capacity at the first cycle was defined as the cycle characteristic.
[実施例1]
 パラフィン含有量45質量%の中国産原油に対してディレードコーキングプロセスを用いて得られた石油コークスを炭素材料に用いた。これをホソカワミクロン製バンタムミルで粉砕し、日清エンジニアリング製ターボクラシファイアーで気流分級してD50を17.0μmとし、日本碍子製ローラーハースキルンで窒素ガスを流しながら、1000℃で熱処理し、炭素粒子1を得た。炭素粒子1の物性を表3にまとめた。
[Example 1]
The petroleum coke obtained by using the delayed coking process on a Chinese crude oil having a paraffin content of 45% by mass was used as a carbon material. This was crushed with a Hosokawa Micron bantam mill, air classified with a Nisshin Engineering turbo classifier to D50 of 17.0 μm, and heat-treated at 1000° C. while flowing nitrogen gas with a Japanese insulator roller hearth kiln to obtain carbon particles 1 Got The physical properties of carbon particles 1 are summarized in Table 3.
 セラミックレンガで縦500mm、横1000mm、深さ200mmの炉を作り、内側の両端面に450×180mm、厚み20mmの炭素電極板を設置した。その炉の中に、上記炭素粒子1を詰め込み、窒素ガス投入口と排気口が設けられた蓋をした。トランスを設置し、窒素ガスを流しながら、電極板間に約5時間電流を流すことで加熱し、最高温度3200℃で黒鉛化して黒鉛材料1を得た。得られた黒鉛材料1の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。 A ceramic brick was used to form a furnace with a length of 500 mm, a width of 1000 mm, and a depth of 200 mm, and carbon electrode plates of 450 x 180 mm and a thickness of 20 mm were installed on both inner end surfaces. The carbon particles 1 were packed in the furnace and a lid provided with a nitrogen gas inlet and an exhaust port was provided. A transformer was installed, and heating was performed by passing an electric current between the electrode plates for about 5 hours while flowing a nitrogen gas, and graphitized at a maximum temperature of 3200° C. to obtain a graphite material 1. Table 4 shows various physical properties of the obtained graphite material 1 and evaluation results of the lithium ion battery.
[実施例2]
 炭素材料をD50が15.0μmとなるように粉砕して分級した以外は実施例1と同様の製造方法により炭素粒子2を得た。炭素粒子2の物性を表3にまとめた。
 次いで、得られた炭素粒子2を用いたこと以外は実施例1と同様の方法で黒鉛材料2を得た。得られた黒鉛材料2の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Example 2]
Carbon particles 2 were obtained by the same production method as in Example 1 except that the carbon material was pulverized and classified so that D50 was 15.0 μm. The physical properties of carbon particles 2 are summarized in Table 3.
Next, a graphite material 2 was obtained in the same manner as in Example 1 except that the obtained carbon particles 2 were used. Table 4 shows various physical properties of the obtained graphite material 2 and evaluation results of the lithium ion battery.
[実施例3]
 炭素材料をD50が24.0μmとなるように粉砕して分級した以外は実施例1と同様の製造方法により炭素粒子3を得た。炭素粒子3の物性を表3にまとめた。
 次いで、得られた炭素粒子3を用いたこと以外は実施例1と同様の方法で黒鉛材料3を得た。得られた黒鉛材料3の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Example 3]
Carbon particles 3 were obtained by the same production method as in Example 1 except that the carbon material was pulverized and classified so that D50 was 24.0 μm. Table 3 shows the physical properties of the carbon particles 3.
Next, a graphite material 3 was obtained in the same manner as in Example 1 except that the obtained carbon particles 3 were used. Table 4 shows various physical properties of the obtained graphite material 3 and evaluation results of the lithium ion battery.
[実施例4]
 炭素材料をD50が27.0μmとなるように粉砕して分級した以外は実施例1と同様の製造方法により炭素粒子4を得た。炭素粒子4の物性を表3にまとめた。
 次いで、得られた炭素粒子4を用いたこと以外は実施例1と同様の方法で黒鉛材料4を得た。得られた黒鉛材料4の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Example 4]
Carbon particles 4 were obtained by the same production method as in Example 1 except that the carbon material was pulverized and classified so that D50 was 27.0 μm. Table 3 shows the physical properties of the carbon particles 4.
Next, a graphite material 4 was obtained in the same manner as in Example 1 except that the obtained carbon particles 4 were used. Table 4 shows various physical properties of the obtained graphite material 4 and evaluation results of the lithium ion battery.
