WO2019150727A1 - Inverter control method, alternating current load drive system, and refrigeration circuit - Google Patents

Inverter control method, alternating current load drive system, and refrigeration circuit Download PDF

Info

Publication number
WO2019150727A1
WO2019150727A1 PCT/JP2018/043670 JP2018043670W WO2019150727A1 WO 2019150727 A1 WO2019150727 A1 WO 2019150727A1 JP 2018043670 W JP2018043670 W JP 2018043670W WO 2019150727 A1 WO2019150727 A1 WO 2019150727A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
vdc
voltage
load
inverter
Prior art date
Application number
PCT/JP2018/043670
Other languages
French (fr)
Japanese (ja)
Inventor
雄希 中島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2018407010A priority Critical patent/AU2018407010B2/en
Priority to MYPI2020003556A priority patent/MY185112A/en
Priority to CN201880087047.2A priority patent/CN111630765B/en
Publication of WO2019150727A1 publication Critical patent/WO2019150727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a power converter.
  • Patent Document 1 discloses that when the voltage input to the inverter is extremely reduced, the operation of the inverter is stopped, thereby preventing malfunction of the inverter and component destruction.
  • This disclosure suppresses heat generation of the inverter.
  • An AC load driving system (100) of the present disclosure includes an inverter (4) that converts an input DC voltage (Vdc) into a first AC voltage (V1) and applies the first AC voltage (V1) to an AC load (5), and a control circuit (6 ).
  • control circuit reduces the power (Po) supplied from the inverter to the AC load when the voltage value (Vdc) of the DC voltage is less than a predetermined first value (Vt1) ( S84) is made possible (S84). Reduction of electric power (Po) suppresses heat generation of the inverter.
  • the second aspect of the AC load drive system (100) of the present disclosure is the first aspect, and if the voltage value (Vdc) is equal to or greater than the first value (Vt1), the power is the first. If the voltage value (Vdc) is reduced (S84) under the condition (S74, S83) and less than the first value, the second condition (S82, S83) that is more relaxed than the first condition. Originally reduced.
  • a third aspect of the AC load drive system (100) of the present disclosure is the first aspect or the second aspect, wherein the voltage value (Vdc) is less than the first value (Vt1), A current (Iw) that is greater than or equal to a predetermined second value (Vt2) lower than the first value (Vt1) and that is input to the inverter (4) or output to the AC load (5) is a first value. If it is equal to or greater than the upper limit (I3) (S83), the drooping control (S84) for the current is performed.
  • the first upper limit value is monotonously non-decreasing with respect to the increase in the voltage value.
  • a fourth aspect of the AC load driving system (100) of the present disclosure is the first aspect or the second aspect, wherein the voltage value (Vdc) is lower than the first value (Vt1). If it is less than the second value (Vt2), the supply of the electric power (Po) to the AC load (5) is stopped (S81, S75).
  • the fifth aspect of the AC load drive system (100) of the present disclosure is the third aspect, in which the AC load (5) is a motor.
  • the drooping control (S84) includes control for reducing the rotational speed of the motor.
  • a sixth aspect of the AC load drive system (100) of the present disclosure is the fifth aspect, and the motor (5) drives a compressor (91) employed in the refrigeration circuit (9). Either a motor, a fan employed in an air conditioner, or a motor driving a fan employed in an air purifier.
  • a seventh aspect of the AC load drive system (100) of the present disclosure is the fifth aspect thereof, and the motor (5) drives a compressor (91) employed in the refrigeration circuit (9). It is a motor.
  • the refrigeration circuit includes an expansion valve (93).
  • the drooping control (S84) includes control for increasing the opening degree of the expansion valve.
  • An eighth aspect of the AC load drive system (100) of the present disclosure is any one of the first to seventh aspects, wherein the DC voltage (Vdc) is converted into a second AC voltage ( Obtained by conversion from V2). The DC voltage decreases due to a decrease in the second AC voltage (V2).
  • the ninth aspect of the AC load drive system (100) of the present disclosure is the eighth aspect, and if the input current (Ii) input to the converter (2) is equal to or greater than the second upper limit value, Droop control (S84) is performed on the input current.
  • the second upper limit value is monotonously non-decreasing with respect to the increase in the voltage value (Vdc).
  • a tenth aspect of the AC load drive system (100) of the present disclosure is any one of the first to ninth aspects, wherein the voltage value (Vdc) is less than the first value (Vt1). For example, the power supplied to the DC load (93) driven by the DC voltage is reduced.
  • the refrigeration circuit (9) of the present disclosure includes a compression driven by the motor that is the AC load supplied with power by the AC load drive system (100) of the seventh aspect of the AC load drive system (100) of the present disclosure.
  • the inverter control method of the present disclosure is a method of controlling the inverter (4) that converts the input DC voltage (Vdc) into the first AC voltage (V1) and applies it to the AC load (5).
  • the control method enables reduction in operating power (Po) supplied from the inverter (4) to the AC load 5 when the voltage value (Vdc) is less than the first value (Vt1).
  • FIG. 1 It is a block diagram which shows the structure of the system (henceforth an "AC load drive system") which drives AC load. It is a flowchart which shows the electric power reduction operation
  • FIG. 1 is a block diagram showing the configuration of the AC load drive system 100, where the AC load drive system 100 drives the AC load 5.
  • the AC load 5 either a single-phase AC load or a multi-phase AC load can be adopted.
  • the AC load 5 is an AC motor.
  • the AC motor drives a compressor used in the refrigeration circuit.
  • the AC motor drives a fan that blows air to a heat exchanger used in the refrigeration circuit.
  • the AC motor drives a fan used in an air cleaner.
  • AC load drive system 100 includes an inverter 4.
  • the inverter 4 converts the DC voltage Vdc input to itself into an AC voltage V 1 and applies it to the AC load 5.
  • the inverter 4 supplies power to operate the AC load 5 (hereinafter “operating power”) Po to the AC load 5.
  • the number of phases of the AC voltage V1 corresponds to the number of phases of the AC load 5.
  • AC load drive system 100 includes a control circuit 6.
  • the control circuit 6 controls the operation of the inverter 4.
  • inverter 4 performs a switching operation to convert DC voltage Vdc into AC voltage V1.
  • the inverter 4 includes, for example, a switching element that performs the above-described switching operation.
  • the control circuit 6 generates a control signal G for controlling the switching operation and outputs it to the inverter 4.
  • the AC voltage V1 varies depending on the switching operation of the inverter 4.
  • the change in the AC voltage V1 changes the operating power Po.
  • the change in the operating power Po changes the operation of the AC load 5.
  • the control circuit 6 varies the operating power Po through the control of the inverter 4 and thereby drives the AC load 5 in various operations.
  • a case where the AC load 5 is a three-phase motor will be described as an example.
  • Command data J the value of DC voltage Vdc (hereinafter also referred to as “voltage value Vdc”), and the value of current Iw flowing through inverter 4 (hereinafter also referred to as “current value Iw”) are input to control circuit 6. .
  • the command data J is, for example, a command value for the rotational speed or rotational torque of the motor 5.
  • the voltage value Vdc is obtained by a known method using a known voltage sensor
  • the current value Iw is obtained by a known method using a known current sensor.
  • the current value Iw can be obtained by measuring the current input to the inverter 4.
  • the command data J is set depending on the cooling performance of the refrigeration circuit using the compressor when the motor 5 drives the compressor, for example.
  • This setting is a well-known technique as control for driving a compressor based on a temperature setting in an air conditioner, for example.
  • an increase in the rotational speed of the compressor can be employed.
  • the rotational speed command value indicated by the command data J increases.
  • the control circuit 6 determines the operating power Po using the command data J, the voltage value Vdc, and the current value Iw. For example, when the command data J is a command value for rotational speed or rotational torque, an increase in the command value causes an increase in the operating power Po.
  • the control circuit 6 generates the control signal G so that the operating power Po is supplied from the inverter 4 to the AC load 5.
  • the current value Iw increases when the voltage value Vdc decreases. This is because the operating power Po is proportional to the product of the voltage value Vdc and the current value Iw, assuming that the power conversion efficiency of the inverter 4 is constant in order to briefly explain the reason.
  • the increase in the current value Iw causes heat generation of the switching elements constituting the inverter 4. The heat generation of the switching element leads to a decrease in efficiency and a decrease in element performance. It is desirable to suppress the heat generation of the switching element.
  • an inverter control method is proposed in which the inverter 4 is caused to perform an operation of reducing the operating power Po when the voltage value Vdc is lowered.
  • the control circuit 6 changes the control signal G so that the inverter 4 performs the above operation.
  • the operating power Po supplied from the inverter 4 to the AC load 5 is A technique for reducing and supplying operating power Po will be listed.
  • this is the execution of a control method for causing the inverter 4 to perform an operation of reducing the operating power Po (hereinafter also referred to as “power reducing operation”) when the voltage value Vdc is equal to or lower than the first value.
  • the control circuit 6 generates a control signal G that causes the inverter 4 to perform an operation of reducing the operating power Po, and outputs the control signal G to the inverter 4.
  • FIG. 1 illustrates a case where the AC load driving system 100 further includes a converter 2 and a capacitor 3.
  • Capacitor 3 supports DC voltage Vdc.
  • Converter 2 charges capacitor 3.
  • Capacitor 3 discharges and supplies electric power (hereinafter referred to as “input electric power”) Pi input to inverter 4 alone or together with converter 2. If the loss in the inverter 4 is ignored, the input power Pi is equal to the operating power Po.
  • the AC voltage V2 is applied to the converter 2.
  • the AC voltage V2 is output from, for example, a commercial power source 1 that is an AC power source.
  • the DC voltage Vdc is converted from the AC voltage V2 by the converter 2.
  • a diode bridge rectifier circuit, a step-up converter, a step-down converter, and a step-up / step-down converter are employed for the converter 2.
  • the DC voltage Vdc can be reduced by at least one of a decrease in the value of the AC voltage V2 and an operation of the converter 2.
  • the DC voltage Vdc decreases due to a decrease in the value of the AC voltage V2.
  • the power reduction operation of the control circuit 6 is also effective for a decrease in the voltage value Vdc caused by a decrease in the value of the AC voltage V2.
  • the power reduction operation further suppresses the heat generation of the inverter 4 with respect to a failure including a reduction in performance of the commercial power supply 1.
  • the AC voltage V2 decreases, the input current Ii input to the converter 2 also increases, and the loss of the converter 2 also increases. This power reduction operation is also useful for suppressing heat generation of the components constituting the converter 2.
  • FIG. 2 is a flowchart showing the power reduction operation of the control circuit 6 and the operation associated therewith.
  • the operating power Po is set.
  • the setting is determination of the operating power Po based on the command data J, the voltage value Vdc, and the current value Iw, and is a process performed by a known technique.
  • the operating power Po is determined indirectly by determining the operating state of the AC load 5 (for example, the rotational speed or rotational torque of the motor load). Good.
  • step S72 control is performed to operate the inverter 4 while maintaining the operating power Po.
  • the control is control for operating the inverter 4 while maintaining the operating power Po set in step S71, and is a process performed by a known technique.
  • step S73 the first value Vt1 is compared with the voltage value Vdc. As a result of the comparison, if the voltage value Vdc is less than the first value Vt1 (that is, when Vdc ⁇ Vt1 is affirmed), the process proceeds to step S8, and the control circuit 6 enables the power reduction operation.
