WO2019150883A1 - Power management system, power management server, and power management method - Google Patents

Power management system, power management server, and power management method Download PDF

Info

Publication number
WO2019150883A1
WO2019150883A1 PCT/JP2018/048577 JP2018048577W WO2019150883A1 WO 2019150883 A1 WO2019150883 A1 WO 2019150883A1 JP 2018048577 W JP2018048577 W JP 2018048577W WO 2019150883 A1 WO2019150883 A1 WO 2019150883A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
shared
facility
price
Prior art date
Application number
PCT/JP2018/048577
Other languages
French (fr)
Japanese (ja)
Inventor
朗 奥村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019568952A priority Critical patent/JP7037583B2/en
Publication of WO2019150883A1 publication Critical patent/WO2019150883A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a power management system, a power management server, and a power management method.
  • the power management system includes a shared power storage device shared by a plurality of facilities, a plurality of distributed power sources individually provided in the plurality of facilities, and power used for charging the shared power storage device, A power management server that manages charging power output from a plurality of distributed power sources.
  • the power management server applies a price higher than a standard power purchase price as the power purchase price of the charging power.
  • the reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
  • the power management server manages charging power output from a plurality of distributed power sources individually provided in the plurality of facilities, as power used for charging the shared power storage device shared by the plurality of facilities.
  • a control unit is provided.
  • the control unit applies a price higher than a reference power purchase price as the power purchase price of the charging power.
  • the reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
  • a power management method manages charging power output from a plurality of distributed power sources individually provided in the plurality of facilities as power used for charging a shared power storage device shared by the plurality of facilities. And a step of applying a price higher than a reference power purchase price as the power purchase price of the charging power.
  • the reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
  • FIG. 1 is a diagram illustrating a power management system 100 according to the embodiment.
  • FIG. 2 is a diagram illustrating the power management server 200 according to the embodiment.
  • FIG. 3 is a diagram for explaining determination of the allocated power amount according to the embodiment.
  • FIG. 4 is a diagram illustrating a power management method according to the embodiment.
  • FIG. 5 is a diagram illustrating a power management method according to the embodiment.
  • FIG. 6 is a diagram illustrating a power management method according to the embodiment.
  • the timing time zone or day of the week
  • the timing at which surplus power output from the distributed power source does not necessarily coincide with the timing at which supply and demand of the power system is tight. Therefore, it is preferable to temporarily store the power output from the distributed power supply in the power storage device.
  • Embodiments provide a power management system, a power management server, and a power management method capable of effectively using a distributed power source provided in a facility as a part of a base load power source.
  • the power management system 100 includes a power management server 200, a facility 300, and a shared power storage device 400.
  • a facility 300 a facility 300A to a facility 300C are illustrated.
  • the power management system 100 may include a charging station 500 that charges a power storage device provided in the electric vehicle.
  • Each facility 300 is connected to the power system 110.
  • the flow of power from the power system 110 to the facility 300 is referred to as tidal current, and the flow of power from the facility 300 to the power system 110 is referred to as reverse power flow.
  • Shared power storage device 400 and charging station 500 are connected to power system 110.
  • the power management server 200, the facility 300, and the shared power storage device 400 are connected to the network 120.
  • the network 120 may provide a line between the power management server 200 and the facility 300 and a line between the power management server 200 and the shared power storage device 400.
  • the network 120 is the Internet.
  • the network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
  • the power management server 200 manages the shared power storage device 400 shared by a plurality of facilities 300.
  • the power management server 200 is a server managed by a power company such as a power generation company, a transmission / distribution company, a retail company, or a resource aggregator.
  • the resource aggregator is a power provider that provides reverse power flow to a power generation company, a power transmission / distribution company, a retailer, and the like in a VPP (Virtual Power Plant). In the embodiment, details of the power management server 200 will be described later (see FIG. 2).
  • the power management server 200 may transmit a control message instructing control to the distributed power supply 310 provided in the facility 300 to the EMS 320 provided in the facility 300.
  • the power management server 200 may transmit a power flow control message (for example, DR; Demand Response) that requests control of power flow, or may transmit a reverse power flow control message that requests control of reverse power flow.
  • the power management server 200 may transmit a power control message for controlling the operating state of the distributed power.
  • the degree of control of the tidal current or the reverse tidal current may be represented by an absolute value (for example, OO kW) or a relative value (for example, OO%).
  • control degree of a tidal current or a reverse tidal current may be represented by two or more levels.
  • the degree of control of the tidal current or reverse power flow may be represented by a power rate (RTP: Real Time Pricing) determined by the current power supply / demand balance, or a power rate (TOU: Time Of Use) determined by the past power supply / demand balance May be represented by
  • the facility 300 includes a distributed power source 310 and an EMS 320.
  • the facility 300 may include a load device that consumes power.
  • the load device is an air conditioner, a lighting device, an AV (Audio Visual) device, or the like.
  • the distributed power supply 310 is a device that generates power.
  • the distributed power source 310 may be a device that generates power using renewable energy such as sunlight, wind power, hydropower, and geothermal heat.
  • a distributed power source 310 is a solar cell device, a wind power generator, a hydroelectric generator, a geothermal power generator, or the like.
  • the distributed power source 310 may be a device that generates power using fuel.
  • Such a distributed power supply 310 includes a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), and a phosphoric acid fuel cell (PAFC). ), Molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell).
  • the EMS 320 is an apparatus (EMS; Energy Management System) that manages the power of the facility 300.
  • the EMS 320 may control the operating state of the distributed power supply 310.
  • the EMS 320 is an example of a VEN (Virtual End Node).
  • the plurality of facilities 300 may include a first facility having an individual power storage device and a second facility having no individual power storage device.
  • the facility 300A is an example of a first facility having the individual power storage device 330A.
  • Facility 300B is an example of a second facility that does not have an individual power storage device.
  • the plurality of facilities 300 may include a small-scale facility having a small-scale distributed power source and a large-scale facility having a large-scale distributed power source having a larger power generation capacity than the small-scale distributed power source.
  • the facility 300A is an example of a small-scale facility having a small-scale distributed power source 310A
  • the facility 300B is an example of a small-scale facility having a small-scale distributed power source 310B.
  • the facility 300C is an example of a large-scale facility having a large-scale distributed power supply 310C.
  • the load device possessed by the facility 300 does not need to be located in the facility 300, and may be any load device belonging to the user of the facility 300.
  • the facility 300A may have an electric vehicle 340A as a load device belonging to the user of the facility 300A.
  • the power storage device provided in the electric vehicle 340 ⁇ / b> A can be charged by the charging station 500.
  • the power storage device provided in the electric vehicle 340A may be considered as an example of an individual power storage device.
  • the electric vehicle 340A may have a function of performing communication via the network 120.
  • the electric vehicle 340A may transmit the remaining amount of power stored in the power storage device provided in the electric vehicle 340A to the power management server 200 or the EMS 320A.
  • the charging station 500 may be provided not in the facility 300A but in the facility 300A.
  • the power storage device provided in the electric vehicle 340A may be considered as one of the individual power storage devices.
  • electric vehicle 340A may be used in combination with individual power storage device 330A.
  • communication between the power management server 200 and the EMS 320 may be performed according to the first protocol.
  • the communication between the EMS 320 and the distributed power supply 310 may be performed according to a second protocol different from the first protocol.
  • a protocol compliant with Open ADR (Automated Demand Response) or a unique dedicated protocol can be used.
  • a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used.
  • the first protocol and the second protocol only need to be different. For example, even if both are unique dedicated protocols, they may be protocols created according to different rules.
  • Communication between the power management server 200 and the shared power storage device 400 may be performed according to the first protocol or according to the second protocol.
  • Shared power storage device 400 is shared by a plurality of facilities 300. For each of the plurality of facilities 300, the virtual power remaining amount of the shared power storage device 400 is managed. The virtual remaining power amount is a remaining power amount that is virtually managed for each facility 300. The remaining amount of virtual power storage is increased by charging using charging power output from the plurality of distributed power sources 310 provided individually to the plurality of facilities 300 to the power system 110, and discharging from the shared power storage device 400 to the load devices of the facility 300 Decrease by Here, the charging power output from the plurality of distributed power sources 310 may not be directly charged into the shared power storage device 400, and the charging of the shared power storage device 400 is performed by the power supplied from the power system 110. The amount of charging power output from the plurality of distributed power sources 310 may be the same as the amount of power charged from the power system 110 to the shared power storage device 400.
  • the charging station 500 has a device that discharges power to a load device connected to the charging station 500.
  • the charging station 500 includes a device that charges power supplied from the power system 110.
  • Charging station 500 may include a device that charges power output from an individual power storage device (for example, electric vehicle 340 ⁇ / b> A) connected to charging station 500.
  • the power management server 200 includes a database 210, a communication unit 220, and a control unit 230.
  • the power management server 200 is an example of a VTN (Virtual Top Node).
  • the database 210 is configured by a storage medium such as a nonvolatile memory and / or HDD, and stores data related to the facility 300 managed by the power management server 200.
  • the facility 300 managed by the power management server 200 may be a facility 300 that has a contract with an electric power company.
  • the data regarding the facility 300 may include charging power output from the plurality of distributed power sources 310 as power used for charging the shared power storage device 400.
  • the data related to the facility 300 may include discharge power from the shared power storage device 400 to the load device of the facility 300.
  • the data related to the facility 300 may include the actual usage of the shared power storage device 400 (charging and discharging history) for each of the plurality of facilities 300.
  • the data regarding the facility 300 may include the virtual capacity frame of the shared power storage device 400 or the virtual power storage remaining amount of the shared power storage device 400 for each of the plurality of facilities 300.
  • the virtual charging capacity that is the difference between the two may be included.
  • the virtual capacity frame is a capacity virtually allocated to the facility 300, and may be determined by a contract between the electric power company and the user.
  • the data related to the facility 300 may be demand power supplied from the power system 110 to the facility 300, and reduced at each facility 300 in response to a demand power reduction request (DR) of the entire power system 110. May be the amount of electric power.
  • the data related to the facility 300 may be the type of the distributed power supply 310 provided in the facility 300, the specifications of the distributed power supply 310 provided in the facility 300, and the like.
  • the specifications may be the rated generated power (W) and maximum output power (W) of the distributed power source 310.
  • the database 210 may store data related to the shared power storage device 400.
  • the data related to the shared power storage device 400 may include the actual capacity of the shared power storage device 400, may include the actual power storage remaining amount of the shared power storage device 400, and the actual power storage capacity that is the difference between the actual capacity and the actual power storage remaining amount. May be included.
  • the data related to shared power storage device 400 may include the dischargeable power of shared power storage device 400 in unit time, or may include the rechargeable power of shared power storage device 400 in unit time.
  • the actual capacity is a capacity that the shared power storage device 400 actually has.
  • the actual power storage remaining amount is the remaining power storage actually stored in the shared power storage device 400.
  • the actual storage capacity is the difference between the actual capacity and the actual remaining power.
  • the communication unit 220 includes a communication module, and communicates with the EMS 320 via the network 120. As described above, the communication unit 220 performs communication according to the first protocol. For example, the communication unit 220 transmits a first message to the EMS 320 according to the first protocol. The communication unit 220 receives the first message response from the EMS 320 according to the first protocol.
  • the communication unit 220 receives at least one of a charge request and a discharge request of the shared power storage device 400.
  • the communication unit 220 may receive at least one of a charge request and a discharge request from the facility 300 (for example, EMS 320).
  • the communication unit 220 may receive at least one of a charge request and a discharge request from a terminal (for example, a smartphone, a tablet, or a personal computer) belonging to the user of the facility 300.
  • the communication unit 220 transmits at least one of a charging response to the charging request and a discharging response to the discharging request.
  • the communication unit 220 may transmit at least one of a charging response and a discharging response to the facility 300 (for example, EMS 320), and may transmit at least one of the charging response and the discharging response to a terminal belonging to the user of the facility 300. Also good.
  • the communication unit 220 communicates with the shared power storage device 400 via the network 120. As described above, the communication unit 220 may perform communication according to the first protocol, or may perform communication according to the second protocol. For example, the communication unit 220 receives a message including an information element indicating the actual capacity of the shared power storage device 400 from the shared power storage device 400. The communication unit 220 receives from the shared power storage device 400 a message (status) including an information element indicating at least one of the actual power storage remaining amount and the actual charge remaining capacity of the shared power storage device 400.
