WO2019148699A1 - 光源装置及光学镜片测试系统 - Google Patents

光源装置及光学镜片测试系统 Download PDF

Info

Publication number
WO2019148699A1
WO2019148699A1 PCT/CN2018/088376 CN2018088376W WO2019148699A1 WO 2019148699 A1 WO2019148699 A1 WO 2019148699A1 CN 2018088376 W CN2018088376 W CN 2018088376W WO 2019148699 A1 WO2019148699 A1 WO 2019148699A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical lens
light source
source device
testing system
Prior art date
Application number
PCT/CN2018/088376
Other languages
English (en)
French (fr)
Inventor
郭祖强
杨炳柯
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019148699A1 publication Critical patent/WO2019148699A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical lens testing technologies, and in particular, to a light source device and an optical lens testing system.
  • the optical lens can reflect and/or transmit light.
  • a spectroscopic filter is taken as an example, and the reflection and transmission characteristics are generally achieved by means of coating, thereby having the ability to split light.
  • the spectral characteristics of the spectroscopic filter for the beam will also change. As shown in FIG. 1 , it is a transmittance curve of a spectroscopic filter at different incident angles. Generally, the incident angle of the beam becomes large, and the permeation/reflection line of the spectroscopic filter shifts to the short-wave direction.
  • the present invention provides a light source device that emits a small amount of light spread, and an optical lens test system that emits parallel light by using the light source device.
  • a light source device is applied to an optical lens testing system, the optical lens comprising a spectral filter, a lens and a mirror, the light source device comprising:
  • a first illuminator comprising at least one laser for emitting laser light as excitation light
  • each wavelength converting element being provided with a wavelength converting material for converting the excitation light into a laser light, the laser light being emitted from the light source device to obtain light source light.
  • An optical lens testing system comprising a light source device as described above.
  • the optical lens testing system provided by the present invention comprises a light source device, wherein the light source device uses a laser fluorescent light source to provide light source light with a small amount of optical expansion, which is advantageous for improving the test accuracy of the optical lens testing system using the light source device.
  • Figure 1 shows the transmittance curve of a spectroscopic filter at different incident angles.
  • FIG. 2 is a system block diagram of an optical lens testing system provided by the present invention.
  • FIG. 3 is a schematic structural view of a first embodiment of the light source device shown in FIG. 2.
  • FIG. 3 is a schematic structural view of a first embodiment of the light source device shown in FIG. 2.
  • Fig. 4 is a spectrum diagram of light emitted from a light source device shown in Fig. 3;
  • Fig. 5 is a view showing the configuration of a wavelength conversion element of a second embodiment of the light source device shown in Fig. 3.
  • FIG. 6 is a spectrum diagram of the light source light when the first conversion region shown in FIG. 5 is located in the optical path where the excitation light is located.
  • FIG. 7 is a spectrum diagram of the light source light when the second conversion region shown in FIG. 5 is located in the optical path where the excitation light is located.
  • Fig. 8 is a spectrum diagram of light emitted from a light source of a third embodiment of the light source device shown in Fig. 3.
  • Fig. 9 is a spectrogram of light emitted from a light source of a fourth embodiment of the light source device shown in Fig. 3;
  • FIG. 10 is a schematic structural view of the light source device and the spectrum testing device shown in FIG. 3.
  • FIG. 10 is a schematic structural view of the light source device and the spectrum testing device shown in FIG. 3.
  • Figure 11 is a test flow chart of the optical lens test system shown in Figure 2.
  • Optical lens to be tested 90 Optical lens test system 100
  • Light source device 110 First illuminant 111 Second illuminant 112 Wavelength conversion element 113,213 First transition zone 213a Second transition zone 213b
  • FIG. 2 is a system block diagram of an optical lens testing system 100 provided by the present invention.
  • the optical lens includes the optical lens including a spectral filter, a lens, and a mirror.
  • the optical lens testing system 100 includes a light source device 110, a spectral testing device 120, a control device 130, a storage device 140, an input device 150, and a display device 160.
  • the control device 130 controls the light source device 110 for emitting light source light
  • the spectral test device 120 includes optical means for adjusting the light source light to make it suitable for testing, and for the optical lens 90 to be tested (FIG.
  • the optical lens 90 to be tested is disposed between the plurality of components of the spectral testing device 120; the input device 150 is convenient for the user to input the test parameters and operate the optical lens testing system 100; The device 160 is used to display the results of the test, and the control device 130 is electrically connected to the respective devices described above to coordinate the devices to complete the optical characteristic test of the optical lens 90 to be tested.
  • control device 130 may be a central processing unit (CPU), or may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). , Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like, which is the control center of the optical lens testing system 100, which connects the entire optical lens testing system 100 using various interfaces and lines. Other parts.
  • the storage device 140 is for storing computer programs and/or modules, and the control device 130 implements the server by running or executing computer programs and/or modules stored in the storage device 140, and recalling data stored in the storage device 140.
  • the storage device 140 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and the like; the storage data area may be stored according to the optical lens testing system 100 Use the created data, etc.
  • the storage device 140 may include a high-speed random access storage device, and may also include a non-volatile storage device such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital) , SD) card, flash card, at least one disk storage device, flash memory device, or other volatile solid state storage device.
  • a non-volatile storage device such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital) , SD) card, flash card, at least one disk storage device, flash memory device, or other volatile solid state storage device.
  • the input device 150 may include, but is not limited to, the following types of input devices or a combination thereof: a whiteboard, a projection button device, a button device, a mouse device, a touch device, an electrical input device, an electromagnetic induction device, a pressure device, an infrared device, or a laser device.
  • the display device 160 includes one of display panels such as an LCD (Liquid Crystal Display), a PDA (Plasma), or an OLED (Organic Light Emitting Diode).
  • the display device 160 is a touch display screen, so that the input device 150 does not need to provide a plurality of physical buttons exposed on the surface of the optical lens testing system 100, thereby saving space and improving the portability of the optical lens testing system 100.
  • the touch display screen is sturdy and durable, which is advantageous for extending the service life of the input device 130.
  • the display device 160 is coupled to the surface of the optical lens testing system 100 through the rotating portion, and the display device 160 is freely rotatable around the rotating portion 360° to rotate according to different viewing angles, so that the user can be different from Observing the angle helps to reduce the fatigue of the tester.
  • FIG. 3 is a schematic structural diagram of a first embodiment of the light source device 110 shown in FIG. 2 .
  • the spectral boundaries of the R, G, and B lights are generally around 500 nm and 600 nm, the spectral boundaries of the spectral filters in the optical lenses used are also in the above wavelength range.
  • the optical lens test system 100 when testing the optical characteristics of the spectroscopic filter, a parallel wide-spectrum beam having sufficient brightness near 500 nm and 600 nm is required to meet the test requirements.
  • the light source device 110 in the optical lens testing system 100 provided by the present invention uses a laser fluorescent light source to provide light source light having high brightness and small optical expansion.
  • the light source device 110 includes a first illuminant 111, a second illuminant 112, and a wavelength conversion element 113.
  • the wavelength conversion element 113 is located on the optical path where the first illuminant 111 emits the excitation light to perform wavelength conversion on the excitation light to generate a laser beam.
  • the supplemental light emitted from the second illuminator 112 is combined with the received laser light to obtain light source light, which is emitted from the light source device 110.
  • the first illuminant 111 and the second illuminator 112 each include at least one laser, and at least one of the first illuminants 111 is used to emit laser light as the excitation light, and at least one of the second illuminants 112 is used. A laser is emitted as the supplemental light.
  • a light source device in a general optical lens test system uses a tungsten halogen lamp or an LED.
  • the use of a laser fluorescent light source in a light source device 110 provided by an embodiment of the present invention has significant advantages over a tungsten halogen lamp or LED.
  • the service life of the tungsten halogen lamp is short relative to the laser, and needs to be replaced frequently, which is inconvenient to use;
  • the laser light in the light source is formed by laser excitation wavelength conversion material, and the optical expansion amount of the laser light is small, the light source
  • the unconverted excitation light and the supplemental light in the light are lasers having a small amount of optical expansion, so that the amount of expansion of the light source is not large, and relatively speaking, the optical expansion of the LED light-emitting line is large, and the collimation is difficult.
  • the test results are not accurate.
  • the light source light having a small optical spread amount emitted from the light source device 110 is beneficial to avoid the reflection/transmission line drift problem of the optical lens 90 to be tested due to different incident light angles, which is beneficial to ensure and improve the accuracy of the test.
  • the first illuminant 111 and the second illuminator both use a blue laser to emit blue excitation light.
  • the first illuminant 111 emits a blue excitation light having a wavelength of 455 nm
  • the second illuminator 112 emits a blue complementary light having a wavelength of 445 nm.
  • the first illuminant 111 and the second illuminator 112 are not limited to a blue laser, and a violet laser, a red laser, a green laser, or the like may be used.
  • the first illuminant 111 can include one, two blue lasers or a blue laser array, and the number of lasers can be selected according to actual needs.
  • the wavelength conversion component 113 includes a body 114 and a driving unit 115.
  • the driving unit 115 is coupled to the body 114 to drive the body 114 to perform periodic motion.
  • the body 114 has a disk shape
  • the driving unit 115 is disposed at a geometric center position of the body 114
  • the driving unit 115 includes a motor
  • the driving unit 115 drives the body 114 to perform periodic rotation.
  • the driving unit 115 is disposed at one end of the body 114 to drive the body 114 to perform periodic reciprocating motion.
  • a wavelength conversion material for converting the excitation light into a laser beam is disposed on the body 114.
  • the wavelength converting material converts the blue excitation light into light having a wavelength in the vicinity of 500 nm and 600 nm.
  • FIG. 4 is a spectrum diagram of the light source device 110 shown in FIG.
  • the light source spectral curve has two peaks near 450 nm, corresponding to 445 nm of complementary light and 455 nm of excitation light, the light source optical power is mainly distributed between 500 nm and 600 nm, and the center wavelength is around 530 nm. Accordingly, the wavelength converting material is mainly a green phosphor corresponding to 530 nm.
  • the wavelength conversion element 213 provided by the embodiment includes a first conversion region 213a and a second conversion region 213b, and the excitation light selectively illuminates the first conversion region 213a and/or the second conversion region 213b, the first conversion region 213a and the The two conversion regions 213b are emitted under the excitation of the excitation light and do not overlap with the center wavelength of the laser light.
  • FIG. 6 is a spectrum diagram of the light source light when the first conversion region 213a shown in FIG. 5 is located on the optical path where the excitation light is located.
  • FIG. 7 is a spectrum diagram of the light source light when the second conversion region 213b shown in FIG. 5 is located on the optical path where the excitation light is located.
  • the driving unit of the wavelength converting element 213 selectively moves the first conversion region 213a or the second conversion region 213b under the control of the control device 130 on the optical path where the excitation light is located.
  • the first conversion region 213a generates blue-green light having a center wavelength of about 500 nm under the excitation of the excitation light, and correspondingly, the first conversion region 213a is provided with a blue-green phosphor corresponding to 500 nm; and the second conversion region 213b is Under the excitation of the excitation light, orange light having a center wavelength of about 600 nm is generated. Accordingly, the second conversion region 213b is provided with an orange phosphor corresponding to 600 nm.
  • the laser is preferably covered by the first wavelength range, and correspondingly, the wavelength converting element 213 is provided with a wavelength converting material for emitting laser light in the first wavelength range.
  • the light source device 110 includes a plurality of wavelength conversion elements 113, and the first illuminants 111 selectively illuminate the plurality of wavelength conversion elements 113 to emit laser light of a corresponding wavelength range, and any two wavelength conversion elements 113 are emitted.
  • the center wavelengths of the lasers do not overlap.
  • the light source device 110 can selectively illuminate one or more of the plurality of wavelength conversion elements 113 according to a spectral boundary of the optical lens to be tested.
  • the light source device 110 can selectively illuminate one or more of the plurality of wavelength conversion elements 113 in a time-sharing manner, that is, replace the wavelength conversion element 113 located on the optical path of the excitation light during the test, or multiple The position of the wavelength conversion element 113 is fixed, and the control device 130 cooperates to adjust the propagation direction of the excitation light emitted by the first illuminant 111.
  • FIG. 8 is a spectrogram of the light source of the third embodiment of the light source device 110 shown in FIG. 3 .
  • the source light has a higher power density in the red laser band.
  • the second illuminator 112 of the light source device 110 includes a red laser for emitting a red laser, and the supplemental light emitted by the light source device 110 includes the red laser.
  • the light source light is used to detect the reflection/transmission characteristics of the optical lens to be tested for the red laser, which is advantageous for expanding the test line range of the optical lens test system 100. It can be understood that the number of red lasers in the second illuminant 112 can be selected according to actual needs.
  • FIG. 9 is a spectrogram of the light source of the fourth embodiment of the light source device 110 shown in FIG. 3 .
  • the light source device 110 emits light having a high energy in the range of about 440-670 nm, and the peak at 450 nm on the optical power density curve corresponds to the optical power of the blue laser.
  • the first illuminator 111 in the light source device 110 includes an ultraviolet laser for emitting ultraviolet excitation light (400 nm or less), and the wavelength conversion element 113 is provided with a blue phosphor, and the ultraviolet excitation light excites the blue fluorescence.
  • the powder produces a blue laser, such that the source light has a higher energy distribution between 450 nm and 500 nm.
  • the light source device 110 includes a second illuminator 112, and the second illuminator 112 includes a blue laser (about 450 nm), and the blue laser emitted by the blue laser is combined with the laser light emitted from the wavelength conversion element 113.
  • the light source light is obtained after light.
  • the optical lens testing system 100 can perform optical characteristic testing of the spectral filter, the lens and the mirror in the visible light range, which is beneficial to the promotion and application of the light source device 110 in the field of optical lens detection.
  • the light source device 110 does not include the second illuminant 112, and the excitation light emitted from the first illuminant 111 excites the wavelength conversion material on the wavelength conversion element 113 to generate laser light, which is laser-received and unconverted.
  • the excitation light is emitted from the light source device 110.
  • the wavelength conversion element 113 and the wavelength conversion element 213 are both transmissive wavelength conversion elements. It can be understood that the first illuminant 111 can be used to excite the reflective wavelength conversion in the embodiment of the present invention.
  • the element 113 correspondingly, other optical devices known in the art are disposed on the light path of the wavelength conversion element 113, and are also within the scope of patent protection of the present invention.
  • the light source device 110 provided by the embodiment of the present invention uses a laser fluorescent light source, and the light source device 110 has a long service life, and the light source has a high brightness and a small optical expansion.
  • FIG. 10 is a schematic structural diagram of the light source device 110 and the spectrum testing device 120 shown in FIG. 3 .
  • the spectral test device 120 includes a first aperture 125, a second aperture 121, a collimation unit 123, and a collection and analysis unit 127.
  • the excitation light emitted by the light source device 110 is sequentially irradiated onto the optical lens 90 to be tested through the second aperture 121, the collimation unit 123, and the first aperture 125.
  • the optical lens 90 to be tested reflects or scatters the light of the source.
  • the light emitted from the optical lens 90 to be tested is processed by the collecting and analyzing unit 127 to obtain the intensity of light of different wavelengths.
  • the collimating unit 123 is configured to adjust the light source light to be substantially parallel light.
  • the "substantially parallel light” as used in the present invention means that the divergence angle of the light is small, and is considered to be parallel light within the error range.
  • the divergence angle of the substantially parallel light emitted by the collimating unit 123 is within a range of ⁇ 10 degrees.
  • the divergence angle of the collimating unit 123 exiting substantially parallel light is in the range of ⁇ 5 degrees.
  • the divergence angle of the collimating unit 123 exiting substantially parallel light is in the range of ⁇ 2 degrees.
  • the substantially parallel light emitted by the collimating unit 123 appears as parallel light within the perceptible range of the human eye. It can be understood that, in the most ideal case, the divergence angle of the light emitted by the collimating unit 123 is 0 degree, so that the light emitted by the collimating unit 123 is absolutely parallel light, but the actual error precision is difficult to achieve, and only The divergence angle approaches 0 degrees.
  • the collimating unit 123 is any optical element or optical system having a collimated beam function.
  • the collimating unit 123 includes a collimating lens.
  • a second aperture 121 is further disposed between the collimation unit 123 and the light source device 110, and the second aperture 121 is used to adjust the spot of the source light emitted by the light source device 110 to an appropriate size, which is beneficial to improving the light of the source.
  • the second aperture 121 is a small aperture stop.
  • the light-emitting device 110 has a small light-emitting surface. Since the optical spread of the light source is small, the light spot of the light source is small, and the second aperture 121 can be omitted, and the light source device 110 emits The substantially parallel light is obtained after the smaller spot of the source light passes through the collimating unit 123.
  • the collimating unit 123 includes an aspherical lens or a free-form surface lens.
  • the aspherical lens or the free-form surface lens can collimate the light source light emitted from the light source device 110 having a large light-emitting surface.
  • the second aperture 121 may be omitted, and the light source light emitted from the light source device 110 may be directly parallel to the aspherical lens or the free-form lens to be the substantially parallel light.
  • the collimating unit 123 includes a collimating lens group that is a combination of a plurality of lenses. It can be understood that the collimating unit 123 can also adopt an integrated collimator.
  • the first aperture 125 is disposed between the optical lens 90 to be tested and the collimating unit 123.
  • the first aperture 125 includes a light passing hole, and the substantially parallel light is irradiated to the optical lens 90 to be tested through the light passing hole. .
  • the size of the light-passing aperture is smaller than the optical lens 90 to be measured, so as to adjust the spot size of the substantially parallel light, so that the substantially parallel light is irradiated on the optical lens 90 to be tested, and the measurement is convenient.
  • the optical properties of the optical lens 90 are partially localized.
  • the first aperture 125 can select a small aperture or other shaped aperture.
  • the first aperture 125 is a slit aperture.
  • the light exit hole of the slit diaphragm has an elongated shape, which facilitates movement of the light exit hole relative to the optical lens 90 to be tested in one direction, and measures each of the optical lenses 90 to be tested arranged in the one direction.
  • the optical properties of the area are elongated shape, which facilitates movement of the light exit hole relative to the optical lens 90 to be tested in one direction, and measures each of the optical lenses 90 to be tested arranged in the one direction.
  • the first aperture 125 blocks the approximate measurement. Most of the light beams in the parallel light, so that the light beam that can be used for measurement is small, and the brightness of the light emitted from the light source device 110 is high, which is advantageous for ensuring and improving the accuracy of the measurement.
  • the optical lens 90 to be tested is disposed between the first aperture 125 and the collection and analysis unit 127.
  • the optical lens 90 to be tested is spaced apart from the first aperture 125 by a predetermined distance.
  • the optical lens 90 to be tested is in close contact with the first aperture 125, which is advantageous for improving measurement accuracy and light energy utilization.
  • the optical lens testing system 100 is capable of adjusting the angle of incidence of the optical lens 90 to be tested relative to the light source device 110 to adjust the angle of incidence of the light of the optical lens 90 to be tested.
  • the placement angle of the optical lens 90 to be tested can be accurately adjusted within a range of 360 degrees to measure the response of the optical lens 90 to be tested to incident light at different angles.
  • the optical lens testing system 100 is capable of adjusting the position of the optical lens 90 to be tested relative to the light source device 110 to facilitate that the light exiting the first aperture 125 can be illuminated to all areas of the optical lens 90 to be tested.
  • the light emitted by the first aperture 125 at one moment can illuminate a partial area on the optical lens 90 to be tested, and adjust the position of the optical lens 90 to be tested relative to the light source device 110 such that the first aperture 125 exits during a certain period of time.
  • the light can be directed to all areas of the optical lens 90 to be tested to complete the testing of the entire lens.
  • the first aperture 125 can adjust the placement angle and/or position of the light source device 110 together with the optical lens 90 to be tested.
  • the optical lens testing system 100 further includes at least one polarization splitting element 124 disposed between the light source device 110 and the first aperture 125.
  • the polarized light emitted from the polarization beam splitting element 124 is incident on the optical lens 90 to be tested through the first aperture 125 to test the optical characteristics of the polarizing plate. Since the polarization characteristic of the polarization beam splitting element 124 is better when the light beam is incident normally, in the present embodiment, the polarization beam splitting element 124 is disposed between the collimating unit 123 and the first aperture 125 such that the substantially parallel light is incident perpendicularly to The polarization beam splitting element 124 is then emitted.
  • the polarization beam splitting element 124 may be a polarization beam splitter or a polarizing prism.
  • the collection and analysis unit 127 is for collecting and analyzing the light emitted by the optical lens 90 to be tested.
  • the collection and analysis unit 127 includes an integrating sphere 127a and a spectrometer 127b coupled to the integrating sphere 127a.
  • Spectrometer 127b is used to measure the intensity of light at different wavelength locations.
  • the light emitted from the optical lens 90 to be tested enters the integrating sphere 127a, and is reflected by the inner wall coating multiple times to form uniform illumination on the inner wall.
  • the integrating sphere 127a includes a left hemisphere and a right hemisphere, a luminometer is placed on the center plane of the right hemisphere, and a photometer baffle is placed in front of the photometer and spaced apart from the photometer;
  • the optometry lens 90 emits light to at least the illumination area of the left hemisphere, and the auxiliary lamp portion is placed near the contact area between the left hemisphere and the right hemisphere to emit light to the illumination area, and the auxiliary light baffle is placed in the Around the auxiliary lamp portion, the light emitted from the optical lens 90 to be tested is prevented from directly irradiating to the auxiliary lamp portion, and the light emitted from the auxiliary lamp portion is also prevented from directly irradiating to the optical lens 90 to be tested.
  • the collection and analysis unit 127 includes a photodetector.
  • the window of the photodetector is made of a highly transparent Al 2 O 3 ceramic sheet and is in close proximity to the surface of the detector element.
  • the light transmittance is high and the spectral transmission range is wide.
  • the photodetector is a graphene photodetector integrated with a waveguide, which facilitates optical interconnection of low power, large data volume transmission.
  • the position of the spectral test device 120 shown in FIG. 10 is suitable for testing the transmission characteristics. It can be understood that the collection and analysis unit 127 can perform corresponding position adjustment to collect the optical lens 90 to be tested when testing the reflection characteristics. Reflected light.
  • FIG. 11 is a test flow chart of the optical lens testing system 100 shown in FIG. 2 .
  • the light source device 110 emits a substantially parallel light having a broad spectrum, and the substantially parallel light is irradiated on the optical lens 90 to be tested, and after passing through the reflection/reflection of the optical lens 90 to be tested, it enters the collecting and analyzing unit 127, and is measured.
  • the intensity data of the light of different wavelengths can be compared with the intensity data of the light source light emitted from the light source device 110 when the optical lens 90 to be tested is not added, and the transflective characteristics of the optical lens 90 to be tested can be obtained.
  • the optical lens testing system 100 provided by the embodiment of the present invention includes a light source device 110, wherein the light source device 110 uses a laser fluorescent light source to provide light source with high brightness and small optical expansion, which is beneficial to improve the test accuracy of the optical lens testing system 100. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光源装置(100),应用于光学镜片测试系统(120),所述光学镜片(90)包括分光滤光片、透镜及反射镜,所述光源装置(100)包括第一发光体(111)及至少一波长转换元件(113),其中,所述第一发光体(111)包括至少一用于发出激光作为激发光的激光器,所述至少一个波长转换元件(113)中的每个波长转换元件设置有用于将所述激发光转换为受激光的波长转换材料,所述受激光从所述光源装置(100)出射得到光源光。一种采用所述光源装置(100)的光学镜片测试系统(120)。

Description

光源装置及光学镜片测试系统 技术领域
本发明涉及光学镜片测试技术领域,尤其涉及一种光源装置及光学镜片测试系统。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
光学镜片能够反射及/或透射光,现有技术中,以分光滤光片为例,一般通过镀膜的方式,实现反射及透射特性,从而具有分光的能力。
由于镀膜的特性,当光束的入射角度不同时,分光滤光片对于光束的透/反射光谱特性也会改变。如图1所示,为一种分光滤光片在不同入射角度下的透过率曲线,一般地,光束入射角变大,分光滤光片的透/反射谱线会向短波方向漂移。
对于光学镜片测试系统而言,需要在待测波段内出射平行光束,才能满足测试需要。
发明内容
本发明提供一种出射光线扩展量小的光源装置,以及一种由于采用所述光源装置从而出射平行光的光学镜片测试系统。
一种光源装置,应用于光学镜片测试系统,所述光学镜片包括分光滤光片、透镜及反射镜,所述光源装置包括:
第一发光体,包括至少一激光器,所述至少一激光器用于发出激光作为激发光;及
至少一波长转换元件,每个波长转换元件设置有用于将所述激发光转换为受激光的波长转换材料,所述受激光从所述光源装置出射得 到光源光。
一种光学镜片测试系统,包括如上所述的光源装置。
本发明提供的光学镜片测试系统包括光源装置,其中,光源装置采用激光荧光光源,以提供光学扩展量小的光源光,有利于提高采用所述光源装置的光学镜片测试系统的测试精度。
附图说明
图1为一种分光滤光片在不同入射角度下的透过率曲线。
图2为本发明提供的光学镜片测试系统的系统框图。
图3为图2所示的光源装置的第一实施方式的结构示意图。
图4为图3所示的光源装置出射光源光的光谱图。
图5为图3所示的光源装置的第二实施方式的波长转换元件的结构示意图。
图6为图5所示的第一转换区位于激发光所在光路时光源光的光谱图。
图7为图5所示的第二转换区位于激发光所在光路时光源光的光谱图。
图8为图3所示的光源装置的第三实施方式的出射光源光的光谱图。
图9为图3所示的光源装置的第四实施方式的出射光源光的光谱图。
图10为图3所示的光源装置及光谱测试装置的结构示意图。
图11为图2所示的光学镜片测试系统的测试流程图。
主要元件符号说明
待测光学镜片 90
光学镜片测试系统 100
光源装置 110
第一发光体 111
第二发光体 112
波长转换元件 113、213
第一转换区 213a
第二转换区 213b
本体 114
驱动单元 115
光谱测试装置 120
第一光阑 125
第二光阑 121
准直单元 123
偏振分光元件 124
收集及分析单元 127
控制装置 130
存储装置 140
输入装置 150
显示装置 160
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例/方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例/方式及实施例/方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例/方式仅是本发明一部分实施例,而不是全部的实施例/方式。基于本发明中的实施例/方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例/方式,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例/方式的目的,不是旨在于限制本发明。
请参阅图2,为本发明提供的光学镜片测试系统100的系统框图。所述光学镜片包括,所述光学镜片包括分光滤光片、透镜及反射镜。光学镜片测试系统100包括光源装置110、光谱测试装置120、控制装置130、存储装置140、输入装置150及显示装置160。其中,控制装置130控制光源装置110用于发出光源光;光谱测试装置120包括用于对所述光源光进行调整以使其适用于测试的光学器件,及用于对待测光学镜片90(图10)出射光线进行收集与分析数据的收集及分析单元127;待测光学镜片90设置于光谱测试装置120的多个元件之间;输入装置150方便用户输入测试参数及操作光学镜片测试系统100;显示装置160用于显示测试的结果,控制装置130与上述各个装置电连接,以协调各装置配合完成待测光学镜片90的光学特性测试。
进一步地,控制装置130可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是光学镜片测试系统100的控制中心,利用各种接口和线路连接整个光学镜片测试系统100的其他各个部分。
存储装置140用于存储计算机程序和/或模块,控制装置130通过运行或执行存储在存储装置140内的计算机程序和/或模块,以及调用存储在存储装置140内的数据,实现所述服务器的各种功能。存储装置140可主要包括存储程序区和存储数据区,其中,所述存储程序区可存储操作系统、至少一个功能所需的应用程序等;所述存储数据区可存储根据光学镜片测试系统100的使用所创建的数据等。此外,存储装置140可以包括高速随机存取存储装置,还可以包括非易失性存储装置,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储装置件、闪存器件、或其他易失性固态存储装置件。
输入装置150可以包括但不限于以下类型的输入装置或其组合:白板、投影按键装置、按键装置、鼠标装置、触控装置、电输入装置、电磁感应装置、压力装置、红外装置或激光装置。
显示装置160包括LCD(液晶显示)、PDA(等离子)或OLED(有机发光二极管)等显示面板中的一种。在一种实施方式中,显示装置160为触摸显示屏,从而输入装置150不需要设置显露于光学镜片测试系统100表面的多个物理按键,进而节省空间、提高了光学镜片测试系统100的便携性能,同时触摸显示屏坚固耐用,有利于延长输入装置130的使用寿命。在又一种实施方式中,显示装置160通过旋转部连接于光学镜片测试系统100表面,且显示装置160能够绕所述旋转部360°自由旋转,以根据不同的视角进行转动,方便用户从不同角度进行观察,有利于降低检测人员的疲劳度。
请参阅图3,为图2所示的光源装置110的第一实施方式的结构示意图。由于R、G、B光的光谱分界一般在500nm和600nm附近,因此,使用的光学镜片中分光滤光片的光谱分界也处于上述波长范围内。对于光学镜片测试系统100而言,测试分光滤光片的光学特性时,需要在500nm和600nm附近有足够亮度的平行宽谱光束出射,才能满足测试需要。本发明提供的光学镜片测试系统100中的光源装置110采用激光荧光光源,以提供亮度高、光学扩展量小的光源光。
进一步地,光源装置110包括第一发光体111、第二发光体112及波长转换元件113。波长转换元件113位于第一发光体111出射激发光所在的光路上,以对所述激发光进行波长转换后产生受激光。第二发光体112出射的补充光与所述受激光合光后得到光源光,所述光源光从光源装置110出射。
其中,第一发光体111与第二发光体112均包括至少一激光器,第一发光体111中的至少一激光器用于发出激光作为所述激发光,第二发光体112中的至少一激光器用于发出激光作为所述补充光。
目前,一般的光学镜片测试系统中的光源装置采用卤钨灯或LED。本发明实施方式提供的光源装置110中采用激光荧光光源相对于卤钨 灯或LED具有明显的优势。具体地,卤钨灯使用寿命相对于激光器短,需要经常更换,使用不方便;所述光源光中的受激光由激光激发波长转换材料形成,所述受激光的光学扩展量小,所述光源光中的未被转换的激发光及补充光均为光学扩展量小的激光,从而所述光源光的扩展量不大,相对来说,LED发光线的光学扩展量大,准直难度高,测试结果精确度不高。光源装置110出射的光学扩展量小的光源光,有利于避免待测光学镜片90由于入射光线角度不同而产生的反射/透射谱线漂移问题,有利于保证并提高测试的精度。
本实施方式中,第一发光体111与第二发光体均采用蓝色激光器,以发出蓝色激发光。其中,第一发光体111出射蓝色激发光波长为455nm,第二发光体112出射蓝色补充光波长为445nm。可以理解的是,第一发光体111与第二发光体112不限于采用蓝色激光器,也可以采用紫色激光器、红色激光器或绿色激光器等。可以理解,第一发光体111可以包括一个、两个蓝色激光器或蓝色激光器阵列,具体其激光器的数量可以依据实际需要选择。
波长转换元件113包括本体114及驱动单元115,驱动单元115与本体114连接以带动本体114做周期性运动。在本实施方式中,本体114呈圆盘状,驱动单元115设置于本体114的几何中心位置,驱动单元115包括电机,驱动单元115带动本体114做周期性旋转。在一种实施方式中,驱动单元115设置于本体114的一端,以驱动本体114做周期性的往复运动。
本体114上设置有用于将所述激发光转换为受激光的波长转换材料。所述波长转换材料将蓝色激发光转换为波长范围为500nm和600nm附近的光线,请参阅图4,图4为图3所示的光源装置110出射光源光的光谱图。所述光源光光谱曲线在450nm附近具有两个峰值,分别对应445nm的补充光及455nm的激发光,所述光源光功率主要分布于500nm-600nm之间,中心波长在530nm附近。相应地,所述波长转换材料主要为对应530nm的绿色荧光粉。
请参阅图5,为图3所示的光源装置110的第二实施方式的波长 转换元件113的结构示意图。本实施方式提供的波长转换元件213包括第一转换区213a与第二转换区213b,激发光选择性照射第一转换区213a及/或所述第二转换区213b,第一转换区213a及第二转换区213b在所述激发光的激发下出射受激光的中心波长不重叠。
具体地,请参阅图6-图7,图6为图5所示的第一转换区213a位于所述激发光所在光路时所述光源光的光谱图。图7为图5所示的第二转换区213b位于激发光所在光路时所述光源光的光谱图。波长转换元件213的驱动单元在控制装置130的控制下选择性移动第一转换区213a或第二转换区213b位于所述激发光所在的光路上。第一转换区213a在所述激发光的激发下产生中心波长在500nm左右的蓝绿色光,相应地,第一转换区213a设置有对应500nm的蓝绿色荧光粉;第二转换区213b在所述激发光的激发下产生中心波长在600nm左右的橙色光,相应地,第二转换区213b设置有对应600nm的橙色荧光粉。在一种实施方式中,受激光优选覆盖第一波长范围,相应地,波长转换元件213上设置用于出射第一波长范围内受激光的波长转换材料。
在一种实施方式中,光源装置110包括多个波长转换元件113,第一发光体111选择性照射多个波长转换元件113,以出射对应波长范围的受激光,任意两个波长转换元件113出射受激光的中心波长不重叠。光源装置110可以根据待测光学镜片的光谱分界来选择性照射多个波长转换元件113中的一个或几个。可以理解的是,光源装置110可以分时选择性照射多个波长转换元件113中的一个或几个,即在测试的过程中,更换位于激发光所在光路上的波长转换元件113,或多个波长转换元件113的位置是固定的,控制装置130配合调整第一发光体111出射激发光的传播方向。
请参阅图8,为图3所示的光源装置110的第三实施方式的出射光源光的光谱图。所述光源光在红色激光波段具有较高功率密度,相应地,光源装置110的第二发光体112包括用于发出红色激光的红色激光器,光源装置110出射的补充光包括所述红色激光。所述光源光 用于检测待测光学镜片对于红色激光的反射/透射特性,有利于扩展光学镜片测试系统100的测试谱线范围。可以理解的是,第二发光体112中的红色激光器的数量可以根据实际需要进行选择。
请参阅图9,为图3所示的光源装置110的第四实施方式的出射光源光的光谱图。光源装置110出射光源光在440-670nm左右范围内均具有较高的能量,光功率密度曲线上450nm处的峰值对应蓝色激光的光功率。
相应地,光源装置110中的第一发光体111包括用于发出紫外激发光(400nm以下)的紫外激光器,波长转换元件113设置有蓝色荧光粉,所述紫外激发光激发所述蓝色荧光粉产生蓝色受激光,从而所述光源光在450nm-500nm之间具有较高的能量分布。在本实施方式中,光源装置110包括第二发光体112,第二发光体112包括蓝色激光器(450nm左右),所述蓝色激光器发出的蓝色激光与波长转换元件113出射的受激光合光后得到所述光源光。
通过在光源装置110中补充紫外激发光激发蓝色荧光粉,有利于提高所述光源光在440nm-500nm左右波长范围内的光能量,从而所述光源光的光谱在440nm~670nm都有较高的光能量来进行光学镜片检测,光学镜片测试系统100能够对分光滤光片、透镜及反射镜进行在可见光范围内的光学特性测试,有利于光源装置110在光学镜片检测领域中的推广及应用。
在一种实施方式中,光源装置110不包括第二发光体112,第一发光体111出射的激发光激发波长转换元件113上的波长转换材料产生受激光,所述受激光及未被转换的激发光从光源装置110出射。
上述例举的光源装置110的实施方式中波长转换元件113及波长转换元件213均为透射式波长转换元件,可以理解的是,本发明实施方式中可以采用第一发光体111激发反射式波长转换元件113,相应地,波长转换元件113的出光光路上设置其他本领域公知光学器件,亦属于本发明的专利保护范围。
本发明实施方式提供的光源装置110采用激光荧光光源,光源装 置110使用寿命长,出射光源光亮度高,光学扩展量小。
请参阅图10,为图3所示的光源装置110及光谱测试装置120的结构示意图。光谱测试装置120包括第一光阑125、第二光阑121、准直单元123、以及收集及分析单元127。光源装置110发出的激发光依次经过第二光阑121、准直单元123、第一光阑125照射至待测光学镜片90上,待测光学镜片90对所述光源光进行反射或散射,自待测光学镜片90出射的光线经收集及分析单元127的处理后得到不同波长光线的强度。
具体地,准直单元123用于将所述光源光调整为大致平行光。本发明所述的“大致平行光”是指光线的发散角较小,在误差范围内认为是平行光。优选地,准直单元123出射的大致平行光的发散角在±10度的范围内。在本发明的一个优选的实施方式中,准直单元123出射大致平行光的发散角在±5度的范围内。在本发明的一个优选的实施方式中,准直单元123出射大致平行光的发散角在±2度的范围内。在该范围内,准直单元123出射的大致平行光在人眼可察觉范围内表现为平行光。可以理解,在最理想的情况下,准直单元123出射光线的发散角为0度,使得准直单元123出射的光线为绝对平行光,但实际的误差精度难以做到这一点,只能令发散角趋近于0度。
准直单元123为任意具有准直光束功能的光学元件或光学系统。在本实施方式中,准直单元123包括准直透镜。在准直单元123与光源装置110之间还设置有第二光阑121,第二光阑121用于将光源装置110出射的光源光的光斑调整至合适的大小,有利于提高所述光源光经过所述准直透镜准直后的平行度。本实施方式中,第二光阑121为小孔光阑。
在一种实施方式中,光源装置110出光面较小,由于所述光源光的光学扩展量较小,从而出射光源光的光斑较小,进而可以省略第二光阑121,光源装置110出射的光源光的较小光斑经过准直单元123后即得到所述大致平行光。
在一种实施方式中,准直单元123包括非球面透镜或自由曲面透 镜。非球面透镜或自由曲面透镜能够准直出光面较大的光源装置110发出的光源光。在本实施方式中,可以省略第二光阑121,光源装置110出射的光源光直接经非球面透镜或自由曲面透镜出射后为所述大致平行光。
在一种实施方式中,准直单元123包括由多个透镜组合而成的准直透镜组。可以理解的是,准直单元123还可以采用集成的准直器。
第一光阑125设置于待测光学镜片90与准直单元123之间,第一光阑125包括通光孔,所述大致平行光穿过所述通光孔照射至待测光学镜片90上。在一种实施方式中,所述通光孔的尺寸小于待测光学镜片90,以调整所述大致平行光的光斑大小,使得所述大致平行光照射在待测光学镜片90局部,便利测量待测光学镜片90局部的光学特性。第一光阑125可选取小孔或其它形状的光阑,优选地,第一光阑125为狭缝光阑。所述狭缝光阑的出光孔呈长条形,有利于所述出光孔沿一个方向相对待测光学镜片90移动,并测得待测光学镜片90上沿所述一个方向排布的每个区域的光学特性。
由于第一光阑125出射的光线照射至待测光学镜片90的局部区域,以关注待测光学镜片90某个小区域内的透/反射谱线,测量时第一光阑125挡住了所述大致平行光中的大部分光束,因此能够用于测量的光束很少,光源装置110出射光线亮度高,有利于保证并提高测量的精度。
待测光学镜片90设置于第一光阑125与收集及分析单元127之间。待测光学镜片90与第一光阑125间隔预设距离。在一种实施方式中,待测光学镜片90紧贴第一光阑125,有利于提高测量的精度及光能利用率。
在一种实施方式中,光学镜片测试系统100能够调整待测光学镜片90相对于光源装置110的摆放角度,以调节待测光学镜片90的光线入射角。在一种实施方式中,待测光学镜片90的摆放角度可以在360度的范围内准确的调节,以便测量待测光学镜片90对不同角度入射光的响应。
光学镜片测试系统100能够调整待测光学镜片90相对于光源装置110的位置,以便利第一光阑125出射的光线能够照射至待测光学镜片90上的全部区域。第一光阑125在一个时刻出射的光线能够照射待测光学镜片90上的局部区域,调整待测光学镜片90相对于光源装置110的位置,使得在特定时间段内,第一光阑125出射的光线能够照射至待测光学镜片90上的全部区域,以完成整片镜片的测试。
可以理解的是,第一光阑125可以与待测光学镜片90一同调整相对于光源装置110的摆放角度及/或位置。
在一种实施方式中,光学镜片测试系统100还包括至少一设置于光源装置110及第一光阑125之间的偏振分光元件124。偏振分光元件124出射的偏振光经过第一光阑125入射至待测光学镜片90上,以便测试偏振片的光学特性。由于光束垂直入射时偏振分光元件124时偏振特性会更好,在本实施方式中,偏振分光元件124设置于准直单元123及第一光阑125之间,使得所述大致平行光垂直入射至偏振分光元件124后出射。偏振分光元件124可以为偏振分光片或偏振棱镜。
收集及分析单元127用于收集并分析待测光学镜片90出射的光线。收集及分析单元127包括积分球127a及与积分球127a连接的光谱仪127b。光谱仪127b用于测量不同波长位置的光线强度。
其中,待测光学镜片90出射的光线进入积分球127a后,经过内壁涂层多次反射,在内壁上形成均匀照度。在一种实施方式中,积分球127a包括左半球和右半球,光度计置于所述右半球的中心面,光度计挡板置于所述光度计前面且与所述光度计间隔开;待测光学镜片90至少向所述左半球的照明区发光,辅助灯部置于所述左半球和所述右半球之间的接触区附近,以向照明区发光,辅助灯挡板置于所述辅助灯部周围,以防止待测光学镜片90发出的光直接照射到所述辅助灯部,并且也防止从所述辅助灯部发出的光直接照射到待测光学镜片90。
在一种实施方式中,收集及分析单元127包括光电探测器。在一种实施方式中,所述光电探测器的窗口由高透明的Al 2O 3陶瓷片制成的,且紧靠近探测元表面。以解决了目前蓝宝石晶体窗口存在的功能 单一成本高的缺点,其光线透过率高,光谱透射范围宽。在一种实施方式中,光电探测器为集成有波导的石墨烯光电探测器,有利于实现低功率、大数据量传输的光互连。
图10所示的光谱测试装置120的设置位置适用于测试透射特性的情况,可以理解的是,在测试反射特性时,收集及分析单元127能够做相应的位置调整,以收集待测光学镜片90反射的光线。
请参阅图11,为图2所示的光学镜片测试系统100的测试流程图。其中,光源装置110发射光谱较宽的大致平行光,所述大致平行光照射在置于待测光学镜片90上,经过待测光学镜片90透/反射后,进入收集及分析单元127,测量得到不同波长光的强度数据,将所述数据与不加待测光学镜片90时光源装置110出射光源光的强度数据相比,就能得出待测光学镜片90的透/反射特性。
本发明实施方式提供的光学镜片测试系统100包括光源装置110,其中,光源装置110采用激光荧光光源,以提供亮度高、光学扩展量小的光源光,有利于提高光学镜片测试系统100的测试精度。
在本发明所提供的几个实施例/方式中,应当理解的是,所述的方法和装置,也可以通过其他的方式来实现,以上所描述的装置实施例仅是示意性的,所述模块的划分,是一种逻辑功能划分,实现时可以有另外的划分方式。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例/方式的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例/方式看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二 等词语用来表示名称,而并不表示任何特定的顺序。
以上仅为本发明的实施例/方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种光源装置,应用于光学镜片测试系统,所述光学镜片包括分光滤光片、透镜及反射镜,其特征在于,所述光源装置包括:
    第一发光体,包括至少一激光器,所述至少一激光器用于发出激光作为激发光;及
    至少一波长转换元件,每个波长转换元件设置有用于将所述激发光转换为受激光的波长转换材料,所述受激光从所述光源装置出射得到光源光。
  2. 如权利要求1所述的光源装置,其特征在于,所述光源装置包括多个波长转换元件,所述第一发光体选择性照射所述多个波长转换元件,以出射对应的受激光,任意两个波长转换元件出射受激光的中心波长不重叠。
  3. 如权利要求1所述的光源装置,其特征在于,所述波长转换元件包括设置有不同波长转换材料的第一转换区及第二转换区,所述激发光选择性照射所述第一转换区及/或所述第二转换区,所述第一转换区及所述第二转换区在所述激发光的激发下出射受激光的中心波长不重叠。
  4. 如权利要求1所述的光源装置,其特征在于,所述光源装置还设置有用于发出补充光的第二发光体,所述光源光包括所述补充光。
  5. 如权利要求4所述的光源装置,其特征在于,所述第二发光体包括用于发出红色激光的红色激光器,所述补充光包括所述红色激光。
  6. 如权利要求1所述的光源装置,其特征在于,所述第一发光体包括用于发出紫外激发光的紫外激光器,所述紫外激发光激发所述波长转换材料产生蓝色受激光。
  7. 一种光学镜片测试系统,其特征在于,包括如权利要求1-6任意一项所述的光源装置。
  8. 如权利要求7所述的光学镜片测试系统,其特征在于,所述光学镜片测试系统还包括:
    准直单元,将所述光源光调整为大致平行光;
    第一光阑,包括通光孔,所述大致平行光穿过所述通光孔照射至待测光学镜片上;及
    收集及分析单元,收集并分析所述待测光学镜片出射的光线。
  9. 如权利要求8所述的光学镜片测试系统,其特征在于,所述第一光阑的通光孔尺寸小于所述待测光学镜片。
  10. 如权利要求9所述的光学镜片测试系统,其特征在于,所述第一光阑为狭缝光阑。
  11. 如权利要求8所述的光学镜片测试系统,其特征在于,所述光学镜片测试系统能够调整所述待测光学镜片相对于光源装置的摆放角度,以调节所述待测光学镜片的光线入射角。
  12. 如权利要求8所述的光学镜片测试系统,其特征在于,所述光学镜片测试系统能够调整所述待测光学镜片相对于光源装置的位置,以便利所述第一光阑出射的光线能够照射至所述待测光学镜片上的全部区域。
  13. 如权利要求8-12任意一项所述的光学镜片测试系统,其特征在于,所述光学镜片测试系统还包括设置于所述光源装置及所述准直单元之间的第二光阑。
  14. 如权利要求13所述的光学镜片测试系统,其特征在于,所述第二光阑为小孔光阑。
  15. 如权利要求8所述的光学镜片测试系统,其特征在于,所述光学镜片测试系统还包括至少一设置于所述光源装置及所述第一光阑之间的偏振分光元件。
  16. 如权利要求15所述的光学镜片测试系统,其特征在于,所述偏振分光元件设置于所述准直单元及所述第一光阑之间。
  17. 如权利要求8所述的光学镜片测试系统,其特征在于,所述收集及分析单元包括积分球及与所述积分球连接的光谱仪,或所述收集及分析单元包括光电探测器。
PCT/CN2018/088376 2018-02-02 2018-05-25 光源装置及光学镜片测试系统 WO2019148699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810106987.3A CN110132541A (zh) 2018-02-02 2018-02-02 光源装置及光学镜片测试系统
CN201810106987.3 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019148699A1 true WO2019148699A1 (zh) 2019-08-08

Family

ID=67477915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088376 WO2019148699A1 (zh) 2018-02-02 2018-05-25 光源装置及光学镜片测试系统

Country Status (2)

Country Link
CN (1) CN110132541A (zh)
WO (1) WO2019148699A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051037B (zh) * 2020-09-03 2022-11-04 Oppo(重庆)智能科技有限公司 镜片检测方法、装置及终端设备
CN116067624B (zh) * 2023-01-28 2023-06-20 深圳赛陆医疗科技有限公司 检测装置、检测方法、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268221A (zh) * 1997-07-24 2000-09-27 庄臣及庄臣视力保护公司 渐变眼镜的象质仪
CN102645826A (zh) * 2011-11-10 2012-08-22 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN203572632U (zh) * 2013-05-16 2014-04-30 宁波大学 一种介质薄膜光学参数的测量装置
CN106124167A (zh) * 2016-06-17 2016-11-16 西安电子科技大学 超高反射镜的积分散射率/积分透射率高精度测量系统
CN206095585U (zh) * 2016-09-20 2017-04-12 深圳市光峰光电技术有限公司 光检测系统及光检测装置
JP2017090388A (ja) * 2015-11-16 2017-05-25 ダイトロンテクノロジー株式会社 検査装置
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2114226A1 (en) * 1991-07-26 1993-02-18 George Anthony Rakuljic Photorefractive systems and methods
CN102645825B (zh) * 2011-11-03 2014-12-31 深圳市光峰光电技术有限公司 一种投影装置、光源系统以及色轮组件
CN105467732B (zh) * 2014-07-31 2018-12-04 欧司朗有限公司 光学投影装置的光源模块和包含光源模块的光学投影装置
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN105115907A (zh) * 2015-08-17 2015-12-02 中国科学院等离子体物理研究所 一种滤光片光谱透过率测量装置
CN105628343B (zh) * 2016-01-17 2018-06-01 武汉光电工业技术研究院有限公司 一种波片检测装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268221A (zh) * 1997-07-24 2000-09-27 庄臣及庄臣视力保护公司 渐变眼镜的象质仪
CN102645826A (zh) * 2011-11-10 2012-08-22 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN203572632U (zh) * 2013-05-16 2014-04-30 宁波大学 一种介质薄膜光学参数的测量装置
JP2017090388A (ja) * 2015-11-16 2017-05-25 ダイトロンテクノロジー株式会社 検査装置
CN106124167A (zh) * 2016-06-17 2016-11-16 西安电子科技大学 超高反射镜的积分散射率/积分透射率高精度测量系统
CN206095585U (zh) * 2016-09-20 2017-04-12 深圳市光峰光电技术有限公司 光检测系统及光检测装置
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源系统

Also Published As

Publication number Publication date
CN110132541A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
KR20060131887A (ko) 비간섭성 고체 광원을 가진 높은 밝기의 조명 디바이스
JP6113730B2 (ja) 放出及び透過光学分光計
KR20020043081A (ko) 구동수단을 갖는 분광 광도계와 광도 측정방법
JP6023805B2 (ja) アンダーフィル光ファイバ試料インタフェースを有する光学分光計
WO2012036075A1 (ja) 屈折率測定装置、及び屈折率測定方法
WO2019148699A1 (zh) 光源装置及光学镜片测试系统
JP2004257956A (ja) 楕円型光学系
CN113272705B (zh) 准直器透镜、光源装置和图像显示装置
TW202104856A (zh) 光學計量學之高亮度照明源
Zhdanov et al. Modeling and computer design of liquid crystal display backlight with light polarization film
JP2007218633A (ja) 自動分析装置
TWI599762B (zh) Optical measuring device
JP2012242276A (ja) 分光光度計
KR20140014466A (ko) 디지털 광학 기술을 이용한 두께 측정 장치 및 방법
TWI709732B (zh) 光譜量測系統
JP2013246161A (ja) 分光光度計及び分光測定方法
TW201009316A (en) Surface plasmon resonance meter
JP3402321B2 (ja) 測定装置、研磨状況モニタ装置、研磨装置、半導体デバイス製造方法、並びに半導体デバイス
JP2009092481A (ja) 外観検査用照明装置及び外観検査装置
KR20070084504A (ko) 분석 장치
JP7101991B2 (ja) 少なくとも1つの溶液中の物質の吸光度を測定する方法及び測定装置
JP2004347394A (ja) 蛍光測定装置
JP2014115268A (ja) 分光分析装置
US20240110874A1 (en) Intensity calibration of multipass raman systems using standard reference materials
TW201602528A (zh) 光度測量裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903680

Country of ref document: EP

Kind code of ref document: A1