  • Step S8 includes, for example, step S81.
  • step S81 a comparison is made to determine whether so-called low voltage protection is necessary.
  • step S81 for example, the voltage value Vdc is compared with a predetermined second value Vt2. However, the second value Vt2 is lower than the first value Vt1. If voltage value Vdc is less than second value Vt2 (that is, if Vdc ⁇ Vt2 is denied), the process proceeds to step S75.
  • step S75 the supply of the operating power Po from the inverter 4 to the AC load 5 is stopped. This is a process corresponding to so-called low voltage protection. Stopping the supply of the operating power Po is different from the power reduction operation of reducing the supply of the operating power Po, although it is reduced.
  • step S84 so-called drooping control is performed on the current Iw.
  • step S83 whether drooping control is necessary is determined prior to step S84.
  • the AC load 5 is a motor, and the rotation speed can be reduced. Reduction of the rotation speed of the motor is realized by reducing the current Iw, and contributes to the direct reduction of the operating power Po.
  • Whether or not the droop control is performed is determined by comparing the current output from the inverter 4 to the AC load 5 and the current droop value I3. Since the current is a current flowing through the inverter 4, it can be measured as a current value Iw.
  • step S83 When it is affirmed in step S83 that Iw ⁇ I3, the process proceeds to step S84, and the drooping control is performed. As a result, the current value Iw decreases. That is, the current droop value I3 functions as the upper limit value of the current value Iw by steps S83 and S84.
  • step S83 When Iw ⁇ I3 is negative in step S83 (that is, when Iw ⁇ I3), the process exits from step S8 and returns to step S72.
  • Steps S74 and S82 are processes for determining the current droop value I3. If voltage value Vdc is greater than or equal to first value Vt1 in step S73 (that is, if Vdc ⁇ Vt1 is negative), the process proceeds to step S74, and current droop value I3 is set to a predetermined value I31. For example, a value that does not depend on the voltage value Vdc is adopted as the predetermined value I31.
  • step S83 is executed.
  • the process in step S83 in this case is a comparison between the current value Iw and the predetermined value I31. That is, steps S74, S83, and S84 are a set of steps for performing drooping control so that the current value Iw does not exceed the predetermined value I31.
  • step S81 If voltage value Vdc is greater than or equal to second value Vt2 in step S81 (that is, when Vdc ⁇ Vt2 is affirmed), the process proceeds to step S82, and current droop value I3 is set as a function f (Vdc) of voltage value Vdc.
  • the function f (Vdc) is monotonously non-decreasing with respect to the increase of the voltage value Vdc.
  • FIG. 3 is a graph illustrating the dependence of the function f (Vdc), which is the current droop value I3, on the voltage value Vdc.
  • Vdc the current droop value I3
  • Vdc the current droop value
  • the above function f (Vdc) is an example, and when Vt2 ⁇ Vdc ⁇ Vt1, the function f (Vdc) may be nonlinear with respect to the voltage value Vdc. For example, the function f (Vdc) may change continuously with respect to the change of the voltage value Vdc, or may change stepwise.
  • step S75 is executed, and in view of the fact that the supply of operating power Po is stopped, when Vdc ⁇ Vt2, the value of the function f (Vdc) is not set. Also good.
  • a second value Vt2 ′ smaller than the second value Vt2 that determines the function f (Vdc) may be introduced, and the second value Vt2 compared with the voltage value Vdc in step S81 may be replaced with the second value Vt2 ′.
  • supply of the operating power Po is stopped when Vdc ⁇ Vt2 ′, and when Vt2 ′ ⁇ Vdc ⁇ Vt2, the current drooping value I3 takes a predetermined value I32, and the drooping control for the current Iw is performed with this as the upper limit.
  • a first value Vt1 ′ larger than the first value Vt1 for determining the function f (Vdc) may be introduced, and the first value Vt1 compared with the voltage value Vdc in step S73 may be replaced with the first value Vt1 ′.
  • Vt1 ⁇ Vdc ⁇ Vt1 ′ the current droop value I3 takes a predetermined value I31, and the droop control for the current Iw is performed with this as the upper limit.
  • the function f (Vdc) decreases monotonously with a decrease in the voltage value Vdc, but there may be a region that does not depend on the voltage value Vdc (is monotonously non-decreasing with respect to an increase in the voltage value Vdc). .
  • Step S81 is executed when the determination in step S73 is affirmative. If the determination in step S81 is affirmative, Vt2 ⁇ Vdc ⁇ Vt1 is established. In step S82, the current droop value I3 is set to a value that decreases monotonously with respect to the decrease in the voltage value Vdc.
  • the droop control for the current value Iw is performed with the lower current droop value I3 as the upper limit as the voltage value Vdc decreases by executing steps S83 and S84.
  • the operating power Po decreases, and even if the voltage value Vdc decreases, the current Iw is suppressed from increasing, and the heat generation of the inverter 4 is suppressed.
  • Such reduction of the operating power Po in steps S82, S83, and S84 is an example of the above-described power reduction operation.
  • Vdc Vdc ⁇ Vt1
  • f (Vdc) I31.
  • the operating power Po is more likely to be reduced than when the voltage value Vdc is greater than or equal to the first value Vt1.
  • the second condition for reducing the operating power Po is more relaxed than the first condition.
  • the operating power Po is not necessarily reduced if Vdc ⁇ Vt1. This is because when the determination in step S83 is negative, the process does not proceed to step S84 and the drooping control is not performed. When Vdc ⁇ Vt1, it can be said that the control circuit 6 enables the inverter 4 to reduce power.
  • step S75 is executed when the determination result in step S73 is affirmative (that is, Vdc ⁇ Vt1). If steps S81 and S82 are provided, the frequency of low-voltage protection in step S75 is reduced by performing the power reduction operation. In other words, the power reduction operation facilitates avoiding a situation where the AC load 5 stops due to low voltage protection.
  • the voltage value Vdc may increase. For example, when the AC voltage V2 is lowered due to a failure of the commercial power supply 1 and the voltage value Vdc is lowered due to this, or when the voltage value Vdc is lowered due to insufficient storage amount of the capacitor 3, When the reduction operation is performed, the voltage value Vdc may increase.
  • Reduction of the rotation speed of the motor exemplified as the drooping control directly reduces the current Iw.
  • FIG. 4 is a block diagram illustrating the configuration of the refrigeration circuit 9.
  • the refrigeration circuit 9 includes a compressor 91, heat exchangers 92 and 94, and an expansion valve 93.
  • a refrigerant (not shown) is compressed by the compressor 91, evaporated by the heat exchanger 92, expanded by the expansion valve 93, and condensed by the heat exchanger 94.
  • the white arrows in the figure indicate the direction in which the refrigerant circulates.
  • the AC load 5 is a motor that drives a compressor 91 employed in the refrigeration circuit 9.
  • the expansion valve 93 is an electromagnetic valve, and its opening degree is adjusted by a control signal L generated by the control circuit 6.
  • the opening degree of the electromagnetic valve is determined by a stepping motor driven by the control signal L.
  • the operating power of the stepping motor can be obtained from the output of the converter 2.
  • step S84 the opening degree of the expansion valve 93 is increased by the control signal L.
  • the mechanical load of the compressor 91 is reduced, the rotational torque required for the motor 5 that drives the compressor 91 is reduced, and the current Iw is reduced.
  • the process of increasing the opening degree of the expansion valve 93 can be included in the drooping control.
  • control circuit 6 that generates the control signal L and / or the control signal G can be configured to include a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program. For example, each step in FIG. 2 is executed by the microcomputer.
  • the storage device can be composed of one or more of various storage devices such as ROM (Read Only Memory), RAM (Random Access Memory), and rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.). .
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program and can realize that various functions corresponding to each processing step are realized.
  • the control circuit 6 is not limited to this, and various procedures executed by the control circuit 6, various means to be realized, or some or all of various functions may be realized by hardware.
  • the AC load drive system 100 including the inverter 4 and the control circuit 6 has been proposed. It can be said that the AC load drive system 100 is an AC load drive system that drives the AC load 5.
  • the inverter 4 converts the input DC voltage Vdc into an AC voltage V 1 and applies it to the AC load 5.
  • the control circuit 6 makes it possible to reduce the operating power Po supplied from the inverter 4 to the AC load 5 when the voltage value Vdc is less than the first value Vt1. Reduction of the operating power Po suppresses the heat generation of the inverter 4.
  • the operating power Po is reduced under the first condition. If the voltage value Vdc is less than the first value Vt1, the operating power Po is reduced under the second condition that is more relaxed than the first condition.
  • the voltage value Vdc is less than the first value Vt1, and is equal to or higher than the second value Vt2 lower than the first value Vt1, and the current input to the inverter 4 or the current output to the AC load 5 is the upper limit value. If the current droop value is equal to or greater than I3, the droop control for the current is performed.
  • the current drooping value I3 is monotonously non-decreasing with respect to the increase of the voltage value Vdc. Thereby, the operating power Po supplied from the inverter 4 to the AC load 5 is reduced.
  • the supply of the operating power Po to the AC load 5 may be stopped. This provides low voltage protection. The power reduction operation facilitates avoiding a situation where the AC load 5 is stopped due to the low voltage protection.
  • the AC load 5 is a motor
  • the drooping control may include control for reducing the rotational speed of the motor 5. This leads to a direct reduction in operating power Po.
  • Examples of the motor 5 include a motor that drives a compressor 91 that is employed in the refrigeration circuit 9.
  • the motor 5 drives a compressor 91 that is employed in the refrigeration circuit 9 including the expansion valve 93.
  • the drooping control may include control for increasing the opening degree of the expansion valve 93. This leads to an indirect reduction in operating power Po.
  • the motor 5 can also be employed as a fan for driving a fan employed in an air conditioner or a fan employed in an air purifier.
  • the DC voltage Vdc is obtained by converting from the AC voltage V2 by the converter 2, for example.
  • the DC voltage Vdc decreases due to the decrease in the AC voltage V2.
  • the drooping control may be performed on the input current Ii input by the converter 2.
  • the upper limit value can be set monotonically non-decreasing with respect to the increase of the DC voltage Vdc.
  • a flowchart in which the current Iw is replaced with the input current Ii in step S83 can be employed.
  • the upper limit value can be set independently of the above-described current droop value I3.
  • the power supplied to the DC load driven by the DC voltage Vdc may be reduced. This can be performed independently of the control of the inverter 4.
  • the operation of the expansion valve 93 is stopped when the DC voltage Vdc is less than the first value Vt1. May be. As a result, the shortage of the charged amount of the capacitor 3 is resolved, and the decrease in the voltage value Vdc is reduced.
  • a method for controlling the inverter 4 has also been proposed in this embodiment. This control method makes it possible to reduce the operating power Po supplied from the inverter 4 to the AC load 5 when the voltage value Vdc is less than the first value Vt1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention suppresses heat generation of a switching element of an inverter. An alternating current load drive system (100) has: a converter (2) that converts an alternating current voltage (V2) outputted from a commercial power supply (1) into a direct current voltage (Vdc); and an inverter (4), which converts the direct current voltage (Vdc) into an alternating current voltage (V1), and supplies an alternating current load (5) with operating power (Po). The control circuit (6) detects the direct current voltage (Vdc), and if the direct current voltage (Vdc) is lower than a predetermined first value, the control circuit reduces the power (Po) to be supplied to the alternating current load (5) from the inverter (4).

Description

インバータの制御方法、交流負荷駆動システム、冷凍回路Inverter control method, AC load drive system, refrigeration circuit
 本開示は電力変換器に関する。 This disclosure relates to a power converter.
 インバータに入力される電圧が極端に低下すると、インバータの運転を停止し、以てインバータの誤動作、部品破壊を阻止する旨が、下記の特許文献1に開示されている。 The following Patent Document 1 discloses that when the voltage input to the inverter is extremely reduced, the operation of the inverter is stopped, thereby preventing malfunction of the inverter and component destruction.
特開昭63-290193号公報Japanese Unexamined Patent Publication No. 63-290193
 本開示はインバータの発熱を抑制する。 This disclosure suppresses heat generation of the inverter.
 本開示の交流負荷駆動システム(100)は、入力された直流電圧(Vdc)を第1交流電圧(V1)に変換して交流負荷(5)へ印加するインバータ(4)と、制御回路(6)とを備える。 An AC load driving system (100) of the present disclosure includes an inverter (4) that converts an input DC voltage (Vdc) into a first AC voltage (V1) and applies the first AC voltage (V1) to an AC load (5), and a control circuit (6 ).
 その第1の態様では、前記制御回路は、前記直流電圧の電圧値(Vdc)が所定の第1値(Vt1)未満のとき、前記インバータから前記交流負荷に供給する電力(Po)の低減(S84)を可能にさせる(S84)。電力(Po)の低減は、インバータの発熱を抑制する。 In the first aspect, the control circuit reduces the power (Po) supplied from the inverter to the AC load when the voltage value (Vdc) of the DC voltage is less than a predetermined first value (Vt1) ( S84) is made possible (S84). Reduction of electric power (Po) suppresses heat generation of the inverter.
 本開示の交流負荷駆動システム(100)の第2の態様は、その第1の態様であって、前記電圧値(Vdc)が前記第1値(Vt1)以上であれば、前記電力が第1条件(S74,S83)のもとで低減(S84)され、前記電圧値(Vdc)が前記第1値未満であれば、前記第1条件よりも緩和された第2条件(S82,S83)のもとで低減される。 The second aspect of the AC load drive system (100) of the present disclosure is the first aspect, and if the voltage value (Vdc) is equal to or greater than the first value (Vt1), the power is the first. If the voltage value (Vdc) is reduced (S84) under the condition (S74, S83) and less than the first value, the second condition (S82, S83) that is more relaxed than the first condition. Originally reduced.
 本開示の交流負荷駆動システム(100)の第3の態様は、その第1の態様または第2の態様であって、前記電圧値(Vdc)が前記第1値(Vt1)未満であって、前記第1値(Vt1)よりも低い所定の第2値(Vt2)以上であり、前記インバータ(4)に入力される若しくは前記交流負荷(5)に出力される電流(Iw)が第1の上限値(I3)以上であれば(S83)、前記電流についての垂下制御(S84)が行なわれる。前記電圧値の上昇に対して前記第1の上限値は単調非減少である。 A third aspect of the AC load drive system (100) of the present disclosure is the first aspect or the second aspect, wherein the voltage value (Vdc) is less than the first value (Vt1), A current (Iw) that is greater than or equal to a predetermined second value (Vt2) lower than the first value (Vt1) and that is input to the inverter (4) or output to the AC load (5) is a first value. If it is equal to or greater than the upper limit (I3) (S83), the drooping control (S84) for the current is performed. The first upper limit value is monotonously non-decreasing with respect to the increase in the voltage value.
 本開示の交流負荷駆動システム(100)の第4の態様は、その第1の態様または第2の態様であって、前記電圧値(Vdc)が前記第1値(Vt1)よりも低い所定の第2値(Vt2)未満であれば、前記交流負荷(5)への前記電力(Po)の供給が停止される(S81,S75)。 A fourth aspect of the AC load driving system (100) of the present disclosure is the first aspect or the second aspect, wherein the voltage value (Vdc) is lower than the first value (Vt1). If it is less than the second value (Vt2), the supply of the electric power (Po) to the AC load (5) is stopped (S81, S75).
 本開示の交流負荷駆動システム(100)の第5の態様は、その第3の態様であって、前記交流負荷(5)はモータである。前記垂下制御(S84)は前記モータの回転速度を低減する制御を含む。 The fifth aspect of the AC load drive system (100) of the present disclosure is the third aspect, in which the AC load (5) is a motor. The drooping control (S84) includes control for reducing the rotational speed of the motor.
 本開示の交流負荷駆動システム(100)の第6の態様は、その第5の態様であって、前記モータ(5)は、冷凍回路(9)に採用される圧縮機(91)を駆動するモータ、空気調和機に採用されるファン、空気清浄機に採用されるファンを駆動するモータのいずれかである。 A sixth aspect of the AC load drive system (100) of the present disclosure is the fifth aspect, and the motor (5) drives a compressor (91) employed in the refrigeration circuit (9). Either a motor, a fan employed in an air conditioner, or a motor driving a fan employed in an air purifier.
 本開示の交流負荷駆動システム(100)の第7の態様は、その第5の態様であって、前記モータ(5)は、冷凍回路(9)に採用される圧縮機(91)を駆動するモータである。前記冷凍回路は膨張弁(93)を備える。前記垂下制御(S84)は前記膨張弁の開度を増加させる制御を含む。 A seventh aspect of the AC load drive system (100) of the present disclosure is the fifth aspect thereof, and the motor (5) drives a compressor (91) employed in the refrigeration circuit (9). It is a motor. The refrigeration circuit includes an expansion valve (93). The drooping control (S84) includes control for increasing the opening degree of the expansion valve.
 本開示の交流負荷駆動システム(100)の第8の態様は、その第1態様~第7の態様のいずれかであって、前記直流電圧(Vdc)はコンバータ(2)によって第2交流電圧(V2)から変換して得られる。前記直流電圧は前記第2交流電圧(V2)の低下に起因して低下する。 An eighth aspect of the AC load drive system (100) of the present disclosure is any one of the first to seventh aspects, wherein the DC voltage (Vdc) is converted into a second AC voltage ( Obtained by conversion from V2). The DC voltage decreases due to a decrease in the second AC voltage (V2).
 本開示の交流負荷駆動システム(100)の第9の態様は、その第8の態様であって、前記コンバータ(2)へ入力する入力電流(Ii)が第2の上限値以上であれば、前記入力電流についての垂下制御(S84)を行なう。前記電圧値(Vdc)の上昇に対して前記第2の上限値は単調非減少である。 The ninth aspect of the AC load drive system (100) of the present disclosure is the eighth aspect, and if the input current (Ii) input to the converter (2) is equal to or greater than the second upper limit value, Droop control (S84) is performed on the input current. The second upper limit value is monotonously non-decreasing with respect to the increase in the voltage value (Vdc).
 本開示の交流負荷駆動システム(100)の第10の態様は、その第1態様~第9の態様のいずれかであって、前記電圧値(Vdc)が前記第1値(Vt1)未満であれば、前記直流電圧で駆動される直流負荷(93)に供給する電力が低減される。 A tenth aspect of the AC load drive system (100) of the present disclosure is any one of the first to ninth aspects, wherein the voltage value (Vdc) is less than the first value (Vt1). For example, the power supplied to the DC load (93) driven by the DC voltage is reduced.
 本開示の冷凍回路(9)は、本開示の交流負荷駆動システム(100)の第7の態様の交流負荷駆動システム(100)によって電力が供給される前記交流負荷である前記モータが駆動する圧縮機(91)と、膨張弁(93)とを備える。 The refrigeration circuit (9) of the present disclosure includes a compression driven by the motor that is the AC load supplied with power by the AC load drive system (100) of the seventh aspect of the AC load drive system (100) of the present disclosure. A machine (91) and an expansion valve (93).
 本開示のインバータの制御方法は、入力された直流電圧(Vdc)を第1交流電圧(V1)に変換して交流負荷(5)へ印加するインバータ(4)を制御する方法である。当該制御方法は、電圧値(Vdc)が第1値(Vt1)未満のとき、インバータ(4)から交流負荷5に供給する動作電力(Po)の低減を可能にする。 The inverter control method of the present disclosure is a method of controlling the inverter (4) that converts the input DC voltage (Vdc) into the first AC voltage (V1) and applies it to the AC load (5). The control method enables reduction in operating power (Po) supplied from the inverter (4) to the AC load 5 when the voltage value (Vdc) is less than the first value (Vt1).
交流負荷を駆動するシステム(以下「交流負荷駆動システム」と称す)の構成を示すブロック図である。It is a block diagram which shows the structure of the system (henceforth an "AC load drive system") which drives AC load. 制御回路の電力低減動作、およびこれに付随する動作を示すフローチャートである。It is a flowchart which shows the electric power reduction operation | movement of a control circuit, and the operation | movement accompanying this. 垂下電流値となる関数の、電圧値に対する依存性を例示するグラフである。It is a graph which illustrates the dependence with respect to a voltage value of the function used as a drooping current value. 冷凍回路9の構成を例示するブロック図である。4 is a block diagram illustrating the configuration of a refrigeration circuit 9. FIG.
 図1は交流負荷駆動システム100の構成を示すブロック図であり、ここでは交流負荷駆動システム100が交流負荷5を駆動する。交流負荷5として、単相の交流負荷、多相の交流負荷のいずれを採用することもできる。例えば交流負荷5は交流モータである。例えば当該交流モータは冷凍回路に用いられる圧縮機を駆動する。例えば当該交流モータは冷凍回路に用いられる熱交換器に送風するファンを駆動する。例えば当該交流モータは空気清浄機に用いられるファンを駆動する。 FIG. 1 is a block diagram showing the configuration of the AC load drive system 100, where the AC load drive system 100 drives the AC load 5. As the AC load 5, either a single-phase AC load or a multi-phase AC load can be adopted. For example, the AC load 5 is an AC motor. For example, the AC motor drives a compressor used in the refrigeration circuit. For example, the AC motor drives a fan that blows air to a heat exchanger used in the refrigeration circuit. For example, the AC motor drives a fan used in an air cleaner.
 交流負荷駆動システム100はインバータ4を備える。インバータ4は、自身に入力された直流電圧Vdcを交流電圧V1に変換して交流負荷5へ印加する。インバータ4は交流負荷5へ、交流負荷5を動作させる電力(以下「動作電力」)Poを供給する。交流電圧V1の相数は交流負荷5の相数に対応する。 AC load drive system 100 includes an inverter 4. The inverter 4 converts the DC voltage Vdc input to itself into an AC voltage V 1 and applies it to the AC load 5. The inverter 4 supplies power to operate the AC load 5 (hereinafter “operating power”) Po to the AC load 5. The number of phases of the AC voltage V1 corresponds to the number of phases of the AC load 5.
 交流負荷駆動システム100は制御回路6を備える。制御回路6はインバータ4の動作を制御する。例えばインバータ4はスイッチング動作を行なうことで直流電圧Vdcを交流電圧V1に変換する。インバータ4は例えば上述のスイッチング動作を行なうスイッチング素子を含む。 AC load drive system 100 includes a control circuit 6. The control circuit 6 controls the operation of the inverter 4. For example, inverter 4 performs a switching operation to convert DC voltage Vdc into AC voltage V1. The inverter 4 includes, for example, a switching element that performs the above-described switching operation.
 制御回路6は当該スイッチング動作を制御する制御信号Gを生成し、インバータ4へ出力する。交流電圧V1はインバータ4のスイッチング動作に依存して変動する。交流電圧V1の変動は動作電力Poを変動させる。動作電力Poの変動は交流負荷5の動作を変動させる。 The control circuit 6 generates a control signal G for controlling the switching operation and outputs it to the inverter 4. The AC voltage V1 varies depending on the switching operation of the inverter 4. The change in the AC voltage V1 changes the operating power Po. The change in the operating power Po changes the operation of the AC load 5.
 制御回路6はインバータ4の制御を介して動作電力Poを変動させ、以て交流負荷5を種々の動作で駆動する。交流負荷5が三相のモータであるときを例にとって説明する。 The control circuit 6 varies the operating power Po through the control of the inverter 4 and thereby drives the AC load 5 in various operations. A case where the AC load 5 is a three-phase motor will be described as an example.
 制御回路6には指令データJと、直流電圧Vdcの値(以下「電圧値Vdc」とも称す)と、インバータ4に流れる電流Iw(以下「電流値Iw」とも称す)の値とが入力される。指令データJは例えばモータ5の回転速度、あるいは回転トルクについての指令値である。 Command data J, the value of DC voltage Vdc (hereinafter also referred to as “voltage value Vdc”), and the value of current Iw flowing through inverter 4 (hereinafter also referred to as “current value Iw”) are input to control circuit 6. . The command data J is, for example, a command value for the rotational speed or rotational torque of the motor 5.
 電圧値Vdcは公知の電圧センサを用いて、電流値Iwは公知の電流センサを用いて、それぞれ公知の手法で得られる。電流値Iwはインバータ4に入力する電流を測定して得ることができる。 The voltage value Vdc is obtained by a known method using a known voltage sensor, and the current value Iw is obtained by a known method using a known current sensor. The current value Iw can be obtained by measuring the current input to the inverter 4.
 指令データJは例えばモータ5が圧縮機を駆動する場合、当該圧縮機を用いる冷凍回路の冷却性能に依存して設定される。当該設定は例えば空気調和機において温度設定に基づいて圧縮機を駆動する制御として周知の技術である。例えば冷却性能を高めるには、圧縮機の回転速度の増大を採用することができ、例えば指令データJが示す回転速度の指令値は増大する。 The command data J is set depending on the cooling performance of the refrigeration circuit using the compressor when the motor 5 drives the compressor, for example. This setting is a well-known technique as control for driving a compressor based on a temperature setting in an air conditioner, for example. For example, to increase the cooling performance, an increase in the rotational speed of the compressor can be employed. For example, the rotational speed command value indicated by the command data J increases.
 制御回路6は指令データJと、電圧値Vdcと、電流値Iwとを用いて動作電力Poを決定する。例えば指令データJが回転速度、あるいは回転トルクについての指令値であるときには、当該指令値の増大は動作電力Poの増大をもたらす。 The control circuit 6 determines the operating power Po using the command data J, the voltage value Vdc, and the current value Iw. For example, when the command data J is a command value for rotational speed or rotational torque, an increase in the command value causes an increase in the operating power Po.
 制御回路6は、動作電力Poがインバータ4から交流負荷5へ供給されるように制御信号Gを生成する。 The control circuit 6 generates the control signal G so that the operating power Po is supplied from the inverter 4 to the AC load 5.
 インバータ4がある値の動作電力Poを供給するときに、電圧値Vdcが低下すると電流値Iwが上昇する。この理由を簡単に説明するためにインバータ4の電力変換効率を一定と考えれば、動作電力Poは電圧値Vdcと電流値Iwとの積に比例するからである。電流値Iwの上昇は、インバータ4を構成するスイッチング素子の発熱を招来する。スイッチング素子の発熱は効率の低下、素子の性能低下を招来する。スイッチング素子の発熱は抑制されることが望まれる。 When the inverter 4 supplies a certain value of operating power Po, the current value Iw increases when the voltage value Vdc decreases. This is because the operating power Po is proportional to the product of the voltage value Vdc and the current value Iw, assuming that the power conversion efficiency of the inverter 4 is constant in order to briefly explain the reason. The increase in the current value Iw causes heat generation of the switching elements constituting the inverter 4. The heat generation of the switching element leads to a decrease in efficiency and a decrease in element performance. It is desirable to suppress the heat generation of the switching element.
 本実施の形態では、かかる発熱を抑制する技術として、電圧値Vdcが低下すると動作電力Poを低減する動作をインバータ4に行わせる、インバータの制御方法が提案される。具体的には例えば、制御回路6が制御信号Gを、インバータ4が上記動作を行なうように変動させる。 In this embodiment, as a technique for suppressing such heat generation, an inverter control method is proposed in which the inverter 4 is caused to perform an operation of reducing the operating power Po when the voltage value Vdc is lowered. Specifically, for example, the control circuit 6 changes the control signal G so that the inverter 4 performs the above operation.
 しかし電圧値Vdcの低下に対して常に動作電力Poが低減する必要はない。スイッチング素子等の発熱を所定の上限まで許容することができるからである。たとえばこのような許容の上限は、スイッチング素子としてトランジスタを採用した場合、いわゆる許容コレクタ損失に依存する。 However, it is not always necessary to reduce the operating power Po with respect to the decrease in the voltage value Vdc. This is because heat generation of the switching element or the like can be allowed up to a predetermined upper limit. For example, such an upper limit of tolerance depends on so-called allowable collector loss when a transistor is employed as the switching element.
 本実施の形態で提案される技術として、電圧値Vdcが所定の閾値(以下、便宜的に「第1値」とする)未満であれば、インバータ4から交流負荷5に供給する動作電力Poを低減して動作電力Poを供給する技術を挙げる。これは、制御回路6の動作として見れば、電圧値Vdcが第1値以下のとき、インバータ4に動作電力Poを低減させる動作(以下「電力低減動作」とも称す)を行なわせる制御方法の実行である。例えば制御回路6は、インバータ4に動作電力Poを低減させる動作を行なわせる制御信号Gを生成し、インバータ4へ出力する。 As a technique proposed in the present embodiment, if the voltage value Vdc is less than a predetermined threshold value (hereinafter referred to as “first value” for convenience), the operating power Po supplied from the inverter 4 to the AC load 5 is A technique for reducing and supplying operating power Po will be listed. In view of the operation of the control circuit 6, this is the execution of a control method for causing the inverter 4 to perform an operation of reducing the operating power Po (hereinafter also referred to as “power reducing operation”) when the voltage value Vdc is equal to or lower than the first value. It is. For example, the control circuit 6 generates a control signal G that causes the inverter 4 to perform an operation of reducing the operating power Po, and outputs the control signal G to the inverter 4.
 かかる技術によれば、例えば電圧値Vdcが低下しても、インバータ4の発熱、例えば電流Iwが増大することによる発熱が抑制される。 According to such a technique, for example, even if the voltage value Vdc decreases, heat generation of the inverter 4, for example, heat generation due to an increase in the current Iw is suppressed.
 図1では、交流負荷駆動システム100は、コンバータ2およびコンデンサ3を更に備える場合が例示される。コンデンサ3は直流電圧Vdcを支える。コンバータ2はコンデンサ3を充電する。コンデンサ3は放電して、単独もしくはコンバータ2と共に、インバータ4へ入力する電力(以下「入力電力」と称す)Piを供給する。インバータ4における損失を無視すれば、入力電力Piは動作電力Poと等しい。 FIG. 1 illustrates a case where the AC load driving system 100 further includes a converter 2 and a capacitor 3. Capacitor 3 supports DC voltage Vdc. Converter 2 charges capacitor 3. Capacitor 3 discharges and supplies electric power (hereinafter referred to as “input electric power”) Pi input to inverter 4 alone or together with converter 2. If the loss in the inverter 4 is ignored, the input power Pi is equal to the operating power Po.
 コンバータ2には交流電圧V2が印加される。交流電圧V2は例えば交流電源たる商用電源1から出力される。直流電圧Vdcはコンバータ2によって交流電圧V2から変換される。例えばコンバータ2にはダイオードブリッジ整流回路、昇圧コンバータ、降圧コンバータ、昇降圧コンバータが採用される。直流電圧Vdcは交流電圧V2の値の低下およびコンバータ2の動作の少なくともいずれか一方によって低下し得る。 The AC voltage V2 is applied to the converter 2. The AC voltage V2 is output from, for example, a commercial power source 1 that is an AC power source. The DC voltage Vdc is converted from the AC voltage V2 by the converter 2. For example, a diode bridge rectifier circuit, a step-up converter, a step-down converter, and a step-up / step-down converter are employed for the converter 2. The DC voltage Vdc can be reduced by at least one of a decrease in the value of the AC voltage V2 and an operation of the converter 2.
 例えばコンバータ2にダイオードブリッジ整流回路が採用された場合、直流電圧Vdcは交流電圧V2の値の低下に起因して低下する。動作電力Poの低減に拘わらずインバータ4のスイッチング損失が低減し、インバータ4の発熱が抑制される。制御回路6の電力低減動作は、交流電圧V2の値の低下に起因した電圧値Vdcの低下に対しても有効である。電力低減動作は、商用電源1の性能低下を含む故障に対して、インバータ4の発熱を更に抑制する。交流電圧V2が低下するとコンバータ2に入力される入力電流Iiも増加し、コンバータ2の損失も増加する。この電力低減動作はコンバータ2を構成する部品の発熱抑制にも有用である。 For example, when a diode bridge rectifier circuit is employed for the converter 2, the DC voltage Vdc decreases due to a decrease in the value of the AC voltage V2. Regardless of the reduction in the operating power Po, the switching loss of the inverter 4 is reduced, and the heat generation of the inverter 4 is suppressed. The power reduction operation of the control circuit 6 is also effective for a decrease in the voltage value Vdc caused by a decrease in the value of the AC voltage V2. The power reduction operation further suppresses the heat generation of the inverter 4 with respect to a failure including a reduction in performance of the commercial power supply 1. When the AC voltage V2 decreases, the input current Ii input to the converter 2 also increases, and the loss of the converter 2 also increases. This power reduction operation is also useful for suppressing heat generation of the components constituting the converter 2.
 図2は制御回路6の電力低減動作、およびこれに付随する動作を示すフローチャートである。ステップS71では動作電力Poが設定される。当該設定は、指令データJと、電圧値Vdcと、電流値Iwとに基づいた動作電力Poの決定であり、周知の技術によって行なわれる処理である。ステップS71では、直接的に動作電力Poを決定するのみならず、交流負荷5の動作状態(例えばモータ負荷の回転速度や回転トルク)を決定することによって間接的に動作電力Poが決定されてもよい。 FIG. 2 is a flowchart showing the power reduction operation of the control circuit 6 and the operation associated therewith. In step S71, the operating power Po is set. The setting is determination of the operating power Po based on the command data J, the voltage value Vdc, and the current value Iw, and is a process performed by a known technique. In step S71, not only the operating power Po is directly determined, but also the operating power Po is determined indirectly by determining the operating state of the AC load 5 (for example, the rotational speed or rotational torque of the motor load). Good.
 ステップS72では、動作電力Poを維持してインバータ4を動作させる制御が行なわれる。当該制御は、ステップS71で設定された動作電力Poを維持してインバータ4を動作させる制御であり、周知の技術によって行なわれる処理である。 In step S72, control is performed to operate the inverter 4 while maintaining the operating power Po. The control is control for operating the inverter 4 while maintaining the operating power Po set in step S71, and is a process performed by a known technique.
 ステップS73では、第1値Vt1と電圧値Vdcとの比較が行なわれる。当該比較の結果、電圧値Vdcが第1値Vt1未満であれば(つまりVdc<Vt1が肯定されるときには)処理がステップS8に進み、制御回路6は電力低減動作を可能にする。 In step S73, the first value Vt1 is compared with the voltage value Vdc. As a result of the comparison, if the voltage value Vdc is less than the first value Vt1 (that is, when Vdc <Vt1 is affirmed), the process proceeds to step S8, and the control circuit 6 enables the power reduction operation.
 ステップS8は例えばステップS81を含む。ステップS81ではいわゆる低電圧保護の要否を判断するための比較が行なわれる。 Step S8 includes, for example, step S81. In step S81, a comparison is made to determine whether so-called low voltage protection is necessary.
 ステップS81では例えば、電圧値Vdcが所定の第2値Vt2と比較される。但し第2値Vt2は第1値Vt1よりも低い。電圧値Vdcが第2値Vt2未満であれば(つまりVdc≧Vt2が否定されるときには)、処理はステップS75へ進む。 In step S81, for example, the voltage value Vdc is compared with a predetermined second value Vt2. However, the second value Vt2 is lower than the first value Vt1. If voltage value Vdc is less than second value Vt2 (that is, if Vdc ≧ Vt2 is denied), the process proceeds to step S75.
 ステップS75ではインバータ4からの交流負荷5への動作電力Poの供給を停止する。これはいわゆる低電圧保護に相当する処理である。動作電力Poの供給の停止は、低減するものの動作電力Poの供給を行なう電力低減動作とは異なる。 In step S75, the supply of the operating power Po from the inverter 4 to the AC load 5 is stopped. This is a process corresponding to so-called low voltage protection. Stopping the supply of the operating power Po is different from the power reduction operation of reducing the supply of the operating power Po, although it is reduced.
 説明の便宜上、ステップS82の説明の前に、ステップS83,S84の説明をする。ステップS84では電流Iwについていわゆる垂下制御が行なわれ、ステップS83ではステップS84に先だって、垂下制御の要否が判断される。 For convenience of description, steps S83 and S84 will be described before step S82. In step S84, so-called drooping control is performed on the current Iw. In step S83, whether drooping control is necessary is determined prior to step S84.
 垂下制御の例として、交流負荷5がモータであってその回転速度を低減する制御を挙げることができる。モータの回転速度の低減は電流Iwの低減で実現され、動作電力Poの直接的な低減に寄与する。 As an example of the drooping control, the AC load 5 is a motor, and the rotation speed can be reduced. Reduction of the rotation speed of the motor is realized by reducing the current Iw, and contributes to the direct reduction of the operating power Po.
 垂下制御を行なうか否かは、インバータ4から交流負荷5に出力される電流と電流垂下値I3との比較で決定される。当該電流はインバータ4に流れる電流であるので、電流値Iwとして測定できる。 Whether or not the droop control is performed is determined by comparing the current output from the inverter 4 to the AC load 5 and the current droop value I3. Since the current is a current flowing through the inverter 4, it can be measured as a current value Iw.
 ステップS83においてIw≧I3が肯定されるときには、処理はステップS84へ進んで垂下制御が行なわれる。これにより電流値Iwは低下する。つまり、ステップS83,S84により、電流垂下値I3は電流値Iwの上限値として機能する。 When it is affirmed in step S83 that Iw ≧ I3, the process proceeds to step S84, and the drooping control is performed. As a result, the current value Iw decreases. That is, the current droop value I3 functions as the upper limit value of the current value Iw by steps S83 and S84.
 ステップS83においてIw≧I3が否定されるとき(つまりIw<I3であるとき)には処理がステップS8から抜け出してステップS72に戻る。 When Iw ≧ I3 is negative in step S83 (that is, when Iw <I3), the process exits from step S8 and returns to step S72.
 ステップS74,S82はいずれも電流垂下値I3を決定する処理である。ステップS73において電圧値Vdcが第1値Vt1以上であれば(つまりVdc<Vt1が否定されるときには)処理がステップS74に進み、電流垂下値I3を所定値I31に設定する。例えば所定値I31には、電圧値Vdcに依存しない値が採用される。 Steps S74 and S82 are processes for determining the current droop value I3. If voltage value Vdc is greater than or equal to first value Vt1 in step S73 (that is, if Vdc <Vt1 is negative), the process proceeds to step S74, and current droop value I3 is set to a predetermined value I31. For example, a value that does not depend on the voltage value Vdc is adopted as the predetermined value I31.
 ステップS74が実行された後、ステップS83が実行される。この場合のステップS83での処理は、電流値Iwと所定値I31との比較である。即ち、ステップS74,S83,S84は、電流値Iwが所定値I31を超えないようにする垂下制御を行なうステップの集合である。 After step S74 is executed, step S83 is executed. The process in step S83 in this case is a comparison between the current value Iw and the predetermined value I31. That is, steps S74, S83, and S84 are a set of steps for performing drooping control so that the current value Iw does not exceed the predetermined value I31.
 ステップS81において電圧値Vdcが第2値Vt2以上であれば(つまりVdc≧Vt2が肯定されるときには)処理がステップS82に進み、電流垂下値I3が電圧値Vdcの関数f(Vdc)で設定される。ここで関数f(Vdc)は電圧値Vdcの上昇に対して単調非減少である。 If voltage value Vdc is greater than or equal to second value Vt2 in step S81 (that is, when Vdc ≧ Vt2 is affirmed), the process proceeds to step S82, and current droop value I3 is set as a function f (Vdc) of voltage value Vdc. The Here, the function f (Vdc) is monotonously non-decreasing with respect to the increase of the voltage value Vdc.
 図3は、電流垂下値I3となる関数f(Vdc)の、電圧値Vdcに対する依存性を例示するグラフである。具体的には:
Vdc≧Vt1のとき、f(Vdc)=I31;
Vdc≦Vt2のとき、f(Vdc)=I32;
Vt2≦Vdc≦Vt1のとき、
f(Vdc)=I32+(Vdc-Vt2)(I31-I32)/(Vt1-Vt2);
である。但し所定値I32は所定値I31よりも小さく、かつ電圧値Vdcに依存しない。
FIG. 3 is a graph illustrating the dependence of the function f (Vdc), which is the current droop value I3, on the voltage value Vdc. In particular:
When Vdc ≧ Vt1, f (Vdc) = I31;
When Vdc ≦ Vt2, f (Vdc) = I32;
When Vt2 ≦ Vdc ≦ Vt1,
f (Vdc) = I32 + (Vdc−Vt2) (I31−I32) / (Vt1−Vt2);
It is. However, the predetermined value I32 is smaller than the predetermined value I31 and does not depend on the voltage value Vdc.
 上記の関数f(Vdc)は例示であって、Vt2≦Vdc≦Vt1のときに、関数f(Vdc)は電圧値Vdcに対して非線形であってもよい。例えば、電圧値Vdcの変化に対して、関数f(Vdc)が連続的に変化してもよいし、ステップ状に変化してもよい。 The above function f (Vdc) is an example, and when Vt2 ≦ Vdc ≦ Vt1, the function f (Vdc) may be nonlinear with respect to the voltage value Vdc. For example, the function f (Vdc) may change continuously with respect to the change of the voltage value Vdc, or may change stepwise.
 ステップS81での判断が否定的な場合にはステップS75が実行され、動作電力Poの供給が停止されることに鑑みて、Vdc<Vt2のとき、関数f(Vdc)の値を設定しなくてもよい。 If the determination in step S81 is negative, step S75 is executed, and in view of the fact that the supply of operating power Po is stopped, when Vdc <Vt2, the value of the function f (Vdc) is not set. Also good.
 関数f(Vdc)を決定する第2値Vt2よりも小さな第2値Vt2’を導入し、ステップS81において電圧値Vdcと比較される第2値Vt2を第2値Vt2’に置換してもよい。この場合、Vdc<Vt2’では動作電力Poの供給が停止され、Vt2’≦Vdc≦Vt2では電流垂下値I3が所定値I32を採り、これを上限として、電流Iwについての垂下制御が行なわれる。 A second value Vt2 ′ smaller than the second value Vt2 that determines the function f (Vdc) may be introduced, and the second value Vt2 compared with the voltage value Vdc in step S81 may be replaced with the second value Vt2 ′. . In this case, supply of the operating power Po is stopped when Vdc <Vt2 ′, and when Vt2 ′ ≦ Vdc ≦ Vt2, the current drooping value I3 takes a predetermined value I32, and the drooping control for the current Iw is performed with this as the upper limit.
 関数f(Vdc)を決定する第1値Vt1よりも大きな第1値Vt1’を導入し、ステップS73において電圧値Vdcと比較される第1値Vt1を第1値Vt1’に置換してもよい。この場合、Vt1≦Vdc≦Vt1’では電流垂下値I3が所定値I31を採り、これを上限として、電流Iwについての垂下制御が行なわれる。つまり、関数f(Vdc)は、電圧値Vdcの低下に対して単調に減少するものの、電圧値Vdcに依存しない領域があってもよい(電圧値Vdcの上昇に対して単調非減少である)。 A first value Vt1 ′ larger than the first value Vt1 for determining the function f (Vdc) may be introduced, and the first value Vt1 compared with the voltage value Vdc in step S73 may be replaced with the first value Vt1 ′. . In this case, when Vt1 ≦ Vdc ≦ Vt1 ′, the current droop value I3 takes a predetermined value I31, and the droop control for the current Iw is performed with this as the upper limit. That is, the function f (Vdc) decreases monotonously with a decrease in the voltage value Vdc, but there may be a region that does not depend on the voltage value Vdc (is monotonously non-decreasing with respect to an increase in the voltage value Vdc). .
 ステップS81はステップS73における判断が肯定的であるときに実行される。ステップS81における判断が肯定的であるときには、Vt2<Vdc<Vt1が成立する。ステップS82において、電流垂下値I3は、電圧値Vdcの低下に対して単調に低下する値に設定される。 Step S81 is executed when the determination in step S73 is affirmative. If the determination in step S81 is affirmative, Vt2 <Vdc <Vt1 is established. In step S82, the current droop value I3 is set to a value that decreases monotonously with respect to the decrease in the voltage value Vdc.
 このように設定される電流垂下値I3を採用することにより、ステップS83,S84の実行により、電流値Iwについての垂下制御は、電圧値Vdcの低下に従って低い電流垂下値I3を上限として電流値Iwを抑制する。電圧値Vdcの低下に従って動作電力Poは低くなり、電圧値Vdcが低下しても、電流Iwが増大することが抑制され、インバータ4の発熱が抑制される。このようなステップS82,S83,S84による動作電力Poの低減は上述の電力低減動作の例示である。 By adopting the current droop value I3 set in this way, the droop control for the current value Iw is performed with the lower current droop value I3 as the upper limit as the voltage value Vdc decreases by executing steps S83 and S84. Suppress. As the voltage value Vdc decreases, the operating power Po decreases, and even if the voltage value Vdc decreases, the current Iw is suppressed from increasing, and the heat generation of the inverter 4 is suppressed. Such reduction of the operating power Po in steps S82, S83, and S84 is an example of the above-described power reduction operation.
 ステップS74,S82,S83の説明から、以下のように言える:
 電圧値Vdcが第1値Vt1以上であれば、動作電力PoをI3=I31という第1条件のもとで低減して供給し;
 電圧値Vdcが第1値Vt1未満であれば、動作電力PoをI3=f(Vdc)という第2条件のもとで低減して供給する。
From the description of steps S74, S82, and S83, the following can be said:
If the voltage value Vdc is greater than or equal to the first value Vt1, the operating power Po is reduced and supplied under the first condition of I3 = I31;
If the voltage value Vdc is less than the first value Vt1, the operating power Po is reduced and supplied under the second condition of I3 = f (Vdc).
 Vdc<Vt1であればf(Vdc)<I31である。電圧値Vdcが第1値Vt1未満の場合の方が、電圧値Vdcが第1値Vt1以上である場合と比較して、動作電力Poが低減されやすい。換言すれば動作電力Poを低減するための第2条件は第1条件よりも緩和される。 If Vdc <Vt1, f (Vdc) <I31. When the voltage value Vdc is less than the first value Vt1, the operating power Po is more likely to be reduced than when the voltage value Vdc is greater than or equal to the first value Vt1. In other words, the second condition for reducing the operating power Po is more relaxed than the first condition.
 第2の条件は第1の条件よりも緩和されているものの、Vdc<Vt1であれば必ずしも動作電力Poが低減されるというわけではない。ステップS83の判断が否定的な結果の場合には、ステップS84に進まず垂下制御が行われないからである。Vdc<Vt1のとき、制御回路6はインバータ4に対して電力の低減を可能にさせるということができる。 Although the second condition is more relaxed than the first condition, the operating power Po is not necessarily reduced if Vdc <Vt1. This is because when the determination in step S83 is negative, the process does not proceed to step S84 and the drooping control is not performed. When Vdc <Vt1, it can be said that the control circuit 6 enables the inverter 4 to reduce power.
 ステップS81,S82の処理がなければ、ステップS73の判断結果が肯定的(即ちVdc<Vt1)なときにはステップS75が実行される。ステップS81,S82を設ければ、電力低減動作を行なうことにより、ステップS75による低電圧保護が発生する頻度が低下する。換言すれば、電力低減動作は、低電圧保護によって交流負荷5が停止する事態を回避し易くする。 If there is no processing in steps S81 and S82, step S75 is executed when the determination result in step S73 is affirmative (that is, Vdc <Vt1). If steps S81 and S82 are provided, the frequency of low-voltage protection in step S75 is reduced by performing the power reduction operation. In other words, the power reduction operation facilitates avoiding a situation where the AC load 5 stops due to low voltage protection.
