WO2019150580A1 - 間接加熱式ガス化炉併設循環流動層ボイラプラント - Google Patents

間接加熱式ガス化炉併設循環流動層ボイラプラント Download PDF

Info

Publication number
WO2019150580A1
WO2019150580A1 PCT/JP2018/003810 JP2018003810W WO2019150580A1 WO 2019150580 A1 WO2019150580 A1 WO 2019150580A1 JP 2018003810 W JP2018003810 W JP 2018003810W WO 2019150580 A1 WO2019150580 A1 WO 2019150580A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
circulating fluidized
bed boiler
gasification furnace
furnace
Prior art date
Application number
PCT/JP2018/003810
Other languages
English (en)
French (fr)
Inventor
伊藤 信三
Original Assignee
株式会社ユーリカエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーリカエンジニアリング filed Critical 株式会社ユーリカエンジニアリング
Priority to PCT/JP2018/003810 priority Critical patent/WO2019150580A1/ja
Publication of WO2019150580A1 publication Critical patent/WO2019150580A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage

Definitions

  • the present invention relates to a circulating fluidized bed boiler plant equipped with an indirectly heated gasifier.
  • Solid fuel (coal, biomass, or a mixture of both) is used to make gasified gas and superheated steam, and the gasified gas obtained by gasifying this solid fuel is used for gas turbine power generation and gas engine power generation.
  • Superheated steam generated by the combustion heat of solid fuel as a raw material for fuel, hydrogen raw material (separation of hydrogen from gasified gas (CO + H 2 )), ammonia, methanol, and methane is widely used as power for steam turbine power generation and various machines. It's being used.
  • Patent Document 1 Gasification is roughly divided into two methods, a direct heating gasification method (see Patent Document 1) and an indirect heating gasification method (Patent Document 2).
  • the indirect heating gasification method has a feature that a gasification gas having a higher calorie than the gasification gas obtained by the direct heating gasification method can be obtained.
  • the indirect heating gasification method is more complex than the direct heating gasification method because the system configuration of the plant is more complicated (in addition to the gasification furnace, a combustion furnace and an exhaust heat recovery boiler are required). There is a problem that the cost is increased, the necessary plant power is large, and the necessary plant installation area is also large.
  • the present inventor is equipped with a circulating fluidized bed boiler with high boiler efficiency and an indirectly heated gasification furnace capable of obtaining a high calorie gasification gas, and by organically coupling and integrating both, Proposes a circulating fluidized bed boiler plant with an indirectly heated gasifier that can improve energy efficiency, reduce plant construction costs, reduce the size of the plant, reduce the required plant footprint, and save the required plant power Is.
  • the present invention employs the following means.
  • the first transfer section is connected to a combustion path of a circulating fluidized bed boiler and the indirectly heated gasification furnace, and is connected to a path of the transfer path so that one of the combustion gases in the combustion furnace And a cyclone connected so as to send the separated heat medium to the indirectly heated gasifier through the transfer path. Is preferred.
  • the first transfer unit includes a transfer path connected across a cyclone of a circulating fluidized bed boiler and the indirect heating gasification furnace, and the heat medium is transferred by the cyclone through the transfer path to the indirectly heated gas. It is preferable to be sent to the conversion furnace.
  • the second transfer unit is connected to the transfer path connected between the indirectly heated gasification furnace and the combustion furnace, and is connected to the path of the transfer path to suck and separate the gasification gas and the heat medium.
  • boiler plant a circulating fluidized bed boiler plant (hereinafter referred to as “boiler plant”) P with an indirect heating type gasification furnace according to a first embodiment of the present invention will be described with reference to FIG.
  • the boiler plant P includes a circulating fluidized bed boiler (hereinafter referred to as “boiler”) 1, an indirect heating gasifier (hereinafter referred to as “gasifier”) 2, a combustion furnace 1 ⁇ / b> A of the boiler 1, and a gasifier 2. And a heat medium transfer section 3 connected to each other.
  • the boiler 1 includes a combustion furnace 1A, a cyclone 1B, and a heat recovery unit 1C.
  • the boiler 1 heats the heat medium in the combustion furnace 1A by the combustion heat generated by the combustion of the supplied solid fuel, and uses the suction / separation function of the cyclone 1B. Then, the combustion gas in the combustion furnace 1A is sucked and separated into the exhaust gas and the heat medium, the separated high-temperature exhaust gas is sent to the heat recovery unit 1C, and the heat medium is circulated between the combustion furnace 1A and the cyclone 1B. It is configured as follows.
  • the boiler 1 generates superheated steam in the heat recovery unit 1C by the heat of the exhaust gas sent, sends the produced superheated steam to the superheated steam utilization system S1, and circulates the heat medium circulated by solid fuel combustion in the combustion furnace 1A. It is supposed to be heated.
  • Combustion air necessary for combustion in the combustion furnace 1A is preheated by the air preheater 10C and sent to the combustion furnace 1A.
  • the condensed water that has been heat-exchanged through the superheated steam utilization system S1 is supplied to the heat recovery unit 1C, and is supplied to the gas cooler C1 that cools the gasification gas.
  • the superheated steam exchanged by the gas cooler C1 is sent to the superheated steam utilization system S1, but the present invention is not limited to this configuration.
  • the first transfer unit 3A and the second transfer unit 3B constituting the heat medium transfer unit 3 are connected so as to extend over the combustion furnace 1A and the gasification furnace 2, and combustion is performed via the first transfer unit 3A.
  • the heat medium in the furnace 1A is sent to the gasification furnace 2, and the heat medium in the gasification furnace 2 is sent to the combustion furnace 1A.
  • the gasification furnace 2 is supplied with solid fuel and steam as a gasifying agent, and generates gasification gas by a steam gasification reaction using the supplied heat medium and heat of decomposition of the solid fuel. .
  • the gasification gas generated in the gasification furnace 2 is sent to the gasification gas utilization system S2 via the gas cooler C1 and the purification device C2 via the second transfer unit 3B.
  • the first transfer unit 3A is connected to the transfer path 30A connected across the combustion furnace 1A and the gasification furnace 2, and connected to the path of the transfer path 30A, and a part of the combustion gas in the combustion furnace 1A is sucked into the exhaust gas. And a cyclone 31A connected so as to send the separated heat medium to the gasification furnace 2 via the transfer path 30A while sending the separated exhaust gas to the heat recovery unit 1C. ing.
  • the second transfer unit 3B is connected to the transfer path 30B connected across the gasification furnace 2 and the combustion furnace 1A, and is connected to the path of the transfer path 30B to suck the gasified gas and the heat medium in the gasification furnace 2 And a cyclone 31B connected to send the separated gasified gas to the combustion furnace 1A via the transfer path 30B while sending the separated gasified gas to the gasified gas utilization system S2. I have.
  • the first transfer unit 3A can suck a part of the heat medium in the combustion furnace 1A and send it to the gasification furnace 2.
  • the cyclone 31B of the second transfer unit 3B can suck the heat medium in the gasification furnace 2 and send it to the combustion furnace 1A.
  • the exhaust gas separated by the cyclone 31A can be used as a heat source for producing superheated steam in the heat recovery unit 1C of the boiler 1, the superheated steam in the heat recovery unit 1C is combined with the exhaust gas separated by the cyclone 1B. Can be used as a heat source.
  • the combustion furnace 1A can be used as the combustion furnace 1A of the boiler 1 for producing superheated steam and also used as the combustion furnace 1A of the gasification furnace 2 for generating gasification gas. it can.
  • gasification gas and superheated steam can be produced simultaneously in the same plant, energy efficiency in gasification process is improved, plant construction cost is reduced, plant is compact, and necessary plant footprint is reduced. The required plant power can be saved.
  • the boiler plant P ′ has a configuration in which the first transfer unit 3C of the heat medium transfer unit 3 includes a transfer path 31C connected across the cyclone 1B and the gasifier 2, and the heat medium separated by the cyclone 1B. Is sent to the gasification furnace 2 via the transfer furnace 31C.
  • the boiler plant P ′ obtains the same effect as the boiler plant P because the first transfer unit 3C sends the heat medium separated by using the cyclone 1B of the boiler 1 to the gasification furnace 2.
  • the cyclone 1B has both a function for circulating the heat medium in the boiler 1 and a function for sending the heat medium to the gasification furnace 2, thereby reducing the compactness of the boiler plant P '. Can contribute to

Abstract

ガス化プロセスでのエネルギー効率性の向上、プラント建設費の低減、プラントのコンパクト化、必要なプラント設置面積の削減、必要なプラント動力の省力化ができる間接加熱式ガス化炉併設循環流動層ボイラプラントの提供。循環流動層ボイラと、間接加熱式ガス化炉と、循環流動層ボイラと間接加熱式ガス化炉とにわたって相互に接続された熱媒体移送部とを具備した。

Description

間接加熱式ガス化炉併設循環流動層ボイラプラント
 本発明は、間接加熱式ガス化炉が併設された循環流動層ボイラプラントに関する。
 ガス化ガスや過熱蒸気を作るために固体燃料(石炭やバイオマスまたは両者の混合物)が利用されており、この固体燃料をガス化して得られたガス化ガスは、ガスタービン発電やガスエンジン発電の燃料、水素の原料(ガス化ガス(CO+H2)から水素を分離)、アンモニア、メタノール、メタン製造の原料として、固体燃料の燃焼熱によって生じる過熱蒸気は、蒸気タービン発電や各種機械の動力として広く利用されている。
 ガス化については、直接加熱式ガス化方法(特許文献1参照)と、間接加熱式ガス化方法(特許文献2)の二つの方法に大別され。
 一方、過熱蒸気については、ボイラ効率が高い循環流動層ボイラ(特許文献3参照)が広く使用されており、大規模な間接加熱式ガス化プラントは、この循環流動層ボイラのシステム技術を参考にしている。
特開2014-205730号公報 特開2011-80664号公報 特開2013-15266号公報
 しかしながら、直接加熱式ガス化方法及び間接加熱式ガス化方法のいずれの方法についても、ガス化反応が吸熱反応であるため、反応時に加熱エネルギーが必要であって、ガス化プロセスでのエネルギー効率性という点で課題があった。
 また、間接加熱式ガス化方法は、直接加熱式ガス化方法で得られたガス化ガスよりも、高カロリーのガス化ガスを得られるという特徴を有している。
 しかしながら、間接加熱式ガス化方法は、直接加熱式ガス化方法に比べると、プラントのシステム構成が複雑(ガス化炉の他、燃焼炉や排熱回収ボイラが必要)であることから、プラント建設費が高くなると共に、必要なプラント動力も大きく、必要なプラント設置面積も大きくなるという問題があった。
 本発明者は、ボイラ効率が高い循環流動層ボイラと高カロリーのガス化ガスを得られる間接加熱式ガス化炉を併設すると共に、両者を有機的に結合一体化することで、ガス化プロセスでのエネルギー効率性の向上、プラント建設費の低減、プラントのコンパクト化、必要なプラント設置面積の削減、必要なプラント動力の省力化ができる間接加熱式ガス化炉併設循環流動層ボイラプラントを提案するものである。
 前述の課題を解決するため、本発明は、以下の手段を採用した。
 循環流動層ボイラと、間接加熱式ガス化炉と、前記循環流動層ボイラと前記間接加熱式ガス化炉とにわたって相互に接続された熱媒体移送部とを具備し、前記熱媒体移送部は、前記循環流動層ボイラの熱媒体の一部を前記間接加熱式ガス化炉に移送する第1の移送部と、前記間接加熱式ガス化炉の熱媒体を前記循環流動層ボイラに移送する第2の移送部とを備えている間接加熱式ガス化炉併設循環流動層ボイラプラントにしたことである。
 前記第1の移送部が、循環流動層ボイラの燃焼炉と前記間接加熱式ガス化炉とにわたって接続された移送路と、前記移送路の道中に接続され、前記燃焼炉内の燃焼ガスの一部を吸引して排ガスと熱媒体とに分離すると共に、分離された前記熱媒体を、前記移送路を介して前記間接加熱式ガス化炉に送り込むように接続されたサイクロンとを備えていることが好ましい。
 前記第1の移送部が、循環流動層ボイラのサイクロンと前記間接加熱式ガス化炉とにわたって接続された移送路を備え、前記サイクロンによって前記熱媒体が前記移送路を介して前記間接加熱式ガス化炉に送り込まれるようにされていることが好ましい。
 前記第2の移送部が、前記間接加熱式ガス化炉と前記燃焼炉とにわたって接続された移送路と、前記移送路の道中に接続され、ガス化ガスと前記熱媒体とを吸引して分離すると共に、分離された前記熱媒体を、前記移送路を介して前記燃焼炉に送り込むように接続されたサイクロンとを備えていることが好ましい。
本発明に係る第1実施形態の間接加熱式ガス化炉併設循環流動層ボイラプラントを示す配管構成図である。 本発明に係る第2実施形態の間接加熱式ガス化炉併設循環流動層ボイラプラントを示す配管構成図である。
 以下、本発明に係る第1実施形態の間接加熱式ガス化炉併設循環流動層ボイラプラント(以下「ボイラプラント」という)Pを図1に基づいて説明する。
 ボイラプラントPは、循環流動層ボイラ(以下「ボイラ」という)1と、間接加熱式ガス化炉(以下「ガス化炉」という)2と、ボイラ1の燃焼炉1Aとガス化炉2とにわたって相互に接続された熱媒体移送部3とを備えている。
 ボイラ1は、燃焼炉1A、サイクロン1B、熱回収部1Cを備え、供給された固体燃料の燃焼による燃焼熱によって燃焼炉1A内の熱媒体を加熱し、サイクロン1Bの吸引・分離機能を利用して、燃焼炉1A内の燃焼ガスを吸引して排ガスと熱媒体とに分離すると共に、分離した高温の排ガスを熱回収部1Cに送ると共に、熱媒体を燃焼炉1Aとサイクロン1B間を循環させるように構成されている。
 ボイラ1は、送られた排ガスの熱によって熱回収部1Cで過熱蒸気を作り、作られた過熱蒸気を過熱蒸気利用システムS1に送り、循環する熱媒体を燃焼炉1Aでの固体燃料の燃焼によって加熱するようにされている。
 燃焼炉1Aでの燃焼に必要な燃焼用空気は、空気予熱器10Cで予熱されて燃焼炉1Aに送られる。
 本実施形態で例示するボイラプラントPでは、過熱蒸気利用システムS1を通過して熱交換された凝縮水を熱回収部1Cに給水すると共に、ガス化ガスを冷却するガスクーラーC1に給水するようにされ、且つガスクーラーC1で熱交換された過熱蒸気を過熱蒸気利用システムS1に送るように構成されているが、本発明においてはこの構成に限らない。
 燃焼炉1Aとガス化炉2にわたるように、熱媒体移送部3を構成する第1の移送部3A及び第2の移送部3Bが接続されており、この第1の移送部3Aを介して燃焼炉1A内の熱媒体をガス化炉2に送ると共に、ガス化炉2内の熱媒体を燃焼炉1Aに送るようにされている。
 ガス化炉2は、固体燃料とガス化剤となる蒸気が供給されると共に、供給された熱媒体と固体燃料の分解熱により、水蒸気ガス化反応でガス化ガスを生成するようにされている。
 ガス化炉2で生成されたガス化ガスは、第2の移送部3Bを介してガスクーラーC1及び精製装置C2を経てガス化ガス利用システムS2に送るようにされている。
 第1の移送部3Aは、燃焼炉1Aとガス化炉2とにわたって接続された移送路30Aと、移送路30Aの道中に接続され、燃焼炉1A内の燃焼ガスの一部を吸引して排ガスと熱媒体に分離すると共に、分離された熱媒体を、移送路30Aを介してガス化炉2に送る一方、分離された排ガスを熱回収部1Cに送るように接続されたサイクロン31Aとを備えている。
 第2の移送部3Bは、ガス化炉2と燃焼炉1Aとにわたって接続された移送路30Bと、移送路30Bの道中に接続され、ガス化炉2内のガス化ガスと熱媒体とを吸引して分離すると共に、分離された熱媒体を、移送路30Bを介して燃焼炉1Aに送る一方、分離されたガス化ガスをガス化ガス利用システムS2に送るように接続されたサイクロン31Bとを備えている。
 すなわち、ボイラプラントPは、前述の構成の第1の移送部3Aと第2の移送部3Bとを介してガス化炉2と燃焼炉1Aとが接続されているため、第1の移送部3Aのサイクロン31Aが、燃焼炉1A内の熱媒体の一部を吸引してガス化炉2に送ることができる。
 また、第2の移送部3Bのサイクロン31Bが、ガス化炉2内の熱媒体を吸引して燃焼炉1Aに送ることができる。
 これによって、ガス化炉2と燃焼炉1Aとの間で熱媒体を循環させてガス化炉2でガス化ガスを発生させる間接加熱式ガス化システムが構成される。
 さらに、サイクロン31Aで分離された排ガスは、ボイラ1の熱回収部1Cでの過熱蒸気を作る熱源として利用することができるため、サイクロン1Bで分離された排ガスとで熱回収部1Cでの過熱蒸気を作る熱源として利用することができる。
 前述の構成としたボイラプラントPによると、燃焼炉1Aを過熱蒸気を作るためのボイラ1の燃焼炉1Aとして利用できると共に、ガス化ガスを生成するためのガス化炉2の燃焼炉1Aとして利用できる。
 したがって、同一プラント内でガス化ガス及び過熱蒸気を同時に作ることができると共に、ガス化プロセスでのエネルギー効率性の向上、プラント建設費の低減、プラントのコンパクト化、必要なプラント設置面積の削減、必要なプラント動力の省力化ができる
 次に、本発明に係る第2実施形態のボイラプラントP′を図2基づいて説明する。尚、ボイラプラントPと重複する部位についての説明は、同符号を付すことによって省略する。
 ボイラプラントP′は、熱媒体移送部3の第1の移送部3Cが、サイクロン1Bとガス化炉2とにわたって接続された移送路31Cを備えた構成であり、サイクロン1Bで分離された熱媒体を、移送炉31Cを介してガス化炉2に送るようにしたものである。
 すなわち、ボイラプラントP′は、第1の移送部3Cが、ボイラ1のサイクロン1Bを利用して分離した熱媒体をガス化炉2に送るようにしているため、ボイラプラントPと同じ効果を得られる上に、サイクロン1Bがボイラ1内で熱媒体を循環させるための機能と、熱媒体をガス化炉2に送るための機能の双方の機能を有し、これによって、ボイラプラントP′のコンパクト化に貢献できる。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成は、これらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 また、前述の各実施形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
 P:ボイラプラント
 P′:ボイラプラント
 1:ボイラ
 2:ガス化炉
 3:熱媒体移送部
 1A:燃焼炉
 1B:サイクロン
 1C:熱回収部
 3A:第1の移送部
 3B:第2の移送部
 30A:移送路
 31A:サイクロン
 30B:移送路
 31B:サイクロン
 3C:第1の移送部
 31C:移送炉

