WO2020054262A1 - Inverter control method, system for supplying power to ac load, and refrigeration circuit - Google Patents

Inverter control method, system for supplying power to ac load, and refrigeration circuit Download PDF

Info

Publication number
WO2020054262A1
WO2020054262A1 PCT/JP2019/030849 JP2019030849W WO2020054262A1 WO 2020054262 A1 WO2020054262 A1 WO 2020054262A1 JP 2019030849 W JP2019030849 W JP 2019030849W WO 2020054262 A1 WO2020054262 A1 WO 2020054262A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
voltage
load
vac
power
Prior art date
Application number
PCT/JP2019/030849
Other languages
French (fr)
Japanese (ja)
Inventor
俊彰 佐藤
雄希 中島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201980055943.5A priority Critical patent/CN112640283B/en
Priority to BR112021003200-2A priority patent/BR112021003200A2/en
Priority to MYPI2021000887A priority patent/MY187349A/en
Publication of WO2020054262A1 publication Critical patent/WO2020054262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a technology for converting power.
  • Patent Document 1 discloses that when the voltage input to the inverter drops extremely, the operation of the inverter is stopped, thereby preventing malfunction of the inverter and destruction of components.
  • the present disclosure suppresses heat generation of a converter that outputs a voltage input to an inverter.
  • the power supply system for an AC load includes an inverter (4) that applies a first AC voltage (V1) converted from a DC voltage (Vdc) and supplies power (Po) to an AC load (5). , A converter (2) for converting the second AC voltage (V2) into the DC voltage (Vdc), and a control circuit (6).
  • the control circuit when the voltage value (Vac) of the second AC voltage is lower than a predetermined first value (Vt1), the control circuit allows the inverter to reduce the power (S85).
  • a second aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, wherein the power is in the first condition if the voltage value (Vac) is equal to or more than the first value (Vt1). Under the conditions (S83, S84), if the voltage value is less than the first value, the power is reduced under the second condition (S82, S84) in which the power is less than the first condition, respectively ( S85) is performed.
  • a second aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, wherein the voltage value (Vac) is less than the first value (Vt1), and the inverter (4) If the current (Iw) input to the AC load (5) or output to the AC load (5) is equal to or more than the first upper limit (I3), the droop control (S85) for the current is performed.
  • the first upper limit is monotonically non-decreasing with respect to the increase in the voltage value.
  • a third aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, wherein the voltage value (Vac) is less than the first value (Vt1) and the converter (2) If the current value (Ii) of the input current input to the input current is equal to or greater than the second upper limit, droop control (S85) for the input current is performed.
  • the second upper limit is monotonically non-decreasing with respect to an increase in the voltage value (Vac).
  • a fourth aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, the second aspect, or the third aspect, wherein the voltage value (Vac) is the first value (Vt1). If it is lower than the second predetermined value (Vt2), the supply of the power (Po) to the AC load (5) is stopped (S73, S74).
  • a fifth aspect of the power supply system for an AC load according to the present disclosure is the second aspect or the third aspect, wherein the AC load (5) is a motor.
  • the drooping control (S85) includes control for reducing the rotation speed of the motor.
  • a sixth aspect of the system for supplying power to an AC load according to the present disclosure is the fifth aspect, wherein the motor (5) drives a compressor (91) employed in a refrigeration circuit (9). Either a motor, a fan used in an air conditioner, or a motor that drives a fan used in an air purifier.
  • a seventh aspect of the system for supplying power to an AC load according to the present disclosure is the fifth aspect, wherein the motor (5) is a motor that drives a compressor (91) included in a refrigeration circuit (9). is there.
  • the refrigeration circuit further includes an expansion valve (93).
  • the drooping control (S85) includes control for increasing the opening of the expansion valve.
  • An eighth aspect of the power supply system for an AC load according to the present disclosure is any one of the first to seventh aspects, wherein the voltage value (Vac) is less than the first value (Vt1). If so, the power supplied to the DC load (93) driven by the DC voltage is reduced.
  • the refrigeration circuit (9) of the present disclosure includes a compressor (91) driven by the motor (5) and an expansion valve (93).
  • the motor (5) is the AC load (5) to which power is supplied by the seventh aspect of the system for supplying power to an AC load according to the present disclosure.
  • the method of controlling the inverter according to the present disclosure is a method of controlling the inverter (4) that converts the input DC voltage (Vdc) into the first AC voltage (V1) and applies the converted voltage to the AC load (5).
  • the DC voltage (Vdc) is obtained by converting the second AC voltage (V2) by the converter (2).
  • FIG. 2 is a block diagram illustrating a configuration of an AC load driving system.
  • 4 is a flowchart illustrating a power reduction operation of a control circuit and an operation accompanying the power reduction operation.
  • 5 is a graph illustrating the dependence of a function that becomes a current droop value on a voltage value. It is a block diagram which illustrates the structure of a refrigeration circuit.
  • FIG. 1 is a block diagram showing the configuration of the AC load driving system 100.
  • the AC load driving system 100 drives the AC load 5.
  • the AC load 5 is an AC motor.
  • the AC motor drives a compressor used in a refrigeration circuit.
  • the AC motor drives a fan that blows air to a heat exchanger used in a refrigeration circuit.
  • the AC motor drives a fan used in an air purifier.
  • the AC load driving system 100 includes the inverter 4.
  • the inverter 4 converts the DC voltage Vdc input thereto into an AC voltage V1 and applies the AC voltage V1 to the AC load 5.
  • the inverter 4 supplies the AC load 5 with power (hereinafter referred to as “operating power”) Po for operating the AC load 5.
  • the number of phases of the AC voltage V1 corresponds to the number of phases of the AC load 5.
  • the AC load driving system 100 includes the converter 2.
  • Converter 2 converts AC voltage V2 and outputs DC voltage Vdc.
  • the AC voltage V2 is output from, for example, a commercial power supply 1 that is an AC power supply.
  • An input current having a current value Ii is input from the commercial power supply 1 to the converter 2.
  • Electric power Ps is supplied from the commercial power supply 1 to the AC load driving system 100.
  • the converter 2 employs, for example, a diode bridge rectifier circuit, a step-up converter, a step-down converter, and a step-up / step-down converter.
  • FIG. 1 illustrates a case where the AC load driving system 100 further includes a filter 7 between the commercial power supply 1 and the input side of the converter 2.
  • the AC voltage V2 is applied from the commercial power supply 1 to the converter 2 via the filter 7.
  • the filter 7 is a choke input type low-pass filter.
  • the current value Ii the value of the current flowing from the commercial power supply 1 to the filter 7 may be adopted.
  • the voltage across the capacitor of the filter 7 may be regarded as the AC voltage V2.
  • FIG. 1 illustrates a case where the AC load driving system 100 further includes a capacitor 3.
  • Capacitor 3 supports DC voltage Vdc.
  • Converter 2 charges capacitor 3.
  • the capacitor 3 discharges and supplies power (hereinafter, referred to as “input power”) Pi to be input to the inverter 4 alone or together with the converter 2. If the loss in the inverter 4 is ignored, the input power Pi is equal to the operating power Po.
  • the AC load driving system 100 includes the control circuit 6.
  • the control circuit 6 controls the operation of the inverter 4.
  • the inverter 4 performs a switching operation to convert the DC voltage Vdc to an AC voltage V1.
  • Inverter 4 includes a switching element that performs the above-described switching operation, for example.
  • the control circuit 6 generates a control signal G for controlling the switching operation, and outputs the control signal G to the inverter 4.
  • the AC voltage V1 fluctuates depending on the switching operation of the inverter 4.
  • the fluctuation of the AC voltage V1 fluctuates the operating power Po.
  • the fluctuation of the operating power Po fluctuates the operation of the AC load 5.
  • control circuit 6 varies the operating power Po through the control of the inverter 4 to drive the AC load 5 by various operations.
  • the case where the AC load 5 is a three-phase motor will be described as an example.
  • the command data J, the voltage value Vac of the AC voltage V2, and the value of the current Iw flowing through the inverter 4 (hereinafter also referred to as “current value Iw”) are input to the control circuit 6.
  • the command data J is, for example, a command value for the rotation speed or rotation torque of the motor 5.
  • the value of the DC voltage Vdc may be input to the control circuit 6.
  • the voltage value Vac is obtained by a known method using a known voltage sensor
  • the current value Iw is obtained by a known method using a known current sensor.
  • the current value Iw can be obtained by measuring the current input to the inverter 4.
  • the command data J is set depending on, for example, the cooling performance of a refrigeration circuit using the compressor when the motor 5 drives the compressor.
  • the setting is, for example, a technique known as control for driving a compressor based on a temperature setting in an air conditioner.
  • control for driving a compressor based on a temperature setting in an air conditioner.
  • an increase in the rotational speed of the compressor can be adopted.
  • the instruction value of the rotational speed indicated by the instruction data J increases.
  • the control circuit 6 determines the operating power Po using the command data J, the voltage value Vac, and the current value Iw. For example, when the command data J is a command value for a rotation speed or a rotation torque, an increase in the command value results in an increase in the operating power Po.
  • the control circuit 6 generates the control signal G so that the operating power Po is supplied from the inverter 4 to the AC load 5.
  • a method of controlling an inverter that causes the inverter 4 to perform an operation of reducing the operating power Po when the voltage value Vac decreases is proposed.
  • the control circuit 6 changes the control signal G so that the inverter 4 performs the above operation. This is because the reduction in the operating power Po leads to a reduction in the input power Pi, and thus the power Ps, so that the increase in the current value Ii is reduced or reduced.
  • voltage value Vac is less than a predetermined threshold value (hereinafter, referred to as “first value Vt1” for convenience)
  • voltage value Vac is equal to or greater than the predetermined threshold value.
  • power reducing operation is performed under different conditions for supplying the operating power Po to the inverter 4.
  • the control circuit 6 generates a control signal G that causes the inverter 4 to perform an operation of reducing the operating power Po, and outputs the control signal G to the inverter 4.
  • FIG. 2 is a flowchart showing the power reduction operation of the control circuit 6 and the accompanying operation.
  • the operating power Po is set.
  • the setting is a determination of the operating power Po based on the command data J, the voltage value Vac, and the current value Iw, and is a process performed by a known technique.
  • the operating power Po may be determined indirectly by determining the operating state of the AC load 5 (for example, the rotational speed or torque of the motor load). .
  • step S72 control for operating inverter 4 while maintaining operating power Po is performed.
  • the control is a control for operating the inverter 4 while maintaining the operation power Po set in step S71, and is a process performed by a known technique.
  • step S73 when the voltage value Vac drops abnormally, a comparison for stopping the driving of the AC load 5 is performed.
  • step S73 for example, the voltage value Vac is compared with a predetermined second value Vt2.
  • the second value Vt2 is smaller than the first value Vt1. If voltage value Vac is less than second value Vt2 (that is, if Vac ⁇ Vt2 is denied), the process proceeds to step S74.
  • step S74 the supply of the operating power Po from the inverter 4 to the AC load 5 is stopped.
  • a decrease in voltage value Vac causes a decrease in DC voltage Vdc.
  • Step S73 may include a process of protecting the DC voltage Vdc from a low voltage in such a case.
  • the stop of the supply of the operating power Po is treated as a process different from the power reduction operation of supplying the operating power Po, although the process is reduced.
  • step S8 If the voltage value Vac is equal to or greater than the second value Vt2 in step S73 (that is, if Vac ⁇ Vt2 is affirmative), the process proceeds to step S8.
  • control circuit 6 performs a power reduction operation.
  • step S8 includes a plurality of steps S81 to S85, and in step S84, the process may branch and exit from the middle of step S8.
  • step S81 the first value Vt1 is compared with the voltage value Vac. As a result of the comparison, if the voltage value Vac is less than the first value Vt1 (that is, if Vac ⁇ Vt1 is affirmative), the process proceeds to step S82. If voltage value Vac is equal to or greater than first value Vt1 (that is, if Vac ⁇ Vt1 is denied), the process proceeds to step S83.
  • step S85 so-called droop control is performed on the current Iw.
  • step S84 it is determined whether droop control is necessary prior to step S85.
  • the drooping control there is a control in which the AC load 5 is a motor and the rotation speed is reduced.
  • the rotation speed of the motor is reduced by reducing the current Iw, and contributes to a direct reduction in the operating power Po.
  • Whether or not to perform the droop control is determined by comparing the current output from the inverter 4 to the AC load 5 with the current droop value I3. Since the current is a current flowing through the inverter 4, it can be measured as a current value Iw.
  • step S84 the process proceeds to step S85, where the drooping control is performed.
  • the current value Iw decreases. That is, in steps S84 and S85, the current droop value I3 functions as the upper limit of the current value Iw.
  • step S84 If Iw ⁇ I3 is denied in step S84 (that is, if Iw ⁇ I3), the process exits from step S8 and returns to step S72.
  • Steps S82 and S83 are processes for determining the current droop value I3.
  • the current droop value I3 is set by a function f (Vac) of the voltage value Vac.
  • the function f (Vac) is monotonic and non-decreasing with respect to an increase in the voltage value Vac.
  • the current droop value I3 is set to a predetermined value I31. For example, a value that does not depend on the voltage value Vac is adopted as the predetermined value I31.
  • step S84 is executed.
  • the process in step S84 in this case is a comparison between the current value Iw and the predetermined value I31. That is, steps S82, S83, S84, and S85 are a set of steps for performing droop control so that the current value Iw does not exceed the predetermined value I31.
  • FIG. 3 is a graph illustrating the dependence of the function f (Vac), which becomes the current droop value I3, on the voltage value Vac.
  • f (Vac) I31
  • f (Vac) I32
  • Vt2 ⁇ Vac ⁇ Vt1, f (Vac) I32 + (Vac ⁇ Vt2) (I31 ⁇ I32) / (Vt1 ⁇ Vt2)
  • the predetermined value I32 is smaller than the predetermined value I31 and does not depend on the voltage value Vac.
  • the above function f (Vac) is an example, and when Vt2 ⁇ Vac ⁇ Vt1, the function f (Vac) may be nonlinear with respect to the voltage value Vac. For example, the function f (Vac) may change continuously or stepwise in response to a change in the voltage value Vac.
  • Step S81 When Step S81 is executed, Vt2 ⁇ Vac is satisfied because the determination in Step S73 is affirmative. Therefore, in step S82, the current droop value I3 is set to a value that monotonously decreases with a decrease in the voltage value Vac.
  • step S84 determines whether Vac ⁇ Vt1 is relaxed than the first condition, but if Vac ⁇ Vt1, the operating power Po is not necessarily reduced. If the determination in step S84 is a negative result, the process does not proceed to step S85 and the droop control is not performed. Therefore, when Vac ⁇ Vt1, it can be said that the control circuit 6 enables the inverter 4 to reduce the power.
  • step S74 is executed, and in view of stopping the supply of the operating power Po, when Vac ⁇ Vt2, the value of the function f (Vac) need not be set. Is also good.
  • a second value Vt2 ′ smaller than the second value Vt2 that determines the function f (Vac) may be introduced, and the second value Vt2 compared with the voltage value Vac in step S73 may be replaced with the second value Vt2 ′.
  • the current droop value I3 takes a predetermined value I32, and the droop control of the current Iw is performed with this value as an upper limit.
  • a first value Vt1 ′ larger than the first value Vt1 that determines the function f (Vac) may be introduced, and the first value Vt1 compared with the voltage value Vac in step S81 may be replaced with the first value Vt1 ′.
  • the current drooping value I3 takes a predetermined value I31, and the drooping control for the current Iw is performed with this as an upper limit.
  • the function f (Vac) monotonously decreases as the voltage value Vac decreases, there may be a region that does not depend on the voltage value Vac (the function f (Vac) does not decrease monotonically as the voltage value Vac increases).
  • FIG. 4 is a block diagram illustrating the configuration of the refrigeration circuit 9.
  • the refrigeration circuit 9 includes a compressor 91, heat exchangers 92 and 94, and an expansion valve 93.
  • a refrigerant (not shown) is compressed by the compressor 91, evaporated by the heat exchanger 92, expanded by the expansion valve 93, and condensed by the heat exchanger 94.
  • the white arrow in the figure indicates the direction in which the refrigerant circulates.
  • the AC load 5 is a motor that drives a compressor 91 provided in the refrigeration circuit 9.
  • the expansion valve 93 is an electromagnetic valve, and its opening is adjusted by a control signal L generated by the control circuit 6.
  • the opening of the solenoid valve is determined by a stepping motor driven by a control signal L.
  • the operating power of the stepping motor can be obtained from the output of the converter 2.
  • step S85 (see FIG. 2), the opening of the expansion valve 93 is increased by the control signal L.
  • the mechanical load on the compressor 91 is reduced, so that the rotational torque required for the motor 5 that drives the compressor 91 is reduced, and the current Iw is reduced. Therefore, the process of increasing the opening of the expansion valve 93 can be included in the droop control.
  • the control circuit 6 that generates the control signal L and / or the control signal G as described above can be configured to include a microcomputer and a storage device.
  • the microcomputer executes the steps (in other words, procedures) of each processing described in the program. For example, each step in FIG. 2 is executed by the microcomputer.
  • the storage device can be configured by one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a rewritable nonvolatile memory (such as an EPROM (Erasable Programmable ROM)). .
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program.
  • the microcomputer can be understood as functioning as various means corresponding to each processing step described in the program, or can be understood as realizing various functions corresponding to each processing step.
  • the control circuit 6 is not limited thereto, and various procedures executed by the control circuit 6 or some or all of the realized means or functions may be partially or entirely realized by hardware.
  • DC voltage Vdc is obtained by converter 2 converting AC voltage V2.
  • the control circuit 6 allows the inverter 4 to reduce the operating power Po. As a result, the operating power Po and eventually the power Ps are reduced, and the heat generation of the converter 2 is suppressed.
  • Such a technique can be viewed as a control method of the inverter 4 that enables the operating power Po to be reduced and supplied when the voltage value Vac is less than the first value Vt1.
  • step S85 the operating power Po supplied from the inverter 4 to the AC load 5 is reduced (step S85) under the first condition (steps S83 and S84) to reduce the operating power Po. Supply. If the voltage value Vac is less than the first value Vt1, the operating power Po is reduced (step S85) under the second condition (steps S82 and S84) to supply the operating power Po.
  • the second condition is more relaxed than the first condition.
  • the droop control for the current is performed (step S85).
  • the current droop value I3 is monotonic and non-decreasing. As a result, the operating power Po supplied from the inverter 4 to the AC load 5 is reduced.
  • the drooping control for the current input to the converter 2 may be performed. For example, if the voltage value Vac is less than the first value and the current value Ii is equal to or more than the upper limit, the droop control for the current is performed.
  • the upper limit can be set to be monotonic and non-decreasing with respect to an increase in the voltage value Vac.
  • a flowchart in which the current value Iw is replaced with the current value Ii in step S84 can be employed.
  • the upper limit value can be set independently of the current droop value I3 described above.
  • the supply of the operating power Po to the AC load 5 may be stopped.
  • the AC load 5 is a motor
  • the drooping control may include control for reducing the rotation speed of the motor 5. This leads to a direct reduction of the operating power Po.
  • a motor for driving a compressor 91 provided in the refrigeration circuit 9 can be given.
  • the motor 5 drives a compressor 91 provided in the refrigeration circuit 9 including the expansion valve 93.
  • the refrigeration circuit 9 includes a compressor 91 driven by the motor 5 to which the operating power Po is supplied by the AC load driving system 100, and an expansion valve 93.
  • the drooping control may include control for increasing the opening of the expansion valve 93. This leads to an indirect reduction of the operating power Po.
  • the motor 5 can be employed as a motor for driving a fan employed in an air conditioner or a fan employed in an air purifier.
  • control for reducing power supplied to the DC load may be performed.
  • the input power Pi is the sum of the operating power Po and the power consumed by the DC power, and the reduction of the DC power contributes to the reduction of the power Ps.
  • control can be performed independently of the control of the inverter 4.
  • the expansion valve 93 when the expansion valve 93 is a DC load whose operating power is supplied as DC power from the capacitor 3, the operation of the expansion valve 93 is performed when the voltage value Vac is less than the first value Vt1. You may stop.
  • the AC load drive system 100 including the converter 2, the inverter 4, and the control circuit 6 for performing the power reduction operation can be said to be a power supply system to the AC load 5.

Abstract

The present invention suppresses heat generation of a converter. According to the present invention, an inverter applies an AC voltage converted from a DC voltage, and supplies power to an AC load. The power can be reduced when the voltage value Vac of the AC voltage converted into the DC voltage by the converter is less than a first value Vt1 (steps S84, S85).

Description

インバータの制御方法、交流負荷への電力供給システム、冷凍回路Inverter control method, power supply system to AC load, refrigeration circuit
 本開示は電力を変換する技術に関する。 The present disclosure relates to a technology for converting power.
 インバータに入力される電圧が極端に低下すると、インバータの運転を停止し、以てインバータの誤動作、部品破壊を阻止する旨が、下記の特許文献1に開示されている。 Patent Document 1 below discloses that when the voltage input to the inverter drops extremely, the operation of the inverter is stopped, thereby preventing malfunction of the inverter and destruction of components.
特開昭63-290193号公報JP-A-63-290193
 本開示はインバータに入力される電圧を出力するコンバータの発熱を抑制する。 (4) The present disclosure suppresses heat generation of a converter that outputs a voltage input to an inverter.
 本開示の、交流負荷への電力供給システムは、直流電圧(Vdc)から変換した第1交流電圧(V1)を印加して交流負荷(5)に電力(Po)を供給するインバータ(4)と、第2交流電圧(V2)を前記直流電圧(Vdc)に変換するコンバータ(2)と、制御回路(6)とを備える。 The power supply system for an AC load according to the present disclosure includes an inverter (4) that applies a first AC voltage (V1) converted from a DC voltage (Vdc) and supplies power (Po) to an AC load (5). , A converter (2) for converting the second AC voltage (V2) into the DC voltage (Vdc), and a control circuit (6).
 その第1の態様では、前記第2交流電圧の電圧値(Vac)が所定の第1値(Vt1)未満のとき、前記制御回路は前記インバータに前記電力の低減(S85)を可能にさせる。 In the first aspect, when the voltage value (Vac) of the second AC voltage is lower than a predetermined first value (Vt1), the control circuit allows the inverter to reduce the power (S85).
 本開示の交流負荷への電力供給システムの第2の態様は、その第1の態様であって、前記電圧値(Vac)が前記第1値(Vt1)以上であれば前記電力が第1条件(S83,S84)のもとで、前記電圧値が前記第1値未満であれば前記電力が前記第1条件よりも緩和された第2条件(S82,S84)のもとで、それぞれ低減(S85)される。 A second aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, wherein the power is in the first condition if the voltage value (Vac) is equal to or more than the first value (Vt1). Under the conditions (S83, S84), if the voltage value is less than the first value, the power is reduced under the second condition (S82, S84) in which the power is less than the first condition, respectively ( S85) is performed.
 本開示の交流負荷への電力供給システムの第2の態様は、その第1の態様であって、前記電圧値(Vac)が前記第1値(Vt1)未満であって、前記インバータ(4)に入力される若しくは前記交流負荷(5)に出力される電流(Iw)が第1の上限値(I3)以上であれば、前記電流についての垂下制御(S85)が行なわれる。前記電圧値の上昇に対して前記第1の上限値は単調非減少である。 A second aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, wherein the voltage value (Vac) is less than the first value (Vt1), and the inverter (4) If the current (Iw) input to the AC load (5) or output to the AC load (5) is equal to or more than the first upper limit (I3), the droop control (S85) for the current is performed. The first upper limit is monotonically non-decreasing with respect to the increase in the voltage value.
 本開示の交流負荷への電力供給システムの第3の態様は、その第1の態様であって、前記電圧値(Vac)が前記第1値(Vt1)未満であって、前記コンバータ(2)へ入力する入力電流の電流値(Ii)が第2の上限値以上であれば、前記入力電流についての垂下制御(S85)が行なわれる。前記電圧値(Vac)の上昇に対して前記第2の上限値は単調非減少である。 A third aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, wherein the voltage value (Vac) is less than the first value (Vt1) and the converter (2) If the current value (Ii) of the input current input to the input current is equal to or greater than the second upper limit, droop control (S85) for the input current is performed. The second upper limit is monotonically non-decreasing with respect to an increase in the voltage value (Vac).
 本開示の交流負荷への電力供給システムの第4の態様は、その第1の態様又は第2の態様又は第3の態様であって、前記電圧値(Vac)が前記第1値(Vt1)よりも低い所定の第2値(Vt2)未満であれば、前記交流負荷(5)への前記電力(Po)の供給が停止される(S73,S74)。 A fourth aspect of the system for supplying power to an AC load according to the present disclosure is the first aspect, the second aspect, or the third aspect, wherein the voltage value (Vac) is the first value (Vt1). If it is lower than the second predetermined value (Vt2), the supply of the power (Po) to the AC load (5) is stopped (S73, S74).
 本開示の交流負荷への電力供給システムの第5の態様は、その第2の態様又は第3の態様であって、前記交流負荷(5)はモータである。前記垂下制御(S85)は前記モータの回転速度を低減する制御を含む。 A fifth aspect of the power supply system for an AC load according to the present disclosure is the second aspect or the third aspect, wherein the AC load (5) is a motor. The drooping control (S85) includes control for reducing the rotation speed of the motor.
 本開示の交流負荷への電力供給システムの第6の態様は、その第5の態様であって、前記モータ(5)は、冷凍回路(9)に採用される圧縮機(91)を駆動するモータ、空気調和機に採用されるファン、空気清浄機に採用されるファンを駆動するモータのいずれかである。 A sixth aspect of the system for supplying power to an AC load according to the present disclosure is the fifth aspect, wherein the motor (5) drives a compressor (91) employed in a refrigeration circuit (9). Either a motor, a fan used in an air conditioner, or a motor that drives a fan used in an air purifier.
 本開示の交流負荷への電力供給システムの第7の態様は、その第5の態様であって、前記モータ(5)は、冷凍回路(9)が備える圧縮機(91)を駆動するモータである。前記冷凍回路は膨張弁(93)を更に備える。前記垂下制御(S85)は前記膨張弁の開度を増加させる制御を含む。 A seventh aspect of the system for supplying power to an AC load according to the present disclosure is the fifth aspect, wherein the motor (5) is a motor that drives a compressor (91) included in a refrigeration circuit (9). is there. The refrigeration circuit further includes an expansion valve (93). The drooping control (S85) includes control for increasing the opening of the expansion valve.
 本開示の交流負荷への電力供給システムの第8の態様は、その第1の態様から第7の態様のいずれかであって、前記電圧値(Vac)が前記第1値(Vt1)未満であれば、前記直流電圧で駆動される直流負荷(93)に供給する電力が低減される。 An eighth aspect of the power supply system for an AC load according to the present disclosure is any one of the first to seventh aspects, wherein the voltage value (Vac) is less than the first value (Vt1). If so, the power supplied to the DC load (93) driven by the DC voltage is reduced.
 本開示の冷凍回路(9)は、モータ(5)が駆動する圧縮機(91)と、膨張弁(93)とを備える。前記モータ(5)は、本開示の交流負荷への電力供給システムの第7の態様によって電力が供給される前記交流負荷(5)である。 冷凍 The refrigeration circuit (9) of the present disclosure includes a compressor (91) driven by the motor (5) and an expansion valve (93). The motor (5) is the AC load (5) to which power is supplied by the seventh aspect of the system for supplying power to an AC load according to the present disclosure.
 本開示のインバータの制御方法は、入力された直流電圧(Vdc)を第1交流電圧(V1)に変換して交流負荷(5)へ印加するインバータ(4)を制御する方法である。前記直流電圧(Vdc)はコンバータ(2)によって第2交流電圧(V2)から変換して得られる。 The method of controlling the inverter according to the present disclosure is a method of controlling the inverter (4) that converts the input DC voltage (Vdc) into the first AC voltage (V1) and applies the converted voltage to the AC load (5). The DC voltage (Vdc) is obtained by converting the second AC voltage (V2) by the converter (2).
 そして前記第2交流電圧の電圧値(Vac)が所定の第1値(Vt1)未満のとき、前記電力を低減(S85)して当該電力の供給を可能(S8)とする。 (4) When the voltage value (Vac) of the second AC voltage is less than a predetermined first value (Vt1), the power is reduced (S85) and the supply of the power is enabled (S8).
交流負荷駆動システムの構成を例示するブロック図である。FIG. 2 is a block diagram illustrating a configuration of an AC load driving system. 制御回路の電力低減動作、およびこれに付随する動作を例示するフローチャートである。4 is a flowchart illustrating a power reduction operation of a control circuit and an operation accompanying the power reduction operation. 電流垂下値となる関数の、電圧値に対する依存性を例示するグラフである。5 is a graph illustrating the dependence of a function that becomes a current droop value on a voltage value. 冷凍回路の構成を例示するブロック図である。It is a block diagram which illustrates the structure of a refrigeration circuit.
 図1は交流負荷駆動システム100の構成を示すブロック図であり、ここでは交流負荷駆動システム100が交流負荷5を駆動する。交流負荷5として、単相の交流負荷、多相の交流負荷のいずれを採用することもできる。例えば交流負荷5は交流モータである。例えば当該交流モータは冷凍回路に用いられる圧縮機を駆動する。あるいは例えば当該交流モータは冷凍回路に用いられる熱交換器に送風するファンを駆動する。あるいは例えば当該交流モータは空気清浄機に用いられるファンを駆動する。 FIG. 1 is a block diagram showing the configuration of the AC load driving system 100. Here, the AC load driving system 100 drives the AC load 5. As the AC load 5, either a single-phase AC load or a multi-phase AC load can be adopted. For example, the AC load 5 is an AC motor. For example, the AC motor drives a compressor used in a refrigeration circuit. Alternatively, for example, the AC motor drives a fan that blows air to a heat exchanger used in a refrigeration circuit. Alternatively, for example, the AC motor drives a fan used in an air purifier.
 交流負荷駆動システム100はインバータ4を備える。インバータ4は、自身に入力された直流電圧Vdcを交流電圧V1に変換して交流負荷5へ印加する。インバータ4は交流負荷5へ、交流負荷5を動作させる電力(以下「動作電力」)Poを供給する。交流電圧V1の相数は交流負荷5の相数に対応する。 The AC load driving system 100 includes the inverter 4. The inverter 4 converts the DC voltage Vdc input thereto into an AC voltage V1 and applies the AC voltage V1 to the AC load 5. The inverter 4 supplies the AC load 5 with power (hereinafter referred to as “operating power”) Po for operating the AC load 5. The number of phases of the AC voltage V1 corresponds to the number of phases of the AC load 5.
 交流負荷駆動システム100はコンバータ2を備える。コンバータ2は交流電圧V2を変換して直流電圧Vdcを出力する。交流電圧V2は例えば交流電源たる商用電源1から出力される。商用電源1からコンバータ2には電流値Iiの入力電流が入力される。商用電源1から交流負荷駆動システム100へは電力Psが供給される。 The AC load driving system 100 includes the converter 2. Converter 2 converts AC voltage V2 and outputs DC voltage Vdc. The AC voltage V2 is output from, for example, a commercial power supply 1 that is an AC power supply. An input current having a current value Ii is input from the commercial power supply 1 to the converter 2. Electric power Ps is supplied from the commercial power supply 1 to the AC load driving system 100.
 コンバータ2には例えばダイオードブリッジ整流回路、昇圧コンバータ、降圧コンバータ、昇降圧コンバータが採用される。 The converter 2 employs, for example, a diode bridge rectifier circuit, a step-up converter, a step-down converter, and a step-up / step-down converter.
 図1では交流負荷駆動システム100が商用電源1とコンバータ2の入力側との間にフィルタ7を更に備える場合が例示される。この場合、交流電圧V2はフィルタ7を介して商用電源1からコンバータ2に引加される。例えばフィルタ7はチョークインプット型のローパスフィルタである。電流値Iiは商用電源1からフィルタ7へ流れる電流の値を採用してもよい。フィルタ7が有するコンデンサの両端電圧を交流電圧V2と捉えてもよい。 FIG. 1 illustrates a case where the AC load driving system 100 further includes a filter 7 between the commercial power supply 1 and the input side of the converter 2. In this case, the AC voltage V2 is applied from the commercial power supply 1 to the converter 2 via the filter 7. For example, the filter 7 is a choke input type low-pass filter. As the current value Ii, the value of the current flowing from the commercial power supply 1 to the filter 7 may be adopted. The voltage across the capacitor of the filter 7 may be regarded as the AC voltage V2.
 図1では、交流負荷駆動システム100はコンデンサ3を更に備える場合が例示される。コンデンサ3は直流電圧Vdcを支える。コンバータ2はコンデンサ3を充電する。コンデンサ3は放電して、単独もしくはコンバータ2と共に、インバータ4へ入力する電力(以下「入力電力」と称す)Piを供給する。インバータ4における損失を無視すれば、入力電力Piは動作電力Poと等しい。 FIG. 1 illustrates a case where the AC load driving system 100 further includes a capacitor 3. Capacitor 3 supports DC voltage Vdc. Converter 2 charges capacitor 3. The capacitor 3 discharges and supplies power (hereinafter, referred to as “input power”) Pi to be input to the inverter 4 alone or together with the converter 2. If the loss in the inverter 4 is ignored, the input power Pi is equal to the operating power Po.
 交流負荷駆動システム100は制御回路6を備える。制御回路6はインバータ4の動作を制御する。例えばインバータ4はスイッチング動作を行なうことで直流電圧Vdcを交流電圧V1に変換する。インバータ4は例えば上述のスイッチング動作を行なうスイッチング素子を含む。 The AC load driving system 100 includes the control circuit 6. The control circuit 6 controls the operation of the inverter 4. For example, the inverter 4 performs a switching operation to convert the DC voltage Vdc to an AC voltage V1. Inverter 4 includes a switching element that performs the above-described switching operation, for example.
 制御回路6は当該スイッチング動作を制御する制御信号Gを生成し、インバータ4へ出力する。交流電圧V1はインバータ4のスイッチング動作に依存して変動する。交流電圧V1の変動は動作電力Poを変動させる。動作電力Poの変動は交流負荷5の動作を変動させる。 The control circuit 6 generates a control signal G for controlling the switching operation, and outputs the control signal G to the inverter 4. The AC voltage V1 fluctuates depending on the switching operation of the inverter 4. The fluctuation of the AC voltage V1 fluctuates the operating power Po. The fluctuation of the operating power Po fluctuates the operation of the AC load 5.
 従って、制御回路6はインバータ4の制御を介して動作電力Poを変動させ、以て交流負荷5を種々の動作で駆動する。交流負荷5が三相のモータであるときを例にとって説明する。 Therefore, the control circuit 6 varies the operating power Po through the control of the inverter 4 to drive the AC load 5 by various operations. The case where the AC load 5 is a three-phase motor will be described as an example.
 制御回路6には指令データJと、交流電圧V2の電圧値Vacと、インバータ4に流れる電流Iwの値(以下「電流値Iw」とも称す)とが入力される。指令データJは例えばモータ5の回転速度、あるいは回転トルクについての指令値である。直流電圧Vdcの値が制御回路6に入力されてもよい。 (4) The command data J, the voltage value Vac of the AC voltage V2, and the value of the current Iw flowing through the inverter 4 (hereinafter also referred to as “current value Iw”) are input to the control circuit 6. The command data J is, for example, a command value for the rotation speed or rotation torque of the motor 5. The value of the DC voltage Vdc may be input to the control circuit 6.
 電圧値Vacは公知の電圧センサを用いて、電流値Iwは公知の電流センサを用いて、それぞれ公知の手法で得られる。電流値Iwはインバータ4に入力する電流を測定して得ることができる。 The voltage value Vac is obtained by a known method using a known voltage sensor, and the current value Iw is obtained by a known method using a known current sensor. The current value Iw can be obtained by measuring the current input to the inverter 4.
 指令データJは例えばモータ5が圧縮機を駆動する場合、当該圧縮機を用いる冷凍回路の冷却性能に依存して設定される。当該設定は例えば空気調和機において温度設定に基づいて圧縮機を駆動する制御として周知の技術である。例えば冷却性能を高めるには、圧縮機の回転速度の増大を採用することができ、例えば指令データJが示す回転速度の指令値は増大する。 The command data J is set depending on, for example, the cooling performance of a refrigeration circuit using the compressor when the motor 5 drives the compressor. The setting is, for example, a technique known as control for driving a compressor based on a temperature setting in an air conditioner. For example, to increase the cooling performance, an increase in the rotational speed of the compressor can be adopted. For example, the instruction value of the rotational speed indicated by the instruction data J increases.
 制御回路6は指令データJと、電圧値Vacと、電流値Iwとを用いて動作電力Poを決定する。例えば指令データJが回転速度、あるいは回転トルクについての指令値であるときには、当該指令値の増大は動作電力Poの増大をもたらす。 The control circuit 6 determines the operating power Po using the command data J, the voltage value Vac, and the current value Iw. For example, when the command data J is a command value for a rotation speed or a rotation torque, an increase in the command value results in an increase in the operating power Po.
 制御回路6は、動作電力Poがインバータ4から交流負荷5へ供給されるように制御信号Gを生成する。 The control circuit 6 generates the control signal G so that the operating power Po is supplied from the inverter 4 to the AC load 5.
 インバータ4がある値の動作電力Poを供給するときに、電圧値Vacが低下すると電流値Iiが上昇する。コンバータ2の電力変換効率を一定と考えると入力電力Piは電圧値Vacと電流値Iiとの積に比例し、インバータ4における損失を無視すると入力電力Piは動作電力Poと等しいからである。電流値Iiの上昇は、コンバータ2を構成するダイオードあるいはスイッチング素子の発熱を招来する。ダイオードあるいはスイッチング素子の発熱は効率の低下、素子の性能低下を招来する。従ってコンバータ2の発熱は抑制されることが望まれる。 (4) When the inverter 4 supplies a certain value of the operating power Po, if the voltage value Vac decreases, the current value Ii increases. This is because the input power Pi is proportional to the product of the voltage value Vac and the current value Ii when the power conversion efficiency of the converter 2 is considered to be constant, and the input power Pi is equal to the operating power Po if the loss in the inverter 4 is ignored. An increase in the current value Ii causes heat generation of a diode or a switching element included in the converter 2. The heat generated by the diode or the switching element lowers the efficiency and lowers the performance of the element. Therefore, it is desired that the heat generation of converter 2 be suppressed.
 本実施の形態では、かかる発熱を抑制する技術として、電圧値Vacが低下すると動作電力Poを低減する動作をインバータ4に行わせる、インバータの制御方法が提案される。具体的には例えば、制御回路6が制御信号Gを、インバータ4が上記動作を行なうように変動させる。動作電力Poの低減によって入力電力Pi、ひいては電力Psの低減を招来し、以て電流値Iiの上昇を緩和もしくは低減するためである。 In the present embodiment, as a technique for suppressing such heat generation, a method of controlling an inverter that causes the inverter 4 to perform an operation of reducing the operating power Po when the voltage value Vac decreases is proposed. Specifically, for example, the control circuit 6 changes the control signal G so that the inverter 4 performs the above operation. This is because the reduction in the operating power Po leads to a reduction in the input power Pi, and thus the power Ps, so that the increase in the current value Ii is reduced or reduced.
 これによりコンバータ2の発熱は抑制される。フィルタ7が備えられるときには、フィルタ7が有するコイルにおける発熱も抑制される。換言すれば、交流負荷駆動システム100のうち、少なくともコンバータ2を含めた商用電源1側の発熱が抑制される。 This suppresses the heat generation of converter 2. When the filter 7 is provided, heat generation in the coil of the filter 7 is also suppressed. In other words, in the AC load drive system 100, heat generation on at least the commercial power supply 1 including the converter 2 is suppressed.
 コンバータ2がダイオードブリッジ整流回路のように、電圧値Vacの増減によって直流電圧Vdcの電圧値も増減させる場合、電圧値Vacの低下によって直流電圧Vdcの電圧値が低下する。よって動作電力Poの低減に拘らずインバータのスイッチング損失が低減し、インバータ4の発熱が抑制される。動作電力Poが低減されたときには電流値Iwも減少するので、インバータ4の発熱は更に抑制される。例えばコンバータ2の機能によって、電圧値Vacの増減によって直流電圧Vdcの電圧値が増減しない場合でも、動作電力Poが低減されたときにはインバータ4の発熱が抑制される。 (4) When the voltage value of the DC voltage Vdc is also increased / decreased by the increase / decrease of the voltage value Vac as in the case of the diode bridge rectifier circuit of the converter 2, the voltage value of the DC voltage Vdc is decreased by the decrease in the voltage value Vac. Therefore, the switching loss of the inverter is reduced irrespective of the reduction of the operating power Po, and the heat generation of the inverter 4 is suppressed. When the operating power Po is reduced, the current value Iw also decreases, so that the heat generation of the inverter 4 is further suppressed. For example, even when the voltage value of the DC voltage Vdc does not increase or decrease due to the increase or decrease of the voltage value Vac, the function of the converter 2 suppresses the heat generation of the inverter 4 when the operating power Po is reduced.
 電圧値Vacの低下に対して常に動作電力Poが低減する必要はない。スイッチング素子等の発熱を所定の上限まで許容することができるからである。たとえばこのような許容の上限は、スイッチング素子としてトランジスタを採用した場合、いわゆる許容コレクタ損失に依存する。 (4) It is not necessary to always reduce the operating power Po for a decrease in the voltage value Vac. This is because heat generation of the switching element and the like can be allowed up to a predetermined upper limit. For example, when a transistor is used as a switching element, such an allowable upper limit depends on so-called allowable collector loss.
 従って、本実施の形態で提案される技術として、電圧値Vacが所定の閾値(以下、便宜的に「第1値Vt1」とする)未満であれば、電圧値Vacが所定の閾値以上であるときと比較して、インバータ4から交流負荷5に供給する動作電力Poを低減しやすくする技術を挙げる。 Therefore, as a technique proposed in the present embodiment, if voltage value Vac is less than a predetermined threshold value (hereinafter, referred to as “first value Vt1” for convenience), voltage value Vac is equal to or greater than the predetermined threshold value. A technique for easily reducing the operating power Po supplied from the inverter 4 to the AC load 5 as compared with the conventional technique will be described.
 これは、制御回路6の動作として見れば、電圧値Vacが第1値Vt1未満のときと第1値Vt1以上のときとでは動作電力Poを低減させる動作(以下「電力低減動作」とも称す)を行なわせる条件を異ならせて、インバータ4に動作電力Poを供給する制御方法の実行である。例えば制御回路6は、インバータ4に動作電力Poを低減させる動作を行なわせる制御信号Gを生成し、インバータ4へ出力する。 This is an operation of reducing the operating power Po when the voltage value Vac is less than the first value Vt1 and when the voltage value Vac is equal to or more than the first value Vt1 (hereinafter also referred to as “power reducing operation”). Are performed under different conditions for supplying the operating power Po to the inverter 4. For example, the control circuit 6 generates a control signal G that causes the inverter 4 to perform an operation of reducing the operating power Po, and outputs the control signal G to the inverter 4.
 図2は制御回路6の電力低減動作、およびこれに付随する動作を示すフローチャートである。ステップS71では動作電力Poが設定される。当該設定は、指令データJと、電圧値Vacと、電流値Iwとに基づいた動作電力Poの決定であり、周知の技術によって行なわれる処理である。ステップS71では、直接的に動作電力Poを決定するのみならず、交流負荷5の動作状態(例えばモータ負荷の回転数やトルク)を決定することによって間接的に動作電力Poが決定されてもよい。 FIG. 2 is a flowchart showing the power reduction operation of the control circuit 6 and the accompanying operation. In step S71, the operating power Po is set. The setting is a determination of the operating power Po based on the command data J, the voltage value Vac, and the current value Iw, and is a process performed by a known technique. In step S71, not only the operating power Po is determined directly, but also the operating power Po may be determined indirectly by determining the operating state of the AC load 5 (for example, the rotational speed or torque of the motor load). .
 ステップS71の後、ステップS72において、動作電力Poを維持してインバータ4を動作させる制御が行なわれる。当該制御は、ステップS71で設定された動作電力Poを維持してインバータ4を動作させる制御であり、周知の技術によって行なわれる処理である。 (4) After step S71, in step S72, control for operating inverter 4 while maintaining operating power Po is performed. The control is a control for operating the inverter 4 while maintaining the operation power Po set in step S71, and is a process performed by a known technique.
 ステップS72の後、ステップS73において、電圧値Vacが異常に低下したときに、交流負荷5の駆動を中止するための比較が行なわれる。 (4) After step S72, in step S73, when the voltage value Vac drops abnormally, a comparison for stopping the driving of the AC load 5 is performed.
 ステップS73では例えば、電圧値Vacが所定の第2値Vt2と比較される。第2値Vt2は第1値Vt1よりも小さい。電圧値Vacが第2値Vt2未満であれば(つまりVac≧Vt2が否定されるときには)、処理はステップS74へ進む。 In step S73, for example, the voltage value Vac is compared with a predetermined second value Vt2. The second value Vt2 is smaller than the first value Vt1. If voltage value Vac is less than second value Vt2 (that is, if Vac ≧ Vt2 is denied), the process proceeds to step S74.
 ステップS74ではインバータ4からの交流負荷5への動作電力Poの供給を停止する。例えば、コンバータ2にダイオードブリッジ整流回路が採用された場合、電圧値Vacの低下は直流電圧Vdcの低下を招来する。ステップS73はこのような場合における、直流電圧Vdcについての低電圧保護の処理を含んでもよい。 In step S74, the supply of the operating power Po from the inverter 4 to the AC load 5 is stopped. For example, when a diode bridge rectifier circuit is employed for converter 2, a decrease in voltage value Vac causes a decrease in DC voltage Vdc. Step S73 may include a process of protecting the DC voltage Vdc from a low voltage in such a case.
 ここでは動作電力Poの供給の停止は、低減するものの動作電力Poの供給を行なう電力低減動作とは異なる処理として扱っている。 Here, the stop of the supply of the operating power Po is treated as a process different from the power reduction operation of supplying the operating power Po, although the process is reduced.
 ステップS73で電圧値Vacが第2値Vt2以上であれば(つまりVac≧Vt2が肯定されるときには)、処理はステップS8へ進む。ステップS8において制御回路6は電力低減動作を行なう。但しステップS8においても、後述するように、必ずしも動作電力Poの低減は行われない。具体的にはステップS8は複数のステップS81~S85を含み、ステップS84において処理が分岐して、ステップS8の途中から抜け出るときがある。 If the voltage value Vac is equal to or greater than the second value Vt2 in step S73 (that is, if Vac ≧ Vt2 is affirmative), the process proceeds to step S8. In step S8, control circuit 6 performs a power reduction operation. However, also in step S8, as described later, the operating power Po is not necessarily reduced. Specifically, step S8 includes a plurality of steps S81 to S85, and in step S84, the process may branch and exit from the middle of step S8.
 ステップS8の処理の最初に、ステップS81において、第1値Vt1と電圧値Vacとの比較が行なわれる。当該比較の結果、電圧値Vacが第1値Vt1未満であれば(つまりVac<Vt1が肯定されるときには)処理がステップS82に進む。電圧値Vacが第1値Vt1以上であれば(つまりVac<Vt1が否定されるときには)処理がステップS83に進む。 最初 At the beginning of the process in step S8, in step S81, the first value Vt1 is compared with the voltage value Vac. As a result of the comparison, if the voltage value Vac is less than the first value Vt1 (that is, if Vac <Vt1 is affirmative), the process proceeds to step S82. If voltage value Vac is equal to or greater than first value Vt1 (that is, if Vac <Vt1 is denied), the process proceeds to step S83.
 説明の便宜上、ステップS82,S83の説明の前に、ステップS84,S85の説明をする。ステップS85では電流Iwについていわゆる垂下制御が行なわれ、ステップS84ではステップS85に先だって、垂下制御の要否が判断される。 ス テ ッ プ For convenience of description, steps S84 and S85 will be described before describing steps S82 and S83. In step S85, so-called droop control is performed on the current Iw. In step S84, it is determined whether droop control is necessary prior to step S85.
 垂下制御の例として、交流負荷5がモータであってその回転速度を低減する制御を挙げることができる。モータの回転速度の低減は電流Iwの低減で実現され、動作電力Poの直接的な低減に寄与する。 As an example of the drooping control, there is a control in which the AC load 5 is a motor and the rotation speed is reduced. The rotation speed of the motor is reduced by reducing the current Iw, and contributes to a direct reduction in the operating power Po.
 垂下制御を行なうか否かは、インバータ4から交流負荷5に出力される電流と電流垂下値I3との比較で決定される。当該電流はインバータ4に流れる電流であるので、電流値Iwとして測定できる。 Whether or not to perform the droop control is determined by comparing the current output from the inverter 4 to the AC load 5 with the current droop value I3. Since the current is a current flowing through the inverter 4, it can be measured as a current value Iw.
 ステップS84においてIw≧I3が肯定されるときには、処理はステップS85へ進んで垂下制御が行なわれる。これにより電流値Iwは低下する。つまり、ステップS84,S85により、電流垂下値I3は電流値Iwの上限値として機能する。 IIf Iw ≧ I3 is affirmed in step S84, the process proceeds to step S85, where the drooping control is performed. As a result, the current value Iw decreases. That is, in steps S84 and S85, the current droop value I3 functions as the upper limit of the current value Iw.
 ステップS84においてIw≧I3が否定されるとき(つまりIw<I3であるとき)には処理がステップS8から抜け出してステップS72に戻る。 と き If Iw ≧ I3 is denied in step S84 (that is, if Iw <I3), the process exits from step S8 and returns to step S72.
 ステップS82,S83はいずれも電流垂下値I3を決定する処理である。ステップS82では電流垂下値I3が電圧値Vacの関数f(Vac)で設定される。ここで関数f(Vac)は電圧値Vacの上昇に対して単調非減少である。ステップS83では電流垂下値I3が所定値I31に設定される。例えば所定値I31には、電圧値Vacに依存しない値が採用される。 Steps S82 and S83 are processes for determining the current droop value I3. In step S82, the current droop value I3 is set by a function f (Vac) of the voltage value Vac. Here, the function f (Vac) is monotonic and non-decreasing with respect to an increase in the voltage value Vac. In step S83, the current droop value I3 is set to a predetermined value I31. For example, a value that does not depend on the voltage value Vac is adopted as the predetermined value I31.
 ステップS82,S83が実行された後、ステップS84が実行される。この場合のステップS84での処理は、電流値Iwと所定値I31との比較である。即ち、ステップS82,S83,S84,S85は、電流値Iwが所定値I31を超えないようにする垂下制御を行なうステップの集合である。 After step S82 and S83 are executed, step S84 is executed. The process in step S84 in this case is a comparison between the current value Iw and the predetermined value I31. That is, steps S82, S83, S84, and S85 are a set of steps for performing droop control so that the current value Iw does not exceed the predetermined value I31.
 図3は、電流垂下値I3となる関数f(Vac)の、電圧値Vacに対する依存性を例示するグラフである。具体的には:
Vac≧Vt1のとき、f(Vac)=I31;
Vac≦Vt2のとき、f(Vac)=I32;
Vt2≦Vac≦Vt1のとき、
f(Vac)=I32+(Vac-Vt2)(I31-I32)/(Vt1-Vt2);
である。所定値I32は所定値I31よりも小さく、かつ電圧値Vacに依存しない。
FIG. 3 is a graph illustrating the dependence of the function f (Vac), which becomes the current droop value I3, on the voltage value Vac. In particular:
When Vac ≧ Vt1, f (Vac) = I31;
When Vac ≦ Vt2, f (Vac) = I32;
When Vt2 ≦ Vac ≦ Vt1,
f (Vac) = I32 + (Vac−Vt2) (I31−I32) / (Vt1−Vt2);
It is. The predetermined value I32 is smaller than the predetermined value I31 and does not depend on the voltage value Vac.
 もちろん、上記の関数f(Vac)は例示であって、Vt2≦Vac≦Vt1のときに、関数f(Vac)は電圧値Vacに対して非線形であってもよい。例えば、電圧値Vacの変化に対して、関数f(Vac)が連続的に変化してもよいし、ステップ状に変化してもよい。 {Of course, the above function f (Vac) is an example, and when Vt2 ≦ Vac ≦ Vt1, the function f (Vac) may be nonlinear with respect to the voltage value Vac. For example, the function f (Vac) may change continuously or stepwise in response to a change in the voltage value Vac.
 ステップS81が実行されるときには、ステップS73における判断が肯定的であったので、Vt2≦Vacが成立する。よってステップS82において、電流垂下値I3は、電圧値Vacの低下に対して単調に低下する値に設定される。 と き に は When Step S81 is executed, Vt2 ≦ Vac is satisfied because the determination in Step S73 is affirmative. Therefore, in step S82, the current droop value I3 is set to a value that monotonously decreases with a decrease in the voltage value Vac.
 このように設定される電流垂下値I3を採用することにより、ステップS84,S85の実行により、電流Iwについての垂下制御では、電圧値Vacが低いほど低い電流垂下値I3を上限として、電流Iwを抑制する。よって電圧値Vacの低下に従って動作電力Poが、ひいては電力Psが低減する。よって電圧値Vacが低下しても電流値Iiが増大することが抑制され、コンバータ2の発熱が抑制される。このようなステップS82,S84,S85による動作電力Poの低減は上述の電力低減動作の例示である。 By adopting the current droop value I3 set in this way, by executing steps S84 and S85, in the droop control of the current Iw, the lower the voltage value Vac is, the lower the current droop value I3 becomes, and the current Iw becomes the upper limit. Suppress. Therefore, the operating power Po and, consequently, the power Ps decrease as the voltage value Vac decreases. Therefore, even if voltage value Vac decreases, increase in current value Ii is suppressed, and heat generation of converter 2 is suppressed. The reduction of the operating power Po in steps S82, S84, and S85 is an example of the power reduction operation described above.
 ステップS82,S83,S84の説明から、以下のように言える:
 電圧値Vacが第1値Vt1以上であれば、動作電力PoをI3=I31という第1条件のもとで低減して供給し;
 電圧値Vacが第1値Vt1未満であれば、動作電力PoをI3=f(Vac)という第2条件のもとで低減して供給する。
From the description of steps S82, S83 and S84, the following can be said:
If the voltage value Vac is equal to or greater than the first value Vt1, the operating power Po is reduced and supplied under the first condition of I3 = I31;
If the voltage value Vac is less than the first value Vt1, the operating power Po is reduced and supplied under the second condition of I3 = f (Vac).
 Vac<Vt1であればf(Vac)<I31であるので、電圧値Vacが第1値Vt1未満の場合の方が、電圧値Vacが第1値Vt1以上である場合と比較して、動作電力Poが低減されやすい。換言すれば動作電力Poを低減するための第2条件は第1条件よりも緩和される。 If Vac <Vt1, f (Vac) <I31, so that the operating power is lower when the voltage value Vac is less than the first value Vt1 than when the voltage value Vac is equal to or more than the first value Vt1. Po is easily reduced. In other words, the second condition for reducing the operating power Po is more relaxed than the first condition.
 第2の条件は第1の条件よりも緩和されているものの、Vac<Vt1であれば必ずしも動作電力Poが低減されるというわけではない。ステップS84の判断が否定的な結果の場合には、ステップS85に進まず垂下制御が行われないからである。従って、Vac<Vt1のとき、制御回路6はインバータ4に対して電力の低減を可能にさせるということができる。 2The second condition is relaxed than the first condition, but if Vac <Vt1, the operating power Po is not necessarily reduced. If the determination in step S84 is a negative result, the process does not proceed to step S85 and the droop control is not performed. Therefore, when Vac <Vt1, it can be said that the control circuit 6 enables the inverter 4 to reduce the power.
 ステップS73での判断が否定的な場合にはステップS74が実行され、動作電力Poの供給が停止されることに鑑みて、Vac<Vt2のとき、関数f(Vac)の値を設定しなくてもよい。 If the determination in step S73 is negative, step S74 is executed, and in view of stopping the supply of the operating power Po, when Vac <Vt2, the value of the function f (Vac) need not be set. Is also good.
 関数f(Vac)を決定する第2値Vt2よりも小さな第2値Vt2’を導入し、ステップS73において電圧値Vacと比較される第2値Vt2を第2値Vt2’に置換してもよい。この場合、Vac<Vt2’では動作電力Poの供給が停止され、Vt2’≦Vac≦Vt2では電流垂下値I3が所定値I32を採り、これを上限として、電流Iwについての垂下制御が行なわれる。 A second value Vt2 ′ smaller than the second value Vt2 that determines the function f (Vac) may be introduced, and the second value Vt2 compared with the voltage value Vac in step S73 may be replaced with the second value Vt2 ′. . In this case, when Vac <Vt2 ', the supply of the operating power Po is stopped, and when Vt2'≤Vac≤Vt2, the current droop value I3 takes a predetermined value I32, and the droop control of the current Iw is performed with this value as an upper limit.
 関数f(Vac)を決定する第1値Vt1よりも大きな第1値Vt1’を導入し、ステップS81において電圧値Vacと比較される第1値Vt1を第1値Vt1’に置換してもよい。この場合、Vt1≦Vac≦Vt1’では電流垂下値I3が所定値I31を採り、これを上限として、電流Iwについての垂下制御が行なわれる。つまり、関数f(Vac)は、電圧値Vacの低下に対して単調に減少するものの、電圧値Vacに依存しない領域があってもよい(電圧値Vacの上昇に対して単調非減少である)。 A first value Vt1 ′ larger than the first value Vt1 that determines the function f (Vac) may be introduced, and the first value Vt1 compared with the voltage value Vac in step S81 may be replaced with the first value Vt1 ′. . In this case, when Vt1 ≦ Vac ≦ Vt1 ′, the current drooping value I3 takes a predetermined value I31, and the drooping control for the current Iw is performed with this as an upper limit. In other words, although the function f (Vac) monotonously decreases as the voltage value Vac decreases, there may be a region that does not depend on the voltage value Vac (the function f (Vac) does not decrease monotonically as the voltage value Vac increases). .
 垂下制御として例示したモータの回転速度の低減は、電流Iwを直接に低減する。モータの回転速度あるいは回転トルクの低減を招来する事象を発生させることにより、モータの回転速度あるいは回転トルクの低減を介して間接的に動作電力Poを低減させることも、垂下制御に含めて考えることができる。以下、そのような制御を説明する。 の Reduction of the rotation speed of the motor exemplified as the droop control directly reduces the current Iw. Considering that the operation power Po is indirectly reduced through the reduction of the rotation speed or the rotation torque of the motor by causing an event that causes the reduction of the rotation speed or the rotation torque of the motor, is also included in the droop control. Can be. Hereinafter, such control will be described.
 図4は冷凍回路9の構成を例示するブロック図である。冷凍回路9は圧縮機91、熱交換器92,94、膨張弁93を備える。不図示の冷媒が圧縮機91によって圧縮され、熱交換器92によって蒸発し、膨張弁93によって膨張し、熱交換器94によって凝縮する。図中の白矢印は冷媒が循環する方向を示す。 FIG. 4 is a block diagram illustrating the configuration of the refrigeration circuit 9. The refrigeration circuit 9 includes a compressor 91, heat exchangers 92 and 94, and an expansion valve 93. A refrigerant (not shown) is compressed by the compressor 91, evaporated by the heat exchanger 92, expanded by the expansion valve 93, and condensed by the heat exchanger 94. The white arrow in the figure indicates the direction in which the refrigerant circulates.
 交流負荷5は冷凍回路9に備えられる圧縮機91を駆動するモータである。膨張弁93は電磁弁であって、制御回路6で生成された制御信号Lによってその開度が調整される。例えば当該電磁弁は制御信号Lによって駆動されるステッピングモータによって開度が決定される。例えば当該ステッピングモータの動作電力はコンバータ2の出力から得ることができる。 The AC load 5 is a motor that drives a compressor 91 provided in the refrigeration circuit 9. The expansion valve 93 is an electromagnetic valve, and its opening is adjusted by a control signal L generated by the control circuit 6. For example, the opening of the solenoid valve is determined by a stepping motor driven by a control signal L. For example, the operating power of the stepping motor can be obtained from the output of the converter 2.
 ステップS85(図2参照)では制御信号Lによって膨張弁93の開度を増加させる。これにより圧縮機91の機械的負荷が低減するので、圧縮機91を駆動するモータ5に必要な回転トルクが低減し、電流Iwが低減する。従って、膨張弁93の開度を増加させる処理を垂下制御に含めて捉えることができる。 で は In step S85 (see FIG. 2), the opening of the expansion valve 93 is increased by the control signal L. As a result, the mechanical load on the compressor 91 is reduced, so that the rotational torque required for the motor 5 that drives the compressor 91 is reduced, and the current Iw is reduced. Therefore, the process of increasing the opening of the expansion valve 93 can be included in the droop control.
 上述の様に制御信号Lおよび/または制御信号Gを生成する制御回路6は、マイクロコンピュータと記憶装置を含んで構成することができる。マイクロコンピュータは、プログラムに記述された各処理のステップ(換言すれば手順)を実行する。例えば図2の各ステップは当該マイクロコンピュータで実行される。 The control circuit 6 that generates the control signal L and / or the control signal G as described above can be configured to include a microcomputer and a storage device. The microcomputer executes the steps (in other words, procedures) of each processing described in the program. For example, each step in FIG. 2 is executed by the microcomputer.
 上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御回路6はこれに限らず、制御回路6によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。 The storage device can be configured by one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a rewritable nonvolatile memory (such as an EPROM (Erasable Programmable ROM)). . The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. The microcomputer can be understood as functioning as various means corresponding to each processing step described in the program, or can be understood as realizing various functions corresponding to each processing step. In addition, the control circuit 6 is not limited thereto, and various procedures executed by the control circuit 6 or some or all of the realized means or functions may be partially or entirely realized by hardware.
 上述のように、本実施の形態では、入力された直流電圧Vdcを交流電圧V1に変換して交流負荷5へ印加するインバータ4を制御する技術が提案された。直流電圧Vdcはコンバータ2によって交流電圧V2から変換して得られる。 As described above, in the present embodiment, a technique for controlling the inverter 4 that converts the input DC voltage Vdc into the AC voltage V1 and applies the converted voltage to the AC load 5 has been proposed. DC voltage Vdc is obtained by converter 2 converting AC voltage V2.
 交流負荷駆動システム100においては、電圧値Vacが第1値Vt1未満のとき、制御回路6はインバータ4に動作電力Poの低減を可能にさせる。これにより動作電力Po、ひいては電力Psが低減され、コンバータ2の発熱が抑制される。かかる技術は、電圧値Vacが第1値Vt1未満のとき、動作電力Poを低減して供給することを可能とするインバータ4の制御方法として見ることもできる。 In the AC load driving system 100, when the voltage value Vac is less than the first value Vt1, the control circuit 6 allows the inverter 4 to reduce the operating power Po. As a result, the operating power Po and eventually the power Ps are reduced, and the heat generation of the converter 2 is suppressed. Such a technique can be viewed as a control method of the inverter 4 that enables the operating power Po to be reduced and supplied when the voltage value Vac is less than the first value Vt1.
 電圧値Vacが第1値Vt1以上であれば、インバータ4から交流負荷5に供給する動作電力Poを第1条件(ステップS83,S84)のもとで低減(ステップS85)して動作電力Poを供給する。電圧値Vacが第1値Vt1未満であれば、動作電力Poを第2条件(ステップS82,S84)のもとで低減(ステップS85)して動作電力Poを供給する。第2条件は第1条件よりも緩和される。 If the voltage value Vac is equal to or greater than the first value Vt1, the operating power Po supplied from the inverter 4 to the AC load 5 is reduced (step S85) under the first condition (steps S83 and S84) to reduce the operating power Po. Supply. If the voltage value Vac is less than the first value Vt1, the operating power Po is reduced (step S85) under the second condition (steps S82 and S84) to supply the operating power Po. The second condition is more relaxed than the first condition.
 例えば、電圧値Vacが第1値未満であって、インバータ4に入力される入力電流(電流値Ii)、若しくは交流負荷5に出力される電流Iwが、その上限値たる電流垂下値I3以上であれば、当該電流についての垂下制御が行なわれる(ステップS85)。電圧値Vacの上昇に対して電流垂下値I3は単調非減少である。これにより、インバータ4から交流負荷5に供給する動作電力Poが低減される。 For example, when the voltage value Vac is less than the first value, and the input current (current value Ii) input to the inverter 4 or the current Iw output to the AC load 5 is equal to or more than the upper limit current droop value I3. If there is, the droop control for the current is performed (step S85). As the voltage value Vac increases, the current droop value I3 is monotonic and non-decreasing. As a result, the operating power Po supplied from the inverter 4 to the AC load 5 is reduced.
 コンバータ2が入力する電流についての垂下制御が行なわれてもよい。例えば電圧値Vacが第1値未満であって、電流値Iiが上限値以上であれば当該電流についての垂下制御が行なわれる。例えば当該上限値は電圧値Vacの上昇に対して単調非減少に設定することができる。具体的には例えば、ステップS84(図2参照)において電流値Iwを電流値Iiに読み替えたフローチャートを採用することができる。当該上限値は、上述の電流垂下値I3とは独立して設定することができる。 (4) The drooping control for the current input to the converter 2 may be performed. For example, if the voltage value Vac is less than the first value and the current value Ii is equal to or more than the upper limit, the droop control for the current is performed. For example, the upper limit can be set to be monotonic and non-decreasing with respect to an increase in the voltage value Vac. Specifically, for example, a flowchart in which the current value Iw is replaced with the current value Ii in step S84 (see FIG. 2) can be employed. The upper limit value can be set independently of the current droop value I3 described above.
 電圧値Vacが第1値Vt1よりも低い第2値Vt2未満であれば、交流負荷5への動作電力Poの供給を停止してもよい。 If the voltage value Vac is less than the second value Vt2 lower than the first value Vt1, the supply of the operating power Po to the AC load 5 may be stopped.
 例えば交流負荷5はモータであって、垂下制御には、モータ5の回転速度を低減する制御を含めてもよい。これは動作電力Poの直接的な低減を招来する。 For example, the AC load 5 is a motor, and the drooping control may include control for reducing the rotation speed of the motor 5. This leads to a direct reduction of the operating power Po.
 モータ5の例としては、冷凍回路9に備えられる圧縮機91を駆動するモータを挙げることができる。例えばモータ5は、膨張弁93を備える冷凍回路9に備えられる圧縮機91を駆動する。冷凍回路9は交流負荷駆動システム100によって動作電力Poが供給されるモータ5が駆動する圧縮機91と、膨張弁93とを備える。垂下制御は膨張弁93の開度を増加させる制御を含めてもよい。これは動作電力Poの間接的な低減を招来する。 モ ー タ As an example of the motor 5, a motor for driving a compressor 91 provided in the refrigeration circuit 9 can be given. For example, the motor 5 drives a compressor 91 provided in the refrigeration circuit 9 including the expansion valve 93. The refrigeration circuit 9 includes a compressor 91 driven by the motor 5 to which the operating power Po is supplied by the AC load driving system 100, and an expansion valve 93. The drooping control may include control for increasing the opening of the expansion valve 93. This leads to an indirect reduction of the operating power Po.
 モータ5は、空気調和機に採用されるファンや、空気清浄機に採用されるファンを駆動するモータとして採用することもできる。 The motor 5 can be employed as a motor for driving a fan employed in an air conditioner or a fan employed in an air purifier.
 直流電圧Vdcで駆動される直流負荷が設けられる場合、当該直流負荷に供給する電力を低減する制御が行われてもよい。この場合、入力電力Piは動作電力Poと当該直流電力で消費される電力との和であり、当該直流電力の低減は電力Psの低減に資するからである。かかる制御はインバータ4の制御と独立して行なうことができる。 (4) When a DC load driven by the DC voltage Vdc is provided, control for reducing power supplied to the DC load may be performed. In this case, the input power Pi is the sum of the operating power Po and the power consumed by the DC power, and the reduction of the DC power contributes to the reduction of the power Ps. Such control can be performed independently of the control of the inverter 4.
 例えば冷凍回路9において、膨張弁93が、その動作電力をコンデンサ3から直流電力として供給される直流負荷である場合には、電圧値Vacが第1値Vt1未満のときに膨張弁93の動作を停止してもよい。 For example, in the refrigeration circuit 9, when the expansion valve 93 is a DC load whose operating power is supplied as DC power from the capacitor 3, the operation of the expansion valve 93 is performed when the voltage value Vac is less than the first value Vt1. You may stop.
 コンバータ2と、インバータ4と、電力低減動作を行なわせる制御回路6とを備える交流負荷駆動システム100は、交流負荷5への電力供給システムであると言える。 交流 The AC load drive system 100 including the converter 2, the inverter 4, and the control circuit 6 for performing the power reduction operation can be said to be a power supply system to the AC load 5.
 以上、実施形態を説明したが、請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。上述の各種の実施形態および変形例は相互に組み合わせることができる。 Although the embodiments have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. The various embodiments and modifications described above can be combined with one another.

Claims (11)

  1.  直流電圧(Vdc)から変換した第1交流電圧(V1)を印加して交流負荷(5)に電力(Po)を供給するインバータ(4)と、
     第2交流電圧(V2)を前記直流電圧(Vdc)に変換するコンバータ(2)と、
     前記第2交流電圧の電圧値(Vac)が所定の第1値(Vt1)未満のとき、前記インバータに前記電力の低減(S85)を可能にさせる制御回路(6)と
    を備える、交流負荷への電力供給システム。
    An inverter (4) for applying a first AC voltage (V1) converted from a DC voltage (Vdc) and supplying electric power (Po) to an AC load (5);
    A converter (2) for converting a second AC voltage (V2) into the DC voltage (Vdc);
    When the voltage value (Vac) of the second AC voltage is less than a predetermined first value (Vt1), the inverter includes a control circuit (6) that enables the power to be reduced (S85). Power supply system.
  2.  前記電圧値(Vac)が前記第1値(Vt1)以上であれば、前記電力が第1条件(S83,S84)のもとで低減(S85)され、
     前記電圧値が前記第1値未満であれば、前記電力が前記第1条件よりも緩和された第2条件(S82,S84)のもとで低減(S85)される、請求項1記載の交流負荷への電力供給システム(100)。
    If the voltage value (Vac) is equal to or greater than the first value (Vt1), the power is reduced (S85) under the first condition (S83, S84),
    2. The alternating current according to claim 1, wherein if the voltage value is less than the first value, the power is reduced (S85) under a second condition (S82, S84) that is less than the first condition. 3. A power supply system for a load (100).
  3.  前記電圧値(Vac)が前記第1値(Vt1)未満であって、前記インバータ(4)に入力される若しくは前記交流負荷(5)に出力される電流(Iw)が第1の上限値(I3)以上であれば、前記電流についての垂下制御(S85)が行なわれ、
     前記電圧値の上昇に対して前記第1の上限値は単調非減少である、請求項1又は請求項2に記載の交流負荷への電力供給システム。
    The voltage value (Vac) is less than the first value (Vt1), and the current (Iw) input to the inverter (4) or output to the AC load (5) is a first upper limit value ( If I3) or more, the droop control (S85) for the current is performed,
    3. The power supply system for an AC load according to claim 1, wherein the first upper limit is monotonically non-decreasing with respect to the increase in the voltage value. 4.
  4.  前記電圧値(Vac)が前記第1値(Vt1)未満であって、前記コンバータ(2)へ入力する入力電流の電流値(Ii)が第2の上限値以上であれば、前記入力電流についての垂下制御(S85)が行われ、
     前記電圧値(Vac)の上昇に対して前記第2の上限値は単調非減少である、請求項1から請求項3のいずれか一つに記載の交流負荷への電力供給システム。
    If the voltage value (Vac) is less than the first value (Vt1) and the current value (Ii) of the input current input to the converter (2) is equal to or more than a second upper limit value, Is performed (S85).
    The power supply system for an AC load according to any one of claims 1 to 3, wherein the second upper limit is monotonically non-decreasing with respect to an increase in the voltage value (Vac).
  5.  前記電圧値(Vac)が前記第1値(Vt1)よりも低い所定の第2値(Vt2)未満であれば、前記交流負荷(5)への前記電力(Po)の供給が停止される(S73,S74)、請求項1から請求項4のいずれか一つに記載の交流負荷への電力供給システム。 If the voltage value (Vac) is less than a predetermined second value (Vt2) lower than the first value (Vt1), the supply of the power (Po) to the AC load (5) is stopped ( S73, S74), the power supply system to an AC load according to any one of claims 1 to 4.
  6.  前記交流負荷(5)はモータであって、
     前記垂下制御(S85)は前記モータの回転速度を低減する制御を含む、請求項3又は請求項4に記載の交流負荷への電力供給システム。
    The AC load (5) is a motor,
    The power supply system for an AC load according to claim 3 or 4, wherein the drooping control (S85) includes control for reducing a rotation speed of the motor.
  7.  前記モータ(5)は、冷凍回路(9)に採用される圧縮機(91)を駆動するモータ、空気調和機に採用されるファン、空気清浄機に採用されるファンを駆動するモータのいずれかである、請求項6記載の交流負荷への電力供給システム。 The motor (5) is any one of a motor for driving a compressor (91) used in the refrigeration circuit (9), a fan used for an air conditioner, and a motor for driving a fan used for an air purifier. The power supply system for an AC load according to claim 6, wherein
  8.  前記モータ(5)は、冷凍回路(9)が備える圧縮機(91)を駆動するモータであって、
     前記冷凍回路は膨張弁(93)を更に備え、
     前記垂下制御(S85)は前記膨張弁の開度を増加させる制御を含む、請求項6記載の交流負荷への電力供給システム。
    The motor (5) is a motor that drives a compressor (91) included in the refrigeration circuit (9),
    The refrigeration circuit further includes an expansion valve (93);
    The power supply system for an AC load according to claim 6, wherein the drooping control (S85) includes control for increasing an opening degree of the expansion valve.
  9.  前記電圧値(Vac)が前記第1値(Vt1)未満であれば、前記直流電圧で駆動される直流負荷(93)に供給する電力が低減される、請求項1から請求項8のいずれか一つに記載の交流負荷への電力供給システム。 The power supply to the DC load (93) driven by the DC voltage is reduced if the voltage value (Vac) is less than the first value (Vt1). A power supply system for an AC load according to one aspect.
  10.  請求項8記載の交流負荷への電力供給システムによって電力が供給される前記交流負荷(5)である前記モータ(5)が駆動する圧縮機(91)と、
     膨張弁(93)と
    を備える冷凍回路(9)。
    A compressor (91) driven by the motor (5), the AC load (5) being powered by the AC load power supply system of claim 8,
    A refrigeration circuit (9) including an expansion valve (93).
  11.  入力された直流電圧(Vdc)を第1交流電圧(V1)に変換して交流負荷(5)へ電力を供給するインバータ(4)を制御する方法であって、
     前記直流電圧(Vdc)はコンバータ(2)によって第2交流電圧(V2)から変換して得られ、
     前記第2交流電圧の電圧値(Vac)が所定の第1値(Vt1)未満のとき、前記電力を低減(S85)して当該電力の供給を可能とする(S8)、インバータの制御方法。
    A method of converting an input DC voltage (Vdc) into a first AC voltage (V1) to control an inverter (4) that supplies power to an AC load (5),
    The DC voltage (Vdc) is obtained by converting the second AC voltage (V2) by the converter (2);
    When the voltage value (Vac) of the second AC voltage is less than a predetermined first value (Vt1), the power is reduced (S85) to enable the supply of the power (S8), and the inverter control method.
PCT/JP2019/030849 2018-09-14 2019-08-06 Inverter control method, system for supplying power to ac load, and refrigeration circuit WO2020054262A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980055943.5A CN112640283B (en) 2018-09-14 2019-08-06 Inverter control method, power supply system for AC load, and refrigeration circuit
BR112021003200-2A BR112021003200A2 (en) 2018-09-14 2019-08-06 inverter control method, system to supply power to ac load and refrigeration circuit
MYPI2021000887A MY187349A (en) 2018-09-14 2019-08-06 Inverter control method, system for supplying power to ac load, and refrigeration circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172046A JP6729650B2 (en) 2018-09-14 2018-09-14 Inverter control method, AC load power supply system, refrigeration circuit
JP2018-172046 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054262A1 true WO2020054262A1 (en) 2020-03-19

Family

ID=69777262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030849 WO2020054262A1 (en) 2018-09-14 2019-08-06 Inverter control method, system for supplying power to ac load, and refrigeration circuit

Country Status (5)

Country Link
JP (1) JP6729650B2 (en)
CN (1) CN112640283B (en)
BR (1) BR112021003200A2 (en)
MY (1) MY187349A (en)
WO (1) WO2020054262A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452322B2 (en) 2015-11-16 2022-09-27 Q Sports Science, LLC Traumatic brain injury protection devices
US11478253B2 (en) 2013-03-15 2022-10-25 Tbi Innovations Llc Methods and devices to reduce the likelihood of injury from concussive or blast forces
US11696766B2 (en) 2009-09-11 2023-07-11 Tbi Innovations, Llc Methods and devices to reduce damaging effects of concussive or blast forces on a subject
US11969033B2 (en) 2018-08-28 2024-04-30 Q30 Sports Science, Llc Methods and devices to reduce damaging effects of concussive or blast forces on a subject

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211796A (en) * 1992-01-30 1993-08-20 Daikin Ind Ltd Method and device for driving brushless dc motor
JP2005328583A (en) * 2004-05-12 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Motor controller and electric pump device
JP2006352982A (en) * 2005-06-15 2006-12-28 Hitachi Ltd Refrigeration cycle device
JP2007288971A (en) * 2006-04-19 2007-11-01 Daikin Ind Ltd Power converter, its control method, and air-conditioning machine
JP2009247064A (en) * 2008-03-28 2009-10-22 Daikin Ind Ltd Power conversion device
JP2010011533A (en) * 2008-06-24 2010-01-14 Fujitsu General Ltd Power unit and equipment having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381034B2 (en) * 2008-11-12 2014-01-08 三菱電機株式会社 Discharge lamp lighting device and lighting fixture provided with the discharge lamp lighting device
JP5673298B2 (en) * 2011-03-31 2015-02-18 ダイキン工業株式会社 Motor drive device
JP5908273B2 (en) * 2011-12-21 2016-04-26 シャープ株式会社 Synchronous motor drive device
WO2015029597A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Power conversion device
JP6001587B2 (en) * 2014-03-28 2016-10-05 株式会社デンソー Power converter
JP6597508B2 (en) * 2016-07-28 2019-10-30 株式会社デンソー Power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211796A (en) * 1992-01-30 1993-08-20 Daikin Ind Ltd Method and device for driving brushless dc motor
JP2005328583A (en) * 2004-05-12 2005-11-24 Fuji Electric Fa Components & Systems Co Ltd Motor controller and electric pump device
JP2006352982A (en) * 2005-06-15 2006-12-28 Hitachi Ltd Refrigeration cycle device
JP2007288971A (en) * 2006-04-19 2007-11-01 Daikin Ind Ltd Power converter, its control method, and air-conditioning machine
JP2009247064A (en) * 2008-03-28 2009-10-22 Daikin Ind Ltd Power conversion device
JP2010011533A (en) * 2008-06-24 2010-01-14 Fujitsu General Ltd Power unit and equipment having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696766B2 (en) 2009-09-11 2023-07-11 Tbi Innovations, Llc Methods and devices to reduce damaging effects of concussive or blast forces on a subject
US11478253B2 (en) 2013-03-15 2022-10-25 Tbi Innovations Llc Methods and devices to reduce the likelihood of injury from concussive or blast forces
US11452322B2 (en) 2015-11-16 2022-09-27 Q Sports Science, LLC Traumatic brain injury protection devices
US11969033B2 (en) 2018-08-28 2024-04-30 Q30 Sports Science, Llc Methods and devices to reduce damaging effects of concussive or blast forces on a subject

Also Published As

Publication number Publication date
CN112640283B (en) 2022-06-10
JP6729650B2 (en) 2020-07-22
CN112640283A (en) 2021-04-09
JP2020048242A (en) 2020-03-26
MY187349A (en) 2021-09-22
BR112021003200A2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2020054262A1 (en) Inverter control method, system for supplying power to ac load, and refrigeration circuit
EP2063527B1 (en) Motor controller of air conditioner
JP3298450B2 (en) Air conditioner and power converter
JP5711683B2 (en) Motor driving device, air conditioner equipped with the same, and motor driving method
US9998007B2 (en) Boost converter with flying capacitor and refrigeration circuit
CN105432009A (en) Motor drive control device, compressor, fan, and air-conditioning device
JP5748694B2 (en) Motor drive control device and refrigeration air conditioner
WO2019049299A1 (en) Power conversion device, compressor, blower, and air conditioning device
JP2007135254A (en) Power unit and freezer air-conditioner
WO2017199299A1 (en) Dc power source, refrigeration cycle device and air-conditioner
JP6638746B2 (en) Inverter control method, AC load drive system, refrigeration circuit
JP3424461B2 (en) PWM / PAM control type motor drive device and air conditioner using the same
JP3898753B2 (en) heat pump
JP7345674B2 (en) Power conversion equipment, motor drive equipment, and refrigeration cycle application equipment
JP3468232B2 (en) PWM / PAM control type motor drive device and air conditioner using the same
JP2007174806A (en) Motor driving device and motor driver equipped therewith
WO2017183274A1 (en) Electric motor drive device and refrigeration cycle device
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
AU2021417065B2 (en) Power conversion device, motor driving device, and refrigeration-cycle application device
EP4236053A1 (en) Power converter, motor driver, and equipment used in refrigeration cycle applied
JP2007151207A (en) Controller of air conditioner
JP2005245167A (en) Dc power supply unit
JP6076808B2 (en) Air conditioner
CN116783810A (en) Power conversion device, motor drive device, and refrigeration cycle application device
JP2007185100A (en) Power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860766

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021003200

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2101001423

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021003200

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210222

122 Ep: pct application non-entry in european phase

Ref document number: 19860766

Country of ref document: EP

Kind code of ref document: A1