 電圧値Vdcが低下した後、電圧値Vdcが上昇することもある。例えば商用電源1の故障によって交流電圧V2が低下し、これに起因して電圧値Vdcが低下していた場合、あるいはコンデンサ3の蓄電量の不足に起因して電圧値Vdcが低下した場合、電力低減動作が行なわれることによって、電圧値Vdcが上昇することがある。 After the voltage value Vdc has decreased, the voltage value Vdc may increase. For example, when the AC voltage V2 is lowered due to a failure of the commercial power supply 1 and the voltage value Vdc is lowered due to this, or when the voltage value Vdc is lowered due to insufficient storage amount of the capacitor 3, When the reduction operation is performed, the voltage value Vdc may increase.
 垂下制御として例示したモータの回転速度の低減は、電流Iwを直接に低減する。ただし、モータの回転速度および/または回転トルクの低減を招来する事象を発生させることにより、モータの回転速度および/または回転トルクの低減を介して間接的に動作電力Poを低減させることも、垂下制御に含めて考えることができる。以下、そのような制御を説明する。 Reduction of the rotation speed of the motor exemplified as the drooping control directly reduces the current Iw. However, it is also possible to reduce the operating power Po indirectly by reducing the rotational speed and / or rotational torque of the motor by generating an event that causes a reduction in the rotational speed and / or rotational torque of the motor. It can be included in the control. Hereinafter, such control will be described.
 図4は冷凍回路9の構成を例示するブロック図である。冷凍回路9は圧縮機91、熱交換器92,94、膨張弁93を備える。不図示の冷媒が圧縮機91によって圧縮され、熱交換器92によって蒸発し、膨張弁93によって膨張し、熱交換器94によって凝縮する。図中の白矢印は冷媒が循環する方向を示す。 FIG. 4 is a block diagram illustrating the configuration of the refrigeration circuit 9. The refrigeration circuit 9 includes a compressor 91, heat exchangers 92 and 94, and an expansion valve 93. A refrigerant (not shown) is compressed by the compressor 91, evaporated by the heat exchanger 92, expanded by the expansion valve 93, and condensed by the heat exchanger 94. The white arrows in the figure indicate the direction in which the refrigerant circulates.
 交流負荷5は冷凍回路9に採用される圧縮機91を駆動するモータである。また、膨張弁93は電磁弁であって、制御回路6で生成された制御信号Lによってその開度が調整される。例えば当該電磁弁は制御信号Lによって駆動されるステッピングモータによって開度が決定される。例えば当該ステッピングモータの動作電力はコンバータ2の出力から得ることができる。 The AC load 5 is a motor that drives a compressor 91 employed in the refrigeration circuit 9. The expansion valve 93 is an electromagnetic valve, and its opening degree is adjusted by a control signal L generated by the control circuit 6. For example, the opening degree of the electromagnetic valve is determined by a stepping motor driven by the control signal L. For example, the operating power of the stepping motor can be obtained from the output of the converter 2.
 ステップS84(図2参照)では制御信号Lによって膨張弁93の開度を増加させる。これにより圧縮機91の機械的負荷が低減するので、圧縮機91を駆動するモータ5に必要な回転トルクが低減し、電流Iwが低減する。膨張弁93の開度を増加させる処理を垂下制御に含めて捉えることができる。 In step S84 (see FIG. 2), the opening degree of the expansion valve 93 is increased by the control signal L. Thereby, since the mechanical load of the compressor 91 is reduced, the rotational torque required for the motor 5 that drives the compressor 91 is reduced, and the current Iw is reduced. The process of increasing the opening degree of the expansion valve 93 can be included in the drooping control.
 上述の様に制御信号Lおよび/または制御信号Gを生成する制御回路6は、マイクロコンピュータと記憶装置を含んで構成することができる。マイクロコンピュータは、プログラムに記述された各処理のステップ(換言すれば手順)を実行する。例えば図2の各ステップは当該マイクロコンピュータで実行される。 As described above, the control circuit 6 that generates the control signal L and / or the control signal G can be configured to include a microcomputer and a storage device. The microcomputer executes each processing step (in other words, a procedure) described in the program. For example, each step in FIG. 2 is executed by the microcomputer.
 上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、各処理ステップに対応する各種機能を実現するとも把握できる。制御回路6はこれに限らず、制御回路6によって実行される各種手順、実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。 The storage device can be composed of one or more of various storage devices such as ROM (Read Only Memory), RAM (Random Access Memory), and rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.). . The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program and can realize that various functions corresponding to each processing step are realized. The control circuit 6 is not limited to this, and various procedures executed by the control circuit 6, various means to be realized, or some or all of various functions may be realized by hardware.
 上述のように、本実施の形態では、インバータ4と、制御回路6とを備える交流負荷駆動システム100が提案された。交流負荷駆動システム100は、交流負荷5を駆動する交流負荷駆動システムであると言える。インバータ4は、入力された直流電圧Vdcを交流電圧V1に変換して交流負荷5へ印加する。制御回路6は、電圧値Vdcが第1値Vt1未満のとき、インバータ4から交流負荷5に供給する動作電力Poの低減を可能にさせる。動作電力Poの低減はインバータ4の発熱を抑制する。 As described above, in this embodiment, the AC load drive system 100 including the inverter 4 and the control circuit 6 has been proposed. It can be said that the AC load drive system 100 is an AC load drive system that drives the AC load 5. The inverter 4 converts the input DC voltage Vdc into an AC voltage V 1 and applies it to the AC load 5. The control circuit 6 makes it possible to reduce the operating power Po supplied from the inverter 4 to the AC load 5 when the voltage value Vdc is less than the first value Vt1. Reduction of the operating power Po suppresses the heat generation of the inverter 4.
 電圧値Vdcが第1値Vt1以上であれば、動作電力Poは第1条件のもとで低減される。電圧値Vdcが第1値Vt1未満であれば、動作電力Poは第1条件よりも緩和された第2条件のもとで低減される。 If the voltage value Vdc is equal to or higher than the first value Vt1, the operating power Po is reduced under the first condition. If the voltage value Vdc is less than the first value Vt1, the operating power Po is reduced under the second condition that is more relaxed than the first condition.
 電圧値Vdcが第1値Vt1未満であって、第1値Vt1よりも低い第2値Vt2以上であり、インバータ4に入力される電流、若しくは交流負荷5に出力される電流が、その上限値たる電流垂下値I3以上であれば、当該電流についての垂下制御が行なわれる。電圧値Vdcの上昇に対して電流垂下値I3は単調非減少である。これにより、インバータ4から交流負荷5に供給する動作電力Poが低減される。 The voltage value Vdc is less than the first value Vt1, and is equal to or higher than the second value Vt2 lower than the first value Vt1, and the current input to the inverter 4 or the current output to the AC load 5 is the upper limit value. If the current droop value is equal to or greater than I3, the droop control for the current is performed. The current drooping value I3 is monotonously non-decreasing with respect to the increase of the voltage value Vdc. Thereby, the operating power Po supplied from the inverter 4 to the AC load 5 is reduced.
 電圧値Vdcが第1値Vt1よりも低い第2値Vt2未満であれば、交流負荷5への動作電力Poの供給を停止してもよい。これにより低電圧保護が行なわれる。電力低減動作は、低電圧保護による交流負荷5の停止という事態を回避し易くする。 If the voltage value Vdc is less than the second value Vt2 lower than the first value Vt1, the supply of the operating power Po to the AC load 5 may be stopped. This provides low voltage protection. The power reduction operation facilitates avoiding a situation where the AC load 5 is stopped due to the low voltage protection.
 例えば交流負荷5はモータであって、垂下制御には、モータ5の回転速度を低減する制御を含めてもよい。これは動作電力Poの直接的な低減を招来する。 For example, the AC load 5 is a motor, and the drooping control may include control for reducing the rotational speed of the motor 5. This leads to a direct reduction in operating power Po.
 モータ5の例としては、冷凍回路9に採用される圧縮機91を駆動するモータを挙げることができる。例えばモータ5は、膨張弁93を備える冷凍回路9に採用される圧縮機91を駆動する。この場合、垂下制御は膨張弁93の開度を増加させる制御を含めてもよい。これは動作電力Poの間接的な低減を招来する。 Examples of the motor 5 include a motor that drives a compressor 91 that is employed in the refrigeration circuit 9. For example, the motor 5 drives a compressor 91 that is employed in the refrigeration circuit 9 including the expansion valve 93. In this case, the drooping control may include control for increasing the opening degree of the expansion valve 93. This leads to an indirect reduction in operating power Po.
 モータ5は、空気調和機に採用されるファンや、空気清浄機に採用されるファンを駆動するモータとして採用することもできる。 The motor 5 can also be employed as a fan for driving a fan employed in an air conditioner or a fan employed in an air purifier.
 直流電圧Vdcは例えば、コンバータ2によって交流電圧V2から変換して得られる。この場合、例えば直流電圧Vdcは交流電圧V2の低下に起因して低下する。コンバータ2が入力する入力電流Iiについての垂下制御を行なってもよい。例えば入力電流Iiが上限値以上であれば入力電流Iiについての垂下制御を行なう。例えば当該上限値は直流電圧Vdcの上昇に対して単調非減少に設定することができる。具体的には例えば、ステップS83(図2参照)において電流Iwを入力電流Iiに読み替えたフローチャートを採用することができる。当該上限値は、上述の電流垂下値I3とは独立して設定することができる。 The DC voltage Vdc is obtained by converting from the AC voltage V2 by the converter 2, for example. In this case, for example, the DC voltage Vdc decreases due to the decrease in the AC voltage V2. The drooping control may be performed on the input current Ii input by the converter 2. For example, if the input current Ii is not less than the upper limit value, the drooping control is performed for the input current Ii. For example, the upper limit value can be set monotonically non-decreasing with respect to the increase of the DC voltage Vdc. Specifically, for example, a flowchart in which the current Iw is replaced with the input current Ii in step S83 (see FIG. 2) can be employed. The upper limit value can be set independently of the above-described current droop value I3.
 直流電圧Vdcの低下が、例えばコンデンサ3の蓄電量の不足に起因するとき、直流電圧Vdcで駆動される直流負荷に供給する電力が低減されてもよい。これはインバータ4の制御と独立して行なうことができる。 When the decrease in the DC voltage Vdc is caused by, for example, a shortage of the charged amount of the capacitor 3, the power supplied to the DC load driven by the DC voltage Vdc may be reduced. This can be performed independently of the control of the inverter 4.
 例えば冷凍回路9において、膨張弁93の動作電力がコンデンサ3から直流電力として供給される直流負荷である場合には、直流電圧Vdcが第1値Vt1未満のときに膨張弁93の動作を停止してもよい。これにより、コンデンサ3の蓄電量の不足は解消に向かい、電圧値Vdcの低下は軽減する。 For example, in the refrigeration circuit 9, when the operating power of the expansion valve 93 is a DC load supplied as DC power from the capacitor 3, the operation of the expansion valve 93 is stopped when the DC voltage Vdc is less than the first value Vt1. May be. As a result, the shortage of the charged amount of the capacitor 3 is resolved, and the decrease in the voltage value Vdc is reduced.
 インバータ4を制御する方法も本実施の形態で提案された。この制御方法は、電圧値Vdcが第1値Vt1未満のとき、インバータ4から交流負荷5に供給する動作電力Poの低減を可能にする。 A method for controlling the inverter 4 has also been proposed in this embodiment. This control method makes it possible to reduce the operating power Po supplied from the inverter 4 to the AC load 5 when the voltage value Vdc is less than the first value Vt1.
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。上述の各種の実施形態および変形例は相互に組み合わせることができる。 Although the embodiments have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. The various embodiments and modifications described above can be combined with each other.

Claims (12)

  1.  入力された直流電圧(Vdc)を第1交流電圧(V1)に変換して交流負荷(5)へ印加するインバータ(4)と、
     前記直流電圧の電圧値(Vdc)が所定の第1値(Vt1)未満のとき、前記インバータから前記交流負荷に供給する電力(Po)の低減(S84)を可能にさせる制御回路(6)と
    を備える、交流負荷駆動システム(100)。
    An inverter (4) for converting the input DC voltage (Vdc) to the first AC voltage (V1) and applying it to the AC load (5);
    A control circuit (6) that enables reduction (S84) of power (Po) supplied from the inverter to the AC load when the voltage value (Vdc) of the DC voltage is less than a predetermined first value (Vt1); An AC load drive system (100) comprising:
  2.  前記電圧値(Vdc)が前記第1値(Vt1)以上であれば、前記電力が第1条件(S74,S83)のもとで低減(S84)され、
     前記電圧値(Vdc)が前記第1値未満であれば、前記第1条件よりも緩和された第2条件(S82,S83)のもとで低減される、請求項1記載の交流負荷駆動システム(100)。
    If the voltage value (Vdc) is greater than or equal to the first value (Vt1), the power is reduced (S84) under the first condition (S74, S83),
    The AC load drive system according to claim 1, wherein if the voltage value (Vdc) is less than the first value, the voltage value is reduced under a second condition (S82, S83) that is relaxed than the first condition. (100).
  3.  前記電圧値(Vdc)が前記第1値(Vt1)未満であって、前記第1値(Vt1)よりも低い所定の第2値(Vt2)以上であり、前記インバータ(4)に入力される若しくは前記交流負荷(5)に出力される電流(Iw)が第1の上限値(I3)以上であれば(S83)、前記電流についての垂下制御(S84)が行なわれ、
     前記電圧値の上昇に対して前記第1の上限値は単調非減少である、請求項1又は請求項2に記載の交流負荷駆動システム(100)。
    The voltage value (Vdc) is less than the first value (Vt1) and greater than or equal to a predetermined second value (Vt2) lower than the first value (Vt1), and is input to the inverter (4). Alternatively, if the current (Iw) output to the AC load (5) is greater than or equal to the first upper limit value (I3) (S83), the drooping control (S84) for the current is performed,
    The AC load drive system (100) according to claim 1 or 2, wherein the first upper limit value is monotonously non-decreasing with respect to the increase in the voltage value.
  4.  前記電圧値(Vdc)が前記第1値(Vt1)よりも低い所定の第2値(Vt2)未満であれば、前記交流負荷(5)への前記電力(Po)の供給が停止される(S81,S75)、請求項1又は請求項2記載の交流負荷駆動システム(100)。 If the voltage value (Vdc) is less than a predetermined second value (Vt2) lower than the first value (Vt1), the supply of the electric power (Po) to the AC load (5) is stopped ( S81, S75), AC load drive system (100) according to claim 1 or claim 2.
  5.  前記交流負荷(5)はモータであって、
     前記垂下制御(S84)は前記モータの回転速度を低減する制御を含む、請求項3に記載の交流負荷駆動システム(100)。
    The AC load (5) is a motor,
    The AC load drive system (100) according to claim 3, wherein the drooping control (S84) includes a control for reducing a rotation speed of the motor.
  6.  前記モータ(5)は、冷凍回路(9)に採用される圧縮機(91)を駆動するモータ、空気調和機に採用されるファン、空気清浄機に採用されるファンを駆動するモータのいずれかである、請求項5記載の交流負荷駆動システム(100)。 The motor (5) is one of a motor for driving a compressor (91) employed in the refrigeration circuit (9), a fan employed in an air conditioner, and a motor driving a fan employed in an air purifier. The AC load drive system (100) according to claim 5, wherein:
  7.  前記モータ(5)は、冷凍回路(9)に採用される圧縮機(91)を駆動するモータであって、
     前記冷凍回路は膨張弁(93)を備え、
     前記垂下制御(S84)は前記膨張弁の開度を増加させる制御を含む、請求項5記載の交流負荷駆動システム(100)。
    The motor (5) is a motor for driving a compressor (91) employed in the refrigeration circuit (9),
    The refrigeration circuit includes an expansion valve (93),
    The AC load drive system (100) according to claim 5, wherein the drooping control (S84) includes a control for increasing an opening degree of the expansion valve.
  8.  前記直流電圧(Vdc)はコンバータ(2)によって第2交流電圧(V2)から変換して得られ、
     前記直流電圧は前記第2交流電圧(V2)の低下に起因して低下する、請求項1~7のいずれか一つに記載の交流負荷駆動システム(100)。
    The DC voltage (Vdc) is obtained by converting the second AC voltage (V2) by the converter (2).
    The AC load drive system (100) according to any one of claims 1 to 7, wherein the DC voltage decreases due to a decrease in the second AC voltage (V2).
  9.  前記コンバータ(2)へ入力する入力電流(Ii)が第2の上限値以上であれば、前記入力電流についての垂下制御(S84)を行ない、
     前記電圧値(Vdc)の上昇に対して前記第2の上限値は単調非減少である、請求項8記載の交流負荷駆動システム(100)。
    If the input current (Ii) input to the converter (2) is greater than or equal to the second upper limit value, the drooping control (S84) for the input current is performed,
    The AC load drive system (100) according to claim 8, wherein the second upper limit value is monotonously non-decreasing with respect to the increase in the voltage value (Vdc).
  10.  前記電圧値(Vdc)が前記第1値(Vt1)未満であれば、前記直流電圧で駆動される直流負荷(93)に供給する電力が低減される、請求項1から請求項9のいずれか一つに記載の交流負荷駆動システム(100)。 The power supplied to the DC load (93) driven by the DC voltage is reduced if the voltage value (Vdc) is less than the first value (Vt1). The AC load drive system (100) according to one.
  11.  請求項7記載の交流負荷駆動システム(100)によって電力が供給される前記交流負荷である前記モータが駆動する圧縮機(91)と、
     膨張弁(93)と
    を備える冷凍回路(9)。
    A compressor (91) driven by the motor as the AC load to which power is supplied by the AC load drive system (100) according to claim 7;
    A refrigeration circuit (9) comprising an expansion valve (93).
  12.  入力された直流電圧(Vdc)を第1交流電圧(V1)に変換して交流負荷(5)へ印加するインバータ(4)を制御する方法であって、
     前記直流電圧の電圧値(Vdc)が所定の第1値(Vt1)未満のとき、前記インバータから前記交流負荷に供給する電力(Po)の低減(S84)を可能にする、インバータの制御方法。
    A method of controlling an inverter (4) that converts an input DC voltage (Vdc) into a first AC voltage (V1) and applies it to an AC load (5),
    An inverter control method that enables reduction (S84) of electric power (Po) supplied from the inverter to the AC load when a voltage value (Vdc) of the DC voltage is less than a predetermined first value (Vt1).
PCT/JP2018/043670 2018-01-31 2018-11-28 Inverter control method, alternating current load drive system, and refrigeration circuit WO2019150727A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018407010A AU2018407010B2 (en) 2018-01-31 2018-11-28 Inverter control method, alternating current load drive system, and refrigeration circuit
MYPI2020003556A MY185112A (en) 2018-01-31 2018-11-28 Inverter control method, alternating current load drive system, and refrigeration circuit
CN201880087047.2A CN111630765B (en) 2018-01-31 2018-11-28 Control method of inverter, alternating-current load driving system and refrigeration circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015246 2018-01-31
JP2018015246A JP6638746B2 (en) 2018-01-31 2018-01-31 Inverter control method, AC load drive system, refrigeration circuit

Publications (1)

Publication Number Publication Date
WO2019150727A1 true WO2019150727A1 (en) 2019-08-08

Family

ID=67479716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043670 WO2019150727A1 (en) 2018-01-31 2018-11-28 Inverter control method, alternating current load drive system, and refrigeration circuit

Country Status (5)

Country Link
JP (1) JP6638746B2 (en)
CN (1) CN111630765B (en)
AU (1) AU2018407010B2 (en)
MY (1) MY185112A (en)
WO (1) WO2019150727A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303395A (en) * 1994-04-28 1995-11-14 Mitsubishi Electric Corp Inverter system and its controlling
JPH10162945A (en) * 1996-11-29 1998-06-19 Toshiba Corp Inverter
JP2003274666A (en) * 2002-03-14 2003-09-26 Sanken Electric Co Ltd Inverter device and method for controlling the same
JP2005328583A (en) * 2004-05-12 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Motor controller and electric pump device
JP2007288971A (en) * 2006-04-19 2007-11-01 Daikin Ind Ltd Power converter, its control method, and air-conditioning machine
JP2009247064A (en) * 2008-03-28 2009-10-22 Daikin Ind Ltd Power conversion device
JP2014155343A (en) * 2013-02-08 2014-08-25 Daikin Ind Ltd Power consumption reduction device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472856B2 (en) * 2001-03-09 2002-10-29 Semtech Corporation Bounded power supply voltage positioning
JP5031547B2 (en) * 2007-12-27 2012-09-19 東芝キヤリア株式会社 Compressor drive device and refrigeration cycle device
CN103023424B (en) * 2011-09-23 2015-12-02 苏州汇川技术有限公司 Low-voltage protection method and there is the crane of under-voltage protection function
WO2014167714A1 (en) * 2013-04-12 2014-10-16 三菱電機株式会社 Power conversion device, motor drive device provided therewith, fan provided with said motor drive device, compressor, and air conditioner, refrigerator, and freezer provided with said fan and compressor
JP6001587B2 (en) * 2014-03-28 2016-10-05 株式会社デンソー Power converter
KR101752532B1 (en) * 2014-10-21 2017-06-29 엘에스산전 주식회사 Method for controlling inverter
CN107086843A (en) * 2017-06-30 2017-08-22 广东美的制冷设备有限公司 Motor driven systems and transducer air conditioning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303395A (en) * 1994-04-28 1995-11-14 Mitsubishi Electric Corp Inverter system and its controlling
JPH10162945A (en) * 1996-11-29 1998-06-19 Toshiba Corp Inverter
JP2003274666A (en) * 2002-03-14 2003-09-26 Sanken Electric Co Ltd Inverter device and method for controlling the same
JP2005328583A (en) * 2004-05-12 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Motor controller and electric pump device
JP2007288971A (en) * 2006-04-19 2007-11-01 Daikin Ind Ltd Power converter, its control method, and air-conditioning machine
JP2009247064A (en) * 2008-03-28 2009-10-22 Daikin Ind Ltd Power conversion device
JP2014155343A (en) * 2013-02-08 2014-08-25 Daikin Ind Ltd Power consumption reduction device

Also Published As

Publication number Publication date
JP2019134601A (en) 2019-08-08
CN111630765A (en) 2020-09-04
CN111630765B (en) 2022-04-26
AU2018407010B2 (en) 2021-04-01
AU2018407010A1 (en) 2020-09-17
JP6638746B2 (en) 2020-01-29
MY185112A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020054262A1 (en) Inverter control method, system for supplying power to ac load, and refrigeration circuit
JP5711683B2 (en) Motor driving device, air conditioner equipped with the same, and motor driving method
JP3955285B2 (en) Inverter control device for motor drive and air conditioner
JP5748694B2 (en) Motor drive control device and refrigeration air conditioner
JP3980005B2 (en) Inverter control device for motor drive and air conditioner
JP5984470B2 (en) Power converter, compressor, blower, air conditioner, and refrigerator
JP2009055719A (en) Air compressor and motor drive control method
JP7179222B2 (en) Power conversion device, refrigeration cycle device and air conditioner
WO2019150727A1 (en) Inverter control method, alternating current load drive system, and refrigeration circuit
JP3898753B2 (en) heat pump
JP2008172880A (en) Method and device for driving brushless dc motor
JP7345674B2 (en) Power conversion equipment, motor drive equipment, and refrigeration cycle application equipment
JP4911109B2 (en) Power converter and air conditioner equipped with the same
JP2012165582A (en) Motor controller
WO2018043258A1 (en) Power conversion device and air conditioner equipped with same
JP3468232B2 (en) PWM / PAM control type motor drive device and air conditioner using the same
JP2007174806A (en) Motor driving device and motor driver equipped therewith
AU2021417065B2 (en) Power conversion device, motor driving device, and refrigeration-cycle application device
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
JP2007151207A (en) Controller of air conditioner
JP2013135516A (en) Electric power conversion system and air conditioner
AU2020475165B2 (en) Power conversion apparatus, motor drive apparatus, and refrigeration cycle apparatus
JP6109527B2 (en) Control device and method, program, and air conditioner provided with the same
JP2005245167A (en) Dc power supply unit
CN116783810A (en) Power conversion device, motor drive device, and refrigeration cycle application device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018407010

Country of ref document: AU

Date of ref document: 20181128

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18904202

Country of ref document: EP

Kind code of ref document: A1