WO2019150952A1 - 欠陥検知方法 - Google Patents

欠陥検知方法 Download PDF

Info

Publication number
WO2019150952A1
WO2019150952A1 PCT/JP2019/001117 JP2019001117W WO2019150952A1 WO 2019150952 A1 WO2019150952 A1 WO 2019150952A1 JP 2019001117 W JP2019001117 W JP 2019001117W WO 2019150952 A1 WO2019150952 A1 WO 2019150952A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
detection method
defect
wedge
inspection object
Prior art date
Application number
PCT/JP2019/001117
Other languages
English (en)
French (fr)
Inventor
航大 野村
和佐 泰宏
利英 福井
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2019150952A1 publication Critical patent/WO2019150952A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise

Definitions

  • the present invention relates to a defect detection method for inspecting a defect to be inspected with an ultrasonic probe.
  • Patent Document 1 discloses a contact detection vibrator for determining that an object to be inspected is touched in addition to an SH wave vibrator for detecting a defect existing in an object to be inspected (such as a steel pipe or a steel plate).
  • a composite probe is disclosed. In this composite probe, it is determined whether or not the object to be inspected is in contact with the contact detection ultrasonic beam transmitted from the contact detection transducer.
  • the present invention has been made in view of the above circumstances, and its purpose is to use a simpler-structured ultrasonic probe for more accurate determination and defect of the contact state between the ultrasonic probe and the inspection object. It is an object of the present invention to provide a defect detection method capable of both detection of a defect.
  • the defect detection method is a method of detecting a defect existing in an inspection object using an ultrasonic probe, and the ultrasonic wave transmitted from the transmission vibrator in a non-contact state in which the bottom surface of the wedge is separated from the inspection object.
  • a reference signal that is generated when a sound wave is received by the receiving vibrator via the lower surface of the absorber, and a reference signal acquired in advance, and an ultrasonic wave transmitted from the transmitter vibrator is a lower surface of the absorber.
  • the inventors of the present invention focused on surface noise that occurs during inspection of defects with a so-called two-vibrator vertical probe.
  • the surface noise is caused by the ultrasonic wave that has propagated the shortest distance between the transmitting transducer and the receiving transducer arranged at the position sandwiching the absorber (a member that absorbs ultrasonic waves made of cork, rubber, etc.).
  • the signal generated when received that is, the signal generated when the ultrasonic wave transmitted from the transmitting vibrator is received by the receiving vibrator via the boundary between the lower surface of the absorber and the inspection target. means.
  • This surface noise is different from the flaw detection signal which is a signal generated when the ultrasonic wave generated by the reflection of the ultrasonic wave transmitted from the transmitting vibrator by the defect to be inspected is received by the receiving vibrator. Detected as a signal.
  • the present inventors among the ultrasonic waves that propagate the shortest distance, in the ultrasonic wave that propagates the boundary between the absorption part and the inspection object, Since the sound velocity of the inspection object is larger than the sound velocity, the main component is the component that propagates on the surface of the inspection object, not the lower surface of the absorber, so the propagation speed at the boundary increases, while the ultrasonic probe is the inspection object.
  • the ultrasonic wave propagating from the shortest distance is propagated through the lower surface of the absorber, the propagation speed becomes low, that is, the shortest depending on whether or not the ultrasonic probe is in contact with the inspection object.
  • the inventors have conceived that there is a difference in the time until the ultrasonic wave (surface noise) propagated through the distance is received by the receiving transducer, and that the contact state can be determined based on the difference.
  • a defect detection method for detecting a defect present in an inspection object using an ultrasonic probe includes a transmission transducer that transmits ultrasonic waves and an ultrasonic wave as the ultrasonic probe.
  • the wedge includes: a first holding unit that holds the transmission vibrator at an angle at which the ultrasonic wave transmitted from the transmission vibrator is incident on the inside of the inspection target; and the ultrasonic wave transmitted from the transmission vibrator.
  • a second holding unit that holds the reception transducer at an angle at which the reception transducer can receive the reflected ultrasonic wave generated by reflecting the defect existing in the internal region of the inspection object, and the first holding Part and said
  • the transmitter vibrator in a non-contact state in which a preparation step having an absorption portion holding portion that holds the absorption portion between the holding portion and a bottom surface of the wedge is separated from the inspection target Is a signal that is generated when the ultrasonic wave transmitted from the receiving unit is received by the receiving transducer via the lower surface of the absorber, and the reference signal acquired in advance and the ultrasonic signal transmitted from the transmitting transducer
  • the wedge and the inspection object are compared by comparing the surface noise, which is a signal generated when a sound wave is received by the receiving vibrator via the boundary between the lower surface of the absorber and the inspection object.
  • the ultrasonic probe 1 used in the defect detection method in the embodiment is a so-called two-vibrator vertical probe, that is, a probe capable of inspecting a defect f existing on a surface deeper than the surface of the inspection target T such as a steel material and the vicinity thereof. It is. More specifically, as shown in FIG. 1, the ultrasonic probe 1 includes a transmission vibrator 10, a reception vibrator 20, an absorption unit 30, and a wedge 40.
  • the transmission vibrator 10 transmits ultrasonic waves.
  • the receiving transducer 20 receives an ultrasonic wave and generates a signal corresponding to the ultrasonic wave. This signal is sent to a flaw detection apparatus (not shown) via a cable.
  • the absorber 30 absorbs ultrasonic waves.
  • the absorption part 30 consists of members (cork, rubber
  • the thickness of the absorption unit 30 (the dimension of the absorption unit 30 in the direction connecting the transmission transducer 10 and the reception transducer 20 (left-right direction in FIG. 1)) W is a half wavelength of the ultrasonic wave transmitted from the transmission transducer 10. It is set to a dimension that is not an even multiple of.
  • the thickness W of the absorber 30 is set to an odd multiple of the half wavelength (1/2) ⁇ ⁇ of the ultrasonic wave transmitted from the transmission transducer 10.
  • the wedge 40 holds the vibrators 10 and 20 and the absorber 30.
  • the wedge 40 includes a first holding unit 41 that holds the transmission transducer 10, a second holding unit 42 that holds the reception transducer 20, and an absorption unit holding unit 43 that holds the absorption unit 30. Have.
  • the first holding unit 41 holds the transmission transducer 10 at an angle at which the ultrasonic wave transmitted from the transmission transducer 10 enters the inside of the inspection target T.
  • the second holding unit 42 is an angle at which the reception transducer 20 can receive the reflected ultrasound generated by the reflection of the ultrasound transmitted from the transmission transducer 10 by the defect f existing in the internal region of the inspection target T. Holds the receiving transducer 20.
  • a flaw detection signal which is a signal generated when the reception transducer 20 receives reflected ultrasonic waves, is sent from the reception transducer 20 to the flaw detection apparatus.
  • the absorption unit holding unit 43 holds the absorption unit 30 between the first holding unit 41 and the second holding unit 42. By holding the absorption unit 30 in the absorption unit holding unit 43, the ultrasonic wave transmitted from the transmission transducer 10 into the wedge 40 is suppressed from reaching the reception transducer 20 without passing through the inspection target T. .
  • the defect detection method includes a preparation step of preparing the ultrasonic probe 1 (two-transducer vertical probe), and the wedge 40 and the inspection target T are in contact with each other using the ultrasonic probe 1. And a detection step of detecting a defect f present in the inspection target T based on the flaw detection signal.
  • the determination step it is determined whether the wedge 40 is in contact with the inspection target T by using the surface noise. More specifically, since the sound velocity of the inspection object T made of steel or the like is larger than the sound velocity of the absorbing portion 30 made of cork or rubber, the contact state as shown in FIG. 1 (the bottom surface of the wedge 40 is the inspection object) In the state of being in contact with T), in the ultrasonic wave propagating on the boundary between the absorber 30 and the inspection target T among the surface noise, the component that propagates on the surface of the inspection target T instead of the lower surface of the absorber 30 is mainly Become. For this reason, the propagation speed at the boundary increases. On the other hand, in the non-contact state as shown in FIG.
  • a reference signal acquired in advance is a signal generated when the ultrasonic wave transmitted from the transmission vibrator 10 in the non-contact state is received by the reception vibrator 20 via the lower surface of the absorption unit 30.
  • the determination step it is determined that the wedge 40 and the inspection target T are in contact with each other when the difference between the surface noise and the reference signal is equal to or greater than a set value.
  • the defect f existing in the inspection target T is detected based on the sum of the surface noise and the reference signal.
  • a so-called two-vibrator vertical probe having a simple structure is used to determine the contact state between the probe and the inspection target T with high accuracy and to the inspection target T. Both the detection of the existing defect f can be achieved. More specifically, the absorption speed in the contact state (the state shown in FIG. 1) is higher than the propagation speed of the ultrasonic wave propagating through the lower surface of the absorption portion 30 in the non-contact state (the state shown in FIG. 2). Since the propagation speed of the ultrasonic wave propagating through the boundary between the part 30 and the inspection target T is larger, the ultrasonic probe 1 inspects in the determination step when the reception time of the surface noise is shorter than the reception time of the reference signal. It can be determined that the object T is touching.
  • the thickness W of the absorber 30 is set to an odd multiple of the half wavelength (1/2) ⁇ ⁇ of the ultrasonic wave transmitted from the transmission vibrator 10. For this reason, since the surface noise in the contact state does not overlap with the reference signal in the non-contact state, it is possible to more clearly determine whether or not the ultrasonic probe 1 and the inspection target T are in contact in the determination step. It becomes possible.
  • the thickness W of the absorber 30 is set to an odd multiple of the half wavelength (1/2) ⁇ ⁇ of the ultrasonic wave, the surface noise and the reference signal are substantially shifted by a half wavelength. Therefore, by acquiring the difference between the surface noise and the reference signal in the determination step, it is possible to clearly determine whether the wedge 40 and the inspection target T are in contact with each other.
  • the defect f present in the inspection target T is detected based on the sum of the surface noise and the reference signal. For this reason, the presence or absence of the defect f can be clearly detected in the detection step. More specifically, since the surface noise and the reference signal are substantially shifted by a half wavelength, the surface noise is substantially canceled by acquiring the sum of the surface noise and the reference signal, and the flaw detection signal caused by the defect f The SN ratio is improved. Therefore, the defect f can be clearly detected in the detection step.
  • the determination step it may be determined whether the wedge 40 and the inspection target T are in contact with each other based on a signal obtained by filtering surface noise with a low-pass filter.
  • the detection step it is preferable that the defect f existing in the inspection target T is detected based on a signal obtained by filtering the flaw detection signal generated by the receiving transducer 20 with a high-pass filter.
  • the noise is filtered by the low-pass filter, so that the low-frequency component is obtained as the surface noise. Is obtained.
  • the flaw detection signal resulting from the defect f existing in the inspection target T is a signal mainly composed of high-frequency components by being filtered by the high-pass filter. Therefore, the surface noise and the flaw detection signal are acquired in a state that can be clearly distinguished, and a decrease in the SN ratio of the flaw detection signal due to the surface noise is suppressed.
  • the determination step only the positive component of the reference signal and the positive component of the surface noise are detected, and the difference between the reception time of the positive peak value of the surface noise and the reception time of the positive peak value of the reference signal is equal to or greater than a predetermined time. It may be determined that the wedge 40 and the inspection target T are in contact with each other. In this aspect, it is possible to more clearly determine whether or not the ultrasonic probe and the inspection target T are in contact with each other.
  • the determination step only the negative component of the reference signal and the negative component of the surface noise are detected, and the difference between the reception time of the negative peak value of the surface noise and the reception time of the negative peak value of the reference signal is equal to or greater than a predetermined time. It may be determined that the wedge 40 and the inspection target T are in contact with each other. Also in this aspect, it is possible to more clearly determine whether or not the ultrasonic probe and the inspection target T are in contact with each other.
  • an ultrasonic probe 1 (two-transducer vertical probe) including a transducer for 5 MHz as each transducer 10 and 20 and having a thickness W of about 0.7 mm and made of cork as the absorber 30 is provided. Used. Further, a steel material was used as the inspection target T.
  • FIG. 3 shows a signal obtained from the receiving vibrator 20 when the inspection target T is inspected with the ultrasonic probe 1. 3 that the surface noise (solid line) obtained in the contact state is earlier than the reference signal (dashed line) obtained in the non-contact state.
  • the thickness W of the absorber 30 is set to about half the wavelength of the detected surface noise, so that the surface noise signal has a waveform whose phase is inverted from that of the reference signal. It was.
  • the high frequency component of the ultrasonic wave transmitted from the transmission vibrator 10 is absorbed by the absorption section 30 when passing through the boundary between the lower surface of the absorption section 30 and the inspection target T, and the reception vibrator 20 generates surface noise. Only low frequency components (about 1 MHz in this example) were detected.
  • the signal (including surface noise and flaw detection signal) obtained from the receiving transducer 20 is divided into a surface noise of about 1 MHz and a flaw detection signal of about 5 MHz by filtering with a low pass filter and a high pass filter of about 2 MHz, for example. It was. For this reason, the surface noise and the flaw detection signal were clearly distinguishable.
  • a defect detection method is a method of detecting a defect existing in an inspection object using a wave probe, and as the ultrasonic probe, a transmission transducer that transmits ultrasonic waves and a reception that receives ultrasonic waves A vibrator, an absorption part that absorbs ultrasonic waves and having a sound speed lower than the sound speed of the inspection object, and a wedge that holds the transmission vibrator, the reception vibrator, and the absorption part,
  • the wedge includes a first holding unit that holds the transmission transducer at an angle at which the ultrasonic wave transmitted from the transmission transducer is incident on the inside of the inspection target, and the ultrasonic wave transmitted from the transmission transducer is the A second holding unit that holds the reception transducer at an angle at which the reception transducer can receive reflected ultrasonic waves generated by reflection at a defect existing in an internal region to be inspected; and the first holding unit;
  • the second The transmitting vibrator in a non-contact state in which a preparation step is provided that has an absorption portion holding portion that
  • a so-called two-vibrator vertical probe having a simple structure is used to achieve both high-accuracy determination of the contact state between the probe and the inspection target and detection of a defect present in the inspection target. It becomes possible to do. More specifically, the boundary between the absorbing part and the inspection object in the contact state (the state where the wedge is in contact with the inspection object) than the propagation speed of the ultrasonic wave propagating through the lower surface of the absorption part in the non-contact state. Since the propagation speed of the ultrasonic wave propagating through the wave is larger, in the determination process, it is determined that the ultrasonic probe is in contact with the inspection object when the reception time of the surface noise is shorter than the reception time of the reference signal Is possible.
  • the thickness of the absorption portion prepared in the preparation step is set to a size that is not an even multiple of a half wavelength of the ultrasonic wave transmitted from the transmission transducer. ing.
  • the determination step when the difference between the surface noise and the reference signal is greater than or equal to a set value, it is determined that the wedge is in contact with the inspection object.
  • the thickness of the absorbing portion is set within a range that satisfies the above relational expression, the surface noise and the reference signal are substantially shifted by a half wavelength. Therefore, by acquiring the difference between the surface noise and the reference signal, it is possible to clearly determine whether the wedge is in contact with the inspection target.
  • a defect present in the inspection object is detected based on a sum of the surface noise and the reference signal.
  • the presence or absence of defects can be clearly detected in the detection process. More specifically, since the surface noise and the reference signal are substantially shifted by a half wavelength, by obtaining the sum of the surface noise and the reference signal, the surface noise is substantially canceled, and the flaw detection signal caused by the defect The SN ratio is improved. Therefore, it becomes possible to detect a defect clearly in a detection process.
  • the absorption unit prepared in the preparation step includes a member that absorbs a high-frequency component in the ultrasonic wave transmitted from the transmission transducer, and the determination step Then, based on a signal obtained by filtering the surface noise with a low-pass filter, it is determined whether or not the wedge is in contact with the inspection object.
  • the signal is received by the receiving transducer. You may detect the defect which exists in the said test object based on the signal obtained by filtering a flaw detection signal with a high pass filter.
  • a signal (surface noise) used for determining whether the wedge is in contact with the inspection object and a flaw detection signal used for detecting the defect are obtained.
  • the high frequency component of the surface noise is absorbed by the absorbing portion when propagating through the lower surface of the absorbing portion.
  • a signal mainly composed of components is acquired.
  • a flaw detection signal resulting from a defect present in an inspection target is a signal mainly composed of a high-frequency component by being filtered by a high-pass filter. Therefore, the surface noise and the flaw detection signal are acquired in a state that can be clearly distinguished, and a decrease in the SN ratio of the flaw detection signal due to the surface noise is suppressed.
  • the determination step only the positive component of the reference signal and the positive component of the surface noise are detected, and the reception time of the positive peak value of the surface noise and the When the difference from the reception time of the positive peak value of the reference signal is equal to or greater than a predetermined time, it is determined that the wedge is in contact with the inspection object.
  • the determination step only the negative component of the reference signal and the negative component of the surface noise are detected, and the reception time of the negative peak value of the surface noise and the When the difference from the reception time of the negative peak value of the reference signal is equal to or longer than a predetermined time, it is determined that the wedge is in contact with the inspection object.
  • a defect detection method for inspecting a defect to be inspected with an ultrasonic probe can be provided.

Abstract

本発明の欠陥検知方法は、超音波プローブを用いて検査対象に存在する欠陥を検知する方法であって、くさびの底面が検査対象から離間した非接触状態において送信振動子から送信された超音波が吸収部の下面を経由して受信振動子で受信された際に生成される参照信号と、前記送信振動子から送信された超音波が前記吸収部の下面と前記検査対象との境界を経由して前記受信振動子で受信された際に生成される表面ノイズと、を比較することによって前記くさびと前記検査対象とが接触しているか否かを判定する工程を含む。

Description

欠陥検知方法
 本発明は、超音波プローブで検査対象の欠陥を検査する欠陥検知方法に関する。
 従来、鋼材等の検査対象の欠陥を非破壊で検査する方法として、超音波プローブを用いた検査方法が知られている。この検査では、超音波プローブと検査対象とが良好に接触していることが求められる。例えば、特許文献1には、検査対象(鋼管や鋼板等)に存在する欠陥を検知するためのSH波振動子に加え、検査対象に接触していることを判断するための接触検知振動子を備えた複合探触子が開示されている。この複合探触子では、接触検知振動子から送信された接触探知超音波ビームにより、検査対象に接触しているか否かが判断される。
 特許文献1に記載された複合探触子では、当該複合探触子が検査対象に接触していることの厳密な判断が困難である。具体的に、この複合探触子では、接触検知振動子によって当該複合探触子が検査対象に接触していると判断された場合であっても、それは、当該複合探触子のうち接触検知振動子により送信される超音波が伝播する部位と検査対象とが接触していることを示すものであって、複合探触子のうちSH波振動子により送信される超音波が検査対象に入射する部位と検査対象とが接触していることを示すものではない。
 この複合探触子では、欠陥を検知するための振動子に加えて接触状態を検知するための振動子を備える必要があるので、探触子の構造が複雑になる。
特開2008-232622号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、より簡素な構造の超音波プローブを用いて超音波プローブと検査対象との接触状態のより高精度な判定と欠陥の検知との双方が可能な欠陥検知方法を提供することである。
 本発明にかかる欠陥検知方法は、超音波プローブを用いて検査対象に存在する欠陥を検知する方法であって、くさびの底面が検査対象から離間した非接触状態において送信振動子から送信された超音波が吸収部の下面を経由して受信振動子で受信された際に生成される信号であって予め取得された参照信号と、前記送信振動子から送信された超音波が前記吸収部の下面と前記検査対象との境界を経由して前記受信振動子で受信された際に生成される信号である表面ノイズと、を比較することによって前記くさびと前記検査対象とが接触しているか否かを判定する工程を含む。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態における欠陥検知方法の概要を示す図である。 図1に示す超音波プローブが検査対象から離間した状態の超音波の伝播経路の概要を示す図である。 表面ノイズを含む信号と参照信号との関係を示す図である。
 以下、まず、本発明の技術思想について説明し、その後、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。なお、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
(本発明の技術思想の説明)
 本発明者らは、いわゆる二振動子垂直プローブでの欠陥の検査時に生じる表面ノイズに着目した。表面ノイズは、吸収部(コルクやゴム等からなる超音波を吸収する部材)を挟んだ位置に配置された送信振動子と受信振動子とを結ぶ最短距離を伝播した超音波が受信振動子で受信された際に生成される信号、つまり、送信振動子から送信された超音波が吸収部の下面と検査対象との境界を経由して受信振動子で受信された際に生成される信号を意味する。この表面ノイズは、送信振動子から送信された超音波が検査対象の欠陥で反射することにより生じた超音波が受信振動子で受信された際に生成される信号である探傷信号とは別の信号として検出される。
 そして、本発明者らは、超音波プローブと検査対象とが接触している場合、前記最短距離を伝播する超音波のうち吸収部と検査対象との境界を伝播する超音波において、吸収部の音速よりも検査対象の音速の方が大きいために吸収部の下面ではなく検査対象の表面を伝播する成分が主となるから、前記境界での伝播速度が大きくなる一方、超音波プローブが検査対象から離間している場合、前記最短距離を伝播する超音波は、吸収部の下面を伝播するために伝播速度が小さくなること、つまり、超音波プローブが検査対象に接触しているか否かによって最短距離を伝播した超音波(表面ノイズ)が受信振動子で受信されるまでの時間に差が生じること、および、その差に基づいて接触状態を判定可能であること、に想到した。
 本発明は、このような観点に基づいてなされたものである。より具体的には、一態様では、超音波プローブを用いて検査対象に存在する欠陥を検知する欠陥検知方法は、前記超音波プローブとして、超音波を送信する送信振動子と、超音波を受信する受信振動子と、超音波を吸収する吸収部であって前記検査対象の音速よりも小さな音速を有するものと、前記送信振動子、前記受信振動子および前記吸収部を保持するくさびと、を備え、前記くさびは、前記送信振動子から送信された超音波が前記検査対象の内部に入射する角度で当該送信振動子を保持する第1保持部と、前記送信振動子から送信された超音波が前記検査対象の内部領域に存在する欠陥で反射することにより生成された反射超音波を前記受信振動子が受信可能な角度で当該受信振動子を保持する第2保持部と、前記第1保持部と前記第2保持部との間で前記吸収部を保持する吸収部保持部と、を有するものを準備する準備工程と、前記くさびの底面が前記検査対象から離間した状態である非接触状態において前記送信振動子から送信された超音波が前記吸収部の下面を経由して前記受信振動子で受信された際に生成される信号であって予め取得された参照信号と、前記送信振動子から送信された超音波が前記吸収部の下面と前記検査対象との境界を経由して前記受信振動子で受信された際に生成される信号である表面ノイズと、を比較することによって前記くさびと前記検査対象とが接触しているか否かを判定する判定工程と、前記受信振動子が前記反射超音波を受信した際に生成される探傷信号に基づいて前記検査対象に存在する欠陥を検知する検知工程と、を備える。
(実施形態)
 実施形態の超音波プローブ1を用いた欠陥検知方法について、図1ないし図3を参照しながら説明する。以下、まず、超音波プローブ1について説明し、その後、その超音波プローブ1を用いた欠陥検知方法について説明する。
 実施形態における欠陥検知方法で用いる超音波プローブ1は、いわゆる二振動子垂直プローブ、すなわち、鋼材等の検査対象Tの表面およびその近傍の領域よりも深い領域に存在する欠陥fを検査可能なプローブである。より具体的には、この超音波プローブ1は、図1に示されるように、送信振動子10と、受信振動子20と、吸収部30と、くさび40と、を備える。
 送信振動子10は、超音波を送信する。受信振動子20は、超音波を受信するとともに、その超音波に対応した信号を生成する。この信号は、ケーブルを介して図示略の探傷装置に送られる。
 吸収部30は、超音波を吸収する。本実施形態では、吸収部30は、高周波成分を吸収する部材(コルクやゴム等)からなる。吸収部30の厚さ(送信振動子10と受信振動子20とを結ぶ方向(図1の左右方向)における吸収部30の寸法)Wは、送信振動子10から送信された超音波の半波長の偶数倍ではない寸法に設定されている。この厚さWは、送信振動子10から送信される超音波の波長をλとすると、以下の式の関係を満たす範囲の寸法に設定されることが好ましい。
 (1/2)×λ(2n+1)-(1/4)×λ≦W≦(1/2)×λ(2n+1)+(1/4)×λ (ただし、n=0、1、2、・・・)
 本実施形態では、吸収部30の厚さWは、送信振動子10から送信される超音波の半波長(1/2)×λの奇数倍に設定されている。
 くさび40は、各振動子10,20および吸収部30を保持する。具体的に、くさび40は、送信振動子10を保持する第1保持部41と、受信振動子20を保持する第2保持部42と、吸収部30を保持する吸収部保持部43と、を有する。
 第1保持部41は、送信振動子10から送信された超音波が検査対象Tの内部に入射する角度で当該送信振動子10を保持する。
 第2保持部42は、送信振動子10から送信された超音波が検査対象Tの内部領域に存在する欠陥fで反射することにより生成された反射超音波を受信振動子20が受信可能な角度で受信振動子20を保持する。受信振動子20が反射超音波を受信した際に生成される信号である探傷信号は、受信振動子20から前記探傷装置に送られる。
 吸収部保持部43は、第1保持部41と第2保持部42との間で吸収部30を保持する。吸収部保持部43に吸収部30が保持されることにより、送信振動子10からくさび40内に送信された超音波が検査対象Tを経由することなく受信振動子20に至ることが抑制される。
 次に、超音波プローブ1を用いた欠陥検知方法について説明する。より具体的には、実施形態における欠陥検知方法は、超音波プローブ1(二振動子垂直プローブ)を準備する準備工程と、この超音波プローブ1を用いてくさび40と検査対象Tとが接触しているか否かを判定する判定工程と、前記探傷信号に基づいて検査対象Tに存在する欠陥fを検知する検知工程と、を備える。
 ここで、この超音波プローブ1で欠陥fを検出する際、表面ノイズ(送信振動子10と受信振動子20とを結ぶ最短距離を伝播した超音波(図1で太線で示される超音波)が受信振動子20で受信された際に生成される信号、つまり、送信振動子10から送信された超音波が吸収部30の下面と検査対象Tとの境界を経由して受信振動子20で受信された際に生成される信号)が検出されることが知られている。この表面ノイズは、前記探傷信号とは別の信号として探傷信号よりも早くに検出される。
 前記判定工程では、この表面ノイズを利用することによってくさび40が検査対象Tに接触しているか否かが判定される。より具体的には、コルクやゴムからなる吸収部30の音速よりも鋼材等からなる検査対象Tの音速の方が大きいため、図1に示されるような接触状態(くさび40の底面が検査対象Tに接触している状態)では、表面ノイズのうち吸収部30と検査対象Tとの境界を伝播する超音波において、吸収部30の下面ではなく検査対象Tの表面を伝播する成分が主となる。このため、前記境界での伝播速度が大きくなる。一方、図2に示されるような非接触状態(くさび40の底面が検査対象Tから離間した状態)では、前記最短距離を伝播する超音波は、吸収部30の下面を伝播するために伝播速度が小さくなる。つまり、超音波プローブ1が検査対象Tに接触しているか否かによって受信振動子20で前記最短距離を伝播した超音波(表面ノイズ)が受信されるまでの時間に差が生じる。よって、非接触状態において送信振動子10から送信された超音波が吸収部30の下面を経由して受信振動子20で受信された際に生成される信号であって予め取得された参照信号と表面ノイズとを比較することによって、くさび40が検査対象Tに接触しているか否かが判定される。なお、前記参照信号は、欠陥fの検査の度に取得されてもよいし、事前に取得して前記探傷装置に格納しておき、その格納された信号が参照されてもよい。
 本実施形態では、判定工程では、表面ノイズと参照信号との差が設定値以上であるときにくさび40と検査対象Tとが接触していると判定される。
 また、検知工程では、表面ノイズと参照信号との和に基づいて検査対象Tに存在する欠陥fが検知される。
 以上に説明したように、本実施形態の欠陥検知方法では、簡素な構造のいわゆる二振動子垂直プローブを用いて、当該プローブと検査対象Tとの接触状態の高精度な判定と検査対象Tに存在する欠陥fの検知との双方を達成することが可能となる。より具体的には、非接触状態(図2に示される状態)のときに吸収部30の下面を伝播する超音波の伝播速度よりも、接触状態(図1に示される状態)のときに吸収部30と検査対象Tとの境界を伝播する超音波の伝播速度の方が大きいので、判定工程では、表面ノイズの受信時間が参照信号の受信時間よりも短い場合に、超音波プローブ1が検査対象Tに接触していると判定することが可能となる。
 吸収部30の厚さWは、送信振動子10から送信される超音波の半波長(1/2)×λの奇数倍に設定されている。このため、接触状態での表面ノイズが非接触状態での参照信号に重ならないので、判定工程において、超音波プローブ1と検査対象Tとが接触しているか否かをより明確に判定することが可能となる。
 吸収部30の厚さWが超音波の半波長(1/2)×λの奇数倍に設定されることにより、表面ノイズと参照信号とが概ね半波長分ずれることになる。よって、判定工程において表面ノイズと参照信号との差を取得することにより、くさび40と検査対象Tとが接触しているか否かを明確に判定することが可能となる。
 検知工程では、表面ノイズと参照信号との和に基づいて検査対象Tに存在する欠陥fを検知する。このため、検知工程において欠陥fの有無を明確に検知することができる。より具体的には、表面ノイズと参照信号とが概ね半波長分ずれているため、表面ノイズと参照信号との和を取得することにより、表面ノイズが概ねキャンセルされ、欠陥fに起因する探傷信号のSN比が向上する。よって、検知工程において、明確に欠陥fを検知することが可能となる。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、判定工程では、表面ノイズをローパスフィルタでフィルタリングすることにより得られる信号に基づいてくさび40と検査対象Tとが接触しているか否かが判定されてもよい。この場合、検知工程では、受信振動子20で生成された探傷信号をハイパスフィルタでフィルタリングすることにより得られる信号に基づいて検査対象Tに存在する欠陥fが検知されることが好ましい。この態様では、表面ノイズのうちの高周波成分は、吸収部30の下面を伝播する際に吸収部に吸収されているので、このノイズがローパスフィルタでフィルタリングされることにより、表面ノイズとして低周波成分を主とする信号が取得される。一方、検査対象Tに存在する欠陥fに起因する探傷信号は、ハイパスフィルタでフィルタリングされることによって高周波成分を主とする信号となる。よって、表面ノイズと探傷信号とが明確に区別可能な状態で取得され、また、表面ノイズに起因する探傷信号のSN比の低下が抑制される。
 あるいは、判定工程では、参照信号の正成分および表面ノイズの正成分のみを検出し、表面ノイズの正のピーク値の受信時間と参照信号の正のピーク値の受信時間との差が所定時間以上であるときにくさび40と検査対象Tとが接触している判定してもよい。この態様では、超音波プローブと検査対象Tとが接触しているか否かをより明確に判定することが可能となる。
 あるいは、判定工程では、参照信号の負成分および表面ノイズの負成分のみを検出し、表面ノイズの負のピーク値の受信時間と参照信号の負のピーク値の受信時間との差が所定時間以上であるときにくさび40と検査対象Tとが接触している判定してもよい。この態様においても、超音波プローブと検査対象Tとが接触しているか否かをより明確に判定することが可能となる。
(実施例)
 次に、上記実施形態の実施例について説明する。この実施例では、各振動子10、20として5MHz用のものを備え、吸収部30として厚さWが約0.7mmでコルクからなるものを備える超音波プローブ1(二振動子垂直プローブ)が用いられた。また、検査対象Tとして鋼材が用いられた。
 この超音波プローブ1で検査対象Tを検査したときに受信振動子20から得られた信号が図3に示されている。図3より、接触状態のときに得られる表面ノイズ(実線)の方が非接触状態のときに得られる参照信号(破線)よりも早いことが分かる。また、本実施例では、吸収部30の厚さWは、検出される表面ノイズの約半波長に設定されているので、表面ノイズの信号は、参照信号と位相が反転したような波形となった。
 また、送信振動子10から送信された超音波の高周波成分は、吸収部30の下面と検査対象Tとの境界を通過する際に吸収部30に吸収され、受信振動子20では、表面ノイズとして低周波成分(この実施例では約1MHz)のみが検出された。そして、受信振動子20から得られる信号(表面ノイズや探傷信号を含む)は、例えば2MHz程度のローパスフィルタおよびハイパスフィルタでフィルタリングすることにより、約1MHzの表面ノイズと約5MHzの探傷信号とに分けられた。このため、表面ノイズと探傷信号とが明確に区別可能であった。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる欠陥検知方法は、波プローブを用いて検査対象に存在する欠陥を検知する方法であって、前記超音波プローブとして、超音波を送信する送信振動子と、超音波を受信する受信振動子と、超音波を吸収する吸収部であって前記検査対象の音速よりも小さな音速を有するものと、前記送信振動子、前記受信振動子および前記吸収部を保持するくさびと、を備え、前記くさびは、前記送信振動子から送信された超音波が前記検査対象の内部に入射する角度で当該送信振動子を保持する第1保持部と、前記送信振動子から送信された超音波が前記検査対象の内部領域に存在する欠陥で反射することにより生成された反射超音波を前記受信振動子が受信可能な角度で当該受信振動子を保持する第2保持部と、前記第1保持部と前記第2保持部との間で前記吸収部を保持する吸収部保持部と、を有するものを準備する準備工程と、前記くさびの底面が前記検査対象から離間した状態である非接触状態において前記送信振動子から送信された超音波が前記吸収部の下面を経由して前記受信振動子で受信された際に生成される信号であって予め取得された参照信号と、前記送信振動子から送信された超音波が前記吸収部の下面と前記検査対象との境界を経由して前記受信振動子で受信された際に生成される信号である表面ノイズと、を比較することによって前記くさびと前記検査対象とが接触しているか否かを判定する判定工程と、前記受信振動子が前記反射超音波を受信した際に生成される探傷信号に基づいて前記検査対象に存在する欠陥を検知する検知工程と、を備える。
 このような欠陥検知方法では、簡素な構造のいわゆる二振動子垂直プローブを用いて、当該プローブと検査対象との接触状態の高精度な判定と検査対象に存在する欠陥の検知との双方を達成することが可能となる。より具体的には、非接触状態のときに吸収部の下面を伝播する超音波の伝播速度よりも、接触状態(くさびが検査対象に接触した状態)のときに吸収部と検査対象との境界を伝播する超音波の伝播速度の方が大きいので、判定工程では、表面ノイズの受信時間が参照信号の受信時間よりも短い場合に、超音波プローブが検査対象に接触していると判定することが可能となる。
 他の一態様では、上述の欠陥検知方法において、前記準備工程で準備される前記吸収部の厚さは、前記送信振動子から送信された超音波の半波長の偶数倍ではない寸法に設定されている。
 これによれば、接触状態での表面ノイズが非接触状態での参照信号に重ならないので、判定工程において、超音波プローブと検査対象とが接触しているか否かをより明確に判定することが可能となる。
 他の一態様では、上述の欠陥検知方法において、前記送信振動子から送信された超音波の波長をλとし、前記吸収部の厚さをWとすると、前記準備工程で準備される前記吸収部の厚さは、以下の式の関係を満たす範囲の寸法に設定され、
(1/2)×λ(2n+1)-(1/4)×λ≦W≦(1/2)×λ(2n+1)+(1/4)×λ (ただし、n=0、1、2、・・・)
前記判定工程では、前記表面ノイズと前記参照信号との差が設定値以上であるときに前記くさびと前記検査対象とが接触していると判定する。
 吸収部の厚さが上記関係式を満たす範囲で設定されることにより、表面ノイズと参照信号とが概ね半波長分ずれることになる。よって、表面ノイズと参照信号との差を取得することにより、くさびと検査対象とが接触しているか否かを明確に判定することが可能となる。
 他の一態様では、上述の欠陥検知方法において、前記検知工程では、前記表面ノイズと前記参照信号との和に基づいて前記検査対象に存在する欠陥を検知する。
 これによれば、検知工程において欠陥の有無を明確に検知することができる。より具体的には、表面ノイズと参照信号とが概ね半波長分ずれているため、表面ノイズと参照信号との和を取得することにより、表面ノイズが概ねキャンセルされ、欠陥に起因する探傷信号のSN比が向上する。よって、検知工程において、明確に欠陥を検知することが可能となる。
 他の一態様では、これら上述の欠陥検知方法において、前記準備工程で準備される前記吸収部は、前記送信振動子から送信された超音波のうち高周波成分を吸収する部材からなり、前記判定工程では、前記表面ノイズをローパスフィルタでフィルタリングすることにより得られる信号に基づいて前記くさびと前記検査対象とが接触しているか否かを判定し、前記検知工程では、前記受信振動子で受信された探傷信号をハイパスフィルタでフィルタリングすることにより得られる信号に基づいて前記検査対象に存在する欠陥を検知してもよい。
 これによれば、吸収部としてコルクやゴム等からなる部材を用いることにより、くさびが検査対象に接触しているか否かの判定に用いる信号(表面ノイズ)と欠陥の検知に用いる探傷信号とが明確に区別される状態で取得される。より具体的には、表面ノイズのうちの高周波成分は、吸収部の下面を伝播する際に吸収部に吸収されているので、このノイズがローパスフィルタでフィルタリングされることにより、表面ノイズとして低周波成分を主とする信号が取得される。一方、検査対象に存在する欠陥に起因する探傷信号は、ハイパスフィルタでフィルタリングされることによって高周波成分を主とする信号となる。よって、表面ノイズと探傷信号とが明確に区別可能な状態で取得され、また、表面ノイズに起因する探傷信号のSN比の低下が抑制される。
 他の一態様では、これら上述の欠陥検知方法において、前記判定工程では、前記参照信号の正成分および前記表面ノイズの正成分のみを検出し、前記表面ノイズの正のピーク値の受信時間と前記参照信号の正のピーク値の受信時間との差が所定時間以上であるときに前記くさびと前記検査対象とが接触している判定する。
 これによれば、超音波プローブと検査対象とが接触しているか否かをより明確に判定することが可能となる。
 他の一態様では、これら上述の欠陥検知方法において、前記判定工程では、前記参照信号の負成分および前記表面ノイズの負成分のみを検出し、前記表面ノイズの負のピーク値の受信時間と前記参照信号の負のピーク値の受信時間との差が所定時間以上であるときに前記くさびと前記検査対象とが接触している判定する。
 これによれば、超音波プローブと検査対象とが接触しているか否かをより明確に判定することが可能となる。
 この出願は、2018年2月1日に出願された日本国特許出願特願2018-16159を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、超音波プローブで検査対象の欠陥を検査する欠陥検知方法が提供できる。

Claims (7)

  1.  超音波プローブを用いて検査対象に存在する欠陥を検知する欠陥検知方法であって、
     前記超音波プローブとして、
     超音波を送信する送信振動子と、
     超音波を受信する受信振動子と、
     超音波を吸収する吸収部であって前記検査対象の音速よりも小さな音速を有するものと、
     前記送信振動子、前記受信振動子および前記吸収部を保持するくさびと、を備え、
     前記くさびは、
     前記送信振動子から送信された超音波が前記検査対象の内部に入射する角度で当該送信振動子を保持する第1保持部と、
     前記送信振動子から送信された超音波が前記検査対象の内部領域に存在する欠陥で反射することにより生成された反射超音波を前記受信振動子が受信可能な角度で当該受信振動子を保持する第2保持部と、
     前記第1保持部と前記第2保持部との間で前記吸収部を保持する吸収部保持部と、を有するものを準備する準備工程と、
     前記くさびの底面が前記検査対象から離間した状態である非接触状態において前記送信振動子から送信された超音波が前記吸収部の下面を経由して前記受信振動子で受信された際に生成される信号であって予め取得された参照信号と、前記送信振動子から送信された超音波が前記吸収部の下面と前記検査対象との境界を経由して前記受信振動子で受信された際に生成される信号である表面ノイズと、を比較することによって前記くさびと前記検査対象とが接触しているか否かを判定する判定工程と、
     前記受信振動子が前記反射超音波を受信した際に生成される探傷信号に基づいて前記検査対象に存在する欠陥を検知する検知工程と、を備える、欠陥検知方法。
  2.  請求項1に記載の欠陥検知方法において、
     前記準備工程で準備される前記吸収部の厚さは、前記送信振動子から送信された超音波の半波長の偶数倍ではない寸法に設定されている、欠陥検知方法。
  3.  請求項2に記載の欠陥検知方法において、
     前記送信振動子から送信された超音波の波長をλとし、前記吸収部の厚さをWとすると、前記準備工程で準備される前記吸収部の厚さは、以下の式の関係を満たす範囲の寸法に設定され、
    (1/2)×λ(2n+1)-(1/4)×λ≦W≦(1/2)×λ(2n+1)+(1/4)×λ (ただし、n=0、1、2、・・・)
     前記判定工程では、前記表面ノイズと前記参照信号との差が設定値以上であるときに前記くさびと前記検査対象とが接触していると判定する、欠陥検知方法。
  4.  請求項3に記載の欠陥検知方法において、
     前記検知工程では、前記表面ノイズと前記参照信号との和に基づいて前記検査対象に存在する欠陥を検知する、欠陥検知方法。
  5.  請求項1または請求項2に記載の欠陥検知方法において、
     前記準備工程で準備される前記吸収部は、前記送信振動子から送信された超音波のうち高周波成分を吸収する部材からなり、
     前記判定工程では、前記表面ノイズをローパスフィルタでフィルタリングすることにより得られる信号に基づいて前記くさびと前記検査対象とが接触しているか否かを判定し、
     前記検知工程では、前記受信振動子で受信された探傷信号をハイパスフィルタでフィルタリングすることにより得られる信号に基づいて前記検査対象に存在する欠陥を検知する、欠陥検知方法。
  6.  請求項1または請求項2に記載の欠陥検知方法において、
     前記判定工程では、前記参照信号の正成分および前記表面ノイズの正成分のみを検出し、前記表面ノイズの正のピーク値の受信時間と前記参照信号の正のピーク値の受信時間との差が所定時間以上であるときに前記くさびと前記検査対象とが接触している判定する、欠陥検知方法。
  7.  請求項1または請求項2に記載の欠陥検知方法において、
     前記判定工程では、前記参照信号の負成分および前記表面ノイズの負成分のみを検出し、前記表面ノイズの負のピーク値の受信時間と前記参照信号の負のピーク値の受信時間との差が所定時間以上であるときに前記くさびと前記検査対象とが接触している判定する、欠陥検知方法。
     
PCT/JP2019/001117 2018-02-01 2019-01-16 欠陥検知方法 WO2019150952A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016159A JP2021081189A (ja) 2018-02-01 2018-02-01 欠陥検知方法
JP2018-016159 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019150952A1 true WO2019150952A1 (ja) 2019-08-08

Family

ID=67479381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001117 WO2019150952A1 (ja) 2018-02-01 2019-01-16 欠陥検知方法

Country Status (2)

Country Link
JP (1) JP2021081189A (ja)
WO (1) WO2019150952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630780A (zh) * 2019-09-24 2021-04-09 株式会社东芝 处理系统、处理方法及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199670U (ja) * 1986-06-10 1987-12-19
JPS63235857A (ja) * 1987-03-24 1988-09-30 Hitachi Constr Mach Co Ltd 超音波測定回路
JPH054009U (ja) * 1991-04-10 1993-01-22 三菱電機株式会社 超音波探傷装置
JPH0517563U (ja) * 1991-08-22 1993-03-05 三菱電機株式会社 超音波探傷装置
US5201225A (en) * 1990-09-24 1993-04-13 Toyo Kanetsu K.K. Instrument for measuring thickness of coated plate and method thereof
JP2002243706A (ja) * 2001-02-09 2002-08-28 Sumitomo Metal Ind Ltd 超音波探傷方法及び装置
JP2005308691A (ja) * 2004-04-26 2005-11-04 Hitachi Ltd 超音波探触子及び超音波検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199670U (ja) * 1986-06-10 1987-12-19
JPS63235857A (ja) * 1987-03-24 1988-09-30 Hitachi Constr Mach Co Ltd 超音波測定回路
US5201225A (en) * 1990-09-24 1993-04-13 Toyo Kanetsu K.K. Instrument for measuring thickness of coated plate and method thereof
JPH054009U (ja) * 1991-04-10 1993-01-22 三菱電機株式会社 超音波探傷装置
JPH0517563U (ja) * 1991-08-22 1993-03-05 三菱電機株式会社 超音波探傷装置
JP2002243706A (ja) * 2001-02-09 2002-08-28 Sumitomo Metal Ind Ltd 超音波探傷方法及び装置
JP2005308691A (ja) * 2004-04-26 2005-11-04 Hitachi Ltd 超音波探触子及び超音波検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Non-destructive Inspection technology series, Ultrasonic flaw detection test 2", THE JAPANESE SOCIETY FOR NON-DESTRUCTIVE INSPECTION, 1 November 2000 (2000-11-01), pages 29 - 42 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630780A (zh) * 2019-09-24 2021-04-09 株式会社东芝 处理系统、处理方法及存储介质

Also Published As

Publication number Publication date
JP2021081189A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
EP3070467B1 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
JPWO2007113907A1 (ja) 超音波探触子、超音波探傷方法及び超音波探傷装置
JP5237923B2 (ja) 密着性評価装置及び方法
JP2011149888A (ja) 複合型超音波探触子及びそれを用いたtofd法による超音波探傷法
JP6797788B2 (ja) 超音波プローブ
EP1271097A2 (en) Method for inspecting clad pipe
WO2019150952A1 (ja) 欠陥検知方法
JP2001208729A (ja) 欠陥検出装置
JP2009058238A (ja) 欠陥検査方法および装置
EP1517142A1 (en) An acoustic testing apparatus for testing a laminate material and an acoustic testing method for testing a laminate material
WO2019150953A1 (ja) 超音波プローブ
JP6731863B2 (ja) 検査方法
JP5345096B2 (ja) アレイ超音波探傷装置
JP5567472B2 (ja) 超音波検査方法及び超音波検査装置
JP6761780B2 (ja) 欠陥評価方法
RU2587536C1 (ru) Способ измерения коэффициента затухания ультразвука
JP2010190794A (ja) 減肉検出方法
Jagadeeshwar et al. Wave visualization of ultrasonic guided waves in a metallic structure using fiber bragg gratings
Chu et al. Ultrasonic edge waves for damage detection in composite plate stiffeners
JP5497448B2 (ja) 超音波試験の干渉保護を強化する方法及びこの方法を実行する装置
JP6987554B2 (ja) 非破壊検査装置及びその方法
JPH07325070A (ja) 超音波法による欠陥深さの測定方法
JP2011196862A (ja) スポット溶接部の検査方法及び検査装置
Kim et al. Disbond Detection Technique for Liner/propellant Interface Using Ultrasonic Resonance and Lamb Waves
JP2007322366A (ja) 超音波探傷装置及び超音波探傷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP