WO2019148998A1 - 一种dmd扫描成像的3d成型装置及方法 - Google Patents

一种dmd扫描成像的3d成型装置及方法 Download PDF

Info

Publication number
WO2019148998A1
WO2019148998A1 PCT/CN2018/123119 CN2018123119W WO2019148998A1 WO 2019148998 A1 WO2019148998 A1 WO 2019148998A1 CN 2018123119 W CN2018123119 W CN 2018123119W WO 2019148998 A1 WO2019148998 A1 WO 2019148998A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmd
scanning
displacement platform
graphic
graphics
Prior art date
Application number
PCT/CN2018/123119
Other languages
English (en)
French (fr)
Inventor
徐珍华
阮立锋
唐战备
杨小红
Original Assignee
中山新诺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山新诺科技股份有限公司 filed Critical 中山新诺科技股份有限公司
Publication of WO2019148998A1 publication Critical patent/WO2019148998A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention belongs to the field of 3D printing, and in particular relates to a 3D forming device and method for DMD scanning imaging.
  • the present invention proposes a 3D forming apparatus for DMD scanning imaging.
  • a 3D forming device for DMD scanning imaging comprising an optical engine system, a displacement platform and a synchronous control system, the displacement platform having X, Y and Z triaxial motion directions, wherein the optical engine system is fixed on the displacement platform Displacement in the XY plane, which includes a light source, a mirror, a DMD array, and a scanning lens; the displacement platform and optical engine system are controlled in linkage by the synchronous control system.
  • the DMD array is directly opposite the scanning lens, and the light source establishes an optical path to the DMD array through a mirror.
  • the light source is a uniform light source.
  • the scanning lens includes a scanning lens of at least two magnifications.
  • the synchronous control system has a communication port connected to the upper device to acquire an acquisition action instruction and execute.
  • the present invention also proposes a 3D forming method for DMD scanning imaging, which comprises the following steps:
  • Step 1 The optical engine system is mounted on the displacement platform, and the displacement platform controls the movement along the X, Y, and Z axes, the Z axis is the printing height direction, and the graphic slice layer processing is performed along the graphic height direction, that is, along the A plurality of two-dimensional graphics sliced in the Z direction are sequentially scanned and printed in the X and Y directions;
  • Step 2 the layered graphics are segmented in the X direction according to the effective width d of the DMD, and the width d of each graphic is obtained;
  • Step 3 The divided graphics are scanned one by one in the height direction of the DMD. During the scanning process, the moving speed of the graphic is kept synchronized with the Y direction of the displacement platform. Each scan is performed, and the X axis of the platform is also moved by the distance d to perform the next scanning; The precise positioning of the platform and the synchronization of the graphics enable seamless splicing of graphics.
  • the Y direction is perpendicular to the length direction of the DMD, which is the scanning direction of the graphic.
  • the movement of the graphic and the Y direction of the platform is synchronized;
  • the X direction is the direction of the graphic mosaic,
  • the dimension image is stripped according to the width d of the DMD in the X direction, and the stripe pattern is scanned in the Y direction.
  • the X axis of the platform moves by the corresponding step d, and the next step is performed. Scan, scan one by one, until the entire two-dimensional graphics are completed, and then scan the next layer of graphics in the Z direction.
  • FIG. 1 is a block diagram showing the composition of a 3D forming apparatus for DMD scanning imaging of the present invention.
  • FIG. 2 is a schematic structural view of an optical engine system of the present invention.
  • FIG. 3 is a schematic diagram of coordinates of a scanning direction of a DMD array of the present invention.
  • FIG. 4 is a schematic structural view of a 3D molding apparatus for DMD scanning imaging of the present invention.
  • a 3D forming apparatus for DMD scanning imaging comprising an optical engine system 1, a displacement platform 2, and a synchronous control system 3, the displacement platform 2 having X, Y and Z three-axis motion directions,
  • the optical engine system 1 is fixed on the displacement platform 2 to achieve displacement in the XY plane, and includes a light source 11, a mirror 12, a DMD array 13 and a scanning lens 14; the displacement platform 2 and the optical engine system 1 are synchronized by the
  • the control system 3 controls the linkage, and the synchronous control system 3 is connected to the upper computer to acquire an action instruction and execute.
  • the DMD array 13 is opposite to the scanning lens 14 .
  • the light source 11 establishes an optical path to the DMD array 13 through the mirror 12 .
  • the light source 11 is a uniform light source, and the scanning lens 14 includes at least two magnifications. Scanning the lens, you can use different magnification lenses to scale each pixel of the DMD to get the expected imaging pixel size.
  • the displacement platform 2 realizes the movement in the X, Y, and Z-axis directions with reference to the printing instrument stage 4, and realizes three-dimensional scanning of the printing space by the cooperation of the scanning lens 14 and the DMD array 13, thereby accurately controlling printing. Forming of pieces.
  • the displacement platform controls the three-axis movement of X, Y, and Z, the Z-axis is the printing height direction, and the graphic slice layering processing is performed along the height direction of the graphic; and the layered graphic is graphed according to the effective width d of the DMD in the X direction. Dividing, get the width d of each graphic; the divided graphics are scanned one by one in the height direction of the DMD. During the scanning process, the moving speed of the graphic is kept synchronized with the Y direction of the displacement platform. After each scanning, the X axis of the platform is also moved by the distance d. Perform the next scan; seamlessly stitch the graphics through the precise positioning of the platform and the synchronization of the graphics.
  • the invention utilizes the DMD dynamic graphic scanning technology and the graphic splicing method to realize large-area and high-precision 3D printing or molding; the imaging magnification of the optical system equipped with the DMD can be arbitrarily selected according to the imaging precision, thereby reducing the spot scanning manner by the low-magnification lens. Achieve high-precision scanning imaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种DMD扫描成像的3D成型装置及方法,该3D成型装置包括光学引擎系统(1)、位移平台(2)以及同步控制系统(3),该光学引擎系统(1)固定于位移平台(2)之上实现XY平面上的位移,其包括光源(11)、反射镜(12)、DMD阵列(13)和扫描镜头(14);该位移平台(2)和光学引擎系统(1)由该同步控制系统(3)联动控制。该方法是将光学引擎系统(1)由位移平台(2)控制沿X、Y、Z三轴移动,Z轴为打印高度方向,沿图形高度方向进行图形切片分层处理处理,将分层出来的图形在X方向按照DMD的有效宽度d进行图形分割,得到每条图形宽度d,分割好的图形在DMD高度方向进逐条扫描。该方法克服了现有基于DMD投影技术的3D打印技术无法同时实现大尺寸、高精度打印的缺陷,具有较佳技术性和实用性,适合推广使用。

Description

一种DMD扫描成像的3D成型装置及方法 技术领域
本发明属于3D打印领域,具体涉及一种DMD扫描成像的3D成型装置及方法。
背景技术
现有基于DMD(数字微镜芯片Digital Micromirror Device)的光固化3D成型机都是基于静态图形投影,其基本原理是投影仪技术,在追求高精度的情况下成型尺寸受到较大限制,而如果要实现大尺寸成型,就需扩大投影光斑面积,这样成型精度又会受到严重影响。
技术问题
为解决3D打印领域精度与尺寸受限的问题,本发明提出DMD扫描成像的3D成型装置。
技术解决方案
一种DMD扫描成像的3D成型装置,其包括光学引擎系统、位移平台以及同步控制系统,所述位移平台具有X、Y和Z三轴运动方向,所述光学引擎系统固定于位移平台之上实现XY平面上的位移,其包括光源、反射镜、DMD阵列和扫描镜头;所述位移平台和光学引擎系统由所述同步控制系统联动控制。
于本发明的一个或多个实施例中,所述DMD阵列与扫描镜头正对,所述光源通过反射镜建立至所述DMD阵列的光路。
于本发明的一个或多个实施例中,所述光源为匀光光源。
于本发明的一个或多个实施例中,所述扫描镜头包括至少两种倍率的扫描镜头。
于本发明的一个或多个实施例中,所述同步控制系统具有连接至上位设备的通讯端口,以获取获取动作指令并执行。
在相同构思下,本发明还提出一种DMD扫描成像的3D成型方法,其包含如下步骤:
步骤一,将光学引擎系统安装于位移平台之上,由位移平台控制沿X、Y、Z三轴移动,Z轴为打印高度方向,沿图形高度方向进行图形切片分层处理处理,即沿着Z方向切片的若干幅二维图形依次在X、Y方向上扫描打印;
步骤二,将分层出来的图形在X方向按照DMD的有效宽度d进行图形分割,得到每条图形宽度d;
步骤三,分割好的图形在DMD高度方向进逐条扫描,扫描过程中,保持图形移动速度与位移平台的Y方向同步,每扫描一条,平台X轴也相应移动距离d后进行下一条扫描; 通过平台的精确走位和图形同步,实现图形的无缝拼接。
于本发明的一个或多个实施例中,Y方向垂直于DMD的长度方向,为图形的扫描方向,在扫描过程中,保持图形与平台Y方向的移动同步;X方向为图形拼接方向,二维图形在X方向上根据DMD的宽度d进行分条,分条的图形在Y方向上进行扫描,当图形扫描完第一条后,平台的X轴移动相应的步距d,进行下一条的扫描,逐条扫描,直至整个二维图形完成,再进行Z方向切片的下一层图形的扫描。
有益效果
克服了现有基于DMD投影技术的3D打印技术无法同时实现大尺寸、高精度打印的缺陷,可以在物件的长、宽、高三个方向同时实现高精度、大尺寸(超大尺寸)3D打印或成型,具有较佳技术性和实用性,适合推广使用。
附图说明
图1为本发明的DMD扫描成像的3D成型装置的组成框图。
图2为本发明的光学引擎系统的结构示意图。
图3为本发明的DMD阵列扫描方向坐标示意图。
图4为本发明的DMD扫描成像的3D成型装置结构示意图。
本发明的实施方式
如下结合附图,对本申请方案作进一步描述:
参见附图1至4,一种DMD扫描成像的3D成型装置,其包括光学引擎系统1、位移平台2以及同步控制系统3,所述位移平台2具有X、Y和Z三轴运动方向,所述光学引擎系统1固定于位移平台2之上实现XY平面上的位移,其包括光源11、反射镜12、DMD阵列13和扫描镜头14;所述位移平台2和光学引擎系统1由所述同步控制系统3联动控制,所述同步控制系统3连接上位机以获取动作指令并执行。所述DMD阵列13与扫描镜头14正对,所述光源11通过反射镜12建立至所述DMD阵列13的光路,所述光源11为匀光光源,所述扫描镜头14包括至少两种倍率的扫描镜头,可以选用不同倍率的镜头来缩放DMD的每个像素点,从而得到预期的成像像素大小。具体的,所述位移平台2以打印件载物台4为参照实现X、Y、Z轴方向的动作,通过扫描镜头14与DMD阵列13的配合实现对打印空间的三维扫描,从而精确控制打印件的成型。
工作原理:
所述位移平台控制X、Y、Z三轴移动,Z轴为打印高度方向,沿图形高度方向进行图形切片分层处理处理;将分层出来的图形在X方向按照DMD的有效宽度d进行图形分割,得到每条图形宽度d;分割好的图形在DMD高度方向进逐条扫描,扫描过程中,保持图形移动速度与位移平台的Y方向同步,每扫描一条,平台X轴也相应移动距离d后进行下一条扫描;通过平台的精确走位和图形同步,实现图形的无缝拼接。
本发明利用DMD动态图形扫描技术和图形拼接方法实现大面积、高精度3D打印或成型;DMD配备的光学系统成像镜头倍率可根据成像精度进行任意选择,从而通过低倍率镜头进行缩小光斑扫描的方式实现高精度的扫描成像。
上述优选实施方式应视为本申请方案实施方式的举例说明,凡与本申请方案雷同、近似或以此为基础作出的技术推演、替换、改进等,均应视为本专利的保护范围。

Claims (7)

  1. 一种DMD扫描成像的3D成型装置,其特征在于:包括光学引擎系统、位移平台以及同步控制系统,所述位移平台具有X、Y和Z三轴运动方向,所述光学引擎系统固定于位移平台之上实现XY平面上的位移,其包括光源、反射镜、DMD阵列和扫描镜头;所述位移平台和光学引擎系统由所述同步控制系统联动控制。
  2. 根据权利要求1所述的DMD扫描成像的3D成型装置,其特征在于:所述DMD阵列与扫描镜头正对,所述光源通过反射镜建立至所述DMD阵列的光路。
  3. 根据权利要求2所述的DMD扫描成像的3D成型装置,其特征在于:所述光源为匀光光源。
  4. 根据权利要求2所述的DMD扫描成像的3D成型装置,其特征在于:所述扫描镜头包括至少两种倍率的扫描镜头。
  5. 根据权利要求1至4任一项所述的DMD扫描成像的3D成型装置,其特征在于:所述同步控制系统具有连接至上位设备的通讯端口,并且接收从Y轴光栅尺发分出的脉冲信号,使图形在DMD的扫描运动与Y轴保持位置同步。
  6. 一种DMD扫描成像的3D成型方法,其特征在于,包含如下步骤:
    步骤一,将光学引擎系统安装于位移平台之上,由位移平台控制沿X、Y、Z三轴移动,Z轴为打印高度方向,沿图形高度方向进行图形切片分层处理处理,即沿着Z方向切片的若干幅二维图形依次在X、Y方向上扫描打印;
    步骤二,将分层出来的图形在X方向按照DMD的有效宽度d进行图形分割,得到每条图形宽度d;
    步骤三,分割好的图形在DMD高度方向进逐条扫描,扫描过程中,保持图形移动速度与位移平台的Y方向同步,每扫描一条,平台X轴也相应移动距离d后进行下一条扫描; 通过平台的精确走位和图形同步,实现图形的无缝拼接。
  7. 根据权利要求6所述的DMD扫描成像的3D成型方法,其特征在于:Y方向垂直于DMD的长度方向,为图形的扫描方向,在扫描过程中,保持图形与平台Y方向的移动同步;X方向为图形拼接方向,二维图形在X方向上根据DMD的宽度d进行分条,分条的图形在Y方向上进行扫描,当图形扫描完第一条后,平台的X轴移动相应的步距d,进行下一条的扫描,逐条扫描,直至整个二维图形完成,再进行Z方向切片的下一层图形的扫描。
     
PCT/CN2018/123119 2018-02-05 2018-12-24 一种dmd扫描成像的3d成型装置及方法 WO2019148998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810115963.4A CN108312505A (zh) 2018-02-05 2018-02-05 一种dmd扫描成像的3d成型装置及方法
CN201810115963.4 2018-02-05

Publications (1)

Publication Number Publication Date
WO2019148998A1 true WO2019148998A1 (zh) 2019-08-08

Family

ID=62902688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123119 WO2019148998A1 (zh) 2018-02-05 2018-12-24 一种dmd扫描成像的3d成型装置及方法

Country Status (2)

Country Link
CN (1) CN108312505A (zh)
WO (1) WO2019148998A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108312505A (zh) * 2018-02-05 2018-07-24 中山新诺科技股份有限公司 一种dmd扫描成像的3d成型装置及方法
CN109228348A (zh) * 2018-09-28 2019-01-18 广东工业大学 一种dmd倾斜扫描的3d打印装置及方法
CN110930316B (zh) * 2019-10-24 2023-09-05 中山新诺科技股份有限公司 灰度图像的处理曝光方法、装置、系统和设备
CN111923411A (zh) * 2020-09-01 2020-11-13 卢振武 一种动态成像3d打印系统及其打印方法
CN112684679A (zh) * 2020-12-30 2021-04-20 中山新诺科技股份有限公司 一种双面数字化光刻系统上下图形对准的标定方法
CN117021569A (zh) * 2023-08-24 2023-11-10 爱司凯科技股份有限公司 基于图像数据分割平移的面阵激光连续移动3d打印方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034171A2 (en) * 1996-02-28 1997-09-18 Johnson Kenneth C Microlens scanner for microlithography and wide-field confocal microscopy
CN103231619A (zh) * 2013-04-19 2013-08-07 王敬达 一种大尺幅精细花纹金属浮雕板制备设备
CN107121088A (zh) * 2017-04-27 2017-09-01 北京工业大学 一种用于面曝光dlp3d打印的三维扫描方法和装置
CN107150439A (zh) * 2017-05-15 2017-09-12 上海联泰科技股份有限公司 数据处理方法、3d打印方法及设备
CN108312505A (zh) * 2018-02-05 2018-07-24 中山新诺科技股份有限公司 一种dmd扫描成像的3d成型装置及方法
CN207972294U (zh) * 2018-02-05 2018-10-16 中山新诺科技股份有限公司 一种dmd扫描成像的3d成型装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201965317U (zh) * 2011-03-29 2011-09-07 西安友米光电科技有限公司 可装接大尺寸镜头的微型dlp投影机
US20160230283A1 (en) * 2015-02-11 2016-08-11 Escape Dynamics Inc. Fused Material Deposition Microwave System And Method
CN104669625B (zh) * 2015-03-12 2017-06-09 上海联泰三维科技有限公司 基于投影式的光固化三维打印方法以及打印装置
JP6590638B2 (ja) * 2015-10-29 2019-10-16 株式会社オーク製作所 露光装置用露光ヘッドおよび露光装置用投影光学系

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034171A2 (en) * 1996-02-28 1997-09-18 Johnson Kenneth C Microlens scanner for microlithography and wide-field confocal microscopy
CN103231619A (zh) * 2013-04-19 2013-08-07 王敬达 一种大尺幅精细花纹金属浮雕板制备设备
CN107121088A (zh) * 2017-04-27 2017-09-01 北京工业大学 一种用于面曝光dlp3d打印的三维扫描方法和装置
CN107150439A (zh) * 2017-05-15 2017-09-12 上海联泰科技股份有限公司 数据处理方法、3d打印方法及设备
CN108312505A (zh) * 2018-02-05 2018-07-24 中山新诺科技股份有限公司 一种dmd扫描成像的3d成型装置及方法
CN207972294U (zh) * 2018-02-05 2018-10-16 中山新诺科技股份有限公司 一种dmd扫描成像的3d成型装置

Also Published As

Publication number Publication date
CN108312505A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019148998A1 (zh) 一种dmd扫描成像的3d成型装置及方法
CN109822891B (zh) 一种高精度大幅面立体投影3d打印系统及其打印方法
CN105345254B (zh) 旁轴式视觉系统与激光振镜加工系统位置关系的标定方法
CN108817386B (zh) 用于多光束激光选区熔化成形的层间梳状拼接方法
CN105216320B (zh) 一种双光路投影曝光3d打印装置及方法
CN101576715B (zh) 一种微观成像系统的标定方法
CN105216330A (zh) 基于投影式的3d打印方法以及3d打印装置
CN104907703A (zh) 一种提高在大面积平板玻璃内雕刻三维图像效率的方法和装置
CN107561876A (zh) 一种新型无掩膜光刻系统及其工艺流程
CN111923411A (zh) 一种动态成像3d打印系统及其打印方法
CN109712139B (zh) 基于线性运动模组的单目视觉的尺寸测量方法
CN108537849A (zh) 基于同心圆环的三维直角靶标的线阵相机的标定方法
CN102681359A (zh) 同步信号触发扫描方式延迟时间测量方法
TW201741775A (zh) 雙面光刻裝置以及雙面光刻裝置中遮罩與工件的對準方法
CN111189415A (zh) 一种基于线结构光的多功能三维测量重建系统及方法
JP7037262B2 (ja) デジタルスライドスキャナのモデル化のスピードアップ方法
CN114211003B (zh) 一种用于增材制造设备的多激光系统搭接校正方法
CN103424103A (zh) 一种近景大幅面数字摄影测量系统
JP2002365026A (ja) 基板検査装置
CN111983896B (zh) 一种3d曝光机高精度对位方法
CN107664924A (zh) 一种曝光装置及方法
CN108891013A (zh) 一种高精度的3d真空曲面贴合机
CN101551597B (zh) 一种自成像双面套刻对准方法
CN103307998A (zh) 一种三维扫描系统及方法
CN105744258A (zh) 一种单相机双目视觉传感器及其调试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903886

Country of ref document: EP

Kind code of ref document: A1