WO2019151188A1 - Conductive adhesive composition - Google Patents

Conductive adhesive composition Download PDF

Info

Publication number
WO2019151188A1
WO2019151188A1 PCT/JP2019/002763 JP2019002763W WO2019151188A1 WO 2019151188 A1 WO2019151188 A1 WO 2019151188A1 JP 2019002763 W JP2019002763 W JP 2019002763W WO 2019151188 A1 WO2019151188 A1 WO 2019151188A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
adhesive composition
mass
thermoplastic resin
resin
Prior art date
Application number
PCT/JP2019/002763
Other languages
French (fr)
Japanese (ja)
Inventor
章郎 高橋
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to KR1020207010207A priority Critical patent/KR102580259B1/en
Priority to CN201980006537.XA priority patent/CN111448279B/en
Priority to JP2019569097A priority patent/JP7225505B2/en
Publication of WO2019151188A1 publication Critical patent/WO2019151188A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive adhesive composition.
  • a conductive adhesive composition in which a conductive filler is dispersed can be mentioned.
  • a conductive adhesive composition for example, in Patent Document 1, a thermoplastic resin composition having excellent mechanical strength and heat resistance, and excellent electrical properties such as conductivity and antistatic properties.
  • the specific surface area of amorphous thermoplastic resin (component A), crystalline thermoplastic resin (component B), conductive carbon black (component C), and conductive carbon black of component C A thermoplastic resin composition comprising a large conductive carbon black or hollow carbon fibril is described.
  • Patent Document 2 discloses an anisotropic conductive film for anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component, and a film-forming resin and An anisotropic conductive film containing a curable resin, a curing agent, and conductive particles, wherein the film-forming resin contains a crystalline resin and an amorphous resin is disclosed.
  • Patent Document 3 discloses an anisotropic conductive film for anisotropically connecting a terminal of a first electronic component and a terminal of a second electronic component, which includes a crystalline resin, an amorphous resin, An anisotropic particle containing conductive particles, wherein the crystalline resin contains a crystalline resin having the same bond characterizing the resin as the bond characterizing the resin of the amorphous resin.
  • An electrically conductive film is disclosed. However, both are anisotropic conductive films.
  • Patent Document 4 discloses an adhesive composition comprising (a) a crystalline polyester resin having a melting point of 40 ° C. to 80 ° C., (b) a radical polymerizable compound, and (c) a radical polymerization initiator. Is disclosed, and in order to impart conductivity or anisotropic conductivity, it is disclosed that (f) conductive particles can be further included.
  • the present invention has been made in view of the above, and can provide a conductive adhesive composition that can be processed at a low temperature of 120 ° C. or lower and has isotropic conductivity and excellent adhesiveness. Objective.
  • the conductive adhesive composition of the present invention comprises (A) a crystalline thermoplastic resin having a melting point of 100 ° C. or higher, (B) an amorphous thermoplastic resin, and (C) a carboxyl group-modified.
  • the dendritic conductive filler is contained in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of the resin component containing at least a polyester resin.
  • the crystalline thermoplastic resin (A) is preferably a crystalline polyester, and the amorphous thermoplastic resin (B) is preferably an amorphous polyester.
  • the conductive filler is one or two selected from the group consisting of copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles. can do.
  • the glass transition point of the carboxyl group-modified polyester resin (C) can be 10 to 30 ° C.
  • the glass transition point of the amorphous thermoplastic resin (B) may be 50 to 120 ° C.
  • the content ratio ((A) / (B)) of the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) is 60/40 to 90/10 in mass ratio. be able to.
  • the content of the carboxyl group-modified polyester resin (C) may be 15 to 35 parts by mass.
  • the conductive adhesive composition according to the present invention can be processed at a low temperature of 120 ° C. or lower, and isotropic conductivity and excellent adhesiveness can be obtained.
  • the conductive adhesive composition according to this embodiment contains at least (A) a crystalline thermoplastic resin having a melting point of 100 ° C. or higher, (B) an amorphous thermoplastic resin, and (C) a carboxyl group-modified polyester resin. It is assumed that the dendritic conductive filler is contained in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of the resin component.
  • the crystalline resin is a polymer substance having a crystal part when solidified, and such a crystalline resin is usually heated by differential scanning calorimetry (hereinafter also referred to as “DSC”).
  • DSC differential scanning calorimetry
  • the melting point (Tm) of the crystalline resin means the peak top temperature in the endothermic peak.
  • An amorphous resin is a polymer substance that does not have a crystalline portion when solidified, and such an amorphous resin usually has a differential scanning calorimetry curve obtained during the DSC temperature rising process. It does not show a clear endothermic peak.
  • the differential scanning calorimeter is measured using a differential scanning calorimeter (for example, trade name “DSC220 type” manufactured by Seiko Denshi Kogyo Co., Ltd.). After flowing in at 10 mL / min and holding at 25 ° C., the temperature is raised to 200 ° C. at 10 ° C./min.
  • the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) do not include the carboxyl group-modified polyester resin (C).
  • thermoplastic resin For example, polyester (PEs), polyethylene (PE), polypropylene (PP), polyamide (PA), polyimide (PI), polycarbonate (PC), polyacetal ( POM), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and the like. These may be used singly or as a mixture of two or more. Among these, polyester is preferable from the viewpoint of workability at a low temperature of 120 ° C. or lower.
  • the number average molecular weight of the crystalline thermoplastic resin (A) is not particularly limited, but is preferably 8000 to 30000, and more preferably 10,000 to 25000. When it is 8000 or more and 30000 or less, it has an appropriate viscosity, and it is easy to form a film such as an electrode of a piezoelectric film.
  • the number average molecular weight is determined using gel permeation chromatography (for example, measuring device: “llance HPLC system” manufactured by Waters Corporation, column: “KF-806L” manufactured by shodex), and the solvent is tetrahydrofuran. The value measured by standard polystyrene conversion is used.
  • the melting point of the crystalline thermoplastic resin (A) is not particularly limited as long as it is 100 ° C. or higher, but is preferably 100 to 140 ° C., more preferably 110 to 140 ° C., and more preferably 110 to 130 ° C. More preferably. It is desirable that the adhesiveness be maintained at 70 ° C. or lower from the usage state of the electronic component and the substrate connected using the conductive adhesive composition according to the present embodiment, and the melting point of the crystalline thermoplastic resin (A) is By being 100 ° C. or higher, creep deformation at 70 ° C. hardly occurs, and excellent adhesiveness is easily obtained. Moreover, by being 140 degrees C or less, even if it melt
  • thermoplastic resin for example, polyester (PEs), polyvinyl chloride (PVC), polystyrene (PS), polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS) , Polycarbonate (PC,) polyethersulfone (PES), polyetherimide (PEI), polyamideimide (PAI), and the like. These may be used alone or as a mixture of two or more. Also good. Among these, polyester is preferable from the viewpoint of workability at a low temperature of 120 ° C. or lower.
  • the number average molecular weight of the amorphous thermoplastic resin (B) is not particularly limited, but is preferably 10,000 to 30,000, and more preferably 12,000 to 25,000.
  • the glass transition point (Tg) of the amorphous thermoplastic resin (B) is not particularly limited, but is preferably 50 to 120 ° C, and more preferably 60 to 100 ° C.
  • Tg glass transition point
  • the glass transition point (Tg) of the amorphous thermoplastic resin (B) is not particularly limited, but is preferably 50 to 120 ° C, and more preferably 60 to 100 ° C.
  • the glass transition point means the temperature at the inflection point of the differential scanning calorimetry curve obtained by differential scanning calorimetry.
  • the carboxyl group-modified polyester resin (C) may be crystalline or amorphous, but is preferably amorphous.
  • the glass transition point of the carboxyl group-modified polyester resin (C) is not particularly limited, but is preferably 10 to 30 ° C, and more preferably 14 to 30 ° C.
  • the number average molecular weight of the carboxyl group-modified polyester resin (C) is not particularly limited, but is preferably 10,000 to 30,000, and more preferably 14,000 to 20,000.
  • the acid value of the carboxyl group-modified polyester resin (C) is not particularly limited, but is preferably 10 to 25 mgKOH / g, and more preferably 15 to 20 mgKOH / g.
