WO2019149003A1 - 信息传输方法、基站、终端、以及计算机可读存储介质 - Google Patents

信息传输方法、基站、终端、以及计算机可读存储介质 Download PDF

Info

Publication number
WO2019149003A1
WO2019149003A1 PCT/CN2018/124257 CN2018124257W WO2019149003A1 WO 2019149003 A1 WO2019149003 A1 WO 2019149003A1 CN 2018124257 W CN2018124257 W CN 2018124257W WO 2019149003 A1 WO2019149003 A1 WO 2019149003A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
terminal
channel
message
information
Prior art date
Application number
PCT/CN2018/124257
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
方惠英
陈宪明
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020207025109A priority Critical patent/KR102473830B1/ko
Priority to EP18903800.3A priority patent/EP3749035B1/en
Priority to JP2020541895A priority patent/JP7036930B2/ja
Publication of WO2019149003A1 publication Critical patent/WO2019149003A1/zh
Priority to US16/911,184 priority patent/US11284446B2/en
Priority to US17/699,903 priority patent/US11770859B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/26362Subcarrier weighting equivalent to time domain filtering, e.g. weighting per subcarrier multiplication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present application relates to the field of wireless communication technologies, for example, to an information transmission method, a base station, a terminal, and a computer readable storage medium.
  • MTC UE Machine Type Communication
  • M2M Machine to Machine
  • NB-IoT Cellular-based Narrow Band Internet of Things
  • 3GPP 3rd Generation Partnership Project
  • the uplink channel or the downlink channel of different coverage enhancement levels adopt different repetition times.
  • the UE of the NB-IoT determines the coverage enhancement level and selects a corresponding random access channel to transmit Msg1 according to the determined coverage enhancement level.
  • the number of repeated transmissions of messages (eg, Msg2, Msg3, and Msg4 and scheduling information of the above messages) involved in the subsequent random access procedure is determined by the coverage enhancement level selected by the UE.
  • the UE can only measure the downlink channel quality information, when the matching between the uplink channel quality and the downlink channel quality is poor, the selection of the number of repeated transmissions of the uplink channels Msg1 and Msg3 may be deviated, which may result in the failure of Msg1 and Msg3 to be successfully transmitted or caused.
  • the Msg1 and Msg3 transmissions occupy too much resources and cause a certain amount of resources to be wasted.
  • the number of repeated transmissions of the downlink channel (for example, Msg2, Msg4, and the scheduling information of the foregoing message) cannot be flexibly adjusted if the base station selects the downlink channel. Excessive number of repeated transmissions will also result in wasted resources.
  • the present application provides an information transmission method and a base station, a terminal, and a computer readable storage medium, which can improve the success rate of uplink channel transmission.
  • An embodiment of the present application provides a method for transmitting information, including: sending, by a base station, a first message, where the first message includes at least one of: at least one set of channel quality thresholds, and each set of channel quality thresholds includes At least one channel quality threshold; a deviation value relative to the channel quality threshold; wherein the channel quality threshold is set according to at least one of the following channel quality: reference signal received power, reference signal received quality Downlink signal to interference and noise ratio, downlink signal to noise ratio, uplink signal to interference and noise ratio, uplink signal to noise ratio, downlink path loss, and uplink path loss.
  • the embodiment of the present application further provides a base station, where the base station includes a processor, a memory, and a communication bus; the communication bus is configured to implement connection communication between the processor and the memory; and the processor is configured to perform storage in the memory.
  • Information transmission program to implement the information transmission method as described above.
  • the embodiment of the present application further provides an information transmission method, including: receiving, by a terminal, a first message sent by a base station, where the first message includes at least one of: at least one set of channel quality thresholds, where each set of channels The quality threshold includes at least one channel quality threshold; an offset value relative to the channel quality threshold; wherein the channel quality threshold is set according to at least one of the following channel qualities: reference signal received power Reference signal reception quality, downlink signal to interference and noise ratio, downlink signal to noise ratio, uplink signal to interference and noise ratio, uplink signal to noise ratio, downlink path loss, and uplink path loss.
  • the embodiment of the present application further provides a terminal, where the terminal includes a processor, a memory, and a communication bus; the communication bus is configured to implement connection communication between the processor and the memory; the processor is configured to execute the memory An information transmission program stored in the memory to implement the information transmission method as described above.
  • the embodiment of the present application further provides an information transmission method, including: receiving, by a terminal, a first message sent by a base station, where the first message includes at least one of: at least one set of channel quality thresholds, where each set of channels The quality threshold includes at least one channel quality threshold; a deviation value relative to the channel quality threshold; the terminal transmits a random access preamble Msg1 message, wherein the Msg1 message includes at least one first structure;
  • the first structure includes at least one symbol group, the symbol group of the first structure including a cyclic prefix and at least one symbol, or, including a cyclic prefix, at least one symbol, and guard time.
  • the embodiment of the present application further provides a terminal, where the terminal includes a processor, a memory, and a communication bus; the communication bus is configured to implement connection communication between the processor and the memory; and the processor is configured to perform storage in the memory Information transmission program to implement the information transmission method as described above.
  • the embodiment of the present application further provides an information transmission method, including: the base station sends a random access response Msg2 message by using a downlink channel, where the Msg2 message includes at least a MAC layer header and a MAC layer load, where the Msg2 message further includes a random connection. Enter the adjustment information of the preamble Msg1 message.
  • the embodiment of the present application further provides a base station, where the base station includes a processor, a memory, and a communication bus; the communication bus is configured to implement connection communication between the processor and the memory; and the processor is configured to perform storage in the memory.
  • Information transmission program to implement the information transmission method as described above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The information transmission method according to any of the above.
  • FIG. 1 is a schematic flowchart of a first information transmission method according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a second information transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a third information transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a fourth information transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a configuration of a first channel quality threshold according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second channel quality threshold value according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of 12 composition patterns of a first first structure according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a first symbol group according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second symbol group according to an embodiment of the present application.
  • 10 is a schematic diagram of 12 kinds of composition patterns of a second first structure according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of resource locations occupied by adjustment information of a first type of Msg1 according to an embodiment of the present application
  • FIG. 12 is a schematic structural diagram of an E/T/RAPID MAC sub-packet header in the related art
  • FIG. 13 is a schematic structural diagram of an E/T/R/R/BI MAC sub-packet header in the related art
  • FIG. 14 is a schematic diagram of resource locations occupied by adjustment information of a second type of Msg1 according to an embodiment of the present application.
  • 15 is a schematic diagram of resource locations occupied by adjustment information of a third type of Msg1 according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a resource location occupied by the adjustment information of the fourth Msg1 according to the embodiment of the present application.
  • the NB-IoT UE After the NB-IoT UE transmits the random access signal (also referred to as Msg1) on the Narrow Band Physical Random Access Channel (NPRACH) of the NB-IoT system, it receives the random connection sent by the base station.
  • a Random Access Response (RAR) message (also known as Msg2).
  • the scheduling information of the RAR is included in Downlink Control Information (DCI) and transmitted through a Narrow Band Physical Downlink Control Channel (NPDCCH).
  • DCI Downlink Control Information
  • NPDCCH Narrow Band Physical Downlink Control Channel
  • the UE of the NB-IoT receives the RAR message and obtains uplink time synchronization and uplink resources.
  • the RAR message is sent to the UE itself rather than to other UEs because there is a possibility that different UEs transmit the same random access sequence on the same time-frequency resource, so that they The same RAR is received through the same Random Access Radio Network Tempory Identity (RA-RNTI).
  • RA-RNTI Random Access Radio Network Tempory Identity
  • the UE also has no way of knowing if other UEs are using the same resources for random access.
  • the UE needs to resolve such a random access collision by subsequent message 3 (Msg3) and message 4 (Msg4), wherein the Msg3 message is also called a collision detection message, and the Msg4 message is also called a collision detection response message.
  • Msg3 message is also called a collision detection message
  • Msg4 message is also called a collision detection response message.
  • Msg3 is a message that is transmitted on a narrowband physical uplink shared channel (NPUSCH) based on uplink scheduling and using Hybrid Automatic Repeat reQuest (HARQ) mechanism.
  • NPUSCH physical uplink shared channel
  • HARQ Hybrid Automatic Repeat reQuest
  • a Radio Resource Control (RRC) layer connection request message (RRC Connection Request) or an RRC Connection Resume Request message (RRC Connection Resume Request) is transmitted. If different UEs receive the same RAR message, Then they will get the same uplink resource and send the Msg3 message at the same time.
  • RRC Radio Resource Control
  • RRC Connection Resume Request RRC Connection Resume Request
  • Msg3 will carry a UE-specific ID to distinguish different UEs. In the case of initial access, this ID may be the UE's SAE-Temporary Mobile Subscriber Identity (S-TMSI) (if present) or a randomly generated 40-bit value.
  • S-TMSI SAE-Temporary Mobile Subscriber Identity
  • the UE immediately starts the contention cancellation timer after the Msg3 message is sent (and then restarts the timer every time the Msg3 is retransmitted), and the UE needs to listen to the collision detection response message returned by the base station to itself during this time (Contention) Resolution, Msg4 message).
  • Msg4 message After successfully receiving the Msg4 message sent by the base station, the UE sends an RRC Connection Setup Complete message or an RRC Connection Resume Complete message (RRC Connection Resume Complete) to the base station to notify the base station.
  • RRC Connection Resume Complete RRC Connection Resume Complete
  • the present application provides an information transmission method, including the following step 101.
  • step 101 the base station sends a first message, where the first message includes at least one of the following:
  • At least one set of channel quality thresholds wherein each set of channel quality thresholds includes at least one channel quality threshold
  • the channel quality threshold is set according to at least one of the following channel qualities:
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • the channel quality threshold is used by: the terminal acquires the measured value of the channel quality, and compares the measured value of the channel quality with the corresponding channel quality threshold to determine the coverage enhancement level or the coverage of the downlink channel.
  • the offset value relative to the channel quality threshold may be for one or more of a set of threshold quality thresholds.
  • the first message is sent via a system message or a broadcast message or a downlink channel.
  • the first message is one of: a set of channel quality thresholds and a deviation value for a channel quality threshold in the set of channel quality thresholds; two sets of channel quality gates Limit; a set of channel quality thresholds.
  • the deviation value for the set of channel quality threshold values may be configured for each threshold value of the set of threshold values, or all threshold values of the set of threshold values share the same deviation value.
  • the channel quality selected by the two sets of channel quality thresholds may be the same channel quality, such as RSRP; the channel quality selected by the two sets of channel quality thresholds may also be different types of channel quality, such as the first set of channel quality thresholds.
  • the selected channel quality is RSRP, and the channel quality selected by the second set of channel quality thresholds is RSRQ; or the channel quality selected by the first set of channel quality thresholds is RSRP, and the channel quality selected by the second set of channel quality thresholds For the downlink SINR.
  • the first set of channel quality thresholds is used to select an coverage enhancement level of the uplink channel; and the second set of channel quality thresholds is used to select a coverage enhancement level of the downlink channel.
  • the first message when the first message includes the deviation value with respect to the channel quality threshold, the first message further includes an identifier of the channel quality deviation value enable (Enable) Or the base station sends the identifier of the channel quality deviation value enable by using a message other than the first message (system message or broadcast message or downlink channel).
  • the enabled identifiers described in this application include both enabling and disabling.
  • the terminal may use the enabled channel quality offset value; when the first message specifies that the channel quality offset value is not enabled (Disable) The terminal cannot use the unenabled channel quality offset value.
  • the first message when the number of sets of channel quality thresholds included in the first message is greater than 1, the first message further includes other sets of channels except a predetermined set of channel quality thresholds.
  • the quality threshold is enabled; or the channel quality other than the predetermined set of channel quality thresholds is sent by a message other than the first message (such as a system message or a broadcast message or a downlink channel) Threshold enable identification.
  • the meaning of the predetermined set of channel quality thresholds includes at least one of: a set of channel quality thresholds pre-stored in the base station and the terminal; or a set of base stations signaling the terminal by signaling Channel quality threshold.
  • the base station divides the channel quality into multiple channel quality value intervals according to the first message.
  • one channel quality value interval corresponds to one coverage enhancement level; or one or more channel quality value intervals correspond to one coverage enhancement level.
  • the channel quality value interval includes at least one of the following:
  • the channel quality measurement value is greater than or equal to the sum of CQ_TH_CE0 and Delta0;
  • the channel quality measurement is between CQ_TH_CE0 and the sum of CQ_TH_CE0 and Delta0;
  • the channel quality measurement is between the sum of CQ_TH_CE1 and Delta1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and the sum of CQ_TH_CE1 and Delta1;
  • the channel quality measurement value is less than or equal to CQ_TH_CE1;
  • the CQ_TH_CE0 is a threshold value of the channel quality corresponding to the coverage enhancement level
  • CQ_TH_CE1 is the threshold value of the channel quality corresponding to the coverage enhancement level 1
  • Delta0 is the deviation value corresponding to the channel quality threshold value of the coverage enhancement level 0
  • Delta1 To cover the offset value corresponding to the channel quality threshold of the enhanced level 1.
  • the value directly measured by the terminal may be referred to as a channel quality measurement value; other channel quality information obtained by the terminal through the measured channel quality measurement value and calculated or estimated is also referred to as a channel quality measurement value.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement value is greater than or equal to the sum of CQ_TH_CE0 and Delta0;
  • the channel quality measurement is between CQ_TH_CE0 and the sum of CQ_TH_CE0 and Delta0.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement is between the sum of CQ_TH_CE1 and Delta1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and the sum of CQ_TH_CE1 and Delta1.
  • the channel quality value interval includes at least one of the following:
  • the channel quality measurement value is greater than or equal to New_CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE0 and New_CQ_TH_CE0;
  • the channel quality measurement is between New_CQ_TH_CE1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and New_CQ_TH_CE1;
  • the channel quality measurement value is less than or equal to CQ_TH_CE1;
  • CQ_TH_CE0 and CQ_TH_CE1 are a set of channel quality thresholds, where CQ_TH_CE0 is the threshold value of the channel quality corresponding to the coverage enhancement level 0, and CQ_TH_CE1 is the threshold value of the channel quality corresponding to the coverage enhancement level 1; New_CQ_TH_CE0 and New_CQ_TH_CE1 are other A set of channel quality thresholds, wherein New_CQ_TH_CE0 is a threshold value of the channel quality corresponding to the enhancement level 0, and New_CQ_TH_CE1 is a threshold value of the channel quality corresponding to the enhancement level 1.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement value is greater than or equal to New_CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE0 and New_CQ_TH_CE0.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval is the same: the channel quality measurement value is between New_CQ_TH_CE1 and CQ_TH_CE0; and the channel quality measurement value is between CQ_TH_CE1 and New_CQ_TH_CE1. .
  • the uplink channel includes at least one of the following:
  • the upstream channel used by Msg3 to transmit;
  • the uplink channel used for uplink information transmission (UL Information Transfer);
  • the uplink channel used when the terminal information response message (UE Information Response) is transmitted is transmitted.
  • the random access channel resources corresponding to each channel quality value interval are independently configured (that is, the random access channel resources corresponding to each channel quality value interval are configured by independent parameters);
  • the random access channel resource includes at least one of the following:
  • the beam direction or beam index selected when the random access signal is transmitted is transmitted
  • the SS/PBCH block is a time domain-frequency domain resource block, and at least includes a synchronization signal (Synchronization Signal, SS) and a system information block (SIB).
  • the SIB is sent in a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • One or more SS/PBCH blocks can be configured in the system.
  • Msg1 resource configuration information exists in each SS/PBCH block.
  • Msg1 resource configuration information exists in a part of the SS/PBCH block.
  • the number of repeated transmissions of the downlink channel corresponding to each channel quality value interval or the repeated transmission level is independently configured.
  • the base station receives the random access signal sent by the terminal, and determines the corresponding value interval according to the resource where the random access signal is located, and then configures the corresponding downlink channel repeated transmission times for the terminal according to the value interval or Repeat the transmission level.
  • the downlink channel includes at least one of the following:
  • the downlink channel used by Msg4 to transmit and,
  • the embodiment of the present application further provides a base station, where the base station includes a processor, a memory, and a communication bus; the communication bus is configured to implement connection communication between the processor and the memory; and the processor is configured to perform storage in the memory.
  • An information transmission program to implement the information transmission method according to any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The information transmission method according to any of the above.
  • an embodiment of the present application further provides an information transmission method, including the following step 201.
  • step 201 the terminal receives the first message sent by the base station, where the first message includes at least one of the following:
  • At least one set of channel quality thresholds wherein each set of channel quality thresholds includes at least one channel quality threshold
  • the channel quality threshold is set according to at least one of the following channel qualities:
  • the terminal divides the channel quality into a plurality of channel quality value intervals according to the first message.
  • the channel quality value interval includes at least one of the following:
  • the channel quality measurement value is greater than or equal to the sum of CQ_TH_CE0 and Delta0;
  • the channel quality measurement is between CQ_TH_CE0 and the sum of CQ_TH_CE0 and Delta0;
  • the channel quality measurement is between the sum of CQ_TH_CE1 and Delta1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and the sum of CQ_TH_CE1 and Delta1;
  • the channel quality measurement value is less than or equal to CQ_TH_CE1;
  • the CQ_TH_CE0 is a threshold value of the channel quality corresponding to the coverage enhancement level
  • CQ_TH_CE1 is the threshold value of the channel quality corresponding to the coverage enhancement level 1
  • Delta0 is the deviation value corresponding to the channel quality threshold value of the coverage enhancement level 0
  • Delta1 To cover the offset value corresponding to the channel quality threshold of the enhanced level 1.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement value is greater than or equal to the sum of CQ_TH_CE0 and Delta0;
  • the channel quality measurement is between CQ_TH_CE0 and the sum of CQ_TH_CE0 and Delta0.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement is between the sum of CQ_TH_CE1 and Delta1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and the sum of CQ_TH_CE1 and Delta1.
  • the channel quality value interval includes at least one of the following:
  • the channel quality measurement value is greater than or equal to New_CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE0 and New_CQ_TH_CE0;
  • the channel quality measurement is between New_CQ_TH_CE1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and New_CQ_TH_CE1;
  • the channel quality measurement value is less than or equal to CQ_TH_CE1;
  • CQ_TH_CE0 and CQ_TH_CE1 are a set of channel quality thresholds, where CQ_TH_CE0 is the threshold value of the channel quality corresponding to the coverage enhancement level 0, and CQ_TH_CE1 is the threshold value of the channel quality corresponding to the coverage enhancement level 1; New_CQ_TH_CE0 and New_CQ_TH_CE1 are other A set of channel quality thresholds, wherein New_CQ_TH_CE0 is a threshold value of the channel quality corresponding to the enhancement level 0, and New_CQ_TH_CE1 is a threshold value of the channel quality corresponding to the enhancement level 1.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement value is greater than or equal to New_CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE0 and New_CQ_TH_CE0.
  • the uplink channel repeat transmission level or the repeated transmission times corresponding to the channel quality value interval described below is the same:
  • the channel quality measurement is between New_CQ_TH_CE1 and CQ_TH_CE0;
  • the channel quality measurement is between CQ_TH_CE1 and New_CQ_TH_CE1.
  • the uplink channel includes at least one of the following:
  • the upstream channel used by Msg3 to transmit;
  • the uplink channel used when the uplink direct transmission message is sent is sent;
  • the uplink channel used when the terminal capability message is sent is sent
  • the uplink channel used by the terminal information response message to be sent is the uplink channel used by the terminal information response message to be sent.
  • the method further includes: the terminal transmitting the second message by using an uplink channel, where the second message includes at least one of the following:
  • Modulation coded information of the downlink channel wherein the modulation and coding information includes at least one of a modulation order and an encoding efficiency
  • Channel quality measurement information where the channel quality measurement information includes a channel quality measurement value or a channel quality value interval in which the channel quality measurement value is located.
  • variables in the second message may be actual values or adjustment amounts relative to actual values, for example, the coverage enhancement level may be an actually selected coverage enhancement level, or The deviation value of the last coverage enhancement level can be positive, negative, or zero.
  • the repeated transmission information of the downlink channel may be an actually selected value or a deviation value compared to the last selected value, which may be positive, negative, or zero.
  • the modulation and coding information of the downlink channel may be an actually selected value or a deviation value compared to the last selected value, which may be positive, negative, or zero.
  • the channel quality measurement information may be configured in multiples for different types of the channel qualities.
  • the downlink channel includes at least a downlink control channel and a downlink shared channel; for example, a downlink control channel carrying Msg2 or Msg4 scheduling information, and a downlink shared channel carrying Msg2 or Msg4.
  • the adjustment amount of a parameter is the deviation value between the value of the previous parameter and the adjusted value of the parameter; the adjustment amount may be positive, negative, or zero. .
  • the terminal that satisfies the first condition transmits the second message by using an uplink channel, where
  • the first condition includes at least one of the following:
  • the message that the base station sends to the terminal includes an identifier for enabling the second message transmission;
  • the coverage enhancement level of the terminal is B, where B is a predetermined one or more coverage enhancement levels (it is to be noted that the meaning of the predetermined one or more coverage enhancement levels includes at least one of the following: pre-storage One or more coverage enhancement levels in the base station and the terminal; or the base station notifies the terminal of one or more coverage enhancement levels by signaling);
  • the coverage enhancement level of the terminal is greater than a preset coverage enhancement level threshold
  • the meaning of the predetermined set of channel quality thresholds includes: a set of channel quality thresholds pre-stored in the base station and the terminal; or the base station signaling a set of channel quality thresholds of the terminal) Time;
  • the preset coverage enhancement level threshold is level 0.
  • the first condition refers to the coverage enhancement level of 1 and 2.
  • the first condition is a combination of the following conditions:
  • the seventh conditional combination (8) (2) (4) or (8) (3) (4);
  • (i) is the content of the i-th article included in the first condition, and i is a natural number within 1 to 9.
  • the terminal determines a corresponding channel quality value interval according to the selected coverage enhancement level, and then transmits the second message by using an uplink channel.
  • one coverage enhancement level corresponds to a predetermined channel quality value interval, that is, one coverage enhancement level may correspond to one or more channel quality value intervals.
  • the second message when the second message includes a channel quality measurement interval in which the downlink channel quality measurement value or the downlink channel quality measurement value is located, where the downlink channel quality measurement value or the downlink channel quality measurement value is located
  • the channel quality value interval is indicated by N bits, N is an integer greater than or equal to 1, and the N-bit quantized channel quality value interval is at least one of the following:
  • the channel quality value interval is greater than or equal to the channel quality value A, where A is the minimum value or the channel quality value interval boundary value corresponding to the random access channel resource where the random access signal is sent by the terminal. Or a predetermined value within the channel quality value interval;
  • the multiple channel quality value interval (which may be the channel quality value interval corresponding to the coverage enhancement level selected by the terminal or the channel quality value interval corresponding to the random access channel resource where the random access signal sent by the terminal is located).
  • the multiple channel quality value intervals include:
  • the channel quality value interval corresponding to the coverage enhancement level selected by the terminal, and the number of segments quantized by the channel quality value interval corresponding to the coverage enhancement level selected by the terminal is not less than the number of segments quantized by other channel quality value intervals;
  • the value of the index that can be reported in the RSRP is as shown in Table 1.
  • the index value ranges from 0 to 113.
  • the RSRP value range corresponding to each index value is shown in Table 1.
  • the corresponding RSRP value ranges are:
  • the RSRP corresponding to CE level 0 is -110 dBm ⁇ RSRP, that is, the RSRP values corresponding to indexes 47 to 113;
  • the RSRP corresponding to CE level 1 is -120 dBm ⁇ RSRP ⁇ -110 dBm, that is, the RSRP values corresponding to indexes 37 to 46;
  • the RSRP corresponding to CE level 2 is RSRP ⁇ -120 dBm, that is, the RSRP value corresponding to indexes 0 to 36;
  • the number of segments quantized by the quality value interval corresponding to CE level 1 is 5, and the number of segments quantized by the quality value interval corresponding to CE level 0 is 3.
  • each segment corresponds to two RSRP value indexes, respectively (index 37, index 38) corresponding to the first quantized segment, (index 39, index 40) Corresponding to the second quantized segment, ..., (index 45, index 46) corresponds to the fifth quantized segment.
  • the three quantized segments corresponding to CE level 0 are respectively (index 47 to index 68) corresponding to the first quantized segment, and (index 69 to index 90) corresponds to the second quantized segment, (index 91 to index 113) Corresponds to the third quantized segment.
  • the channel quality measurement interval in which the downlink channel quality measurement value or the downlink channel quality measurement value corresponding to the N1 state is not in the multiple locations described by the N bits is not in the random access sent by the terminal.
  • the N bits can describe 2 ⁇ N states, and each state corresponds to a specific value of a channel quality measurement value or a channel quality value interval in which the downlink channel quality measurement value is located.
  • the terminal determines, according to the coverage enhancement level, the number of channel quality value intervals in which the downlink channel quality measurement value or the downlink channel quality measurement value sent in the second message is located.
  • the coverage enhancement level is greater than or equal to C1 (C1 is a predetermined coverage enhancement level, where the predetermined meaning is stored in the base station and the terminal in advance or the base station notifies the terminal by signaling)
  • the downlink channel quality measurement transmitted by the terminal The value of the channel quality value interval in which the value or downlink channel quality measurement is located is D1 (D1 is greater than or equal to 2), for example, a total of 3 coverage enhancement levels, and the index is 0, 1, 2.
  • D1 is greater than or equal to 2
  • the channel quality transmitted by the terminal covering the enhancement levels 1 and 2 is RSRP and downlink SINR or RSRP and RSRQ;
  • the coverage enhancement level is less than or equal to C2 (C2 is a predetermined coverage enhancement level, where the predetermined meaning is stored in the base station and the terminal in advance or the base station notifies the terminal by signaling)
  • the number of channel quality values in which the downlink channel quality measurement is located is one, for example, a total of three coverage enhancement levels, and the index is 0, 1, and 2.
  • C2 0. That is, the channel quality transmitted by the terminal covering the enhancement level 0 is RSRP;
  • the coverage enhancement level is less than or equal to C3 (C3 is a predetermined coverage enhancement level, where the predetermined meaning is stored in the base station and the terminal in advance or the base station notifies the terminal by signaling)
  • the number of channel quality values in which the downlink channel quality measurement is located is D3 (D3 is greater than or equal to 2), for example, a total of 3 coverage enhancement levels, and the index is 0, 1, 2.
  • the coverage enhancement level is greater than or equal to C4 (C4 is a predetermined coverage enhancement level, where the predetermined meaning is stored in the base station and the terminal in advance or the base station notifies the terminal by signaling)
  • the number of channel quality values in which the downlink channel quality measurement is located is one, for example, a total of three coverage enhancement levels, and the index is 0, 1, and 2.
  • C4 1. That is, the channel quality transmitted by the terminal covering the enhancement levels 1 and 2 is RSRP.
  • the method further includes:
  • Repeating transmission of information of the channel wherein the repeated transmission information includes a repeated transmission level or a repeated transmission number;
  • Modulation encoded information of a channel wherein the modulation and coding information includes at least one of a modulation order and an encoding efficiency
  • Channel quality measurement information where the channel quality measurement information includes a channel quality measurement value or a channel quality value interval in which the channel quality measurement value is located.
  • the channel here includes an uplink channel and a downlink channel.
  • the first rule comprises:
  • the terminal determines a first coverage enhancement level of the terminal according to the first channel quality measurement value and the first set of channel quality threshold values; the terminal determines the terminal according to the second channel quality measurement value and the second set of channel quality threshold values. Second coverage enhancement level;
  • the method for determining, by the terminal, the first coverage enhancement level of the terminal according to the first channel quality measurement value and the first set of channel quality threshold values is:
  • the channel quality corresponding to the quality threshold belongs to the same type, for example, both are RSRP.
  • the method for determining, by the terminal, the second coverage enhancement level of the terminal according to the second channel quality measurement value and the second set of channel quality threshold values is the same as above.
  • the terminal in the application determines the first coverage enhancement level of the terminal according to the first channel quality measurement value and the first set of channel quality thresholds, and includes the following two situations: the terminal is only based on the first a channel quality measurement value and a first set of channel quality threshold values, determining a first coverage enhancement level of the terminal; the terminal according to the first channel quality measurement value, the first set of channel quality threshold, and others The value of the parameter determines the first coverage enhancement level of the terminal.
  • the terminal in the application determines the second coverage enhancement level of the terminal according to the second channel quality measurement value and the second set of channel quality thresholds, and includes the following two situations: the terminal only uses the second channel quality measurement value. And determining, by the two parameter values of the second set of channel quality thresholds, a second coverage enhancement level of the terminal; the terminal determining, according to the second channel quality measurement value, the second set of channel quality threshold values, and other parameter values The second coverage enhancement level of the terminal.
  • the first set of channel quality thresholds is for RSRP, and is divided into three RSRP values, which are respectively RSRP value interval 1, RSRP value interval 2, and RSRP value interval. 3.
  • the second set of channel quality thresholds is for the downlink SINR, which is divided into three downlink SINR values, which are the downlink SINR value interval 1, the downlink SINR value interval 2, and the downlink SINR value interval 3.
  • the terminal coverage enhancement level is obtained according to the method of Table 2.
  • the first rule further includes:
  • the terminal selects a maximum coverage enhancement level of the first coverage enhancement level and the second coverage enhancement level as the coverage enhancement level of the terminal;
  • the terminal uses the first coverage enhancement level and the second coverage enhancement level as the coverage enhancement level of the terminal;
  • the index of the value interval of the first type of channel quality selected by the terminal and the channel quality measurement information of the terminal as the index of the value range of the second channel quality selected by the terminal;
  • the value interval of the first channel quality selected by the terminal and the value interval of the second channel quality selected by the terminal are used as channel quality measurement information of the terminal.
  • the first coverage enhancement level and the second coverage enhancement level adopt a method of joint indication, for example, the first The coverage enhancement level is 0 to 2, and the second coverage enhancement level is 0 to 2. Therefore, the manner of joint indication is as shown in Table 4. And the index of each joint indication corresponds to a coverage enhancement level or repeated transmission information of an uplink channel, or corresponds to a coverage enhancement level or repeated transmission information of a downlink channel.
  • the first rule further includes:
  • the terminal uses the second coverage enhancement level as the coverage enhancement level of the terminal;
  • the value interval of the second channel quality selected by the terminal is used as the downlink channel quality measurement information of the terminal.
  • the application scenario in which the terminal uses the second coverage enhancement level as the coverage enhancement level of the terminal is that the terminal uses the random access resource to indicate the value range of the RSRP when transmitting by using the Msg1, and then reports the second coverage by using the second coverage.
  • the enhancement level indicates the value of RSRQ or downlink SINR.
  • the base station may further adjust the coverage enhancement level of the terminal or the repeated transmission information of the channel or the modulation and coding information of the channel.
  • the first rule further includes at least one of the following:
  • the terminal selects a corresponding downlink channel repeatedly sending information according to the coverage enhancement level
  • the terminal selects modulation coding information of the corresponding downlink channel according to the coverage enhancement level
  • the terminal selects the repeated transmission information of the corresponding downlink channel according to the downlink channel quality measurement information
  • the terminal selects modulation coding information of the corresponding downlink channel according to the downlink channel quality measurement information.
  • the terminal described in the present application selects the corresponding downlink channel repeated transmission information according to the coverage enhancement level, and includes the following two situations: the terminal selects the corresponding downlink channel repeated transmission according to the parameter value of the coverage enhancement level.
  • Information The terminal selects a corresponding downlink channel to repeatedly transmit information according to the coverage enhancement level and values of other parameters.
  • the terminal in the present application selects the modulation and coding information of the corresponding downlink channel according to the coverage enhancement level, and includes the following two situations: the terminal selects the modulation coding information of the corresponding downlink channel according to the parameter value of the coverage enhancement level; The modulation coding information of the corresponding downlink channel is selected according to the coverage enhancement level and the values of other parameters.
  • the second rule comprises:
  • the method of joint instruction is independent of the value interval of the second channel quality of the terminal, or the value interval of the first channel quality of the terminal and the value range of the second channel quality of the terminal are used.
  • the joint indication described in this application may indicate the first coverage enhancement level selected by the terminal and the second coverage enhancement level through an indication information.
  • the first coverage enhancement level is 0 to 2
  • the second coverage enhancement level is 0 to 2. Therefore, the manner of the joint indication is as shown in Table 5 below.
  • the method for the joint indication is, for example, the first coverage enhancement level is 0 to 2, and the second coverage enhancement level is 0 to 1, so the manner of the joint indication is as shown in Table 6.
  • the second rule further includes at least one of the following:
  • the terminal selects repeated transmission information of the corresponding channel according to the coverage enhancement level
  • the terminal selects modulation and coding information of a corresponding channel according to the coverage enhancement level
  • the terminal selects repeated transmission information of the corresponding channel according to the channel quality measurement interval in which the downlink channel quality measurement value or the downlink channel quality measurement value is located;
  • the terminal selects modulation coding information of the corresponding channel according to the channel quality measurement interval in which the downlink channel quality measurement value or the downlink channel quality measurement value is located.
  • the channel quality corresponding to the first set of channel quality thresholds and the second set of channel quality thresholds are of different types.
  • the channel quality corresponding to the first set of channel quality thresholds is the reference signal received power RSRP
  • the channel quality corresponding to the second set of channel quality thresholds is the reference signal received quality RSRQ or the downlink downlink signal to interference and noise ratio. SINR.
  • the determining, by the terminal, the first coverage enhancement level of the terminal according to the first channel quality measurement value and the first set of channel quality thresholds including: comparing the first channel quality measurement value with the phase Corresponding first sets of channel quality thresholds are compared to determine a first coverage enhancement level of the terminal.
  • the channel quality corresponding to the first channel quality measurement value and the first set of channel quality threshold values belong to the same type (for example, both are RSRP).
  • the determining, by the terminal, the second coverage enhancement level of the terminal according to the second channel quality measurement value and the second set of channel quality thresholds including: comparing the second channel quality measurement value with the phase Corresponding second sets of channel quality thresholds are compared to determine a second coverage enhancement level of the terminal.
  • the channel quality corresponding to the second channel quality measurement value and the second set of channel quality threshold values belong to the same type (for example, both are RSRP).
  • the terminal in the present application selects the repeated transmission information of the corresponding downlink channel according to the coverage enhancement level, and includes the following two situations: the terminal selects the corresponding downlink channel according to the parameter value of the coverage enhancement level. The information is repeatedly transmitted; the terminal selects the repeated transmission information of the corresponding downlink channel according to the coverage enhancement level and the values of other parameters.
  • the terminal in the present application selects the modulation and coding information of the corresponding downlink channel according to the coverage enhancement level, and includes the following two situations: the terminal selects the modulation coding information of the corresponding downlink channel according to the parameter value of the coverage enhancement level; The modulation coding information of the corresponding downlink channel is selected according to the coverage enhancement level and the values of other parameters.
  • the method further includes:
  • the terminal transmits the third message by using an uplink channel, where the third message includes at least one of the following:
  • Repeating transmission of information of the channel wherein the repeated transmission information includes a repeated transmission level or a repeated transmission number;
  • Modulation encoded information of a channel wherein the modulation and coding information includes at least one of a modulation order and an encoding efficiency
  • Channel quality measurement information where the channel quality measurement information includes a channel quality measurement value or a channel quality value interval in which the channel quality measurement value is located;
  • the terminal determines the value of the parameter in the third message by using a predefined first rule or a second rule.
  • the terminal when the terminal satisfies the second condition, the terminal transmits the third message by using an uplink channel, where
  • the second condition includes at least one of the following:
  • the system message or the broadcast message or the message sent to the terminal by using the downlink channel includes an identifier for enabling the third message transmission
  • the coverage enhancement level of the terminal is B, where B is a predetermined one or more coverage enhancement levels;
  • the coverage enhancement level of the terminal is greater than a preset coverage enhancement level threshold
  • the number of sets of channel quality thresholds included in the first message is greater than one.
  • the second condition is a combination of the following conditions:
  • (j) is the content of the jth item included in the second condition, and j is a natural number within 1 to 5.
  • the specific setting method of the first rule and the second rule is as described above, and details are not described herein again.
  • the embodiment of the present application further provides a terminal, where the terminal includes a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection communication between the processor and the memory memory
  • the processor is configured to execute an information transmission program stored in the memory to implement the information transmission method according to any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The information transmission method according to any of the above.
  • an embodiment of the present application further provides an information transmission method, including the following steps 301 and 302.
  • the terminal receives the first message sent by the base station, where the first message includes at least one of: at least one set of channel quality thresholds, where each set of channel quality thresholds includes at least one channel quality Threshold value; a deviation value relative to the channel quality threshold.
  • the channel quality threshold is set according to at least one of the following channel quality: reference signal received power, reference signal received quality, downlink signal to interference and noise ratio, downlink signal to noise ratio, uplink signal to interference and noise ratio, uplink signal to noise Ratio, downlink path loss, and uplink path loss.
  • the terminal may send another random access preamble Msg1 message (there may be other signaling interactions in the middle, which is not limited herein), wherein the Msg1 message includes at least one first structure.
  • the first structure includes at least one symbol group
  • the symbol group of the first structure includes a cyclic prefix and at least one symbol, or includes a cyclic prefix, at least one symbol, and a guard time;
  • each symbol in the same symbol group of the first structure occupies the same subcarrier in the frequency domain.
  • the first structure includes: 4 symbol groups, wherein a subcarrier index occupied by the first and second symbol groups is different by 1 subcarrier, and the third and fourth symbol groups are occupied.
  • the subcarrier indices differ by 6 subcarriers.
  • the three symbol groups wherein the first subcarrier index occupied by the second symbol group is different from one subcarrier, and the subcarrier index occupied by the second and third symbol groups is different from each other by 6 subcarriers.
  • the first and second symbol groups are consecutive in the time domain
  • the third and fourth symbol groups are consecutive in the time domain
  • the second and third symbol groups are discrete in the time domain.
  • the first, second, and third symbol groups are consecutive in the time domain.
  • the Msg1 message when the Msg1 message includes a plurality of first structures and the first structure includes 3 symbol groups,
  • the number of subcarriers included in the first subcarrier set is 12. In an embodiment, the number of subcarriers is 12 consecutive subcarriers in the frequency domain, and the index number is 0-11.
  • the second set of subcarriers is determined according to one of the following rules:
  • the second subcarrier set is a subcarrier with an index of ⁇ 7, 9, 11 ⁇ in the first subcarrier set;
  • the second subcarrier set is a subcarrier with an index of ⁇ 1, 3, 5 ⁇ in the first subcarrier set;
  • the second subcarrier set is a subcarrier with an index of ⁇ 6, 8, 10 ⁇ in the first subcarrier set
  • the second subcarrier set is a subcarrier with an index of ⁇ 0, 2, 4 ⁇ in the first subcarrier set;
  • the index defining the first first structure is 1, the index of the second first structure is 2, and so on; therefore, the first structure with an odd index is the first, third, fifth, and seventh.
  • the first structure, the first structure whose index is even, is the first structure of the second, fourth, sixth, eighth....
  • the Msg1 message when the Msg1 message includes a plurality of first structures and the first structure includes 4 symbol groups,
  • the subcarrier index occupied by the first symbol group in the first structure whose index is odd is selected from the third subcarrier set;
  • the subcarrier index occupied by the third symbol group in the first structure whose index is odd is selected from the fourth subcarrier set;
  • the subcarrier index occupied by the first symbol group in the first structure whose index is even is selected from the fifth subcarrier set;
  • the subcarrier index occupied by the third symbol group in the first structure whose index is even is selected from the sixth subcarrier set;
  • the number of subcarriers included in the third subcarrier set is 12. In an embodiment, the number of consecutive subcarriers in the frequency domain is 12, and the index number is 0 to 11.
  • the number of subcarriers included in the fourth subcarrier set is 12. In one embodiment, the number of consecutive subcarriers in the frequency domain is 12, and the index number is 0-11.
  • the fifth subcarrier set is determined according to one of the following rules:
  • the fifth subcarrier The set is a subcarrier whose index is an odd number in the third subcarrier set
  • the fifth subcarrier The set is a subcarrier with an even index in the third subcarrier set.
  • the sixth subcarrier set is determined according to one of the following rules: a subcarrier index occupied by the third symbol group in the first structure in which the index is an odd number before the first structure whose index is an even number is the fourth sub When the subcarriers of the carrier set are ⁇ 0, 1, 2, 3, 4, 5 ⁇ , the sixth subcarrier set is the index of the fourth subcarrier set is ⁇ 6, 7, 8, 9, 10, Subcarrier of 11 ⁇ .
  • the third subcarrier set and the fourth subcarrier set are independently configured
  • the third subcarrier set and the fourth subcarrier set are the same;
  • the method of selecting the subcarrier index occupied by the first symbol group in the first structure whose index is odd is selected from the third subcarrier set is a random selection
  • the method of selecting the subcarrier index occupied by the third symbol group in the first structure whose index is odd is selected from the fourth subcarrier set is a random selection
  • the subcarrier index occupied by the first symbol group in the first structure whose index is odd and the subcarrier index occupied by the third symbol group are independently selected.
  • the embodiment of the present application further provides a terminal, where the terminal includes a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection communication between the processor and the memory
  • the processor is configured to execute an information transmission program stored in the memory to implement the information transmission method according to any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The information transmission method according to any of the above.
  • an embodiment of the present application further provides an information transmission method, including the following step 401.
  • the base station sends a random access response (RAR) Msg2 message through a downlink channel, where the Msg2 message is composed of at least a Medium Access Control (MAC) Header and a MAC layer payload (Payload).
  • RAR random access response
  • the adjustment information of the Msg1 is sent in the Msg2 message.
  • the adjustment information of the Msg1 is sent in the MAC Payload.
  • BI Backoff Indicator
  • the adjustment information of the Msg1 is sent after the last MAC RAR.
  • the Msg1 adjustment information includes at least one of the following:
  • the beam direction or beam index selected when the adjusted Msg1 is transmitted is transmitted
  • the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information is the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information.
  • the SS/PBCH block is a time domain-frequency domain resource block, which includes at least a Synchronization Signal (SS) and a System Information Block (SIB). .
  • the SIB is sent in a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • One or more SS/PBCH blocks can be configured in the system.
  • Msg1 resource configuration information exists in each SS/PBCH block.
  • Msg1 resource configuration information exists in a part of the SS/PBCH block.
  • the adjustment amount of a parameter is the deviation value between the value of the previous parameter and the adjusted value of the parameter; the adjustment amount may be positive, negative, or zero. .
  • the adjustment information of Msg1 is for the same coverage enhancement level.
  • the adjustment information of the Msg1 is indicated by a random access identifier RAPID field in the MAC subheader.
  • FIG. 11 includes two types of MAC subheaders (sub-packet headers of the MAC layer), which are respectively "E/T/RAPID MAC subheader” as shown in FIG. 12, and have a length of 8 bits (bit), and The "E/T/R/R/BI MAC subheader” shown in Fig. 13 has a length of 8 bits.
  • E is used to indicate whether there are other subheaders in the MAC header. “E” is set to “1” to indicate that there are other subheaders in the MAC header; “E” is set to "0” to indicate that the subheader is directly MAC. RAR is either padding bits;
  • the "T” is used to indicate that the subheader contains a Random Access Preamble ID (RAPID) or a Backoff Indicator (BI).
  • RAPID Random Access Preamble ID
  • BI Backoff Indicator
  • R is a reserved bit and is configured as "0"
  • BI occupies 4 bits; RAPID occupies 6 bits.
  • the adjusting information of the Msg1 is indicated by the RAPID field in the MAC subheader, including: part or all of the status bits of the RAPID are used to indicate the adjustment information of the Msg1.
  • the specific meaning of the status bits is as follows: Assuming that the RAPID is composed of N bits, the RAPID can describe up to 2 ⁇ N states, each of which is called a status bit.
  • the RAPID has 6 bits and can support a total of 64 status bits from 0 to 63.
  • each status bit corresponds to an Msg1 adjustment information, and after the UE successfully receives the status bit, the Msg1 adjustment information is obtained.
  • the MAC subheader indicating the adjustment information of Msg1 is sent after the MAC subheader including Backoff Indicator (BI).
  • BI Backoff Indicator
  • the adjustment information of the Msg1 is indicated by the RAPID in the MAC subheader, including: the status bit of the RAPID is used to indicate whether the adjustment information of the Msg1 is included in the MAC Payload.
  • the adjustment information of the Msg1 is sent after the MAC header.
  • the adjustment information of the Msg1 is sent after the last MAC RAR in the MAC Payload.
  • the adjustment information of Msg1 is for the same coverage enhancement level.
  • the embodiment of the present application further provides a base station, where the terminal includes a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection communication between the processor and the memory
  • the processor is configured to execute an information transmission program stored in the memory to implement the information transmission method according to any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The information transmission method according to any of the above.
  • the information transmission method provided by one or more embodiments of the present application and the base station, the terminal, and the computer readable storage medium transmit a first message including a channel quality threshold value or a deviation value thereof through the base station, so that the terminal can measure according to the current channel quality.
  • the value of the coverage enhancement level of the terminal is adjusted and fed back to the base station, which improves the success rate of the uplink channel transmission, and improves the phenomenon that the base station may select excessive downlink channel repeated transmission times and waste resources.
  • the embodiments of the present application further provide a few examples of the application, and the application is further explained, but it is noted that the application examples are only for better description of the application, and do not constitute a limitation to the present application.
  • the following various embodiments may exist independently, and the technical features in different embodiments may be combined and used in combination in one embodiment.
  • Application Embodiment 1 (combining 1:1 sets of channel quality thresholds and deviation values for channel quality thresholds in the set of channel quality thresholds)
  • Each coverage enhancement level corresponds to a channel quality interval, and each channel corresponding to the coverage enhancement level is configured with a repeated transmission number.
  • the coverage enhancement level of the UE is CE level 0;
  • the coverage enhancement level of the UE is CE level 1;
  • the coverage enhancement level of the UE is CE level 2;
  • CQ_Measured is a channel quality measurement value of the terminal
  • CQ_TH_CE0 is a threshold value of a channel quality corresponding to the coverage enhancement level 0
  • CQ_TH_CE1 is a threshold value of a channel quality corresponding to the coverage enhancement level 1.
  • the channel quality threshold is used by the terminal to determine a coverage enhancement level or a coverage enhancement level of a downlink channel or a repeated transmission of a downlink channel according to a comparison result between a channel quality measurement value and a channel quality threshold value. The number of repeated transmissions of the level or downlink channel.
  • the channel quality threshold is set according to at least one of the following channel quality: reference signal received power, reference signal received quality, downlink signal to interference and noise ratio, downlink signal to noise ratio, uplink signal to interference and noise ratio, uplink signal to noise Ratio, downlink path loss, and uplink path loss.
  • the channel quality is the reference signal received power RSRP.
  • the CE level reflects the downlink channel quality information
  • the CE level can also reflect the uplink channel quality information.
  • the uplink channel is unsuccessful because the interference level of the uplink channel is greater than the interference level of the downlink channel. If the UE sends the uplink channel according to the repeated number of transmissions corresponding to the selected CE level, the uplink channel may be unsuccessful because the uplink interference level is too high. Received by the base station.
  • the base station in addition to configuring one set of channel quality thresholds (ie, CQ_TH_CE0 and CQ_TH_CE1), the base station also configures offset values Delta0 and Delta1 for CQ_TH_CE0 and CQ_TH_CE1, as shown in FIG. 5, therefore, dividing the channel quality. It is 5 intervals (Range), which are Range1 ⁇ Range5 respectively. It should be noted that the deviation values Delta0 and Delta1 may be configured for multiple threshold values in each set of threshold values, or all threshold values in the set of threshold values share the same deviation value.
  • the base station improves the channel quality thresholds corresponding to CE Level 0 and CE Level 1 by configuring Delta0 and Delta1. Therefore, the channel quality threshold of CE level 0 becomes CQ_TH_CE0+Delta0, and the channel quality interval corresponding to CE level 0 is Range1; the channel quality threshold of CE level 1 becomes CQ_TH_CE1+Delta1, and the channel quality corresponding to CE level 1 The interval is Range2 and Range3; the channel quality interval corresponding to CE level 2 is Range4 and Range5.
  • the CE level selected by some UEs is too large, which may result in a large number of repeated transmissions of the downlink channels corresponding to the UEs. Waste of resources.
  • the CE level of the UE whose channel quality is in the Range 2 area is increased from CE level 0 to CE level 1. Therefore, when the base station configures the number of repeated transmissions of the downlink channel for such a UE, It will be selected according to CE level 1. Therefore, the number of repeated transmissions of the downlink channels corresponding to these UEs is too large, resulting in waste of resources.
  • Such resource waste problem also exists in the Range 4 area UE. In order to overcome this problem, the UE transmits the adjustment information of the downlink channel through the Msg3 message.
  • the adjustment information of the downlink channel includes at least one of the following:
  • the method for quantifying the "downlink channel quality" is as follows:
  • the value range of the "downstream channel quality" sent by the UE is the channel quality interval corresponding to the CE level selected by the UE;
  • the channel quality interval in (1) is N (N is greater than or equal to 1) bit quantization, that is, the channel quality interval corresponding to the CE level is divided into 2 ⁇ N cells, and the UE transmits "downlink channel quality" through the Msg3 message.
  • N is greater than or equal to 1 bit quantization, that is, the channel quality interval corresponding to the CE level is divided into 2 ⁇ N cells, and the UE transmits "downlink channel quality" through the Msg3 message.
  • the UE when the channel quality measurement value of the UE meets at least one of the following areas, the UE sends the downlink channel quality:
  • Application Embodiment 2 (combining a 1:1 set of channel quality thresholds and deviation values for channel quality thresholds in the set of channel quality thresholds)
  • the base station in addition to configuring one set of channel quality thresholds (ie, CQ_TH_CE0 and CQ_TH_CE1), the base station also configures offset values Delta0 and Delta1 for CQ_TH_CE0 and CQ_TH_CE1, as shown in FIG. 5, therefore, dividing the channel quality. It is 5 intervals, which are Range1 ⁇ Range5.
  • the base station improves the channel quality thresholds corresponding to CE Level 0 and CE Level 1 by configuring Delta0 and Delta1. Therefore, the channel quality threshold of CE level 0 becomes CQ_TH_CE0+Delta0, and the channel quality interval corresponding to CE level 0 is Range1; the channel quality threshold of CE level 1 becomes CQ_TH_CE1+Delta1, and the channel quality corresponding to CE level 1
  • the interval is Range2 and Range3
  • the corresponding uplink channel in this embodiment, the random access channel
  • the random access channel repeats the transmission level or the number of repeated transmissions is the same;
  • the channel quality interval corresponding to CE level 2 is Range4 and Range5, and the corresponding uplink channel (this implementation)
  • the random access channel is repeatedly transmitted or the number of repeated transmissions is the same.
  • each of Range1 to Range5 corresponds to an independent random access channel resource, and the number of repeated transmissions of the downlink channel corresponding to each interval or the repeated transmission level is independently configured.
  • the random access channel resource includes at least one of the following:
  • the beam direction or beam index selected when the random access signal is transmitted is transmitted
  • the downlink channel includes at least one of the following:
  • the downlink channel used by Msg4 to transmit is the downlink channel used by Msg4 to transmit
  • the downlink channel used by the Msg4 scheduling information to be sent and,
  • the base station determines, according to the random access channel resource corresponding to the random access signal sent by the UE, the Range index to which the UE belongs, and further configures the number of repeated transmissions or the repeated transmission level for the downlink channel corresponding to the UE.
  • the CE level reflects the downlink channel quality information
  • the CE level can also reflect the uplink channel quality information.
  • the uplink channel is unsuccessful because the interference level of the uplink channel is greater than the interference level of the downlink channel. If the UE sends the uplink channel according to the repeated number of transmissions corresponding to the selected CE level, the uplink channel may be unsuccessful because the uplink interference level is too high. Received by the base station.
  • the base station is configured with two sets of channel quality thresholds, the first set of thresholds are CQ_TH_CE0 and CQ_TH_CE1, and the second set of thresholds are New_CQ_TH_CE0 and New_CQ_TH_CE1, as shown in FIG.
  • the two sets of thresholds divide the channel quality into five intervals, which are Range1 ⁇ Range5.
  • the channel quality threshold of the uplink CE level 0 is New_CQ_TH_CE0
  • the channel quality interval corresponding to the uplink CE level 0 is Range1
  • the channel quality threshold of the uplink CE level 1 becomes New_CQ_TH_CE1
  • the channel quality interval corresponding to the uplink CE level 1 is Range2.
  • the channel quality interval corresponding to Range3; uplink CE level 2 is Range4 and Range5.
  • the channel quality threshold of the downlink CE level 0 is CQ_TH_CE0, and the channel quality interval corresponding to the downlink CE level 0 is Range1 and Range2; the channel quality threshold of the downlink CE level 1 becomes CQ_TH_CE1, and the channel quality interval corresponding to the downlink CE level 1 It is Range 3 and Range 4; the channel quality interval corresponding to downlink CE level 2 is Range5.
  • the threshold value of the channel quality corresponding to the uplink CE level is increased, the success rate of the uplink channel transmission is improved.
  • the base station is configured with two sets of channel quality thresholds, the first set of threshold values are CQ_TH_CE0 and CQ_TH_CE1, and the second set of threshold values are New_CQ_TH_CE0 and New_CQ_TH_CE1, as shown in FIG.
  • the limit divides the channel quality into five intervals, which are Range1 to Range5.
  • the channel quality threshold of the uplink CE level 0 is New_CQ_TH_CE0
  • the channel quality interval corresponding to the uplink CE level 0 is Range1
  • the channel quality threshold of the uplink CE level 1 becomes New_CQ_TH_CE1
  • the channel quality interval corresponding to the uplink CE level 1 is Range2.
  • the channel quality interval corresponding to Range3; uplink CE level 2 is Range4 and Range5.
  • the channel quality threshold of the downlink CE level 0 is CQ_TH_CE0, and the channel quality interval corresponding to the downlink CE level 0 is Range1 and Range2; the channel quality threshold of the downlink CE level 1 becomes CQ_TH_CE1, and the channel quality interval corresponding to the downlink CE level 1 It is Range 3 and Range 4; the channel quality interval corresponding to downlink CE level 2 is Range5.
  • each of Range1 to Range5 corresponds to an independent random access channel resource, and each interval corresponds to The number of repeated transmissions of the downlink channel or the repeated transmission level is independently configured.
  • the random access channel resource includes at least one of the following:
  • the beam direction or beam index selected when the random access signal is transmitted is transmitted.
  • the downlink channel includes at least one of the following:
  • the downlink channel used by Msg4 to transmit and,
  • the UE sends a random access signal according to the range of the measured channel quality value and then selects the corresponding random access channel resource.
  • the base station determines, according to the random access channel resource corresponding to the random access signal sent by the UE, the Range index to which the UE belongs, and further configures the number of repeated transmissions or repeated transmission levels of the corresponding downlink channel for the UE.
  • two sets of channel quality thresholds are configured, and the used channel qualities are respectively RSRP and downlink SINR, and each set of channel quality thresholds corresponds to three coverage enhancement levels.
  • the UE determines the coverage enhancement level by using the following rules:
  • the UE determines that the coverage enhancement level of the UE is level 0 according to the RSRP measurement value and the corresponding RSRP threshold value;
  • the UE determines, according to the downlink SINR measurement value and the corresponding downlink SINR threshold, that the coverage enhancement level of the UE is level 1;
  • the UE selects the coverage enhancement level of the coverage enhancement level 0 and the coverage enhancement level 1 as the coverage enhancement level selected by the UE, that is, the UE selects the coverage enhancement level 1 as the coverage enhancement level selected by the UE.
  • the UE may further select the repeated transmission information of the corresponding downlink channel according to the selected coverage enhancement level.
  • the UE may further select modulation coding information of the corresponding downlink channel according to the coverage enhancement level.
  • the UE transmits the adjustment information by using the Msg3 message, where the adjustment information includes at least one of the following:
  • the modulation and coding information of the downlink channel wherein the modulation and coding information includes at least one of a modulation order and an encoding efficiency.
  • the downlink channel includes at least a downlink control channel and a downlink shared channel, for example, a downlink control channel carrying Msg2 or Msg4 scheduling information, and a downlink shared channel carrying Msg2 or Msg4.
  • the coverage enhancement level may be the actually selected coverage enhancement level, or the deviation value of the actually selected coverage enhancement level compared to the previous coverage enhancement level, which may be positive or Negative, can be zero.
  • the repeated transmission information of the downlink channel may be an actually selected value, or may be a positive or negative value of the value of the actually selected value compared to the last selected value. Can be zero.
  • the modulation and coding information of the downlink channel may be an actually selected value, or may be positive or negative for the value of the actually selected value compared to the last selected value. Can be zero.
  • the UE determines the coverage enhancement level by the following rules, and may also be:
  • the UE determines that the coverage enhancement level of the UE is level 0 according to the RSRP measurement value and the corresponding RSRP threshold value;
  • the UE determines that the coverage enhancement level of the UE is level 1 according to the RSRQ measurement value and the corresponding RSRQ threshold value;
  • the UE selects the coverage enhancement level of the coverage enhancement level 0 and the coverage enhancement level 1 as the coverage enhancement level selected by the UE, that is, the UE selects the coverage enhancement level 1 as the coverage enhancement level selected by the UE.
  • the UE determines the coverage enhancement level by using the following rules:
  • the coverage enhancement level of the UE is a large level of 0;
  • the coverage enhancement level of the UE is a large level 1;
  • the coverage enhancement level of the UE is a large level 2;
  • the CQ_Measured is the RSRP measurement value of the terminal
  • the CQ_TH_CE0 is the threshold of the RSRP corresponding to the enhanced large level
  • the CQ_TH_CE1 is the threshold of the RSRP corresponding to the enhanced large level 1.
  • CQ_TH_CE0 and CQ_TH_CE1 are a set of channel quality thresholds.
  • the UE determines the coverage enhancement small level of the UE according to the downlink SINR measurement value and the corresponding downlink SINR threshold value.
  • two coverage enhancement small levels are configured in each coverage enhancement level, and the configured threshold is SINR_TH_CE0.
  • SINR_TH_CE0 When the downlink SINR of the UE is greater than or equal to SINR_TH_CE0, it is defined as coverage enhancement small level 0, and the coverage enhancement small level 1 is when the downlink SINR of the UE is less than SINR_TH_CE0.
  • the UE uses the "coverage enhancement large level and the coverage enhancement small level" as the coverage enhancement level information selected by the UE; wherein the "coverage enhancement large level” and the “coverage enhancement small level” may be independently indicated, or a method of joint indication is adopted.
  • the so-called joint indication that is, a joint coding mode, can indicate the "coverage enhancement level” selected by the terminal through an indication information, and can also indicate the "coverage enhancement level”.
  • the UE transmits the adjustment information by using the Msg3 message, where the adjustment information includes at least one of the following:
  • the modulation and coding information of the downlink channel wherein the modulation and coding information includes at least one of a modulation order and an encoding efficiency.
  • the downlink channel includes at least a downlink control channel and a downlink shared channel, for example, a downlink control channel carrying Msg2 or Msg4 scheduling information, and a downlink shared channel carrying Msg2 or Msg4.
  • the CE level reflects the downlink channel quality information
  • the CE level can also reflect the uplink channel quality information.
  • the interference level of the uplink channel is greater than the interference level of the downlink channel, if the UE sends the uplink channel according to the repeated number of transmissions corresponding to the selected CE level, the uplink channel cannot be successfully succeeded because the uplink interference level is too high.
  • the base station receives.
  • the base station improves the channel quality threshold corresponding to CE Level 0 and CE Level 1.
  • the channel quality threshold of CE level 0 is increased from the originally configured CQ_TH_CE0 to New_CQ_TH_CE0, CE level 1
  • the channel quality threshold is increased from the originally configured CQ_TH_CE1 to New_CQ_TH_CE1
  • the base station transmits new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1 to the UE.
  • the CE level selected by some UEs is too large, which may result in a large number of repeated transmissions of the downlink channels corresponding to the UEs.
  • Resource waste for example, after the channel quality threshold is increased, the CE level of the UE whose channel quality is in the Range 2 area is raised from CE level 0 to CE level 1, and the base station is configured to configure the number of repeated transmissions of the downlink channel for such UE. The time is selected according to CE level 1. Therefore, the number of repeated transmissions of the downlink channels corresponding to these UEs is too large, resulting in waste of resources.
  • Such resource waste problem also exists in the Range 4 area UE. In order to overcome this problem, the UE transmits the adjustment information of the downlink channel through the Msg3 message.
  • the adjustment information of the downlink channel includes at least one of the following:
  • Repeated transmission information of the adjusted downlink channel where the repeated transmission information includes a repeated transmission level or a repeated transmission number
  • Channel quality measurement information of the downlink channel where the channel quality measurement information includes a channel quality measurement value or a channel quality value interval in which the channel quality measurement value is located.
  • the method for quantifying the "downlink channel quality" is as follows:
  • the value range of the "downstream channel quality" sent by the UE is the channel quality interval corresponding to the CE level selected by the UE;
  • the channel quality interval in (1) is N (N is greater than or equal to 1) bit quantization, that is, the channel quality interval corresponding to the CE level is divided into 2 ⁇ N cells, and the UE transmits "downlink channel quality" through the Msg3 message.
  • N is greater than or equal to 1 bit quantization, that is, the channel quality interval corresponding to the CE level is divided into 2 ⁇ N cells, and the UE transmits "downlink channel quality" through the Msg3 message.
  • the channel quality measurement value of the UE meets at least one of the following:
  • the base station improves the channel quality threshold corresponding to CE Level 0 and CE Level 1.
  • the channel quality threshold of CE level 0 is increased from the originally configured CQ_TH_CE0 to New_CQ_TH_CE0, CE level 1
  • the channel quality threshold is increased from the originally configured CQ_TH_CE1 to New_CQ_TH_CE1
  • the base station transmits new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1 to the UE.
  • each of Range1 to Range5 corresponds to an independent random access channel resource, and the number of repeated transmissions of the downlink channel corresponding to each interval or the repeated transmission level is independently configured.
  • the random access channel resource includes at least one of the following:
  • the beam direction or beam index selected when the random access signal is transmitted is transmitted
  • the downlink channel includes at least one of the following:
  • the downlink channel used by Msg4 to transmit is the downlink channel used by Msg4 to transmit
  • the UE sends a random access signal according to the range of the measured channel quality value and then selects the corresponding random access channel resource.
  • the base station determines the Range index to which the UE belongs according to the random access channel resource corresponding to the random access signal sent by the UE, and further configures the repeated transmission information of the corresponding downlink channel for the UE.
  • the channel quality is RSRP
  • CQ_TH_CE0 is -110 dBm
  • CQ_TH_CE1 is -120 dBm.
  • Table 7 Range of values for RSRP measurements
  • the base station improves the channel quality threshold corresponding to CE Level 0 and CE Level 1.
  • the CE level selected by some UEs is too large, which may result in a large number of repeated transmissions of the downlink channels corresponding to the UEs.
  • Resource waste for example, after the channel quality threshold is increased, the CE level of the UE whose channel quality is in the Range 2 area is raised from CE level 0 to CE level 1, and the base station is configured to configure the number of repeated transmissions of the downlink channel for such UE. The time is selected according to CE level 1. Therefore, the number of repeated transmissions of the downlink channels corresponding to these UEs is too large, resulting in waste of resources.
  • Such resource waste problem also exists in the Range 4 area UE. In order to overcome this problem, the UE transmits the adjustment information of the downlink channel through the Msg3 message.
  • the adjustment information of the downlink channel includes at least one of the following:
  • Repeated transmission information of the adjusted downlink channel where the repeated transmission information includes a repeated transmission level or a repeated transmission number
  • Channel quality measurement information of the downlink channel where the channel quality measurement information includes a channel quality measurement value or a channel quality value interval in which the channel quality measurement value is located.
  • UE1 is measured by RSRP, and compared with new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1, it is determined that it belongs to CE Level 0, and a random access resource is selected from the random access resources corresponding to CE Level 0 to perform randomization. The transmission of the access signal.
  • the uplink interference received by the UE1 is too large, or the random access resource selected by the UE1 collides with the random access resources of other UEs, or some other reason causes the random access corresponding to the UE1 at CE Level 0.
  • the random access signal transmitted on the resource cannot be successfully received by the base station, so UE1 jumps to CE level 1, and selects a random access resource from the random access resources corresponding to CE Level 1 to perform random access signal transmission, but The RSRP measurement of UE1 is still in the Rang1 interval.
  • the UE1 after selecting a random access resource to perform random access signal transmission, the UE1 successfully receives the random access response message (RAR) sent by the base station.
  • the base station considers that the RSRP measurement value of the UE is in the Range2 and Range3 areas.
  • the UE1 transmits an Msg3 message through the resources allocated for the UE1 in the RAR, and transmits the adjustment information of the downlink channel in the Msg3.
  • the base station When the adjustment information of the downlink channel includes the downlink channel quality (RSRP), the base station considers that the RSRP measurement value of the UE1 is in the Range2 and Range3 areas, but the RSRP measurement value measured by the UE1 is in the Range1 area, and therefore, the downlink channel quality is transmitted. as follows:
  • (2) UE1 selects an index corresponding to a cell closest to Range1, and transmits the belonging index to the base station through the Msg3 message.
  • the base station After receiving the Msg3 message sent by the UE1, the base station considers that the RSRP measurement value of the UE1 is in the range of Range2 and Range3, and the specific value is determined by the N bits.
  • the channel quality is RSRP.
  • the base station improves the channel quality threshold corresponding to CE Level 0 and CE Level 1.
  • the channel quality threshold of CE level 0 is increased from the originally configured CQ_TH_CE0 to New_CQ_TH_CE0, CE level 1
  • the channel quality threshold is increased from the originally configured CQ_TH_CE1 to New_CQ_TH_CE1
  • the base station transmits new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1 to the UE.
  • the CE level selected by some UEs is too large, which may result in a large number of repeated transmissions of the downlink channels corresponding to the UEs.
  • Resource waste for example, after the channel quality threshold is increased, the CE level of the UE whose channel quality is in the Range 2 area is raised from CE level 0 to CE level 1, and the base station is configured to configure the number of repeated transmissions of the downlink channel for such UE. The time is selected according to CE level 1. Therefore, the number of repeated transmissions of the downlink channels corresponding to these UEs is too large, resulting in waste of resources.
  • Such resource waste problem also exists in the Range 4 area UE. In order to overcome this problem, the UE transmits the adjustment information of the downlink channel through the Msg3 message.
  • UE1 is measured by RSRP, and compared with new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1, it is determined that it belongs to CE Level 0, and a random access resource is selected from the random access resources corresponding to CE Level 0 to perform randomization. The transmission of the access signal.
  • the uplink interference received by the UE1 is too large, or the random access resource selected by the UE1 collides with the random access resources of other UEs, or some other reason causes the random access corresponding to the UE1 at CE Level 0.
  • the random access signal transmitted on the resource cannot be successfully received by the base station, so UE1 jumps to CE level 1, and selects a random access resource from the random access resources corresponding to CE Level 1 to perform random access signal transmission, but The RSRP measurement of UE1 is still in the Rang1 interval.
  • the UE1 after selecting a random access resource to perform random access signal transmission, the UE1 successfully receives the random access response message (RAR) sent by the base station.
  • the base station considers that the RSRP measurement value of the UE is in the Range2 and Range3 areas.
  • the UE1 transmits an Msg3 message through the resources allocated for the UE1 in the RAR, and transmits the adjustment information of the downlink channel in the Msg3.
  • the base station When the adjustment information of the downlink channel includes the downlink channel quality (RSRP), the base station considers that the RSRP measurement value of the UE1 is in the Range2 and Range3 areas, but the RSRP measurement value measured by the UE1 is in the Range1 area, and therefore, the downlink channel quality is transmitted. as follows:
  • the downlink channel quality is indicated by N bits, where N bits can represent 2 ⁇ N states.
  • Select N1 states to quantify the Range2 and Range3 regions.
  • the six states “1010” to "1111” are used to quantify the Range 1, Range4, and Range5 regions;
  • the UE1 finds the interval in which the measured RSRP value is located in the RSRP interval corresponding to the six states of “0111” to “1111” according to the measured RSRP value, and passes the status value corresponding to the interval to the Msg3 message. Send to the base station.
  • the channel quality is RSRP.
  • the base station improves the channel quality threshold corresponding to CE Level 0 and CE Level 1.
  • the channel quality threshold of CE level 0 is increased from the originally configured CQ_TH_CE0 to New_CQ_TH_CE0, CE level 1
  • the channel quality threshold is increased from the originally configured CQ_TH_CE1 to New_CQ_TH_CE1
  • the base station transmits new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1 to the UE.
  • the CE level selected by some UEs is too large, which may result in a large number of repeated transmissions of the downlink channels corresponding to the UEs.
  • Resource waste for example, after the channel quality threshold is increased, the CE level of the UE whose channel quality is in the Range 2 area is raised from CE level 0 to CE level 1, and the base station is configured to configure the number of repeated transmissions of the downlink channel for such UE. The time is selected according to CE level 1. Therefore, the number of repeated transmissions of the downlink channels corresponding to these UEs is too large, resulting in waste of resources.
  • Such resource waste problem also exists in the Range 4 area UE. In order to overcome this problem, the UE transmits the adjustment information of the downlink channel through the Msg3 message.
  • UE1 is measured by RSRP, and compared with new thresholds New_CQ_TH_CE0 and New_CQ_TH_CE1, it is determined that it belongs to CE Level 0, and a random access resource is selected from the random access resources corresponding to CE Level 0 to perform randomization. The transmission of the access signal.
  • the uplink interference received by the UE1 is too large, or the random access resource selected by the UE1 collides with the random access resources of other UEs, or some other reason causes the random access corresponding to the UE1 at CE Level 0.
  • the random access signal transmitted on the resource cannot be successfully received by the base station, so UE1 jumps to CE level 1, and selects a random access resource from the random access resources corresponding to CE Level 1 to perform random access signal transmission, but The RSRP measurement of UE1 is still in the Rang1 interval.
  • the UE1 after selecting a random access resource to perform random access signal transmission, the UE1 successfully receives the random access response message (RAR) sent by the base station.
  • the base station considers that the RSRP measurement value of the UE is in the Range2 and Range3 areas.
  • the UE1 transmits an Msg3 message through the resources allocated for the UE1 in the RAR, and transmits the adjustment information of the downlink channel in the Msg3.
  • the base station When the adjustment information of the downlink channel includes the downlink channel quality (RSRP), the base station considers that the RSRP measurement value of the UE1 is in the Range2 and Range3 areas, but the RSRP measurement value measured by the UE1 is in the Range1 area, and therefore, the downlink channel quality is transmitted. as follows:
  • the downlink channel quality is indicated by N bits, where N bits can represent 2 ⁇ N states.
  • Select N1 states to quantify the Range2 and Range3 regions.
  • the four states "1100” through “1111” are used to quantize the Range1 region.
  • the UE1 finds the interval in which the measured RSRP value is located in the RSRP interval corresponding to the six states of “0111” to “1111” according to the measured RSRP value, and passes the status value corresponding to the interval to the Msg3 message. Send to the base station.
  • Application Embodiment 12 (Method for transmitting random access signal: the first structure is composed of 3 symbol groups)
  • the terminal sends a random access signal to the base station, and the random access signal is composed of one first structure, and the random access signal supports repeated transmission.
  • the first structure is composed of three symbol groups, wherein a subcarrier index occupied by the first and second symbol groups is different by one subcarrier, and a subcarrier index occupied by the second and third symbol groups is different by six subcarriers. Carrier.
  • FIG. 7 shows 12 composition patterns of the first structure when 12 subcarriers are configured in the frequency domain, wherein the same index of the resource index is the subcarrier index selected by the 3 symbol groups of the same first structure. .
  • the symbol group of the first structure includes a cyclic prefix and K (K is greater than 1) symbols, as shown in FIG. 8;
  • the symbol group of the first structure includes a cyclic prefix and K (K is greater than 1) symbols and guard time, as shown in FIG. 9;
  • Each of the same symbol group of the first structure occupies the same subcarrier in the frequency domain.
  • the random access signal supports repeated transmission, that is, when the random access signal includes multiple first structures, the index of the first first structure is defined as 1, and the index of the second first structure is 2, This type of push.
  • the subcarrier index occupied by the first symbol group in the first structure whose index is odd is randomly selected from the first subcarrier set;
  • the subcarrier index occupied by the first symbol group in the first structure whose index is even is randomly selected from the second subcarrier set;
  • the number of subcarriers included in the first subcarrier set is 12, and the index is 0-11.
  • the second set of subcarriers is determined according to the following rules:
  • the second subcarrier set is a subcarrier with an index of ⁇ 7, 9, 11 ⁇ in the first subcarrier set;
  • the second subcarrier set is a subcarrier with an index of ⁇ 1, 3, 5 ⁇ in the first subcarrier set;
  • the second subcarrier set is a subcarrier with an index of ⁇ 6, 8, 10 ⁇ in the first subcarrier set
  • the second subcarrier set is a subcarrier with an index of ⁇ 0, 2, 4 ⁇ in the first subcarrier set.
  • Application Embodiment 13 (Method of transmitting random access signal: the first structure is composed of 4 symbol groups)
  • the terminal sends a random access signal to the base station, and the random access signal is composed of one first structure, and the random access signal supports repeated transmission.
  • the first structure is composed of four symbol groups, wherein a subcarrier index occupied by the first and second symbol groups is different from one subcarrier, and a subcarrier index occupied by the third and fourth symbol groups is different by six subcarriers. Carrier.
  • the first and second symbol groups are consecutive in the time domain; the third and fourth symbol groups are continuous in the time domain; the second and third symbol groups are discrete in the time domain.
  • FIG. 10 shows 12 composition patterns of the first structure when 12 subcarriers are configured in the frequency domain, wherein for symbol group 1 and symbol group 2, the same representation of Index is the same as the first structure 2 Subcarrier index selected by the symbol group. For symbol group 3 and symbol group 4, the same representation of Index is the subcarrier index selected by the two symbol groups of the same first structure.
  • the subcarrier indices corresponding to ⁇ symbol group 1 and symbol group 2 ⁇ and ⁇ symbol group 3 and symbol group 4 ⁇ are independently selected.
  • the symbol group of the first structure includes a cyclic prefix and K (K is greater than 1) symbols, as shown in FIG. 8;
  • the symbol group of the first structure includes a cyclic prefix and K (K is greater than 1) symbols and guard time, as shown in FIG. 9;
  • Each of the same symbol group of the first structure occupies the same subcarrier in the frequency domain.
  • the random access signal supports repeated transmission, that is, when the random access signal includes multiple first structures, the index of the first first structure is defined as 1, and the index of the second first structure is 2, This type of push.
  • the subcarrier index occupied by the first symbol group in the first structure whose index is odd is randomly selected from the third subcarrier set;
  • the subcarrier index occupied by the third symbol group in the first structure whose index is odd is randomly selected from the fourth subcarrier set;
  • the subcarrier index occupied by the first symbol group in the first structure whose index is even is selected from the fifth subcarrier set;
  • the subcarrier index occupied by the third symbol group in the first structure whose index is even is selected from the sixth subcarrier set;
  • the number of subcarriers included in the third subcarrier set is 12, and the index is 0-11.
  • the number of subcarriers included in the fourth subcarrier set is 12, and the index is 0-11.
  • the fifth subcarrier set is determined according to one of the following rules:
  • the fifth subcarrier The set is a subcarrier whose index is an odd number in the third subcarrier set
  • the fifth subcarrier The set is a subcarrier with an even index in the third subcarrier set
  • the sixth subcarrier set is determined according to the following rules:
  • the subcarrier index occupied by the third symbol group in the first structure in which the index is an odd number before the first structure whose index is an odd number is the index of the fourth subcarrier set in the fourth subcarrier set is ⁇ 0, 1, 2, 3, 4, 5
  • the sixth subcarrier set is a subcarrier whose index is ⁇ 6, 7, 8, 9, 10, 11 ⁇ in the fourth subcarrier set.
  • each coverage enhancement level corresponds to a reference signal received power (RSRP) value interval
  • each coverage enhancement level corresponds to The channel is configured with a number of repeated transmissions.
  • RSRP reference signal received power
  • a terminal (UE) in a wireless communication system transmits a random access signal (also referred to as Msg1) to a base station on a random access channel.
  • Msg1 a random access signal
  • the base station After receiving the Msg1, the base station sends a random access response message (RAR, also called Msg2) through the downlink channel.
  • RAR is composed of at least a MAC Header and a MAC Payload.
  • the MAC Header is the header of the Medium Access Control (MAC) layer
  • the MAC Payload is the load of the Medium Access Control (MAC) layer.
  • the adjustment information of Msg1 is sent in the MAC Payload.
  • the resource labeled "Adjustment Information" in FIG. 11 is the adjustment of Msg1. The location of the resource occupied by the information.
  • Figure 11 includes two MAC subheaders (sub-packet headers of the MAC layer) structure, respectively, "E/T/RAPID MAC subheader” as shown in Figure 12 and having a length of 8 bits, “E/T/R/R/BI MAC The subheader” is shown in Figure 13 and has a length of 8 bits.
  • E is used to indicate whether there are other subheaders in the MAC header. “E” is set to “1” to indicate that there are other subheaders in the MAC header; “E” is set to "0” to indicate that the subheader is directly MAC. RAR is either padding bits;
  • T is used to indicate that the subheader contains a Random Access Preamble ID (RAPID) or a Backoff Indicator (BI).
  • RAPID Random Access Preamble ID
  • BI Backoff Indicator
  • R is a reserved bit and is configured as "0"
  • BI occupies 4 bits; RAPID occupies 6 bits.
  • the adjustment information of the Msg1 is sent after the MAC RAR with the index n, as shown in FIG. 1 .
  • the Msg1 adjustment information includes at least one of the following:
  • Transmitted beam information selected when the adjusted Msg1 is transmitted, where the transmit beam information includes a transmit wave speed direction or a transmit beam index;
  • the amount of adjustment of the transmit beam information selected when Msg1 is transmitted is transmitted.
  • the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information is the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information.
  • the adjustment information of Msg1 is for a coverage enhancement level.
  • Application Embodiment 15 (Method of transmitting random access signal: MAC RAR is included in Msg2 message)
  • each coverage enhancement level corresponds to a reference signal received power (RSRP) value interval
  • each coverage enhancement level corresponds to The channel is configured with a number of repeated transmissions.
  • RSRP reference signal received power
  • a terminal (UE) in a wireless communication system transmits a random access signal (also referred to as Msg1) to a base station on a random access channel.
  • Msg1 a random access signal
  • the base station After receiving the Msg1, the base station sends a random access response message (RAR, also called Msg2) through the downlink channel.
  • RAR is composed of at least a MAC Header and a MAC Payload.
  • the MAC Header is the header of the Medium Access Control (MAC) layer
  • the MAC Payload is the load of the Medium Access Control (MAC) layer.
  • the adjustment information of Msg1 is sent in the MAC Payload.
  • the resource labeled "Adjustment Information" in FIG. 11 is the adjustment of Msg1. The location of the resource occupied by the information.
  • Figure 11 includes two MAC subheaders (sub-packet headers of the MAC layer) structure, respectively, "E/T/RAPID MAC subheader” as shown in Figure 12 and having a length of 8 bits, "E/T/R/R/BI MAC The subheader” is as shown in FIG. 13 and has a length of 8 bits.
  • the adjustment information of the Msg1 is sent after the MAC RAR with the index n, as shown in FIG.
  • the Msg1 adjustment information includes at least one of: index information of the SS/PBCH block including the adjusted Msg1 resource configuration information; and an adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information.
  • the SS/PBCH block is a time domain-frequency domain resource block, and at least includes a synchronization signal (Synchronization Signal, SS) and a physical broadcast channel (PBCH).
  • the System Information Block (SIB) is sent in the physical broadcast channel.
  • K K is greater than or equal to 1) SS/PBCH block can be configured in the system.
  • the Msg1 resource configuration information exists in each SS/PBCH block in the K SS/PBCH blocks, or the Msg1 resource exists in a part of the SS/PBCH blocks in the K SS/PBCH blocks.
  • Configuration information The Msg1 resource configuration information in the SS/PBCH block(s) that contains the Msg1 resource configuration information can be configured independently.
  • the Msg1 resource configuration information includes at least one of the following: a time-frequency resource occupied by Msg1; a preamble sequence occupied by Msg1; and a transmit beam used by Msg1 to transmit.
  • the adjustment information of Msg1 is for a coverage enhancement level.
  • Application Embodiment 16 (Method of transmitting random access signal: Msg2 message does not include MAC RAR)
  • each coverage enhancement level corresponds to a reference signal received power (RSRP) value interval
  • each coverage enhancement level corresponds to The channel is configured with a number of repeated transmissions.
  • RSRP reference signal received power
  • a terminal (UE) in a wireless communication system transmits a random access signal (also referred to as Msg1) to a base station on a random access channel.
  • Msg1 a random access signal
  • the base station After receiving the Msg1, the base station sends a random access response message (RAR, also called Msg2) through the downlink channel.
  • RAR is composed of at least a MAC Header and a MAC Payload.
  • the MAC Header is the header of the Medium Access Control (MAC) layer
  • the MAC Payload is the load of the Medium Access Control (MAC) layer.
  • the adjustment information of Msg1 is sent in the MAC Payload.
  • the resource labeled "Adjustment Information" in FIG. 11 is the adjustment of Msg1. The location of the resource occupied by the information.
  • FIG. 14 includes a MAC subheader (sub-packet header of the MAC layer) having the structure "E/T/R/R/BI MAC subheader" as shown in FIG. 13 and having a length of 8 bits.
  • MAC subheader sub-packet header of the MAC layer
  • E is used to indicate whether there are other subheaders in the MAC header. “E” is set to “1” to indicate that there are other subheaders in the MAC header; “E” is set to "0” to indicate that the subheader is directly MAC. RAR is either padding bits;
  • T is used to indicate that the subheader contains a Random Access Preamble ID (RAPID) or a Backoff Indicator (BI).
  • RAPID Random Access Preamble ID
  • BI Backoff Indicator
  • R is a reserved bit and is configured as "0"
  • BI occupies 4 bits; RAPID occupies 6 bits.
  • the adjustment information of the Msg1 is sent after the MAC header, as shown in FIG. 14.
  • the Msg1 adjustment information includes at least one of the following:
  • Transmitted beam information selected when the adjusted Msg1 is transmitted, where the transmit beam information includes a transmit wave speed direction or a transmit beam index;
  • the amount of adjustment of the transmit beam information selected when Msg1 is transmitted is transmitted.
  • the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information is the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information.
  • the adjustment information of Msg1 is for a coverage enhancement level.
  • Application Embodiment 17 (Sending method of random access signal: transmitting adjustment information of Msg1 by sub-packet header of Msg2 message)
  • each coverage enhancement level corresponds to a reference signal received power (RSRP) value interval
  • each coverage enhancement level corresponds to The channel is configured with a number of repeated transmissions.
  • RSRP reference signal received power
  • a terminal transmits a random access signal (also referred to as Msg1) to a base station on a random access channel, and after receiving the Msg1, the base station sends a random access response message (RAR, also called Msg2) through the downlink channel.
  • RAR is composed of at least a MAC Header and a MAC Payload.
  • the MAC Header is the header of the Medium Access Control (MAC) layer
  • the MAC Payload is the load of the Medium Access Control (MAC) layer.
  • the adjustment information of Msg1 is sent in the MAC header through a MAC subheader.
  • the resource labeled "Adjustment Information" in FIG. 15 is the MAC subheader position occupied by the adjustment information of Msg1.
  • Figure 15 includes two MAC subheaders (sub-packet headers of the MAC layer) structure, respectively, "E/T/RAPID MAC subheader” as shown in Figure 12 and having a length of 8 bits, "E/T/R/R/BI MAC The subheader” is as shown in FIG. 13 and has a length of 8 bits.
  • the structure of the MAC subheader occupied by the adjustment information of the Msg1 is the same as that of the “E/T/RAPID MAC subheader”, as shown in FIG. 12, and has a length of 8 bits.
  • the Msg1 adjustment information is indicated by the 16 RAPID idle status bits.
  • each idle status bit corresponds to an Msg1 adjustment information. After the UE successfully receives the status bit, the Msg1 adjustment information is obtained.
  • the MAC subheader indicating the adjustment information of the Msg1 is transmitted after the MAC subheader including the Backoff Indicator (BI).
  • BI Backoff Indicator
  • the MAC subheader indicating the adjustment information of the Msg1 is sent after the MAC subheader including the Backoff Indicator (BI), as shown in FIG.
  • BI Backoff Indicator
  • the Msg1 adjustment information includes at least one of the following:
  • Transmitted beam information selected when the Msg1 is transmitted, where the transmit beam information includes a transmit beam direction or a transmit beam index;
  • the amount of adjustment of the transmit beam information selected when Msg1 is transmitted is transmitted.
  • the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information is the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information.
  • the adjustment information of Msg1 is for a coverage enhancement level.
  • Application Embodiment 18 (Method for transmitting random access signal: transmitting, by using a sub-packet header of the Msg2 message, whether or not the identifier of the adjustment information of the Msg1 is included)
  • each coverage enhancement level corresponds to a reference signal received power (RSRP) value interval
  • each coverage enhancement level corresponds to The channel is configured with a number of repeated transmissions.
  • RSRP reference signal received power
  • a terminal (UE) in a wireless communication system transmits a random access signal (also referred to as Msg1) to a base station on a random access channel.
  • Msg1 a random access signal
  • the base station After receiving the Msg1, the base station sends a random access response message (RAR, also called Msg2) through the downlink channel.
  • RAR is composed of at least a MAC Header and a MAC Payload.
  • the MAC Header is the header of the Medium Access Control (MAC) layer
  • the MAC Payload is the load of the Medium Access Control (MAC) layer.
  • FIG. 16 includes two kinds of MAC subheaders (sub-headers of the MAC layer) structure, respectively, "E/T/RAPID MAC subheader" as shown in FIG. The length shown is 8 bits, and the "E/T/R/R/BI MAC subheader" is as shown in FIG. 13 and has a length of 8 bits.
  • the adjustment information of the Msg1 is sent in the MAC Payload.
  • the resource labeled "Adjustment Information" in FIG. 16 is the resource location occupied by the adjustment information of the Msg1.
  • the adjustment information of the Msg1 is sent after the MAC RAR with the index n, as shown in FIG. 16.
  • the MAC subheader is used to indicate whether the MAC Payload includes the adjustment information of the Msg 1 , and the MAC subheader structure is the same as the “E/T/RAPID MAC subheader”, as shown in FIG. 12, and the length is 8 bits. , sent after the MAC subheader containing the Backoff Indicator (BI).
  • the specific method for indicating whether the adjustment information of the Msg1 is included in the MAC Payload is:
  • the status bit of the RAPID in the MAC subheader is used to indicate whether the adjustment information of the Msg1 is included in the MAC Payload;
  • the adjustment information of the Msg1 is transmitted after the last MAC RAR in the MAC Payload.
  • the status bit of the RAPID indicates that the MAC Payload includes the adjustment information of the Msg1
  • the MAC RAR does not exist in the MAC Payload
  • the adjustment information of the Msg1 is sent after the MAC header.
  • the Msg1 adjustment information includes at least one of the following:
  • Transmitted beam information selected when the Msg1 is transmitted, where the transmit beam information includes a transmit beam direction or a transmit beam index;
  • the amount of adjustment of the transmit beam information selected when Msg1 is transmitted is transmitted.
  • the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information is the adjustment amount of the index information of the SS/PBCH block of the Msg1 resource configuration information.
  • the adjustment information of Msg1 is for a coverage enhancement level.
  • the UE in the foregoing multiple application embodiments may be understood as a terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种信息传输方法、基站和终端、计算机可读存储介质,包括:基站发送第一消息,第一消息包括以下至少之一:至少一套信道质量门限值,每套信道质量门限值包括至少一个信道质量门限值;相对于信道质量门限值的偏差值,其中,信道质量门限值根据以下至少之一种信道质量设定:参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。

Description

信息传输方法、基站、终端、以及计算机可读存储介质
本申请要求在2018年01月31日提交中国专利局、申请号为201810098615.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,例如涉及一种信息传输方法、基站、终端、以及计算机可读存储介质。
背景技术
机器类型通信(Machine Type Communication,MTC)用户终端(User Equipment,UE)(以下简称为MTC UE),又称机器到机器(Machine to Machine,M2M)用户终端,是现阶段物联网的主要应用形式。基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)技术作为3GPP Release13一项重要课题,其对应的第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议相关内容获无线接入网络(Radio Access Network,RAN)全会批准。
由于NB-IoT系统中支持多种覆盖增强等级(Coverage Enhancement Level,CE Level),不同覆盖增强等级的上行信道或下行信道采用不同的重复次数。NB-IoT的UE确定覆盖增强等级并且根据确定的覆盖增强等级选择对应的随机接入信道用来发送Msg1。后续随机接入过程中涉及到的消息(例如Msg2、Msg3和Msg4以及上述消息的调度信息)的重复发送次数都由UE选择的覆盖增强等级确定。由于UE只能测量下行信道质量信息,当上行信道质量与下行信道质量匹配度很差时,上行信道Msg1、Msg3的重复发送次数的选择就会出现偏差,进而导致Msg1、Msg3无法传输成功或者导致Msg1、Msg3传输占用了过多的资源导致一定的资源浪费。同时,由于NB-IoT UE并不向基站反馈下行信道质量信息,因此会导致基站对下行信道(例如Msg2,Msg4以及上述消息的调度信息)的重复发送次数无法灵活调整,如果基站选择的下行信道重复发送次数过多,同样会导致一定的资源浪费。
发明内容
本申请提供了一种信息传输方法以及基站、终端、计算机可读存储介质, 能够提高上行信道传输的成功率。
申请本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种信息传输方法,包括:基站发送第一消息,其中,所述第一消息包括以下至少之一:至少一套信道质量门限值,每套信道质量门限值包括至少一个信道质量门限值;相对于所述信道质量门限值的偏差值;其中,所述信道质量门限值根据以下至少之一种信道质量设定:参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
本申请实施例还提供了一种基站,所述基站包括处理器、存储器及通信总线;所述通信总线设置为实现处理器和存储器之间的连接通信;所述处理器设置为执行存储器中存储的信息传输程序,以实现如以上所述的信息传输方法。
本申请实施例还提供了一种信息传输方法,包括:终端接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;相对于所述信道质量门限值的偏差值;其中,所述信道质量门限值根据以下至少之一种信道质量设定:参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
本申请实施例还提供了一种终端,所述终端包括处理器、存储器存储器及通信总线;所述通信总线设置为实现处理器和存储器存储器之间的连接通信;所述处理器设置为执行存储器存储器中存储的信息传输程序,以实现如以上所述的信息传输方法。
本申请实施例还提供了一种信息传输方法,包括:终端接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;相对于所述信道质量门限值的偏差值;终端发送随机接入前导Msg1消息,其中,所述Msg1消息包括至少一个第一结构;所述第一结构包括至少一个符号组,所述第一结构的符号组包括循环前缀和至少一个符号,或,包括循环前缀、至少一个符号和保护时间。
本申请实施例还提供了一种终端,所述终端包括处理器、存储器及通信总线;所述通信总线设置为实现处理器和存储器之间的连接通信;所述处理器设置为执行存储器中存储的信息传输程序,以实现如以上所述的信息传输方法。
本申请实施例还提供了一种信息传输方法,包括:基站通过下行信道发送随机接入响应Msg2消息,所述Msg2消息至少包括MAC层包头和MAC层负载,其中,Msg2消息中还包括随机接入前导Msg1消息的调整信息。
本申请实施例还提供了一种基站,所述基站包括处理器、存储器及通信总线;所述通信总线设置为实现处理器和存储器之间的连接通信;所述处理器设置为执行存储器中存储的信息传输程序,以实现如以上所述的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的信息传输方法。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的第一种信息传输方法的流程示意图;
图2为本申请实施例的第二种信息传输方法的流程示意图;
图3为本申请实施例的第三种信息传输方法的流程示意图;
图4为本申请实施例的第四种信息传输方法的流程示意图;
图5为本申请实施例的第一种信道质量门限值的配置结构示意图;
图6为本申请实施例的第二种信道质量门限值的配置结构示意图;
图7为本申请实施例的第一种第一结构的12种组成图样示意图;
图8为本申请实施例的第一种符号组结构示意图;
图9为本申请实施例的第二种符号组结构示意图;
图10为本申请实施例的第二种第一结构的12种组成图样示意图;
图11为本申请实施例的第一种Msg1的调整信息占用的资源位置示意图;
图12为相关技术中的E/T/RAPID MAC子包头结构示意图;
图13为相关技术中的E/T/R/R/BI MAC子包头结构示意图;
图14为本申请实施例的第二种Msg1的调整信息占用的资源位置示意图;
图15为本申请实施例的第三种Msg1的调整信息占用的资源位置示意图;
图16为本申请实施例的第四种Msg1的调整信息占用的资源位置示意图。
具体实施方式
申请下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
当NB-IoT的UE在NB-IoT系统的窄带随机接入信道(Narrow Band Physical Random Access Channel,NPRACH)上发送完随机接入信号(又称作Msg1)之后,就会接收基站发送的随机接入响应(Random Access Response,RAR)消息(又称为Msg2)。RAR的调度信息是包含在下行控制信息(Downlink Control Information,DCI)中且通过窄带物理下行控制信道(Narrow Band Physical Downlink Control Channel,NPDCCH)发送的。
NB-IoT的UE接收到RAR消息,获得上行的时间同步和上行资源。但此时并不能确定RAR消息是发送给UE自己而不是发送给其他的UE的,因为存在着不同的UE在相同的时间-频率资源上发送相同的随机接入序列的可能性,这样,他们就会通过相同的随机接入无线网络临时标识(Random Access Radio Network Tempory Identity,RA-RNTI)接收到同样的RAR。而且,UE也无从知道是否有其他的UE在使用相同的资源进行随机接入。为此,UE需要通过随后的消息3(Msg3)和消息4(Msg4),来解决这样的随机接入冲突,其中Msg3消息又称为冲突检测消息,Msg4消息又称为冲突检测响应消息。
Msg3是基于上行调度并且采用混合自动重传(Hybrid Automatic Repeat reQuest,HARQ)机制在窄带物理上行共享信道(Narrow Band Physical Uplink Shared Channel,NPUSCH)上传输的消息。Msg3中传输的是无线资源控制(Radio Resource Control,RRC)层连接请求消息(RRC Connection Request)或者RRC层连接重新开始请求消息(RRC Connection Resume Request),如果不同的UE接收到相同的RAR消息,那么他们就会获得相同的上行资源,同时发送Msg3消息,为了区分不同的UE,在Msg3中会携带一个UE特定的ID,用于区分不同的UE。在初始接入的情况下,这个ID可以是UE的临时移动用户识别码(SAE-Temporary Mobile Subscriber Identity,S-TMSI)(如果存在的话)或者随机生成的一个40位的值。
UE在发完Msg3消息后就要立刻启动竞争消除定时器(而随后每一次重传Msg3都要重新启动这个定时器),UE需要在此时间内监听基站返回给自己的冲突检测响应消息(Contention Resolution,Msg4消息)。UE在成功接收到基站发送的Msg4消息后,会向基站发送RRC层连接建立完成消息(RRC  Connection Setup Complete)或者RRC层连接重新开始建立完成消息(RRC Connection Resume Complete)来通知基站,这两个消息都统称为Msg5。
参考图1,本申请提供了一种信息传输方法,包括如下步骤101。
在步骤101中,基站发送第一消息,其中,所述第一消息包括以下至少之一:
至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
相对于所述信道质量门限值的偏差值;
其中,所述信道质量门限值根据以下至少之一种信道质量设定:
参考信号接收功率(Reference Signal Receiving Power,RSRP);
参考信号接收质量(Reference Signal Receiving Quality,RSRQ);
下行信干噪比(Signal to Interference plus Noise Ratio,SINR);
下行信噪比(Signal to Noise Ratio,SNR);
上行信干噪比;
上行信噪比;
下行路径损耗(Downlink Path Loss);以及,
上行路径损耗(Uplink Path Loss)。
需要说明的是,所述信道质量门限值用于:终端获取信道质量的测量值,并且将信道质量的测量值与对应的信道质量门限值进行比较,确定覆盖增强等级或者下行信道的覆盖增强等级或者下行信道的重复发送等级或下行信道的重复发送次数。所述相对于所述信道质量门限值的偏差值可以针对一套门限值中的一个或多个信道质量门限值。
在一实施例中,所述第一消息通过系统消息或者广播消息或者下行信道发送。
在一实施例中,所述第一消息为以下之一:一套信道质量门限值以及针对所述一套信道质量门限值中的信道质量门限值的偏差值;两套信道质量门限值;一套信道质量门限值。
需要说明的是,所述针对这套信道质量门限值的偏差值可以针对这套门限值中每个门限值配置,或者这套门限值中的所有门限值公用同一个偏差值。两套信道质量门限值选择的信道质量可以是同一种信道质量,例如RSRP;两套信道质量门限值选择的信道质量也可以是不同类型的信道质量,例如第一套信道 质量门限值选择的信道质量为RSRP,第二套信道质量门限值选择的信道质量为RSRQ;或第一套信道质量门限值选择的信道质量为RSRP,第二套信道质量门限值选择的信道质量为下行SINR。
在一实施例中,第一套信道质量门限值用于选择上行信道的覆盖增强等级;第二套信道质量门限值用于选择下行信道的覆盖增强等级。
在一实施例中,当所述第一消息中包括所述相对于所述信道质量门限值的偏差值时,所述第一消息还包括所述信道质量偏差值使能(Enable)的标识;或者,所述基站通过所述第一消息以外的消息(系统消息或者广播消息或者下行信道)发送所述信道质量偏差值使能的标识。
需要说明的是,本申请所述的使能的标识包括使能和不使能两种情况。例如,当第一消息指定所述信道质量偏差值使能(Enable)时,终端可以使用所述使能的信道质量偏差值;当第一消息指定所述信道质量偏差值不使能(Disable)时,终端不能使用所述不使能的信道质量偏差值。
在一实施例中,当所述第一消息中包括的信道质量门限值的套数大于1时,所述第一消息还包括除预定的一套信道质量门限值之外的其他套的信道质量门限值使能的标识;或者,通过所述第一消息以外的消息(如系统消息或者广播消息或者下行信道)发送除预定的一套信道质量门限值之外的其他套的信道质量门限值使能的标识。
需要说明的是,所述预定的一套信道质量门限值的含义包括以下至少之一:预先存储于基站和终端中的一套信道质量门限值;或者基站通过信令通知终端的一套信道质量门限值。
在一实施例中,所述基站根据所述第一消息将信道质量划分为多个信道质量取值区间。
需要说明的是,一个信道质量取值区间对应一个覆盖增强等级;或者,一个或多个信道质量取值区间对应一个覆盖增强等级。
在一实施例中,所述信道质量取值区间包括以下至少之一:
信道质量测量值大于或等于CQ_TH_CE0与Delta0的和;
信道质量测量值在CQ_TH_CE0以及CQ_TH_CE0与Delta0的和之间;
信道质量测量值在CQ_TH_CE1与Delta1的和以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及CQ_TH_CE1与Delta1的和之间;
信道质量测量值小于或等于CQ_TH_CE1;
其中,CQ_TH_CE0是覆盖增强等级0对应的信道质量的门限值,CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值,Delta0为覆盖增强等级0的信道质量门限值对应的偏差值,Delta1为覆盖增强等级1的信道质量门限值对应的偏差值。
需要说明的是,终端直接测量的值可以叫做信道质量测量值;终端通过测量到的信道质量测量值,并进行计算或估计得到的其他信道质量信息同样称作信道质量测量值。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值大于或等于CQ_TH_CE0与Delta0的和;
信道质量测量值在CQ_TH_CE0以及CQ_TH_CE0与Delta0的和之间。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值在CQ_TH_CE1与Delta1的和以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及CQ_TH_CE1与Delta1的和之间。
在一实施例中,所述信道质量取值区间包括以下至少之一:
信道质量测量值大于或等于New_CQ_TH_CE0;
信道质量测量值在CQ_TH_CE0以及New_CQ_TH_CE0之间;
信道质量测量值在New_CQ_TH_CE1以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及New_CQ_TH_CE1之间;
信道质量测量值小于或等于CQ_TH_CE1;
其中,CQ_TH_CE0和CQ_TH_CE1是一套信道质量门限值,其中CQ_TH_CE0是覆盖增强等级0对应的信道质量的门限值,CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值;New_CQ_TH_CE0和New_CQ_TH_CE1是另一套信道质量门限值,其中New_CQ_TH_CE0是覆盖增强等级0对应的信道质量的门限值,New_CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值大于或等于New_CQ_TH_CE0;
信道质量测量值在CQ_TH_CE0以及New_CQ_TH_CE0之间。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送 等级或者重复发送次数相同:信道质量测量值在New_CQ_TH_CE1以及CQ_TH_CE0之间;信道质量测量值在CQ_TH_CE1以及New_CQ_TH_CE1之间。
在一实施例中,所述上行信道包括以下至少之一:
Msg1发送时所用的上行信道;
Msg3发送时所用的上行信道;
Msg5发送时所用的上行信道;
上行直传消息(UL Information Transfer)发送时所用的上行信道;
终端能力消息(UE Capability Information)发送时所用的上行信道;
终端信息响应消息(UE Information Response)发送时所用的上行信道。
在一实施例中,每个信道质量取值区间对应的随机接入信道资源独立配置(即,每个信道质量取值区间对应的随机接入信道资源都通过独立的参数配置);
其中,所述随机接入信道资源包括以下至少之一:
随机接入信道占用的时域-频域资源;
随机接入信号发送的序列;
随机接入信号发送时选择的波束方向或波束索引;以及
包含随机接入信道资源配置信息的SS/PBCH block的索引信息。
需要说明的是,所述SS/PBCH block为一个时域-频域资源块,其中至少包括同步信号(Synchronization Signal,SS)以及系统消息块(System Information Block,SIB)。其中SIB在广播信道(Physical Broadcast Channel,PBCH)中发送。系统中可以配置一个或多个SS/PBCH block。
在一实施例中,所述配置的一个或多个SS/PBCH block中,每个SS/PBCH block中都存在Msg1资源配置信息。
在一实施例中,所述配置的一个或多个SS/PBCH block中,部分的SS/PBCH block中存在Msg1资源配置信息。
在一实施例中,每个所述信道质量取值区间对应的下行信道的重复发送次数或重复发送等级独立配置。
需要说明的是,基站接收到终端发送的随机接入信号,并且根据随机接入信号所在的资源确定对应的取值区间,进而根据取值区间为所述终端配置对应的下行信道重复发送次数或者重复发送等级。
在一实施例中,所述下行信道包括以下至少之一:
随机接入响应消息发送时所用的下行信道;
随机接入响应消息的调度信息发送时所用的下行信道;
Msg4发送时所用的下行信道;以及,
Msg4的调度信息发送时所用的下行信道。
本申请实施例还提供了一种基站,所述基站包括处理器、存储器及通信总线;所述通信总线设置为实现处理器和存储器之间的连接通信;所述处理器设置为执行存储器中存储的信息传输程序,以实现如以上任一项所述的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的信息传输方法。
参考图2,本申请实施例还提供了一种信息传输方法,包括如下步骤201。
在步骤201中,终端接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
相对于所述信道质量门限值的偏差值;
其中,所述信道质量门限值根据以下至少之一种信道质量设定:
参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
在一实施例中,终端根据所述第一消息将信道质量划分为多个信道质量取值区间。
在一实施例中,所述信道质量取值区间包括以下至少之一:
信道质量测量值大于或等于CQ_TH_CE0与Delta0的和;
信道质量测量值在CQ_TH_CE0以及CQ_TH_CE0与Delta0的和之间;
信道质量测量值在CQ_TH_CE1与Delta1的和以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及CQ_TH_CE1与Delta1的和之间;
信道质量测量值小于或等于CQ_TH_CE1;
其中,CQ_TH_CE0是覆盖增强等级0对应的信道质量的门限值,CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值,Delta0为覆盖增强等级0的信道质量门限值对应的偏差值,Delta1为覆盖增强等级1的信道质量门限值对应的偏差值。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值大于或等于CQ_TH_CE0与Delta0的和;
信道质量测量值在CQ_TH_CE0以及CQ_TH_CE0与Delta0的和之间。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值在CQ_TH_CE1与Delta1的和以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及CQ_TH_CE1与Delta1的和之间。
在一实施例中,所述信道质量取值区间包括以下至少之一:
信道质量测量值大于或等于New_CQ_TH_CE0;
信道质量测量值在CQ_TH_CE0以及New_CQ_TH_CE0之间;
信道质量测量值在New_CQ_TH_CE1以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及New_CQ_TH_CE1之间;
信道质量测量值小于或等于CQ_TH_CE1;
其中,CQ_TH_CE0和CQ_TH_CE1是一套信道质量门限值,其中CQ_TH_CE0是覆盖增强等级0对应的信道质量的门限值,CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值;New_CQ_TH_CE0和New_CQ_TH_CE1是另一套信道质量门限值,其中New_CQ_TH_CE0是覆盖增强等级0对应的信道质量的门限值,New_CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值大于或等于New_CQ_TH_CE0;
信道质量测量值在CQ_TH_CE0以及New_CQ_TH_CE0之间。
在一实施例中,以下所述信道质量取值区间对应的所述上行信道重复发送等级或者重复发送次数相同:
信道质量测量值在New_CQ_TH_CE1以及CQ_TH_CE0之间;
信道质量测量值在CQ_TH_CE1以及New_CQ_TH_CE1之间。
在一实施例中,所述上行信道包括以下至少之一:
Msg1发送时所用的上行信道;
Msg3发送时所用的上行信道;
Msg5发送时所用的上行信道;
上行直传消息发送时所用的上行信道;
终端能力消息发送时所用的上行信道;
终端信息响应消息发送时所用的上行信道。
在一实施例中,所述方法还包括:所述终端通过上行信道传输第二消息,其中,所述第二消息包括以下至少之一:
覆盖增强等级;
下行信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
下行信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一;
信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间。
需要说明的是,所述第二消息中的这几个变量可以是实际值或者是相对实际值的调整量,例如:所述覆盖增强等级可以是实际选择的覆盖增强等级,或者为相比于上一次覆盖增强等级的偏差值,可正、可负、可为零。
下行信道的重复发送信息可以是实际选择的值,或者为相比于上一次选择的值的偏差值,可正、可负、可为零。
下行信道的调制编码信息可以是实际选择的值,或者为相比于上一次选择的值的偏差值,可正、可负、可为零。
所述信道质量测量信息可以配置多个,分别针对不同类型的所述信道质量。下行信道至少包括下行控制信道和下行共享信道;例如,承载Msg2或Msg4调度信息的下行控制信道,承载Msg2或Msg4的下行共享信道。
本申请中的调整量的含义是:某参数的调整量即为上一次该参数的值与调整后的该参数的值之间的偏差值;所述调整量可正、可负、可为零。
在一实施例中,满足第一条件的终端通过上行信道传输所述第二消息,其中,
所述第一条件包括以下至少之一:
(1)基站发送给所述终端的消息(系统消息或者广播消息或者通过下行信道)中包括第二消息发送使能的标识;
(2)终端的覆盖增强等级为B,其中B为预定的一个或多个覆盖增强等级(需要说明的是,所述预定的一个或多个覆盖增强等级的含义包括以下至少之 一:预先存储于基站和终端中的一个或多个覆盖增强等级;或者,基站通过信令通知终端的一个或多个覆盖增强等级);
(3)所述终端的覆盖增强等级大于预先设置的覆盖增强等级阈值;
(4)信道质量测量值位于确定的信道质量区间内的终端;
(5)当所述第一消息中包括所述相对于所述信道质量门限值的偏差值,并且所述信道质量门限值的偏差值使能(即使能标识为Enable)时;
(6)当所述第一消息中包括所述相对于所述信道质量门限值的偏差值,并且所述相对于所述信道质量门限值的偏差值的取值不等于预定值时;
(7)当所述第一消息中包括的信道质量门限值的套数大于1,并且除预定的一套信道质量门限值之外的其他套的信道质量门限值使能时(需要说明的是,所述预定的一套信道质量门限值的含义包括:预先存储于基站和终端中的一套信道质量门限值;或者基站通过信令通知终端的一套信道质量门限值)时;
(8)当所述第一消息中包括的信道质量门限值的套数大于1时;
(9)当所述第一消息中包括所述相对于所述信道质量门限值的偏差值时。
需要说明的是,在一实施例中,预先设置的覆盖增强等级阈值为等级0。
当配置了3个覆盖增强等级时,且等级编号为0,1,2,当预先设置的覆盖增强等级阈值为0时,那么第一条件指的就是覆盖增强等级为1和2的终端。
在一实施例中,第一条件为以下几种条件组合:
第一条件组合:(1)(2)、(1)(3)或(1)(4);
第二条件组合:(2)(4);
第三条件组合:(3)(4);
第四条件组合:(1)(2)(4)或(1)(3)(4);
第五条件组合:(8)(2)、(8)(3)或(8)(4);
第六条件组合:(9)(2)、(9)(3)或(9)(4);
第七条件组合:(8)(2)(4)或(8)(3)(4);
第八条件组合:(9)(2)(4)或(9)(3)(4)。
其中的(i)为所述第一条件包括的第i条内容,i为1至9内的自然数。
在一实施例中,所述终端根据选择的覆盖增强等级确定对应的信道质量取值区间,然后通过上行信道传输所述第二消息。
需要说明的是,其中所述一个覆盖增强等级对应预定的信道质量取值区间,即,一个覆盖增强等级可以对应一个或多个信道质量取值区间。
在一实施例中,当所述第二消息包括所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间时,所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间采用N比特进行指示,N为大于等于1的整数,所述N比特量化的信道质量取值区间为以下至少之一:
终端选择的覆盖增强等级对应的信道质量取值区间;
终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间;
大于等于信道质量值为A的信道质量取值区间,其中A为终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间中的最小值或信道质量取值区间边界值或信道质量取值区间内预定值;
多个信道质量取值区间(可以是终端选择的覆盖增强等级对应的信道质量取值区间或终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间)。
在一实施例中,当所述N比特能够量化的信道质量取值区间为多个信道质量取值区间时,所述多个信道质量取值区间包括:
终端选择的覆盖增强等级对应的信道质量取值区间,并且终端选择的覆盖增强等级对应的信道质量取值区间量化的分段数量不小于其他信道质量取值区间量化的分段数量;
终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间,并且终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间的量化的分段数量不小于其他信道质量取值区间量化的分段数量。
例如,表1中给出了RSRP的114个可以上报的取值,索引值从0到113,每个索引值对应的RSRP取值范围如表1所示。
表1
Figure PCTCN2018124257-appb-000001
Figure PCTCN2018124257-appb-000002
当系统中配置了3个覆盖增强等级,分别对应的RSRP取值区间为:
CE level 0对应的RSRP为-110dBm≤RSRP,即索引47到113对应的RSRP取值;
CE level 1对应的RSRP为-120dBm<RSRP≤-110dBm,即索引37到46对应的RSRP取值;
CE level 2对应的RSRP为RSRP≤-120dBm,即索引0到36对应的RSRP取值;
当终端选择的CE level为CE level 1时,UE通过N(例如N=3)比特能够量化的信道质量取值区间为CE level 1和CE level 0对应的质量取值区间。其中,CE level 1对应的质量取值区间量化的分段数量为5,CE level 0对应的质量取值区间量化的分段数量为3。例如,对应CE level 1的5个量化分段,每个分段对应了2个RSRP取值索引,分别为(索引37,索引38)对应第1个量化分段,(索引39,索引40)对应第2个量化分段,......,(索引45,索引46)对应第5个量化分段。
对应CE level 0的3个量化分段,分别为(索引47至索引68)对应第1个量化分段,(索引69至索引90)对应第2个量化分段,(索引91至索引113)对应第3个量化分段。
在一实施例中,所述N比特描述的多个状态中,N1个状态对应的所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间不处于终端发 送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间内,其中N1为大于等于1的整数且N1小于或等于N。
需要说明的是,N个比特可以描述2^N个状态,每个状态对应一个下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间的具体取值。
在一实施例中,所述终端根据覆盖增强等级确定第二消息中发送的下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间的数量。
例如,当覆盖增强等级大于等于C1(C1为预定的覆盖增强等级,其中预定的含义就是预先存储在基站和终端内的或者基站通过信令通知终端的。)时,终端发送的下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间数量为D1(D1大于等于2),例如一共3个覆盖增强等级,索引为0,1,2。并且,C1=1,D1=2。即覆盖增强等级1和2的终端发送的信道质量为RSRP和下行SINR或者RSRP和RSRQ;
当覆盖增强等级小于等于C2(C2为预定的覆盖增强等级,其中预定的含义就是预先存储在基站和终端内的或者基站通过信令通知终端的。)时,终端发送的下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间数量为1个,例如一共3个覆盖增强等级,索引为0,1,2。并且,C2=0。即覆盖增强等级0的终端发送的信道质量为RSRP;
当覆盖增强等级小于等于C3(C3为预定的覆盖增强等级,其中预定的含义就是预先存储在基站和终端内的或者基站通过信令通知终端的。)时,终端发送的下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间数量为D3(D3大于等于2),例如一共3个覆盖增强等级,索引为0,1,2。并且,C3=0,D3=2。即覆盖增强等级0的终端发送的信道质量为RSRP和下行SINR或者RSRP和RSRQ;
当覆盖增强等级大于等于C4(C4为预定的覆盖增强等级,其中预定的含义就是预先存储在基站和终端内的或者基站通过信令通知终端的。)时,终端发送的下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间数量为1个,例如一共3个覆盖增强等级,索引为0,1,2。并且,C4=1。即覆盖增强等级1和2的终端发送的信道质量为RSRP。
在一实施例中,所述方法还包括:
终端根据所述第一消息按照预先定义的第一规则或第二规则确定以下至少 之一:
覆盖增强等级;
信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一;
信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间。
需要说明的是,此处的信道包括上行信道和下行信道。
在一实施例中,所述第一规则包括:
终端根据第一种信道质量测量值和第一套信道质量门限值,确定终端的第一覆盖增强等级;终端根据第二种信道质量测量值和第二套信道质量门限值,确定终端的第二覆盖增强等级;
所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一种信道质量的取值区间;所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二种信道质量的取值区间;
根据第一种信道质量测量值、第一套信道质量门限值和第二种信道质量测量值、第二套信道质量门限值,确定终端的覆盖增强等级或信道的重复发送信息或者信道的调制编码信息。
在一实施例中,所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定终端的第一覆盖增强等级的方法为:
将所述第一种信道质量测量值与相对应的第一套信道质量门限值进行比较,确定终端的第一覆盖增强等级,其中,所述第一种信道质量测量值与第一套信道质量门限值对应的信道质量属于同一种类型,例如都为RSRP。
所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定终端的第二覆盖增强等级的方法同上。
在一实施例中,本申请中所述的终端根据第一种信道质量测量值和第一套信道质量门限值,确定终端的第一覆盖增强等级,包括以下两种情况:终端只根据第一种信道质量测量值和第一套信道质量门限值这两个参数值,确定终端 的第一覆盖增强等级;终端根据第一种信道质量测量值、第一套信道质量门限值以及其它的参数的值,确定终端的第一覆盖增强等级。
本申请中所述的终端根据第二种信道质量测量值和第二套信道质量门限值,确定终端的第二覆盖增强等级,包括以下两种情况:终端只根据第二种信道质量测量值和第二套信道质量门限值这两个参数值,确定终端的第二覆盖增强等级;终端根据第二种信道质量测量值、第二套信道质量门限值以及其它的参数的值,确定终端的第二覆盖增强等级。
例如,在本申请一实施例中,第一套信道质量门限值针对的是RSRP,划分为3个RSRP取值范围,分别为RSRP取值区间1,RSRP取值区间2,RSRP取值区间3。第二套信道质量门限值针对的是下行SINR,划分为3个下行SINR取值范围,分别为下行SINR取值区间1,下行SINR取值区间2,下行SINR取值区间3。
则终端覆盖增强等级按照表2方式获得。
表2
覆盖增强等级 RSRP取值区间 下行SINR取值区间
0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 2 0
7 2 1
8 2 2
则终端的信道的重复发送等级按照表3方式获得。
表3
Figure PCTCN2018124257-appb-000003
在一实施例中,所述第一规则还包括:
终端选择第一覆盖增强等级和第二覆盖增强等级中最大的覆盖增强等级作为终端的覆盖增强等级;
终端将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级;
终端选择的第一种信道质量的取值区间的索引和终端选择的第二种信道质量的取值区间的索引中最大的作为终端的信道质量测量信息;
终端选择的第一种信道质量的取值区间和终端选择的第二种信道质量的取值区间作为终端的信道质量测量信息。
需要说明的是,针对终端将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级这种情况,第一覆盖增强等级和第二覆盖增强等级采用联合指示的方法,例如,第一覆盖增强等级为0~2,第二覆盖增强等级为0~2,因此联合指示的方式如表4所示。并且每个联合指示的索引对应了一种上行信道的覆盖增强等级或重复发送信息,或者对应了一种下行信道的覆盖增强等级或重复发送信息。
表4
Figure PCTCN2018124257-appb-000004
在一实施例中,所述第一规则还包括:
终端将第二覆盖增强等级作为终端的覆盖增强等级;
终端选择的第二种信道质量的取值区间作为终端的下行信道质量测量信息。
需要说明的是,所述终端将第二覆盖增强等级作为终端的覆盖增强等级的应用场景为,终端通过Msg1发送时使用随机接入资源指示了RSRP的取值范围,再通过上报的第二覆盖增强等级指示了RSRQ或者下行SINR的取值。基站受到上述信息后,可以进一步调整终端的覆盖增强等级或信道的重复发送信息或信道的调制编码信息。
在一实施例中,所述第一规则还包括以下至少之一:
终端根据所述覆盖增强等级选择对应的下行信道重复发送信息;
终端根据所述覆盖增强等级选择对应的下行信道的调制编码信息;
终端根据所述下行信道质量测量信息选择对应的下行信道的重复发送信息;
终端根据所述下行信道质量测量信息选择对应的下行信道的调制编码信息。
需要说明的是,本申请中所述的终端根据所述覆盖增强等级选择对应的下行信道重复发送信息,包括以下两种情况:终端只根据覆盖增强等级这个参数值,选择对应的下行信道重复发送信息;终端根据覆盖增强等级以及其它的参数的值,选择对应的下行信道重复发送信息。
本申请中所述的终端根据所述覆盖增强等级选择对应的下行信道的调制编码信息,包括以下两种情况:终端只根据覆盖增强等级这个参数值,选择对应的下行信道的调制编码信息;终端根据覆盖增强等级以及其它的参数的值,选择对应的下行信道的调制编码信息。
在一实施例中,所述第二规则包括:
所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一覆盖增强等级;属于同一个所述第一覆盖增强等级的所述终端,根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二覆盖 增强等级;所述终端将第二覆盖增强等级作为终端的覆盖增强等级,或者将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级;其中,第一覆盖增强等级和第二覆盖增强等级独立指示,或者,第一覆盖增强等级和第二覆盖增强等级采用联合指示的方法;
或者,
所述终端根据第一种信道质量测量值、第一套信道质量门限值,确定所述终端的第一种信道质量的取值区间;属于同一个所述第一种信道质量的取值区间的所述终端,根据第二种信道质量测量值、第二套信道质量门限值,确定所述终端的第二种信道质量的取值区间;其中,所述终端的第一种信道质量的取值区间和所述终端的第二种信道质量的取值区间独立指示,或者,所述终端的第一种信道质量的取值区间和所述终端的第二种信道质量的取值区间采用联合指示的方法。
需要说明的是,本申请所述的联合指示,即一种联合编码方式,通过一个指示信息即可以指示终端选择的第一覆盖增强等级又可以指示第二覆盖增强等级。
例如,第一覆盖增强等级为0~2,第二覆盖增强等级为0~2,因此联合指示的方式如下表5所示。
表5
Figure PCTCN2018124257-appb-000005
Figure PCTCN2018124257-appb-000006
在本申请一实施例中,这种联合指示的方法,例如,第一覆盖增强等级为0~2,第二覆盖增强等级为0~1,因此联合指示的方式如表6所示。
表6
Figure PCTCN2018124257-appb-000007
在一实施例中,所述第二规则还包括以下至少之一:
所述终端根据所述覆盖增强等级选择对应的信道的重复发送信息;
所述终端根据所述覆盖增强等级选择对应的信道的调制编码信息;
所述终端根据所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间选择对应的信道的重复发送信息;
所述终端根据所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间选择对应的信道的调制编码信息。
在一实施例中,所述第一套信道质量门限值和第二套信道质量门限值对应的信道质量属于不同类型。
在一实施例中,第一套信道质量门限值对应的信道质量为参考信号接收功率RSRP,第二套信道质量门限值对应的信道质量为参考信号接收质量RSRQ或下行下行信干噪比SINR。
在一实施例中,所述终端根据第一种信道质量测量值、第一套信道质量门限值,确定终端的第一覆盖增强等级,包括:将所述第一种信道质量测量值与相对应的第一套信道质量门限值进行比较,确定终端的第一覆盖增强等级。其中,所述第一种信道质量测量值与第一套信道质量门限值对应的信道质量属于同一种类型(例如都为RSRP)。
在一实施例中,所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定终端的第二覆盖增强等级,包括:将所述第二种信道质量测量值与相对应的第二套信道质量门限值进行比较,确定终端的第二覆盖增强等级。其中,所述第二种信道质量测量值与第二套信道质量门限值对应的信道质量属于同一种类型(例如都为RSRP)。
需要说明的是,本申请中所述的终端根据所述覆盖增强等级选择对应的下行信道的重复发送信息,包括以下两种情况:终端只根据覆盖增强等级这个参数值,选择对应的下行信道的重复发送信息;终端根据覆盖增强等级以及其它的参数的值,选择对应的下行信道的重复发送信息。
本申请中所述的终端根据所述覆盖增强等级选择对应的下行信道的调制编码信息,包括以下两种情况:终端只根据覆盖增强等级这个参数值,选择对应的下行信道的调制编码信息;终端根据覆盖增强等级以及其它的参数的值,选择对应的下行信道的调制编码信息。
在一实施例中,所述方法还包括:
终端通过上行信道传输第三消息,其中,所述第三消息包括以下至少之一:
覆盖增强等级;
信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一;
信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间;
其中,所述终端通过预先定义的第一规则或第二规则确定所述第三消息中参数的取值。
在一实施例中,当所述终端满足第二条件时,所述终端通过上行信道传输所述第三消息,其中,
所述第二条件包括以下至少之一:
(1)系统消息或者广播消息或者通过下行信道发送给所述终端的消息中包括第三消息发送使能的标识;
(2)终端的覆盖增强等级为B,其中B为预定的一个或多个覆盖增强等级;
(3)所述终端的覆盖增强等级大于预先设置的覆盖增强等级阈值;
(4)信道质量测量值位于确定的信道质量区间内的终端;
(5)所述第一消息中包括的信道质量门限值的套数大于1。
在一实施例中,第二条件为以下几种条件组合:
条件组合I:(1)(2)、(1)(3)或(1)(4);
条件组合II:(2)(4);
条件组合III:(3)(4);
条件组合IV:(1)(2)(4)或(1)(3)(4);
其中,(j)为所述第二条件包括的第j条内容,j为1至5内的自然数。
在一实施例中,所述第一规则和第二规则的具体设置方法如前文所述,此处不再赘述。
本申请实施例还提供了一种终端,所述终端包括处理器、存储器存储器及通信总线;
所述通信总线设置为实现处理器和存储器存储器之间的连接通信;
所述处理器设置为执行存储器存储器中存储的信息传输程序,以实现如以上任一项所述的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的信息传输方法。
参照图3,本申请实施例还提供了一种信息传输方法,包括如下步骤301和步骤302。
在步骤301中,终端接收到基站发送的第一消息,其中,所述第一消息包括以下至少之一:至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;相对于所述信道质量门限值的偏差值。
其中,所述信道质量门限值根据以下至少之一种信道质量设定:参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
在步骤302中,(中间可能还有其他信令交互,这里不限制)终端发送随机接入前导Msg1消息,其中,所述Msg1消息包括至少一个第一结构。
所述第一结构包括至少一个符号组,
所述第一结构的符号组包括循环前缀和至少一个符号,或,包括循环前缀、至少一个符号和保护时间;
其中,所述第一结构的同一个符号组中的每个符号在频域上占用相同的子载波。
在一实施例中,所述第一结构包括:4个符号组,其中,第1个与第2个符号组占用的子载波索引相差1个子载波,第3个与第4个符号组占用的子载波索引相差6个子载波。
3个符号组,其中,第1个与第2个符号组占用的子载波索引相差1个子载波,第2个与第3个符号组占用的子载波索引相差6个子载波。
在一实施例中,当第一结构为4个符号组时,
第1个与第2个符号组在时域上连续;
第3个与第4个符号组在时域上连续;
第2个与第3个符号组在时域上离散。
在一实施例中,当第一结构为3个符号组时,第1个、第2个、第3个符号组在时域上连续。
在一实施例中,当所述Msg1消息包括多个第一结构且所述第一结构包括3个符号组时,
索引为奇数的第一结构中第1个符号组占用的子载波索引从第一子载波集合中选择:
索引为偶数的第一结构中第1个符号组占用的子载波索引从第二子载波集合中选择:
其中,所述第一子载波集合中包含的子载波数量为12,在一实施例中,为频域上连续的12个子载波,索引编号为0~11。
其中,所述第二子载波集合按照以下规则中之一确定:
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{0,2,4}中的一个时,所述第二子载波集合为第一子载波集合中索引为{7,9,11}的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{6,8,10}中的一个时,所述第二子载波集合为第一子载波集合中索引为{1,3,5}的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{1,3,5}中的一个时,所述第二子载波集合为第一子载波集合中索引为{6,8,10}的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{7,9,11}中的一个时,所述第二子载波集合为第一子载波集合中索引为{0,2,4}的子载波;
需要说明的是,定义第一个第一结构的索引为1,第二个第一结构的索引为2,以此类推;因此,索引为奇数的第一结构为第1、3、5、7......个第一结构,索引为偶数的第一结构为第2、4、6、8......个第一结构。
在一实施例中,当所述Msg1消息包括多个第一结构且所述第一结构包括4个符号组时,
索引为奇数的第一结构中第1个符号组占用的子载波索引从第三子载波集合中选择;
索引为奇数的第一结构中第3个符号组占用的子载波索引从第四子载波集合中选择;
索引为偶数的第一结构中第1个符号组占用的子载波索引从第五子载波集合中选择;
索引为偶数的第一结构中第3个符号组占用的子载波索引从第六子载波集 合中选择;
其中,所述第三子载波集合中包含的子载波数量为12,在一实施例中,为频域上连续的12个子载波,索引编号为0~11;
其中,所述第四子载波集合中包含的子载波数量为12,在一实施例中,为频域上连续的12个子载波,索引编号为0~11。
其中,所述第五子载波集合按照以下规则中之一确定:
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第三子载波集合中索引为偶数的子载波时,所述第五子载波集合为第三子载波集合中索引为奇数的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第三子载波集合中索引为奇数的子载波时,所述第五子载波集合为第三子载波集合中索引为偶数的子载波。
其中,所述第六子载波集合按照以下规则中之一确定:当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第3个符号组占用的子载波索引为第四子载波集合中索引为{0,1,2,3,4,5}的子载波时,所述第六子载波集合为第四子载波集合中索引为{6,7,8,9,10,11}的子载波。
在一实施例中,第三子载波集合和第四子载波集合独立配置;
第三子载波集合和第四子载波集合相同;
索引为奇数的第一结构中第1个符号组占用的子载波索引从第三子载波集合中选择的方法是随机选择;
索引为奇数的第一结构中第3个符号组占用的子载波索引从第四子载波集合中选择的方法是随机选择;
索引为奇数的第一结构中第1个符号组占用的子载波索引以及第3个符号组占用的子载波索引独立选择。
本申请实施例还提供了一种终端,所述终端包括处理器、存储器及通信总线;
所述通信总线设置为实现处理器和存储器之间的连接通信;
所述处理器设置为执行存储器中存储的信息传输程序,以实现如以上任一项所述的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器 执行,以实现如以上任一项所述的信息传输方法。
参照图4,本申请实施例还提供了一种信息传输方法,包括如下步骤401。
在步骤401中,基站通过下行信道发送随机接入响应(RAR)Msg2消息,所述Msg2消息中至少由媒体接入控制(Medium Access Control,MAC)包头(Header)和MAC层负载(Payload)组成。
其中,Msg1的调整信息在Msg2消息中发送。
在一实施例中,当MAC subheader中包含回退指示信息(Backoff Indicator,BI)信息时,Msg1的调整信息在MAC Payload中发送。
在一实施例中,当MAC Payload中存在MAC RAR时,Msg1的调整信息位于最后一个MAC RAR之后发送。
在一实施例中,Msg1调整信息包括以下至少之一:
调整后的覆盖增强等级;
调整后的Msg1的重复发送次数或重复发送等级;
调整后的Msg1初始目标接收功率值;
调整后的Msg1发送时选择的波束方向或波束索引;
包含调整后的Msg1资源配置信息的SS/PBCH block的索引信息;
覆盖增强等级的调整量;
Msg1的重复发送次数或重复发送等级的调整量;
Msg1初始目标接收功率值的调整量;
Msg1发送时选择的波束方向或波束索引的调整量;
Msg1资源配置信息的SS/PBCH block的索引信息的调整量。
需要说明的是,SS/PBCHb lock的具体含义如下:SS/PBCH block为一个时域-频域资源块,其中至少包括同步信号(Synchronization Signal,SS)以及系统消息块(System Information Block,SIB)。其中SIB在广播信道(Physical Broadcast Channel,PBCH)中发送。系统中可以配置一个或多个SS/PBCH block。
在一实施例中,所述配置的一个或多个SS/PBCH block中,每个SS/PBCH block中都存在Msg1资源配置信息。
在一实施例中,所述配置的一个或多个SS/PBCH block中,部分的SS/PBCH block中存在Msg1资源配置信息。
本申请中的调整量的含义是:某参数的调整量即为上一次该参数的值与调整后的该参数的值之间的偏差值;所述调整量可正、可负、可为零。
在一实施例中,Msg1的调整信息针对的是同一个覆盖增强等级。
在一实施例中,通过MAC subheader中随机接入标识RAPID字段来指示Msg1的调整信息。
参见图11,图11中包括2种MAC subheader(MAC层的子包头)结构,分别为如图12所示的“E/T/RAPID MAC subheader”,长度为8比特(bit),和如图13所示的“E/T/R/R/BI MAC subheader”,长度为8比特。
其中,多个变量的含义如下:
“E”用来指示MAC header中后续是否还存在其他的subheader,“E”配置为“1”表示MAC header中后续存在其他的subheader;“E”配置为“0”表示这个subheader后直接是MAC RAR或者是填充比特(padding bits)了;
“T”用来指示subheader包含的是随机接入标识(Random Access Preamble ID,RAPID)或者是回退标识(Backoff Indicator,BI)。“T”配置为“1”表示subheader包含RAPID,“T”配置为“0”表示subheader包含BI;
“R”为保留比特,配置为“0”;
BI占用4比特;RAPID占用6比特。
在一实施例中,所述通过MAC subheader中RAPID字段来指示Msg1的调整信息,包括:RAPID的部分或全部状态位用来指示Msg1的调整信息。
需要说明的是,状态位的具体含义如下:假设RAPID由N个比特组成,则RAPID可以描述最多2^N种状态,其中每一种状态我们称为一种状态位。
例如,当N=6时,RAPID有6比特,可以支持0~63一共64种状态位。我们用0~47来指示NPRACH subcarrier index,那么48~63一共16个状态位是空闲的。
可以这16个RAPID状态位指示“Msg1调整信息”。例如,每个状态位与一种Msg1调整信息对应,UE成功接收到上述状态位后,就获知了Msg1调整信息。
在一实施例中,指示Msg1的调整信息的MAC subheader在包含回退指示信息(Backoff Indicator,BI)的MAC subheader之后发送。
在一实施例中,通过MAC subheader中RAPID来指示Msg1的调整信息,包括:RAPID的状态位用来指示MAC Payload中是否包含Msg1的调整信息。
在一实施例中,当RAPID的状态位指示MAC Payload中包含Msg1的调整信息时,Msg1的调整信息位于MAC包头之后发送。
在一实施例中,当RAPID的状态位指示MAC Payload中包含Msg1的调整信息且MAC Payload中存在MAC RAR时,Msg1的调整信息位于MAC Payload中最后一个MAC RAR之后发送。
在一实施例中,Msg1的调整信息针对的是同一个覆盖增强等级的。
本申请实施例还提供了一种基站,所述终端包括处理器、存储器及通信总线;
所述通信总线设置为实现处理器和存储器之间的连接通信;
所述处理器设置为执行存储器中存储的信息传输程序,以实现如以上任一项所述的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的信息传输方法。
本申请一个或多个实施例提供的信息传输方法以及基站、终端、计算机可读存储介质,通过基站发送包含信道质量门限值或其偏差值的第一消息,使得终端能够根据当前信道质量测量值调整终端的覆盖增强等级并反馈至基站,提高了上行信道传输的成功率,改善了基站可能选择过多的下行信道重复发送次数导致资源浪费的现象。本申请实施例还提供了几个应用的实施例对本申请进行进一步解释,但是值得注意的是,该应用实施例只是为了更好的描述本申请,并不构成对本申请不当的限定。下面的多个实施例可以独立存在,且不同实施例中的技术特点可以组合在一个实施例中联合使用。
应用实施例1(组合1:1套信道质量门限值以及针对这套信道质量门限值中的信道质量门限值的偏差值)
无线通信系统中支持3个覆盖增强等级,每个覆盖增强等级对应了一个信道质量的取值区间,每个覆盖增强等级对应的信道配置了一个重复发送次数。
当CQ_Measured满足CQ_Measured之CQ_TH_CE0时,UE的覆盖增强等级为CE level 0;
当CQ_Measured满足CQ_TH_CE1≤CQ_Measured<CQ_TH_CE0时,UE的覆盖增强等级为CE level 1;
当CQ_Measured满足CQ_Measured<CQ_TH_CE1时,UE的覆盖增强等级为CE level 2;
其中,CQ_Measured为所述终端的信道质量测量值;CQ_TH_CE0是覆盖增 强等级0对应的信道质量的门限值;CQ_TH_CE1是覆盖增强等级1对应的信道质量的门限值。
需要说明的是,所述信道质量门限值用于:终端根据信道质量的测量值与信道质量的门限值的比较结果,确定覆盖增强等级或者下行信道的覆盖增强等级或者下行信道的重复发送等级或下行信道的重复发送次数。
其中,所述信道质量门限值根据以下至少之一种信道质量设定:参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
本应用实施例中,信道质量为参考信号接收功率RSRP。
考虑到CE level反映的是下行信道质量信息,当上行信道受到的干扰级别与下行信道受到的干扰级相等或者接近时,CE level同样可以反映上行信道质量信息。本实施例中,由于上行信道受到的干扰级别大于下行信道受到的干扰级别,如果UE按照选择的CE level对应的重复发送次数来发送上行信道,会由于上行干扰级别过高,导致上行信道无法成功被基站接收。
本实施例中,基站除了配置1套信道质量门限值(即CQ_TH_CE0和CQ_TH_CE1)之外,还配置了针对CQ_TH_CE0和CQ_TH_CE1的偏差值Delta0、Delta1,如图5所示,因此,将信道质量划分为5个区间(Range),分别为Range1~Range5。需要说明的是,偏差值Delta0、Delta1可以针对每套门限值中的多个门限值配置,或者这套门限值中所有的门限值公用同一个偏差值。
基站通过配置Delta0、Delta1来提高CE Level 0和CE Level 1对应的信道质量门限值。因此,CE level 0的信道质量门限值变为CQ_TH_CE0+Delta0,CE level 0对应的信道质量区间为Range1;CE level 1的信道质量门限值变为CQ_TH_CE1+Delta1,CE level 1对应的信道质量区间为Range2和Range3;CE level 2对应的信道质量区间为Range4和Range5。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费。例如,在提高了信道质量门限值后,信道质量在Range 2区域的UE对应的CE level从CE level 0提高到了CE level 1,因此基站在为这样的UE配置下行信道的重复发送次数时就会按照CE level 1选择,因此导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,这样的资源浪费问题在Range 4区域的UE同样存在。为了克服这个问题,UE通过 Msg3消息传输下行信道的调整信息。
其中,下行信道的调整信息包括以下至少之一:
调整后的下行信道的重复发送信息;
调整后的下行信道的调制编码信息;
下行信道的重复发送信息的调整量;
下行信道的调制编码信息的调整量;以及,
下行信道质量。
当下行信道的调整信息包括下行信道质量时,对“下行信道质量”的量化采用如下方法:
(1)UE发送的“下行信道质量”的取值范围是UE选择的CE level对应的信道质量区间;
(2)对(1)中的信道质量区间采用N(N大于等于1)比特量化,即将CE level对应的信道质量区间划分为2^N个小区间,UE通过Msg3消息发送“下行信道质量”所在的小区间索引。
本实施例中,所述UE的信道质量测量值满足位于以下至少之一区域时,UE发送下行信道质量:
Range 2区域;
Range 4区域;
Range 2、3区域;
Range 4、5区域;
Range 2、3、4、5区域。
应用实施例2(组合1:1套信道质量门限值以及针对这套信道质量门限值中的信道质量门限值的偏差值)
本实施例中,基站除了配置1套信道质量门限值(即CQ_TH_CE0和CQ_TH_CE1)之外,还配置了针对CQ_TH_CE0和CQ_TH_CE1的偏差值Delta0、Delta1,如图5所示,因此,将信道质量划分为5个区间,分别为Range1~Range5。
基站通过配置Delta0、Delta1来提高CE Level 0和CE Level 1对应的信道质量门限值。因此,CE level 0的信道质量门限值变为CQ_TH_CE0+Delta0,CE level 0对应的信道质量区间为Range1;CE level 1的信道质量门限值变为CQ_TH_CE1+Delta1,CE level 1对应的信道质量区间为Range2和Range3,对应的上行信道(本实施例中为随机接入信道)重复发送等级或者重复发送次数相 同;CE level 2对应的信道质量区间为Range4和Range5,对应的上行信道(本实施例中为随机接入信道)重复发送等级或者重复发送次数相同。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费。为了克服这个问题,Range1~Range5中每个区间对应独立的随机接入信道资源,每个区间对应的下行信道的重复发送次数或重复发送等级独立配置。
其中,所述随机接入信道资源包括以下至少之一:
随机接入信道占用的时域-频域资源;
随机接入信号发送的序列;
随机接入信号发送时选择的波束方向或波束索引;
包含随机接入信道资源配置信息的SS/PBCH block的索引信息。
其中,下行信道包括以下至少之一:
随机接入响应消息发送时所用的下行信道;
随机接入响应消息的调度信息发送时所用的下行信道;
Msg4发送时所用的下行信道;
Msg4的调度信息发送时所用的下行信道;以及,
基站根据接收到UE发送的随机接入信号所对应的随机接入信道资源确定UE所属的Range索引,进而为UE对应的下行信道配置重复发送次数或重复发送等级。
应用实施例3(组合2:2套信道质量门限值)
考虑到CE level反映的是下行信道质量信息的,当上行信道受到的干扰级别与下行信道受到的干扰级相等或者接近时,CE level同样可以反映上行信道质量信息。本实施例中,由于上行信道受到的干扰级别大于下行信道受到的干扰级别,如果UE按照选择的CE level对应的重复发送次数来发送上行信道,会由于上行干扰级别过高,导致上行信道无法成功被基站接收。为了克服这个问题本实施例中,基站配置了2套信道质量门限值,第一套门限值为CQ_TH_CE0和CQ_TH_CE1,第二套门限值为New_CQ_TH_CE0和New_CQ_TH_CE1,如图6所示,通过所述两套门限值将信道质量一共划分为5个区间,分别为Range1~Range5。
上行CE level 0的信道质量门限值为New_CQ_TH_CE0,上行CE level 0对 应的信道质量区间为Range1;上行CE level 1的信道质量门限值变为New_CQ_TH_CE1,上行CE level 1对应的信道质量区间为Range2和Range3;上行CE level 2对应的信道质量区间为Range4和Range5。
下行CE level 0的信道质量门限值为CQ_TH_CE0,下行CE level 0对应的信道质量区间为Range1和Range2;下行CE level 1的信道质量门限值变为CQ_TH_CE1,下行CE level 1对应的信道质量区间为Range 3和Range 4;下行CE level 2对应的信道质量区间为Range5。
由于提高了上行CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率。
应用实施例4(组合2:2套信道质量门限值)
本实施例中,基站配置了2套信道质量门限值,第一套门限值为CQ_TH_CE0和CQ_TH_CE1,第二套门限值为New_CQ_TH_CE0和New_CQ_TH_CE1,如图6所示,通过所述两套门限值将信道质量一共划分为5个区间,分别为Range1~Range5。
上行CE level 0的信道质量门限值为New_CQ_TH_CE0,上行CE level 0对应的信道质量区间为Range1;上行CE level 1的信道质量门限值变为New_CQ_TH_CE1,上行CE level 1对应的信道质量区间为Range2和Range3;上行CE level 2对应的信道质量区间为Range4和Range5。
下行CE level 0的信道质量门限值为CQ_TH_CE0,下行CE level 0对应的信道质量区间为Range1和Range2;下行CE level 1的信道质量门限值变为CQ_TH_CE1,下行CE level 1对应的信道质量区间为Range 3和Range 4;下行CE level 2对应的信道质量区间为Range5。
由于提高了上行CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,本实施例中,Range1~Range5中每个区间对应独立的随机接入信道资源,每个区间对应的下行信道的重复发送次数或重复发送等级独立配置。
其中,所述随机接入信道资源包括以下至少之一:
随机接入信道占用的时域-频域资源;
随机接入信号发送的序列;
随机接入信号发送时选择的波束方向或波束索引;以及,
包含随机接入信道资源配置信息的SS/PBCH block的索引信息。
其中,下行信道包括以下至少之一:
随机接入响应消息发送时所用的下行信道;
随机接入响应消息的调度信息发送时所用的下行信道;
Msg4发送时所用的下行信道;以及,
Msg4的调度信息发送时所用的下行信道。
UE根据测量的信道质量值所在的Range区间,然后选择相应的随机接入信道资源发送随机接入信号。基站根据接收到UE发送的随机接入信号所对应的随机接入信道资源确定UE所属的Range索引,进而为UE配置对应的下行信道的重复发送次数或重复发送等级。
应用实施例5(组合2:2套信道质量门限值对应的信道质量属于不同类型)
本实施例中配置了2套信道质量门限值,使用的信道质量分别为RSRP和下行SINR,每套信道质量门限值都对应3个覆盖增强等级。
本实施例中,UE通过以下规则确定覆盖增强等级:
(1)UE根据RSRP测量值以及对应的RSRP门限值,确定UE的覆盖增强等级为等级0;
(2)UE根据下行SINR测量值以及对应的下行SINR门限值,确定UE的覆盖增强等级为等级1;
(3)UE选择覆盖增强等级0和覆盖增强等级1中最大的覆盖增强等级作为UE选择的覆盖增强等级,即UE选择覆盖增强等级1作为UE选择的覆盖增强等级。
本实施例中,UE还可以根据选择的覆盖增强等级选择对应的下行信道的重复发送信息。
本实施例中,UE还可以根据所述覆盖增强等级选择对应的下行信道的调制编码信息。
本实施例中,UE通过Msg3消息传输调整信息,其中所述调整信息中包括以下至少之一:
覆盖增强等级;
下行信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
下行信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一。
其中,下行信道至少包括下行控制信道和下行共享信道,例如,承载Msg2 或Msg4调度信息的下行控制信道,承载Msg2或Msg4的下行共享信道。
本实施例中,Msg3消息中传输的调整信息中,覆盖增强等级可以是实际选择的覆盖增强等级,或者是实际选择的覆盖增强等级相比于上一次覆盖增强等级的偏差值,可正、可负、可为零。
本实施例中,Msg3消息中传输的调整信息中,下行信道的重复发送信息可以是实际选择的值,或者为实际选择的值相比于上一次选择的值的偏差值,可正、可负、可为零。
本实施例中,Msg3消息中传输的调整信息中,下行信道的调制编码信息可以是实际选择的值,或者为实际选择的值相比于上一次选择的值的偏差值,可正、可负、可为零。
除本实施例外,UE通过以下规则确定覆盖增强等级,还可以为:
(1)UE根据RSRP测量值以及对应的RSRP门限值,确定UE的覆盖增强等级为等级0;
(2)UE根据RSRQ测量值以及对应的RSRQ门限值,确定UE的覆盖增强等级为等级1;
(3)UE选择覆盖增强等级0和覆盖增强等级1中最大的覆盖增强等级作为UE选择的覆盖增强等级,即UE选择覆盖增强等级1作为UE选择的覆盖增强等级。
应用实施例6(组合2:2套信道质量门限值对应的信道质量属于不同类型)
本实施例中,UE通过以下规则确定覆盖增强等级:
UE根据RSRP测量值以及对应的RSRP门限值,确定UE的覆盖增强大等级;
当CQ_Measured满足CQ_Measured之CQ_TH_CE0时,UE的覆盖增强大等级为大等级0;
当CQ_Measured满足CQ_TH_CE1≤CQ_Measured<CQ_TH_CE0时,UE的覆盖增强大等级为大等级1;
当CQ_Measured满足CQ_Measured<CQ_TH_CE1时,UE的覆盖增强大等级为大等级2;
其中,CQ_Measured为所述终端的RSRP测量值;CQ_TH_CE0是覆盖增强大等级0对应的RSRP的门限值,CQ_TH_CE1是覆盖增强大等级1对应的RSRP的门限值。
其中,CQ_TH_CE0和CQ_TH_CE1为一套信道质量门限值。
在UE选择了覆盖增强大等级之后,UE根据下行SINR测量值以及对应的下行SINR门限值,确定UE的覆盖增强小等级。
本实施例中,每个覆盖增强大等级中配置了2个覆盖增强小等级,所配置的门限值为SINR_TH_CE0。当UE的下行SINR大于等于SINR_TH_CE0时,定义为覆盖增强小等级0,当UE的下行SINR小于SINR_TH_CE0时覆盖增强小等级1。
UE将“覆盖增强大等级和覆盖增强小等级”作为UE选择的覆盖增强等级信息;其中,“覆盖增强大等级”和“覆盖增强小等级”可以独立指示,或者采用联合指示的方法。所谓联合指示,即一种联合编码方式,通过一个指示信息即可以指示终端选择的“覆盖增强大等级”又可以指示“覆盖增强小等级”。
本实施例中,UE通过Msg3消息传输调整信息,其中所述调整信息中包括以下至少之一:
覆盖增强等级;
下行信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
下行信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一。
其中,下行信道至少包括下行控制信道和下行共享信道,例如,承载Msg2或Msg4调度信息的下行控制信道,承载Msg2或Msg4的下行共享信道。
应用实施例7(组合3:1套信道质量门限值)
考虑到CE level反映的是下行信道质量信息的,当上行信道受到的干扰级别与下行信道受到的干扰级相等或者接近时,CE level同样可以反映上行信道质量信息。本实施例中,由于上行信道受到的干扰级别大于下行信道受到的干扰级别,如果UE按照选择的CE level对应的重复发送次数来发送上行信道,由于上行干扰级别过高,导致上行信道无法成功被基站接收。
本实施例中,基站提高CE Level 0和CE Level 1对应的信道质量门限值,如图6所示,CE level 0的信道质量门限值从原来配置的CQ_TH_CE0提高到New_CQ_TH_CE0,CE level 1的信道质量门限值从原来配置的CQ_TH_CE1提高到New_CQ_TH_CE1,基站将新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1发送给UE。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,例如,在提高了信道质量门限值后,信道质量在Range 2区域的UE对应的CE level从CE level 0提高到了CE level 1,基站在为这样的UE配置下行信道的重复发送次数时就会按照CE level 1选择,因此导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,这样的资源浪费问题在Range 4区域的UE同样存在。为了克服这个问题,UE通过Msg3消息传输下行信道的调整信息。
其中,下行信道的调整信息包括以下至少之一:
调整后的下行信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
调整后的下行信道的调制编码信息;
下行信道的重复发送信息的调整量;
下行信道的调制编码信息的调整量;
下行信道的信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间。
当下行信道的调整信息包括下行信道质量时,对“下行信道质量”的量化采用如下方法:
(1)UE发送的“下行信道质量”的取值范围是UE选择的CE level对应的信道质量区间;
(2)对(1)中的信道质量区间采用N(N大于等于1)比特量化,即将CE level对应的信道质量区间划分为2^N个小区间,UE通过Msg3消息发送“下行信道质量”所在的小区间索引。
本实施例中,所述UE的信道质量测量值满足以下至少之一:
Range 2区域;
Range 4区域;
Range 2、3区域;
Range 4、5区域;
Range 2、3、4、5区域。
应用实施例8(组合3:1套信道质量门限值)
本实施例中,基站提高CE Level 0和CE Level 1对应的信道质量门限值, 如图6所示,CE level 0的信道质量门限值从原来配置的CQ_TH_CE0提高到New_CQ_TH_CE0,CE level 1的信道质量门限值从原来配置的CQ_TH_CE1提高到New_CQ_TH_CE1,基站将新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1发送给UE。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,例如,在提高了信道质量门限值后,信道质量在Range 2区域的UE对应的CE level从CE level 0提高到了CE level 1,基站在为这样的UE配置下行信道的重复发送次数时就会按照CE level 1选择,因此导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,这样的资源浪费问题在Range 4区域的UE同样存在。为了克服这个问题,Range1~Range5中每个区间对应独立的随机接入信道资源,每个区间对应的下行信道的重复发送次数或重复发送等级独立配置。
其中,所述随机接入信道资源包括以下至少之一:
随机接入信道占用的时域-频域资源;
随机接入信号发送的序列;
随机接入信号发送时选择的波束方向或波束索引;
包含随机接入信道资源配置信息的SS/PBCH block的索引信息。
其中,下行信道包括以下至少之一:
随机接入响应消息发送时所用的下行信道;
随机接入响应消息的调度信息发送时所用的下行信道;
Msg4发送时所用的下行信道;
Msg4的调度信息发送时所用的下行信道。
UE根据测量的信道质量值所在的Range区间,然后选择相应的随机接入信道资源发送随机接入信号。基站根据接收到UE发送的随机接入信号所对应的随机接入信道资源确定UE所属的Range索引,进而为UE配置对应的下行信道的重复发送信息。
应用实施例9(处理一些异常情况)
本实施例中,信道质量为RSRP,CQ_TH_CE0为-110dBm,CQ_TH_CE1为-120dBm。
表7:RSRP测量值取值区间
Figure PCTCN2018124257-appb-000008
本实施例中,基站提高CE Level 0和CE Level 1对应的信道质量门限值,如图6所示,CE level 0的信道质量门限值从原来配置的CQ_TH_CE0提高到New_CQ_TH_CE0=-105dBm,CE level 1的信道质量门限值从原来配置的CQ_TH_CE1提高到New_CQ_TH_CE1=-115dBm,基站将新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1发送给UE。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,例如,在提高了信道质量门限值后,信道质量在Range 2区域的UE对应的CE level从CE level 0提高到了CE level 1,基站在为这样的UE配置下行信道的重复发送次数时就会按照CE level 1选择,因此导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,这样的资源浪费问题在Range 4区域的UE同样存在。为了克服这个问题,UE通过Msg3消息传输下行信道的调整信息。
其中,下行信道的调整信息包括以下至少之一:
调整后的下行信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
调整后的下行信道的调制编码信息;
下行信道的重复发送信息的调整量;
下行信道的调制编码信息的调整量;以及,
下行信道的信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间。
本实施例中,UE1为通过RSRP测量,并且与新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1比较,确定自己属于CE Level 0,并且从CE Level 0对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送。
本实施例中,由于UE1受到的上行干扰过大,或者UE1选择的随机接入资源与其他UE的随机接入资源产生了碰撞,或者其他一些原因,导致UE1在CE Level 0对应的随机接入资源上发送的随机接入信号不能被基站成功接收,因此UE1跳转到CE level 1,并且从CE Level 1对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送,但UE1的RSRP测量值还是在Rang1区间内。
本实施例中,UE1在CE Level 1对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送之后,成功的接收到了基站发送的随机接入响应消息(RAR),此时基站认为UE的RSRP测量值处于Range2和Range3区域内。UE1通过RAR中为UE1分配的资源发送Msg3消息,并且在Msg3中传输下行信道的调整信息。
当下行信道的调整信息包括下行信道质量(RSRP)时,由于基站认为UE1的RSRP测量值处于Range2和Range3区域内,但UE1测量的RSRP测量值处于Range1区域内,因此,下行信道质量的发送方法如下:
(1)将Range2和Range3区域采用N(N大于等于1)比特量化,例如将其划分为2^N个小区间。以N=3为例,将Range2和Range3区域均匀的划分为8个小区间,“000”代表第一个小区间,“001”代表第二个小区间,以此类推“111”代表第八个小区间;
(2)UE1选择与Range1最为接近的一个小区间对应的索引,并且将所属索引通过Msg3消息发送给基站。
基站接收到UE1发送的Msg3消息后,认为UE1的RSRP测量值处于Range2和Range3区间内,并且具体的取值由所述的N比特确定。
应用实施例10(处理一些异常情况)
本实施例中,信道质量为RSRP。
本实施例中,基站提高CE Level 0和CE Level 1对应的信道质量门限值,如图6所示,CE level 0的信道质量门限值从原来配置的CQ_TH_CE0提高到New_CQ_TH_CE0,CE level 1的信道质量门限值从原来配置的CQ_TH_CE1提高到New_CQ_TH_CE1,基站将新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1发送给UE。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,例如,在提高了信道质量门限值后,信道质量在Range 2区域的UE对应的CE level从CE level 0提高到了CE level 1,基站在为这样的UE配置下行信道的重复发送次数时就会按照CE level 1选择,因此导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,这样的资源浪费问题在Range 4区域的UE同样存在。为了克服这个问题,UE通过Msg3消息传输下行信道的调整信息。
本实施例中,UE1为通过RSRP测量,并且与新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1比较,确定自己属于CE Level 0,并且从CE Level 0对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送。
本实施例中,由于UE1受到的上行干扰过大,或者UE1选择的随机接入资源与其他UE的随机接入资源产生了碰撞,或者其他一些原因,导致UE1在CE Level 0对应的随机接入资源上发送的随机接入信号不能被基站成功接收,因此UE1跳转到CE level 1,并且从CE Level 1对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送,但UE1的RSRP测量值还是在Rang1区间内。
本实施例中,UE1在CE Level 1对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送之后,成功的接收到了基站发送的随机接入响应消息(RAR),此时基站认为UE的RSRP测量值处于Range2和Range3区域内。UE1通过RAR中为UE1分配的资源发送Msg3消息,并且在Msg3中传输下行信道的调整信息。
当下行信道的调整信息包括下行信道质量(RSRP)时,由于基站认为UE1的RSRP测量值处于Range2和Range3区域内,但UE1测量的RSRP测量值处于Range1区域内,因此,下行信道质量的发送方法如下:
(1)通过N比特指示下行信道质量,其中N比特可以表示2^N个状态。 选择其中的N1个状态来量化Range2和Range3区域。N2个状态来量化Range2和Range3区域之外的全部RSRP区域,其中2^N=N1+N2。以N=4,N1=10,N2=6为例,将Range2和Range3区域划分为10个小区间,“0000”代表第一个小区间,“0001”代表第二个小区间,以此类推,“1001”代表第十个小区间。“1010”至“1111”这6个状态用来量化Range 1、Range4、Range5区域;
(2)UE1根据测量的RSRP值,从“0111”至“1111”这6个状态对应的RSRP区间中找到所述测量的RSRP值所在的区间,并且将所述区间对应的状态值通过Msg3消息发送给基站。
应用实施例11(处理一些异常情况)
本实施例中,信道质量为RSRP。
本实施例中,基站提高CE Level 0和CE Level 1对应的信道质量门限值,如图3所示,CE level 0的信道质量门限值从原来配置的CQ_TH_CE0提高到New_CQ_TH_CE0,CE level 1的信道质量门限值从原来配置的CQ_TH_CE1提高到New_CQ_TH_CE1,基站将新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1发送给UE。
由于提高了CE level对应的信道质量的门限值,因此会提高上行信道传输的成功率,但是由于部分UE选择的CE level偏大,会导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,例如,在提高了信道质量门限值后,信道质量在Range 2区域的UE对应的CE level从CE level 0提高到了CE level 1,基站在为这样的UE配置下行信道的重复发送次数时就会按照CE level 1选择,因此导致这些UE对应的下行信道的重复发送次数偏大造成资源浪费,这样的资源浪费问题在Range 4区域的UE同样存在。为了克服这个问题,UE通过Msg3消息传输下行信道的调整信息。
本实施例中,UE1为通过RSRP测量,并且与新的门限值New_CQ_TH_CE0和New_CQ_TH_CE1比较,确定自己属于CE Level 0,并且从CE Level 0对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送。
本实施例中,由于UE1受到的上行干扰过大,或者UE1选择的随机接入资源与其他UE的随机接入资源产生了碰撞,或者其他一些原因,导致UE1在CE Level 0对应的随机接入资源上发送的随机接入信号不能被基站成功接收,因此UE1跳转到CE level 1,并且从CE Level 1对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送,但UE1的RSRP测量值还是在Rang1区间 内。
本实施例中,UE1在CE Level 1对应的随机接入资源中选择一个随机接入资源进行随机接入信号的发送之后,成功的接收到了基站发送的随机接入响应消息(RAR),此时基站认为UE的RSRP测量值处于Range2和Range3区域内。UE1通过RAR中为UE1分配的资源发送Msg3消息,并且在Msg3中传输下行信道的调整信息。
当下行信道的调整信息包括下行信道质量(RSRP)时,由于基站认为UE1的RSRP测量值处于Range2和Range3区域内,但UE1测量的RSRP测量值处于Range1区域内,因此,下行信道质量的发送方法如下:
(1)通过N比特指示下行信道质量,其中N比特可以表示2^N个状态。选择其中的N1个状态来量化Range2和Range3区域。N2个状态来量化Range1区域,其中2^N=N1+N2。以N=4,N1=12,N2=4为例,将Range2和Range3区域划分为12个小区间,“0000”代表第一个小区间,“0001”代表第二个小区间,以此类推,“1011”代表第12个小区间。“1100”至“1111”这4个状态用来量化Range1区域。
(2)UE1根据测量的RSRP值,从“0111”至“1111”这6个状态对应的RSRP区间中找到所述测量的RSRP值所在的区间,并且将所述区间对应的状态值通过Msg3消息发送给基站。
应用实施例12(随机接入信号的发送方法:第一结构由3个符号组组成)
终端发送随机接入信号到基站,随机接入信号由1个第一结构构成,并且随机接入信号支持重复发送。
所述第一结构由3个符号组组成,其中,第1个与第2个符号组占用的子载波索引相差1个子载波,第2个与第3个符号组占用的子载波索引相差6个子载波。
图7中给出了在频域配置了12个子载波时,所述第一结构的12种组成图样,其中,资源索引相同的表示是同一个第一结构的3个符号组选择的子载波索引。
本实施例中,所述第一结构的符号组包括循环前缀和K(K大于1)个符号,如图8所示;
或,所述第一结构的符号组包括循环前缀和K(K大于1)个符号和保护时间,如图9所示;
所述第一结构的同一个符号组中的每个符号在频域上占用相同的子载波。
本实施例中,随机接入信号支持重复发送,即随机接入信号包括多个第一结构时,定义第一个第一结构的索引为1,第二个第一结构的索引为2,以此类推。
本实施例中,
索引为奇数的第一结构中第1个符号组占用的子载波索引从第一子载波集合中随机选择;
索引为偶数的第一结构中第1个符号组占用的子载波索引从第二子载波集合中随机选择;
其中,所述第一子载波集合中包含的子载波数量为12,索引为0~11;
其中,所述第二子载波集合按照以下规则确定:
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{0,2,4}中的一个时,所述第二子载波集合为第一子载波集合中索引为{7,9,11}的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{6,8,10}中的一个时,所述第二子载波集合为第一子载波集合中索引为{1,3,5}的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{1,3,5}中的一个时,所述第二子载波集合为第一子载波集合中索引为{6,8,10}的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{7,9,11}中的一个时,所述第二子载波集合为第一子载波集合中索引为{0,2,4}的子载波。
应用实施例13(随机接入信号的发送方法:第一结构由4个符号组组成)
终端发送随机接入信号到基站,随机接入信号由1个第一结构构成,并且随机接入信号支持重复发送。
所述第一结构由4个符号组组成,其中,第1个与第2个符号组占用的子载波索引相差1个子载波,第3个与第4个符号组占用的子载波索引相差6个子载波。第1个与第2个符号组在时域上连续;第3个与第4个符号组在时域上连续;第2个与第3个符号组在时域上离散。
图10中给出了在频域配置了12个子载波时,所述第一结构的12种组成图 样,其中,针对符号组1和符号组2,Index相同的表示是同一个第一结构的2个符号组选择的子载波索引。针对符号组3和符号组4,Index相同的表示是同一个第一结构的2个符号组选择的子载波索引。{符号组1和符号组2}与{符号组3和符号组4}对应的子载波索引独立选择。
本实施例中,所述第一结构的符号组包括循环前缀和K(K大于1)个符号,如图8所示;
或,所述第一结构的符号组包括循环前缀和K(K大于1)个符号和保护时间,如图9所示;
所述第一结构的同一个符号组中的每个符号在频域上占用相同的子载波。
本实施例中,随机接入信号支持重复发送,即随机接入信号包括多个第一结构时,定义第一个第一结构的索引为1,第二个第一结构的索引为2,以此类推。
本实施例中,
索引为奇数的第一结构中第1个符号组占用的子载波索引从第三子载波集合中随机选择;
索引为奇数的第一结构中第3个符号组占用的子载波索引从第四子载波集合中随机选择;
索引为偶数的第一结构中第1个符号组占用的子载波索引从第五子载波集合中选择;
索引为偶数的第一结构中第3个符号组占用的子载波索引从第六子载波集合中选择;
其中,所述第三子载波集合中包含的子载波数量为12,索引为0~11。
其中,所述第四子载波集合中包含的子载波数量为12,索引为0~11。
其中,所述第五子载波集合按照以下规则中之一确定:
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第三子载波集合中索引为偶数的子载波时,所述第五子载波集合为第三子载波集合中索引为奇数的子载波;
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第三子载波集合中索引为奇数的子载波时,所述第五子载波集合为第三子载波集合中索引为偶数的子载波;
其中,所述第六子载波集合按照以下规则确定:
当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第3个符号组占用的子载波索引为第四子载波集合中索引为{0,1,2,3,4,5}的子载波时,所述第六子载波集合为第四子载波集合中索引为{6,7,8,9,10,11}的子载波。
应用实施例14(随机接入信号的发送方法:Msg2消息)
无线通信系统中支持3个覆盖增强等级(Coverage Enhancement Level,CE Level),每个覆盖增强等级对应了一个参考信号接收功率(Reference Signal Received Power,RSRP)的取值区间,每个覆盖增强等级对应的信道配置了一个重复发送次数。
无线通信系统中终端(UE)在随机接入信道上发送随机接入信号(又称作Msg1)到基站,基站接收到Msg1后,通过下行信道发送随机接入响应消息(RAR,又称为Msg2),所述RAR中至少由MAC Header和MAC Payload组成。其中,MAC Header为媒体访问控制(Medium Access Control,MAC)层的包头,MAC Payload为Medium Access Control(MAC)层的负载。
当MAC subheader中包含回退指示信息(Backoff Indicator,BI)信息时,Msg1的调整信息在MAC Payload中发送,如图11所示,图11中标记为“调整信息”的资源即为Msg1的调整信息所占用的资源位置。
图11中包括2种MAC subheader(MAC层的子包头)结构,分别为“E/T/RAPID MAC subheader”如图12所示且长度为8比特,“E/T/R/R/BI MAC subheader”如图13所示且长度为8bit。
其中,多个变量的含义如下:
“E”用来指示MAC header中后续是否还存在其他的subheader,“E”配置为“1”表示MAC header中后续存在其他的subheader;“E”配置为“0”表示这个subheader后直接是MAC RAR或者是填充比特(padding bits)了;
“T”用来指示subheader包含的是随机接入ID(Random Access Preamble ID,RAPID)或者是Backoff Indicator(BI)。“T”配置为“1”表示subheader包含RAPID,“T”配置为“0”表示subheader包含BI;
“R”为保留比特,配置为“0”;
BI占用4比特;RAPID占用6比特。
本实施例中,MAC Payload中存在n(n大于0)个MAC RAR,则Msg1的调整信息位于索引为n的MAC RAR之后发送,如图1所示。
本实施例中,Msg1调整信息包括以下至少之一:
调整后的覆盖增强等级;
调整后的Msg1的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
调整后的Msg1初始目标接收功率值;
调整后的Msg1发送时选择的发射波束信息,所述发射波束信息包括发射波速方向或发射波束索引;
包含调整后的Msg1资源配置信息的SS/PBCH block的索引信息;
覆盖增强等级的调整量;
Msg1的重复发送信息的调整量;
Msg1初始目标接收功率值的调整量;
Msg1发送时选择的发射波束信息的调整量;以及,
Msg1资源配置信息的SS/PBCH block的索引信息的调整量。
本实施例中,Msg1的调整信息针对的是一个覆盖增强等级的。
应用实施例15(随机接入信号的发送方法:Msg2消息中包括MAC RAR)
无线通信系统中支持3个覆盖增强等级(Coverage Enhancement Level,CE Level),每个覆盖增强等级对应了一个参考信号接收功率(Reference Signal Received Power,RSRP)的取值区间,每个覆盖增强等级对应的信道配置了一个重复发送次数。
无线通信系统中终端(UE)在随机接入信道上发送随机接入信号(又称作Msg1)到基站,基站接收到Msg1后,通过下行信道发送随机接入响应消息(RAR,又称为Msg2),所述RAR中至少由MAC Header和MAC Payload组成。其中,MAC Header为Medium Access Control(MAC)层的包头,MAC Payload为Medium Access Control(MAC)层的负载。
当MAC subheader中包含回退指示信息(Backoff Indicator,BI)信息时,Msg1的调整信息在MAC Payload中发送,如图11所示,图11中标记为“调整信息”的资源即为Msg1的调整信息所占用的资源位置。
图11中包括2种MAC subheader(MAC层的子包头)结构,分别为“E/T/RAPID MAC subheader”如图12所示且长度为8比特,“E/T/R/R/BI MAC subheader”如图13所示且长度为8比特。
本实施例中,MAC Payload中存在n(n大于0)个MAC RAR,则Msg1 的调整信息位于索引为n的MAC RAR之后发送,如图11所示。
本实施例中,Msg1调整信息包括以下至少之一:包含调整后的Msg1资源配置信息的SS/PBCH block的索引信息;Msg1资源配置信息的SS/PBCH block的索引信息的调整量。
本实施例中,SS/PBCH block为一个时域-频域资源块,其中至少包括同步信号(Synchronization Signal,SS)以及物理广播信道(Physical Broadcast Channel,PBCH)。其中系统消息块(System Information Block,SIB)在物理广播信道中发送。系统中可以配置K(K大于等于1)个SS/PBCH block。
在一实施例中,所述K个SS/PBCH block中,每个SS/PBCH block中都存在Msg1资源配置信息;或者所述K个SS/PBCH block中部分的SS/PBCH block中存在Msg1资源配置信息;包含Msg1资源配置信息的SS/PBCH block(s)中的Msg1资源配置信息可以独立配置。
本实施例中,Msg1资源配置信息包括以下至少之一:Msg1占用的时频资源;Msg1占用的preamble序列;Msg1发送使用的发射波束。
本实施例中,Msg1的调整信息针对的是一个覆盖增强等级的。
应用实施例16(随机接入信号的发送方法:Msg2消息不包括MAC RAR)
无线通信系统中支持3个覆盖增强等级(Coverage Enhancement Level,CE Level),每个覆盖增强等级对应了一个参考信号接收功率(Reference Signal Received Power,RSRP)的取值区间,每个覆盖增强等级对应的信道配置了一个重复发送次数。
无线通信系统中终端(UE)在随机接入信道上发送随机接入信号(又称作Msg1)到基站,基站接收到Msg1后,通过下行信道发送随机接入响应消息(RAR,又称为Msg2),所述RAR中至少由MAC Header和MAC Payload组成。其中,MAC Header为Medium Access Control(MAC)层的包头,MAC Payload为Medium Access Control(MAC)层的负载。
当MAC subheader中包含回退指示信息(Backoff Indicator,BI)信息时,Msg1的调整信息在MAC Payload中发送,如图11所示,图11中标记为“调整信息”的资源即为Msg1的调整信息所占用的资源位置。
图14中包括1种MAC subheader(MAC层的子包头)结构为“E/T/R/R/BI MAC subheader”如图13所示且长度为8比特。
其中,多个变量的含义如下:
“E”用来指示MAC header中后续是否还存在其他的subheader,“E”配置为“1”表示MAC header中后续存在其他的subheader;“E”配置为“0”表示这个subheader后直接是MAC RAR或者是填充比特(padding bits)了;
“T”用来指示subheader包含的是随机接入ID(Random Access Preamble ID,RAPID)或者是Backoff Indicator(BI)。“T”配置为“1”表示subheader包含RAPID,“T”配置为“0”表示subheader包含BI;
“R”为保留比特,配置为“0”;
BI占用4比特;RAPID占用6比特。
本实施例中,MAC Payload中不存在MAC RAR,则Msg1的调整信息位于MAC header之后发送,如图14所示。
本实施例中,Msg1调整信息包括以下至少之一:
调整后的覆盖增强等级;
调整后的Msg1的重复发送信息;
调整后的Msg1初始目标接收功率值;
调整后的Msg1发送时选择的发射波束信息,所述发射波束信息包括发射波速方向或发射波束索引;
包含调整后的Msg1资源配置信息的SS/PBCH block的索引信息;
覆盖增强等级的调整量;
Msg1的重复发送信息的调整量;
Msg1初始目标接收功率值的调整量;
Msg1发送时选择的发射波束信息的调整量;以及,
Msg1资源配置信息的SS/PBCH block的索引信息的调整量。
本实施例中,Msg1的调整信息针对的是一个覆盖增强等级的。
应用实施例17(随机接入信号的发送方法:通过Msg2消息的子包头发送Msg1的调整信息)
无线通信系统中支持3个覆盖增强等级(Coverage Enhancement Level,CE Level),每个覆盖增强等级对应了一个参考信号接收功率(Reference Signal Received Power,RSRP)的取值区间,每个覆盖增强等级对应的信道配置了一个重复发送次数。
无线通信系统中终端(UE)在随机接入信道上发送随机接入信号(又称作Msg1)到基站,基站接收到Msg1后,通过下行信道发送随机接入响应消息(RAR, 又称为Msg2),所述RAR中至少由MAC Header和MAC Payload组成。其中,MAC Header为Medium Access Control(MAC)层的包头,MAC Payload为Medium Access Control(MAC)层的负载。
Msg1的调整信息在MAC header中通过一个MAC subheader发送,如图15所示,图15中标记为“调整信息”的资源即为Msg1的调整信息所占用的MAC subheader位置。
图15中包括2种MAC subheader(MAC层的子包头)结构,分别为“E/T/RAPID MAC subheader”如图12所示且长度为8比特,“E/T/R/R/BI MAC subheader”如图13所示且长度为8比特。
本实施例中,Msg1的调整信息所占用的MAC subheader的结构与“E/T/RAPID MAC subheader”相同,如图12所示,且长度为8比特。
由于RAPID占用6比特,可以描述最多2^6=64种状态,索引为0~63,其中每一种状态我们称为一种状态位。本实例中用0~47来指示PRACH子载波索引,那么48~63一共16个状态位是空闲的。
用16个RAPID空闲的状态位指示“Msg1调整信息”,例如,每个空闲的状态位与一种Msg1调整信息对应,UE成功接收到上述状态位后,就获知了Msg1调整信息。
指示Msg1的调整信息的MAC subheader在包含回退指示信息(Backoff Indicator,BI)的MAC subheader之后发送。
本实施例中,指示Msg1的调整信息的MAC subheader在包含回退指示信息(Backoff Indicator,BI)的MAC subheader之后发送,如图15所示。
本实施例中,Msg1调整信息包括以下至少之一:
调整后的覆盖增强等级;
调整后的Msg1的重复发送信息;
调整后的Msg1初始目标接收功率值;
调整后的Msg1发送时选择的发射波束信息,所述发射波束信息包括发射波束方向或发射波束索引;
包含调整后的Msg1资源配置信息的SS/PBCH block的索引信息;
覆盖增强等级的调整量;
Msg1的重复发送信息的调整量;
Msg1初始目标接收功率值的调整量;
Msg1发送时选择的发射波束信息的调整量;以及,
Msg1资源配置信息的SS/PBCH block的索引信息的调整量。
本实施例中,Msg1的调整信息针对的是一个覆盖增强等级的。
应用实施例18(随机接入信号的发送方法:通过Msg2消息的子包头发送是否包含Msg1的调整信息的标识)
无线通信系统中支持3个覆盖增强等级(Coverage Enhancement Level,CE Level),每个覆盖增强等级对应了一个参考信号接收功率(Reference Signal Received Power,RSRP)的取值区间,每个覆盖增强等级对应的信道配置了一个重复发送次数。
无线通信系统中终端(UE)在随机接入信道上发送随机接入信号(又称作Msg1)到基站,基站接收到Msg1后,通过下行信道发送随机接入响应消息(RAR,又称为Msg2),所述RAR中至少由MAC Header和MAC Payload组成。其中,MAC Header为Medium Access Control(MAC)层的包头,MAC Payload为Medium Access Control(MAC)层的负载。
Msg1的调整信息在RAR中发送,其中RAR的结构如图16所示,图16中包括2种MAC subheader(MAC层的子包头)结构,分别为“E/T/RAPID MAC subheader”如图12所示且长度为8比特,“E/T/R/R/BI MAC subheader”如图13所示且长度为8比特。
本实施例中,Msg1的调整信息在MAC Payload中发送,如图16所示,图16中标记为“调整信息”的资源即为Msg1的调整信息所占用的资源位置。
本实施例中,MAC Payload中存在n(n大于0)个MAC RAR,则Msg1的调整信息位于索引为n的MAC RAR之后发送,如图16所示。
本实施例中,通过一个MAC subheader来指示MAC Payload中是否包含Msg 1的调整信息,所述MAC subheader结构与“E/T/RAPID MAC subheader”相同,如图12所示,且长度为8比特,在包含回退指示信息(Backoff Indicator,BI)的MAC subheader之后发送。具体的所述指示MAC Payload中是否包含Msg1的调整信息的方法为:
首先,通过MAC subheader中RAPID的状态位来指示MAC Payload中是否包含Msg1的调整信息;
然后,当RAPID的状态位指示MAC Payload中包含Msg1的调整信息时,并且MAC Payload中存在n(n大于0)个MAC RAR时,Msg1的调整信息位 于MAC Payload中最后一个MAC RAR之后发送。当RAPID的状态位指示MAC Payload中包含Msg1的调整信息时,并且MAC Payload中不存在MAC RAR时,Msg1的调整信息位于MAC header之后发送。
本实施例中,Msg1调整信息包括以下至少之一:
调整后的覆盖增强等级;
调整后的Msg1的重复发送信息;
调整后的Msg1初始目标接收功率值;
调整后的Msg1发送时选择的发射波束信息,所述发射波束信息包括发射波束方向或发射波束索引;
包含调整后的Msg1资源配置信息的SS/PBCH block的索引信息;
覆盖增强等级的调整量;
Msg1的重复发送信息的调整量;
Msg1初始目标接收功率值的调整量;
Msg1发送时选择的发射波束信息的调整量;以及,
Msg1资源配置信息的SS/PBCH block的索引信息的调整量。
本实施例中,Msg1的调整信息针对的是一个覆盖增强等级的。
需要指出的是,上述多个应用实施例中的UE可以理解为终端。
本申请中,多个实施例中的技术特征,在不冲突的情况下,可以组合在一个实施例中使用。每个实施例仅仅是本申请的最优实施方式,并不用于限定本申请的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。在一实施例中,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,相应地,上述实施例中的多个模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请不限制于任何特定形式的硬件和软件的结合。

Claims (55)

  1. 一种信息传输方法,包括:
    基站发送第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    其中,所述信道质量门限值根据以下至少之一种信道质量设定:
    参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
  2. 根据权利要求1所述的方法,其中,所述第一消息包括以下之一:
    一套信道质量门限值以及针对所述一套信道质量门限值中的信道质量门限值的偏差值;
    两套信道质量门限值;以及,
    一套信道质量门限值。
  3. 根据权利要求1所述的方法,其中,当所述第一消息中包括相对于所述信道质量门限值的偏差值时,
    所述第一消息还包括所述信道质量偏差值的使能标识;或者,
    所述基站通过所述第一消息以外的消息发送所述信道质量偏差值的使能标识。
  4. 根据权利要求1所述的方法,其中,当所述第一消息中包括的信道质量门限值的套数大于1时,
    所述第一消息还包括除预定的一套信道质量门限值之外的其它套的信道质量门限值使能的标识;或者,
    所述基站通过所述第一消息以外的消息发送除预定的一套信道质量门限值之外的其它套的信道质量门限值使能的标识。
  5. 根据权利要求1或2所述的方法,其中,所述基站根据所述第一消息将信道质量划分为多个信道质量取值区间。
  6. 一种基站,包括处理器、存储器及通信总线;
    所述通信总线设置为实现处理器和存储器之间的连接通信;
    所述处理器设置为执行存储器中存储的信息传输程序,以实现以下步骤:
    发送第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质 量门限值;
    相对于所述信道质量门限值的偏差值;
    其中,所述信道质量门限值根据以下至少之一种信道质量设定:
    参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
  7. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现以下步骤:
    发送第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    其中,所述信道质量门限值根据以下至少之一种信道质量设定:
    参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
  8. 一种信息传输方法,包括:
    终端接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述的信道质量门限值的偏差值;
    其中,所述信道质量门限值根据以下至少之一种信道质量设定:
    参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
  9. 根据权利要求8所述的方法,其中,所述终端根据所述第一消息将信道质量划分为多个信道质量取值区间。
  10. 根据权利要求8所述的方法,还包括:所述终端通过上行信道传输第二消息,其中,所述第二消息包括以下至少之一:
    覆盖增强等级;
    下行信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
    下行信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一;
    信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间。
  11. 根据权利要求10所述的方法,还包括:当所述终端满足第一条件时,所述终端通过上行信道传输所述第二消息,其中,
    所述第一条件包括以下至少之一:
    (1)所述基站发送给所述终端的消息中包括第二消息发送使能的标识;
    (2)所述终端的覆盖增强等级为B,其中B为预定的至少一个覆盖增强等级;
    (3)所述终端的覆盖增强等级大于预先设置的覆盖增强等级阈值;
    (4)信道质量测量值位于确定的信道质量区间内的终端;
    (5)所述第一消息中包括所述相对于所述信道质量门限值的偏差值,并且所述信道质量门限值的偏差值使能;
    (6)所述第一消息中包括所述相对于所述信道质量门限值的偏差值,并且所述相对于所述信道质量门限值的偏差值的取值不等于预定值;
    (7)所述第一消息中包括的信道质量门限值的套数大于1,并且除预定的一套信道质量门限值之外的其他套的信道质量门限值使能;
    (8)所述第一消息中包括的信道质量门限值的套数大于1;
    (9)所述第一消息中包括所述相对于所述信道质量门限值的偏差值。
  12. 根据权利要求11所述的方法,其中,所述第一条件包括以下几种条件组合:
    第一条件组合:(1)(2)、(1)(3)或(1)(4);
    第二条件组合:(2)(4);
    第三条件组合:(3)(4);
    第四条件组合:(1)(2)(4)或(1)(3)(4);
    第五条件组合:(8)(2)、(8)(3)或(8)(4);
    第六条件组合:(9)(2)、(9)(3)或(9)(4);
    第七条件组合:(8)(2)(4)或(8)(3)(4);
    第八条件组合:(9)(2)(4)或(9)(3)(4);
    其中,所述(i)为所述第一条件包括的第i条内容,i为1至9之间的自然数。
  13. 根据权利要求10或11所述的方法,其中,所述上行信道包括以下至 少之一:
    随机接入信号Msg1发送时所用的上行信道;
    冲突检测消息Msg3发送时所用的上行信道;
    无线资源控制层连接建立完成消息或无线资源控制层连接重新开始建立完成消息Msg5发送时所用的上行信道;
    上行直传消息发送时所用的上行信道;
    终端能力消息发送时所用的上行信道;以及,
    终端信息响应消息发送时所用的上行信道。
  14. 根据权利要求10或11所述的方法,其中,当所述第二消息包括所述下行信道的信道质量测量信息时,所述下行信道的信道质量测量信息采用N比特进行指示,N为大于等于1的整数,所述N比特量化的信道质量取值区间为以下至少之一:
    所述终端选择的覆盖增强等级对应的信道质量取值区间;
    所述终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间;
    大于等于信道质量值为A的信道质量取值区间,其中A为所述终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间中的最小值或信道质量取值区间边界值或信道质量取值区间内预定值;以及,
    多个信道质量取值区间。
  15. 根据权利要求14所述的方法,其中,当所述N比特量化的信道质量取值区间为多个信道质量取值区间时,所述多个信道质量取值区间包括:
    所述终端选择的覆盖增强等级对应的信道质量取值区间,并且所述终端选择的覆盖增强等级对应的信道质量取值区间量化的分段数量不小于其他信道质量取值区间量化的分段数量;
    所述终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间,并且终端发送的随机接入信号所在的随机接入信道资源对应的信道质量取值区间的量化的分段数量不小于其他信道质量取值区间量化的分段数量。
  16. 根据权利要求11所述的方法,其中,
    所述终端根据所述覆盖增强等级确定所述第二消息中发送的下行信道的信道质量测量信息的数量。
  17. 根据权利要求8所述的方法,还包括:
    所述终端根据所述第一消息按照预先定义的第一规则或第二规则确定以下至少之一:
    覆盖增强等级;
    信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
    信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一;
    信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间。
  18. 根据权利要求17所述的方法,其中,所述第一规则包括:
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一覆盖增强等级;所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二覆盖增强等级;
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一种信道质量的取值区间;所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二种信道质量的取值区间;
    所述终端根据第一种信道质量测量值、第一套信道质量门限值和第二种信道质量测量值、第二套信道质量门限值,确定所述终端的覆盖增强等级或信道的重复发送信息或者信道的调制编码信息。
  19. 根据权利要求18所述的方法,其中,所述第一规则还包括以下任意一种:
    所述终端选择第一覆盖增强等级和第二覆盖增强等级中最大的覆盖增强等级作为终端的覆盖增强等级;
    所述终端将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级;
    所述终端将选择的第一种信道质量的取值区间的索引和选择的第二种信道 质量的取值区间的索引中最大的作为终端的信道质量测量信息;以及
    所述终端将选择的第一种信道质量的取值区间和第二种信道质量的取值区间作为终端的信道质量测量信息。
  20. 根据权利要求18所述的方法,其中,所述第一规则还包括:
    所述终端将第二覆盖增强等级作为所述终端的覆盖增强等级;
    所述终端将选择的第二种信道质量的取值区间作为所述终端的信道质量测量信息。
  21. 根据权利要求19或20所述的方法,其中,所述第一规则还包括以下至少之一:
    所述终端根据所述覆盖增强等级选择对应的信道的重复发送信息;
    所述终端根据所述覆盖增强等级选择对应的信道的调制编码信息;
    所述终端根据所述下行信道的信道质量测量信息选择对应的信道的重复发送信息;
    所述终端根据所述下行信道的信道质量测量信息选择对应的信道的调制编码信息。
  22. 根据权利要求17所述的方法,其中,所述第二规则包括:
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一覆盖增强等级;属于同一个所述第一覆盖增强等级的所述终端,根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二覆盖增强等级;所述终端将第二覆盖增强等级作为终端的覆盖增强等级,或者将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级;其中,第一覆盖增强等级和第二覆盖增强等级独立指示,或者,第一覆盖增强等级和第二覆盖增强等级采用联合指示的方法;
    或者,
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一种信道质量的取值区间;属于同一个所述第一种信道质量的取值区间的所述终端,根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二种信道质量的取值区间;其中,所述终端的第一种信道质量的取值区间和所述终端的第二种信道质量的取值区间独立指示,或者,所述终端的第一种信道质量的取值区间和所述终端的第二种信道质量的取值区间采用联合 指示的方法。
  23. 根据权利要求22所述的方法,其中,所述第二规则还包括以下至少之一:
    所述终端根据所述覆盖增强等级选择对应的信道的重复发送信息;
    所述终端根据所述覆盖增强等级选择对应的信道的调制编码信息;
    所述终端根据所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间选择对应的信道的重复发送信息;
    所述终端根据所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间选择对应的信道的调制编码信息。
  24. 根据权利要求22所述的方法,其中,所述第一套信道质量门限值和第二套信道质量门限值对应的信道质量属于不同类型。
  25. 根据权利要求24所述的方法,其中,第一套信道质量门限值对应的信道质量为参考信号接收功率RSRP,第二套信道质量门限值对应的信道质量为参考信号接收质量RSRQ或下行下行信干噪比SINR。
  26. 根据权利要求8所述的方法,还包括:
    所述终端通过上行信道传输第三消息,其中,所述第三消息包括以下至少之一:
    覆盖增强等级;
    信道的重复发送信息,其中,所述重复发送信息包括重复发送等级或重复发送次数;
    信道的调制编码信息,其中,所述调制编码信息包括调制阶数和编码效率中的至少之一;
    信道质量测量信息,其中,所述信道质量测量信息包括信道质量测量值或信道质量测量值所在的信道质量取值区间
    其中,所述终端通过预先定义的第一规则或第二规则确定所述第三消息中参数的取值。
  27. 根据权利要求26所述的方法,其中,所述第一规则包括以下任意一种:
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一覆盖增强等级;所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二覆盖增强等级;
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述 终端的第一种信道质量的取值区间;所述终端根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二种信道质量的取值区间;以及
    所述终端根据第一种信道质量测量值、第一套信道质量门限值和第二种信道质量测量值、第二套信道质量门限值,确定所述终端的覆盖增强等级或信道的重复发送信息或者信道的调制编码信息。
  28. 根据权利要求27所述的方法,其中,所述第一规则还包括以下任意一种:
    所述终端选择第一覆盖增强等级和第二覆盖增强等级中最大的覆盖增强等级作为终端的覆盖增强等级;
    所述终端将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级;
    所述终端将选择的第一种信道质量的取值区间的索引和选择的第二种信道质量的取值区间的索引中最大的作为终端的信道质量测量信息;以及
    所述终端将选择的第一种信道质量的取值区间和第二种信道质量的取值区间作为终端的信道质量测量信息。
  29. 根据权利要求27所述的方法,其中,所述第一规则还包括:
    所述终端将第二覆盖增强等级作为所述终端的覆盖增强等级;
    所述终端将选择的第二种信道质量的取值区间作为所述终端的信道质量测量信息。
  30. 根据权利要求28或29所述的方法,其中,所述第一规则还包括以下至少之一:
    所述终端根据所述覆盖增强等级选择对应的信道的重复发送信息;
    所述终端根据所述覆盖增强等级选择对应的信道的调制编码信息;
    所述终端根据所述下行信道的信道质量测量信息选择对应的信道的重复发送信息;
    所述终端根据所述下行信道的信道质量测量信息选择对应的信道的调制编码信息。
  31. 根据权利要求26所述的方法,其中,所述第二规则包括:
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一覆盖增强等级;属于同一个所述第一覆盖增强等级的所述终端,根 据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二覆盖增强等级;所述终端将第二覆盖增强等级作为终端的覆盖增强等级,或者将第一覆盖增强等级和第二覆盖增强等级作为终端的覆盖增强等级;其中,第一覆盖增强等级和第二覆盖增强等级独立指示,或者,第一覆盖增强等级和第二覆盖增强等级采用联合指示的方法;
    或者,
    所述终端根据第一种信道质量测量值和第一套信道质量门限值,确定所述终端的第一种信道质量的取值区间;属于同一个所述第一种信道质量的取值区间的所述终端,根据第二种信道质量测量值和第二套信道质量门限值,确定所述终端的第二种信道质量的取值区间;其中,所述终端的第一种信道质量的取值区间和所述终端的第二种信道质量的取值区间独立指示,或者,所述终端的第一种信道质量的取值区间和所述终端的第二种信道质量的取值区间采用联合指示的方法。
  32. 根据权利要求31所述的方法,其中,所述第二规则还包括以下至少之一:
    所述终端根据所述覆盖增强等级选择对应的信道的重复发送信息;
    所述终端根据所述覆盖增强等级选择对应的信道的调制编码信息;
    所述终端根据所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间选择对应的信道的重复发送信息;
    所述终端根据所述下行信道质量测量值或下行信道质量测量值所在的信道质量取值区间选择对应的信道的调制编码信息。
  33. 根据权利要求32所述的方法,其中,所述第一套信道质量门限值和第二套信道质量门限值对应的信道质量属于不同类型。
  34. 根据权利要求33所述的方法,其中,第一套信道质量门限值对应的信道质量为参考信号接收功率RSRP,第二套信道质量门限值对应的信道质量为参考信号接收质量RSRQ或下行下行信干噪比SINR。
  35. 根据权利要求26所述的方法,其中,当所述终端满足第二条件时,所述终端通过上行信道传输所述第三消息,其中,
    所述第二条件包括以下至少之一:
    (1)系统消息或者广播消息或者通过下行信道发送给所述终端的消息中包括第三消息发送使能的标识;
    (2)终端的覆盖增强等级为B,其中B为预定的至少一个覆盖增强等级;
    (3)所述终端的覆盖增强等级大于预先设置的覆盖增强等级阈值;
    (4)信道质量测量值位于确定的信道质量区间内的终端;
    (5)所述第一消息中包括的信道质量门限值的套数大于1。
  36. 一种终端,包括处理器、存储器及通信总线;
    所述通信总线设置为实现处理器和存储器之间的连接通信;
    所述处理器设置为执行存储器存储器中存储的信息传输程序,以实现一种信息传输方法,所述方法包括:
    接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    其中,所述信道质量门限值根据以下至少之一种信道质量设定:
    参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
  37. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现一种信息传输方法,所述方法包括:
    接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    其中,所述信道质量门限值根据以下至少之一种信道质量设定:
    参考信号接收功率、参考信号接收质量、下行信干噪比、下行信噪比、上行信干噪比、上行信噪比、下行路径损耗、以及上行路径损耗。
  38. 一种信息传输方法,包括:
    终端接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    终端发送随机接入前导Msg1消息,其中,所述Msg1消息包括至少一个第 一结构;
    所述第一结构包括至少一个符号组,
    所述第一结构的符号组包括循环前缀和至少一个符号,或,所述第一结构的符号组包括循环前缀、至少一个符号和保护时间。
  39. 根据权利要求38所述的方法,其中,所述第一结构包括:
    4个符号组,其中,第1个与第2个符号组占用的子载波索引相差1个子载波,第3个与第4个符号组占用的子载波索引相差6个子载波;
    3个符号组,其中,第1个与第2个符号组占用的子载波索引相差1个子载波,第2个与第3个符号组占用的子载波索引相差6个子载波。
  40. 根据权利要求39所述的方法,其中,基于确定所述Msg1消息包括多个第一结构且所述第一结构包括3个符号组,
    索引为奇数的第一结构中第1个符号组占用的子载波索引从第一子载波集合中选择;
    索引为偶数的第一结构中第1个符号组占用的子载波索引从第二子载波集合中选择;
    其中,所述第一子载波集合中包含的子载波数量为12;
    其中,所述第二子载波集合按照以下规则中之一确定:
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{0,2,4}中的一个时,所述第二子载波集合为第一子载波集合中索引为{7,9,11}的子载波;
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{6,8,10}中的一个时,所述第二子载波集合为第一子载波集合中索引为{1,3,5}的子载波;
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{1,3,5}中的一个时,所述第二子载波集合为第一子载波集合中索引为{6,8,10}的子载波;
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第一子载波集合中索引为{7,9,11}中的一个时,所述第二子载波集合为第一子载波集合中索引为{0,2,4}的子载波。
  41. 根据权利要求39所述的方法,其中,当所述Msg1消息包括多个第一结构且所述第一结构包括4个符号组时,
    索引为奇数的第一结构中第1个符号组占用的子载波索引从第三子载波集合中选择;
    索引为奇数的第一结构中第3个符号组占用的子载波索引从第四子载波集合中选择;
    索引为偶数的第一结构中第1个符号组占用的子载波索引从第五子载波集合中选择;
    索引为偶数的第一结构中第3个符号组占用的子载波索引从第六子载波集合中选择;
    其中,所述第三子载波集合中包含的子载波数量为12;
    所述第四子载波集合中包含的子载波数量为12;
    所述第五子载波集合按照以下规则中之一确定:
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第三子载波集合中索引为偶数的子载波时,所述第五子载波集合为第三子载波集合中索引为奇数的子载波;
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第1个符号组占用的子载波索引为第三子载波集合中索引为奇数的子载波时,所述第五子载波集合为第三子载波集合中索引为偶数的子载波;
    所述第六子载波集合按照以下规则中之一确定:
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第3个符号组占用的子载波索引为第四子载波集合中索引为{0,1,2,3,4,5}的子载波时,所述第六子载波集合为第四子载波集合中索引为{6,7,8,9,10,11}的子载波;
    当索引为偶数的第一结构之前的一个索引为奇数的第一结构中第3个符号组占用的子载波索引为第四子载波集合中索引为{6,7,8,9,10,11}的子载波时,所述第六子载波集合为第四子载波集合中索引为{0,1,2,3,4,5}的子载波。
  42. 一种终端,包括处理器、存储器及通信总线;
    所述通信总线设置为实现处理器和存储器之间的连接通信;
    所述处理器设置为执行存储器中存储的信息传输程序,以实现一种信息传输方法,所述方法包括:
    接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    发送随机接入前导Msg1消息,其中,所述Msg1消息包括至少一个第一结构;
    所述第一结构包括至少一个符号组,
    所述第一结构的符号组包括循环前缀和至少一个符号,或,包括循环前缀、至少一个符号和保护时间。
  43. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现一种信息传输方法,所述方法包括:
    接收基站发送的第一消息,其中,所述第一消息包括以下至少之一:
    至少一套信道质量门限值,其中每套信道质量门限值包括至少一个信道质量门限值;
    相对于所述信道质量门限值的偏差值;
    发送随机接入前导Msg1消息,其中,所述Msg1消息包括至少一个第一结构;
    所述第一结构包括至少一个符号组,
    所述第一结构的符号组包括循环前缀和至少一个符号,或,包括循环前缀、至少一个符号和保护时间。
  44. 一种信息传输方法,包括:
    基站通过下行信道发送随机接入响应Msg2消息,所述Msg2消息包括媒体访问控制MAC层包头和MAC层负载,
    其中,Msg2消息中还包括随机接入前导Msg1消息的调整信息。
  45. 根据权利要求44所述的方法,其中,当MAC层子包头中包含回退指示信息时,所述Msg1消息的调整信息在MAC层负载中发送。
  46. 根据权利要求45所述的方法,其中,当MAC层负载中包含MAC层随机接入响应信息时,所述Msg1消息的调整信息位于最后一个MAC随机接入响应信息之后发送。
  47. 根据权利要求46所述的方法,其中,所述Msg1消息的调整信息包括以下至少之一:
    调整后的覆盖增强等级;
    调整后的Msg1消息的重复发送次数或重复发送等级;
    调整后的Msg1消息初始目标接收功率值;
    调整后的Msg1消息发送时选择的波束方向或波束索引;
    包含调整后的Msg1消息资源配置信息的时域-频域资源块的索引信息;
    覆盖增强等级的调整量;
    Msg1消息的重复发送次数或重复发送等级的调整量;
    Msg1消息初始目标接收功率值的调整量;
    Msg1消息发送时选择的波束方向或波束索引的调整量;
    Msg1消息资源配置信息的时域-频域资源块的索引信息的调整量。
  48. 根据权利要求44所述的方法,其中,通过MAC层子包头中随机接入标识RAPID字段来指示所述Msg1消息的调整信息。
  49. 根据权利要求48所述的方法,其中,所述通过MAC层子包头中随机接入标识RAPID字段来指示所述Msg1消息的调整信息,包括:
    通过RAPID字段的部分或全部状态位指示所述Msg1消息的调整信息,所述状态位为RAPID字段包含的各个比特所描述的状态。
  50. 根据权利要求49所述的方法,其中,指示所述Msg1消息的调整信息的MAC层子包头在包含回退指示信息的MAC层子包头之后发送。
  51. 根据权利要求48所述的方法,其中,所述通过MAC层子包头中随机接入标识RAPID字段来指示所述Msg1消息的调整信息,包括:
    所述RAPID字段的状态位用来指示MAC层负载中是否包含所述Msg1消息的调整信息。
  52. 根据权利要求51所述的方法,其中,当所述随机接入标识RAPID字段的状态位指示MAC层负载中包含所述Msg1消息的调整信息时,所述Msg1消息的调整信息位于MAC层包头之后发送。
  53. 根据权利要求51所述的方法,其中,当所述随机接入标识RAPID字段的状态位指示MAC层负载中包含所述Msg1消息的调整信息且MAC层负载中存在MAC随机接入响应信息时,所述Msg1消息的调整信息位于MAC层负载中最后一个MAC随机接入响应信息之后发送。
  54. 一种基站,包括处理器、存储器及通信总线;
    所述通信总线设置为实现处理器和存储器之间的连接通信;
    所述处理器设置为执行存储器中存储的信息传输程序,以实现一种信息传输方法,所述方法包括:
    通过下行信道发送随机接入响应Msg2消息,所述Msg2消息包括MAC层包头和MAC层负载,
    其中,Msg2消息中还包括随机接入前导Msg1消息的调整信息。
  55. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现一种信息传输方法,所述方法包括:
    通过下行信道发送随机接入响应Msg2消息,所述Msg2消息包括MAC层包头和MAC层负载,
    其中,Msg2消息中还包括随机接入前导Msg1消息的调整信息。
PCT/CN2018/124257 2018-01-31 2018-12-27 信息传输方法、基站、终端、以及计算机可读存储介质 WO2019149003A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207025109A KR102473830B1 (ko) 2018-01-31 2018-12-27 정보 전송 방법, 기지국, 단말기, 및 컴퓨터 판독가능 저장 매체
EP18903800.3A EP3749035B1 (en) 2018-01-31 2018-12-27 Information transmission method, and base station, terminal and computer-readable storage medium
JP2020541895A JP7036930B2 (ja) 2018-01-31 2018-12-27 情報伝送方法、および基地局、端末、およびコンピュータ可読記憶媒体
US16/911,184 US11284446B2 (en) 2018-01-31 2020-06-24 Information transmission method, and base station, terminal and computer-readable storage medium
US17/699,903 US11770859B2 (en) 2018-01-31 2022-03-21 Information transmission method, and base station, terminal and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810098615.0 2018-01-31
CN201810098615.0A CN110099455B (zh) 2018-01-31 2018-01-31 一种信息传输方法、基站、终端、计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/911,184 Continuation US11284446B2 (en) 2018-01-31 2020-06-24 Information transmission method, and base station, terminal and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2019149003A1 true WO2019149003A1 (zh) 2019-08-08

Family

ID=67443234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124257 WO2019149003A1 (zh) 2018-01-31 2018-12-27 信息传输方法、基站、终端、以及计算机可读存储介质

Country Status (7)

Country Link
US (2) US11284446B2 (zh)
EP (1) EP3749035B1 (zh)
JP (1) JP7036930B2 (zh)
KR (1) KR102473830B1 (zh)
CN (2) CN110099455B (zh)
PT (1) PT3749035T (zh)
WO (1) WO2019149003A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113016221B (zh) * 2018-11-14 2023-03-24 中兴通讯股份有限公司 无线通信方法和装置及非瞬态计算机可读介质
WO2020167202A2 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure
CN112188383B (zh) * 2019-06-12 2022-06-28 华为技术有限公司 一种随机接入的方法及装置
WO2021010619A1 (ko) * 2019-07-16 2021-01-21 엘지전자 주식회사 Nr v2x에서 무선 접속 기법의 존재를 검출하는 방법 및 장치
WO2022006721A1 (zh) * 2020-07-06 2022-01-13 北京小米移动软件有限公司 通信方法、通信装置及存储介质
US11856609B2 (en) * 2021-03-30 2023-12-26 Qualcomm Incorporated Random access channel preamble transmission parameters based on coverage enhancement level
CN113873673B (zh) * 2021-04-26 2022-09-13 深圳市汇顶科技股份有限公司 一种nb-iot端的数据传输方法、nb-iot芯片、设备及通信系统
CN113556827B (zh) * 2021-06-22 2023-05-26 深圳市汇顶科技股份有限公司 一种nb-iot端的数据传输方法、nb-iot芯片、设备及通信系统
CN113473643B (zh) * 2021-07-02 2023-07-11 深圳市汇顶科技股份有限公司 一种nb-iot端的数据传输方法、nb-iot芯片、设备及通信系统
CN115087009B (zh) * 2022-06-20 2024-04-23 中国联合网络通信集团有限公司 灵活帧结构仿真系统的下行信号检测方法及装置
CN115065430B (zh) * 2022-07-28 2024-05-24 Oppo广东移动通信有限公司 信道质量确定方法、装置、设备、存储介质和程序产品
CN116684988B (zh) * 2023-07-27 2023-10-24 上海移芯通信科技股份有限公司 一种覆盖增强等级选择方法、系统、设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521902A (zh) * 2008-02-28 2009-09-02 华为技术有限公司 下行信道测量信息上报方法、终端设备和基站设备
CN102056322A (zh) * 2009-10-30 2011-05-11 中兴通讯股份有限公司 接入处理方法及用户设备
WO2017061939A1 (en) * 2015-10-05 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node and methods performed therein

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669395A (zh) * 2007-03-01 2010-03-10 株式会社Ntt都科摩 基站装置和通信控制方法
CN101355810B (zh) * 2008-08-15 2012-02-08 中兴通讯股份有限公司 上行物理控制信道的资源映射方法和装置
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
US9210624B2 (en) * 2010-08-17 2015-12-08 Google Technology Holdings LLC Method and apparatus for change of primary cell during carrier aggregation
CN102118801B (zh) * 2011-03-31 2013-07-24 电信科学技术研究院 多载波聚合系统中的上行传输方法和设备
EP3937551A3 (en) * 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
US9179425B2 (en) * 2012-04-17 2015-11-03 Ofinno Technologies, Llc Transmit power control in multicarrier communications
CN102647783B (zh) * 2012-04-19 2015-02-18 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
GB2506752A (en) * 2012-10-03 2014-04-09 Korea Electronics Telecomm Detecting lte uplink random access preamble
CN106034325B (zh) * 2015-03-09 2019-05-28 电信科学技术研究院 一种下行公共信道的发送和接收方法及装置
RU2702083C1 (ru) * 2015-09-28 2019-10-03 Телефонактиеболагет Лм Эрикссон (Пабл) Преамбула произвольного доступа для минимизации отсрочки ра
US10594455B2 (en) * 2015-12-04 2020-03-17 Lg Electronics Inc. Method for transmitting reference signal in V2X communication and apparatus therefor
CN106993335B (zh) * 2016-01-21 2022-03-01 中兴通讯股份有限公司 前导码发送、接收方法、装置、用户设备及基站
WO2017135693A1 (ko) * 2016-02-02 2017-08-10 엘지전자 주식회사 Nb-iot를 지원하는 무선 통신 시스템에서 dmrs를 전송하기 위한 방법 및 이를 위한 장치
US10912090B2 (en) * 2016-04-10 2021-02-02 Lg Electronics Inc. Method and device for transmitting uplink reference signal in wireless communication system
EP3471361B1 (en) * 2016-06-17 2021-10-06 LG Electronics Inc. Method and user equipment for receiving downlink signal, method and base station for transmitting downlink signal
FR3063591B1 (fr) * 2017-03-02 2021-05-28 Commissariat Energie Atomique Systeme d'emission/reception fbmc-mimo a detection ml
WO2018174665A1 (en) * 2017-03-23 2018-09-27 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving demodulation reference signal
CN111447689B (zh) * 2017-07-08 2024-04-16 上海琦予通信科技服务中心 一种被用于动态调度的用户设备、基站中的方法和装置
WO2019031834A1 (en) * 2017-08-08 2019-02-14 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING INFORMATION FOR REQUESTING RANDOM ACCESS IN A WIRELESS COMMUNICATION SYSTEM
KR101813232B1 (ko) * 2017-08-11 2017-12-29 영남대학교 산학협력단 다중 안테나 시스템에서 첨두 대 평균 전력비가 낮은 필터뱅크 다중 반송파 신호 변조를 위한 장치 및 방법
US10873938B2 (en) * 2017-10-09 2020-12-22 Qualcomm Incorporated Rate matching for broadcast channels
KR102356442B1 (ko) * 2017-11-13 2022-01-28 한국전자통신연구원 랜덤 액세스용 프리엠블의 타이밍 추정 방법, 랜덤 액세스용 프리엠블 검출 방법 및 랜덤 액세스용 프리엠블 검출 장치
CN109803320A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 资源配置方法、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521902A (zh) * 2008-02-28 2009-09-02 华为技术有限公司 下行信道测量信息上报方法、终端设备和基站设备
CN102056322A (zh) * 2009-10-30 2011-05-11 中兴通讯股份有限公司 接入处理方法及用户设备
WO2017061939A1 (en) * 2015-10-05 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node and methods performed therein

Also Published As

Publication number Publication date
EP3749035B1 (en) 2023-04-26
CN110099455B (zh) 2024-06-28
CN113163508B (zh) 2022-08-16
CN110099455A (zh) 2019-08-06
US11770859B2 (en) 2023-09-26
US20220385520A1 (en) 2022-12-01
EP3749035A1 (en) 2020-12-09
KR20200125939A (ko) 2020-11-05
JP2021512551A (ja) 2021-05-13
US20200329506A1 (en) 2020-10-15
KR102473830B1 (ko) 2022-12-02
CN113163508A (zh) 2021-07-23
US11284446B2 (en) 2022-03-22
EP3749035A4 (en) 2021-03-31
JP7036930B2 (ja) 2022-03-15
PT3749035T (pt) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2019149003A1 (zh) 信息传输方法、基站、终端、以及计算机可读存储介质
US11277864B2 (en) Method and apparatus for determining LBT mode and method for LBT mode switching
US10728888B2 (en) Method for allocating resources in cellular network using unlicensed band and device therefor
US20230085104A1 (en) Random access method and apparatus for reduced capability terminal in wireless communication system
US11632793B2 (en) Method and apparatus for random access procedure
CN107667565B (zh) 在使用非授权频带的蜂窝网络中分配资源的方法及其设备
CN104184548B (zh) 随机接入序列传输方法和装置
US8811325B2 (en) Network side device and method for transmitting configuration information of pathloss power threshold thereof
US20130064131A1 (en) Apparatus and method for transmitting power information in multiple component carrier system
US11457449B2 (en) Telecommunications apparatus and methods including selecting a TBS based on an indicated maximum TBS
EP3847864B1 (en) Pusch resource selection in 2-step random access
US11218979B2 (en) Power control method and apparatus
US11856612B2 (en) Method and apparatus for performing random access in wireless communication system
CN113748713A (zh) 增强型随机接入过程的系统和方法
WO2020061961A1 (zh) 测量信道质量的方法和装置
US12127271B2 (en) PUSCH resource selection in 2-step random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903800

Country of ref document: EP

Effective date: 20200831