  • the control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, the control unit 230 instructs the EMS 320 provided in the facility 300 to control the distributed power supply 310 provided in the facility 300 by transmitting a control message. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
  • the control unit 230 manages data stored in the database 210.
  • the control unit 230 manages the actual capacity of the shared power storage device 400 and manages the virtual capacity frame of each facility 300.
  • 2 units of virtual capacity frames are allocated to the facility 300A
  • 1 unit of virtual capacity frames are allocated to the facility 300B
  • 9 units of virtual capacity frames are allocated to the facility 300C.
  • the actual capacity of the shared power storage device 400 may include a capacity other than the virtual capacity frame allocated to the facility 300 (that is, a capacity not allocated to the facility 300), and such capacity is used for other purposes. Also good.
  • the unit means one square shown in FIG. 3, and is an arbitrary capacity (for example, 1 kWh, 10 kWh, etc.).
  • the control unit 230 manages charging power output from the plurality of distributed power sources 310 as power used for charging the shared power storage device 400.
  • the control unit 230 applies a price higher than the reference power purchase price as the power purchase price of the charging power.
  • the reference power purchase price is a price applied to power (reverse power flow power) output from a plurality of distributed power sources 310 without passing through the shared power storage device 400.
  • the power output from the plurality of distributed power sources 310 without passing through the shared power storage device 400 is power that contributes to real-time supply and demand adjustment of the power system 110 without being stored in the shared power storage device 400.
  • the reference power purchase price is determined by a contract between the electric power company and the user. According to such a configuration, the distributed power supply 310 provided in the facility 300 can be effectively used as part of the base load power supply by actively using the shared power storage device 400.
  • the reference power purchase price may be a price applied to electric power output from the plurality of distributed power sources 310 without passing through the shared power storage device 400 after the fixed price purchase system application period ends. According to such a configuration, the distributed power source 310 can be effectively used as a part of the base load power source even after the application period of the fixed price purchase system is over.
  • the purchase price of the charging power applied to the first facility (for example, the facility 300A) having the individual power storage device (for example, the individual power storage device 330A) is the second facility (for example, the facility 300B) that does not have the individual power storage device. ) May be higher than the purchase price of the charging power applied.
  • the shared power storage device 400 can be more actively used than the individual power storage device 330A, and the distributed power supply 310 can be effectively used as part of the base load power supply.
  • the control unit 230 may apply a higher price than the purchase price of the charging power as the selling price of the discharged power output from the shared power storage device 400. According to such a configuration, it is possible to ensure the profit of the electric power company that manages the shared power storage device 400.
  • the power selling price of the discharged power may be lower than the standard power selling price.
  • the reference power selling price is a price applied to electric power provided without going through the shared power storage device 400.
  • the electric power provided without going through the shared power storage device 400 is electric power procured by the electric power company and electric power provided from the electric power company.
  • the reference power selling price is determined by a contract between a power company and a user. According to such a configuration, active use of the shared power storage device 400 is promoted.
  • the control unit 230 accumulates in the shared power storage device 400 within a range that does not exceed the amount of power supplied to the shared power storage device 400 from the distributed power source provided in the target facility (that is, the virtual power storage remaining amount).
  • the generated power may be supplied free of charge to the load equipment belonging to the target facility.
  • the load device may be the electric vehicle 340A.
  • the profit amount applied to a large-scale facility (for example, facility 300C) having a large-scale distributed power source (for example, large-scale distributed power source 310C) is a small-scale distributed power source (for example, small-scale distributed power source 310A and small-scale distributed power source 310B). ) May be smaller than the profit amount applied to a small-scale facility (for example, the facility 300A and the facility 300B).
  • the amount of profit is the difference between the purchase price of charging power and the selling price of discharge power. According to such a configuration, entry of a large-scale facility can be promoted, and active use of the shared power storage device 400 is promoted.
  • the power management server 200 receives a status from the shared power storage device 400.
  • the status may include an information element indicating at least one of the actual power storage remaining amount and the actual charge remaining capacity of the shared power storage device 400.
  • the status may include an information element indicating at least one of the virtual power storage remaining capacity and the virtual charging capacity of the facility 300A.
  • step S11 the power management server 200 receives a charge request for the shared power storage device 400 from the facility 300A.
  • the charge request may include an information element indicating the charge power amount of shared power storage device 400.
  • the power management server 200 determines whether or not to permit the charge request. For example, the power management server 200 determines whether or not the charging associated with the charging request can be performed within a range that does not exceed the virtual charging capacity of the facility 300A. Here, a case where a charge request is permitted will be described.
  • the power management server 200 may determine the purchase price of the charged power. As described above, the power purchase price (for example, 9 yen (7 yen + 2 yen) / kWh) of the charging power is higher than the reference power purchase price (for example, 7 yen / kWh).
  • step S13 the power management server 200 transmits a charging response to the facility 300A.
  • the charging response may include an information element indicating a purchase price of charging power.
  • step S14 the small-scale distributed power supply 310A of the facility 300A outputs power to the shared power storage device 400 via the power system 110 (reverse power flow).
  • step S20 the power management server 200 receives the status from the shared power storage device 400.
  • step S21 the power management server 200 receives a discharge request for the shared power storage device 400 from the facility 300A.
  • the discharge request may include an information element indicating the amount of discharge power of shared power storage device 400.
  • the power management server 200 determines whether to permit the discharge request. For example, the power management server 200 determines whether or not the discharge associated with the discharge request can be performed within a range that does not exceed the actual power remaining amount of the shared power storage device 400.
  • the power management server 200 may determine the selling price of the discharged power.
  • the power selling price (for example, 12 yen / kWh) may be lower than the standard power selling price (for example, 15 yen / kWh).
  • the power sale price (12 yen / kWh) may be higher than the power purchase price (9 yen / kWh).
  • the discharge power of the shared power storage device 400 may be free as long as it does not exceed the virtual power storage remaining amount of the facility 300A.
  • step S23 the power management server 200 transmits a discharge response to the facility 300A.
  • the discharge response may include an information element indicating a selling price of the discharged power.
  • step S24 the power management server 200 transmits a discharge instruction to the shared power storage device 400.
  • the discharge instruction may include an information element indicating the discharge power amount.
  • step S25 the shared power storage device 400 outputs power to the load device (for example, the electric vehicle 340A) belonging to the facility 300A via the power system 110 (tidal current).
  • the load device for example, the electric vehicle 340A
  • the power system 110 titanium current
  • step S30 the power management server 200 receives the status from the shared power storage device 400, as in step S10.
  • step S31 the power management server 200 receives a charge request for the shared power storage device 400 from the facility 300B, as in step S11.
  • step S32 as in step S12, the power management server 200 determines whether or not to permit the charge request, and determines the purchase price of the charged power.
  • the power purchase price for example, 8 yen (7 yen + 1 yen) / kWh
  • the standard power purchase price for example, 7 yen / kWh
  • the power purchase price (for example, 8 yen / kWh) applied to the facility 300B may be lower than the power purchase price (for example, 9 yen / kWh) applied to the facility 300A.
  • step S33 the power management server 200 transmits a charging response to the facility 300B as in step S13.
  • step S34 the small-scale distributed power supply 310B of the facility 300B outputs power to the shared power storage device 400 via the power system 110 (reverse power flow) as in step S14.
  • step S40 the power management server 200 receives the status from the shared power storage device 400 as in step S20.
  • step S41 the power management server 200 receives a discharge request for the shared power storage device 400 from the facility 300B, as in step S21.
  • the power management server 200 may determine whether or not to permit the discharge request, and may determine the selling price of the discharged power.
  • the power selling price (for example, 12 yen / kWh) may be lower than the standard power selling price (for example, 15 yen / kWh).
  • the power sale price (12 yen / kWh) may be higher than the power purchase price (9 yen / kWh).
  • the discharge power of the shared power storage device 400 may be free as long as it does not exceed the virtual power storage remaining amount of the facility 300B.
  • step S43 the power management server 200 transmits a discharge response to the facility 300B as in step S23.
  • step S44 the power management server 200 transmits a discharge instruction to the shared power storage device 400 as in step S24.
  • step S45 the shared power storage device 400 outputs power to the load equipment belonging to the facility 300B via the power system 110 (tidal current), as in step S25.
  • step S50 the power management server 200 receives the status from the shared power storage device 400, similarly to step S10.
  • step S51 the power management server 200 receives a charge request for the shared power storage device 400 from the facility 300C as in step S11.
  • step S52 as in step S12, the power management server 200 determines whether or not to permit the charge request, and determines the purchase price of the charged power.
  • the power purchase price for example, 19 yen / kWh
  • the standard power purchase price for example, 7 yen / kWh
  • the power purchase price (for example, 19 yen / kWh) applied to the facility 300C may be higher than the power purchase price applied to the facility 300A and the facility 300B.
  • step S53 the power management server 200 transmits a charging response to the facility 300C as in step S13.
  • step S54 the large-scale distributed power supply 310C of the facility 300C outputs power to the shared power storage device 400 via the power system 110 (reverse power flow) as in step S14.
  • step S60 the power management server 200 receives the status from the shared power storage device 400 as in step S20.
  • step S61 the power management server 200 receives a discharge request for the shared power storage device 400 from the facility 300C, as in step S21.
  • the power management server 200 may determine whether or not to permit the discharge request and determine the selling price of the discharged power.
  • the power selling price (for example, 19 yen / kWh) may be lower than the standard power selling price (for example, 27 yen / kWh).
  • the discharge power of the shared power storage device 400 may be free as long as it does not exceed the virtual power storage remaining capacity of the facility 300C.
  • the profit amount (for example, 0 yen / kWh) applied to the facility 300C may be smaller than the profit amount (for example, 3 yen or 4 yen / kWh) applied to the facility 300A and the facility 300B.
  • step S63 the power management server 200 transmits a discharge response to the facility 300C as in step S23.
  • step S64 the power management server 200 transmits a discharge instruction to the shared power storage device 400 as in step S24.
  • step S65 the shared power storage device 400 outputs power to the load devices belonging to the facility 300C via the power system 110 (tidal current), similarly to step S25.
  • the power management server 200 applies a price higher than the reference power purchase price as the power purchase price of the charging power output from the distributed power supply 310.
  • the distributed power supply 310 can be effectively used as part of the base load power supply by actively using the shared power storage device 400.
  • the power management server 200 applies a price higher than the reference power purchase price as the power purchase price of the charging power (reverse power output from the distributed power supply 310) used for charging the shared power storage device 400.
  • the power management server 200 may apply a price equal to or lower than the reference power purchase price as the power purchase price of the charged power when a predetermined condition is satisfied. Whether or not the predetermined condition is satisfied may be determined based on a supply and demand balance of the power system 110, a contract between the power company and the user, or the like.
  • the selling price of the discharge power of the shared power storage device 400 may be determined in an auction format.
  • the selling price of the discharged power of shared power storage device 400 may be determined based on the supply and demand balance of power system 110.
  • the reference power purchase price and the reference power sale price may be individually determined for each facility 300 by a contract between the power company and the user.
  • the settlement associated with the use of the shared power storage device 400 may be performed every predetermined period (for example, one month).
  • the power management server 200 includes a database 210.
  • the database 210 may be a cloud server provided on the Internet.
  • the EMS 320 provided in the facility 300 does not necessarily have to be provided in the facility 300.
  • some of the functions of the EMS 320 may be provided by a cloud server provided on the Internet. That is, it may be considered that the EMS 320 includes a cloud server.
  • the first protocol is a protocol conforming to Open ADR2.0 and the second protocol is a protocol conforming to ECHONET Lite is illustrated.
  • the first protocol may be a protocol that is standardized as a protocol used for communication between the power management server 200 and the EMS 320.
  • the second protocol may be a protocol standardized as a protocol used in the facility 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power management system comprising: a shared power storage device shared by a plurality of facilities; a plurality of distributed power supplies provided in each of the plurality of facilities; and a power management server that manages charging power output from the plurality of distributed power supplies, as power used for charging the shared power storage device. The power management server applies a higher price than a standard power purchase price, as the power purchase price for the charging power. The standard power purchase price is the price applied to power output from the plurality of distributed power supplies without passing through the shared power storage device.

Description

電力管理システム、電力管理サーバ及び電力管理方法Power management system, power management server, and power management method
 本発明は、電力管理システム、電力管理サーバ及び電力管理方法に関する。 The present invention relates to a power management system, a power management server, and a power management method.
 近年、複数の施設によって1以上の蓄電装置を共用する技術が提案されている。施設に割り当てられた蓄電容量は、施設から取得される充電のリクエストによって増大し、施設から取得される放電のリクエストによって減少する(例えば、特許文献1)。 In recent years, a technique for sharing one or more power storage devices by a plurality of facilities has been proposed. The storage capacity allocated to the facility increases with a charge request acquired from the facility, and decreases with a discharge request acquired from the facility (for example, Patent Document 1).
国際公開第2016/136263号パンフレットInternational Publication No. 2016/136263 Pamphlet
 第1の特徴に係る電力管理システムは、複数の施設によって共用される共用蓄電装置と、前記複数の施設に個別に設けられる複数の分散電源と、前記共用蓄電装置の充電に用いる電力として、前記複数の分散電源から出力される充電電力を管理する電力管理サーバとを備える。前記電力管理サーバは、前記充電電力の買電価格として、基準買電価格よりも高い価格を適用する。前記基準買電価格は、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である。 The power management system according to the first feature includes a shared power storage device shared by a plurality of facilities, a plurality of distributed power sources individually provided in the plurality of facilities, and power used for charging the shared power storage device, A power management server that manages charging power output from a plurality of distributed power sources. The power management server applies a price higher than a standard power purchase price as the power purchase price of the charging power. The reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
 第2の特徴に係る電力管理サーバは、複数の施設によって共用される共用蓄電装置の充電に用いる電力として、前記複数の施設に個別に設けられる複数の分散電源から出力される充電電力を管理する制御部を備える。前記制御部は、前記充電電力の買電価格として、基準買電価格よりも高い価格を適用する。前記基準買電価格は、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である。 The power management server according to the second feature manages charging power output from a plurality of distributed power sources individually provided in the plurality of facilities, as power used for charging the shared power storage device shared by the plurality of facilities. A control unit is provided. The control unit applies a price higher than a reference power purchase price as the power purchase price of the charging power. The reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
 第3の特徴に係る電力管理方法は、複数の施設によって共用される共用蓄電装置の充電に用いる電力として、前記複数の施設に個別に設けられる複数の分散電源から出力される充電電力を管理するステップと、前記充電電力の買電価格として、基準買電価格よりも高い価格を適用するステップとを備える。前記基準買電価格は、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である。 A power management method according to a third feature manages charging power output from a plurality of distributed power sources individually provided in the plurality of facilities as power used for charging a shared power storage device shared by the plurality of facilities. And a step of applying a price higher than a reference power purchase price as the power purchase price of the charging power. The reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
図1は、実施形態に係る電力管理システム100を示す図である。FIG. 1 is a diagram illustrating a power management system 100 according to the embodiment. 図2は、実施形態に係る電力管理サーバ200を示す図である。FIG. 2 is a diagram illustrating the power management server 200 according to the embodiment. 図3は、実施形態に係る割当電力量の決定を説明するための図である。FIG. 3 is a diagram for explaining determination of the allocated power amount according to the embodiment. 図4は、実施形態に係る電力管理方法を示す図である。FIG. 4 is a diagram illustrating a power management method according to the embodiment. 図5は、実施形態に係る電力管理方法を示す図である。FIG. 5 is a diagram illustrating a power management method according to the embodiment. 図6は、実施形態に係る電力管理方法を示す図である。FIG. 6 is a diagram illustrating a power management method according to the embodiment.
 現状では、電力系統を通じて供給される電力の多くは、火力発電所から供給されている。CO2削減等の要請の高まりから、施設に設けられる分散電源をベースロード電源の一部として積極的に利用することが望まれている。 At present, most of the power supplied through the power system is supplied from thermal power plants. Due to the increasing demand for CO 2 reduction and the like, it is desired to actively use the distributed power source provided in the facility as part of the base load power source.
 しかしながら、分散電源から出力される電力の余剰が生じるタイミング(時間帯又は曜日)は、電力系統の需給逼迫が生じるタイミングと必ずしも一致しない。従って、分散電源から出力される電力を蓄電装置に一時的に蓄積することが好ましいが、全ての施設が蓄電装置を導入するとは限らず、また、施設に導入される蓄電装置の容量もコスト的な観点から制限される。 However, the timing (time zone or day of the week) at which surplus power output from the distributed power source does not necessarily coincide with the timing at which supply and demand of the power system is tight. Therefore, it is preferable to temporarily store the power output from the distributed power supply in the power storage device. However, not all facilities introduce the power storage device, and the capacity of the power storage device installed in the facility is also low in cost. It is limited from the viewpoint.
 実施形態は、ベースロード電源の一部として施設に設けられる分散電源を有効に利用することを可能とする電力管理システム、電力管理サーバ及び電力管理方法を提供する。 Embodiments provide a power management system, a power management server, and a power management method capable of effectively using a distributed power source provided in a facility as a part of a base load power source.
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれている場合があることは勿論である。 However, it should be noted that the drawings are schematic and ratios of dimensions may differ from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Of course, the drawings may include portions having different dimensional relationships or ratios.
 [実施形態]
 (電力管理システム)
 以下において、実施形態に係る電力管理システムについて説明する。
[Embodiment]
(Power management system)
Hereinafter, the power management system according to the embodiment will be described.
 図1に示すように、電力管理システム100は、電力管理サーバ200と、施設300と、共用蓄電装置400とを有する。図1では、施設300として、施設300A~施設300Cが例示されている。電力管理システム100は、電気自動車に設けられる蓄電装置を充電する充電ステーション500を有していてもよい。 1, the power management system 100 includes a power management server 200, a facility 300, and a shared power storage device 400. In FIG. 1, as the facility 300, a facility 300A to a facility 300C are illustrated. The power management system 100 may include a charging station 500 that charges a power storage device provided in the electric vehicle.
 各施設300は、電力系統110に接続される。以下において、電力系統110から施設300への電力の流れを潮流と称し、施設300から電力系統110への電力の流れを逆潮流と称する。共用蓄電装置400及び充電ステーション500は、電力系統110に接続される。 Each facility 300 is connected to the power system 110. In the following, the flow of power from the power system 110 to the facility 300 is referred to as tidal current, and the flow of power from the facility 300 to the power system 110 is referred to as reverse power flow. Shared power storage device 400 and charging station 500 are connected to power system 110.
 電力管理サーバ200、施設300及び共用蓄電装置400は、ネットワーク120に接続されている。ネットワーク120は、電力管理サーバ200と施設300との間の回線及び電力管理サーバ200と共用蓄電装置400との間の回線を提供すればよい。例えば、ネットワーク120は、インターネットである。ネットワーク120は、VPN(Virtual Private Network)などの専用回線を提供してもよい。 The power management server 200, the facility 300, and the shared power storage device 400 are connected to the network 120. The network 120 may provide a line between the power management server 200 and the facility 300 and a line between the power management server 200 and the shared power storage device 400. For example, the network 120 is the Internet. The network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
 電力管理サーバ200は、複数の施設300によって共用される共用蓄電装置400を管理する。電力管理サーバ200は、発電事業者、送配電事業者或いは小売事業者、リソースアグリゲータなどの電力事業者によって管理されるサーバである。リソースアグリゲータは、VPP(Virtual Power Plant)において発電事業者、送配電事業者及び小売事業者などに逆潮流の電力を提供する電力事業者である。実施形態において、電力管理サーバ200の詳細については後述する(図2を参照)。 The power management server 200 manages the shared power storage device 400 shared by a plurality of facilities 300. The power management server 200 is a server managed by a power company such as a power generation company, a transmission / distribution company, a retail company, or a resource aggregator. The resource aggregator is a power provider that provides reverse power flow to a power generation company, a power transmission / distribution company, a retailer, and the like in a VPP (Virtual Power Plant). In the embodiment, details of the power management server 200 will be described later (see FIG. 2).
 ここで、電力管理サーバ200は、施設300に設けられるEMS320に対して、施設300に設けられる分散電源310に対する制御を指示する制御メッセージを送信してもよい。例えば、電力管理サーバ200は、潮流の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を送信してもよく、逆潮流の制御を要求する逆潮流制御メッセージを送信してもよい。さらに、電力管理サーバ200は、分散電源の動作状態を制御する電源制御メッセージを送信してもよい。潮流又は逆潮流の制御度合いは、絶対値(例えば、○○kW)で表されてもよく、相対値(例えば、○○%)で表されてもよい。或いは、潮流又は逆潮流の制御度合いは、2以上のレベルで表されてもよい。潮流又は逆潮流の制御度合いは、現在の電力需給バランスによって定められる電力料金(RTP;Real Time Pricing)によって表されてもよく、過去の電力需給バランスによって定められる電力料金(TOU;Time Of Use)によって表されてもよい。 Here, the power management server 200 may transmit a control message instructing control to the distributed power supply 310 provided in the facility 300 to the EMS 320 provided in the facility 300. For example, the power management server 200 may transmit a power flow control message (for example, DR; Demand Response) that requests control of power flow, or may transmit a reverse power flow control message that requests control of reverse power flow. Furthermore, the power management server 200 may transmit a power control message for controlling the operating state of the distributed power. The degree of control of the tidal current or the reverse tidal current may be represented by an absolute value (for example, OO kW) or a relative value (for example, OO%). Or the control degree of a tidal current or a reverse tidal current may be represented by two or more levels. The degree of control of the tidal current or reverse power flow may be represented by a power rate (RTP: Real Time Pricing) determined by the current power supply / demand balance, or a power rate (TOU: Time Of Use) determined by the past power supply / demand balance May be represented by
 施設300は、分散電源310及びEMS320を有する。施設300は、電力を消費する負荷機器を有してもよい。例えば、負荷機器は、空調機器、照明機器、AV(Audio Visual)機器などである。 The facility 300 includes a distributed power source 310 and an EMS 320. The facility 300 may include a load device that consumes power. For example, the load device is an air conditioner, a lighting device, an AV (Audio Visual) device, or the like.
 分散電源310は、発電を行う装置である。分散電源310は、太陽光、風力、水力、地熱などの再生可能エネルギーを用いて発電を行う装置であってもよい。このような分散電源310は、太陽電池装置、風力発電装置、水力発電装置、地熱発電装置などである。分散電源310は、燃料を用いて発電を行う装置であってもよい。このような分散電源310は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、リン酸型燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩型燃料電池(MCFC:Molten Carbonate Fuel Cell)などである。 The distributed power supply 310 is a device that generates power. The distributed power source 310 may be a device that generates power using renewable energy such as sunlight, wind power, hydropower, and geothermal heat. Such a distributed power source 310 is a solar cell device, a wind power generator, a hydroelectric generator, a geothermal power generator, or the like. The distributed power source 310 may be a device that generates power using fuel. Such a distributed power supply 310 includes a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), and a phosphoric acid fuel cell (PAFC). ), Molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell).
 EMS320は、施設300の電力を管理する装置(EMS;Energy Management System)である。EMS320は、分散電源310の動作状態を制御してもよい。EMS320は、VEN(Virtual End Node)の一例である。 The EMS 320 is an apparatus (EMS; Energy Management System) that manages the power of the facility 300. The EMS 320 may control the operating state of the distributed power supply 310. The EMS 320 is an example of a VEN (Virtual End Node).
 ここで、複数の施設300は、個別蓄電装置を有する第1施設と、個別蓄電装置を有していない第2施設とを含んでもよい。例えば、施設300Aは、個別蓄電装置330Aを有する第1施設の一例である。施設300Bは、個別蓄電装置を有していない第2施設の一例である。複数の施設300は、小規模分散電源を有する小規模施設と、小規模分散電源よりも大きな発電容量を有する大規模分散電源を有する大規模施設を含んでもよい。例えば、施設300Aは、小規模分散電源310Aを有する小規模施設の一例であり、施設300Bは、小規模分散電源310Bを有する小規模施設の一例である。施設300Cは、大規模分散電源310Cを有する大規模施設の一例である。 Here, the plurality of facilities 300 may include a first facility having an individual power storage device and a second facility having no individual power storage device. For example, the facility 300A is an example of a first facility having the individual power storage device 330A. Facility 300B is an example of a second facility that does not have an individual power storage device. The plurality of facilities 300 may include a small-scale facility having a small-scale distributed power source and a large-scale facility having a large-scale distributed power source having a larger power generation capacity than the small-scale distributed power source. For example, the facility 300A is an example of a small-scale facility having a small-scale distributed power source 310A, and the facility 300B is an example of a small-scale facility having a small-scale distributed power source 310B. The facility 300C is an example of a large-scale facility having a large-scale distributed power supply 310C.
 さらに、施設300が有する負荷機器は、施設300内に位置している必要はなく、施設300のユーザに属する負荷機器であればよい。例えば、施設300Aは、施設300Aのユーザに属する負荷機器として電気自動車340Aを有していてもよい。電気自動車340Aに設けられる蓄電装置は、充電ステーション500によって充電可能である。さらに、電気自動車340Aが施設300A内に位置している場合には、電気自動車340Aに設けられる蓄電装置は、個別蓄電装置の一例として考えてもよい。このようなケースにおいて、電気自動車340Aはネットワーク120を介して通信を行う機能を有していてもよい。電気自動車340Aは、電気自動車340Aに設けられる蓄電装置の蓄電残量を電力管理サーバ200又はEMS320Aに送信してもよい。 Furthermore, the load device possessed by the facility 300 does not need to be located in the facility 300, and may be any load device belonging to the user of the facility 300. For example, the facility 300A may have an electric vehicle 340A as a load device belonging to the user of the facility 300A. The power storage device provided in the electric vehicle 340 </ b> A can be charged by the charging station 500. Furthermore, when the electric vehicle 340A is located in the facility 300A, the power storage device provided in the electric vehicle 340A may be considered as an example of an individual power storage device. In such a case, the electric vehicle 340A may have a function of performing communication via the network 120. The electric vehicle 340A may transmit the remaining amount of power stored in the power storage device provided in the electric vehicle 340A to the power management server 200 or the EMS 320A.
 ここで、充電ステーション500は、施設300A外ではなく、施設300A内に設けられていてもよい。このようなケースにおいて、施設300A内の充電ステーション500に電気自動車340Aが接続されている場合には、電気自動車340Aに設けられる蓄電装置は個別蓄電装置の一つと考えてもよい。また、電気自動車340Aを個別蓄電装置330Aと併用してもよい。 Here, the charging station 500 may be provided not in the facility 300A but in the facility 300A. In such a case, when the electric vehicle 340A is connected to the charging station 500 in the facility 300A, the power storage device provided in the electric vehicle 340A may be considered as one of the individual power storage devices. In addition, electric vehicle 340A may be used in combination with individual power storage device 330A.
 実施形態において、電力管理サーバ200とEMS320との間の通信は、第1プロトコルに従って行われてもよい。一方で、EMS320と分散電源310との間の通信は、第1プロトコルとは異なる第2プロトコルに従って行われてもよい。例えば、第1プロトコルとしては、Open ADR(Automated Demand Response)に準拠するプロトコル、或いは、独自の専用プロトコルを用いることができる。例えば、第2プロトコルは、ECHONET Liteに準拠するプロトコル、SEP(Smart Energy Profile)2.0、KNX、或いは、独自の専用プロトコルを用いることができる。なお、第1プロトコルと第2プロトコルは異なっていればよく、例えば、両方が独自の専用プロトコルであっても異なる規則で作られたプロトコルであればよい。電力管理サーバ200と共用蓄電装置400との間の通信は、第1プロトコルに従って行われてもよく、第2プロトコルに従って行われてもよい。 In the embodiment, communication between the power management server 200 and the EMS 320 may be performed according to the first protocol. On the other hand, the communication between the EMS 320 and the distributed power supply 310 may be performed according to a second protocol different from the first protocol. For example, as the first protocol, a protocol compliant with Open ADR (Automated Demand Response) or a unique dedicated protocol can be used. For example, as the second protocol, a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used. Note that the first protocol and the second protocol only need to be different. For example, even if both are unique dedicated protocols, they may be protocols created according to different rules. Communication between the power management server 200 and the shared power storage device 400 may be performed according to the first protocol or according to the second protocol.
 共用蓄電装置400は、複数の施設300によって共用される。複数の施設300のそれぞれについて、共用蓄電装置400の仮想蓄電残量が管理される。仮想蓄電残量とは、施設300毎に仮想的に管理される蓄電残量である。仮想蓄電残量は、複数の施設300に個別に設けられる複数の分散電源310から電力系統110に出力される充電電力を用いた充電によって増大し、共用蓄電装置400から施設300の負荷機器に対する放電によって減少する。ここで、複数の分散電源310から出力される充電電力が直接的に共用蓄電装置400に充電されなくてもよく、共用蓄電装置400の充電は、電力系統110から供給される電力によって行われてもよく、複数の分散電源310から出力される充電電力の量が電力系統110から共用蓄電装置400に充電される電力の量と同じであればよい。 Shared power storage device 400 is shared by a plurality of facilities 300. For each of the plurality of facilities 300, the virtual power remaining amount of the shared power storage device 400 is managed. The virtual remaining power amount is a remaining power amount that is virtually managed for each facility 300. The remaining amount of virtual power storage is increased by charging using charging power output from the plurality of distributed power sources 310 provided individually to the plurality of facilities 300 to the power system 110, and discharging from the shared power storage device 400 to the load devices of the facility 300 Decrease by Here, the charging power output from the plurality of distributed power sources 310 may not be directly charged into the shared power storage device 400, and the charging of the shared power storage device 400 is performed by the power supplied from the power system 110. The amount of charging power output from the plurality of distributed power sources 310 may be the same as the amount of power charged from the power system 110 to the shared power storage device 400.
 充電ステーション500は、充電ステーション500に接続された負荷機器に電力を放電する装置を有する。充電ステーション500は、電力系統110から供給される電力を充電する装置を有する。充電ステーション500は、充電ステーション500に接続された個別蓄電装置(例えば、電気自動車340A)から出力される電力を充電する装置を有していてもよい。 The charging station 500 has a device that discharges power to a load device connected to the charging station 500. The charging station 500 includes a device that charges power supplied from the power system 110. Charging station 500 may include a device that charges power output from an individual power storage device (for example, electric vehicle 340 </ b> A) connected to charging station 500.
 (電力管理サーバ)
 以下において、実施形態に係る電力管理サーバについて説明する。図2に示すように、電力管理サーバ200は、データベース210と、通信部220と、制御部230とを有する。電力管理サーバ200は、VTN(Virtual Top Node)の一例である。
(Power management server)
Hereinafter, the power management server according to the embodiment will be described. As illustrated in FIG. 2, the power management server 200 includes a database 210, a communication unit 220, and a control unit 230. The power management server 200 is an example of a VTN (Virtual Top Node).
 データベース210は、不揮発性メモリ又は/及びHDDなどの記憶媒体によって構成されており、電力管理サーバ200によって管理される施設300に関するデータを記憶する。電力管理サーバ200によって管理される施設300は、電力事業者と契約を有する施設300であってもよい。 The database 210 is configured by a storage medium such as a nonvolatile memory and / or HDD, and stores data related to the facility 300 managed by the power management server 200. The facility 300 managed by the power management server 200 may be a facility 300 that has a contract with an electric power company.
 施設300に関するデータは、共用蓄電装置400の充電に用いる電力として、複数の分散電源310から出力される充電電力を含んでもよい。施設300に関するデータは、共用蓄電装置400から施設300の負荷機器に対する放電電力を含んでもよい。施設300に関するデータは、複数の施設300のそれぞれについて、共用蓄電装置400の利用実績(充電及び放電の履歴)を含んでもよい。施設300に関するデータは、複数の施設300のそれぞれについて、共用蓄電装置400の仮想容量枠を含んでもよく、共用蓄電装置400の仮想蓄電残量を含んでもよく、仮想容量枠と仮想蓄電残量との差分である仮想充電余力を含んでもよい。仮想容量枠は、施設300に仮想的に割り当てられる容量であり、電力事業者とユーザとの間の契約によって定められてもよい。 The data regarding the facility 300 may include charging power output from the plurality of distributed power sources 310 as power used for charging the shared power storage device 400. The data related to the facility 300 may include discharge power from the shared power storage device 400 to the load device of the facility 300. The data related to the facility 300 may include the actual usage of the shared power storage device 400 (charging and discharging history) for each of the plurality of facilities 300. The data regarding the facility 300 may include the virtual capacity frame of the shared power storage device 400 or the virtual power storage remaining amount of the shared power storage device 400 for each of the plurality of facilities 300. The virtual charging capacity that is the difference between the two may be included. The virtual capacity frame is a capacity virtually allocated to the facility 300, and may be determined by a contract between the electric power company and the user.
 例えば、施設300に関するデータは、電力系統110から施設300に供給される需要電力であってもよく、電力系統110全体の需要電力の削減要請(DR;Demand Response)に応じて各施設300で削減された電力量であってもよい。施設300に関するデータは、施設300に設けられる分散電源310の種別、施設300に設けられる分散電源310のスペックなどであってもよい。スペックは、分散電源310の定格発電電力(W)及び最大出力電力(W)などであってもよい。 For example, the data related to the facility 300 may be demand power supplied from the power system 110 to the facility 300, and reduced at each facility 300 in response to a demand power reduction request (DR) of the entire power system 110. May be the amount of electric power. The data related to the facility 300 may be the type of the distributed power supply 310 provided in the facility 300, the specifications of the distributed power supply 310 provided in the facility 300, and the like. The specifications may be the rated generated power (W) and maximum output power (W) of the distributed power source 310.
 データベース210は、共用蓄電装置400に関するデータを記憶してもよい。共用蓄電装置400に関するデータは、共用蓄電装置400の実際容量を含んでもよく、共用蓄電装置400の実際蓄電残量を含んでもよく、実際容量と実際蓄電残量との差分である実際蓄電余力を含んでもよい。共用蓄電装置400に関するデータは、単位時間における共用蓄電装置400の放電可能電力を含んでもよく、単位時間における共用蓄電装置400の充電可能電力を含んでもよい。ここで、実際容量とは、共用蓄電装置400が実際に有する容量である。実際蓄電残量は、共用蓄電装置400に実際に蓄積された蓄電残量である。実際蓄電余力は、実際容量と実際蓄電残量との差分である。 The database 210 may store data related to the shared power storage device 400. The data related to the shared power storage device 400 may include the actual capacity of the shared power storage device 400, may include the actual power storage remaining amount of the shared power storage device 400, and the actual power storage capacity that is the difference between the actual capacity and the actual power storage remaining amount. May be included. The data related to shared power storage device 400 may include the dischargeable power of shared power storage device 400 in unit time, or may include the rechargeable power of shared power storage device 400 in unit time. Here, the actual capacity is a capacity that the shared power storage device 400 actually has. The actual power storage remaining amount is the remaining power storage actually stored in the shared power storage device 400. The actual storage capacity is the difference between the actual capacity and the actual remaining power.
 通信部220は、通信モジュールによって構成されており、ネットワーク120を介してEMS320と通信を行う。通信部220は、上述したように、第1プロトコルに従って通信を行う。例えば、通信部220は、第1プロトコルに従って第1メッセージをEMS320に送信する。通信部220は、第1プロトコルに従って第1メッセージ応答をEMS320から受信する。 The communication unit 220 includes a communication module, and communicates with the EMS 320 via the network 120. As described above, the communication unit 220 performs communication according to the first protocol. For example, the communication unit 220 transmits a first message to the EMS 320 according to the first protocol. The communication unit 220 receives the first message response from the EMS 320 according to the first protocol.
 実施形態において、通信部220は、共用蓄電装置400の充電要求及び放電要求の少なくともいずれかを受信する。通信部220は、施設300(例えば、EMS320)から充電要求及び放電要求の少なくともいずれかを受信してもよい。通信部220は、施設300のユーザに属する端末(例えば、スマートフォン、タブレット、パーソナルコンピュータ)から充電要求及び放電要求の少なくともいずれかを受信してもよい。 In the embodiment, the communication unit 220 receives at least one of a charge request and a discharge request of the shared power storage device 400. The communication unit 220 may receive at least one of a charge request and a discharge request from the facility 300 (for example, EMS 320). The communication unit 220 may receive at least one of a charge request and a discharge request from a terminal (for example, a smartphone, a tablet, or a personal computer) belonging to the user of the facility 300.
 通信部220は、充電要求に対する充電応答及び放電要求に対する放電応答の少なくともいずれかを送信する。通信部220は、施設300(例えば、EMS320)に充電応答及び放電応答の少なくともいずれかを送信してもよく、施設300のユーザに属する端末に充電応答及び放電応答の少なくともいずれかを送信してもよい。 The communication unit 220 transmits at least one of a charging response to the charging request and a discharging response to the discharging request. The communication unit 220 may transmit at least one of a charging response and a discharging response to the facility 300 (for example, EMS 320), and may transmit at least one of the charging response and the discharging response to a terminal belonging to the user of the facility 300. Also good.
 通信部220は、ネットワーク120を介して共用蓄電装置400と通信を行う。通信部220は、上述したように、第1プロトコルに従って通信を行ってもよく、第2プロトコルに従って通信を行ってもよい。例えば、通信部220は、共用蓄電装置400の実際容量を示す情報要素を含むメッセージを共用蓄電装置400から受信する。通信部220は、共用蓄電装置400の実際蓄電残量及び実際充電余力の少なくともいずれかを示す情報要素を含むメッセージ(ステータス)を共用蓄電装置400から受信する。 The communication unit 220 communicates with the shared power storage device 400 via the network 120. As described above, the communication unit 220 may perform communication according to the first protocol, or may perform communication according to the second protocol. For example, the communication unit 220 receives a message including an information element indicating the actual capacity of the shared power storage device 400 from the shared power storage device 400. The communication unit 220 receives from the shared power storage device 400 a message (status) including an information element indicating at least one of the actual power storage remaining amount and the actual charge remaining capacity of the shared power storage device 400.
 制御部230は、メモリ及びCPUなどによって構成されており、電力管理サーバ200に設けられる各構成を制御する。例えば、制御部230は、制御メッセージの送信によって、施設300に設けられるEMS320に対して、施設300に設けられる分散電源310に対する制御を指示する。制御メッセージは、上述したように、潮流制御メッセージであってもよく、逆潮流制御メッセージであってもよく、電源制御メッセージであってもよい。 The control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, the control unit 230 instructs the EMS 320 provided in the facility 300 to control the distributed power supply 310 provided in the facility 300 by transmitting a control message. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
 実施形態において、制御部230は、データベース210に記憶されるデータを管理する。例えば、制御部230は、図3に示すように、共用蓄電装置400の実際容量を管理するとともに、各施設300の仮想容量枠を管理する。図3では、施設300Aに2単位の仮想容量枠が割り当てられており、施設300Bに1単位の仮想容量枠が割り当てられており、施設300Cに9単位の仮想容量枠が割り当てられている。共用蓄電装置400の実際容量は、施設300に割り当てられた仮想容量枠以外の容量(すなわち、施設300に割り当てられていない容量)を含んでもよく、このような容量は他の用途に用いられてもよい。ここで、単位とは、図3に示す1つのマス目を意味しており、任意の容量(例えば、1kWh、10kWhなど)である。 In the embodiment, the control unit 230 manages data stored in the database 210. For example, as illustrated in FIG. 3, the control unit 230 manages the actual capacity of the shared power storage device 400 and manages the virtual capacity frame of each facility 300. In FIG. 3, 2 units of virtual capacity frames are allocated to the facility 300A, 1 unit of virtual capacity frames are allocated to the facility 300B, and 9 units of virtual capacity frames are allocated to the facility 300C. The actual capacity of the shared power storage device 400 may include a capacity other than the virtual capacity frame allocated to the facility 300 (that is, a capacity not allocated to the facility 300), and such capacity is used for other purposes. Also good. Here, the unit means one square shown in FIG. 3, and is an arbitrary capacity (for example, 1 kWh, 10 kWh, etc.).
 このような前提下において、制御部230は、共用蓄電装置400の充電に用いる電力として、複数の分散電源310から出力される充電電力を管理する。制御部230は、充電電力の買電価格として、基準買電価格よりも高い価格を適用する。基準買電価格は、共用蓄電装置400を経由せずに複数の分散電源310から出力される電力(逆潮流の電力)に適用される価格である。共用蓄電装置400を経由せずに複数の分散電源310から出力される電力は、共用蓄電装置400に蓄積されずに、電力系統110のリアルタイムの需給調整に寄与する電力である。基準買電価格は、電力事業者とユーザとの間の契約などによって定められる。このような構成によれば、共用蓄電装置400の積極的な利用によって、ベースロード電源の一部として施設300に設けられる分散電源310を有効に利用することができる。 Under such a premise, the control unit 230 manages charging power output from the plurality of distributed power sources 310 as power used for charging the shared power storage device 400. The control unit 230 applies a price higher than the reference power purchase price as the power purchase price of the charging power. The reference power purchase price is a price applied to power (reverse power flow power) output from a plurality of distributed power sources 310 without passing through the shared power storage device 400. The power output from the plurality of distributed power sources 310 without passing through the shared power storage device 400 is power that contributes to real-time supply and demand adjustment of the power system 110 without being stored in the shared power storage device 400. The reference power purchase price is determined by a contract between the electric power company and the user. According to such a configuration, the distributed power supply 310 provided in the facility 300 can be effectively used as part of the base load power supply by actively using the shared power storage device 400.
 基準買電価格は、固定価格買取制度の適用期間が終わった後において、共用蓄電装置400を経由せずに複数の分散電源310から出力される電力に適用される価格であってもよい。このような構成によれば、固定価格買取制度の適用期間が終わった後であっても、ベースロード電源の一部として分散電源310を有効に利用することができる。 The reference power purchase price may be a price applied to electric power output from the plurality of distributed power sources 310 without passing through the shared power storage device 400 after the fixed price purchase system application period ends. According to such a configuration, the distributed power source 310 can be effectively used as a part of the base load power source even after the application period of the fixed price purchase system is over.
 個別蓄電装置(例えば、個別蓄電装置330A)を有する第1施設(例えば、施設300A)に適用される充電電力の買電価格は、個別蓄電装置を有していない第2施設(例えば、施設300B)に適用される充電電力の買電価格よりも高くてもよい。このような構成によれば、個別蓄電装置330Aよりも共用蓄電装置400が積極的に利用されやすく、ベースロード電源の一部として分散電源310を有効に利用することができる。 The purchase price of the charging power applied to the first facility (for example, the facility 300A) having the individual power storage device (for example, the individual power storage device 330A) is the second facility (for example, the facility 300B) that does not have the individual power storage device. ) May be higher than the purchase price of the charging power applied. According to such a configuration, the shared power storage device 400 can be more actively used than the individual power storage device 330A, and the distributed power supply 310 can be effectively used as part of the base load power supply.
 制御部230は、共用蓄電装置400から出力される放電電力の売電価格として、充電電力の買電価格よりも高い価格を適用してもよい。このような構成によれば、共用蓄電装置400を管理する電力事業者の利益を確保することができる。 The control unit 230 may apply a higher price than the purchase price of the charging power as the selling price of the discharged power output from the shared power storage device 400. According to such a configuration, it is possible to ensure the profit of the electric power company that manages the shared power storage device 400.
 放電電力の売電価格は、基準売電価格よりも低くてもよい。基準売電価格は、共用蓄電装置400を経由せずに提供される電力に適用される価格である。例えば、共用蓄電装置400を経由せずに提供される電力は、電力事業者が調達する電力であり、発電事業者から提供される電力である。基準売電価格は、電力事業者とユーザとの間の契約などによって定められる。このような構成によれば、共用蓄電装置400の積極的な利用が促進される。 The power selling price of the discharged power may be lower than the standard power selling price. The reference power selling price is a price applied to electric power provided without going through the shared power storage device 400. For example, the electric power provided without going through the shared power storage device 400 is electric power procured by the electric power company and electric power provided from the electric power company. The reference power selling price is determined by a contract between a power company and a user. According to such a configuration, active use of the shared power storage device 400 is promoted.
 このようなケースにおいて、制御部230は、対象施設に設けられる分散電源から共用蓄電装置400に供給される電力の量(すなわち、仮想蓄電残量)を超えない範囲で、共用蓄電装置400に蓄積される電力を対象施設に属する負荷機器に無償で供給してもよい。例えば、対象施設が施設300Aである場合には、負荷機器は、電気自動車340Aであってもよい。 In such a case, the control unit 230 accumulates in the shared power storage device 400 within a range that does not exceed the amount of power supplied to the shared power storage device 400 from the distributed power source provided in the target facility (that is, the virtual power storage remaining amount). The generated power may be supplied free of charge to the load equipment belonging to the target facility. For example, when the target facility is the facility 300A, the load device may be the electric vehicle 340A.
 大規模分散電源(例えば、大規模分散電源310C)を有する大規模施設(例えば、施設300C)に適用される利益額は、小規模分散電源(例えば、小規模分散電源310A及び小規模分散電源310B)を有する小規模施設(例えば、施設300A及び施設300B)に適用される利益額よりも小さくてもよい。利益額は、充電電力の買電価格と放電電力の売電価格との差額である。このような構成によれば、大規模施設の参入を促すことができ、共用蓄電装置400の積極的な利用が促進される。 The profit amount applied to a large-scale facility (for example, facility 300C) having a large-scale distributed power source (for example, large-scale distributed power source 310C) is a small-scale distributed power source (for example, small-scale distributed power source 310A and small-scale distributed power source 310B). ) May be smaller than the profit amount applied to a small-scale facility (for example, the facility 300A and the facility 300B). The amount of profit is the difference between the purchase price of charging power and the selling price of discharge power. According to such a configuration, entry of a large-scale facility can be promoted, and active use of the shared power storage device 400 is promoted.
 (電力管理方法)
 以下において、実施形態に係る電力管理方法について説明する。
(Power management method)
Hereinafter, a power management method according to the embodiment will be described.
 第1に、小規模分散電源310A及び個別蓄電装置330Aを有する施設300Aについて、図4を参照しながら説明する。 First, a facility 300A having a small-scale distributed power supply 310A and an individual power storage device 330A will be described with reference to FIG.
 図4に示すように、ステップS10において、電力管理サーバ200は、共用蓄電装置400からステータスを受信する。ステータスは、共用蓄電装置400の実際蓄電残量及び実際充電余力の少なくともいずれかを示す情報要素を含んでもよい。ステータスは、施設300Aの仮想蓄電残量及び仮想充電余力の少なくともいずれかを示す情報要素を含んでもよい。 As shown in FIG. 4, in step S <b> 10, the power management server 200 receives a status from the shared power storage device 400. The status may include an information element indicating at least one of the actual power storage remaining amount and the actual charge remaining capacity of the shared power storage device 400. The status may include an information element indicating at least one of the virtual power storage remaining capacity and the virtual charging capacity of the facility 300A.
 ステップS11において、電力管理サーバ200は、共用蓄電装置400の充電要求を施設300Aから受信する。充電要求は、共用蓄電装置400の充電電力量を示す情報要素を含んでもよい。 In step S11, the power management server 200 receives a charge request for the shared power storage device 400 from the facility 300A. The charge request may include an information element indicating the charge power amount of shared power storage device 400.
 ステップS12において、電力管理サーバ200は、充電要求を許可するか否かを判定する。例えば、電力管理サーバ200は、施設300Aの仮想充電余力を超えない範囲で充電要求に伴う充電を行うことができるか否かを判定する。ここでは、充電要求が許可されるケースを説明する。ここで、電力管理サーバ200は、充電電力の買電価格を決定してもよい。上述したように、充電電力の買電価格(例えば、9円(7円+2円)/kWh)は基準買電価格(例えば、7円/kWh)よりも高い。 In step S12, the power management server 200 determines whether or not to permit the charge request. For example, the power management server 200 determines whether or not the charging associated with the charging request can be performed within a range that does not exceed the virtual charging capacity of the facility 300A. Here, a case where a charge request is permitted will be described. Here, the power management server 200 may determine the purchase price of the charged power. As described above, the power purchase price (for example, 9 yen (7 yen + 2 yen) / kWh) of the charging power is higher than the reference power purchase price (for example, 7 yen / kWh).
 ステップS13において、電力管理サーバ200は、充電応答を施設300Aに送信する。充電応答は、充電電力の買電価格を示す情報要素を含んでもよい。 In step S13, the power management server 200 transmits a charging response to the facility 300A. The charging response may include an information element indicating a purchase price of charging power.
 ステップS14において、施設300Aの小規模分散電源310Aは、電力系統110を介して共用蓄電装置400に電力を出力する(逆潮流)。 In step S14, the small-scale distributed power supply 310A of the facility 300A outputs power to the shared power storage device 400 via the power system 110 (reverse power flow).
 ステップS20において、電力管理サーバ200は、共用蓄電装置400からステータスを受信する。 In step S20, the power management server 200 receives the status from the shared power storage device 400.
 ステップS21において、電力管理サーバ200は、共用蓄電装置400の放電要求を施設300Aから受信する。放電要求は、共用蓄電装置400の放電電力量を示す情報要素を含んでもよい。 In step S21, the power management server 200 receives a discharge request for the shared power storage device 400 from the facility 300A. The discharge request may include an information element indicating the amount of discharge power of shared power storage device 400.
 ステップS22において、電力管理サーバ200は、放電要求を許可するか否かを判定する。例えば、電力管理サーバ200は、共用蓄電装置400の実際蓄電残量を超えない範囲で放電要求に伴う放電を行うことができるか否かを判定する。ここでは、放電要求が許可されるケースを説明する。ここで、電力管理サーバ200は、放電電力の売電価格を決定してもよい。売電価格(例えば、12円/kWh)は基準売電価格(例えば、15円/kWh)よりも低くてもよい。売電価格(12円/kWh)は買電価格(9円/kWh)よりも高くてもよい。さらに、施設300Aの仮想蓄電残量を超えない範囲であれば、共用蓄電装置400の放電電力は無償であってもよい。 In step S22, the power management server 200 determines whether to permit the discharge request. For example, the power management server 200 determines whether or not the discharge associated with the discharge request can be performed within a range that does not exceed the actual power remaining amount of the shared power storage device 400. Here, a case where a discharge request is permitted will be described. Here, the power management server 200 may determine the selling price of the discharged power. The power selling price (for example, 12 yen / kWh) may be lower than the standard power selling price (for example, 15 yen / kWh). The power sale price (12 yen / kWh) may be higher than the power purchase price (9 yen / kWh). Furthermore, the discharge power of the shared power storage device 400 may be free as long as it does not exceed the virtual power storage remaining amount of the facility 300A.
 ステップS23において、電力管理サーバ200は、放電応答を施設300Aに送信する。放電応答は、放電電力の売電価格を示す情報要素を含んでもよい。 In step S23, the power management server 200 transmits a discharge response to the facility 300A. The discharge response may include an information element indicating a selling price of the discharged power.
 ステップS24において、電力管理サーバ200は、放電指示を共用蓄電装置400に送信する。放電指示は、放電電力量を示す情報要素を含んでもよい。 In step S24, the power management server 200 transmits a discharge instruction to the shared power storage device 400. The discharge instruction may include an information element indicating the discharge power amount.
 ステップS25において、共用蓄電装置400は、電力系統110を介して施設300Aに属する負荷機器(例えば、電気自動車340A)に電力を出力する(潮流)。 In step S25, the shared power storage device 400 outputs power to the load device (for example, the electric vehicle 340A) belonging to the facility 300A via the power system 110 (tidal current).
 第2に、小規模分散電源310Bを有しており、個別蓄電装置を有していない施設300Bについて、図5を参照しながら説明する。 Second, a facility 300B that has a small-scale distributed power supply 310B and does not have an individual power storage device will be described with reference to FIG.
 図5に示すように、ステップS30において、電力管理サーバ200は、ステップS10と同様に、共用蓄電装置400からステータスを受信する。 As shown in FIG. 5, in step S30, the power management server 200 receives the status from the shared power storage device 400, as in step S10.
 ステップS31において、電力管理サーバ200は、ステップS11と同様に、共用蓄電装置400の充電要求を施設300Bから受信する。 In step S31, the power management server 200 receives a charge request for the shared power storage device 400 from the facility 300B, as in step S11.
 ステップS32において、電力管理サーバ200は、ステップS12と同様に、充電要求を許可するか否かを判定し、充電電力の買電価格を決定する。上述したように、買電価格(例えば、8円(7円+1円)/kWh)は基準買電価格(例えば、7円/kWh)よりも高い。但し、施設300Bに適用される買電価格(例えば、8円/kWh)は、施設300Aに適用される買電価格(例えば、9円/kWh)よりも低くてもよい。 In step S32, as in step S12, the power management server 200 determines whether or not to permit the charge request, and determines the purchase price of the charged power. As described above, the power purchase price (for example, 8 yen (7 yen + 1 yen) / kWh) is higher than the standard power purchase price (for example, 7 yen / kWh). However, the power purchase price (for example, 8 yen / kWh) applied to the facility 300B may be lower than the power purchase price (for example, 9 yen / kWh) applied to the facility 300A.
 ステップS33において、電力管理サーバ200は、ステップS13と同様に、充電応答を施設300Bに送信する。 In step S33, the power management server 200 transmits a charging response to the facility 300B as in step S13.
 ステップS34において、施設300Bの小規模分散電源310Bは、ステップS14と同様に、電力系統110を介して共用蓄電装置400に電力を出力する(逆潮流)。 In step S34, the small-scale distributed power supply 310B of the facility 300B outputs power to the shared power storage device 400 via the power system 110 (reverse power flow) as in step S14.
 ステップS40において、電力管理サーバ200は、ステップS20と同様に、共用蓄電装置400からステータスを受信する。 In step S40, the power management server 200 receives the status from the shared power storage device 400 as in step S20.
 ステップS41において、電力管理サーバ200は、ステップS21と同様に、共用蓄電装置400の放電要求を施設300Bから受信する。 In step S41, the power management server 200 receives a discharge request for the shared power storage device 400 from the facility 300B, as in step S21.
 ステップS42において、電力管理サーバ200は、ステップS22と同様に、放電要求を許可するか否かを判定し、放電電力の売電価格を決定してもよい。売電価格(例えば、12円/kWh)は基準売電価格(例えば、15円/kWh)よりも低くてもよい。売電価格(12円/kWh)は買電価格(9円/kWh)よりも高くてもよい。さらに、施設300Bの仮想蓄電残量を超えない範囲であれば、共用蓄電装置400の放電電力は無償であってもよい。 In step S42, similarly to step S22, the power management server 200 may determine whether or not to permit the discharge request, and may determine the selling price of the discharged power. The power selling price (for example, 12 yen / kWh) may be lower than the standard power selling price (for example, 15 yen / kWh). The power sale price (12 yen / kWh) may be higher than the power purchase price (9 yen / kWh). Furthermore, the discharge power of the shared power storage device 400 may be free as long as it does not exceed the virtual power storage remaining amount of the facility 300B.
 ステップS43において、電力管理サーバ200は、ステップS23と同様に、放電応答を施設300Bに送信する。 In step S43, the power management server 200 transmits a discharge response to the facility 300B as in step S23.
 ステップS44において、電力管理サーバ200は、ステップS24と同様に、放電指示を共用蓄電装置400に送信する。 In step S44, the power management server 200 transmits a discharge instruction to the shared power storage device 400 as in step S24.
 ステップS45において、共用蓄電装置400は、ステップS25と同様に、電力系統110を介して施設300Bに属する負荷機器に電力を出力する(潮流)。 In step S45, the shared power storage device 400 outputs power to the load equipment belonging to the facility 300B via the power system 110 (tidal current), as in step S25.
 第3に、大規模分散電源310Cを有する施設300Cについて、図6を参照しながら説明する。 Third, a facility 300C having a large-scale distributed power supply 310C will be described with reference to FIG.
 図6に示すように、ステップS50において、電力管理サーバ200は、ステップS10と同様に、共用蓄電装置400からステータスを受信する。 As shown in FIG. 6, in step S50, the power management server 200 receives the status from the shared power storage device 400, similarly to step S10.
 ステップS51において、電力管理サーバ200は、ステップS11と同様に、共用蓄電装置400の充電要求を施設300Cから受信する。 In step S51, the power management server 200 receives a charge request for the shared power storage device 400 from the facility 300C as in step S11.
 ステップS52において、電力管理サーバ200は、ステップS12と同様に、充電要求を許可するか否かを判定し、充電電力の買電価格を決定する。上述したように、買電価格(例えば、19円/kWh)は基準買電価格(例えば、7円/kWh)よりも高い。但し、施設300Cに適用される買電価格(例えば、19円/kWh)は、施設300A及び施設300Bに適用される買電価格よりも高くてもよい。 In step S52, as in step S12, the power management server 200 determines whether or not to permit the charge request, and determines the purchase price of the charged power. As described above, the power purchase price (for example, 19 yen / kWh) is higher than the standard power purchase price (for example, 7 yen / kWh). However, the power purchase price (for example, 19 yen / kWh) applied to the facility 300C may be higher than the power purchase price applied to the facility 300A and the facility 300B.
 ステップS53において、電力管理サーバ200は、ステップS13と同様に、充電応答を施設300Cに送信する。 In step S53, the power management server 200 transmits a charging response to the facility 300C as in step S13.
 ステップS54において、施設300Cの大規模分散電源310Cは、ステップS14と同様に、電力系統110を介して共用蓄電装置400に電力を出力する(逆潮流)。 In step S54, the large-scale distributed power supply 310C of the facility 300C outputs power to the shared power storage device 400 via the power system 110 (reverse power flow) as in step S14.
 ステップS60において、電力管理サーバ200は、ステップS20と同様に、共用蓄電装置400からステータスを受信する。 In step S60, the power management server 200 receives the status from the shared power storage device 400 as in step S20.
 ステップS61において、電力管理サーバ200は、ステップS21と同様に、共用蓄電装置400の放電要求を施設300Cから受信する。 In step S61, the power management server 200 receives a discharge request for the shared power storage device 400 from the facility 300C, as in step S21.
 ステップS62において、電力管理サーバ200は、ステップS22と同様に、放電要求を許可するか否かを判定し、放電電力の売電価格を決定してもよい。売電価格(例えば、19円/kWh)は基準売電価格(例えば、27円/kWh)よりも低くてもよい。さらに、施設300Cの仮想蓄電残量を超えない範囲であれば、共用蓄電装置400の放電電力は無償であってもよい。ここで、施設300Cに適用される利益額(例えば、0円/kWh)は、施設300A及び施設300Bに適用される利益額(例えば、3円又は4円/kWh)よりも小さくてもよい。 In step S62, similarly to step S22, the power management server 200 may determine whether or not to permit the discharge request and determine the selling price of the discharged power. The power selling price (for example, 19 yen / kWh) may be lower than the standard power selling price (for example, 27 yen / kWh). Further, the discharge power of the shared power storage device 400 may be free as long as it does not exceed the virtual power storage remaining capacity of the facility 300C. Here, the profit amount (for example, 0 yen / kWh) applied to the facility 300C may be smaller than the profit amount (for example, 3 yen or 4 yen / kWh) applied to the facility 300A and the facility 300B.
 ステップS63において、電力管理サーバ200は、ステップS23と同様に、放電応答を施設300Cに送信する。 In step S63, the power management server 200 transmits a discharge response to the facility 300C as in step S23.
 ステップS64において、電力管理サーバ200は、ステップS24と同様に、放電指示を共用蓄電装置400に送信する。 In step S64, the power management server 200 transmits a discharge instruction to the shared power storage device 400 as in step S24.
 ステップS65において、共用蓄電装置400は、ステップS25と同様に、電力系統110を介して施設300Cに属する負荷機器に電力を出力する(潮流)。 In step S65, the shared power storage device 400 outputs power to the load devices belonging to the facility 300C via the power system 110 (tidal current), similarly to step S25.
 (作用及び効果)
 実施形態では、電力管理サーバ200は、分散電源310から出力される充電電力の買電価格として、基準買電価格よりも高い価格を適用する。このような構成によれば、共用蓄電装置400の積極的な利用によって、ベースロード電源の一部として分散電源310を有効に利用することができる。
(Function and effect)
In the embodiment, the power management server 200 applies a price higher than the reference power purchase price as the power purchase price of the charging power output from the distributed power supply 310. According to such a configuration, the distributed power supply 310 can be effectively used as part of the base load power supply by actively using the shared power storage device 400.
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 実施形態では、電力管理サーバ200は、共用蓄電装置400の充電に用いる充電電力(分散電源310から出力される逆潮電力)の買電価格として、基準買電価格よりも高い価格を適用する。しかしながら、実施形態はこれに限定されるものではない。電力管理サーバ200は、所定条件が満たされる場合に、充電電力の買電価格として、基準買電価格以下の価格を適用してもよい。所定条件が満たされるか否かについては、電力系統110の需給バランス、電力事業者とユーザとの間の契約などに基づいて判断されてもよい。 In the embodiment, the power management server 200 applies a price higher than the reference power purchase price as the power purchase price of the charging power (reverse power output from the distributed power supply 310) used for charging the shared power storage device 400. However, the embodiment is not limited to this. The power management server 200 may apply a price equal to or lower than the reference power purchase price as the power purchase price of the charged power when a predetermined condition is satisfied. Whether or not the predetermined condition is satisfied may be determined based on a supply and demand balance of the power system 110, a contract between the power company and the user, or the like.
 実施形態では特に触れていないが、共用蓄電装置400の放電電力の売電価格はオークション形式で決定されてもよい。共用蓄電装置400の放電電力の売電価格は電力系統110の需給バランスに基づいて決定されてもよい。 Although not specifically mentioned in the embodiment, the selling price of the discharge power of the shared power storage device 400 may be determined in an auction format. The selling price of the discharged power of shared power storage device 400 may be determined based on the supply and demand balance of power system 110.
 実施形態では特に触れていないが、基準買電価格及び基準売電価格は、電力事業者とユーザとの間の契約によって施設300毎に個別に定められてもよい。 Although not specifically mentioned in the embodiment, the reference power purchase price and the reference power sale price may be individually determined for each facility 300 by a contract between the power company and the user.
 実施形態では特に触れていないが、共用蓄電装置400の利用(仮想充電及び仮想放電)に伴う決済は所定期間(例えば、1ヶ月)毎に行われてもよい。 Although not particularly mentioned in the embodiment, the settlement associated with the use of the shared power storage device 400 (virtual charging and virtual discharging) may be performed every predetermined period (for example, one month).
 実施形態では、電力管理サーバ200は、データベース210を有する。しかしながら、実施形態はこれに限定されるものではない。データベース210は、インターネット上に設けられるクラウドサーバであってもよい。 In the embodiment, the power management server 200 includes a database 210. However, the embodiment is not limited to this. The database 210 may be a cloud server provided on the Internet.
 実施形態では特に触れていないが、施設300に設けられるEMS320は、必ずしも施設300内に設けられていなくてもよい。例えば、EMS320の機能の一部は、インターネット上に設けられるクラウドサーバによって提供されてもよい。すなわち、EMS320がクラウドサーバを含むと考えてもよい。 Although not specifically mentioned in the embodiment, the EMS 320 provided in the facility 300 does not necessarily have to be provided in the facility 300. For example, some of the functions of the EMS 320 may be provided by a cloud server provided on the Internet. That is, it may be considered that the EMS 320 includes a cloud server.
 実施形態では、第1プロトコルがOpen ADR2.0に準拠するプロトコルであり、第2プロトコルがECHONET Liteに準拠するプロトコルであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。第1プロトコルは、電力管理サーバ200とEMS320との間の通信で用いるプロトコルとして規格化されたプロトコルであればよい。第2プロトコルは、施設300で用いるプロトコルとして規格化されたプロトコルであればよい。 In the embodiment, the case where the first protocol is a protocol conforming to Open ADR2.0 and the second protocol is a protocol conforming to ECHONET Lite is illustrated. However, the embodiment is not limited to this. The first protocol may be a protocol that is standardized as a protocol used for communication between the power management server 200 and the EMS 320. The second protocol may be a protocol standardized as a protocol used in the facility 300.
 なお、日本国特許出願第2018-013529号(2018年1月30日出願)の全内容が、参照により、本願に組み込まれている。 Note that the entire content of Japanese Patent Application No. 2018-013529 (filed on January 30, 2018) is incorporated herein by reference.

Claims (9)

  1.  複数の施設によって共用される共用蓄電装置と、
     前記複数の施設に個別に設けられる複数の分散電源と、
     前記共用蓄電装置の充電に用いる電力として、前記複数の分散電源から出力される充電電力を管理する電力管理サーバとを備え、
     前記電力管理サーバは、前記充電電力の買電価格として、基準買電価格よりも高い価格を適用し、
     前記基準買電価格は、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である、電力管理システム。
    A shared power storage device shared by multiple facilities;
    A plurality of distributed power sources individually provided in the plurality of facilities;
    A power management server for managing charging power output from the plurality of distributed power sources as power used for charging the shared power storage device;
    The power management server applies a price higher than a standard power purchase price as a power purchase price of the charging power,
    The reference power purchase price is a power management system that is a price applied to power output from the plurality of distributed power sources without going through the shared power storage device.
  2.  前記基準買電価格は、固定価格買取制度の適用期間が終わった後において、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である、請求項1に記載の電力管理システム。 The reference power purchase price is a price that is applied to electric power output from the plurality of distributed power sources without going through the shared power storage device after an application period of a fixed price purchase system ends. The power management system described in 1.
  3.  前記複数の施設は、個別蓄電装置を有する第1施設と、個別蓄電装置を有していない第2施設とを含み、
     前記第1施設に適用される前記充電電力の買電価格は、前記第2施設に適用される前記充電電力の買電価格よりも高い、請求項1又は請求項2に記載の電力管理システム。
    The plurality of facilities includes a first facility having an individual power storage device and a second facility not having an individual power storage device,
    The power management system according to claim 1 or 2, wherein a power purchase price of the charging power applied to the first facility is higher than a power purchase price of the charging power applied to the second facility.
  4.  前記電力管理サーバは、前記共用蓄電装置から出力される放電電力の売電価格として、前記充電電力の買電価格よりも高い価格を適用する、請求項1乃至請求項3に記載の電力管理システム。 4. The power management system according to claim 1, wherein the power management server applies a price higher than a purchase price of the charging power as a selling price of the discharged power output from the shared power storage device. 5. .
  5.  前記売電価格は、基準売電価格よりも低く、
     前記基準売電価格は、前記共用蓄電装置を経由せずに提供される電力に適用される価格である、請求項4に記載の電力管理システム。
    The power selling price is lower than the standard power selling price,
    The power management system according to claim 4, wherein the reference power selling price is a price applied to power provided without going through the shared power storage device.
  6.  前記複数の施設は、対象分散電源を有する対象施設を含み、
     前記電力管理サーバは、前記対象分散電源から前記共用蓄電装置に供給される電力の量を超えない範囲で、前記共用蓄電装置に蓄積される電力を前記対象施設に属する負荷機器に無償で供給する、請求項1乃至請求項5のいずれかに記載の電力管理システム。
    The plurality of facilities includes a target facility having a target distributed power source,
    The power management server supplies the power stored in the shared power storage device free of charge to the load equipment belonging to the target facility within a range not exceeding the amount of power supplied from the target distributed power source to the shared power storage device. The power management system according to any one of claims 1 to 5.
  7.  前記複数の施設は、小規模分散電源を有する小規模施設と、前記小規模分散電源よりも大きな発電容量を有する大規模分散電源を有する大規模施設を含み、
     前記大規模施設に適用される利益額は、前記小規模施設に適用される利益額よりも小さく、
     前記利益額は、前記充電電力の買電価格と前記共用蓄電装置から出力される放電電力の売電価格との差額である、請求項1乃至請求項6のいずれかに記載の電力管理システム。
    The plurality of facilities includes a small-scale facility having a small-scale distributed power source and a large-scale facility having a large-scale distributed power source having a larger power generation capacity than the small-scale distributed power source,
    The amount of profit applied to the large-scale facility is smaller than the amount of profit applied to the small-scale facility,
    The power management system according to any one of claims 1 to 6, wherein the profit amount is a difference between a power purchase price of the charging power and a power selling price of discharge power output from the shared power storage device.
  8.  複数の施設によって共用される共用蓄電装置の充電に用いる電力として、前記複数の施設に個別に設けられる複数の分散電源から出力される充電電力を管理する制御部を備え、
     前記制御部は、前記充電電力の買電価格として、基準買電価格よりも高い価格を適用し、
     前記基準買電価格は、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である、電力管理サーバ。
    As a power used for charging a shared power storage device shared by a plurality of facilities, a control unit for managing charging power output from a plurality of distributed power sources individually provided in the plurality of facilities,
    The control unit applies a price higher than a standard power purchase price as the power purchase price of the charging power,
    The reference power purchase price is a power management server, which is a price applied to power output from the plurality of distributed power sources without going through the shared power storage device.
  9.  複数の施設によって共用される共用蓄電装置の充電に用いる電力として、前記複数の施設に個別に設けられる複数の分散電源から出力される充電電力を管理するステップと、
     前記充電電力の買電価格として、基準買電価格よりも高い価格を適用するステップとを備え、
     前記基準買電価格は、前記共用蓄電装置を経由せずに前記複数の分散電源から出力される電力に適用される価格である、電力管理方法。
    Managing the charging power output from a plurality of distributed power sources individually provided in the plurality of facilities, as the power used for charging the shared power storage device shared by the plurality of facilities;
    Applying a price higher than a standard power purchase price as the power purchase price of the charging power,
    The electric power management method, wherein the reference power purchase price is a price applied to electric power output from the plurality of distributed power sources without going through the shared power storage device.
PCT/JP2018/048577 2018-01-30 2018-12-28 Power management system, power management server, and power management method WO2019150883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019568952A JP7037583B2 (en) 2018-01-30 2018-12-28 Power management system, power management server and power management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013529 2018-01-30
JP2018-013529 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019150883A1 true WO2019150883A1 (en) 2019-08-08

Family

ID=67479960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048577 WO2019150883A1 (en) 2018-01-30 2018-12-28 Power management system, power management server, and power management method

Country Status (2)

Country Link
JP (1) JP7037583B2 (en)
WO (1) WO2019150883A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169137A (en) * 2012-01-17 2013-08-29 Keio Gijuku Power network system
WO2015011746A1 (en) * 2013-07-22 2015-01-29 株式会社日立製作所 Storage battery charge/discharge control system and electricity storage device
WO2017026508A1 (en) * 2015-08-12 2017-02-16 京セラ株式会社 Management server, management method, and management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169137A (en) * 2012-01-17 2013-08-29 Keio Gijuku Power network system
WO2015011746A1 (en) * 2013-07-22 2015-01-29 株式会社日立製作所 Storage battery charge/discharge control system and electricity storage device
WO2017026508A1 (en) * 2015-08-12 2017-02-16 京セラ株式会社 Management server, management method, and management system

Also Published As

Publication number Publication date
JPWO2019150883A1 (en) 2021-01-28
JP7037583B2 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2019150814A1 (en) Power management server and power management method
US11621563B2 (en) System for dynamic demand balancing in energy networks
WO2018139603A1 (en) Power supply control method, power supply control device, and power supply control system
JP2019017154A (en) Power management method and power management device
WO2020158592A1 (en) Power supply method and power management device
JP7037583B2 (en) Power management system, power management server and power management method
JP2019030123A (en) Power supply management method, power supply management server and power supply management device
JP2023005861A (en) Power management device, power management system, and power management method
US11128145B2 (en) System for controlling energy supply across multiple generation sites
EP3605438A1 (en) Energy management method, energy management device, and energy management system
JPWO2020040261A1 (en) Power management system and power management method
JP7354394B2 (en) Power management device and power management method
JP7386915B2 (en) Power management server and power management method
WO2021079956A1 (en) Bidding assistance system and bidding assistance method
WO2024004684A1 (en) Electric power management device, electric power management method, and program
JP2018117508A (en) Power supply control method and controller
WO2021060142A1 (en) Electrical power management system and electrical power management method
JP2023003860A (en) Power management device and power management method
WO2018139604A1 (en) Power supply control method, power supply control device, and power supply control system
JP2023005124A (en) Power management device, power management system, and power management method
JP2022114955A (en) Power storage device management system and power storage device management method
JP2023108966A (en) Power management device and power management method
JP2020124040A (en) Server device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903704

Country of ref document: EP

Kind code of ref document: A1