  • the resin component of the conductive adhesive composition of the present embodiment includes the above crystalline thermoplastic resin (A), amorphous thermoplastic resin (B), and carboxyl group-modified within a range that does not impair the purpose of the present invention. Resins other than the polyester resin (C) may be contained.
  • the content ratio ((A) / (B)) of the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) is not particularly limited, but is 60/40 to 90/10 in mass ratio. It is preferably 70/30 to 90/10. When the content ratio is within the above range, excellent results can be easily obtained in a 70 ° C. creep test for evaluating adhesiveness.
  • the content of the crystalline thermoplastic resin (A) in 100 parts by mass of the resin component is not particularly limited, but is preferably 40 to 70 parts by mass, more preferably 45 to 65 parts by mass, and 50 to 50 parts by mass. More preferably, it is 60 parts by mass.
  • the content ratio of the amorphous thermoplastic resin (B) in 100 parts by mass of the resin component is not particularly limited, but is preferably 15 to 35 parts by mass, more preferably 15 to 30 parts by mass, More preferably, it is ⁇ 25 parts by mass.
  • the content of the carboxyl group-modified polyester resin (C) in 100 parts by mass of the resin component is not particularly limited, but is preferably 15 to 35 parts by mass, more preferably 15 to 30 parts by mass, and 20 to 20 parts by mass. More preferably, it is 30 parts by mass.
  • the content ratio is within the above range, excellent results are easily obtained in a 90 ° peel test for evaluating adhesiveness.
  • the content of the conductive filler is 50 to 300 parts by mass, preferably 50 to 280 parts by mass, and more preferably 50 to 250 parts by mass with respect to 100 parts by mass of the resin component.
  • it is 50 parts by mass or more, isotropic conductivity is easily obtained, and when it is 300 parts by mass or less, both conductivity and adhesiveness are easily achieved.
  • the conductive filler is not particularly limited as long as it has a dendrite shape, and examples thereof include copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles. From the viewpoint of conductivity, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles are preferable.
  • the dendrite shape means a shape having one or more dendritic protrusions protruding from the particle surface, and the dendritic protrusion may be only a main branch without branching, and a branch portion branches from the main branch. It may be a planar shape or a three-dimensionally grown shape.
  • the silver-coated copper particles may have copper particles and a silver-containing layer that covers the copper particles, and the silver-coated copper alloy particles include copper alloy particles and a silver-containing layer that covers the copper alloy particles.
  • the silver-coated nickel particles may have nickel particles and a silver-containing layer that covers the nickel particles.
  • the copper alloy particles may have a nickel content of 0.5 to 20% by mass and a zinc content of 1 to 20% by mass. Nickel and zinc are included within the above-described range, and the balance is made of copper, and the balance of copper may contain unavoidable impurities.
  • the silver coating amount is preferably 1 to 30% by mass and more preferably 3 to 20% by mass in the ratio of silver-coated copper particles, silver-coated copper alloy particles, or silver-coated nickel particles.
  • the silver coating amount is 1% by mass or more, excellent conductivity is easily obtained, and when the silver coating layer is 30% by mass or less, the cost is lower than that of silver particles while maintaining excellent conductivity. Can be reduced.
  • the average particle diameter of the conductive filler is not particularly limited, but is preferably 1 to 20 ⁇ m, and more preferably 3 to 15 ⁇ m. When it is 1 ⁇ m or more, excellent dispersibility is easily obtained, and when it is 20 ⁇ m or less, excellent conductivity is easily obtained.
  • the average particle diameter means a particle diameter (primary particle diameter) at an integrated value of 50% in a particle size distribution obtained by a laser diffraction scattering method.
  • silica, urethane beads or the like can be appropriately blended according to the required physical properties to adjust the hardness of the composition.
  • the conductive adhesive composition can be hardened, and by blending urethane beads, the conductive adhesive composition can be softened.
  • the conductive adhesive composition of the present embodiment includes antioxidants, pigments, dyes, tackifier resins, plasticizers, ultraviolet absorbers, anti-oxidants, and the like within a range not impairing the object of the present invention.
  • a foaming agent, a leveling regulator, a filler, a flame retardant, etc. can be mix
  • the conductive adhesive composition of the present embodiment can be prepared by kneading according to a conventional method using a commonly used Banbury mixer, kneader, roll, or other mixer.
  • the conductive adhesive composition of one embodiment can be suitably used as an electrode for a piezoelectric film (piezo film) or as an adhesive for electronic components that are vulnerable to heat.
  • the conductive adhesive composition of the present embodiment may be formed into a film shape by coating with a desired film thickness on a film made of polyethylene terephthalate or the like that has been subjected to a release treatment, and may be used as a conductive adhesive film.
  • each component was mixed to prepare a conductive adhesive composition. This was coated on a release-treated polyethylene terephthalate (PET) film (release film 18) to produce a conductive adhesive film having a thickness of 60 ⁇ m.
  • PET polyethylene terephthalate
  • Tm represents a melting point
  • Tg represents a glass transition point
  • Mn represents a number average molecular weight.
  • Conductive filler 1 dendrite-shaped silver-coated copper particles, average particle diameter of 5 ⁇ m, silver coating amount of 10% by mass
  • Conductive filler 2 spherical, silver-coated copper particles, average particle size of 5 ⁇ m ⁇
  • Urethane beads “Dynamic beads UCN-5050 clear” manufactured by Dainichi Seika Kogyo Co., Ltd. ⁇ Silica: “Silo Hovic 200” manufactured by Fuji Silysia Chemical Ltd.
  • the adhesiveness 70 ° C. creep strength, 90 ° peel strength, and tensile shear adhesive strength
  • surface resistivity, and connection resistivity of the obtained conductive adhesive composition were measured, and the results are shown in Table 1.
  • the measuring method is as follows.
  • the aluminum vapor deposition surface of the aluminum vapor deposition film 13 of the sample 2 and the electroconductive adhesive film 14 were adhere
  • the end of the sample 1 that is not bonded is gripped and suspended in an air oven, and the end of the sample 2 that is not bonded is attached with a weight of 500 ⁇ 2 g, and then heated at 70 ° C.
  • the time until 1 and sample 2 were separated at the bonding site was measured. Those having a time until separation of 500 hours or more were considered excellent in adhesiveness.
  • 90 ° peel strength (N / 5 mm): Prepare a sample 3 in which a copper foil 12 is laminated on a glass epoxy substrate 15 with a double-sided tape 11 and an aluminum vapor-deposited film 13, each size being 5 mm ⁇ It cut
  • the aluminum vapor deposition surface of the aluminum vapor deposition film 13 and the electroconductive adhesive film 14 were adhere
  • the aluminum vapor-deposited film 13 connected to the sample 3 was peeled with a tensile tester (PT-200N manufactured by Minebea Co., Ltd.) at a pulling speed of 120 mm / min and a peeling direction of 90 degrees (arrow direction in FIG. 2) until it broke. The average value of the load was taken as the measured value.
  • N / 20 mm Sample 1 and sample 2 are bonded and connected with a conductive adhesive film 14 in the same manner as the 70 ° C creep strength, and is made by Shimadzu Corporation according to JIS K6850. Using the test “AGS-X50S”, a tensile test was performed at a tensile speed of 200 mm / min, and the maximum load at break was measured. The thing of 60 N / 20mm or more shall be excellent in adhesiveness.
  • electrode surface gold plating treatment
  • connection resistance value R 2 between C-D electrode was measured.
  • connection resistivity with the copper foil surface was measured in the same manner as described above except that the copper foil was used instead of the aluminum vapor deposited film 17 and the electrode D was placed on the copper foil.
  • Examples 1 to 5 were all excellent in adhesiveness (70 ° C. creep strength, 90 ° peel strength, and tensile shear adhesive strength), surface resistivity, and connection resistivity.
  • Comparative Example 1 is an example not containing the carboxyl group-modified polyester resin (C), and the 90 ° peel strength was inferior.
  • Comparative Example 2 was an example in which only the carboxyl group-modified polyester resin (C) was used, and the 70 ° C. creep strength was inferior.
  • Comparative Example 3 is an example in which the conductive filler is spherical, and isotropic conductivity was not obtained. Moreover, the connection resistivity was inferior to both the aluminum vapor deposition surface and the copper foil surface.
  • Comparative Example 4 the melting point of the crystalline thermoplastic resin was outside the predetermined range, and the 70 ° C. creep strength was inferior.

Abstract

Provided is a conductive adhesive composition that is capable of being worked at no more than 120°C and has both isotropic conductivity and excellent adhesion properties. The conductive adhesive composition contains 50–300 parts by mass of a dendrite-shaped conductive filler, relative to 100 parts by mass of a resin component containing at least: a crystalline thermoplastic resin (A) having a melting point of at least 100°C; an amorphous thermoplastic resin (B); and a carboxyl group modified polyester resin (C).

Description

導電性接着剤組成物Conductive adhesive composition
 本発明は、導電性接着剤組成物に関するものである。 The present invention relates to a conductive adhesive composition.
 電子部品と基板とを電気的に接続する手段として、導電性フィラーが分散した導電性接着剤組成物の使用が挙げられる。このような導電性接着剤組成物としては、例えば特許文献1には、機械的強度、耐熱性に優れ、かつ、導電性や帯電防止性などの電気的性質にも優れた熱可塑性樹脂組成物を提供することを目的として、非晶性熱可塑性樹脂(成分A)、結晶性熱可塑性樹脂(成分B)、導電性カーボンブラック(成分C)、及び成分Cの導電性カーボンブラックよりも比表面積の大きい導電性カーボンブラック又は中空炭素フィブリルからなる熱可塑性樹脂組成物が記載されている。 As a means for electrically connecting the electronic component and the substrate, use of a conductive adhesive composition in which a conductive filler is dispersed can be mentioned. As such a conductive adhesive composition, for example, in Patent Document 1, a thermoplastic resin composition having excellent mechanical strength and heat resistance, and excellent electrical properties such as conductivity and antistatic properties. The specific surface area of amorphous thermoplastic resin (component A), crystalline thermoplastic resin (component B), conductive carbon black (component C), and conductive carbon black of component C A thermoplastic resin composition comprising a large conductive carbon black or hollow carbon fibril is described.
 しかし、用途によっては等方性の導電が得られる導電性接着剤組成物が求められているところ、特許文献1に記載の熱可塑性樹脂組成物の導電は異方性であり、等方性にするために導電性フィラーを高配合すると、接着性が損なわれるおそれがあった。 However, there is a need for a conductive adhesive composition capable of obtaining isotropic conductivity depending on the application. However, the conductivity of the thermoplastic resin composition described in Patent Document 1 is anisotropic and isotropic. Therefore, if the conductive filler is highly blended, the adhesiveness may be impaired.
 また、近年、電子部品などの熱に弱い部材の接続、例えば圧電フィルムの電極などに用いられる導電性接着剤組成物は、低温、特に、120℃以下の温度での加工が可能なものが要求されている。このような課題に対して、特許文献2には、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、膜形成樹脂と、硬化性樹脂と、硬化剤と、導電性粒子とを含有し、上記膜形成樹脂が、結晶性樹脂と、非晶性樹脂とを含有する異方性導電フィルムが開示されている。また、特許文献3には、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、結晶性樹脂と、非晶性樹脂と、導電性粒子とを含有し、上記結晶性樹脂が、上記非晶性樹脂が有する樹脂を特徴づける結合と同じ、樹脂を特徴づける結合を有する結晶性樹脂を含有することを特徴とする異方性導電フィルムが開示されている。しかしながら、いずれも異方性の導電性フィルムである。 In recent years, conductive adhesive compositions used for connecting heat-sensitive members such as electronic parts, for example, electrodes of piezoelectric films, are required to be capable of processing at low temperatures, particularly at temperatures of 120 ° C. or lower. Has been. In response to such a problem, Patent Document 2 discloses an anisotropic conductive film for anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component, and a film-forming resin and An anisotropic conductive film containing a curable resin, a curing agent, and conductive particles, wherein the film-forming resin contains a crystalline resin and an amorphous resin is disclosed. Patent Document 3 discloses an anisotropic conductive film for anisotropically connecting a terminal of a first electronic component and a terminal of a second electronic component, which includes a crystalline resin, an amorphous resin, An anisotropic particle containing conductive particles, wherein the crystalline resin contains a crystalline resin having the same bond characterizing the resin as the bond characterizing the resin of the amorphous resin. An electrically conductive film is disclosed. However, both are anisotropic conductive films.
 また、特許文献4には、(a)融点が40℃~80℃である結晶性ポリエステル樹脂と、(b)ラジカル重合性化合物と、(c)ラジカル重合開始剤と、を含む接着剤組成物が開示され、導電性又は異方導電性を付与するために、(f)導電性粒子を更に含むことができる旨開示されている。 Patent Document 4 discloses an adhesive composition comprising (a) a crystalline polyester resin having a melting point of 40 ° C. to 80 ° C., (b) a radical polymerizable compound, and (c) a radical polymerization initiator. Is disclosed, and in order to impart conductivity or anisotropic conductivity, it is disclosed that (f) conductive particles can be further included.
 しかしながら、上述の通り、等方性の導電を得るためには、導電性フィラーを高配合する必要があり、接着性と等方性の導電との両立についてさらなる改善の余地があった。 However, as described above, in order to obtain isotropic conductivity, it is necessary to add a high amount of conductive filler, and there is room for further improvement in compatibility between adhesiveness and isotropic conductivity.
特開2003-96317号公報JP 2003-96317 A 特開2014-102943号公報JP 2014-102943 A 特開2014-60025号公報JP 2014-60025 A 国際公開第2009/038190号International Publication No. 2009/038190
 本発明は上記に鑑みてなされたものであり、120℃以下の低温での加工が可能であり、等方性の導電と優れた接着性を兼ね備えた導電性接着剤組成物を提供することを目的とする。 The present invention has been made in view of the above, and can provide a conductive adhesive composition that can be processed at a low temperature of 120 ° C. or lower and has isotropic conductivity and excellent adhesiveness. Objective.
 本発明の導電性接着剤組成物は、上記課題を解決するために、(A)融点が100℃以上の結晶性熱可塑性樹脂と(B)非晶性熱可塑性樹脂と(C)カルボキシル基変性ポリエステル樹脂とを少なくとも含有する樹脂成分100質量部に対して、デンドライト形状の導電性フィラーを50~300質量部含有するものとする。 In order to solve the above-mentioned problems, the conductive adhesive composition of the present invention comprises (A) a crystalline thermoplastic resin having a melting point of 100 ° C. or higher, (B) an amorphous thermoplastic resin, and (C) a carboxyl group-modified. The dendritic conductive filler is contained in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of the resin component containing at least a polyester resin.
 上記結晶性熱可塑性樹脂(A)は結晶性ポリエステルであることが好ましく、上記非晶性熱可塑性樹脂(B)は非晶性ポリエステルであることが好ましい。 The crystalline thermoplastic resin (A) is preferably a crystalline polyester, and the amorphous thermoplastic resin (B) is preferably an amorphous polyester.
 上記導電性フィラーは、銅粒子、銀粒子、金粒子、ニッケル粒子、銀被覆銅粒子、銀被覆銅合金粒子、及び銀被覆ニッケル粒子からなる群より選択される1種又は2種であるものとすることができる。 The conductive filler is one or two selected from the group consisting of copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles. can do.
 上記カルボキシル基変性ポリエステル樹脂(C)のガラス転移点は10~30℃であるものとすることができる。 The glass transition point of the carboxyl group-modified polyester resin (C) can be 10 to 30 ° C.
 上記非晶性熱可塑性樹脂(B)のガラス転移点は50~120℃であるものとすることができる。 The glass transition point of the amorphous thermoplastic resin (B) may be 50 to 120 ° C.
 上記結晶性熱可塑性樹脂(A)と上記非晶性熱可塑性樹脂(B)との含有割合((A)/(B))は、質量比で60/40~90/10であるものとすることができる。 The content ratio ((A) / (B)) of the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) is 60/40 to 90/10 in mass ratio. be able to.
 上記樹脂成分100質量部中、上記カルボキシル基変性ポリエステル樹脂(C)の含有量は、15~35質量部であるものとすることができる。 In 100 parts by mass of the resin component, the content of the carboxyl group-modified polyester resin (C) may be 15 to 35 parts by mass.
 本発明に係る導電性接着剤組成物によれば、120℃以下の低温での加工が可能であり、等方性の導電と優れた接着性が得られる。 The conductive adhesive composition according to the present invention can be processed at a low temperature of 120 ° C. or lower, and isotropic conductivity and excellent adhesiveness can be obtained.
70℃クリープ強度および引張りせん断接着強度の測定に用いたサンプルを示す模式断面図である。It is a schematic cross section which shows the sample used for the measurement of 70 degreeC creep strength and tensile shear adhesive strength. 90°ピール強度の測定に用いたサンプルを示す模式断面図である。It is a schematic cross section which shows the sample used for the measurement of 90 degree peel strength. 表面抵抗率Rを測定する方法を説明するための模式断面図である。Method of measuring the surface resistivity R 1 is a schematic sectional view for explaining the. 接続抵抗率Rを測定する方法を説明するための模式断面図である。It is a schematic cross-sectional view for explaining a method of measuring the connection resistance ratio R 2.
 以下、本発明の実施の形態を、より具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically.
 本実施形態に係る導電性接着剤組成物は、(A)融点が100℃以上の結晶性熱可塑性樹脂と(B)非晶性熱可塑性樹脂と(C)カルボキシル基変性ポリエステル樹脂とを少なくとも含有する樹脂成分100質量部に対して、デンドライト形状の導電性フィラーを50~300質量部含有するものとする。ここで、結晶性樹脂とは、固化したときに結晶部分を有する高分子物質であり、そのような結晶性樹脂は、通常、示差走査熱量測定(以下、「DSC」ともいう。)の昇温過程において得られる示差走査熱量測定曲線が、階段状の吸熱量変化ではなく、明確な吸熱ピークを示す。結晶性樹脂の融点(Tm)とは、上記吸熱ピークにおける、ピークトップの温度をいうものとする。また、非晶性樹脂とは、固化したときに結晶部分を有さない高分子物質であり、そのような非晶性樹脂は、DSCの昇温過程において得られる示差走査熱量測定曲線が、通常、明確な吸熱ピークを示さない。なお、本明細書において、示差走査熱量測定は、示差走査熱量計(例えば、セイコー電子工業株式会社製、商品名「DSC220型」)を用いて測定するものとし、その測定条件は、空気を流量10mL/minで流入し、25℃に保持した後、10℃/minで200℃まで昇温させるものとする。また、本明細書において、結晶性熱可塑性樹脂(A)や、非晶性熱可塑性樹脂(B)には、カルボキシル基変性ポリエステル樹脂(C)は含まれないものとする。 The conductive adhesive composition according to this embodiment contains at least (A) a crystalline thermoplastic resin having a melting point of 100 ° C. or higher, (B) an amorphous thermoplastic resin, and (C) a carboxyl group-modified polyester resin. It is assumed that the dendritic conductive filler is contained in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of the resin component. Here, the crystalline resin is a polymer substance having a crystal part when solidified, and such a crystalline resin is usually heated by differential scanning calorimetry (hereinafter also referred to as “DSC”). The differential scanning calorimetry curve obtained in the process shows a clear endothermic peak, not a stepwise endothermic change. The melting point (Tm) of the crystalline resin means the peak top temperature in the endothermic peak. An amorphous resin is a polymer substance that does not have a crystalline portion when solidified, and such an amorphous resin usually has a differential scanning calorimetry curve obtained during the DSC temperature rising process. It does not show a clear endothermic peak. In the present specification, the differential scanning calorimeter is measured using a differential scanning calorimeter (for example, trade name “DSC220 type” manufactured by Seiko Denshi Kogyo Co., Ltd.). After flowing in at 10 mL / min and holding at 25 ° C., the temperature is raised to 200 ° C. at 10 ° C./min. In the present specification, the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) do not include the carboxyl group-modified polyester resin (C).
 結晶性熱可塑性樹脂(A)としては、特に限定されないが、例えば、ポリエステル(PEs)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアミド(PA)、ポリイミド(PI)、ポリカーボネート(PC)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)等が挙げられ、これらは1種を単独で用いてもよく、2種以上を混合物として用いてもよい。これらの中でも、120℃以下の低温での加工性の観点から、ポリエステルであることが好ましい。 Although it does not specifically limit as crystalline thermoplastic resin (A), For example, polyester (PEs), polyethylene (PE), polypropylene (PP), polyamide (PA), polyimide (PI), polycarbonate (PC), polyacetal ( POM), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and the like. These may be used singly or as a mixture of two or more. Among these, polyester is preferable from the viewpoint of workability at a low temperature of 120 ° C. or lower.
 結晶性熱可塑性樹脂(A)の数平均分子量は、特に限定されないが、8000~30000であることが好ましく、10000~25000であることがより好ましい。8000以上、30000以下である場合、適度な粘度となり、圧電フィルムの電極などの被膜を形成し易い。本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(例えば、測定装置:ウォーターズコーポレーション(株)製「lliance HPLCシステム」、カラム:shodex製「KF-806L」)を用い、溶媒はテトラヒドロフランを用い、標準ポリスチレン換算により測定を行った値とする。 The number average molecular weight of the crystalline thermoplastic resin (A) is not particularly limited, but is preferably 8000 to 30000, and more preferably 10,000 to 25000. When it is 8000 or more and 30000 or less, it has an appropriate viscosity, and it is easy to form a film such as an electrode of a piezoelectric film. In this specification, the number average molecular weight is determined using gel permeation chromatography (for example, measuring device: “llance HPLC system” manufactured by Waters Corporation, column: “KF-806L” manufactured by shodex), and the solvent is tetrahydrofuran. The value measured by standard polystyrene conversion is used.
 結晶性熱可塑性樹脂(A)の融点は、100℃以上であれば特に限定されないが、100~140℃であることが好ましく、110~140℃であることがより好ましく、110~130℃であることがさらに好ましい。本実施形態に係る導電性接着剤組成物を用いて接続された電子部品と基板の使用状況から70℃以下において接着性が維持されることが望ましく、結晶性熱可塑性樹脂(A)の融点が100℃以上であることにより、70℃でのクリープ変形が生じにくく、優れた接着性が得られ易い。また、140℃以下であることにより、室温下において有機溶媒に溶解してもゲル化しにくく、優れた加工性が得られ易い。 The melting point of the crystalline thermoplastic resin (A) is not particularly limited as long as it is 100 ° C. or higher, but is preferably 100 to 140 ° C., more preferably 110 to 140 ° C., and more preferably 110 to 130 ° C. More preferably. It is desirable that the adhesiveness be maintained at 70 ° C. or lower from the usage state of the electronic component and the substrate connected using the conductive adhesive composition according to the present embodiment, and the melting point of the crystalline thermoplastic resin (A) is By being 100 ° C. or higher, creep deformation at 70 ° C. hardly occurs, and excellent adhesiveness is easily obtained. Moreover, by being 140 degrees C or less, even if it melt | dissolves in the organic solvent at room temperature, it is hard to gelatinize and it is easy to obtain the outstanding workability.
 非晶性熱可塑性樹脂(B)としては、特に限定されないが、例えば、ポリエステル(PEs)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリメタクリル酸メチル(PMMA)、アクリロニトリルブタジエンスチレン(ABS)、ポリカーボネート(PC、)ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等が挙げられ、これらは1種を単独で用いてもよく、2種以上を混合物として用いてもよい。これらの中でも、120℃以下の低温での加工性の観点から、ポリエステルであることが好ましい。 Although it does not specifically limit as an amorphous thermoplastic resin (B), For example, polyester (PEs), polyvinyl chloride (PVC), polystyrene (PS), polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS) , Polycarbonate (PC,) polyethersulfone (PES), polyetherimide (PEI), polyamideimide (PAI), and the like. These may be used alone or as a mixture of two or more. Also good. Among these, polyester is preferable from the viewpoint of workability at a low temperature of 120 ° C. or lower.
 非晶性熱可塑性樹脂(B)の数平均分子量は、特に限定されないが、10000~30000であることが好ましく、12000~25000であることがより好ましい。 The number average molecular weight of the amorphous thermoplastic resin (B) is not particularly limited, but is preferably 10,000 to 30,000, and more preferably 12,000 to 25,000.
 非晶性熱可塑性樹脂(B)のガラス転移点(Tg)は、特に限定されないが、50~120℃であることが好ましく、60~100℃であることがより好ましい。50℃以上であることにより、優れた接着性、特に、優れた引きはがし粘着力が得られ易く、120℃以下であることにより、柔軟性に優れ、フィルムなどの用途に適用し易い。 The glass transition point (Tg) of the amorphous thermoplastic resin (B) is not particularly limited, but is preferably 50 to 120 ° C, and more preferably 60 to 100 ° C. By being 50 degreeC or more, it is easy to obtain the outstanding adhesiveness, especially the outstanding peeling adhesive force, and by being 120 degreeC or less, it is excellent in a softness | flexibility and is easy to apply to uses, such as a film.
 ここで、本明細書中において、ガラス転移点とは、差走査熱量測定により得られた示差走査熱量測定曲線の変曲点の温度を意味する。 Here, in this specification, the glass transition point means the temperature at the inflection point of the differential scanning calorimetry curve obtained by differential scanning calorimetry.
 カルボキシル基変性ポリエステル樹脂(C)は、結晶性であっても、非晶性であってもよいが、非晶性であることが好ましい。 The carboxyl group-modified polyester resin (C) may be crystalline or amorphous, but is preferably amorphous.
 カルボキシル基変性ポリエステル樹脂(C)のガラス転移点は、特に限定されないが、10~30℃であることが好ましく、14~30℃であることがより好ましい。 The glass transition point of the carboxyl group-modified polyester resin (C) is not particularly limited, but is preferably 10 to 30 ° C, and more preferably 14 to 30 ° C.
 カルボキシル基変性ポリエステル樹脂(C)の数平均分子量は、特に限定されないが、10000~30000であることが好ましく、14000~20000であることがより好ましい。 The number average molecular weight of the carboxyl group-modified polyester resin (C) is not particularly limited, but is preferably 10,000 to 30,000, and more preferably 14,000 to 20,000.
 カルボキシル基変性ポリエステル樹脂(C)の酸価は、特に限定されないが、10~25mgKOH/gであることが好ましく、15~20mgKOH/gであることがより好ましい。 The acid value of the carboxyl group-modified polyester resin (C) is not particularly limited, but is preferably 10 to 25 mgKOH / g, and more preferably 15 to 20 mgKOH / g.
 本実施形態の導電性接着剤組成物の樹脂成分には、本発明の目的を損なわない範囲で、上記の結晶性熱可塑性樹脂(A)や非晶性熱可塑性樹脂(B)、カルボキシル基変性ポリエステル樹脂(C)以外の樹脂が含まれていてもよい。 The resin component of the conductive adhesive composition of the present embodiment includes the above crystalline thermoplastic resin (A), amorphous thermoplastic resin (B), and carboxyl group-modified within a range that does not impair the purpose of the present invention. Resins other than the polyester resin (C) may be contained.
 結晶性熱可塑性樹脂(A)と非晶性熱可塑性樹脂(B)との含有割合((A)/(B))は、特に限定されないが、質量比で60/40~90/10であることが好ましく、70/30~90/10であることがより好ましい。含有割合が上記範囲内であることにより、接着性を評価する70℃クリープ試験において優れた結果が得られ易い。 The content ratio ((A) / (B)) of the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) is not particularly limited, but is 60/40 to 90/10 in mass ratio. It is preferably 70/30 to 90/10. When the content ratio is within the above range, excellent results can be easily obtained in a 70 ° C. creep test for evaluating adhesiveness.
 樹脂成分100質量部中の結晶性熱可塑性樹脂(A)の含有割合は、特に限定されないが、40~70質量部であることが好ましく、45~65質量部であることがより好ましく、50~60質量部であることがさらに好ましい。 The content of the crystalline thermoplastic resin (A) in 100 parts by mass of the resin component is not particularly limited, but is preferably 40 to 70 parts by mass, more preferably 45 to 65 parts by mass, and 50 to 50 parts by mass. More preferably, it is 60 parts by mass.
 樹脂成分100質量部中の非晶性熱可塑性樹脂(B)の含有割合は、特に限定されないが、15~35質量部であることが好ましく、15~30質量部であることがより好ましく、15~25質量部であることがさらに好ましい。 The content ratio of the amorphous thermoplastic resin (B) in 100 parts by mass of the resin component is not particularly limited, but is preferably 15 to 35 parts by mass, more preferably 15 to 30 parts by mass, More preferably, it is ˜25 parts by mass.
 樹脂成分100質量部中のカルボキシル基変性ポリエステル樹脂(C)の含有割合は、特に限定されないが、15~35質量部であることが好ましく、15~30質量部であることがより好ましく、20~30質量部であることがさらに好ましい。含有割合が、上記範囲内であることにより、接着性を評価する90°ピール試験において優れた結果が得られ易い。 The content of the carboxyl group-modified polyester resin (C) in 100 parts by mass of the resin component is not particularly limited, but is preferably 15 to 35 parts by mass, more preferably 15 to 30 parts by mass, and 20 to 20 parts by mass. More preferably, it is 30 parts by mass. When the content ratio is within the above range, excellent results are easily obtained in a 90 ° peel test for evaluating adhesiveness.
 導電性フィラーの含有量は、樹脂成分100質量部に対して、50~300質量部であり、50~280質量部であることが好ましく、50~250質量部であることがより好ましい。50質量部以上であることにより、等方性の導電が得られ易く、300質量部以下であることにより、導電性と接着性とを両立し易い。 The content of the conductive filler is 50 to 300 parts by mass, preferably 50 to 280 parts by mass, and more preferably 50 to 250 parts by mass with respect to 100 parts by mass of the resin component. When it is 50 parts by mass or more, isotropic conductivity is easily obtained, and when it is 300 parts by mass or less, both conductivity and adhesiveness are easily achieved.
 導電性フィラーは、デンドライト形状であれば特に限定されないが、例えば、銅粒子、銀粒子、金粒子、ニッケル粒子、銀被覆銅粒子、銀被覆銅合金粒子、銀被覆ニッケル粒子が挙げられ、コスト削減と導電性の観点からは、銀被覆銅粒子、銀被覆銅合金粒子、銀被覆ニッケル粒子であることが好ましい。ここで、デンドライト形状とは、粒子表面から突出する1以上の樹枝状突起を有する形状をいい、樹枝状突起は分岐なしの主枝のみであってもよく、主枝から枝部分が分岐して平面状或いは三次元的に成長してなる形状であってもよい。 The conductive filler is not particularly limited as long as it has a dendrite shape, and examples thereof include copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles. From the viewpoint of conductivity, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles are preferable. Here, the dendrite shape means a shape having one or more dendritic protrusions protruding from the particle surface, and the dendritic protrusion may be only a main branch without branching, and a branch portion branches from the main branch. It may be a planar shape or a three-dimensionally grown shape.
 銀被覆銅粒子は、銅粒子とこの銅粒子を被覆する銀含有層とを有していてもよく、銀被覆銅合金粒子は、銅合金粒子とこの銅合金粒子を被覆する銀含有層とを有していてもよく、銀被覆ニッケル粒子は、ニッケル粒子とこのニッケル粒子を被覆する銀含有層とを有していてもよい。また、銅合金粒子は、ニッケルの含有量が0.5~20質量%であり、かつ亜鉛の含有量が1~20質量%であってもよい。ニッケルと亜鉛とを上記した範囲内で含み、残部が銅からなり、残部の銅は不可避不純物を含んでいてもよい。 The silver-coated copper particles may have copper particles and a silver-containing layer that covers the copper particles, and the silver-coated copper alloy particles include copper alloy particles and a silver-containing layer that covers the copper alloy particles. The silver-coated nickel particles may have nickel particles and a silver-containing layer that covers the nickel particles. Further, the copper alloy particles may have a nickel content of 0.5 to 20% by mass and a zinc content of 1 to 20% by mass. Nickel and zinc are included within the above-described range, and the balance is made of copper, and the balance of copper may contain unavoidable impurities.
 銀被覆量は、銀被覆銅粒子、銀被覆銅合金粒子、又は銀被覆ニッケル粒子中の割合で1~30質量%であることが好ましく、3~20質量%であることがより好ましい。銀被覆量が1質量%以上であると、優れた導電性が得られやすく、銀被覆層が30質量%以下であると、優れた導電性を維持しつつ、銀粒子と比較してコストを削減することができる。 The silver coating amount is preferably 1 to 30% by mass and more preferably 3 to 20% by mass in the ratio of silver-coated copper particles, silver-coated copper alloy particles, or silver-coated nickel particles. When the silver coating amount is 1% by mass or more, excellent conductivity is easily obtained, and when the silver coating layer is 30% by mass or less, the cost is lower than that of silver particles while maintaining excellent conductivity. Can be reduced.
 導電性フィラーの平均粒子径は、特に限定されないが、1~20μmであることが好ましく、3~15μmであることがより好ましい。1μm以上であることにより、優れた分散性が得られ易く、20μm以下であることにより優れた導電性が得られ易い。ここで、本明細書において、平均粒子径とは、レーザー回折散乱法により得られた粒度分布における積算値50%での粒径(一次粒子径)を意味する。 The average particle diameter of the conductive filler is not particularly limited, but is preferably 1 to 20 μm, and more preferably 3 to 15 μm. When it is 1 μm or more, excellent dispersibility is easily obtained, and when it is 20 μm or less, excellent conductivity is easily obtained. Here, in this specification, the average particle diameter means a particle diameter (primary particle diameter) at an integrated value of 50% in a particle size distribution obtained by a laser diffraction scattering method.
 本実施形態の導電性接着剤組成物には、求められる物性に応じて、シリカやウレタンビーズなどを適宜配合し、組成物の硬度を調整することができる。シリカを配合することで、導電性接着剤組成物を硬くすることができ、ウレタンビーズを配合することで、導電性接着剤組成物を柔らかくすることができる。 In the conductive adhesive composition of the present embodiment, silica, urethane beads or the like can be appropriately blended according to the required physical properties to adjust the hardness of the composition. By blending silica, the conductive adhesive composition can be hardened, and by blending urethane beads, the conductive adhesive composition can be softened.
 本実施形態の導電性接着剤組成物には、上記成分の他にも、本発明の目的を損なわない範囲において、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤等を配合することができる。 In addition to the above components, the conductive adhesive composition of the present embodiment includes antioxidants, pigments, dyes, tackifier resins, plasticizers, ultraviolet absorbers, anti-oxidants, and the like within a range not impairing the object of the present invention. A foaming agent, a leveling regulator, a filler, a flame retardant, etc. can be mix | blended.
 本実施形態の導電性接着剤組成物は、通常用いられるバンバリーミキサーやニーダー、ロール等の混合機を用いて、常法に従い混練して作製することができる。 The conductive adhesive composition of the present embodiment can be prepared by kneading according to a conventional method using a commonly used Banbury mixer, kneader, roll, or other mixer.
 一実施形態の導電性接着剤組成物は、圧電フィルム(ピエゾフィルム)の電極として、または熱に弱い電子部品の接着剤として好適に用いることができる。 The conductive adhesive composition of one embodiment can be suitably used as an electrode for a piezoelectric film (piezo film) or as an adhesive for electronic components that are vulnerable to heat.
 本実施形態の導電性接着剤組成物は、離型処理されたポリエチレンテレフタレートなどからなるフィルムに所望の膜厚でコーティングすることによりフィルム状に成形し、導電性接着フィルムとしてもよい。なお、導電性接着フィルムを保護する目的で、その片面又は両面に、離型フィルムを設けても良い。 The conductive adhesive composition of the present embodiment may be formed into a film shape by coating with a desired film thickness on a film made of polyethylene terephthalate or the like that has been subjected to a release treatment, and may be used as a conductive adhesive film. In addition, you may provide a release film in the single side | surface or both surfaces in order to protect a conductive adhesive film.
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下において配合割合等は、特にことわらない限り質量基準とする。 Examples of the present invention are shown below, but the present invention is not limited to the following examples. In the following, the blending ratio and the like are based on mass unless otherwise specified.
 下記表1に示す配合に従い、各成分を混合し、導電性接着剤組成物を調製した。これを離型処理されたポリエチレンテレフタレート(PET)フィルム(離型フィルム18)にコーティングし、膜厚60μmの導電性接着フィルムを作製した。表中に記載の化合物の詳細は次の通りであり、Tmは融点、Tgはガラス転移点、Mnは数平均分子量をそれぞれ表す。
・結晶性熱可塑性樹脂1:結晶性ポリエステル、Tm=120℃、Mn=22000
・結晶性熱可塑性樹脂2:結晶性ポリエステル、Tm=95℃、Mn=20000
・非晶性熱可塑性樹脂:非晶性ポリエステル、Tg=65℃、Mn=16000
・カルボキシル基変性ポリエステル樹脂:Tg=15℃、Mn=16000、酸価=18mgKOH/g
・導電性フィラー1:デンドライト形状の銀被覆銅粒子、平均粒子径5μm、銀被覆量10質量%
・導電性フィラー2:球状、銀被覆銅粒子、平均粒子径5μm
・ウレタンビーズ:大日精化工業(株)製「ダイナミックビーズ UCN-5050クリヤー」
・シリカ:富士シリシア化学(株)製「サイロホービック200」
In accordance with the formulation shown in Table 1 below, each component was mixed to prepare a conductive adhesive composition. This was coated on a release-treated polyethylene terephthalate (PET) film (release film 18) to produce a conductive adhesive film having a thickness of 60 μm. Details of the compounds described in the table are as follows, Tm represents a melting point, Tg represents a glass transition point, and Mn represents a number average molecular weight.
Crystalline thermoplastic resin 1: crystalline polyester, Tm = 120 ° C., Mn = 22000
Crystalline thermoplastic resin 2: crystalline polyester, Tm = 95 ° C., Mn = 20000
Amorphous thermoplastic resin: Amorphous polyester, Tg = 65 ° C., Mn = 16000
Carboxyl group-modified polyester resin: Tg = 15 ° C., Mn = 16000, acid value = 18 mgKOH / g
Conductive filler 1: dendrite-shaped silver-coated copper particles, average particle diameter of 5 μm, silver coating amount of 10% by mass
Conductive filler 2: spherical, silver-coated copper particles, average particle size of 5 μm
・ Urethane beads: “Dynamic beads UCN-5050 clear” manufactured by Dainichi Seika Kogyo Co., Ltd.
・ Silica: “Silo Hovic 200” manufactured by Fuji Silysia Chemical Ltd.
 得られた導電性接着剤組成物の接着性(70℃クリープ強度、90°ピール強度、及び引張りせん断接着強度)、表面抵抗率、及び接続抵抗率を測定し、結果を表1に示した。測定方法は以下に示す通りである。 The adhesiveness (70 ° C. creep strength, 90 ° peel strength, and tensile shear adhesive strength), surface resistivity, and connection resistivity of the obtained conductive adhesive composition were measured, and the results are shown in Table 1. The measuring method is as follows.
・70℃クリープ強度:PETフィルム10上に両面テープ11を介して銅箔12を積層したサンプル1と、PETフィルム10上に両面テープ11を介してアルミ蒸着フィルム13のアルミ蒸着面が表面となるように積層したサンプル2とを用意し、それぞれのサンプルサイズを50mm×20mmとなるように切断した。そして、上記で得られた導電性接着剤組成物からなる膜厚60μmの導電性接着フィルム14をサイズが20mm×5mmとなるように切断して、サンプル1の銅箔12上に積層し、温度100℃、圧力0.5MPaで30秒間プレス圧着した後、離型フィルム18を剥離した。そして、図1に示すようにサンプル2のアルミ蒸着フィルム13のアルミ蒸着面と導電性接着フィルム14とを接着させ、温度100℃、圧力0.5MPaで30秒間プレス圧着して接続した。サンプル1の接着していない側の端部を把持してエアオーブン中に吊るし、サンプル2の接着していない側の端部に500±2gの重りを付けた後、70℃で加熱し、サンプル1とサンプル2とが接着箇所で分離するまでの時間を計測した。分離するまでの時間が500時間以上であるものは、接着性に優れるものとした。 -70 degreeC creep strength: Sample 1 which laminated copper foil 12 on PET film 10 via double-sided tape 11, and the aluminum vapor deposition surface of aluminum vapor deposition film 13 on PET film 10 via double-sided tape 11 become the surface Sample 2 laminated in this manner was prepared, and each sample size was cut to 50 mm × 20 mm. Then, the conductive adhesive film 14 having a film thickness of 60 μm made of the conductive adhesive composition obtained above is cut so as to have a size of 20 mm × 5 mm, laminated on the copper foil 12 of the sample 1, and the temperature After press-pressing at 100 ° C. and a pressure of 0.5 MPa for 30 seconds, the release film 18 was peeled off. And as shown in FIG. 1, the aluminum vapor deposition surface of the aluminum vapor deposition film 13 of the sample 2 and the electroconductive adhesive film 14 were adhere | attached, and it connected by press-pressing for 30 seconds at the temperature of 100 degreeC and the pressure of 0.5 MPa. The end of the sample 1 that is not bonded is gripped and suspended in an air oven, and the end of the sample 2 that is not bonded is attached with a weight of 500 ± 2 g, and then heated at 70 ° C. The time until 1 and sample 2 were separated at the bonding site was measured. Those having a time until separation of 500 hours or more were considered excellent in adhesiveness.
・90°ピール強度(N/5mm):ガラスエポキシ基板15の上に、両面テープ11を介して銅箔12を積層したサンプル3と、アルミ蒸着フィルム13とを用意し、それぞれのサイズを5mm×70mmとなるように切断した。そして、図2に示すように、上記で得られた導電性接着フィルム14をサイズが5mm×50mmとなるように切断して、サンプル3の銅箔12上に積層し、温度100℃、圧力0.5MPaで30秒間プレス圧着した後、離型フィルム18を剥離した。そして、アルミ蒸着フィルム13のアルミ蒸着面と導電性接着フィルム14とを接着させ、温度100℃、圧力0.5MPaで30秒間プレス圧着して接続した。サンプル3に接続したアルミ蒸着フィルム13を引張試験機(ミネベア株式会社製 PT-200N)で、引張速度120mm/min、剥離方向90度(図2の矢印方向)にて剥離し、破断するまでの荷重の平均値を測定値とした。 90 ° peel strength (N / 5 mm): Prepare a sample 3 in which a copper foil 12 is laminated on a glass epoxy substrate 15 with a double-sided tape 11 and an aluminum vapor-deposited film 13, each size being 5 mm × It cut | disconnected so that it might become 70 mm. Then, as shown in FIG. 2, the conductive adhesive film 14 obtained above is cut so as to have a size of 5 mm × 50 mm, laminated on the copper foil 12 of the sample 3, and the temperature is 100 ° C. and the pressure is 0. After press-pressing at 5 MPa for 30 seconds, the release film 18 was peeled off. And the aluminum vapor deposition surface of the aluminum vapor deposition film 13 and the electroconductive adhesive film 14 were adhere | attached, and it connected by press-pressing for 30 seconds at the temperature of 100 degreeC and the pressure of 0.5 MPa. The aluminum vapor-deposited film 13 connected to the sample 3 was peeled with a tensile tester (PT-200N manufactured by Minebea Co., Ltd.) at a pulling speed of 120 mm / min and a peeling direction of 90 degrees (arrow direction in FIG. 2) until it broke. The average value of the load was taken as the measured value.
・引張りせん断接着強度(N/20mm):70℃クリープ強度と同様にサンプル1とサンプル2を導電性接着フィルム14で接着して接続し、JIS K6850に準拠し、(株)島津製作所製の引張り試験「AGS-X50S」を用いて、引張速度200mm/minで引張り試験を行い、破断時の最大値荷重を測定した。60N/20mm以上であるものは、接着性に優れるものとした。 -Tensile shear adhesive strength (N / 20 mm): Sample 1 and sample 2 are bonded and connected with a conductive adhesive film 14 in the same manner as the 70 ° C creep strength, and is made by Shimadzu Corporation according to JIS K6850. Using the test “AGS-X50S”, a tensile test was performed at a tensile speed of 200 mm / min, and the maximum load at break was measured. The thing of 60 N / 20mm or more shall be excellent in adhesiveness.
・表面抵抗率(Ω/□):図3に示すように、上記で作製した導電性接着フィルム14上に、立方体形状の電極A,B(電極面積:1cm(各辺=1cm)、電極表面:金メッキ処理)を載置した。この際の電極A,Bの間隔は10mmとした。各電極に鉛直方向に4.9Nの荷重を加え、2端子法でA-B電極間の抵抗値を測定し、測定開始から1分後の値をもって表面抵抗率Rとした。 Surface resistivity (Ω / □): As shown in FIG. 3, on the conductive adhesive film 14 produced above, cubic electrodes A and B (electrode area: 1 cm 2 (each side = 1 cm), electrodes Surface: gold plating treatment) was placed. The distance between the electrodes A and B at this time was 10 mm. A load of 4.9 N was applied to each electrode in the vertical direction, the resistance value between the AB electrodes was measured by the two-terminal method, and the value 1 minute after the start of measurement was defined as the surface resistivity R 1 .
・接続抵抗率:アルミ蒸着面との接続抵抗率、及び銅箔面との接続抵抗率を測定した。具体的には、図4に示すように、PETフィルム10にアルミ蒸着層16を形成したアルミ蒸着フィルム17を用意し、上記で得られた導電性接着剤組成物からなる膜厚60μmの導電性接着フィルム14をアルミ蒸着フィルム17に、温度100℃、圧力0.5MPaで30秒間プレスして転写させ、離型フィルム18を剥離した。そして、立方体形状の電極C,D(電極面積:1cm(各辺=1cm)、電極表面:金メッキ処理)のうち電極Cを導電性接着フィルム14上に載置し、電極Dをアルミ蒸着フィルム17上に載置した。それ以外は、表面抵抗率と同様にして、C-D電極間の接続抵抗値Rを測定した。また、銅箔面との接続抵抗率の測定は、アルミ蒸着フィルム17の代わりに銅箔を使用し、電極Dを銅箔上に載置した以外は上記と同様に測定した。 -Connection resistivity: The connection resistivity with the aluminum vapor deposition surface and the connection resistivity with the copper foil surface were measured. Specifically, as shown in FIG. 4, an aluminum vapor-deposited film 17 in which an aluminum vapor-deposited layer 16 is formed on a PET film 10 is prepared. The adhesive film 14 was pressed and transferred to the aluminum vapor deposition film 17 at a temperature of 100 ° C. and a pressure of 0.5 MPa for 30 seconds, and the release film 18 was peeled off. And among the cube-shaped electrodes C and D (electrode area: 1 cm 2 (each side = 1 cm), electrode surface: gold plating treatment), the electrode C is placed on the conductive adhesive film 14, and the electrode D is deposited on the aluminum vapor deposition film. 17 was mounted. Otherwise, in the same manner as the surface resistivity was measured connection resistance value R 2 between C-D electrode. Further, the connection resistivity with the copper foil surface was measured in the same manner as described above except that the copper foil was used instead of the aluminum vapor deposited film 17 and the electrode D was placed on the copper foil.
 いずれも、測定雰囲気温度は室温(18~28℃)とし、試験数をn=5とした平均値を表1に示す。抵抗値が、10Ω/□以下であるものは、導電性に優れると判断できる。この際、電気的な接続が、異方性か、等方性かについても評価し、異方性であるものは表面抵抗率Rの評価をブランク(-)とした。 In all cases, Table 1 shows the average values when the measurement atmosphere temperature is room temperature (18 to 28 ° C.) and the number of tests is n = 5. Those having a resistance value of 10Ω / □ or less can be judged to be excellent in conductivity. At this time, it was also evaluated whether the electrical connection was anisotropic or isotropic. For the anisotropic connection, the evaluation of the surface resistivity R 1 was blank (−).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5は、接着性(70℃クリープ強度、90°ピール強度、及び引張りせん断接着強度)、表面抵抗率、及び接続抵抗率がいずれも優れていた。 As shown in Table 1, Examples 1 to 5 were all excellent in adhesiveness (70 ° C. creep strength, 90 ° peel strength, and tensile shear adhesive strength), surface resistivity, and connection resistivity.
 比較例1は、カルボキシル基変性ポリエステル樹脂(C)を含有しない例であり、90°ピール強度が劣っていた。 Comparative Example 1 is an example not containing the carboxyl group-modified polyester resin (C), and the 90 ° peel strength was inferior.
 比較例2は、カルボキシル基変性ポリエステル樹脂(C)のみを用いた例であり、70℃クリープ強度が劣っていた。 Comparative Example 2 was an example in which only the carboxyl group-modified polyester resin (C) was used, and the 70 ° C. creep strength was inferior.
 比較例3は、導電性フィラーが球状であるものを用いた例であり、等方性の導電性が得られなかった。また、接続抵抗率が、アルミ蒸着面、銅箔面いずれに対しても劣っていた。 Comparative Example 3 is an example in which the conductive filler is spherical, and isotropic conductivity was not obtained. Moreover, the connection resistivity was inferior to both the aluminum vapor deposition surface and the copper foil surface.
 比較例4は、結晶性熱可塑性樹脂の融点が所定範囲外であり、70℃クリープ強度が劣っていた。 In Comparative Example 4, the melting point of the crystalline thermoplastic resin was outside the predetermined range, and the 70 ° C. creep strength was inferior.
1・・・・サンプル
2・・・・サンプル
3・・・・サンプル
10・・・PETフィルム
11・・・両面テープ
12・・・銅箔
13・・・アルミ蒸着フィルム
14・・・導電性接着フィルム
15・・・ガラスエポキシ基板
16・・・アルミ蒸着層
17・・・アルミ蒸着フィルム
18・・・離型フィルム
A,B,C,D・・・電極

 
DESCRIPTION OF SYMBOLS 1 ... Sample 2 ... Sample 3 ... Sample 10 ... PET film 11 ... Double-sided tape 12 ... Copper foil 13 ... Aluminum vapor deposition film 14 ... Conductive adhesion Film 15 ... Glass epoxy substrate 16 ... Aluminum vapor deposition layer 17 ... Aluminum vapor deposition film 18 ... Release film A, B, C, D ... Electrode

Claims (7)

  1.  (A)融点が100℃以上の結晶性熱可塑性樹脂と(B)非晶性熱可塑性樹脂と(C)カルボキシル基変性ポリエステル樹脂とを少なくとも含有する樹脂成分100質量部に対して、デンドライト形状の導電性フィラーを50~300質量部含有する、導電性接着剤組成物。 (A) Dendritic shape of 100 parts by mass of a resin component containing at least a crystalline thermoplastic resin having a melting point of 100 ° C. or higher, (B) an amorphous thermoplastic resin, and (C) a carboxyl group-modified polyester resin. A conductive adhesive composition containing 50 to 300 parts by mass of a conductive filler.
  2.  前記結晶性熱可塑性樹脂(A)が結晶性ポリエステルであり、前記非晶性熱可塑性樹脂(B)が非晶性ポリエステルである、請求項1に記載の導電性接着剤組成物。 The conductive adhesive composition according to claim 1, wherein the crystalline thermoplastic resin (A) is a crystalline polyester and the amorphous thermoplastic resin (B) is an amorphous polyester.
  3.  導電性フィラーが、銅粒子、銀粒子、金粒子、ニッケル粒子、銀被覆銅粒子、銀被覆銅合金粒子、及び銀被覆ニッケル粒子からなる群より選択される1種又は2種以上である、請求項1又は2に記載の導電性接着剤組成物。 The conductive filler is one or more selected from the group consisting of copper particles, silver particles, gold particles, nickel particles, silver-coated copper particles, silver-coated copper alloy particles, and silver-coated nickel particles, Item 3. The conductive adhesive composition according to Item 1 or 2.
  4.  上記カルボキシル基変性ポリエステル樹脂(C)のガラス転移点が10~30℃である、請求項1~3のいずれか1項に記載の導電性接着剤組成物。 The conductive adhesive composition according to any one of claims 1 to 3, wherein the glass transition point of the carboxyl group-modified polyester resin (C) is 10 to 30 ° C.
  5.  前記非晶性熱可塑性樹脂(B)のガラス転移点が50~120℃である、請求項1~4のいずれか1項に記載の導電性接着剤組成物。 The conductive adhesive composition according to any one of claims 1 to 4, wherein the glass transition point of the amorphous thermoplastic resin (B) is 50 to 120 ° C.
  6.  前記結晶性熱可塑性樹脂(A)と前記非晶性熱可塑性樹脂(B)との含有割合((A)/(B))が、質量比で60/40~90/10である、請求項1~5のいずれか1項に記載の導電性接着剤組成物。 The content ratio ((A) / (B)) of the crystalline thermoplastic resin (A) and the amorphous thermoplastic resin (B) is 60/40 to 90/10 in mass ratio. 6. The conductive adhesive composition according to any one of 1 to 5.
  7.  樹脂成分100質量部中、前記カルボキシル基変性ポリエステル樹脂(C)の含有量が15~35質量部である、請求項1~6のいずれか1項に記載の導電性接着剤組成物。 The conductive adhesive composition according to any one of claims 1 to 6, wherein the content of the carboxyl group-modified polyester resin (C) is 15 to 35 parts by mass in 100 parts by mass of the resin component.
PCT/JP2019/002763 2018-01-30 2019-01-28 Conductive adhesive composition WO2019151188A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207010207A KR102580259B1 (en) 2018-01-30 2019-01-28 Conductive adhesive composition
CN201980006537.XA CN111448279B (en) 2018-01-30 2019-01-28 Conductive adhesive composition
JP2019569097A JP7225505B2 (en) 2018-01-30 2019-01-28 conductive adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014062 2018-01-30
JP2018-014062 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019151188A1 true WO2019151188A1 (en) 2019-08-08

Family

ID=67478167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002763 WO2019151188A1 (en) 2018-01-30 2019-01-28 Conductive adhesive composition

Country Status (5)

Country Link
JP (1) JP7225505B2 (en)
KR (1) KR102580259B1 (en)
CN (1) CN111448279B (en)
TW (1) TWI784126B (en)
WO (1) WO2019151188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179179A1 (en) * 2019-03-04 2020-09-10 タツタ電線株式会社 Conductive adhesive composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131679A (en) * 1989-10-17 1991-06-05 Fujikura Ltd Conductive adhesive
US5837119A (en) * 1995-03-31 1998-11-17 International Business Machines Corporation Methods of fabricating dendritic powder materials for high conductivity paste applications
JPH1112552A (en) * 1997-06-25 1999-01-19 Matsushita Electric Ind Co Ltd Electroconductive particle
JP2007031602A (en) * 2005-07-28 2007-02-08 Mitsubishi Plastics Ind Ltd Laminated film with adhesive for electric material
JP2014060025A (en) * 2012-09-18 2014-04-03 Dexerials Corp Anisotropic conductive film, connection method and joined body
JP2015521214A (en) * 2012-05-04 2015-07-27 テーザ・ソシエタス・ヨーロピア 3D conductive adhesive film
EP3236479A1 (en) * 2016-04-21 2017-10-25 Henkel AG & Co. KGaA An electrically conductive, hot-melt adhesive or moulding composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1277807B1 (en) 2001-07-18 2007-05-02 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition
JP4673116B2 (en) * 2004-11-01 2011-04-20 タツタ電線株式会社 Anisotropic conductive adhesive and electronic device formed using the same
JP5349316B2 (en) 2007-09-19 2013-11-20 日立化成株式会社 Adhesive composition and joined body
JP2014102943A (en) 2012-11-19 2014-06-05 Dexerials Corp Anisotropic conductive film, connection method and joined body
JP6293524B2 (en) * 2014-03-11 2018-03-14 デクセリアルズ株式会社 Anisotropic conductive film, method for producing the same, connection method and joined body
JP6271048B2 (en) * 2017-01-11 2018-01-31 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131679A (en) * 1989-10-17 1991-06-05 Fujikura Ltd Conductive adhesive
US5837119A (en) * 1995-03-31 1998-11-17 International Business Machines Corporation Methods of fabricating dendritic powder materials for high conductivity paste applications
JPH1112552A (en) * 1997-06-25 1999-01-19 Matsushita Electric Ind Co Ltd Electroconductive particle
JP2007031602A (en) * 2005-07-28 2007-02-08 Mitsubishi Plastics Ind Ltd Laminated film with adhesive for electric material
JP2015521214A (en) * 2012-05-04 2015-07-27 テーザ・ソシエタス・ヨーロピア 3D conductive adhesive film
JP2014060025A (en) * 2012-09-18 2014-04-03 Dexerials Corp Anisotropic conductive film, connection method and joined body
EP3236479A1 (en) * 2016-04-21 2017-10-25 Henkel AG & Co. KGaA An electrically conductive, hot-melt adhesive or moulding composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179179A1 (en) * 2019-03-04 2020-09-10 タツタ電線株式会社 Conductive adhesive composition
CN113330082A (en) * 2019-03-04 2021-08-31 拓自达电线株式会社 Conductive adhesive composition
CN113330082B (en) * 2019-03-04 2023-04-28 拓自达电线株式会社 Conductive adhesive composition
JP7459048B2 (en) 2019-03-04 2024-04-01 タツタ電線株式会社 conductive adhesive composition

Also Published As

Publication number Publication date
TW201936845A (en) 2019-09-16
TWI784126B (en) 2022-11-21
KR102580259B1 (en) 2023-09-19
CN111448279A (en) 2020-07-24
JP7225505B2 (en) 2023-02-21
JPWO2019151188A1 (en) 2021-02-12
CN111448279B (en) 2021-08-10
KR20200111667A (en) 2020-09-29

Similar Documents

Publication Publication Date Title
JP5128275B2 (en) Conductive paste, circuit board, circuit article and manufacturing method thereof
KR101534644B1 (en) Electroconductive thin adhesive sheet
KR101927474B1 (en) Electrically conductive heat-activated adhesive compound
KR102064318B1 (en) Electrically conductive adhesive compound and adhesive tape
WO2010073885A1 (en) Film adhesive and anisotropic conductive adhesive
TW201209131A (en) Conductive bonding film and solar cell module
TWI699415B (en) Thermosetting adhesive composition
KR101819529B1 (en) Conductive adhesive sheet and electronic device
WO2016076356A1 (en) Thermosetting adhesive composition and thermosetting adhesive sheet
JP2009096851A (en) Nonconductive adhesive composition, nonconductive adhesive film, and methods for production and use thereof
WO2019151188A1 (en) Conductive adhesive composition
US9758702B2 (en) Isotropic conductive adhesive
JP6922248B2 (en) Hot melt adhesive composition and laminate
JP5675975B2 (en) Adhesive composition and adhesive film
WO2019151187A1 (en) Conductive adhesive composition
WO2020095919A1 (en) Electromagnetic shielding film, method for manufacturing electromagnetic shielding film, and method for manufacturing shielded printed wiring board
JP7459048B2 (en) conductive adhesive composition
JP6798646B2 (en) Conductive adhesive sheet
WO2019142423A1 (en) Mounting body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746995

Country of ref document: EP

Kind code of ref document: A1