[実施例5]
 パラフィン含有量65質量%の中国産原油に対してディレードコーキングプロセスを用いて得られた石油コークスを炭素材料に用いた。これをホソカワミクロン製バンタムミルで粉砕し、日清エンジニアリング製ターボクラシファイアーで気流分級してD50を23.0μmとし、日本碍子製ローラーハースキルンで窒素ガスを流しながら、1000℃で熱処理し、炭素粒子5を得た。炭素粒子5の物性を表3にまとめた。
 次いで、得られた炭素粒子5を用いたこと以外は実施例1と同様の方法で黒鉛材料5を得た。得られた黒鉛材料5の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Example 5]
The petroleum coke obtained by using the delayed coking process with respect to Chinese crude oil having a paraffin content of 65% by mass was used as a carbon material. This was crushed with a Hosokawa Micron bantam mill, air-flow classified with a Nisshin Engineering turbo classifier to D50 of 23.0 μm, and heat-treated at 1000° C. while flowing nitrogen gas with a Nippon Insulator roller hearth kiln to produce carbon particles 5 Got Table 3 shows the physical properties of the carbon particles 5.
Next, a graphite material 5 was obtained in the same manner as in Example 1 except that the obtained carbon particles 5 were used. Table 4 shows various physical properties of the obtained graphite material 5 and evaluation results of the lithium ion battery.
[比較例1]
 パラフィン含有量27質量%のベネズエラ産原油に対してディレードコーキングプロセスを用いて得られた石油コークスを炭素材料に用いた。これをホソカワミクロン製バンタムミルで粉砕し、日清エンジニアリング製ターボクラシファイアーで気流分級してD50を16.0μmとし、日本碍子製ローラーハースキルンで窒素ガスを流しながら、1000℃で熱処理し、炭素粒子6を得た。炭素粒子6の物性を表3にまとめた。
 次いで、得られた炭素粒子6を用いたこと以外は実施例1と同様の方法で黒鉛材料6を得た。得られた黒鉛材料6の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative Example 1]
A petroleum coke obtained by using a delayed coking process for a Venezuelan crude oil having a paraffin content of 27% by mass was used as a carbon material. This was crushed with a Hosokawa Micron bantam mill, air-flow classified with a Nisshin Engineering turbo classifier to D50 of 16.0 μm, and heat-treated at 1000° C. while flowing nitrogen gas with a Japanese insulator roller hearth kiln to produce carbon particles 6 Got Table 3 shows the physical properties of the carbon particles 6.
Next, a graphite material 6 was obtained in the same manner as in Example 1 except that the obtained carbon particles 6 were used. Table 4 shows various physical properties of the obtained graphite material 6 and evaluation results of the lithium ion battery.
[比較例2]
 パラフィン含有量32質量%のメキシコ産原油に対してディレードコーキングプロセスを用いて得られた石油コークスを炭素材料に用いた。これをホソカワミクロン製バンタムミルで粉砕し、日清エンジニアリング製ターボクラシファイアーで気流分級してD50を16.0μmとし、日本碍子製ローラーハースキルンで窒素ガスを流しながら、1000℃で熱処理し、炭素粒子7を得た。炭素粒子7の物性を表3にまとめた。
 次いで、得られた炭素粒子7を用いたこと以外は実施例1と同様の方法で黒鉛材料7を得た。得られた黒鉛材料7の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative example 2]
A petroleum coke obtained by using a delayed coking process was used as a carbon material for a Mexican crude oil having a paraffin content of 32% by mass. This was crushed with a Hosokawa Micron bantam mill, air classification was performed with a Nisshin Engineering turbo classifier to D50 of 16.0 μm, and heat treatment was performed at 1000° C. while flowing nitrogen gas with a Japanese insulator roller hearth kiln to obtain carbon particles 7 Got Table 3 shows the physical properties of the carbon particles 7.
Next, a graphite material 7 was obtained in the same manner as in Example 1 except that the obtained carbon particles 7 were used. Table 4 shows various physical properties of the obtained graphite material 7 and evaluation results of the lithium ion battery.
[比較例3]
 パラフィン含有量36質量%のカリフォルニア産原油に対してディレードコーキングプロセスを用いて得られた石油コークスを炭素材料に用いた。これをホソカワミクロン製バンタムミルで粉砕し、日清エンジニアリング製ターボクラシファイアーで気流分級してD50を16.0μmとし、日本碍子製ローラーハースキルンで窒素ガスを流しながら、1000℃で熱処理し、炭素粒子8を得た。炭素粒子8の物性を表3にまとめた。
 次いで、得られた炭素粒子8を用いたこと以外は実施例1と同様の方法で黒鉛材料8を得た。得られた黒鉛材料8の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative Example 3]
The petroleum coke obtained by using the delayed coking process with respect to a California crude oil having a paraffin content of 36% by mass was used as a carbon material. This was crushed with a Hosokawa Micron bantam mill, air-flow classified with a Nisshin Engineering turbo classifier to D50 of 16.0 μm, and heat-treated at 1000° C. while flowing nitrogen gas with a Nippon Insulator roller hearth kiln to obtain carbon particles 8 Got Table 3 shows the physical properties of the carbon particles 8.
Next, a graphite material 8 was obtained in the same manner as in Example 1 except that the obtained carbon particles 8 were used. Table 4 shows various physical properties of the obtained graphite material 8 and evaluation results of the lithium ion battery.
[比較例4]
 炭素粒子2をネジ蓋つき黒鉛ルツボに充填し、アチソン炉を用いて最高温度3200℃で黒鉛化して黒鉛材料9を得た。得られた黒鉛材料9の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative Example 4]
A graphite crucible with a screw lid was filled with carbon particles 2, and graphitized at a maximum temperature of 3200° C. using an Acheson furnace to obtain a graphite material 9. Table 4 shows various physical properties of the obtained graphite material 9 and evaluation results of the lithium ion battery.
[比較例5]
 炭素粒子3をネジ蓋つき黒鉛ルツボに充填し、アチソン炉を用いて最高温度3200℃で黒鉛化し、黒鉛材料10を得た。得られた黒鉛材料10の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative Example 5]
Carbon particles 3 were filled in a graphite crucible with a screw lid and graphitized at a maximum temperature of 3200° C. using an Acheson furnace to obtain a graphite material 10. Table 4 shows various physical properties of the obtained graphite material 10 and evaluation results of the lithium ion battery.
[比較例6]
 D50が7μmの中国産天然黒鉛600gを奈良機械製ハイブリダイザーNHS1型に投入し、ローター周速度60m/secにて3分間処理して平均粒子径15μmの球状黒鉛粒子を得た。この球状黒鉛粒子3kgと石油系タール1kgを、(株)マツボー社製のM20型レディゲミキサー(内容積20リットル)に投入し、混練を行った。続いて、窒素ガス雰囲気下にて700℃まで昇温して脱タール処理した後に、1300℃まで昇温して熱処理を行った。得られた熱処理物をピンミルにて解砕し、黒鉛材料11を得た。得られた黒鉛材料11の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative Example 6]
600 g of Chinese natural graphite having D50 of 7 μm was put into a hybridizer NHS1 manufactured by Nara Machine Co., Ltd. and treated at a rotor peripheral speed of 60 m/sec for 3 minutes to obtain spherical graphite particles having an average particle diameter of 15 μm. 3 kg of the spherical graphite particles and 1 kg of petroleum-based tar were charged into an M20 type Loedige mixer (internal volume 20 liters) manufactured by Matsubo Co., Ltd. and kneaded. Then, in a nitrogen gas atmosphere, the temperature was raised to 700° C. for detarring treatment, and then the temperature was raised to 1300° C. for heat treatment. The heat-treated product obtained was crushed with a pin mill to obtain a graphite material 11. Table 4 shows various physical properties of the obtained graphite material 11 and evaluation results of the lithium ion battery.
[比較例7]
 大阪ガス製MCMB2528(黒鉛化温度 2800℃)を黒鉛材料12として用いた。黒鉛材料12の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。
[Comparative Example 7]
MCMB2528 (graphitization temperature: 2800° C.) manufactured by Osaka Gas was used as the graphite material 12. Table 4 shows various physical properties of the graphite material 12 and evaluation results of the lithium ion battery.
[比較例8]
 石炭コークスをバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイアー(日清エンジニアリング(株)製)を用いて気流分級によりD50が6mの炭素粒子9を得た。炭素粒子9の物性を表3にまとめた。
[Comparative Example 8]
Coal coke was crushed using a Bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and carbon particles 9 having a D50 of 6 m were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). Table 3 shows the physical properties of the carbon particles 9.
 炭素粒子9 100質量部と石炭系ピッチ100質量部とを混合し、200℃の熱を加えながら30分間混練した。その後、誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行い、D50が23.0μmとなるように粉砕して黒鉛材料13を得た。得られた黒鉛材料13の各種物性およびリチウムイオン電池の評価結果を、表4にまとめた。 100 parts by mass of carbon particles 9 and 100 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat at 200°C. Then, heat treatment was performed at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace, and the graphite material 13 was obtained by pulverizing so that D50 was 23.0 μm. Table 4 shows various physical properties of the obtained graphite material 13 and evaluation results of the lithium ion battery.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[8]全固体型リチウムイオン二次電池の作製
 以下、実施例および比較例で得られた黒鉛材料を用いた全固体型リチウムイオン二次電池の作製方法について説明する。ここで作製する電池の各構成について、図1に示された参照符号が付された構成に対応するものは、その対応する構成の参照符号を付して説明する。
[8] Preparation of all-solid-state lithium-ion secondary battery A method for preparing an all-solid-state lithium-ion secondary battery using the graphite materials obtained in Examples and Comparative Examples will be described below. Regarding the components of the battery manufactured here, those corresponding to the components with the reference numerals shown in FIG. 1 will be described with the reference symbols of the corresponding components.
[8-1]固体電解質層12の準備
 アルゴンガス雰囲気下で出発原料のLi2S(日本化学工業株式会社製)とP25(シグマアルドリッチジャパン合同会社製)を75:25のモル比率で秤量して混ぜ合わせ、遊星型ボールミル(P-5型、フリッチュ・ジャパン株式会社製)及びジルコニアボール(10mmφ7個、3mmφ10個)を用いて20時間メカニカルミリング(回転数400rpm)することにより、D50が0.3μmのLi3PS4の非晶質固体電解質を得る。
 得られた非晶質固体電解質を、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて、一軸プレス成形機によりプレス成形を行うことで、厚さ960μmのシートとして固体電解質層12を準備する。
[8-1] Preparation of Solid Electrolyte Layer 12 Starting materials Li 2 S (manufactured by Nippon Kagaku Kogyo Co., Ltd.) and P 2 S 5 (manufactured by Sigma-Aldrich Japan GK) in a molar ratio of 75:25 under an argon gas atmosphere. D50 by mechanically milling (rotation speed 400 rpm) for 20 hours using a planetary ball mill (P-5 type, manufactured by Fritsch Japan KK) and zirconia balls (10 mmφ 7 pieces, 3 mmφ 10 pieces). To obtain an amorphous solid electrolyte of Li 3 PS 4 of 0.3 μm.
The obtained amorphous solid electrolyte is press-molded by a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mmφ and a SUS punch to prepare the solid electrolyte layer 12 as a sheet having a thickness of 960 μm. ..
[8-2]負極合剤層132の準備
 黒鉛材料48.5質量部と、固体電解質(Li3PS4、D50:8μm)48.5質量部と、VGCF(登録商標)-H(昭和電工株式会社製)3質量部とを混合する。この混合物を、遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化する。均一化された混合物を、内径10mmφポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形して、厚さ65μmのシートとして負極合剤層132を準備する。
[8-2] Preparation of Negative Electrode Mixture Layer 132 Graphite material 48.5 parts by mass, solid electrolyte (Li 3 PS 4 , D50: 8 μm) 48.5 parts by mass, VGCF (registered trademark)-H (Showa Denko) (Manufactured by corporation) 3 parts by mass are mixed. The mixture is homogenized by milling at 100 rpm for 1 hour using a planetary ball mill. The homogenized mixture is press-molded at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mmφ and a SUS punch to prepare the negative electrode mixture layer 132 as a sheet having a thickness of 65 μm.
[8-3]正極合剤層112の準備
 正極活物質LiCoO2(日本化学工業株式会社製、D50:10μm)55質量部と、固体電解質(Li3PS4、D50:8μm)40質量部と、VGCF(登録商標)-H(昭和電工株式会社製)5質量部とを混合する。この混合物を、遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化する。均一化された混合物を、内径10mmφポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形して、厚さ65μmのシートとして正極合剤層112を準備する。
[8-3] Preparation of Positive Electrode Mixture Layer 112 55 parts by mass of positive electrode active material LiCoO 2 (D50:10 μm, manufactured by Nippon Kagaku Kogyo Co., Ltd.) and 40 parts by mass of solid electrolyte (Li 3 PS 4 , D50:8 μm). , VGCF (registered trademark)-H (manufactured by Showa Denko KK). The mixture is homogenized by milling at 100 rpm for 1 hour using a planetary ball mill. The homogenized mixture is press-molded at 400 MPa using a uniaxial press molding machine using a polyethylene die and an SUS punch, and the positive electrode mixture layer 112 is prepared as a sheet having a thickness of 65 μm.
[8-4]全固体型リチウムイオン二次電池1の組み立て
 内径10mmφポリエチレン製ダイの中に、上記で得られた負極合剤層132、固体電解質層12、正極合剤層112の順に積層し、負極合剤層132側及び正極合剤層112側の両側からSUS製のパンチで100MPa(1000kgf/cm2)の圧力で挟み、負極合剤層132、固体電解質層12、及び正極合剤層112を接合して積層体Aを得る。
[8-4] Assembly of All Solid-State Lithium Ion Secondary Battery 1 The negative electrode mixture layer 132, the solid electrolyte layer 12, and the positive electrode mixture layer 112 obtained above were laminated in this order in a polyethylene die having an inner diameter of 10 mmφ. The negative electrode mixture layer 132 side and the positive electrode mixture layer 112 side were sandwiched by a SUS punch at a pressure of 100 MPa (1000 kgf/cm 2 ) to form the negative electrode mixture layer 132, the solid electrolyte layer 12, and the positive electrode mixture layer. 112 is joined to obtain a laminated body A.
 得られた積層体Aを一旦ダイから取り出し、上記ダイの中に、下から負極リード131a、銅箔(負極集電体131)、負極合剤層132を下側に向けた積層体A、アルミニウム箔(正極集電体111)、正極リード111aの順に重ねて、負極リード131a側及び正極リード111a側の両側からSUS製のパンチで1MPa(10kgf/cm2)の圧力で挟み、負極リード131a、銅箔、積層体A、アルミニウム箔、及び正極リード111aを接合して全固体型リチウムイオン二次電池1を得る。 The obtained layered product A was once taken out from the die, and the negative electrode lead 131a, the copper foil (the negative electrode current collector 131), and the layered product A with the negative electrode mixture layer 132 facing downward from the bottom in the die, aluminum. The foil (positive electrode current collector 111) and the positive electrode lead 111a are stacked in this order, and sandwiched with a pressure of 1 MPa (10 kgf/cm 2 ) from both sides of the negative electrode lead 131a side and the positive electrode lead 111a side with a SUS punch, and the negative electrode lead 131a, The copper foil, the laminate A, the aluminum foil, and the positive electrode lead 111a are joined to obtain the all-solid-state lithium ion secondary battery 1.
[8-5]電池の評価
 以下の電池評価はすべて25℃の大気中で行う。
[8-5] Evaluation of Battery All the following battery evaluations are performed in the atmosphere at 25°C.
[8-5-1]クーロン効率
 上記の通り作製された全固体型リチウムイオン二次電池1に対し、レストポテンシャルから4.2Vになるまで1.25mA(0.05C)で定電流充電を行う。続いて4.2Vの一定電圧で40時間の定電圧充電を行う。定電圧充電による充電容量(mAh)を初回充電容量Qc1とする。
[8-5-1] Coulombic efficiency The all-solid-state lithium-ion secondary battery 1 manufactured as described above is charged with constant current at 1.25 mA (0.05 C) from the rest potential to 4.2 V. .. Subsequently, constant voltage charging is performed for 40 hours at a constant voltage of 4.2V. Let the charge capacity (mAh) by constant voltage charge be the initial charge capacity Qc1.
 次に、1.25mA(0.05C)で2.75Vになるまで定電流放電を行う。初回定電流放電による放電容量(mAh)を放電容量Qd1とする。放電容量Qd1(mAh)を負極層中の複合材料の質量で割った値を放電容量密度(mAh/g)とする。
 また、充電容量Qc1に対する放電容量Qd1の割合を百分率で表した数値、100×Qd1/Qc1をクーロン効率(%)とする。
Next, constant current discharge is performed at 1.25 mA (0.05 C) until 2.75 V is reached. The discharge capacity (mAh) by the first constant current discharge is defined as the discharge capacity Qd1. A value obtained by dividing the discharge capacity Qd1 (mAh) by the mass of the composite material in the negative electrode layer is defined as the discharge capacity density (mAh/g).
Further, the ratio of the discharge capacity Qd1 to the charge capacity Qc1 is expressed as a percentage, and 100×Qd1/Qc1 is taken as the Coulombic efficiency (%).
[8-5-2]レート特性
 上記と同様の手順で充電した後、2.5mA(0.1C)で2.75Vになるまで定電流放電して測定される放電容量Q2.5d[mAh]を測定する。上記と同様の手順で充電した後、75mA(3.0C)で2.75Vになるまで定電流放電して測定される放電容量Q75d[mAh]を測定する。100×Q75d/Q2.5dを3Cレート容量維持率(%)(レート特性)とする。
[8-5-2] Rate characteristics After charging in the same procedure as above, discharge capacity Q 2.5 d [mAh] measured by constant current discharge at 2.5 mA (0.1 C) until 2.75 V. To measure. After charging in the same procedure as above, the discharge capacity Q 75 d [mAh] measured by constant current discharge at 75 mA (3.0 C) until 2.75 V is measured. 100×Q 75 d/Q 2.5 d is defined as 3C rate capacity maintenance rate (%) (rate characteristic).
[8-5-3]サイクル特性
 充電は4.2Vになるまで5.0mA(0.2C)の定電流充電を行い、続いて4.2Vの一定電圧で、電流値が1.25mA(0.05C)に減少するまで定電圧充電を行う。放電は25mA(1.0C)の定電流放電で、電圧が2.75Vになるまで行う。
 これらの充放電を100回行い、100回目の放電容量Qd100として、100×Qd100/Qd1を100サイクル容量維持率(%)(サイクル特性)とする。
[8-5-3] Cycle characteristics Charge is carried out by constant current charging of 5.0 mA (0.2 C) until it reaches 4.2 V, and then at a constant voltage of 4.2 V, the current value is 1.25 mA (0 C). Constant-voltage charging is performed until it decreases to .05C). The discharge is a constant current discharge of 25 mA (1.0 C) until the voltage reaches 2.75V.
These charges and discharges are performed 100 times, and 100×Qd100/Qd1 is taken as 100 cycle capacity retention rate (%) (cycle characteristics) as the discharge capacity Qd100 at the 100th time.
[実施例6、比較例9~11]
 上記の実施例および比較例で得られた黒鉛材料1、6、9、11を用いた全固体型リチウムイオン二次電池の評価結果を、表5にまとめた。
[Example 6, Comparative Examples 9 to 11]
Table 5 shows the evaluation results of the all-solid-state lithium ion secondary batteries using the graphite materials 1, 6, 9, 11 obtained in the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
1・・・全固体型リチウムイオン二次電池
11・・・正極層
12・・・固体電解質層
13・・・負極層
111・・・正極集電体
111a・・・正極リード
112・・・正極合剤層
131・・・負極集電体
131a・・・負極リード
132・・・負極合剤層
DESCRIPTION OF SYMBOLS 1... All-solid-state lithium ion secondary battery 11... Positive electrode layer 12... Solid electrolyte layer 13... Negative electrode layer 111... Positive electrode collector 111a... Positive electrode lead 112... Positive electrode Mixture layer 131... Negative electrode current collector 131a... Negative electrode lead 132... Negative electrode mixture layer

Claims (13)

  1.  X線回折測定による(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下であり、
     ラマン分光スペクトル測定による1300~1400cm-1の範囲にあるピークの強度(ID)と1580~1620cm-1の範囲にあるピークの強度(IG)との比ID/IG(R値)が0.09以上0.40以下であり、
     粒度分布から算出される球換算面積に対するBET表面積の比(BET表面積/球換算面積)により求められる表面粗さが6.0~14.0であり、
     偏光顕微鏡による黒鉛材料の断面観察から測定される光学異方性ドメイン、光学等方性ドメインおよび空隙の面積の合計100.0%に対して、光学異方性ドメインの面積の割合が95.0~99.0%であり、
     前記光学異方性ドメインの面積を小さいものから順に積算した際の積算値が、全光学異方性ドメインの面積(μm2)のn%に達した際の最大ドメインの面積(μm2)をDa(n)(ただし、nは0~100の範囲の数値を表す。)とした場合、下記条件(1)~(3)を満足するリチウムイオン二次電池負極用黒鉛材料。
    (1)5μm2≦Da(10)≦20μm2
    (2)40μm2≦Da(50)≦250μm2
    (3)200μm2≦Da(90)≦500μm2
    The average spacing d002 of the (002) planes measured by X-ray diffraction is 0.3354 nm or more and 0.3370 nm or less,
    The ratio ID / IG between peak intensity in the range of 1300 ~ 1400 cm -1 by Raman spectroscopic measurement (ID) and the peak intensity in the range of 1580 ~ 1620cm -1 (IG) ( R value) 0.09 Is 0.40 or less,
    The surface roughness calculated from the ratio of the BET surface area to the sphere-converted area calculated from the particle size distribution (BET surface area/sphere-converted area) is 6.0 to 14.0,
    The ratio of the area of the optically anisotropic domain is 95.0% with respect to the total area of the optically anisotropic domain, the optically isotropic domain and the void of 100.0% measured by observing the cross section of the graphite material with a polarization microscope. ~99.0%,
    The integrated value when the areas of the optically anisotropic domains are integrated in order from the smallest one is the maximum domain area (μm 2 ) when n% of the area (μm 2 ) of all the optically anisotropic domains is reached. A graphite material for a negative electrode of a lithium ion secondary battery that satisfies the following conditions (1) to (3) when Da(n) (where n represents a numerical value in the range of 0 to 100) is satisfied.
    (1) 5 μm 2 ≦Da (10) ≦20 μm 2
    (2) 40 μm 2 ≦Da (50) ≦250 μm 2
    (3) 200 μm 2 ≦Da (90) ≦500 μm 2
  2.  前記光学異方性ドメインの面積、前記光学等方性ドメインの面積および前記空隙の面積の合計100.0%に対して、前記空隙の面積の割合が1.0%以下である請求項1に記載のリチウムイオン二次電池負極用黒鉛材料。 The ratio of the area of the void is 1.0% or less with respect to a total of 100.0% of the area of the optically anisotropic domain, the area of the optically isotropic domain, and the area of the void. The graphite material for a negative electrode of the lithium ion secondary battery described.
  3.  前記光学異方性ドメインを面積の小さい順に配列させた際の個数の合計が、全光学異方性ドメインの個数のm%に達した際の最大ドメインの面積(μm2)をDb(m)(ただし、mは0~100の範囲の数値を表す。)とした場合、下記条件(4)を満足する請求項1または2に記載のリチウムイオン二次電池負極用黒鉛材料。
    (4)Db(99.5)/Da(100)≦0.75
    Db(m) is the maximum domain area (μm 2 ) when the total number of the optically anisotropic domains arranged in ascending order reaches m% of the number of all optically anisotropic domains. The graphite material for a negative electrode of a lithium ion secondary battery according to claim 1 or 2, wherein the following condition (4) is satisfied, where (m represents a numerical value in the range of 0 to 100).
    (4) Db(99.5)/Da(100)≦0.75
  4.  前記光学異方性ドメインのうち長辺部の長さの最大値をLmaxとし、レーザー回折法により測定した前記黒鉛材料の体積基準の粒子径分布における50%粒子径(D50)をLaveとした場合、Lmax/Laveが1.0以下である請求項1~3のいずれか1項に記載のリチウムイオン二次電池負極用黒鉛材料。 In the case where the maximum value of the length of the long side of the optically anisotropic domain is Lmax, and the 50% particle size (D50) in the volume-based particle size distribution of the graphite material measured by a laser diffraction method is Lave. , Lmax/Lave is 1.0 or less, The graphite material for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 3.
  5.  レーザー回折法により測定した体積基準の粒子径分布における10%粒子径(D10)が1.0μm以上16.0μm以下であり、50%粒子径(D50)が6.0μm以上30.0μm以下であり、90%粒子径(D90)が25.0μm以上80.0μm以下である請求項1~4のいずれか1項に記載のリチウムイオン二次電池電極用黒鉛材料。 The 10% particle diameter (D10) in the volume-based particle diameter distribution measured by a laser diffraction method is 1.0 μm or more and 16.0 μm or less, and the 50% particle diameter (D50) is 6.0 μm or more and 30.0 μm or less. The graphite material for a lithium ion secondary battery electrode according to any one of claims 1 to 4, having a 90% particle diameter (D90) of 25.0 μm or more and 80.0 μm or less.
  6.  BET比表面積が0.5m2/g以上6.0m2/g以下である請求項1~5のいずれか1項に記載のリチウムイオン二次電池電極用黒鉛材料。 The graphite material for a lithium ion secondary battery electrode according to any one of claims 1 to 5, which has a BET specific surface area of 0.5 m 2 /g or more and 6.0 m 2 /g or less.
  7.  円形度が0.89以上0.98以下である請求項1~6のいずれか1項に記載のリチウムイオン二次電池負極用黒鉛材料。 The graphite material for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 6, which has a circularity of 0.89 or more and 0.98 or less.
  8.  粒度の均一度(D60/D10)が1.5以上3.0以下である請求項1~7のいずれか1項に記載のリチウムイオン二次電池負極用黒鉛材料。 The graphite material for a lithium ion secondary battery negative electrode according to any one of claims 1 to 7, which has a particle size uniformity (D60/D10) of 1.5 or more and 3.0 or less.
  9.  表面酸素量が0.010以上0.030以下である請求項1~8のいずれか1項に記載のリチウムイオン二次電池負極用黒鉛材料。 The graphite material for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 8, which has a surface oxygen content of 0.010 or more and 0.030 or less.
  10.  請求項1~9のいずれか1項に記載の黒鉛材料を含む負極活物質。 A negative electrode active material containing the graphite material according to any one of claims 1 to 9.
  11.  請求項10に記載の負極活物質を含むリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, which contains the negative electrode active material according to claim 10.
  12.  請求項11に記載の負極を用いたリチウムイオン二次電池。 A lithium-ion secondary battery using the negative electrode according to claim 11.
  13.  請求項11に記載の負極を用いた全固体型リチウムイオン二次電池。 All-solid-state lithium-ion secondary battery using the negative electrode according to claim 11.
PCT/JP2019/050171 2018-12-26 2019-12-20 Graphite material for negative electrode of lithium-ion secondary battery WO2020137909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242693A JP2022032057A (en) 2018-12-26 2018-12-26 Graphite material for lithium ion secondary battery electrode
JP2018-242693 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137909A1 true WO2020137909A1 (en) 2020-07-02

Family

ID=71125960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050171 WO2020137909A1 (en) 2018-12-26 2019-12-20 Graphite material for negative electrode of lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP2022032057A (en)
WO (1) WO2020137909A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138753A1 (en) * 2020-12-24 2022-06-30 昭和電工マテリアルズ株式会社 Negative electrode for all-solid-state battery, all-solid-state battery, and negative-electrode active material for all-solid-state battery
WO2022215126A1 (en) * 2021-04-05 2022-10-13 昭和電工マテリアルズ株式会社 Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190555A (en) * 1990-11-22 1992-07-08 Osaka Gas Co Ltd Lithium secondary battery
JPH07320740A (en) * 1993-02-25 1995-12-08 Kureha Chem Ind Co Ltd Carbonaceous material for secondary battery electrode
JPH0831410A (en) * 1994-07-13 1996-02-02 Toshiba Battery Co Ltd Lithium secondary battery
JPH08162096A (en) * 1994-12-06 1996-06-21 Toshiba Battery Co Ltd Lithium secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2012144617A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
WO2012144618A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite/carbon mixed material, carbon material for battery electrodes, and battery
WO2019151201A1 (en) * 2018-01-30 2019-08-08 昭和電工株式会社 Graphite material, method for producing same, and use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190555A (en) * 1990-11-22 1992-07-08 Osaka Gas Co Ltd Lithium secondary battery
JPH07320740A (en) * 1993-02-25 1995-12-08 Kureha Chem Ind Co Ltd Carbonaceous material for secondary battery electrode
JPH0831410A (en) * 1994-07-13 1996-02-02 Toshiba Battery Co Ltd Lithium secondary battery
JPH08162096A (en) * 1994-12-06 1996-06-21 Toshiba Battery Co Ltd Lithium secondary battery
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2012144617A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
WO2012144618A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite/carbon mixed material, carbon material for battery electrodes, and battery
WO2019151201A1 (en) * 2018-01-30 2019-08-08 昭和電工株式会社 Graphite material, method for producing same, and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138753A1 (en) * 2020-12-24 2022-06-30 昭和電工マテリアルズ株式会社 Negative electrode for all-solid-state battery, all-solid-state battery, and negative-electrode active material for all-solid-state battery
WO2022215126A1 (en) * 2021-04-05 2022-10-13 昭和電工マテリアルズ株式会社 Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Also Published As

Publication number Publication date
JP2022032057A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP6703988B2 (en) Anode materials for lithium-ion batteries and their applications
TWI682576B (en) All solid lithium ion battery
US10377634B2 (en) Carbon material, material for a battery electrode, and battery
JP6664040B2 (en) Anode material for lithium ion battery and use thereof
US8372373B2 (en) Graphite material, carbonaceous material for battery electrodes, and batteries
US10535866B2 (en) Carbon material, carbonaceous material for battery electrode, and battery
US9099745B2 (en) Graphite carbon composite material, carbon material for battery electrodes, and batteries
KR20190042725A (en) Anode material for lithium ion secondary battery
TW201532336A (en) Negative electrode active material for lithium ion secondary battery
US20150263348A1 (en) Carbon material, carbon material for battery electrode, and battery
WO2015182560A1 (en) Carbon material, method for manufacturing same, and application of same
US10377633B2 (en) Carbon material, method for producing same, and use for same
WO2020137909A1 (en) Graphite material for negative electrode of lithium-ion secondary battery
TW202036965A (en) All-solid-state lithium ion battery and negative electrode mix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP