WO2019148842A1 - 光栅驱动电路、驱动方法以及裸眼3d显示器 - Google Patents

光栅驱动电路、驱动方法以及裸眼3d显示器 Download PDF

Info

Publication number
WO2019148842A1
WO2019148842A1 PCT/CN2018/104548 CN2018104548W WO2019148842A1 WO 2019148842 A1 WO2019148842 A1 WO 2019148842A1 CN 2018104548 W CN2018104548 W CN 2018104548W WO 2019148842 A1 WO2019148842 A1 WO 2019148842A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
raster
viewing distance
driving
period
Prior art date
Application number
PCT/CN2018/104548
Other languages
English (en)
French (fr)
Inventor
杨明
陈小川
赵文卿
陈祯祐
朱劲野
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18863814.2A priority Critical patent/EP3748418A4/en
Priority to US16/339,063 priority patent/US10955684B2/en
Publication of WO2019148842A1 publication Critical patent/WO2019148842A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/40Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a raster driving circuit, a driving method, and a naked-eye 3D display.
  • stereoscopic display technology has become a compelling technology field.
  • a user needs to use external aids such as polarized glasses, complementary color glasses, and liquid crystal glasses to view stereoscopic images. This method has a limited limitation and is not convenient for users to use.
  • the naked-eye 3D display technology is a naked-eye 3D (three-dimensional) display technology.
  • the naked-eye 3D display technology was developed based on binocular parallax, mainly including raster stereoscopic display technology. Since the grating has a splitting effect, it has the function of separating images when applied to the display. In recent years, the naked eye 3D display technology has developed rapidly.
  • the grating-type naked-eye 3D technology has simple process and better 3D effect, and has become an important direction of the naked-eye 3D technology.
  • the liquid crystal grating has an optimal viewing distance, and has a liquid crystal grating period corresponding to the optimal viewing distance. At the optimal viewing distance, the left eye and the right eye can respectively view the corresponding left eye view and right eye view, and the crosstalk is small, and the 3D effect is optimal.
  • a raster drive circuit may include: a grating comprising a plurality of grating units whose opening and closing states are controllable by a grating driving signal; a viewpoint tracker, which may be configured to determine a viewing distance S of the viewer; and a plurality of grating control electrodes, each The grating control electrode may be configured to control an opening and closing state of the corresponding grating unit in the grating according to the grating driving signal; the grating driving signal generator may be configured to generate a plurality of grating driving signal groups, each of the grating driving The signal group corresponds to a viewing distance and includes a plurality of raster drive signals; and a raster drive controller configurable to determine a set of raster drive signals corresponding to the viewing distance, and configured to form a corresponding to the viewing distance a grating period, each of the grating periods includes a plurality of grating control electrode
  • the raster drive controller may further include: a plurality of switch units configured to turn on the raster drive signal group corresponding to the viewing distance and disconnect the other raster drive signal groups.
  • the grating may comprise two substrates disposed opposite each other and a liquid crystal layer or layer of electrochromic material between the two substrates.
  • the raster drive controller can also be configured to determine the total width W of the grating by the following formula:
  • 2N is the resolution of the horizontal direction of the 2D display screen
  • P is the 2D display pixel or sub-pixel width
  • L is the pupil spacing of the human eye
  • S 0 is a predetermined optimal viewing distance, and the placement height of the grating is based on the viewing distance S 0 set up.
  • the raster drive controller can also be configured to determine the grating period C by the following formula:
  • the raster drive controller can also be used to determine the number of raster control electrodes in each grating period and the number M of raster drive signals in the raster drive signal group by the following formula:
  • the viewpoint tracker can also be configured to determine the position of the viewer in the left and right direction
  • the raster drive controller can be further configured to determine the position of the raster based on the position of the viewer in the left and right direction.
  • each grating period includes a grating opening portion and a grating shielding portion, the grating opening portion and the grating shielding portion being equal in size.
  • the raster drive controller can also be configured to determine the level of each of the raster drive signals in the set of raster drive signals.
  • a raster driving method including: determining a viewing distance S of a viewer; determining a raster driving signal group corresponding to the viewing distance, the raster driving signal group including a plurality of raster driving signals; forming and The viewing distance corresponds to a grating period, each grating period includes a plurality of grating control electrodes, the plurality of grating driving electrodes are in one-to-one correspondence with the plurality of grating driving signals; and each of the plurality of grating driving signals is driven to drive each A plurality of grating control electrodes in the grating period to control the opening and closing state of the grating unit corresponding to the grating control electrode in the grating according to the grating driving signal, thereby forming a grating for the naked-eye 3D display.
  • the step of determining a raster driving signal group corresponding to the viewing distance may further include:
  • the total width W of the grating is determined by the following formula:
  • 2N is the horizontal resolution of the 2D display screen
  • P is the 2D display pixel or sub-pixel width
  • L is the pupil aperture of the human eye
  • S 0 is a predetermined optimal viewing distance.
  • the placement height of the grating is set according to the viewing distance S 0 . set.
  • the step of determining a raster driving signal group corresponding to the viewing distance may further include:
  • the grating period is determined by the following formula:
  • the step of determining a raster driving signal group corresponding to the viewing distance may further include:
  • the number of grating control electrodes in each grating period and the number M of grating driving signals in the grating driving signal group are determined by the following formula:
  • the step of forming a grating period corresponding to the viewing distance may further comprise: determining a position of the viewer in the left and right direction; and determining a position of the raster based on the position of the viewer in the left and right direction.
  • the step of forming a grating period corresponding to the viewing distance may further include dividing the grating period into equal-sized grating opening portions and grating blocking portions.
  • the grating driving method may further include: determining each of the grating driving signals in the raster driving signal group before driving the plurality of grating control electrodes in each grating period by the plurality of grating driving signals Level.
  • a naked eye 3D display may include a 2D display screen and any of the raster drive circuits described above.
  • 1 is a schematic diagram of a 3D display of a naked-eye 3D display
  • FIG. 2 is a light path diagram when a viewing distance deviates from an optimal viewing distance S 0 according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a naked-eye 3D grating with adjustable viewing distance according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of a naked-eye 3D display with adjustable viewing distance according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a naked-eye 3D grating driving circuit with adjustable viewing distance according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a naked-eye 3D grating driving circuit with adjustable viewing distance according to an embodiment of the present disclosure
  • FIG. 7 is a simplified schematic diagram of the naked-eye 3D grating driving circuit shown in FIG. 5;
  • FIG. 8 is a simplified schematic diagram of the naked-eye 3D grating driving circuit shown in FIG. 6;
  • FIG. 9 is a light path diagram of a human eye moving left and right at an optimal viewing distance S 0 according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of a raster driving method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of a method for determining a raster driving signal group corresponding to one viewing distance according to an embodiment of the present disclosure
  • FIG. 12 is a schematic flow chart of a method for forming a grating period corresponding to one viewing distance according to an embodiment of the present disclosure.
  • the inventors have realized that although the current naked-eye 3D display technology can achieve a good 3D effect at the optimal viewing distance, when the viewer deviates from the optimal viewing distance, that is, the human eye moves back and forth relative to the screen, due to the current raster driving method.
  • the grating period cannot be adjusted, so at the deviation from the optimal viewing distance, the left eye and the right eye cannot independently view the corresponding view, the crosstalk is significantly increased, and the 3D effect is deteriorated. Therefore, it is desirable in the art to provide a grating driving circuit, a driving method, and a naked-eye 3D display using a novel driving method, which ensure that the viewing distance of the naked-eye 3D grating is adjustable. That is to say, even if the human eye moves back and forth relative to the screen, the left eye and the right eye can respectively view the corresponding left eye view and right eye view, the crosstalk is small, and the 3D effect is optimal.
  • Fig. 1 schematically shows the principle of 3D display of a naked-eye 3D display.
  • the naked eye 3D display includes a 2D display screen and a grating.
  • the grating may be a liquid crystal grating or a grating formed by an electrochromic material.
  • the 2D display screen can display View 1 and View 2, which are spaced apart from each other, and there are slight differences between adjacent View 1 and View 2.
  • the grating includes a grating opening portion W w and a grating shielding portion W b . Through the grating opening portion W w , the left eye of the human eye can view the view 1 without seeing the view 2, while the right eye can view the view 2 without seeing the view 1.
  • the view seen by the left eye and the view seen by the right eye are fused by the brain so that a stereoscopic image can be formed in the human brain.
  • the sum of the grating opening W w and the grating blocking portion W b constitutes the grating period C 0 .
  • H is the height at which the grating is placed, that is, the distance between the grating and the 2D display. The grating is placed closer to the human eye than the 2D display.
  • S 0 be the optimal viewing distance
  • L be the pupil spacing of the human eye
  • P the 2D display pixel or sub-pixel width.
  • the left eye and the right eye can respectively see the view 1 and the view 2, but neither can see the view seen by the other eye, and the best is achieved at this time. 3D display effect.
  • FIG. 2 schematically illustrates an optical path diagram when the viewing distance deviates from the optimal viewing distance S 0 according to an embodiment of the present disclosure.
  • the viewer moves away from the screen at the optimal viewing distance S 0 .
  • the left eye can view the CD area of the 2D display screen through the grating opening portion AB, which is the left eye view 1.
  • the left eye can view the EF area of the 2D display screen through the grating opening portion AB. It can be found that the ED area belongs to view 1, and the DF area belongs to view 2.
  • the left eye can simultaneously view part view 1 and part view 2, and thus crosstalk occurs, resulting in poor 3D display effect, or even 3D cannot be realized at all. display effect.
  • the grating placement height H is fixed, only crosstalk occurs when the viewing distance is the optimal viewing distance S 0 , and crosstalk occurs at other viewing distances.
  • the human eye still has a back and forth movement range, and the human eye can still see the 3D display image in the front and rear movement range, to a certain extent.
  • the 3D effect still meets the requirements.
  • the back-and-forth movement range can be recorded as ⁇ S, and the human eye can still see the 3D display image in the range from the distance S 0 - ⁇ S to S 0 + ⁇ S, although theoretically crosstalk occurs when deviating from the optimal viewing distance S 0
  • the human eye cannot perceive the crosstalk, and thus can also be regarded as satisfying the 3D effect. Therefore, the distances ranging from S 0 - ⁇ S to S 0 + ⁇ S can also be regarded as the optimal viewing distance.
  • FIG. 3 illustrates a schematic diagram of a naked-eye 3D grating with adjustable viewing distance, in accordance with an embodiment of the present disclosure.
  • the total width of the grating is W 0 .
  • the total width of the grating is W.
  • the grating placement height H can be set according to the optimal viewing distance S 0 .
  • a target viewing distance may be predetermined when designing and producing a display.
  • the target viewing distance of a desktop display may be 65 cm - 90 cm, and the target viewing distance of the television may be based on its size and predetermined The size of the room used to place the TV.
  • the optimal viewing distance S 0 may be based on the target viewing distance, and then the raster placement height H may be set according to the optimal viewing distance S 0 .
  • the total width W 0 of the grating corresponding to the viewing distance S 0 can be obtained as:
  • the grating period corresponding to the viewing distance S is:
  • each grating period is composed of several grating driving electrodes
  • the grating period calculated for each viewing distance should contain an integer number of electrodes, so as to ensure an optimal 3D effect in the grating period.
  • the grating period C 0 corresponding to the optimal viewing distance S 0 is determined in advance according to actual technical conditions and technical requirements, which can achieve an optimal 3D effect, the grating period C 0 necessarily includes an integer number of electrodes. Therefore, in order to ensure an optimal 3D effect at the distance S, it is necessary to ensure that ⁇ C is the width of an integer number of electrodes, the width of at least one electrode.
  • ⁇ C is the width of one electrode.
  • the above is based on the viewing distance to calculate the grating period.
  • the corresponding optimal viewing distance can also be calculated sequentially for the grating periods of an integer number of electrodes, so that a series of optimal viewing distances can be obtained according to different configurations of the grating period.
  • grating drive electrodes and “electrodes” are used interchangeably.
  • the present disclosure proposes a raster drive circuit and method that ensures that the naked eye 3D raster viewing distance is adjustable. That is to say, even if the human eye moves back and forth relative to the screen, the left eye and the right eye can respectively view the corresponding left eye view and right eye view, the crosstalk is small, and the 3D effect is optimal.
  • the grating drive circuit and method described above may determine a set of drive signals corresponding to the distance and form a grating period corresponding to the distance based on the distance of the viewer from the grating. In this way, a naked-eye 3D display with adjustable distance can be achieved.
  • FIG. 4 is a block diagram showing the structure of a naked-eye 3D display 4000 according to an embodiment of the present disclosure.
  • the naked-eye 3D display 4000 can include a raster drive circuit 4100 and a 2D display 4200.
  • the grating driving circuit 4100 may include a grating driving signal generator 4110, a grating driving controller 4120, a plurality of grating control electrodes 4130, a grating 4140, and a viewpoint tracker 4150.
  • the grating 4140 can include a plurality of raster elements that are controlled by a raster drive signal in an open state.
  • the viewpoint tracker 4150 can be configured to determine the viewing distance S of the viewer.
  • Each of the plurality of barrier control electrodes 4130 may be configured to control an opening and closing state of the grating unit corresponding to the grating control electrode 4130 in the grating 4140 according to the grating driving signal, thereby determining the grating Whether the unit transmits light or blocks light, that is, belongs to the grating opening portion or the grating shielding portion.
  • the raster drive signal generator 4110 can be configured to generate a plurality of sets of raster drive signals, each set of raster drive signals corresponding to a viewing distance and including a plurality of raster drive signals.
  • the raster drive controller 4120 can be configured to determine a set of raster drive signals corresponding to the viewing distance, and configured to form a grating period corresponding to the viewing distance, each raster period comprising a plurality of raster control electrodes, The plurality of grating control electrodes are in one-to-one correspondence with the plurality of grating driving signals.
  • the raster drive controller 4120 may further include a plurality of switch units, which may be configured to turn on the raster drive signal group corresponding to the viewing distance and disconnect the other raster drive signal groups.
  • the grating 4140 may include two substrates disposed opposite each other and a liquid crystal layer or a layer of electrochromic material between the two substrates.
  • the grating 4140 can comprise a liquid crystal grating or an electrochromic material grating.
  • the present disclosure is in no way limited to liquid crystal gratings or electrochromic material gratings, but can be applied to any grating capable of controlling the opening and closing state of its grating unit by a grating driving signal.
  • the raster drive controller 4120 can also be configured to determine the total width W of the grating by the following formula:
  • 2N is the resolution of the horizontal direction of the 2D display screen
  • P is the 2D display pixel or sub-pixel width
  • L is the pupil spacing of the human eye
  • S 0 is a predetermined optimal viewing distance, and the placement height of the grating is based on the viewing distance S 0 set up.
  • the raster drive controller 4120 can also be configured to determine the grating period C by the following formula:
  • the raster drive controller 4120 can be further configured to determine the number of raster control electrodes in each grating period and the number M of raster drive signals in the raster drive signal group by the following formula:
  • w e is the electrode width. It should be noted that in each cycle, one raster control electrode corresponds to one raster drive signal, so the number of raster control electrodes in each cycle is the same as the number of drive signals, and can be recorded as M. After calculating the number of electrodes and the number of drive signals in each cycle, the set of raster drive signals corresponding to the number can be selected and a grating comprising the number of raster control electrodes can be formed.
  • the viewpoint tracker 4150 can also be configured to determine the position of the viewer in the left and right direction, and the raster drive controller 4120 can also be configured to determine the position of the raster based on the position of the viewer in the left and right direction.
  • the viewpoint tracker 4150 can include a camera, a human eye tracker, or an infrared range finder, as well as any other device capable of determining the distance or position of the viewer.
  • each grating period includes a grating opening portion and a grating blocking portion, and the grating opening portion and the grating blocking portion may be equal in size.
  • the raster drive controller 4120 can also be configured to determine the level of each of the raster drive signals in the set of raster drive signals. This makes it possible to form the grating opening portion and the grating blocking portion for each grating period.
  • a series of raster drive signals are provided in the raster drive circuit, the raster drive signals being divided into groups, each set of drive signals corresponding to a particular viewing distance.
  • the viewpoint tracker records the viewing distance and turns on a certain set of raster driving signals corresponding to the viewing distance to generate a grating period corresponding to the viewing distance.
  • the grating period corresponds to the viewing distance one-to-one.
  • FIGS. 5-8 illustrate structural diagrams of a naked-eye 3D raster drive circuit with adjustable viewing distance, respectively, in accordance with some embodiments of the present disclosure.
  • a series of raster drive signals are provided.
  • the grating driving circuit is designed to include A tunable distances, A is an integer, and A ⁇ 2.
  • this adjustable distance is the viewing distance when ideally there is no crosstalk at all.
  • the 3D effect can also be achieved within the range ⁇ S before and after this adjustable distance, but it can be seen from the optical path diagram that there may be less crosstalk in that range.
  • the raster drive signals can be divided into groups A, each set of drive signals corresponding to a particular viewing distance.
  • the first raster drive signal group includes M raster drive signals
  • the second raster drive signal group includes M+1 raster drive signals
  • the third raster drive signal group includes M+2 raster drive signals.
  • the last raster drive signal group includes M+A-1 raster drive signals, so a total of need to provide Grating drive signals.
  • the middle raster drive signal group includes M raster drive signals, and each adjacent two raster drive signal groups differ by one raster drive signal, a total of AM raster drive signals need to be provided, and the first raster drive signal group includes Raster drive signals, the last raster drive signal group includes Grating drive signals.
  • the viewpoint tracker determines and records the viewing distance, and then determines the number M of raster control electrodes in the grating period corresponding to the viewing distance according to the viewing distance and The number M of raster drive signals corresponding to the viewing distance is viewed, and thus the set of raster drive signals corresponding to the viewing distance can be determined.
  • the raster drive circuit can turn on the set of raster drive signals corresponding to the viewing distance to generate and form a grating period corresponding to the viewing distance.
  • the set of raster drive signals corresponding to the viewing distance may be retrieved from a pre-stored lookup table based on the viewing distance.
  • each of the grating periods includes M electrodes, each of which has a width of w e and a total number of grating periods of N.
  • the electrode numbers inside the first grating period are E 11 , E 12 ,..., E 1M , respectively ; the electrode numbers inside the second grating period are E 21 , E 22 ,..., E 2M respectively ; Similarly, the electrode numbers inside the Nth grating period are E N1 , E N2 ,..., E NM .
  • the grating driving circuit is further provided with 2M+1 raster driving signals, which are divided into two groups, the first group includes grating driving signals DS 1 to DS M , and the second group includes grating driving signals DS M+1 to DS 2M+ 1 .
  • the internal electrodes of the grating are connected to the grating driving signals DS 1 to DS M through the switching unit 1 .
  • the first electrode in each grating period that is, the electrodes E 11 , E 21 , E 31 , ..., E N1 pass through the switching unit one (for example, a switching transistor) and the driving signal DS 1 Connected
  • the second electrode in each grating period that is, the electrodes E 12 , E 22 , E 32 , ..., E N2 are connected to the driving signal DS 2 through the switching unit one, and so on, each The last electrode in the grating period, that is, the electrodes E 1M , E 2M , E 3M , ..., E NM is connected to the drive signal DS M through the switching unit one.
  • the grating period changes, assuming that the grating period becomes larger, one electrode is added per grating period. At this time, the number of internal electrodes per grating period is changed to M+1, and each electrode width is still w e . At this point, the total number of grating cycles is still N.
  • the internal electrode numbers of the first grating period are E 11 , E 12 , ..., E 1M , E 1 (M+1), respectively .
  • the electrode numbers inside the second grating period are E 21 , E 22 ,..., E 2M , E 2(M+1) ; and so on, the electrode numbers inside the Nth grating period are E N1 , E N2 ,..., E NM , E N(M+1) .
  • M+1 raster drive signals DS M+1 to DS 2M+1 are additionally provided .
  • the internal electrodes of the grating are connected to the grating driving signal through a switching unit such as a switching transistor. As shown in FIG.
  • the first electrode in each grating period that is, the electrodes E 11 , E 21 , E 31 , ..., E N1 is connected to the driving signal DS M+1 through the switching unit 2
  • the second electrode in each grating period ie, electrodes E 12 , E 22 , E 32 , ..., E N2 is connected to the drive signal DS M+2 through the switch unit 2 , and so on, each The last electrode in the grating period, ie the electrodes E 1(M+1) , E 2(M+1) , E 3(M+1) , ..., E N(M+1) pass the switch Unit 2 is connected to the drive signal DS 2M+1 .
  • the grating driving circuit at the viewing distance S 1 can be simplified as shown in FIG. 7 , including M electrodes in the grating period, corresponding to the grating driving signals DS 1 to DS M .
  • the grating driving circuit at the viewing distance S 2 can be simplified as shown in FIG. 8 , and the grating period includes M+1 electrodes corresponding to the grating driving signals DS M+1 to DS 2M+1 .
  • each set of raster drive signals corresponds to one view.
  • Distance through the switching unit to determine which set of grating drive signals are transmitted to the respective electrodes within the grating.
  • FIG. 9 illustrates a light path diagram of a human eye moving left and right at an optimal viewing distance S 0 according to an embodiment of the present disclosure.
  • the left eye when the left eye is at the left eye position 1, the left eye can see P1, P3, that is, the left eye view 1, through the grating opening F 0 G 0 , and the right eye view 2 is not visible.
  • the right eye can see P2, P4, that is, the right eye view 2 through the grating opening, while the left eye view 1 is not visible.
  • the view seen by the left eye and the view seen by the right eye are fused by the brain so that a stereoscopic image can be formed in the human brain.
  • the grating opening position can be adjusted to F 1 G 1 , at which time the left eye can see P1, that is, the left eye view 1. It can be seen that when the position of the human eye moves, adjusting the position of the grating opening in real time can ensure that the position of the 2D display screen viewed by the human eye is unchanged, thereby ensuring the 3D effect. It can be understood that, as shown in FIG.
  • the adjustment amount L2 of the grating opening position can be determined based on the distance L1, the viewing distance S, and the grating placement height H of the human eye moving left and right.
  • the adjustment amount is the width of an integer number of raster control electrodes.
  • crosstalk may also occur when the human eye moves around the optimal distance.
  • the human eye tracking technology can be used to determine the position of the viewer moving left and right, and correspondingly move all the grating periods to the left and right, thereby ensuring that the left eye and the right eye respectively see the corresponding views, thereby ensuring No crosstalk.
  • it is achieved by keeping the grating period constant and adjusting the position of the grating opening.
  • the left and right positions of the grating can be adjusted by adjusting the position of the electrodes in each grating period.
  • FIG. 10 is a schematic flow chart of a raster driving method according to an embodiment of the present disclosure. As shown in FIG. 10, the raster driving method may include the following steps:
  • step S1010 determining the viewing distance S of the viewer
  • step S1020 determining a raster driving signal group corresponding to the viewing distance, the raster driving signal group comprising a plurality of raster driving signals;
  • each grating period includes a plurality of grating control electrodes, and the plurality of grating driving electrodes are in one-to-one correspondence with the plurality of grating driving signals;
  • step S1050 a plurality of raster control electrodes in each grating period are driven by the plurality of raster drive signals to form a grating for a naked-eye 3D display.
  • the grating driving method may further include a step S1040 of determining a grating driving signal before driving the plurality of grating control electrodes in each grating period by the plurality of grating driving signals.
  • the level of each raster drive signal in the group may be a step S1040 of determining a grating driving signal before driving the plurality of grating control electrodes in each grating period by the plurality of grating driving signals. The level of each raster drive signal in the group.
  • FIG. 11 is a flow chart showing a method of determining a raster drive signal group corresponding to a viewing distance S according to an embodiment of the present disclosure. As shown in FIG. 11, the method for determining a raster drive signal group corresponding to one viewing distance includes the following steps:
  • step S1110 the total width W of the grating is determined by the following formula:
  • 2N is the horizontal resolution of the 2D display screen
  • P is the 2D display pixel or sub-pixel width
  • L is the pupil aperture of the human eye
  • S 0 is a predetermined optimal viewing distance.
  • the placement height of the grating is set according to the viewing distance S 0 . set.
  • step S1020 the grating period is determined by the following formula:
  • step S1030 the number of raster control electrodes in each grating period and the number M of raster drive signals in the raster drive signal group are determined by the following formula:
  • FIG. 12 is a flow chart showing a method of forming a grating period corresponding to one viewing distance according to an embodiment of the present disclosure. As shown in FIG. 12, the method of forming a grating period corresponding to the viewing distance may further include the following steps:
  • step S1210 determining the position of the viewer in the left and right direction
  • the position of the raster is determined based on the position of the viewer in the left and right direction.
  • step S1230 the grating period is divided into equal-sized grating opening portions and grating blocking portions. Since the total width W of the grating and the position of the grating have been determined previously, the grating is substantially fixed. If the grating opening and the occlusion are further determined, the grating is formed and can work with the 2D display to provide a 3D display effect to the viewer.
  • the foregoing embodiment is only exemplified by the division of the foregoing functional modules.
  • the foregoing functions may be allocated to different functional modules as needed.
  • the internal structure of the device can be divided into different functional modules to perform all or part of the functions described above.
  • the function of one module described above may be completed by multiple modules, and the functions of the above multiple modules may also be integrated into one module.

Abstract

一种光栅驱动电路,包括:光栅(4140);视点追踪器(4150);多个光栅控制电极(4130),每一个光栅控制电极(4130)可以被配置用于根据光栅驱动信号来控制光栅中与之对应的光栅单元的开合状态;光栅驱动信号发生器(4110),可以被配置用来生成多个光栅驱动信号组,每个光栅驱动信号组与一个观看距离相对应并且包括多个光栅驱动信号;以及光栅驱动控制器(4120),可以被配置用来确定与该观看距离对应的光栅驱动信号组,以及被配置用来形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,多个光栅控制电极与多个光栅驱动信号一一对应。

Description

光栅驱动电路、驱动方法以及裸眼3D显示器
相关申请
本申请要求于2018年1月30日递交的中国专利申请No.201810089682.6的优先权,在此全文引用上述中国专利申请公开的内容作为本申请的一部分。
技术领域
本公开涉及显示技术领域,尤其涉及一种光栅驱动电路、驱动方法以及裸眼3D显示器。
背景技术
随着科技的发展和生活质量的提高,人们已不满足于传统的二维图像显示,立体显示技术已成为当今引人注目的科技领域。在一种立体显示技术中,用户需要借助诸如偏振眼镜、互补色眼镜、液晶眼镜等外界辅助工具来观看立体图像,这种方式局限性较大,用户使用起来不太方便。
另外还有一种立体显示技术,即裸眼3D(三维)显示技术。裸眼3D显示技术是基于双目视差而开发出的,主要包括光栅式立体显示技术,由于光栅具有分光作用,当作用到显示器时则具有分离图像的作用。近年来,裸眼3D显示技术快速发展。光栅式裸眼3D技术制程简单,3D效果较佳,成为目前裸眼3D技术的重要方向。液晶光栅存在一个最佳观看距离,与最佳观看距离对应有一个液晶光栅周期。在最佳观看距离处,左眼和右眼可分别观看到对应的左眼视图和右眼视图,串扰较小,3D效果最佳。
发明内容
根据本公开的一个方面,提供了一种光栅驱动电路。该光栅驱动电路可以包括:光栅,包括多个开合状态可以通过光栅驱动信号来控制的光栅单元;视点追踪器,可以被配置用来确定观众的观看距离S;多个光栅控制电极,每一个光栅控制电极可以被配置用于根据光栅驱动信号来控制光栅中与之对应的光栅单元的开合状态;光栅驱动信号 发生器,可以被配置用来生成多个光栅驱动信号组,每个光栅驱动信号组与一个观看距离相对应并且包括多个光栅驱动信号;以及光栅驱动控制器,可以被配置用来确定与该观看距离对应的光栅驱动信号组,以及被配置用来形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,所述多个光栅控制电极与所述多个光栅驱动信号一一对应。
在一个实施例中,所述光栅驱动控制器还可以包括:多个开关单元,可以被配置用来接通与该观看距离对应的光栅驱动信号组、断开其它光栅驱动信号组。
在一个实施例中,所述光栅可以包括相对设置的两个基板以及位于两个基板之间的液晶层或者电致变色材料层。
在一个实施例中,所述光栅驱动控制器还可以被配置用来通过如下公式确定光栅总宽度W:
Figure PCTCN2018104548-appb-000001
其中2N为2D显示屏水平方向的分辨率,P为2D显示屏像素或亚像素宽度,L为人眼瞳孔间距,S 0为一个预定的最佳观看距离,光栅的放置高度依据该观看距离S 0设定。
在一个实施例中,所述光栅驱动控制器还可以被配置用来通过如下公式确定光栅周期C:
Figure PCTCN2018104548-appb-000002
在一个实施例中,所述光栅驱动控制器还可以用来通过如下公式来确定每个光栅周期中光栅控制电极的数目以及光栅驱动信号组中光栅驱动信号的数目M:
Figure PCTCN2018104548-appb-000003
其中w e为电极宽度。
在一个实施例中,所述视点追踪器还可以被配置用来确定观众在左右方向的位置,所述光栅驱动控制器还可以被配置用来基于观众在左右方向的位置确定光栅的位置。
在一个实施例中,每个光栅周期包括光栅开口部和光栅遮挡部,光栅开口部和光栅遮挡部大小相等。
在一个实施例中,所述光栅驱动控制器还可以被配置用来确定光栅驱动信号组中各光栅驱动信号的电平。
根据本公开的一个方面,提供了一种光栅驱动方法,包括:确定观众的观看距离S;确定与该观看距离对应的光栅驱动信号组,该光栅驱动信号组包括多个光栅驱动信号;形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,所述多个光栅驱动电极与所述多个光栅驱动信号一一对应;以及通过所述多个光栅驱动信号来驱动每个光栅周期内的多个光栅控制电极,以根据光栅驱动信号来控制光栅中与光栅控制电极对应的光栅单元的开合状态,从而形成用于裸眼3D显示器的光栅。
在一个实施例中,确定与该观看距离对应的光栅驱动信号组的步骤可以进一步包括:
通过如下公式确定光栅总宽度W:
Figure PCTCN2018104548-appb-000004
其中2N为2D显示屏水平方向分辨率,P为2D显示屏像素或亚像素宽度,L为人眼瞳孔间距,S 0为一个预定的最佳观看距离,光栅的放置高度依据该观看距离S 0设定。
在一个实施例中,确定与该观看距离对应的光栅驱动信号组的步骤可以进一步包括:
通过如下公式确定光栅周期:
Figure PCTCN2018104548-appb-000005
在一个实施例中,确定与该观看距离对应的光栅驱动信号组的步骤可以进一步包括:
通过如下公式来确定每个光栅周期中光栅控制电极的数目以及光栅驱动信号组中光栅驱动信号的数目M:
Figure PCTCN2018104548-appb-000006
其中w e为电极宽度。
在一个实施例中,形成与该观看距离对应的光栅周期的步骤可以进一步包括:确定观众在左右方向的位置;以及基于观众在左右方向的位置确定光栅的位置。
在一个实施例中,形成与该观看距离对应的光栅周期的步骤可以进一步包括:将光栅周期分成大小相等的光栅开口部和光栅遮挡部。
在一个实施例中,所述光栅驱动方法可以进一步包括:在通过所述多个光栅驱动信号来驱动每个光栅周期内的多个光栅控制电极之前,确定光栅驱动信号组中各光栅驱动信号的电平。
根据本公开的一个方面,提供了一种裸眼3D显示器。所述裸眼3D显示器可以包括2D显示屏以及如上所述的任何一种光栅驱动电路。
本发明内容部分以简化的形式介绍了本公开的一些构思,这些构思在下面的具体实施方式中进一步加以描述。本发明内容部分并非要给出要求保护的主题的必要特征或实质特征,也不是要限制要求保护的主题的范围。此外,正如本文所描述的,各种各样的其他特征和优点也可以根据需要结合到这些技术中。
附图说明
为了更清楚地说明本公开一些实施例的技术方案,本公开提供了下列附图以便在实施例描述时使用。应当意识到,下面描述中的附图仅仅涉及一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,所述其它的附图也在本公开的范围内。
图1为裸眼3D显示器的3D显示原理图;
图2为根据本公开一个实施例提供的观看距离偏离最佳观看距离S 0时的光路图;
图3为根据本公开一个实施例提供的一种观看距离可调的裸眼3D光栅示意图;
图4为根据本公开一个实施例提供的一种观看距离可调的裸眼3D显示器的结构框图;
图5为根据本公开一个实施例提供的一种观看距离可调的裸眼3D光栅驱动电路的结构示意图;
图6为根据本公开一个实施例提供的一种观看距离可调的裸眼3D光栅驱动电路的结构示意图;
图7为图5所示裸眼3D光栅驱动电路的简化结构示意图;
图8为图6所示裸眼3D光栅驱动电路的简化结构示意图;
图9为根据本公开一个实施例提供的人眼在最佳观看距离S 0处左右移动时的光路图;
图10根据本公开一个实施例提供的一种光栅驱动方法的流程示意图;
图11根据本公开一个实施例提供的一种确定与一个观看距离相对应的光栅驱动信号组的方法的流程示意图;以及
图12根据本公开一个实施例提供的一种形成与一个观看距离相对应的光栅周期的方法的流程示意图。
具体实施方式
为了能够更清楚地理解一些实施例的目的、技术方案和优点,下面结合附图和具体实施方式对这些实施例作进一步详细描述。
发明人认识到,虽然目前的裸眼3D显示技术在最佳观看距离能够实现很好的3D效果,但是当观众偏离最佳观看距离,即人眼相对屏幕前后移动时,由于在目前的光栅驱动方式中无法调整光栅周期,因此在偏离最佳观看距离处,左眼和右眼无法独立观看到对应视图,串扰显著增大,3D效果变差。因此,本领域中希望提供一种采用新型驱动方法的光栅驱动电路、驱动方法以及裸眼3D显示器,它们保证裸眼3D光栅观看距离可调。也就是说,即使人眼相对屏幕前后移动,左眼和右眼也可分别观看到对应的左眼视图和右眼视图,串扰较小,3D效果最佳。
图1示意性示出了裸眼3D显示器的3D显示原理。该裸眼3D显示器包括2D显示屏以及光栅。此处,光栅可采用液晶光栅或者通过电致变色材料形成的光栅。如图1所示,2D显示屏可以显示视图1和视图2,所述视图1和视图2相互间隔排列,相邻的视图1和视图2之间存在细小差别。光栅包括光栅开口部W w和光栅遮挡部W b。透过光栅开口部W w,人眼左眼可观看到视图1,看不到视图2,而右眼可观看到视图2,看不到视图1。这样,左眼看到的视图和右眼看到的视图通过大脑进行融合,从而可以在人脑中形成立体图像。如图所示,光栅开口部W w和光栅遮挡部W b之和构成了光栅周期C 0。H为光栅放置高度,即光栅与2D显示屏之间的距离。与2D显示屏相比,光栅被放置为更靠近人眼。设S 0为最佳观看距离,L为人眼瞳孔间距,P为2D显 示屏像素或亚像素宽度。如图1所示,在最佳观看距离S 0处,左眼和右眼分别能看到视图1和视图2,但是都看不到另一个眼睛所看到的视图,此时能够实现最佳的3D显示效果。
根据图1,通过几何公式推理可以得到如下公式:
Figure PCTCN2018104548-appb-000007
图2示意性示出了根据本公开一个实施例提供的观看距离偏离最佳观看距离S 0时的光路图。此处,以观众在最佳观看距离S 0处朝远离屏幕方向移动为例进行说明。如图所示,当人眼距离屏幕为最佳观看距离S 0时,左眼通过光栅开口部AB可观看到2D显示屏的CD区域,该区域即为左眼视图1。当人眼距离屏幕距离变更为S时,左眼通过光栅开口部AB可观看到2D显示屏的EF区域。可以发现,ED区域属于视图1,DF区域属于视图2,此时,左眼可同时观看到部分视图1及部分视图2,因而发生了串扰,导致3D显示效果变差,甚至根本就不能实现3D显示效果。可以发现,当光栅放置高度H固定时,只有观看距离为最佳观看距离S 0时,才没有串扰发生,在其它观看距离会发生串扰。但是,本领域普通技术人员能够理解,在这个最佳观看距离S 0附近,人眼仍然存在一个前后移动范围,在该前后移动范围内,人眼仍然能够看到3D显示图像,在一定程度上3D效果仍可满足要求。该前后移动范围可以记为ΔS,在从距离S 0-ΔS到S 0+ΔS的范围内,人眼仍然能够看到3D显示图像,虽然理论上在偏离最佳观看距离S 0时会发生串扰,但是在这个范围内人眼不能察觉到所述串扰,因而也可以视为3D效果满足要求。所以,也可以将范围S 0-ΔS到S 0+ΔS的距离均视为最佳观看距离。
图3示出了根据本公开一个实施例的一种观看距离可调的裸眼3D光栅示意图。设定2D显示屏的水平分辨率为2N,且3D显示器采用二视图,即上文所述的视图1和视图2,那么可知光栅的周期总数为N。在最佳观看距离S 0处,光栅总宽度为W 0。在观看距离S处,光栅总宽度为W。光栅放置高度H可以依据最佳观看距离S 0设定。本领域普通技术人员知道,在设计和生产显示器时,可以预先确定一个目标观看距离,例如,台式机显示器的目标观看距离可以是65cm-90cm,而电视机的目标观看距离可以根据其尺寸和预定用于放置电视机的房间大 小而定。在一个实施例中,所述最佳观看距离S 0可以基于所述目标观看距离,然后可以依据最佳观看距离S 0设定光栅放置高度H。
根据图3的光路图,可以得到:
Figure PCTCN2018104548-appb-000008
对公式(2)进行变形可以得到与观看距离S 0对应的光栅总宽度W 0为:
Figure PCTCN2018104548-appb-000009
根据公式(1)的变形可以得到
Figure PCTCN2018104548-appb-000010
代入公式(3)可以求得:
Figure PCTCN2018104548-appb-000011
因而可以求得对应观看距离S 0处的光栅周期:
Figure PCTCN2018104548-appb-000012
对于不同于观看距离S 0的观看距离S,根据图3的光路图,可以得到
Figure PCTCN2018104548-appb-000013
对它进行变形可以得到:
Figure PCTCN2018104548-appb-000014
根据公式(1)的变形
Figure PCTCN2018104548-appb-000015
代入公式(6)可以求得:
Figure PCTCN2018104548-appb-000016
对应观看距离S处的光栅周期为:
Figure PCTCN2018104548-appb-000017
可以发现,C≠C 0,且光栅周期差别为:
Figure PCTCN2018104548-appb-000018
由于每个光栅周期都是由若干个光栅驱动电极构成,针对每一个 观看距离计算出的光栅周期均应包含整数个电极,这样才能保证在该光栅周期实现最佳的3D效果。由于对应于最佳观看距离S 0的光栅周期C 0是前期根据实际的技术条件和技术需求确定的,其能够实现最佳的3D效果,所以光栅周期C 0必然包括整数个电极。因此为了保证在距离S处也能实现最佳的3D效果,需要保证ΔC为整数个电极的宽度,至少一个电极的宽度。对应于与最佳观看距离S 0最近的一个能通过本公开的实施例来实现最佳的3D效果的观看距离,为了保证光栅驱动电极均一性,需保证ΔC为一个电极的宽度。
以上是基于观看距离来计算光栅周期。反过来,也可以针对整数个电极的光栅周期依次计算对应的最佳观看距离,从而可以根据光栅周期的不同配置得到一系列的最佳观看距离。
要指出的是,在本公开的上下文中,“光栅驱动电极”和“电极”是可互换地使用的。
基于以上所阐述的原理,本公开提出了一种光栅驱动电路和方法,它们保证裸眼3D光栅观看距离可调。也就是说,即使人眼相对屏幕前后移动,左眼和右眼也可分别观看到对应的左眼视图和右眼视图,串扰较小,3D效果最佳。根据一些实施例,上述光栅驱动电路和方法可以根据观众距离光栅的距离,确定与所述距离相对应的一组驱动信号并形成与所述距离相对应的光栅周期。通过这种方式,能够实现距离可调的裸眼3D显示。
图4示意性示出了根据本公开一个实施例提供的一种裸眼3D显示器4000的结构框图。如图4所示,裸眼3D显示器4000可以包括光栅驱动电路4100和2D显示屏4200。所述光栅驱动电路4100可以包括:光栅驱动信号发生器4110、光栅驱动控制器4120、多个光栅控制电极4130、光栅4140以及视点追踪器4150。光栅4140可以包括多个开合状态通过光栅驱动信号来控制的光栅单元。所述视点追踪器4150可以被配置用来确定观众的观看距离S。所述多个光栅控制电极4130中的每一个光栅控制电极4130可以被配置用于根据光栅驱动信号来控制光栅4140中与该光栅控制电极4130对应的光栅单元的开合状态,从而决定所述光栅单元是透光还是遮挡光线,也即是属于光栅开口部还是属于光栅遮挡部。所述光栅驱动信号发生器4110可以被配置用来生成多个光栅驱动信号组,每个光栅驱动信号组与一个观看距离相对应并 且包括多个光栅驱动信号。所述光栅驱动控制器4120可以被配置用来确定与该观看距离对应的光栅驱动信号组,以及被配置用来形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,所述多个光栅控制电极与所述多个光栅驱动信号一一对应。
在一个实施例中,所述光栅驱动控制器4120还可以包括多个开关单元,这些开关单元可以被配置用来接通与该观看距离对应的光栅驱动信号组、断开其它光栅驱动信号组。所述光栅4140可以包括相对设置的两个基板以及位于两个基板之间的液晶层或者电致变色材料层。换言之,所述光栅4140可以包括液晶光栅或者电致变色材料光栅。但是,本领域普通技术人员能够理解,本公开绝不局限于液晶光栅或者电致变色材料光栅,而是可以应用于能够通过光栅驱动信号来控制其光栅单元的开合状态的任何光栅。
在一个实施例中,所述光栅驱动控制器4120还可以被配置用来通过如下公式确定光栅总宽度W:
Figure PCTCN2018104548-appb-000019
其中2N为2D显示屏水平方向的分辨率,P为2D显示屏像素或亚像素宽度,L为人眼瞳孔间距,S 0为一个预定的最佳观看距离,光栅的放置高度依据该观看距离S 0设定。
在确定了光栅总宽度W之后,所述光栅驱动控制器4120还可以被配置用来通过如下公式确定光栅周期C:
Figure PCTCN2018104548-appb-000020
所述光栅驱动控制器4120还可以进一步被配置用来通过如下公式来确定每个光栅周期中光栅控制电极的数目以及光栅驱动信号组中光栅驱动信号的数目M:
Figure PCTCN2018104548-appb-000021
其中w e为电极宽度。需要指出的是,在每个周期内,一个光栅控制电极对应一个光栅驱动信号,因此每个周期内的光栅控制电极数目与驱动信号的数目是相同的,均可记为M。计算出了每个周期内的电极数目和驱动信号的数目之后,就能选择与所述数目相对应的光栅驱动信号组并形成包含所述数目的光栅控制电极的光栅。
所述视点追踪器4150还可以被配置用来确定观众在左右方向的位置,所述光栅驱动控制器4120还可以被配置用来基于观众在左右方向的位置确定光栅的位置。所述视点追踪器4150可以包括摄像头、人眼追踪器或者红外测距器以及任何其它能够确定观众的距离或位置的设备。
如前所述,每个光栅周期包括光栅开口部和光栅遮挡部,所述光栅开口部和光栅遮挡部可以大小相等。
在一个实施例中,所述光栅驱动控制器4120还可以被配置用来确定光栅驱动信号组中各光栅驱动信号的电平。这样就能形成每个光栅周期的光栅开口部和光栅遮挡部。
按照本公开的实施例,光栅驱动电路中设置了一系列光栅驱动信号,该光栅驱动信号被分为若干组,每组驱动信号对应一特定观看距离。当观众与屏幕之间为某一观看距离时,视点追踪器记录该观看距离,并开启与该观看距离对应的某组光栅驱动信号,产生与该观看距离对应的光栅周期。由此,对于采用该种驱动方式的光栅,光栅周期与观看距离一一对应。这样,可实现前后方位的人眼追踪,因而观看距离可调,3D串扰显著降低,3D效果显著改善。
下面结合图5-8来描述光栅驱动电路的一种具体实现方式。图5-8分别示出了根据本公开一些实施例的观看距离可调的裸眼3D光栅驱动电路的结构示意图。在这些实施例中,设置一系列光栅驱动信号。假设所述光栅驱动电路被设计为包括A个可调距离,A为整数,且A≥2。需要指出的是,这个可调距离是理想情况下完全无串扰时的观看距离。正如之前所提到的,在这个可调距离前后移动范围ΔS之内也可以实现3D效果,但是从光路图可以看出,在那个范围内可能会存在较小的串扰。在有A个可调距离的情况下,所述光栅驱动信号可以被分为A组,每组驱动信号对应一特定观看距离。
如果假设第一个光栅驱动信号组包括M个光栅驱动信号,第二个光栅驱动信号组包括M+1个光栅驱动信号,第三个光栅驱动信号组包括M+2个光栅驱动信号,以此类推,最后一个光栅驱动信号组包括M+A-1个光栅驱动信号,那么总共需要提供
Figure PCTCN2018104548-appb-000022
个光栅驱动信号。
假设正中间的光栅驱动信号组包括M个光栅驱动信号,每相邻两个光栅驱动信号组之间相差一个光栅驱动信号,那么总共需要提供AM个光栅驱动信号,第一个光栅驱动信号组包括
Figure PCTCN2018104548-appb-000023
个光栅驱动信号,最后一个光栅驱动信号组包括
Figure PCTCN2018104548-appb-000024
个光栅驱动信号。
本领域普通技术人员能够理解,根据以其它光栅驱动信号组中光栅驱动信号的数目为基准,还可以有其它的驱动信号总数计算方式和设置方式。
当观众与屏幕之间为某一观看距离时,视点追踪器确定并记录该观看距离,然后可以根据所述观看距离确定与该观看距离相对应的光栅周期中光栅控制电极的数目M以及与该观看距离相对应的光栅驱动信号的数目M,进而也就能够确定与该观看距离对应的光栅驱动信号组。通过这种方式,光栅驱动电路能够开启与该观看距离对应的该组光栅驱动信号,产生和形成与该观看距离对应的光栅周期。在一些实施例中,可以根据观看距离从预先存储的查找表中检索与该观看距离相对应的光栅驱动信号组。
以下,以A=2为例说明驱动方案的一种具体实现方式。由于A为2,所以有两个观看距离(记为S 1和S 2)与两组驱动信号。如图5所示,对应观看距离S 1,每个光栅周期内包含M个电极,每个电极宽度为w e,总光栅周期数量为N。第一个光栅周期内部的电极编号分别为E 11,E 12,...,E 1M;第二个光栅周期内部的电极编号分别为E 21,E 22,...,E 2M;以此类推,第N个光栅周期内部的电极编号分别为E N1,E N2,...,E NM
另外,光栅驱动电路还设置了2M+1个光栅驱动信号,被分为两组,第一组包括光栅驱动信号DS 1至DS M,第二组包括光栅驱动信号DS M+1至DS 2M+1
对应观看距离S 1,光栅内部电极通过开关单元一与光栅驱动信号DS 1至DS M相连。由图5可见,每个光栅周期内的第一个电极,即电极E 11、E 21、E 31、......、E N1通过开关单元一(例如开关晶体管)与驱动信号DS 1相连,每个光栅周期内的第二个电极,即电极E 12、E 22、E 32、......、E N2通过开关单元一与驱动信号DS 2相连,以此类推,每个 光栅周期内的最后一个电极,即电极E 1M、E 2M、E 3M、......、E NM通过开关单元一与驱动信号DS M相连。
对应观看距离S 2,光栅周期发生变化,假设光栅周期变大为每个光栅周期增加一个电极。此时,每个光栅周期内部电极个数变更为M+1,每个电极宽度仍为w e。此时,总光栅周期数量仍为N。第一个光栅周期内部电极编号分别为E 11、E 12、...、E 1M、E 1(M+1)。第二个光栅周期内部的电极编号分别为E 21,E 22,...,E 2M、E 2(M+1);以此类推,第N个光栅周期内部的电极编号分别为E N1、E N2、...、E NM、E N(M+1)。此处,额外设置了M+1个光栅驱动信号DS M+1至DS 2M+1。对应观看距离S 2,光栅内部电极通过开关单元,例如开关晶体管与光栅驱动信号相连。如图6所示,每个光栅周期内的第一个电极,即电极E 11、E 21、E 31、......、E N1通过开关单元二与驱动信号DS M+1相连,每个光栅周期内的第二个电极,即电极E 12、E 22、E 32、......、E N2通过开关单元二与驱动信号DS M+2相连,以此类推,每个光栅周期内的最后一个电极,即电极E 1(M+1)、E 2(M+1)、E 3(M+1)、......、E N(M+1)通过开关单元二与驱动信号DS 2M+1相连。
可以发现,通过上述光栅驱动器和驱动方法,对应两个观看距离存在两种光栅周期。观看距离S 1处光栅驱动电路可简化为如图7所示,光栅周期内包括M个电极,对应光栅驱动信号DS 1至DS M。观看距离S 2处光栅驱动电路可简化为如图8所示,光栅周期内包括M+1个电极,对应光栅驱动信号DS M+1至DS 2M+1
需要指出的是,尽管图5-8所示的电路结构中采用了两组光栅驱动信号,但是在其他实施例中还可以采用多于两组的光栅驱动信号,每组光栅驱动信号对应一个观看距离,通过开关单元来决定哪一组光栅驱动信号被传送到光栅内的各个电极。
另外需要指出的是,在一个最佳观看距离S 0附近,人眼仍然存在一个前后移动范围ΔS,在该前后移动范围ΔS内,人眼仍然能够看到3D显示图像,在一定程度上3D效果仍可满足要求。因此,当上述两个距离S 1和S 2之间的差小于ΔS时,可以实现距离连续可调的裸眼3D显示。在某个实际距离处于距离S 1和S 2之间时,可以根据该实际距离更靠近距离S 1和S 2中的哪一个来决定采用哪一个光栅周期和光栅驱动信号组。
图9示出了根据本公开一个实施例提供的人眼在最佳观看距离S 0 处左右移动时的光路图。如图9所示,当左眼位于左眼位置1,左眼通过光栅开口F 0G 0可观看到P1、P3,即左眼视图1,而看不到右眼视图2。相应地,右眼通过光栅开口可观看到P2、P4,即右眼视图2,而看不到左眼视图1。这样,左眼看到的视图和右眼看到的视图通过大脑进行融合,从而可以在人脑中形成立体图像。当左眼移动到左眼位置2时,通过原来的光栅开口F 0G 0不能看到全部的左眼视图1,但是可以看到部分右眼视图,因而发生了串扰,导致3D显示效果变差,甚至根本就不能实现3D显示效果。此时,可以调节光栅开口位置至F 1G 1,此时左眼可观看到P1,即左眼视图1。可见,当人眼位置移动时,实时调整光栅开口位置,可保证人眼所观看到的2D显示屏位置不变,从而保证3D效果。可以理解,且如图9所示,光栅开口位置的调节量L2可以基于人眼左右移动的距离L1、观看距离S以及光栅放置高度H来确定。可选地,该调节量为整数个光栅控制电极的宽度。
也就是说,当人眼在最佳距离左右移动时,也可能产生串扰。为了解决因为左右移动产生的串扰,可以采用人眼追踪技术来确定观众左右移动的位置,并相应地左右移动所有的光栅周期,从而保证左眼和右眼分别看到对应的视图,由此保证无串扰。具体而言,就是保持光栅周期不变,通过调整光栅开口的位置来实现。例如,在图5-8所示的光栅驱动电路中,可以通过调整每个光栅周期中电极的位置来调整光栅的左右位置。例如,在图5中,如果想要把光栅向右移动一个电极,那么第一个光栅周期内部的电极变为E 12,E 13,...,E 1M,E 21;第二个光栅周期内部的电极变为E 22,...,E 2M,E 31;以此类推,第N个光栅周期内部的电极变为E N2,...,E NM,E N(M+1)。基于以上所述的技术原理,本领域普通技术人员能够理解和实现这种光栅的不同幅度的左右移位。
需要指出的是,本领域普通技术人员能够理解,在对应于当前光栅位置的一个能实现最佳3D效果的位置附近,人眼仍然存在一个左右移动范围,在该左右移动范围内,人眼仍然能够看到3D显示图像,在一定程度上3D效果仍可满足要求。虽然理论上在偏离该位置时会发生串扰,但是在这个范围内人眼不能察觉到所述串扰,因而也可以视为3D效果满足要求。所以,也可以将该范围内的位置均视为最佳观看位置。
图10示出了根据本公开一个实施例提供的一种光栅驱动方法的流程示意图。如图10所示,所述光栅驱动方法可以包括如下步骤:
在步骤S1010,确定观众的观看距离S;
在步骤S1020,确定与该观看距离对应的光栅驱动信号组,该光栅驱动信号组包括多个光栅驱动信号;
在步骤S1030,形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,所述多个光栅驱动电极与所述多个光栅驱动信号一一对应;以及
在步骤S1050,通过所述多个光栅驱动信号来驱动每个光栅周期内的多个光栅控制电极从而形成用于裸眼3D显示器的光栅。
如图所示,在一个实施例中,所述光栅驱动方法还可以包括步骤S1040,在通过所述多个光栅驱动信号来驱动每个光栅周期内的多个光栅控制电极之前,确定光栅驱动信号组中各光栅驱动信号的电平。
图11示出了根据本公开一个实施例提供的一种确定与一个观看距离S相对应的光栅驱动信号组的方法的流程示意图。如图11所示,确定与一个观看距离相对应的光栅驱动信号组的方法包括如下步骤:
在步骤S1110,通过如下公式确定光栅总宽度W:
Figure PCTCN2018104548-appb-000025
其中2N为2D显示屏水平方向分辨率,P为2D显示屏像素或亚像素宽度,L为人眼瞳孔间距,S 0为一个预定的最佳观看距离,光栅的放置高度依据该观看距离S 0设定。
在步骤S1020,通过如下公式确定光栅周期:
Figure PCTCN2018104548-appb-000026
在步骤S1030,通过如下公式来确定每个光栅周期中光栅控制电极的数目以及光栅驱动信号组中光栅驱动信号的数目M:
Figure PCTCN2018104548-appb-000027
其中w e为电极宽度。
图12示出了根据本公开一个实施例提供的一种形成与一个观看距离相对应的光栅周期的方法的流程示意图。如图12所示,形成与该观看距离对应的光栅周期的方法可以进一步包括如下步骤:
在步骤S1210,确定观众在左右方向的位置;
在步骤S1220,基于观众在左右方向的位置确定光栅的位置。
在步骤S1230,将光栅周期分成大小相等的光栅开口部和光栅遮挡部。由于前面已经确定了光栅的总宽度W以及光栅的位置,光栅基本上就固定下来了。如果再确定了光栅开口部和遮挡部,光栅就已经形成,可以配合2D显示屏工作,从而向观众提供3D显示效果。
可以理解的是,以上所述仅为本公开的示例性实施方式,但本公开的保护范围并不局限于此。应当指出的是,在不脱离本公开的精神和原理的前提下,本领域的普通技术人员可轻易想到各种变化或替换,这些变化或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所附权利要求的保护范围为准。
需要说明的是,上述实施例仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要将上述功能分配给不同的功能模块完成。可以将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述一个模块的功能可以由多个模块来完成,上述多个模块的功能也可以集成到一个模块中完成。
在权利要求书中,任何置于括号中的附图标记都不应当解释为限制权利要求。术语“包括”并不排除除了权利要求中所列出的元件或步骤之外的元件或步骤的存在。除非特别说明,元件前的词语“一”或“一个”并不排除存在多个这样的元件。
在列举了若干装置的设备或系统权利要求中,这些装置中的一个或多个能够在同一个硬件项目中体现。仅仅某些措施记载在相互不同的从属权利要求中这个事实并不表明这些措施的组合不能被有利地使用。

Claims (17)

  1. 一种光栅驱动电路,包括:
    光栅,包括多个开合状态通过光栅驱动信号来控制的光栅单元;
    视点追踪器,被配置用来确定观众的观看距离S;
    多个光栅控制电极,每一个光栅控制电极被配置用于根据光栅驱动信号来控制光栅中与之对应的光栅单元的开合状态;
    光栅驱动信号发生器,被配置用来生成多个光栅驱动信号组,每个光栅驱动信号组与一个观看距离相对应并且包括多个光栅驱动信号;
    光栅驱动控制器,被配置用来确定与该观看距离对应的光栅驱动信号组,以及被配置用来形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,所述多个光栅控制电极与所述多个光栅驱动信号一一对应。
  2. 如权利要求1所述的光栅驱动电路,其中所述光栅驱动控制器还包括:多个开关单元,被配置用来接通与该观看距离对应的光栅驱动信号组、断开其它光栅驱动信号组。
  3. 如权利要求1所述的光栅驱动电路,其中,所述光栅包括相对设置的两个基板以及位于两个基板之间的液晶层或者电致变色材料层。
  4. 如权利要求1所述的光栅驱动电路,其中,所述光栅驱动控制器还被配置用来通过如下公式确定光栅总宽度W:
    Figure PCTCN2018104548-appb-100001
    其中2N为2D显示屏水平方向的分辨率,P为2D显示屏像素或亚像素宽度,L为人眼瞳孔间距,S 0为一个预定的最佳观看距离,光栅的放置高度依据该观看距离S 0设定。
  5. 如权利要求4所述的光栅驱动电路,其中,所述光栅驱动控制器还被配置用来通过如下公式确定光栅周期C:
    Figure PCTCN2018104548-appb-100002
  6. 如权利要求4所述的光栅驱动电路,其中,所述光栅驱动控制器被配置用来通过如下公式来确定每个光栅周期中光栅控制电极的数目以及光栅驱动信号组中光栅驱动信号的数目M:
    Figure PCTCN2018104548-appb-100003
    其中w e为电极宽度。
  7. 如权利要求6所述的光栅驱动电路,其中,所述视点追踪器还被配置用来确定观众在左右方向的位置,所述光栅驱动控制器还被配置用来基于观众在左右方向的位置确定光栅的位置。
  8. 如权利要求1-7中任何一项所述的光栅驱动电路,其中,每个光栅周期包括光栅开口部和光栅遮挡部,光栅开口部和光栅遮挡部大小相等。
  9. 如权利要求8所述的光栅驱动电路,其中,所述光栅驱动控制器还被配置用来确定光栅驱动信号组中各光栅驱动信号的电平。
  10. 一种光栅驱动方法,包括:
    确定观众的观看距离S;
    确定与该观看距离对应的光栅驱动信号组,该光栅驱动信号组包括多个光栅驱动信号;
    形成与该观看距离对应的光栅周期,每个光栅周期包括多个光栅控制电极,所述多个光栅驱动电极与所述多个光栅驱动信号一一对应;以及
    通过所述多个光栅驱动信号来驱动每个光栅周期内的多个光栅控制电极,以根据光栅驱动信号来控制光栅中与光栅控制电极对应的光栅单元的开合状态,从而形成用于裸眼3D显示器的光栅。
  11. 如权利要求10所述的光栅驱动方法,其中,确定与该观看距离对应的光栅驱动信号组的步骤进一步包括:
    通过如下公式确定光栅总宽度W:
    Figure PCTCN2018104548-appb-100004
    其中2N为2D显示屏水平方向分辨率,P为2D显示屏像素或亚像素宽度,L为人眼瞳孔间距,S 0为一个预定的最佳观看距离,光栅的放置高度依据该观看距离S 0设定。
  12. 如权利要求11所述的光栅驱动方法,其中,确定与该观看距离对应的光栅驱动信号组的步骤进一步包括:
    通过如下公式确定光栅周期:
    Figure PCTCN2018104548-appb-100005
  13. 如权利要求12所述的光栅驱动方法,其中,确定与该观看距离对应的光栅驱动信号组的步骤进一步包括:
    通过如下公式来确定每个光栅周期中光栅控制电极的数目以及光栅驱动信号组中光栅驱动信号的数目M:
    Figure PCTCN2018104548-appb-100006
    其中w e为电极宽度。
  14. 如权利要求13所述的光栅驱动方法,其中,形成与该观看距离对应的光栅周期的步骤进一步包括:
    确定观众在左右方向的位置;
    基于观众在左右方向的位置确定光栅的位置。
  15. 如权利要求10-14中任何一项所述的光栅驱动方法,其中,形成与该观看距离对应的光栅周期的步骤进一步包括:
    将光栅周期分成大小相等的光栅开口部和光栅遮挡部。
  16. 如权利要求15所述的光栅驱动方法,进一步包括:
    在通过所述多个光栅驱动信号来驱动每个光栅周期内的多个光栅控制电极之前,确定光栅驱动信号组中各光栅驱动信号的电平。
  17. 一种裸眼3D显示器,包括:
    2D显示屏;以及
    如权利要求1-9中任何一项所述的光栅驱动电路。
PCT/CN2018/104548 2018-01-30 2018-09-07 光栅驱动电路、驱动方法以及裸眼3d显示器 WO2019148842A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18863814.2A EP3748418A4 (en) 2018-01-30 2018-09-07 GRID DRIVER CIRCUIT, CONTROL PROCESS AND AUTOSTEREOSCOPIC 3D DISPLAY
US16/339,063 US10955684B2 (en) 2018-01-30 2018-09-07 Grating driving circuit, driving method and naked-eye 3D display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810089682.6 2018-01-30
CN201810089682.6A CN110095871B (zh) 2018-01-30 2018-01-30 光栅驱动电路、驱动方法以及裸眼3d显示器

Publications (1)

Publication Number Publication Date
WO2019148842A1 true WO2019148842A1 (zh) 2019-08-08

Family

ID=67442295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104548 WO2019148842A1 (zh) 2018-01-30 2018-09-07 光栅驱动电路、驱动方法以及裸眼3d显示器

Country Status (4)

Country Link
US (1) US10955684B2 (zh)
EP (1) EP3748418A4 (zh)
CN (1) CN110095871B (zh)
WO (1) WO2019148842A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703443A (zh) * 2019-10-22 2020-01-17 华北科技学院 一种vr显示方法及vr观看装置
CN112748585B (zh) * 2019-10-30 2022-07-19 驻景(广州)科技有限公司 一种小间距视区导引式三维显示系统和方法
CN112929635A (zh) * 2019-12-05 2021-06-08 北京芯海视界三维科技有限公司 裸眼3d显示屏的显示控制方法、多视点裸眼3d显示器
WO2022104575A1 (zh) * 2020-11-18 2022-05-27 京东方科技集团股份有限公司 光栅、光栅驱动方法及3d显示装置
JP2022106593A (ja) * 2021-01-07 2022-07-20 公立大学法人大阪 3次元表示装置
TWI800959B (zh) * 2021-10-22 2023-05-01 宏碁股份有限公司 眼球追蹤方法及眼球追蹤裝置
CN116540455A (zh) * 2022-01-26 2023-08-04 合肥京东方光电科技有限公司 一种光栅调节装置、3d显示装置
CN114488373B (zh) * 2022-02-28 2024-01-12 合肥京东方光电科技有限公司 一种光栅调节装置、3d显示装置及其控制方法
CN114584754B (zh) * 2022-02-28 2023-12-26 广东未来科技有限公司 3d显示方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710956A (zh) * 2012-06-04 2012-10-03 天马微电子股份有限公司 一种裸眼立体追踪显示方法及装置
CN104597681A (zh) * 2014-12-30 2015-05-06 深圳市亿思达科技集团有限公司 一种电子光栅及全息显示装置
CN105445948A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种裸眼3d显示装置及显示方法
CN105954956A (zh) * 2016-05-26 2016-09-21 京东方科技集团股份有限公司 液晶透镜、3d显示面板及它们的控制方法
CN106526878A (zh) * 2016-12-08 2017-03-22 南京大学 多维度自由立体显示装置
CN106918956A (zh) * 2017-05-12 2017-07-04 京东方科技集团股份有限公司 一种液晶光栅、3d显示装置及其驱动方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096228B (zh) * 2010-12-17 2012-07-04 湖南创图视维科技有限公司 一种显示系统和显示方法
KR20120134023A (ko) * 2011-05-31 2012-12-11 소니 주식회사 표시 장치, 배리어 장치, 배리어 구동 회로 및 배리어 장치 구동 방법
CN102629009B (zh) * 2011-10-25 2016-02-03 京东方科技集团股份有限公司 裸眼三维图像显示方法及装置
CN102572483B (zh) * 2011-12-02 2014-08-13 深圳超多维光电子有限公司 跟踪式裸眼立体显示控制方法、装置及显示设备、系统
CN102650742A (zh) * 2012-05-16 2012-08-29 天马微电子股份有限公司 自由立体显示装置及方法
US9563096B2 (en) * 2014-12-17 2017-02-07 Shenzhen Magic Eye Technology Co., Ltd. 3D display apparatus and dynamic grating
CN107229131A (zh) * 2017-06-12 2017-10-03 深圳市华星光电技术有限公司 用于驱动裸眼3d液晶棱镜的系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710956A (zh) * 2012-06-04 2012-10-03 天马微电子股份有限公司 一种裸眼立体追踪显示方法及装置
CN104597681A (zh) * 2014-12-30 2015-05-06 深圳市亿思达科技集团有限公司 一种电子光栅及全息显示装置
CN105445948A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种裸眼3d显示装置及显示方法
CN105954956A (zh) * 2016-05-26 2016-09-21 京东方科技集团股份有限公司 液晶透镜、3d显示面板及它们的控制方法
CN106526878A (zh) * 2016-12-08 2017-03-22 南京大学 多维度自由立体显示装置
CN106918956A (zh) * 2017-05-12 2017-07-04 京东方科技集团股份有限公司 一种液晶光栅、3d显示装置及其驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748418A4 *

Also Published As

Publication number Publication date
CN110095871A (zh) 2019-08-06
EP3748418A4 (en) 2021-09-01
EP3748418A1 (en) 2020-12-09
US20200183182A1 (en) 2020-06-11
US10955684B2 (en) 2021-03-23
CN110095871B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2019148842A1 (zh) 光栅驱动电路、驱动方法以及裸眼3d显示器
KR100440956B1 (ko) 2d/3d 겸용 디스플레이
EP2815577B1 (en) Autostereoscopic display device and drive method
TWI444659B (zh) 二維/三維可轉換顯示裝置、顯示方法、個人數位助理及電腦
US11272169B2 (en) Viewpoint controllable three-dimensional image display apparatus and method for displaying three-dimensional image
KR100878130B1 (ko) 이용자 제어를 가진 자동입체 이미지 디스플레이 장치 및 방법
KR101649235B1 (ko) 입체 표시 장치
CN104094596A (zh) 用于使观看区域平坦化并使动态串扰最小化的裸眼立体3d图像显示装置
KR102197536B1 (ko) 이동 플리커가 감소된 입체영상 표시장치
KR20140000317A (ko) 멀티-뷰 시스템에서 모노-비전을 제공하기 위한 방법 및 장치
US8760396B2 (en) Stereoscopic image display device
US9167237B2 (en) Method and apparatus for providing 3-dimensional image
KR102070800B1 (ko) 입체 디스플레이 장치 및 그 디스플레이 방법
WO2017202059A1 (zh) 液晶透镜、3d显示面板及它们的控制方法
Kakeya 21‐3: A Full‐HD Super‐Multiview Display with Time‐Division Multiplexing Parallax Barrier
KR100440955B1 (ko) 2d/3d 겸용 디스플레이
KR102139746B1 (ko) 투명 디스플레이 장치 및 그 디스플레이 방법
KR102334031B1 (ko) 무안경 입체영상표시장치 및 그 구동방법
KR20130066742A (ko) 영상표시장치
Kakeya et al. A full-HD super-multiview display with a deep viewing zone
KR20120031401A (ko) 입체영상표시장치 및 그 구동방법
CN108732772B (zh) 一种显示设备及其驱动方法
KR20110090205A (ko) 3차원 영상 디스플레이 장치 및 방법
CN202057895U (zh) 一种裸视立体显示装置
Borjigin et al. P‐72: An Autostereoscopic Display with a Deep Viewing Zone Using Time‐Multiplexed Directional Backlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018863814

Country of ref document: EP

Effective date: 20200831