WO2019148925A1 - 一种四直角反射镜增光程系统 - Google Patents

一种四直角反射镜增光程系统 Download PDF

Info

Publication number
WO2019148925A1
WO2019148925A1 PCT/CN2018/114460 CN2018114460W WO2019148925A1 WO 2019148925 A1 WO2019148925 A1 WO 2019148925A1 CN 2018114460 W CN2018114460 W CN 2018114460W WO 2019148925 A1 WO2019148925 A1 WO 2019148925A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle mirror
angle
right angle
mirrors
mirror group
Prior art date
Application number
PCT/CN2018/114460
Other languages
English (en)
French (fr)
Inventor
黄保坤
朱琳
Original Assignee
深圳海纳光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳海纳光科技有限公司 filed Critical 深圳海纳光科技有限公司
Publication of WO2019148925A1 publication Critical patent/WO2019148925A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/023Catoptric systems, e.g. image erecting and reversing system for extending or folding an optical path, e.g. delay lines

Definitions

  • the present invention relates to the field of optics, and in particular to a four-right angle mirror adder system.
  • the optical signal at the absorption wavelength range of the substance is attenuated, and the composition and content of the substance can be judged according to the wavelength of the light and the degree of attenuation of the light intensity.
  • the increase of the optical path requires an increase in the length of the sample cell, or the optical path is increased by multiple reflections of the mirror.
  • the current method of increasing the optical path has a limited effect of increasing the optical path, and can only be increased by several times, up to two or three. Ten times the optical path, the effect of the compression space is also limited, resulting in some devices can not be miniaturized or the detection accuracy can not be greatly improved.
  • the present invention is intended to provide an optical pathlength increasing system that further increases the optical path increase amount, which enables the light beam to reflect the target light beam hundreds of times in a limited space, and greatly increases the beam and effect.
  • the contact light path of the material improves the efficiency of the equipment and reduces the space required for the equipment. Thereby, the use efficiency of the space is improved in a small three-dimensional space range, and the development of miniaturization of the optical device is promoted.
  • the present invention provides a four-right angle mirror adder system, wherein the four right angle mirror adder system includes: a first right angle mirror, a second right angle mirror, and a third right angle mirror. a fourth right angle mirror, the first right angle mirror and the second right angle mirror form an inner right angle mirror group, and the third right angle mirror and the fourth right angle mirror form an outer right angle mirror group, wherein the inner right angle mirror
  • the reflecting surfaces of the group are opposite to each other, and the reflecting surfaces of the two right-angle mirrors in the outer right-angle mirror group are reflected by the inner right-angle mirror group and are opposite to each other on the optical path, and the two reflections of the inner right-angle mirror group
  • the mirror has an opposite lateral offset in a first direction, the two mirrors of the outer right angle mirror set having an opposite lateral offset in the second direction.
  • the right angle apex lines of the inner right angle mirror group are parallel to each other in the second direction
  • the right angle apex lines of the outer right angle mirror group are parallel to each other in the first direction
  • the first direction and the second direction are perpendicular to each other .
  • the lateral offset of the two right-angle mirrors in the inner right-angle mirror group respectively form two optical path notches on both sides of the inner right-angle mirror group, and two right-angle mirrors in the outer right-angle mirror group At least one of the two opposite optical path notches, preferably one of the two outer right angle mirrors is higher than the two inner right angle mirrors and the other is lower than the inner right angle mirror.
  • two of the two right-angle mirrors in the outer right-angle mirror group respectively face the two optical path gaps, and preferably the two right-angle mirrors in the outer right-angle mirror group are offset at the outer right-angle mirror group
  • Two optical path notches are formed on the two sides, and the two optical path notches are respectively used as the light entrance and the light exit of the four right angle mirror adder system.
  • a right angle apex of one of the right angle mirrors of the inner right angle mirror group leaves a light passing slit, and one of the right angle mirrors of the outer right angle mirror group is placed at a right angle of the light passing slit
  • the back surface of the reflecting surface of the mirror, and the reflecting surface faces the light passing slit.
  • two confocal optical sets are disposed between the two right angle mirrors of the inner right angle mirror group, and the optical axes of the confocal optical group are perpendicular to the right angle top angle of the inner right angle mirror group.
  • the present invention provides an absorption spectroscopy test system, characterized in that the absorption spectroscopy test system comprises the four right angle mirror illuminator system.
  • the absorption spectroscopy test system comprises an ultraviolet-visible absorption spectrometer, a near-infrared spectrometer, and an infrared absorption spectroscopy system.
  • the present invention provides a light scattering excitation collection system, characterized in that the light scattering excitation collection system comprises the four right angle mirror enhancement system.
  • the light scattering excitation collection system comprises a Raman spectrometer, a photoluminescence system, a Brillouin scattering system, and a Rayleigh scattering system.
  • the "relative lateral offset" mentioned in the present invention refers to a certain offset from the side angle of the apex angle with respect to the apex angle of the right angle mirror, as shown in the drawing. Show.
  • optical path notch means that a part of the side edges of the two mirrors are not corresponding to each other because the two opposite right-angle mirrors are not completely facing each other. The reflecting surface of a mirror, the light emitted by this part will not be received by another right-angle mirror, thus forming a so-called "optical path gap".
  • the present invention mainly utilizes the reflection characteristics of a right-angle mirror.
  • the incident light perpendicular to the right-angled apex of the right-angle mirror is incident on a reflecting surface of the right-angle mirror, and is reflected to a right angle.
  • the other reflecting surface of the mirror is then reflected back to the incident direction.
  • the direction of light propagation is opposite to the original incident direction but spatially forms a spatial displacement perpendicular to the plane consisting of the incident direction and the right angle of the right angle mirror.
  • a right-angle mirror is formed due to a certain offset between the two right-angle mirrors.
  • One side of the lens extends beyond the other right angle mirror, which allows the light beam to be incident from the projecting portion between the two right angle mirrors, the incident direction being perpendicular to the incident light of the right angle corner of the right angle mirror of the inner right angle mirror group
  • the incident light is reflected multiple times in a plane perpendicular to the right-angled apex of the right-angle mirror to form a two-dimensional reflecting surface to increase the optical path.
  • the present invention adds an outer right-angle mirror set that also includes two right-angle mirrors that are placed opposite each other from the direction of the beam.
  • the expression used in the present invention is that "the reflecting surfaces are opposed to each other on the optical path after being reflected by the inner right-angle mirror group" or "the opposite side of the reflecting surface when viewed from the beam direction" means in the optical path.
  • the light from one of the right-angle mirrors is incident on a reflecting surface of the second right-angle mirror if it does not exceed the position range of the second right-angle mirror. Above, then exits from the other reflecting surface of the second right-angle mirror, the path of which is directed toward the first right-angle mirror.
  • the right angle corner line of the mirror is perpendicular to the plane formed by the right angle corner line of the mirror of the inner right angle mirror group and the incident light.
  • At least one outer right angle mirror is disposed at a notch formed by the offset of the two right angle mirrors of the inner right angle mirror group, and the light exits the inner right angle mirror group when the light is reflected multiple times from the two-dimensional plane of the inner right angle mirror group
  • the light is reflected back from the other reflecting surface of the outer right-angle mirror to the incident direction, and is displaced in the direction of the right-angled apex of the mirror of the inner right-angle mirror group.
  • the system of the present invention is primarily used to reflect parallel or near-parallel light, either as a laser or as a mixed wavelength light.
  • optical package referred to in the present invention is not limited to an optical device that is independently constructed, and may also refer to an optical device having a plurality of components.
  • the "right angle mirror” referred to in the present invention is not limited to a right angle mirror composed of a single reflecting device, which may be a combined mirror.
  • the optical path is increased in the two-dimensional space by multiple reflections by the inner right-angle mirror group.
  • the two-dimensional reflecting surface is stereo-shifted by the outer right-angle mirror group.
  • the invention can reflect the light beam in the limited space for hundreds of times, greatly increase the contact optical path between the light beam and the object to be treated, improve the use efficiency of the device, reduce the space required for the device, promote the development of miniaturization of the optical device and the precision of the detection device. Improvement.
  • FIG. 1 is a perspective view of a three-dimensional structure of an embodiment of the present invention.
  • the right angle mirror 1 and the right angle mirror 2 constitute an inner right angle mirror group, and the right angle mirror 3 and the right angle mirror 4 constitute an outer right angle mirror group.
  • Figure 2 is a schematic perspective view of another embodiment of the present invention.
  • the right angle mirror 1 and the right angle mirror 2 constitute an inner right angle mirror group
  • the right angle mirror 3 and the right angle mirror 4 constitute an inner right angle mirror group.
  • a light-passing slit is left in the right-angle mirror 1 .
  • Figure 3 is a two-dimensional plan view of incident light transmitted between two right-angle mirrors of a right-angle mirror set.
  • FIG. 4 is a schematic perspective view of a three-dimensional structure in which a confocal focusing optical set is added between two right-angle mirrors of an inner right-angle mirror group.
  • the right angle mirror 1 and the right angle mirror 2 constitute an inner right angle mirror group
  • the right angle mirror 3 and the right angle mirror 4 constitute an inner right angle mirror group.
  • the focused optical sets 5 and 6 form a confocal optical set.
  • FIG. 1 is a perspective view showing the three-dimensional structure of a four-corner mirror addition path system according to an embodiment of the present invention.
  • the right angle mirror 1 and the right angle mirror 2 constitute an inner right angle mirror group
  • the right angle mirror 3 and the right angle mirror 4 constitute an outer right angle mirror group.
  • the right-angle mirror 2 on the right side of the figure is offset in the plane of the paper.
  • the right-angle mirror 1 on the left side of the figure is offset to the outside of the paper.
  • the present invention provides an outer right angle mirror 4 at the notch, a portion of which just receives the incident light at the notch and is reflected back to the right angle mirror 2 after the incident light is shifted in the longitudinal direction.
  • the right angle apex of the outer right angle mirror 4 is perpendicular to the right angle apex of the inner right angle mirror.
  • the outer right angle mirror 3 is disposed on the other side of the two inner right angle mirrors due to the offset formed by the offset.
  • the two outer right angle mirrors are longitudinally offset from each other, that is, the position of the outer right angle mirror 3 is slightly higher or lower than the outer right angle mirror 4, preferably one of the two outer right angle mirrors is higher than two One inner right angle mirror and the other lower than the inner right angle mirror.
  • the rectangular mirror 3 is higher than the inner right angle mirror, and the outer right angle mirror 4 is lower than the inner right angle mirror as an example.
  • the incident light is perpendicular to the direction of the right angle apex of the inner right angle mirror group and the right angle apex line of the outer right angle mirror group, from the outer right angle mirror 3 above the inner right angle mirror, from the inner right angle mirror
  • the notched portion is incident on one of the reflecting surfaces of the right-angle mirror 3, and after passing through the space of the right-angle mirror 3 in the direction of the right-angled apex of the inner right-angle mirror group, the reflected light enters the right-angle mirror 1 Within the range of the reflecting surface, the other reflecting surface of the right angle mirror 3 is reflected to a reflecting surface of the right angle mirror 1.
  • the rectangular mirror 1 is reflected by the other reflecting surface of the right-angle mirror 1 to a reflecting surface of the right-angle mirror 2 after being spatially displaced in the direction of the right-angled apex of the outer right-angle mirror group. Further, the right-angle mirror 2 is reflected by the other reflecting surface of the right-angle mirror 2 to a reflecting surface of the right-angle mirror 1 after being spatially displaced in the direction perpendicular to the apex angle of the outer right-angle mirror group. In this way, a two-dimensional reflection plane is formed between the right angle mirror 1 and the right angle mirror 2.
  • the parallel light emitted therefrom enters the reflection surface of the outer right-angle mirror 4, and is reflected by the inner right-angle mirror group to the right-angle reflection
  • the mirror 4 is reflected by the right-angle mirror 4 in the direction perpendicular to the apex angle of the inner right-angle mirror group, and then reflected by the other reflecting surface of the right-angle mirror 4 back to the inner right-angle mirror 2, and then A 2-dimensional reflection cycle is repeated within the right-angle mirror set.
  • the two-dimensional reflection plane is displaced multiple times in a direction perpendicular to the two-dimensional reflection plane to form a three-dimensional stereoscopic reflection map until the incident light exits the four-right angle mirror enhancement path system.
  • FIG. 3 is a schematic diagram showing a two-dimensional reflection plane formed by the inner right angle mirror group composed of the right angle mirror 1 and the right angle mirror 2 in order to better understand the transmission mode of the parallel light under the action of a set of right angle mirrors.
  • FIG. 2 is a schematic perspective view of a three-corner mirror adder system according to another embodiment of the present invention.
  • the present embodiment still uses four right-angle mirrors, but the arrangement is slightly different from that of the first embodiment.
  • the right-angled apex of one of the right-angle mirrors in the inner right-angle mirror group leaves a light-passing slit, and one of the right-angle mirrors 3 of the outer right-angle mirror group is placed on the right-angle mirror 1 with the light-passing slit
  • the back surface of the reflecting surface, and the reflecting surface faces the light passing slit, so that the reflected light incident from the slit to the outer right angle mirror 3 is reflected back from the outer right angle mirror 3 to the slit, and the reflected light is reflected at the right angle
  • the mirrors of the mirror have a spatial displacement in the direction of the right-angled apex and are then reflected back to the inner right-angle mirror group.
  • both the outer right angle mirror 4 and the outer right angle mirror 3 are oriented toward the right side in the drawing, the outer right angle mirror 4 and the outer right angle mirror 3 are still opposed to each other from the optical path.
  • the right-angle mirror 1 and the right-angle mirror 2 still have a certain offset in the left-right direction, and the inner right-angle mirror 2 on the right side of the figure is offset to the inside of the paper, and the left side is offset to the outside of the paper surface.
  • the right-angle mirror 1 and the right-angle mirror 2 are opposed to each other, they are not completely opposite, and there is an optical path gap at the edge of the right-angle mirror 1, and the right-angle mirror 2 also forms an optical path notch on the other side thereof.
  • the incident angle of the outer right angle mirror 4 is perpendicular to the direction of the right angle apex of the inner right angle mirror group and the right angle apex line of the outer right angle mirror group, and is incident from the upper side of the gap between the inner right angle mirror groups to the outer right angle reflection
  • the upper reflecting surface of the mirror 4 is deflected downward by the right angle mirror 4 in the direction perpendicular to the apex angle of the inner right angle mirror group, and then reflected by the other reflecting surface of the right angle mirror 4, and the reflected light is reflected It enters the range of the reflecting surface of the inner right-angle mirror 2 and is incident on one reflecting surface of the right-angle mirror 2.
  • the rectangular mirror 2 After the rectangular mirror 2 is spatially displaced in the direction of the right-angled apex of the outer right-angle mirror group, it is reflected by the other reflecting surface of the right-angle mirror 2 to a reflecting surface of the right-angle mirror 1. Further, the right-angle mirror 1 is reflected by the other reflecting surface of the right-angle mirror 1 to a reflecting surface of the right-angle mirror 2 after being spatially displaced in the direction perpendicular to the apex angle of the outer right-angle mirror group. In this way, a two-dimensional reflection plane is formed between the right angle mirror 1 and the right angle mirror 2.
  • the two-dimensional reflection plane is displaced multiple times in a direction perpendicular to the two-dimensional reflection plane to form a three-dimensional stereoscopic reflection map until the incident light exits the four-right angle mirror enhancement path system.
  • FIG. 4 is a structure of another embodiment of the present invention.
  • the arrangement of the inner right angle mirror group and the outer right angle mirror group is the same as that of the first embodiment, except that in the embodiment.
  • two confocal focusing optical groups are added to form a confocal optical group, and the optical axis of the focusing optical group is parallel to the incident light, and the focusing optical group makes Parallel light reflected by one right-angle mirror of the inner right-angle mirror group, after one of the optical groups is focused to the focus, and then converted into parallel light by another focused optical group, and the other of the inward-right angle mirror groups is transmitted.
  • Right angle mirror Thereby multiple focusing of the parallel light to the focus of the confocal optics group is achieved, thereby exciting the scattered light signal of the sample at the focus position.

Abstract

一种四直角反射镜增光程系统,包括:第一直角反射镜(1)、第二直角反射镜(2)、第三直角反射镜(3)以及第四直角反射镜(4),第一直角反射镜(1)和第二直角反射镜(2)构成内直角反射镜组,第三直角反射镜(3)以及第四直角反射镜(4)构成外直角反射镜组。能够使光束在有限空间内反射上百次,大幅度增加光束与被作用物质的接触光程,提高设备使用效率,减小设备所需空间,促进光学设备小型化的发展以及检测设备精度的提高。

Description

一种四直角反射镜增光程系统
相关申请
本申请主张于2018年2月1日提交的、名称为“一种四直角反射镜增光程系统”的中国发明专利申请:2018101004987的优先权。
技术领域
本发明涉及光学领域,具体涉及一种四直角反射镜增光程系统。
背景技术
当光穿过物质的时候,位于物质吸收波长范围的光信号会衰减,根据光的波长和光强度的衰减程度,可以判断物质的成分和含量。
当使用光穿过浓度较低的透明样品,例如气体、溶液等的时候,由于绝大部分光源能量都透过透明样品,没有与透明样品发生相互作用而导致激发光源使用效率低下。在这个情况下必须增加光程才能增加物质与光的相互作用程度,观察到明显的光信号衰减。
而光程的增加则需要样品池长度的增加,或者通过反射镜的多次反射来增加光程,但是目前的增加光程的方法增加光程的效果有限,仅能增加数倍,最多二三十倍的光程,压缩空间的效果也有限,导致一些设备无法实现小型化或者检测精度无法得到大幅度提升。
发明内容
针对现有技术中存在的上述问题,本发明希望提供一种进一步提高光程增加量的增光程系统,其能够使光束在有限空间内对目标光束反射上百次,大幅度增加光束与被作用物质的接触光程,提高设备使用效率,减小设备所需空间。从而在较小的立体空间范围内提高空间的使用效率,促进光学设备小型化的发展。
具体而言,本发明提供一种四直角反射镜增光程系统,其特征在于,所述四直角反射镜增光程系统包括:第一直角反射镜、第二直角反射镜、第三直角反射镜以及第四直角反射镜,第一直角反射镜和第二直角反射镜构成内直角反射镜组,第三直角反 射镜以及第四直角反射镜构成外直角反射镜组,其中,所述内直角反射镜组的反射面彼此相对,所述外直角反射镜组中两个直角反射镜的反射面经所述内直角反射镜组反射后在光路上彼此相对,所述内直角反射镜组的两个反射镜在第一方向具有相对侧向偏移,所述外直角反射镜组的两个反射镜在第二方向具有相对侧向偏移。
优选地,所述内直角反射镜组的直角顶角线沿第二方向彼此平行,所述外直角反射镜组的直角顶角线沿第一方向彼此平行,第一方向和第二方向彼此垂直。
优选地,所述内直角反射镜组中两个直角反射镜的侧向偏移在内直角反射镜组两侧分别形成两个光路缺口,所述外直角反射镜组中的两个直角反射镜中的至少一个对向两个光路缺口中的一个,优选地,两个外直角反射镜的其中一个高于两个内直角反射镜,另一个低于内直角反射镜。
优选地,所述外直角反射镜组中的两个直角反射镜中分别对向两个光路缺口,优选地,所述外直角反射镜组中两个直角反射镜的偏移在外直角反射镜组两侧分别形成两个光路缺口,两个光路缺口分别用作四直角反射镜增光程系统的入光口和出光口。
优选地,所述内直角反射镜组中的1个直角反射镜的直角顶角线留出通光狭缝,外直角反射镜组的其中1个直角反射镜放置在留有通光狭缝的直角反射镜的反射面的背面,且反射面正对通光狭缝。
优选地,在内直角反射镜组的2个直角反射镜之间还设置有2个共焦光具组,共焦光具组的光轴与内直角反射镜组的直角顶角线垂直。
另一方面,本发明提供一种吸收光谱测试系统,其特征在于,所述吸收光谱测试系统包含所述的四直角反射镜增光程系统。
优选地,所述吸收光谱测试系统包括紫外-可见吸收光谱仪、近红外光谱仪以及红外吸收光谱系统。
另一方面,本发明提供一种光散射激发收集系统,其特征在于,所述光散射激发收集系统包含所述的四直角反射镜增光程系统。
优选地,所述光散射激发收集系统包括拉曼光谱仪、光致发光系统、布里渊散射系统以及瑞利散射系统。需要说明的是,本发明中所提到的“相对侧向偏移”指的是相对于直角反射镜顶角线而言,向顶角线侧部方向具有一定偏移,如附图中所示。
本发明所提到的“光路缺口”指的是,由于相对的两个直角反射镜并没有彼此完全正对所导致的、在两个反射镜的侧部边缘分别有一部分由于没有与其对应的另一个 反射镜的反射面,该部分出射的光,将不会被另一个直角反射镜所接收到,进而形成了所谓的“光路缺口”。
发明原理
本发明主要利用直角反射镜的反射特性,对于每一个直角反射镜而言,入射方向垂直于直角反射镜直角顶角线的入射光照射到直角反射镜的一个反射面时,会被反射到直角反射镜另一个反射面,然后反射回入射方向,光的传输方向与原入射方向相反但是在空间上沿垂直于由入射方向和直角反射镜直角顶角线组成的平面形成一定的空间位移。
对于内直角反射镜组中2个反射面相对放置而且直角反射镜直角顶角线互相平行的直角反射镜而言,由于两个直角反射镜之间存在一定的偏移,使得其中一个直角反射镜的一边伸出另一个直角反射镜之外,这样允许光束从该伸出部分入射到两个直角反射镜之间,入射方向垂直于内直角反射镜组的直角反射镜直角顶角线的入射光经过两个直角反射镜的多次反射,入射光在垂直于直角反射镜直角顶角线的平面内多次反射,形成二维反射面从而增加光程。
但是这种直角反射镜组由于自身反射过程就相对复杂,所以从未有人想到还能够采用三维的直角反射镜组合,实现指数级别的光程增加。
本发明则增加一个外直角反射镜组,其也包括2个从光束走向来看反射面相对放置的直角反射镜。这里需要说明的是,本发明中所用的表述:“反射面经所述内直角反射镜组反射后在光路上彼此相对”或者“从光束走向来看反射面相对放置”指的是在光路中,对于一个反射镜组中的两个直角反射镜而言,来自其中一个直角反射镜的光线若没有超出第二个直角反射镜的位置范围,会入射在第二个直角反射镜的一个反射面上,然后从第二个直角反射镜的另一个反射面出射,其光的路径朝向第一个直角反射镜。
对直角反射镜直角顶角线互相平行的外直角反射镜组而言,其反射镜直角顶角线垂直于内直角反射镜组的反射镜直角顶角线与入射光组成的平面。至少一个外直角反射镜设置在内直角反射镜组的两个直角反射镜因偏移形成的缺口处,当光从内直角反射镜组的二维平面多次反射后出射出内直角反射镜组,照射到缺口处的外直角反射镜的反射面时,光从外直角反射镜的另一个反射面反射回入射方向,并且在沿内直角反射镜组的反射镜直角顶角线的方向形成位移,然后反射回内直角反射镜组。再次在内 直角反射镜组中形成二维平面多次反射但是在空间上有一定的位移。最终形成立体空间的多次反射,从而增加光程。
本发明的系统主要用于对平行光或近平行光进行反射,既可以为激光也可以是混合波长光。
本发明中所提到的“光具组”不仅限于独立构成的光学器件,还可以指有多个部件组成的光学器件。
本发明中所提到的“直角反射镜”并不仅限于由单个反射器件构成的直角反射镜,其可以是组合式的反射镜。
有益效果:
本发明的四直角反射镜增光程系统,平行光进入系统后,经内直角反射镜组多次反射在2维空间增加光程。平行光出射出内直角反射镜组进入外直角反射镜组之后,由外直角反射镜组将2维反射面进行立体偏移。本发明能够使光束在有限空间内反射上百次,大幅度增加光束与被作用物质的接触光程,提高设备使用效率,减小设备所需空间,促进光学设备小型化的发展以及检测设备精度的提高。
附图说明
下面结合附图和实施例对本发明专利进一步说明。
图1是本发明的一个实施例的立体结构原理图。直角反射镜1和直角反射镜2组成内直角反射镜组,直角反射镜3和直角反射镜4组成外直角反射镜组。
图2是本发明的另一个实施例的立体结构原理图。直角反射镜1和直角反射镜2组成内直角反射镜组,直角反射镜3和直角反射镜4组成内直角反射镜组。其中直角反射镜1上留有通光狭缝。
图3是入射光在内直角反射镜组的2个直角反射镜之间传输的2维平面图。
图4是在内直角反射镜组的2个直角反射镜之间增加共焦聚焦光具组的立体结构原理图。直角反射镜1和直角反射镜2组成内直角反射镜组,直角反射镜3和直角反射镜4组成内直角反射镜组。聚焦光具组5和6组成共聚焦光具组。
具体实施方式
以下结合附图及其实施例对本发明进行详细说明,但并不因此将本发明的保护范 围限制在实施例描述的范围之中。
实施例1
图1是本发明的一个实施例的四直角反射镜增光程系统立体结构原理图。
如图所示,直角反射镜1和直角反射镜2组成内直角反射镜组,直角反射镜3和直角反射镜4组成外直角反射镜组。直角反射镜1和直角反射镜2左右方向存在一定偏移,图中右侧的内直角反射镜2向纸面内偏移,图中左侧的直角反射镜1向纸面外偏移,这样直角反射镜1和直角反射镜2虽然彼此相对,但并不是完全相对,在直角反射镜1的边缘处存在一个缺口,当光从直角反射镜2的边缘出射时,直角反射镜1无法接收并反射,而本发明在该缺口处设置了外直角反射镜4,其一部分刚好接收该缺口处的入射光并在纵向对入射光进行偏移后反射回直角反射镜2。外直角反射镜4的直角顶角线与内直角反射镜的直角顶角线垂直。
类似地,外直角反射镜3设置于两个内直角反射镜另一侧因为偏移形成的缺口处。
另外,两个外直角反射镜彼此之间纵向偏移,即外直角反射镜3的位置略高于或低于外直角反射镜4,优选地,两个外直角反射镜的其中一个高于两个内直角反射镜,另一个低于内直角反射镜。本实施例中以外直角反射镜3高于内直角反射镜,外直角反射镜4低于内直角反射镜为例进行说明。
入射光以垂直于内直角反射镜组的直角顶角线和外直角反射镜组的直角顶角线的方向,从外直角反射镜3高出内直角反射镜的部分,从内直角反射镜的缺口部分,入射到直角反射镜3的其中一个反射面,经过直角反射镜3在沿内直角反射镜组的直角顶角线方向的空间偏移后,反射光线就会进入到直角反射镜1的反射面范围内了,由直角反射镜3的另一个反射面反射到直角反射镜1的一个反射面。经过直角反射镜1在沿外直角反射镜组的直角顶角线方向的空间偏移后由直角反射镜1的另一个反射面反射到直角反射镜2的一个反射面。再由直角反射镜2在沿外直角反射镜组的直角顶角线方向的空间偏移后由直角反射镜2的另一个反射面反射到直角反射镜1的一个反射面。如此往复,在直角反射镜1和直角反射镜2之间形成二维反射平面。直到反射光到达内直角反射镜2边缘与偏移缺口位置对应的位置处,则该处出射的平行光进入到外直角反射镜4的反射面范围内,由内直角反射镜组反射到直角反射镜4上,并由直角反射镜4在沿内直角反射镜组的直角顶角线方向的空间偏移后由直角反射镜4 的另一个反射面反射回内直角反射镜2上,进而在内直角反射镜组内重复一个2维反射循环。如此往复,将二维反射平面沿垂直于二维反射平面的方向多次位移,形成三维立体反射图,直到入射光出射出四直角反射镜增光程系统。
图3是为了更好的理解平行光在一组直角反射镜作用下的传输方式,展示入射光在直角反射镜1和直角反射镜2组成的内直角反射镜组形成二维反射平面的示意图。
实施例2
图2是本发明的另一个实施例的四直角反射镜增光程系统立体结构原理图。
如图2所示,本实施例依然采用4个直角反射镜,只是布置方式与实施例1略有差别。
内直角反射镜组中的1个直角反射镜的直角顶角线留出通光狭缝,外直角反射镜组的其中1个直角反射镜3放置在留有通光狭缝的直角反射镜1的反射面的背面,且反射面正对通光狭缝,从而使得从该狭缝入射到外直角反射镜3的反射光从外直角反射镜3反射回狭缝时,反射光在沿内直角反射镜组的反射镜直角顶角线方向具有一定的空间位移,然后反射回内直角反射镜组。
本实施例中,虽然外直角反射镜4和外直角反射镜3都朝向图中右侧,但是从光路上来讲,外直角反射镜4和外直角反射镜3依然是彼此相对的。
本实施例中,直角反射镜1和直角反射镜2左右方向仍然存在一定偏移,图中右侧的内直角反射镜2向纸面内偏移,左侧的向纸面外偏移,这样直角反射镜1和直角反射镜2虽然彼此相对,但并不是完全相对,在直角反射镜1的边缘处存在一个光路缺口,直角反射镜2在其另一侧也形成一个光路缺口。
外直角反射镜4入射光以垂直于内直角反射镜组的直角顶角线和外直角反射镜组的直角顶角线的方向、从内直角反射镜组之间的缺口上方入射到外直角反射镜4的上方反射面上,经过直角反射镜4在沿内直角反射镜组的直角顶角线方向的空间向下偏移后,由直角反射镜4的另一个反射面反射出去,其反射光进入到内直角反射镜2的反射面范围内,入射到直角反射镜2的一个反射面。经过直角反射镜2在沿外直角反射镜组的直角顶角线方向的空间偏移后由直角反射镜2的另一个反射面反射到直角反射镜1的一个反射面。再由直角反射镜1在沿外直角反射镜组的直角顶角线方向的空间偏移后由直角反射镜1的另一个反射面反射到直角反射镜2的一个反射面。 如此往复,在直角反射镜1和直角反射镜2之间形成二维反射平面。直到反射光由内直角反射镜组通过直角反射镜1的通光狭缝反射到直角反射镜3上,并由直角反射镜3在沿内直角反射镜组的直角顶角线方向的空间偏移后由直角反射镜3的另一个反射面反射回内直角反射镜组。如此往复,将二维反射平面沿垂直于二维反射平面的方向多次位移,形成三维立体反射图,直到入射光出射出四直角反射镜增光程系统。
实施例3
图4是本发明的另一个是实施例的结构,在该四直角反射镜增光程系统中,内直角反射镜组和外直角反射镜组的设置方式与实施例1相同,只是在本实施例中,在内直角反射镜组的2个直角反射镜中间增加2个共焦点的聚焦光具组,组成共聚焦光具组,聚焦光具组的光轴与入射光平行,聚焦光具组使得由内直角反射镜组的一个直角反射镜反射的平行光,由其中一个光具组聚焦到焦点后,由另一个聚焦光具组再变成平行光,传输向内直角反射镜组的另一个直角反射镜。从而实现平行光对于共聚焦光具组焦点的多次聚焦,从而激发位于焦点位置的样品的散射光信号。
虽然上面结合本发明的优选实施例对本发明的原理进行了详细的描述,本领域技术人员应该理解,上述实施例仅仅是对本发明的示意性实现方式的解释,并非对本发明包含范围的限定。实施例中的细节并不构成对本发明范围的限制,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案的等效变换、简单替换等显而易见的改变,均落在本发明保护范围之内。

Claims (10)

  1. 一种四直角反射镜增光程系统,其特征在于,所述四直角反射镜增光程系统包括:第一直角反射镜(1)、第二直角反射镜(2)、第三直角反射镜(3)以及第四直角反射镜(4),第一直角反射镜(1)和第二直角反射镜(2)构成内直角反射镜组,第三直角反射镜(3)以及第四直角反射镜(4)构成外直角反射镜组,其中,所述内直角反射镜组的反射面彼此相对,所述外直角反射镜组中两个直角反射镜的反射面经所述内直角反射镜组反射后在光路上彼此相对,所述内直角反射镜组的两个反射镜在第一方向具有相对侧向偏移,所述外直角反射镜组的两个反射镜在第二方向具有相对侧向偏移。
  2. 根据权利要求1所述的四直角反射镜增光程系统,其特征在于,所述内直角反射镜组的直角顶角线沿第二方向彼此平行,所述外直角反射镜组的直角顶角线沿第一方向彼此平行,第一方向和第二方向彼此垂直。
  3. 根据权利要求2所述的四直角反射镜增光程系统,其特征在于,所述内直角反射镜组中两个直角反射镜的侧向偏移在内直角反射镜组两侧分别形成两个光路缺口,所述外直角反射镜组中的两个直角反射镜中的至少一个对向两个光路缺口中的一个,优选地,两个外直角反射镜的其中一个高于两个内直角反射镜,另一个低于内直角反射镜。
  4. 根据权利要求3所述的四直角反射镜增光程系统,其特征在于,所述外直角反射镜组中的两个直角反射镜中分别对向两个光路缺口,优选地,所述外直角反射镜组中两个直角反射镜的偏移在外直角反射镜组两侧分别形成两个光路缺口,两个光路缺口分别用作四直角反射镜增光程系统的入光口和出光口。
  5. 根据权利要求3所述的四直角反射镜增光程系统,其特征在于,所述内直角反射镜组中的1个直角反射镜的直角顶角线留出通光狭缝,外直角反射镜组的其中1个直角反射镜放置在留有通光狭缝的直角反射镜的反射面的背面,且反射面正对通光狭缝。
  6. 根据权利要求1-5之一所述的四直角反射镜增光程系统,其特征在于,在内直角反射镜组的2个直角反射镜之间还设置有2个共焦光具组(3),共焦光具组(3)的光轴与内直角反射镜组的直角顶角线垂直。
  7. 一种吸收光谱测试系统,其特征在于,所述吸收光谱测试系统包含权利要求 1-6中任意一项所述的四直角反射镜增光程系统。
  8. 根据权利要求7所述的吸收光谱测试系统,所述吸收光谱测试系统包括紫外-可见吸收光谱仪、近红外光谱仪以及红外吸收光谱系统。
  9. 一种光散射激发收集系统,其特征在于,所述光散射激发收集系统包含权利要求1-6中任意一项所述的四直角反射镜增光程系统。
  10. 根据权利要求9所述的光散射激发收集系统,其特征在于,所述光散射激发收集系统包括拉曼光谱仪、光致发光系统、布里渊散射系统以及瑞利散射系统。
PCT/CN2018/114460 2018-02-01 2018-11-08 一种四直角反射镜增光程系统 WO2019148925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810100498.7 2018-02-01
CN201810100498.7A CN108563006B (zh) 2018-02-01 2018-02-01 一种四直角反射镜增光程系统

Publications (1)

Publication Number Publication Date
WO2019148925A1 true WO2019148925A1 (zh) 2019-08-08

Family

ID=63530174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114460 WO2019148925A1 (zh) 2018-02-01 2018-11-08 一种四直角反射镜增光程系统

Country Status (2)

Country Link
CN (1) CN108563006B (zh)
WO (1) WO2019148925A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563006B (zh) * 2018-02-01 2020-06-02 深圳海纳光科技有限公司 一种四直角反射镜增光程系统
CN109883905A (zh) * 2019-03-07 2019-06-14 南京理工大学 水下粒径在线测量系统及方法
EP3719556A1 (en) * 2019-04-05 2020-10-07 Optos PLC Optical system, optical delay line and oct apparatus
CN112824964B (zh) * 2019-11-15 2022-10-21 宁波舜宇光电信息有限公司 潜望式摄像模组及其组装方法
CN112577941A (zh) * 2020-11-13 2021-03-30 江苏海洋大学 一种土壤有机污染物检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119807A (ja) * 1995-09-08 1997-05-06 Nikon Corp 波長トラッカおよび光学的特性の測定方法
CN105043983A (zh) * 2015-05-27 2015-11-11 中国科学院合肥物质科学研究院 基于组合棱镜的倍增光程开放式新型吸收池
CN105301760A (zh) * 2014-07-04 2016-02-03 株式会社东芝 光学延迟装置和光学相干层析成像装置
CN105548016A (zh) * 2015-12-31 2016-05-04 南京大学 一种气体检测室
CN205317651U (zh) * 2016-01-11 2016-06-15 华北电力大学(保定) 一种便携式长光程吸收池
CN108563006A (zh) * 2018-02-01 2018-09-21 深圳海纳光科技有限公司 一种四直角反射镜增光程系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181518A (en) * 1981-04-30 1982-11-09 Fujitsu Ltd Optical delay circuit
GB2278927A (en) * 1993-06-12 1994-12-14 Central Research Lab Ltd Liquid crystal optical projector arrangement
TW549767U (en) * 2001-12-28 2003-08-21 Veutron Corp L-type reflection mirror set
US6894852B1 (en) * 2004-02-20 2005-05-17 Lite-On Technology Corporation Optical device
KR101118517B1 (ko) * 2009-08-04 2012-03-12 서강대학교산학협력단 프리즘을 이용한 광 버퍼 및 이를 이용한 광 버퍼링 시스템
CN102486572B (zh) * 2010-12-06 2014-08-27 中国科学院西安光学精密机械研究所 一种实现多光程的方法
CN102486408B (zh) * 2010-12-06 2014-08-06 中国科学院西安光学精密机械研究所 一种多光程干涉仪分光方法及应用该方法的多光程干涉仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119807A (ja) * 1995-09-08 1997-05-06 Nikon Corp 波長トラッカおよび光学的特性の測定方法
CN105301760A (zh) * 2014-07-04 2016-02-03 株式会社东芝 光学延迟装置和光学相干层析成像装置
CN105043983A (zh) * 2015-05-27 2015-11-11 中国科学院合肥物质科学研究院 基于组合棱镜的倍增光程开放式新型吸收池
CN105548016A (zh) * 2015-12-31 2016-05-04 南京大学 一种气体检测室
CN205317651U (zh) * 2016-01-11 2016-06-15 华北电力大学(保定) 一种便携式长光程吸收池
CN108563006A (zh) * 2018-02-01 2018-09-21 深圳海纳光科技有限公司 一种四直角反射镜增光程系统

Also Published As

Publication number Publication date
CN108563006A (zh) 2018-09-21
CN108563006B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2019148925A1 (zh) 一种四直角反射镜增光程系统
KR101088360B1 (ko) 복수의 독립된 광 경로를 갖는 광 도파관 및 그를 이용한 ndir 가스 센서
US8300291B2 (en) Optical scanning device and two-dimensional image display device using the same
US20130056450A1 (en) Device For Applying Laser Radiation And Device For Reproducing A Linear Light Distribution
US11604401B2 (en) Light source device and projection apparatus
CN109946710B (zh) 一种双波长多偏振激光成像装置
CN109477953B (zh) 一种高效光程折叠器件
US10768049B2 (en) High-resolution terahertz wave concentration module, scattered light detection module, and high-resolution inspection apparatus using terahertz Bessel beam
CN108572438A (zh) 使用阻挡结构来进行改进的聚焦跟踪的系统和方法
CN108458787A (zh) 中阶梯光栅型空间外差拉曼光谱仪光路结构
KR101444508B1 (ko) 광원 장치
CN106324958A (zh) 一种荧光转换系统
JP5618637B2 (ja) 原稿読取用光源装置
RU2372606C1 (ru) Миниатюрная многоходовая зеркальная оптическая кювета
KR102400468B1 (ko) 입자계수용 광학계
WO2018147454A1 (ja) 走査型の光学系及びレーザーレーダー装置
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
TW201100864A (en) Hybrid light source system
KR20220027761A (ko) 강화 유리의 응력 측정 장치, 강화 유리의 응력 측정 방법, 강화 유리
CN205844655U (zh) 具有同轴照明的低杂光成像装置
CN110108642A (zh) 一种全反射怀特池
RU2400667C1 (ru) Осветительная система
CN215494524U (zh) 一种光源装置及投影系统
CN116699858B (zh) 匀光装置及基因测序仪
KR102243137B1 (ko) 레이저 빔 프로파일러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18904411

Country of ref document: EP

Kind code of ref document: A1