Claims (4)

  1.  循環流動層ボイラと、間接加熱式ガス化炉と、前記循環流動層ボイラと前記間接加熱式ガス化炉とにわたって相互に接続された熱媒体移送部とを具備し、
     前記熱媒体移送部は、前記循環流動層ボイラの熱媒体の一部を前記間接加熱式ガス化炉に移送する第1の移送部と、
     前記間接加熱式ガス化炉の熱媒体を前記循環流動層ボイラに移送する第2の移送部とを備えている間接加熱式ガス化炉併設循環流動層ボイラプラント。
  2.   前記第1の移送部が、循環流動層ボイラの燃焼炉と前記間接加熱式ガス化炉とにわたって接続された移送路と、前記移送路の道中に接続され、前記燃焼炉内の燃焼ガスの一部を吸引して排ガスと熱媒体とに分離すると共に、分離された前記熱媒体を、前記移送路を介して前記間接加熱式ガス化炉に送り込むように接続されたサイクロンとを備えている請求項1に記載の間接加熱式ガス化炉併設循環流動層ボイラプラント。
  3.  前記第1の移送部が、循環流動層ボイラのサイクロンと前記間接加熱式ガス化炉とにわたって接続された移送路を備え、前記サイクロンによって前記熱媒体が前記移送路を介して前記間接加熱式ガス化炉に送り込まれるようにされている請求項1に記載の間接加熱式ガス化炉併設循環流動層ボイラプラント。
  4.  前記第2の移送部が、前記間接加熱式ガス化炉と前記燃焼炉とにわたって接続された移送路と、前記移送路の道中に接続され、ガス化ガスと前記熱媒体とを吸引して分離すると共に、分離された前記熱媒体を、前記移送路を介して前記燃焼炉に送り込むように接続されたサイクロンとを備えている請求項1乃至3いずれか1項に記載の間接加熱式ガス化炉併設循環流動層ボイラプラント。
     
PCT/JP2018/003810 2018-02-05 2018-02-05 間接加熱式ガス化炉併設循環流動層ボイラプラント WO2019150580A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003810 WO2019150580A1 (ja) 2018-02-05 2018-02-05 間接加熱式ガス化炉併設循環流動層ボイラプラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003810 WO2019150580A1 (ja) 2018-02-05 2018-02-05 間接加熱式ガス化炉併設循環流動層ボイラプラント

Publications (1)

Publication Number Publication Date
WO2019150580A1 true WO2019150580A1 (ja) 2019-08-08

Family

ID=67478689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003810 WO2019150580A1 (ja) 2018-02-05 2018-02-05 間接加熱式ガス化炉併設循環流動層ボイラプラント

Country Status (1)

Country Link
WO (1) WO2019150580A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528399A (ja) * 2000-12-21 2004-09-16 ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー バイオマスガス化システムおよび方法
US8110012B2 (en) * 2008-07-31 2012-02-07 Alstom Technology Ltd System for hot solids combustion and gasification
EP2500401A1 (en) * 2011-03-14 2012-09-19 Metso Power OY A method for processing ash, and an ash processing plant
WO2013062801A1 (en) * 2011-10-26 2013-05-02 Rentech, Inc. Seal pot design
WO2015099250A1 (ko) * 2013-12-27 2015-07-02 포스코에너지 주식회사 이중 유동층 간접 가스화기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528399A (ja) * 2000-12-21 2004-09-16 ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー バイオマスガス化システムおよび方法
US8110012B2 (en) * 2008-07-31 2012-02-07 Alstom Technology Ltd System for hot solids combustion and gasification
EP2500401A1 (en) * 2011-03-14 2012-09-19 Metso Power OY A method for processing ash, and an ash processing plant
WO2013062801A1 (en) * 2011-10-26 2013-05-02 Rentech, Inc. Seal pot design
WO2015099250A1 (ko) * 2013-12-27 2015-07-02 포스코에너지 주식회사 이중 유동층 간접 가스화기

Similar Documents

Publication Publication Date Title
US8715379B2 (en) Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
EP1819913B1 (en) Process and installation for producing electric power
RU2502030C2 (ru) Способ получения цементного клинкера и установка для его производства
US20070183966A1 (en) Waste heat recovery apparatus, waste heat recovery system, and method of recovering waste heat
CN1126276A (zh) 装有燃料改性器的燃煤联合发电设备
RU2011141417A (ru) Способ, и установка для переработки биогенной массы, и теплоэлектроцентраль
US20140175803A1 (en) Biomass conversion reactor power generation system and method
CN102199450A (zh) 双流化床固体燃料气化燃烧耦合方法和系统
JP2009174392A (ja) バイオマスガス化ガス発電システム
JP2011231320A (ja) 統合ガス化複合サイクル発電システム用の水性ガス転化反応器システム
WO2019150580A1 (ja) 間接加熱式ガス化炉併設循環流動層ボイラプラント
JP2001214177A (ja) 過熱水蒸気を利用した有機廃棄物等の炭化及び再資源化システム
JP6472115B1 (ja) 低炭素型エネルギー供給システム
JP6259552B1 (ja) 発電設備併設ガス化システム
KR102369727B1 (ko) 발전 사이클 시스템 및 방법
JP5750054B2 (ja) ガス化のための自己生成出力統合
JPS61184301A (ja) 処理熱の発生及び回收方法及び装置
CN113048465A (zh) 超临界水煤气化的燃煤发电系统及其方法
CN207620861U (zh) 一种高温热煤气余热回收发电装置
CN102373096B (zh) 煤气化工艺与蒸汽透平发电工艺的耦合方法
CN106459788B (zh) 整体结合的气化器和合成气冷却器
JPH04321704A (ja) 燃料電池複合発電設備
JP3734759B2 (ja) 常圧ガス化発電装置及び排気循環型常圧発電装置
CN216448416U (zh) 利用烟气余热预热污泥的生物质与污泥共气化发电系统
JPS63120824A (ja) バイオマス燃料ガス化発電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP