WO2019148438A1 - 信道发送方法及相关产品 - Google Patents

信道发送方法及相关产品 Download PDF

Info

Publication number
WO2019148438A1
WO2019148438A1 PCT/CN2018/075004 CN2018075004W WO2019148438A1 WO 2019148438 A1 WO2019148438 A1 WO 2019148438A1 CN 2018075004 W CN2018075004 W CN 2018075004W WO 2019148438 A1 WO2019148438 A1 WO 2019148438A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
carrier
bandwidth
drss
preset
Prior art date
Application number
PCT/CN2018/075004
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020207024044A priority Critical patent/KR20200115548A/ko
Priority to CN201880087552.7A priority patent/CN111630930A/zh
Priority to AU2018406777A priority patent/AU2018406777A1/en
Priority to EP18903997.7A priority patent/EP3745801A4/en
Priority to PCT/CN2018/075004 priority patent/WO2019148438A1/zh
Priority to JP2020541987A priority patent/JP2021518063A/ja
Publication of WO2019148438A1 publication Critical patent/WO2019148438A1/zh
Priority to US16/942,559 priority patent/US20200366452A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a channel transmission method and related products.
  • LAA Lens-assisted Access
  • the unlicensed spectrum is a spectrum of national and regional divisions that can be used for radio communication.
  • This spectrum is generally considered to be a shared spectrum. That is, communication equipment in different communication systems can meet the regulatory requirements set by the country or region. With this spectrum, there is no need to apply for a proprietary spectrum license from the government.
  • some countries or regions specify regulatory requirements that must be met to use the unlicensed spectrum.
  • the communication device follows the "listen-before-talk” (LBT) principle, that is, the communication device needs to perform channel sensing before transmitting on the channel of the unlicensed spectrum, only when When the channel listening result is that the channel is idle, the communication device can perform signal transmission; if the channel listening result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot perform signal transmission.
  • LBT listen-before-talk
  • the length of time that the communication device uses the channel of the unlicensed spectrum for signal transmission cannot exceed the Maximum Channel Occupation Time (MCOT).
  • MCOT Maximum Channel Occupation Time
  • Embodiments of the present application provide a channel transmission method and related products, which are advantageous for quality of signal transmission between a network device and a terminal on an unlicensed spectrum. .
  • the embodiment of the present application provides a channel sending method, including:
  • the network device sends a plurality of frequency-divided discovery reference signals DRS, and a maximum channel bandwidth determined by a frequency domain location of the plurality of frequency-divided DRSs is greater than or equal to a reference bandwidth.
  • an embodiment of the present application provides a channel sending method, including:
  • the terminal receives the plurality of frequency-divided discovery reference signals DRS from the network device, and the maximum channel bandwidth determined by the frequency domain position of the plurality of frequency-divided DRSs is greater than or equal to the reference bandwidth.
  • an embodiment of the present application provides a network device, where the network device has a function of implementing behavior of a first network device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processor configured to support the network device to perform corresponding functions in the methods described above. Further, the network device may further include a transceiver for supporting communication between the network device and the terminal. Further, the network device can also include a memory for coupling with the processor that holds program instructions and data necessary for the network device.
  • an embodiment of the present application provides a terminal, where the terminal has a function of implementing a behavior of a terminal in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes a processor configured to support the terminal in performing the corresponding functions of the above methods.
  • the terminal may further include a transceiver for supporting communication between the terminal and the network device.
  • the terminal may further include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • an embodiment of the present application provides a network device, including a processor, a memory, a transceiver, and one or more programs, where the one or more programs are stored in the memory, and are configured by The processor executes, the program comprising instructions for performing the steps in any of the methods of the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a terminal, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory, and configured by the The processor executes, the program comprising instructions for performing the steps in any of the methods of the second aspect of the embodiments of the present application.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • the embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
  • the embodiment of the present application provides a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause the computer to execute Apply some or all of the steps described in any of the methods of the first aspect of the embodiments.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to execute Apply some or all of the steps described in any of the methods of the second aspect of the embodiments.
  • the computer program product can be a software installation package.
  • the network device sends multiple frequency division DRSs, and the maximum channel bandwidth determined by the frequency domain location of the multiple frequency division DRSs is greater than or equal to the reference bandwidth, because the reference bandwidth can satisfy the unlicensed spectrum.
  • the power spectral density requirement of the transmitted signal is required, and in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, thereby facilitating the improvement of the unlicensed spectrum between the network device and the terminal.
  • the quality of the signal transmission is required, and in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, thereby facilitating the improvement of the unlicensed spectrum between the network device and the terminal.
  • 1A is a network architecture diagram of a possible communication system according to an embodiment of the present application.
  • 1B is a diagram showing an example of signal composition of an SSB according to an embodiment of the present application.
  • 2A is a schematic flowchart of a channel sending method according to an embodiment of the present application.
  • 2B is a diagram showing an example of determining a frequency domain location of two DRSs by a target channel bandwidth according to an embodiment of the present application
  • 2C is a diagram showing an example of frequency domain locations of SSBs of two cells interleaved according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a channel sending method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a channel sending method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 1A illustrates a wireless communication system to which the present application relates.
  • the wireless communication system 100 can operate in a high frequency band, is not limited to a Long Term Evolution (LTE) system, and can be a 5th generation (5G) system and a new air interface (NR) in the future.
  • System machine to machine (Machine to Machine, M2M) system.
  • the wireless communication system 100 can include one or more network devices 101, one or more terminals 103, and a core network device 105.
  • the network device 101 can be a base station, and the base station can be used for communicating with one or more terminals, and can also be used for communicating with one or more base stations having partial terminal functions (such as a macro base station and a micro base station).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities.
  • the core network device 105 includes an Access and Mobility Management Function (AMF) entity, a User Plane Function (UPF) entity, and a Session Management Function (SMF). .
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • Terminals 103 may be distributed throughout wireless communication system 100, either stationary or mobile.
  • the terminal 103 may be a mobile device (such as a smart phone), a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, and a mobile client. and many more.
  • the wireless communication system 100 shown in FIG. 1A is only for the purpose of more clearly explaining the technical solutions of the present application, and does not constitute a limitation of the present application. Those skilled in the art may know that with the evolution of the network architecture and new services. The appearance of the scenario, the technical solution provided by the present application is equally applicable to similar technical problems.
  • the LTE-based Authorized Auxiliary Access (LAA-LTE) system is based on carrier aggregation, and the carrier on the licensed spectrum is used as the primary carrier to prevent the carrier on the licensed spectrum from serving as the secondary carrier to the terminal device.
  • the primary carrier can be used to ensure the initial access of the terminal device and the transmission performance of some key services
  • the secondary carrier on the unlicensed spectrum can be used to transmit the non-critical big data service of the terminal device.
  • 3GPP also plans to introduce NR-unlicensed technology for communication using NR technology on the unlicensed spectrum.
  • the network device needs to send a Discovery Signal (DRS) signal on the unlicensed carrier, so that the terminal of the cell can complete and cancel the cell on the carrier. Synchronization also enables the terminal of the neighboring cell to complete radio resource management RRM measurement (RSRP, RSRQ, etc.) for the signal of the cell.
  • the discovery reference signal DRS in the LTE system includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a cell common reference signal CRS.
  • the discovery reference signal DRS may further include a channel state information reference signal CSI-RS.
  • the discovery reference signal DRS includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a cell common reference signal CRS as an example, and the transmission of the discovery reference signal DRS in the LAA-LTE system of the LTE system is described.
  • the network device can send the discovery reference signal DRS in the DMTC (Discovery Signal Measurement Timing Configuration) window configured for the terminal. .
  • DMTC Discovery Signal Measurement Timing Configuration
  • the common channels and signals in the NR system need to cover the entire cell by means of multi-beam scanning, which is convenient for terminal reception in the cell.
  • the multi-beam transmission of the synchronization signal (SS) is implemented by defining a synchronization burst set SS burst set.
  • a sync signal burst set SS burst set contains one or more sync signal bursts SS burst, and one sync signal burst SS burst contains one or more sync signal blocks SS block.
  • a sync signal block SS block is used to carry a sync signal and a broadcast channel of one beam.
  • a synchronization signal burst set SS burst set may include a synchronization signal of the number of intra-cell synchronization signal blocks SS block number.
  • a synchronization signal block (SS block, SSB) includes a symbol primary synchronization signal PSS, a symbol secondary synchronization signal SSS, and a two-symbol new radio access technology system physical broadcast channel (Physical Broadcast channel, PBCH), where OFDM represents orthogonal frequency division multiplexing.
  • the time-frequency resource occupied by the PBCH includes a demodulation reference signal DMRS for demodulation of the PBCH.
  • the discovery reference signal DRS in the NR-unlicensed system may include a synchronization signal block SS block, or may include only the primary synchronization signal PSS and the secondary synchronization signal SSS, and may also include a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel demodulation.
  • Reference signal DMRS for PBCH may include a synchronization signal block SS block, or may include only the primary synchronization signal PSS and the secondary synchronization signal SSS, and may also include a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel demodulation.
  • Reference signal DMRS for PBCH may include a synchronization signal block SS block, or may include only the primary synchronization signal PSS and the secondary synchronization signal SSS, and may also include a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel demodulation.
  • the frequency domain position of the synchronization signal block SSB is defined by the synchronization raster raster, as shown in Table 1, in different frequency ranges, the possible frequency domain position of the synchronization signal block SSB is determined by the formula in the table. OK, and numbered by SSREF.
  • Table 1 Global Synchronization Channel Numbering Parameters for Full Frequency Domain Grid
  • the resource mapping of the synchronization signal block SSB is determined according to Table 2. That is, the synchronization raster raster is located in the resource unit RE of the number 0 in the PRB with the PRB number of 10 in the 20 physical resource blocks PRB of the synchronization signal block SSB.
  • the distribution of the synchronous raster raster within the bandwidth band is determined by Table 3 under different bandwidth bands.
  • the bandwidth band n77 the synchronous raster raster has a number range of 9460–10079, for a total of 620 synchronous raster rasters.
  • the transmission of the downlink channel includes the cell common reference signal CRS signal distributed over the full bandwidth, so there is no problem of the channel bandwidth occupation ratio.
  • the signals transmitted on the unlicensed spectrum channel also need to satisfy at least a certain proportion of the channel bandwidth.
  • the network device separately transmits the discovery reference signal DRS, the synchronization signal block SSB is separately transmitted. Since the bandwidth of the synchronization signal block SSB is 20 physical resource blocks PRB, the carrier bandwidth of the unlicensed spectrum currently used in the auxiliary access LAA system is 20 MHz, and multiple 20 MHz applications can be bundled by carrier aggregation.
  • the available bandwidth in the high frequency band is greater and the bandwidth of the corresponding unlicensed spectrum is greater.
  • the synchronization signal block SSB of the 20 physical resource blocks PRB only occupies a small part of the carrier bandwidth, and since there is no signal that is always distributed over the full bandwidth, when the network device separately transmits the synchronization signal block
  • the SSB or the like finds the reference signal DRS signal, the signal of the transmission on the unlicensed spectrum channel cannot satisfy the proportion requirement of the carrier channel.
  • FIG. 2A is a channel sending method according to an embodiment of the present application, which is applied to the foregoing example communications system, where the method includes:
  • the network device sends a plurality of frequency-divided discovery reference signals DRS, and a maximum channel bandwidth determined by a frequency domain location of the plurality of frequency-divided DRSs is greater than or equal to a reference bandwidth.
  • the DRS is used by the terminal to discover and/or measure a cell under the jurisdiction of the base station.
  • the maximum channel bandwidth is determined by a maximum frequency domain distance of frequency domain distances of any two of the plurality of frequency division DRSs. For example, if the DRS of multiple frequency divisions includes 3 DRSs, the frequency domain position corresponding to DRS1 is 5 MHz, the frequency domain position of DRS2 is 8 MHz, and the frequency domain position of DRS3 is 14 MHz, the maximum channel bandwidth is determined by 9 MHz.
  • the reference bandwidth is less than or equal to a carrier bandwidth of the preset carrier, where a frequency domain location of the multiple DRS is within a bandwidth corresponding to the carrier bandwidth, and the preset carrier includes an unlicensed carrier.
  • the carrier bandwidth may be a carrier bandwidth of a single carrier, or may be a carrier bandwidth of an aggregated carrier after multiple carriers are aggregated. For example, if the carrier bandwidth of a single carrier is 20 MHz, the carrier bandwidth of the preset carrier may be 20 MHz. 40 MHz (two carrier aggregation), 80 MHz (four carrier aggregation), and the like.
  • the reference bandwidth needs to be greater than a bandwidth that satisfies the requirement of the power spectral density of the transmitted signal (because the channel bandwidth is required to meet the same power spectral density requirement).
  • the larger the transmission power of the signal the better the signal transmission command can be, for example, 14 MHz, 15 MHz, 16 MHz, 17 MHz, 18 MHz, 19 MHz, 20 MHz, etc., which is not limited herein.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier is greater than 0 and less than or equal to 1.
  • the frequency domain location of the multiple DRSs is within a bandwidth corresponding to the carrier bandwidth,
  • the preset carrier includes an unlicensed carrier.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier needs to be greater than the minimum requirement to meet the power spectral density requirement of the transmitted signal (because the channel bandwidth is larger when the same power spectral density is met)
  • the higher the transmission power of the signal, the better the signal transmission command can be, for example, 60%, 70%, 72%, 75%, 80%, etc., which is not limited.
  • the association between the frequency domain location of the DRS and the preset carrier of the multiple frequency divisions may be determined by a preset mapping relationship, and the specific form of the mapping relationship may be a list or a formula. limited.
  • the specific configuration of the mapping relationship is a list
  • different combinations of the frequency domain positions of the multiple DRSs may be identified by different transmission mode patterns, and one preset carrier may correspond to one or more transmission patterns, and the network device is currently preset.
  • the specific policy of selecting a target transmission pattern in one or more transmission patterns corresponding to the carrier may be various, and is not limited herein.
  • the network device When the specific form of the mapping relationship is a formula, the network device only needs to determine the frequency domain location of the multiple DRSs by using the formula and the input parameter, where the input parameter may include at least the frequency domain characteristic parameter of the current preset carrier. .
  • the method before the network device sends the discovery reference signal DRS of the plurality of frequency divisions, the method further includes:
  • the network device performs the CCA detection on the channel of the preset carrier in the preset time period, where the preset time period is before the DRS transmission time window, and the preset carrier includes an unlicensed carrier; the network device detects The state of the channel of the preset carrier is an idle state.
  • the duration of the preset time period may be a transmission time of one SSB.
  • each DRS includes one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes PSS, SSS, and physical broadcast channel demodulation.
  • Reference signal DMRS for PBCH is a synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes PSS, SSS, and physical broadcast channel demodulation.
  • Reference signal DMRS for PBCH for PBCH.
  • the DRSs of the multiple frequency divisions correspond to the SSBs of the multiple frequency divisions; the index numbers of the SSBs of the multiple frequency divisions are the same, and the cell identifiers corresponding to the SSBs of the multiple frequency divisions are the same.
  • the SSBs of multiple frequency divisions are transmitted at the same time and have a quasi-common position QCL relationship, and their indexes are the same, thus facilitating synchronization of the terminal.
  • the DRSs of the multiple frequency divisions are associated with the same cell, and the DRSs of any two frequency divisions have a quasi-co-location QCL relationship. Since the transmission of the synchronization signal block DRS adopts the method of multi-beam scanning, different beams are transmitted in a time division manner. Therefore, the DRSs transmitted at different frequencies at the same time are transmitted by the same beam, which can improve the gain of beamforming and facilitate the reduction of the base station. The complexity of beamforming transmission.
  • the specific implementation process of determining the frequency domain location of the plurality of frequency-divided DRSs by the target channel bandwidth may be: acquiring a target channel bandwidth, and determining a minimum number of DRSs required for the target channel bandwidth to meet a preset bandwidth occupation requirement. And the frequency domain location of each DRS. Specifically, as shown in FIG.
  • the network device may further determine at least two DRSs corresponding to the target channel bandwidth, such as DRS1 and DRS2, and the frequency domain position of DRS1 corresponds to the high frequency position of the target channel bandwidth, and the frequency domain position of DRS2 corresponds to the low frequency position of the target channel bandwidth.
  • the network device can determine DRS of 2 frequency divisions, specifically DRS1 and DRS2, and the frequency domain position of DRS1 is 4 MHz, and the frequency domain position of DRS2 is 18 MHz.
  • the network device sends multiple frequency division DRSs, and the maximum channel bandwidth determined by the frequency domain location of the multiple frequency division DRSs is greater than or equal to the reference bandwidth, because the reference bandwidth can satisfy the license-free
  • the power spectral density of the transmitted signal on the spectrum requires that, in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, which is beneficial to improve the unlicensed spectrum between the network device and the terminal.
  • the quality of the signal transmission is desirable to improve the unlicensed spectrum between the network device and the terminal.
  • the DRS of the multiple frequency divisions corresponds to the SSBs of the multiple frequency divisions; the frequency domain location of the SSBs of the multiple frequency divisions is determined by the location of the synchronization raster raster of the carrier bandwidth of the preset carrier
  • the preset carrier includes an unlicensed carrier.
  • the synchronous raster raster is a minimum unit for adjusting the position of the carrier frequency, and indicates that the interval between the frequency points should be an integer multiple of 100 kHz, which is equivalent to dividing one highway into several lanes, and the center between the two lanes.
  • the distance is an integer multiple of 100KHz, and the terminal scans at an integer multiple of 100KHz during frequency scanning.
  • the frequency domain positions of the SSBs of different cells may be interlaced, so that mutual interference can be reduced.
  • the frequency domain positions of the SSBs of different cells are different, mutual interference between them can be avoided or reduced.
  • the channel bandwidth of the unlicensed carrier is 14.4 MHz
  • the synchronization grid of the channel bandwidth includes 11 synchronization grids, namely raster1, raster2, raster3, raster4, raster5, Raster6, raster7, raster8, raster9, raster10, raster11, where the frequency domain distance between any two grids is an integer multiple of 1.44MHz, that is, the frequency domain position of each synchronization grid is as shown in Table 1, and the synchronization The position of the grid is the frequency domain position of the synchronization signal block SSB, that is, the frequency domain position of the SSB corresponds to any one of the 11 synchronization grids, and the target channel bandwidth is determined to be 8 MHz, and specifically corresponds to 20.00 MHz to 28.00 MHz, then the network The device may determine a first synchronization raster raster1 (24 MHz) and a second synchronization raster raster7
  • Raster1 20.00MHz Raster2 21.44MHz Raster3 22.88MHz Raster4 24.32MHz Raster5 25.76MHz Raster6 27.20MHz Raster7 28.64MHz Raster8 30.08MHz Raster9 31.52MHz Raster10 32.96MHz Raster11 34.40MHz
  • the frequency domain position of the SSB can be accurately indicated by the synchronization grid, thereby facilitating the communication parties to quickly look up the table to determine the target channel bandwidth determined by the SSB of the currently transmitted multiple frequency divisions, and improve the target channel bandwidth in the communication system. Indicates efficiency.
  • the location of the synchronization raster is determined by the cell identity.
  • the locations of all the synchronization raster rasters are predefined.
  • the positions of their predefined synchronous rasters overlap, because the identifiers of different cells are different, the synchronization raster raster corresponding to the SSBs of multiple frequency divisions is different in different cells.
  • the location of the synchronization raster is configured by system message or radio resource control RRC signaling.
  • the system message may be, for example, Remaining minimum system information (RMSI) or other system information (OSI).
  • RMSI Remaining minimum system information
  • OSI system information
  • the RRC signaling configuration may be, for example, an RRC connection setup request, RRC reconfiguration signaling, or the like.
  • the location of the synchronization raster can control the transmission frequency domain location of the SSB through the system message or the radio resource control RRC signaling, which is beneficial to the effective use of the frequency domain resources and the reduction of the neighbor interference.
  • the multiple frequency division DRSs correspond to multiple frequency division SSBs; the frequency domain locations of the multiple frequency division SSBs are associated with a non-synchronous raster raster of a carrier bandwidth of a preset carrier. Transmitted in the frequency domain location, the preset carrier includes an unlicensed carrier.
  • the non-synchronous raster raster refers to a frequency location other than a frequency position of a predefined synchronization grid within a carrier bandwidth range.
  • the frequency domain location of the SSB of the multiple frequency divisions is sent in a frequency domain location associated with the non-synchronous raster raster of the carrier bandwidth of the preset carrier, and the frequency domain location of the SSB is not fixedly associated with the synchronization raster raster. relationship.
  • the frequency domain location of the SSB is sent in the frequency domain location associated with the non-synchronous raster raster, which can more flexibly configure the frequency domain location of the SSB without having to facilitate the frequency only at the location determined by the synchronization raster. Effective use of domain resources.
  • FIG. 3 is another channel sending method according to an embodiment of the present application, which is applied to the foregoing example communications system, where the method includes:
  • the terminal receives a plurality of frequency-distributed discovery reference signals DRS from the network device, and a maximum channel bandwidth determined by a frequency domain location of the plurality of frequency-division DRSs is greater than or equal to a reference bandwidth.
  • the terminal receives multiple frequency division DRSs, and the maximum channel bandwidth determined by the frequency domain location of the multiple frequency division DRSs is greater than or equal to the reference bandwidth, because the reference bandwidth can satisfy the unlicensed spectrum.
  • the power spectral density requirement of the transmitted signal is required, and in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, thereby facilitating the improvement of the unlicensed spectrum between the network device and the terminal.
  • the quality of the signal transmission is required, and in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, thereby facilitating the improvement of the unlicensed spectrum between the network device and the terminal.
  • the maximum channel bandwidth is determined by a maximum frequency domain distance of frequency domain distances of any two of the plurality of frequency division DRSs.
  • the reference bandwidth is less than or equal to a carrier bandwidth of a preset carrier, and a frequency domain location of the multiple DRSs is within a bandwidth corresponding to the carrier bandwidth, where the preset carrier includes an unlicensed carrier.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier is greater than 0 and less than or equal to 1, and the frequency domain locations of the multiple DRSs are within the bandwidth corresponding to the carrier bandwidth.
  • the preset carrier includes an unlicensed carrier.
  • each DRS includes one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH is not limited to one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH for PBCH.
  • the DRS of the multiple frequency divisions corresponds to the SSBs of the multiple frequency divisions; the frequency domain location of the SSBs of the multiple frequency divisions is determined by the location of the synchronization raster raster of the carrier bandwidth of the preset carrier
  • the preset carrier includes an unlicensed carrier.
  • the location of the synchronization raster is determined by the cell identity.
  • the location of the synchronization raster is configured by system message or radio resource control RRC signaling.
  • the multiple frequency division DRSs correspond to multiple frequency division SSBs; the frequency domain locations of the multiple frequency division SSBs are associated with a non-synchronous raster raster of a carrier bandwidth of a preset carrier. Transmitted in the frequency domain location, the preset carrier includes an unlicensed carrier.
  • the DRSs of the multiple frequency divisions correspond to the SSBs of the multiple frequency divisions; the index numbers index of the SSBs of the multiple frequency divisions are the same, and the cell identifiers corresponding to the SSBs of the multiple frequency divisions the same.
  • the DRSs of the plurality of frequency divisions are associated with the same cell, and the quasi-common position QCL relationship between the DRSs of any two frequency divisions.
  • the DRS of the multiple frequency divisions is that the network device performs idle channel estimation CCA detection on a channel of the preset carrier within a preset time period, and detects a channel of the preset carrier.
  • the preset period is before the DRS transmission time window, and the preset carrier includes an unlicensed carrier.
  • FIG. 4 is a channel sending method according to an embodiment of the present application.
  • the method is applied to the foregoing example communications system, where the method includes:
  • the network device sends a plurality of frequency-divided discovery reference signals DRS, and a maximum channel bandwidth determined by a frequency domain location of the plurality of frequency-division DRSs is greater than or equal to a reference bandwidth.
  • the terminal receives a plurality of frequency-distributed discovery reference signals DRS from the network device, and the maximum channel bandwidth determined by the frequency domain location of the plurality of frequency-division DRSs is greater than or equal to a reference bandwidth.
  • the network device sends multiple frequency division DRSs, and the maximum channel bandwidth determined by the frequency domain location of the multiple frequency division DRSs is greater than or equal to the reference bandwidth, because the reference bandwidth can satisfy the license-free
  • the power spectral density of the transmitted signal on the spectrum requires that, in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, which is beneficial to improve the unlicensed spectrum between the network device and the terminal.
  • the quality of the signal transmission is desirable to improve the unlicensed spectrum between the network device and the terminal.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device is a first network device.
  • the network device includes a processor. a memory, a transceiver, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the processor, the program including instructions for performing the following steps;
  • the network device sends multiple frequency division DRSs, and the maximum channel bandwidth determined by the frequency domain location of the multiple frequency division DRSs is greater than or equal to the reference bandwidth, because the reference bandwidth can satisfy the license-free
  • the power spectral density of the transmitted signal on the spectrum requires that, in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, which is beneficial to improve the unlicensed spectrum between the network device and the terminal.
  • the quality of the signal transmission is desirable to improve the unlicensed spectrum between the network device and the terminal.
  • the maximum channel bandwidth is determined by a maximum frequency domain distance of frequency domain distances of any two of the plurality of frequency division DRSs.
  • the reference bandwidth is less than or equal to a carrier bandwidth of a preset carrier, and a frequency domain location of the multiple DRSs is within a bandwidth corresponding to the carrier bandwidth, where the preset carrier includes an unlicensed carrier.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier is greater than 0 and less than or equal to 1, and the frequency domain locations of the multiple DRSs are within the bandwidth corresponding to the carrier bandwidth.
  • the preset carrier includes an unlicensed carrier.
  • each DRS includes one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH is not limited to one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH for PBCH.
  • the DRS of the multiple frequency divisions corresponds to the SSBs of the multiple frequency divisions; the frequency domain location of the SSBs of the multiple frequency divisions is determined by the location of the synchronization raster raster of the carrier bandwidth of the preset carrier
  • the preset carrier includes an unlicensed carrier.
  • the location of the synchronization raster is determined by the cell identity.
  • the location of the synchronization raster is configured by system message or radio resource control RRC signaling.
  • the multiple frequency division DRSs correspond to multiple frequency division SSBs; the frequency domain locations of the multiple frequency division SSBs are associated with a non-synchronous raster raster of a carrier bandwidth of a preset carrier. Transmitted in the frequency domain location, the preset carrier includes an unlicensed carrier.
  • the DRSs of the multiple frequency divisions correspond to the SSBs of the multiple frequency divisions; the index numbers index of the SSBs of the multiple frequency divisions are the same, and the cell identifiers corresponding to the SSBs of the multiple frequency divisions the same.
  • the DRSs of the plurality of frequency divisions are associated with the same cell, and the quasi-common position QCL relationship between the DRSs of any two frequency divisions.
  • the program further includes an instruction to: perform idle channel estimation on a channel of the preset carrier within the preset time period before the transmitting the plurality of frequency-divided discovery reference signals DRS
  • the CCA detects that the preset time period is before the DRS transmission time window, the preset carrier includes an unlicensed carrier, and the state of the channel for detecting the preset carrier is an idle state.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor, a memory, a communication interface, and one or more programs.
  • the one or more programs are stored in the memory and configured to be executed by the processor, the program comprising instructions for performing the following steps;
  • the maximum channel bandwidth determined by the frequency domain position of the plurality of frequency-divided DRSs is greater than or equal to a reference bandwidth.
  • the terminal receives multiple frequency division DRSs, and the maximum channel bandwidth determined by the frequency domain location of the multiple frequency division DRSs is greater than or equal to the reference bandwidth, because the reference bandwidth can satisfy the unlicensed spectrum.
  • the power spectral density requirement of the transmitted signal is required, and in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, thereby facilitating the improvement of the unlicensed spectrum between the network device and the terminal.
  • the quality of the signal transmission is required, and in the case of the same power spectral density requirement, the larger the current maximum channel bandwidth, the higher the corresponding signal transmission power, thereby facilitating the improvement of the unlicensed spectrum between the network device and the terminal.
  • the maximum channel bandwidth is determined by a maximum frequency domain distance of frequency domain distances of any two of the plurality of frequency division DRSs.
  • the reference bandwidth is less than or equal to a carrier bandwidth of a preset carrier, and a frequency domain location of the multiple DRSs is within a bandwidth corresponding to the carrier bandwidth, where the preset carrier includes an unlicensed carrier.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier is greater than 0 and less than or equal to 1, and the frequency domain locations of the multiple DRSs are within the bandwidth corresponding to the carrier bandwidth.
  • the preset carrier includes an unlicensed carrier.
  • each DRS includes one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH is not limited to one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH for PBCH.
  • the DRS of the multiple frequency divisions corresponds to the SSBs of the multiple frequency divisions; the frequency domain location of the SSBs of the multiple frequency divisions is determined by the location of the synchronization raster raster of the carrier bandwidth of the preset carrier
  • the preset carrier includes an unlicensed carrier.
  • the location of the synchronization raster is determined by the cell identity.
  • the location of the synchronization raster is configured by system message or radio resource control RRC signaling.
  • the multiple frequency division DRSs correspond to multiple frequency division SSBs; the frequency domain locations of the multiple frequency division SSBs are associated with a non-synchronous raster raster of a carrier bandwidth of a preset carrier. Transmitted in the frequency domain location, the preset carrier includes an unlicensed carrier.
  • the DRSs of the multiple frequency divisions correspond to the SSBs of the multiple frequency divisions; the index numbers index of the SSBs of the multiple frequency divisions are the same, and the cell identifiers corresponding to the SSBs of the multiple frequency divisions the same.
  • the DRSs of the plurality of frequency divisions are associated with the same cell, and the quasi-common position QCL relationship between the DRSs of any two frequency divisions.
  • the DRS of the multiple frequency divisions is that the network device performs idle channel estimation CCA detection on a channel of the preset carrier within a preset time period, and detects a channel of the preset carrier.
  • the preset period is before the DRS transmission time window, and the preset carrier includes an unlicensed carrier.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for each particular application to implement the described functionality, but such implementation should not be considered to be beyond the scope of the application.
  • the embodiments of the present application may perform the division of functional units on the terminal and the network device according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software program module. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 7 shows a block diagram of a possible functional unit configuration of the network device involved in the above embodiment, the network device being the first network device.
  • the network device 700 includes a processing unit 702 and a communication unit 703.
  • the processing unit 702 is configured to perform control management on the actions of the network device.
  • the processing unit 702 is configured to support the network device to perform step 201 in FIG. 2A, 401 in FIG. 4, and/or other processes for the techniques described herein.
  • the communication unit 703 is for supporting communication between the network device and other devices, such as communication with the terminal shown in FIG. 6.
  • the network device may further include a storage unit 701 for storing program codes and data of the network device.
  • the processing unit 702 can be a processor or a controller
  • the communication unit 703 can be a transceiver, a transceiver circuit, a radio frequency chip, etc.
  • the storage unit 701 can be a memory.
  • the processing unit 702 is configured to send, by using the communication unit 703, a plurality of frequency-divided discovery reference signals DRS, where a maximum channel bandwidth determined by a frequency domain position of the plurality of frequency-divided DRSs is greater than or equal to a reference bandwidth.
  • the maximum channel bandwidth is determined by a maximum frequency domain distance of frequency domain distances of any two of the plurality of frequency division DRSs.
  • the reference bandwidth is less than or equal to a carrier bandwidth of a preset carrier, and a frequency domain location of the multiple DRSs is within a bandwidth corresponding to the carrier bandwidth, where the preset carrier includes an unlicensed carrier.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier is greater than 0 and less than or equal to 1, and the frequency domain locations of the multiple DRSs are within the bandwidth corresponding to the carrier bandwidth.
  • the preset carrier includes an unlicensed carrier.
  • each DRS includes one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH is not limited to one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH for PBCH.
  • the DRS of the multiple frequency divisions corresponds to the SSBs of the multiple frequency divisions; the frequency domain location of the SSBs of the multiple frequency divisions is determined by the location of the synchronization raster raster of the carrier bandwidth of the preset carrier
  • the preset carrier includes an unlicensed carrier.
  • the location of the synchronization raster is determined by the cell identity.
  • the location of the synchronization raster is configured by system message or radio resource control RRC signaling.
  • the multiple frequency division DRSs correspond to multiple frequency division SSBs; the frequency domain locations of the multiple frequency division SSBs are associated with a non-synchronous raster raster of a carrier bandwidth of a preset carrier. Transmitted in the frequency domain location, the preset carrier includes an unlicensed carrier.
  • the DRSs of the multiple frequency divisions correspond to the SSBs of the multiple frequency divisions; the index numbers index of the SSBs of the multiple frequency divisions are the same, and the cell identifiers corresponding to the SSBs of the multiple frequency divisions the same.
  • the DRSs of the plurality of frequency divisions are associated with the same cell, and the quasi-common position QCL relationship between the DRSs of any two frequency divisions.
  • the processing unit 701 is further configured to perform idle channel estimation on a channel of the preset carrier in the preset time period before sending the plurality of frequency-distributed discovery reference signals DRS through the communication unit 703.
  • the CCA detects that the preset time period is before the DRS transmission time window, the preset carrier includes an unlicensed carrier, and the state of the channel for detecting the preset carrier is an idle state.
  • the network device involved in the embodiment of the present application may be the network device shown in FIG. 5.
  • FIG. 8 shows a block diagram of one possible functional unit configuration of the terminal involved in the above embodiment.
  • the terminal 800 includes a processing unit 802 and a communication unit 803.
  • the processing unit 802 is configured to control and manage the actions of the terminal.
  • the processing unit 802 is configured to support the terminal to perform step 301 in FIG. 3, step 402 in FIG. 4, and/or other processes for the techniques described herein.
  • the communication unit 803 is used to support communication between the terminal and other devices, such as communication with the network device shown in FIG.
  • the terminal may further include a storage unit 801 for storing program codes and data of the terminal.
  • the processing unit 802 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 803 may be a transceiver, a transceiver circuit, or the like, and the storage unit 801 may be a memory.
  • the processing unit 802 is configured to receive, by using the communications unit, a plurality of frequency-distributed discovery reference signals DRS from a network device, where a maximum channel bandwidth determined by a frequency domain location of the plurality of frequency-divided DRSs is greater than or equal to a reference. bandwidth.
  • the maximum channel bandwidth is determined by a maximum frequency domain distance of frequency domain distances of any two of the plurality of frequency division DRSs.
  • the reference bandwidth is less than or equal to a carrier bandwidth of a preset carrier, and a frequency domain location of the multiple DRSs is within a bandwidth corresponding to the carrier bandwidth, where the preset carrier includes an unlicensed carrier.
  • the ratio of the reference bandwidth to the carrier bandwidth of the preset carrier is greater than 0 and less than or equal to 1, and the frequency domain locations of the multiple DRSs are within the bandwidth corresponding to the carrier bandwidth.
  • the preset carrier includes an unlicensed carrier.
  • each DRS includes one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH is not limited to one synchronization signal block SSB; or, each of the DRSs includes a primary synchronization signal PSS and a secondary synchronization signal SSS; or, each of the DRSs includes a PSS, an SSS, and a physical broadcast.
  • the channel demodulation reference signal DMRS for PBCH for PBCH.
  • the DRS of the multiple frequency divisions corresponds to the SSBs of the multiple frequency divisions; the frequency domain location of the SSBs of the multiple frequency divisions is determined by the location of the synchronization raster raster of the carrier bandwidth of the preset carrier
  • the preset carrier includes an unlicensed carrier.
  • the location of the synchronization raster is determined by the cell identity.
  • the location of the synchronization raster is configured by system message or radio resource control RRC signaling.
  • the multiple frequency division DRSs correspond to multiple frequency division SSBs; the frequency domain locations of the multiple frequency division SSBs are associated with a non-synchronous raster raster of a carrier bandwidth of a preset carrier. Transmitted in the frequency domain location, the preset carrier includes an unlicensed carrier.
  • the DRSs of the multiple frequency divisions correspond to the SSBs of the multiple frequency divisions; the index numbers index of the SSBs of the multiple frequency divisions are the same, and the cell identifiers corresponding to the SSBs of the multiple frequency divisions the same.
  • the DRSs of the plurality of frequency divisions are associated with the same cell, and the quasi-common position QCL relationship between the DRSs of any two frequency divisions.
  • the DRS of the multiple frequency divisions is that the network device performs idle channel estimation CCA detection on a channel of the preset carrier within a preset time period, and detects a channel of the preset carrier.
  • the preset period is before the DRS transmission time window, and the preset carrier includes an unlicensed carrier.
  • the terminal involved in the embodiment of the present application may be the terminal shown in FIG. 6.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a terminal as in the above method embodiment Some or all of the steps described.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute a network in the method embodiment as described above Some or all of the steps described by the device.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the method embodiment as described above Some or all of the steps described in the terminal.
  • the computer program product can be a software installation package.
  • the embodiment of the present application further provides a computer program product, wherein the computer program product comprises a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform a network as in the above method Some or all of the steps described by the device.
  • the computer program product can be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in an access network device, a target network device, or a core network device. Of course, the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了信道发送方法及相关产品,包括:网络设备发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。本申请实施例有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。

Description

信道发送方法及相关产品 技术领域
本申请涉及通信技术领域,尤其涉及一种信道发送方法及相关产品。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)长期演进(Long Term Evolution,LTE)系统中,数据传输只能发生在授权频谱(Licensed Spectrum)上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。在3GPP RAN第65次会议中,授权频谱辅助接入(Licensed-assisted access,LAA)已经通过,使能在免授权频谱上使用LTE技术进行通信。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用免授权频谱必须满足的法规要求。例如,在欧洲地区,通信设备遵循“先听后说”(listen-before-talk,LBT)原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。目前,如何提高免授权频谱上的信号传输质量,是需要解决的问题。
发明内容
本申请的实施例提供一种信道发送方法及相关产品,有利于网络设备与终端之间在免授权频谱上的信号传输的质量。。
第一方面,本申请实施例提供一种信道发送方法,包括:
网络设备发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
第二方面,本申请实施例提供一种信道发送方法,包括:
终端接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
第三方面,本申请实施例提供一种网络设备,该网络设备具有实现上述方法设计中第一网络设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,网络设备包括处理器,所述处理器被配置为支持网络设备执行上述方法中相应的功能。进一步的,网络设备还可以包括收发器,所述收发器用于支持网络设备与终端之间的通信。进一步的,网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,本申请实施例提供一种终端,该终端具有实现上述方法设计中终端的行为 的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,终端包括处理器,所述处理器被配置为支持终端执行上述方法中相应的功能。进一步的,终端还可以包括收发器,所述收发器用于支持终端与网络设备之间的通信。进一步的,终端还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
第五方面,本申请实施例提供一种网络设备,包括处理器、存储器、收发器以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第二方面任一方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第二方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本申请实施例,网络设备发送多个频分的DRS,该多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽,由于该参考带宽可以满足免授权频谱上发送信号的功率谱密度要求,而在同等功率谱密度要求情况下,当前的最大信道带宽越大,对应的信号发射功率越高,从而有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1A是本申请实施例提供的一种可能的通信系统的网络架构图;
图1B是本申请实施例提供的一种SSB的信号组成示例图;
图2A是本申请实施例提供的一种信道发送方法的流程示意图;
图2B是本申请实施例提供的一种由目标信道带宽确定2个DRS的频域位置的示例图;
图2C是本申请实施例提供的一种相互交织的2个小区的SSB的频域位置示例图;
图3是本申请实施例提供的一种信道发送方法的流程示意图;
图4是本申请实施例提供的一种信道发送方法的流程示意图;
图5是本申请实施例提供的一种网络设备的结构示意图;
图6是本申请实施例提供的一种终端的结构示意图;
图7是本申请实施例提供的一种网络设备的结构示意图;
图8是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
示例的,图1A示出了本申请涉及的无线通信系统。该无线通信系统100可以工作在高频频段上,不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。该无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网设备105。其中:网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。核心网设备105包括接入和移动管理功能(Access and Mobility Management Function,AMF)实体,用户面功能(User Plane Function,UPF)实体和会话管理功能(Session Management Function,SMF)等核心网侧的设备。终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是移动设备(如智能手机)、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
需要说明的,图1A示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
下面对本申请涉及的相关技术进行介绍。
基于LTE系统的授权辅助接入(LAA-LTE)系统以载波聚合为基础,以授权频谱上的载波为主载波,以免授权频谱上的载波为辅载波向终端设备提供服务。在LAA-LTE系统中,主载波可以用于保证终端设备的初始接入以及一些关键业务的传输性能,而免授权频谱上的辅载波可用来对终端设备的非关键的大数据业务进行传输。在新无线NR系统中,3GPP同样计划引入NR-unlicensed技术,用于在免授权频谱上使用NR技术进行通信。
在LTE系统的授权辅助接入LAA-LTE系统中,网络设备需要在免授权载波上发送发现参考信号(Discovery Signal,DRS)信号,从而使本小区的终端能完成和免授权载波上的小区的同步,也能使邻小区的终端能完成对本小区信号的无线资源管理RRM测量(RSRP、RSRQ等)。其中,LTE系统中的发现参考信号DRS包括主同步信号PSS、辅同步信号SSS、小区公共参考信号CRS,可选地,发现参考信号DRS还可以包括信道状态信息参考信号CSI-RS。以发现参考信号DRS包括主同步信号PSS、辅同步信号SSS和小区公共参考信号CRS为例,对LTE系统的授权辅助接入LAA-LTE系统中的发现参考信号DRS的传输进行说明。在免授权频谱上,网络设备通过先听后说LBT检测拿到信道使用权后,可以在网络设备为终端配置的发现信号测量时间配置DMTC(Discovery signals Measurement Timing Configuration)窗口内发送发现参考信号DRS。
在NR系统中的公共信道和信号,如同步信号和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的终端接收。同步信号(synchronization signal,SS)的多波束发送是通过定义同步信号突发集合SS burst set实现的。一个同步信号突发集合SS burst set 包含一个或者多个同步信号突发SS burst,一个同步信号突发SS burst包含一个或多个同步信号块SS block。一个同步信号块SS block用于承载一个波束的同步信号和广播信道。因此,一个同步信号突发集合SS burst set可以包含小区内同步信号块数量SS block number个波束的同步信号。如图1B所示,一个同步信号块(SS block,SSB)中包含一个符号的主同步信号PSS,一个符号的辅同步信号SSS和两个符号的新无线接入技术系统的物理广播信道(Physical broadcast channel,PBCH),图中OFDM表示正交频分复用。其中,PBCH所占的时频资源中,包含解调参考信号DMRS,用于PBCH的解调。
在NR-unlicensed系统中,同样需要定义发现参考信号DRS用于免授权频谱上的小区的测量。NR-unlicensed系统中的发现参考信号DRS可以包括同步信号块SS block,也可以只包括主同步信号PSS和辅同步信号SSS,还可以包括主同步信号PSS、辅同步信号SSS和物理广播信道解调参考信号DMRS for PBCH。
对于NR中的无线频谱,同步信号块SSB的频域位置通过同步栅格raster来定义,如表1所示,在不同的频率范围,同步信号块SSB的可能的频域位置通过表中公式来确定,并且通过SSREF来进行编号。
表1:全频域栅格的全局同步信道编号参数
GSCN parameters for the global frequency raster
Figure PCTCN2018075004-appb-000001
确定了同步栅格raster之后,同步信号块SSB的资源映射根据表2确定。即同步栅格raster位于同步信号块SSB的20个物理资源块PRB中的PRB编号为10的PRB中的编号0的资源单元RE。
表2 同步栅格与同步信号块资源单元映射
Synchroniztion Raster to SS block Resource Element Mapping
Figure PCTCN2018075004-appb-000002
对于同步栅格raster,在不同的带宽band下,同步栅格raster在带宽band内的分布通过表3确定。例如,对于带宽band n77,同步栅格raster的编号范围为9460–10079,共620个同步栅格raster。
表3:同步栅格在带宽内的分布
Applicable SS raster entries per operating band
Figure PCTCN2018075004-appb-000003
Figure PCTCN2018075004-appb-000004
授权辅助接入LAA-LTE系统中,下行信道的发送包含了分布于全带宽的小区公共参考信号CRS信号,因此不存在信道带宽占用比例问题。而在新无线免授权NR-unlicensed技术中,在免授权频谱信道上传输的信号同样需要满足至少占用该信道带宽的一定比例。当网络设备单独发送发现参考信号DRS时,如单独发送同步信号块SSB。由于同步信号块SSB的带宽为20个物理资源块PRB,目前授权辅助接入LAA系统中使用的免授权频谱的载波带宽为20MHz,通过载波聚合可以捆绑多个20MHz使用。在支持新无线免授权NR-unlicensed技术的通信系统中,高频频段的可用带宽更大,相应的免授权频谱的带宽也会更大。无论对于20MHz还是更大的载波带宽,20个物理资源块PRB的同步信号块SSB只占载波带宽的很小一部分,由于不存在总是分布于全带宽的信号,当网络设备单独发送同步信号块SSB等发现参考信号DRS信号时,无法满足免授权频谱信道上的传输的信号占用该载波信道的比例要求。
针对上述问题,本申请实施例提出以下实施例,下面结合附图进行详细描述。
请参阅图2A,图2A是本申请实施例提供的一种信道发送方法,应用于上述示例通信系统,该方法包括:
在201部分,网络设备发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
其中,所述DRS用于终端发现和/或测量基站所辖的小区。
可选的,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。举例来说,假设多个频分的DRS包括3个DRS,对应DRS1的频域位置为5MHz,DRS2的频域位置为8MHz,DRS3的频域位置为14MHz,则最大信道带宽由9MHz确定。
可选的,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在 所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
其中,所述载波带宽可以是单个载波的载波带宽,也可以是多个载波聚合后的聚合载波的载波带宽,如单个载波的载波带宽为20MHz,则上述预设载波的载波带宽可以是20MHz、40MHz(两个载波聚合)、80MHz(4个载波聚合)等。
举例来说,假设当前预设载波的载波带宽为20MHz,则上述参考带宽需要大于最低能够满足发射信号的功率谱密度的要求的一个带宽(由于在满足同样的功率谱密度的要求下,信道带宽越大,信号的发射功率可以越大,从而有利于提高信号传输指令),例如可以是14MHz、15MHz、16MHz、17MHz、18MHz、19MHz、20MHz等,此处不做唯一限定。
可选的,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
其中,所述参考带宽相对于预设载波的载波带宽的占比需要大于最低能够满足发射信号的功率谱密度要求的一个占比(由于在满足同样的功率谱密度的要求下,信道带宽越大,信号的发射功率可以越大,从而有利于提高信号传输指令),例如可以是60%、70%、72%、75%、80%等比较高的占比,此处不做唯一限定。
具体实现中,上述多个频分的DRS的频域位置与预设载波之间的关联关系可以由预设的映射关系确定,该映射关系的具体形态可以是列表或公式,此处不做唯一限定。
在该映射关系的具体形态为列表时,多个DRS的频域位置的不同组合可以通过不同的发送模式pattern来标识,一个预设载波可以对应一个或多个发送pattern,网络设备在当前预设载波对应的一个或多个发送pattern中选取目标发送pattern的具体策略可以是多种多样的,此处不做唯一限定。
在该映射关系的具体形态为公式时,网络设备仅需要通过该公式和输入参数即可确定多个DRS的频域位置,其中所述输入参数可以至少包括当前的预设载波的频域特征参数。
具体实现中,所述网络设备发送多个频分的发现参考信号DRS之前,所述方法还包括:
所述网络设备在预设时段内对预设载波的信道进行空闲信道评估CCA检测,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波;所述网络设备检测到所述预设载波的信道的状态为空闲状态。其中,所述预设时段的时长可以是1个SSB的发送时间。
可选的,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
可选的,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。多个频分的SSB由于在相同时间发送,且具有准共位置QCL关系,且其index相同,如此便于终端进行同步。
可选的,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。由于同步信号块DRS的发送采用多波束扫描的方式,不同波束采用时分的方式发送,因此在相同时间不同频率发送的DRS,采用相同的波束发送,可以提高波束赋型的增益,也便于减少基站的波束赋型发送的复杂度。
此外,所述多个频分的DRS的频域位置由目标信道带宽确定的具体实现过程可以是:获取目标信道带宽,确定该目标信道带宽满足预设的带宽占用要求所需要的最少数量的DRS,以及每个DRS的频域位置。具体的,如图2B所示,假设网络设备确定满足带宽占用要求的目标信道带宽在预设载波的载波带宽中,网络设备进一步可以确定与该目标信道带宽对应的至少2个DRS,如DRS1和DRS2,且DRS1的频域位置对应该目标信道带宽的高频位置,DRS2的频域位置对应该目标信道带宽的低频位置。
举例来说,假设预设载波的载波带宽为20MHz,预设的带宽占用要求为信道带宽大于 10MHz,确定的目标信道带宽为14MHz,则网络设备可以确定2个频分的DRS,具体为DRS1和DRS2,且DRS1的频域位置为4MHz,DRS2的频域位置为18MHz。
可以看出,本申请实施例中,网络设备发送多个频分的DRS,该多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽,由于该参考带宽可以满足免授权频谱上发送信号的功率谱密度要求,而在同等功率谱密度要求情况下,当前的最大信道带宽越大,对应的信号发射功率越高,从而有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
其中,所述同步栅格raster是用于调整载波频率位置的最小单位,表示各个频点间的间隔应该是100KHz的整数倍,相当于一条高速路划分为若干车道,两个车道之间的中心距离为100KHz的整数倍,终端在频率扫描时就是按100KHz的整数倍来扫描的。
其中,如图2C所示,不同小区的SSB的频域位置可以互相交织,如此可以减少互相干扰。在这种配置下,由于不同小区的SSB的频域位置不相同,可以避免或减少它们之间的互相干扰。
举例来说,假设预设载波为免授权载波,该免授权载波的信道带宽为14.4MHz,该信道带宽的同步栅格包括11个同步栅格,分别为raster1、raster2、raster3、raster4、raster5、raster6、raster7、raster8、raster9、raster10、raster11,其中任意两个栅格之间的频域距离为1.44MHz的整数倍,即每个同步栅格的频域位置如表1所示,且该同步栅格的位置为同步信号块SSB的频域位置,即SSB的频域位置对应该11个同步栅格中的任意一个,目标信道带宽确定为8MHz,且具体对应20.00MHz至28.00MHz,则网络设备可以确定出包含该信道带宽的第一同步栅格raster1(24MHz)和第二同步栅格raster7(40MHz),最后确定在raster1和raster7的位置发送第一SSB和第二SSB。
表1
同步栅格 频域位置
raster1 20.00MHz
raster2 21.44MHz
raster3 22.88MHz
raster4 24.32MHz
raster5 25.76MHz
raster6 27.20MHz
raster7 28.64MHz
raster8 30.08MHz
raster9 31.52MHz
raster10 32.96MHz
raster11 34.40MHz
可见,本示例中,通过同步栅格能够准确指示SSB的频域位置,从而便于通信双方快速查表确定当前传输的多个频分的SSB所确定的目标信道带宽,提高通信系统中目标信道带宽的指示效率。
在一个可能的示例中,所述同步raster的位置由小区标识确定。
其中,在整个NR系统使用的频域上,预定义了所有同步栅格raster的位置,对于采用一定载波带宽的小区来说,其载波的频域范围内存在预定义的多个同步栅格raster的位置。 对于两个同频小区来说,虽然它们的预定义的同步raster的位置重叠,由于不同的小区的标识不同,那么多个频分的SSB对应的同步栅格raster在不同小区是不同。
可见,本示例中,由于不同小区的标识不同,由不同小区标识决定的同步栅格的位置也不同,因此,不同小区的所述多个SSB的频域位置不相同,从而避免或减少它们之间的互相干扰。
在一个可能的示例中,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
其中,所述系统消息例如可以是保持最小系统信息RMSI(Remaining minimum system information)或者其他系统信息OSI(Other system information)。所述RRC信令进行配置例如可以是RRC连接建立请求,RRC重配置信令等。
可见,本示例中,同步raster的位置通过系统消息或者无线资源控制RRC信令,可以灵活的配置SSB的发送频域位置,有助于频域资源的有效使用和减少邻区干扰。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
其中,所述非同步栅格raster是指载波带宽范围内除了预定义的同步栅格的频率位置之外的频率位置。对于所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,SSB的频域位置与同步栅格raster并没有固定的关联关系。
可见,本示例中,SSB的频域位置在非同步栅格raster关联的频域位置上发送,可以更灵活的配置SSB的频域位置,而不必只在同步raster决定的位置上有助于频域资源的有效使用。
与图2A所示实施例一致的,请参阅图3,图3是本申请实施例提供的另一种信道发送方法,应用于上述示例通信系统,该方法包括:
在301部分,终端接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
可以看出,本申请实施例中,终端接收多个频分的DRS,该多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽,由于该参考带宽可以满足免授权频谱上发送信号的功率谱密度要求,而在同等功率谱密度要求情况下,当前的最大信道带宽越大,对应的信号发射功率越高,从而有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。
在一个可能的示例中,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
在一个可能的示例中,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权 载波。
在一个可能的示例中,所述同步raster的位置由小区标识确定。
在一个可能的示例中,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
在一个可能的示例中,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
在一个可能的示例中,所述多个频分的DRS是所述网络设备在预设时段内对预设载波的信道进行空闲信道评估CCA检测,且在检测到所述预设载波的信道的状态为空闲状态之后发送的,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波。
与图2A和图3实施例一致的,请参阅图4,图4是本申请实施例提供的一种信道发送方法,应用于上述示例通信系统,该方法包括:
在401部分,网络设备发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
在402部分,终端接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
可以看出,本申请实施例中,网络设备发送多个频分的DRS,该多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽,由于该参考带宽可以满足免授权频谱上发送信号的功率谱密度要求,而在同等功率谱密度要求情况下,当前的最大信道带宽越大,对应的信号发射功率越高,从而有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。
与上述实施例一致的,请参阅图5,图5是本申请实施例提供的一种网络设备的结构示意图,该网络设备为第一网络设备,如图所示,该网络设备包括处理器、存储器、收发器以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
可以看出,本申请实施例中,网络设备发送多个频分的DRS,该多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽,由于该参考带宽可以满足免授权频谱上发送信号的功率谱密度要求,而在同等功率谱密度要求情况下,当前的最大信道带宽越大,对应的信号发射功率越高,从而有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。
在一个可能的示例中,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
在一个可能的示例中,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小 于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
在一个可能的示例中,所述同步raster的位置由小区标识确定。
在一个可能的示例中,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
在一个可能的示例中,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:在所述发送多个频分的发现参考信号DRS之前,在预设时段内对预设载波的信道进行空闲信道评估CCA检测,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波;以及用于检测到所述预设载波的信道的状态为空闲状态。
与上述实施例一致的,请参阅图6,图6是本申请实施例提供的一种终端的结构示意图,如图所示,该终端包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行以下步骤的指令;
接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
可以看出,本申请实施例中,终端接收多个频分的DRS,该多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽,由于该参考带宽可以满足免授权频谱上发送信号的功率谱密度要求,而在同等功率谱密度要求情况下,当前的最大信道带宽越大,对应的信号发射功率越高,从而有利于提高网络设备与终端之间在免授权频谱上的信号传输的质量。
在一个可能的示例中,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
在一个可能的示例中,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参 考信号DMRS for PBCH。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
在一个可能的示例中,所述同步raster的位置由小区标识确定。
在一个可能的示例中,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
在一个可能的示例中,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
在一个可能的示例中,所述多个频分的DRS是所述网络设备在预设时段内对预设载波的信道进行空闲信道评估CCA检测,且在检测到所述预设载波的信道的状态为空闲状态之后发送的,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的网络设备的一种可能的功能单元组成框图,该网络设备为第一网络设备。网络设备700包括:处理单元702和通信单元703。处理单元702用于对网络设备的动作进行控制管理,例如,处理单元702用于支持网络设备执行图2A中的步骤201、图4中的401和/或用于本文所描述的技术的其它过程。通信单元703用于支持网络设备与其他设备的通信,例如与图6中示出的终端之间的通信。网络设备还可以包括存储单元701,用于存储网络设备的程序代码和数据。
其中,处理单元702可以是处理器或控制器,通信单元703可以是收发器、收发电路、射频芯片等,存储单元701可以是存储器。
其中,所述处理单元702用于通过所述通信单元703发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
在一个可能的示例中,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
在一个可能的示例中,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS 的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
在一个可能的示例中,所述同步raster的位置由小区标识确定。
在一个可能的示例中,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
在一个可能的示例中,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
在一个可能的示例中,所述处理单元701在通过所述通信单元703发送多个频分的发现参考信号DRS之前,还用于:在预设时段内对预设载波的信道进行空闲信道评估CCA检测,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波;以及用于检测到所述预设载波的信道的状态为空闲状态。
当处理单元702为处理器,通信单元703为通信接口,存储单元701为存储器时,本申请实施例所涉及的网络设备可以为图5所示的网络设备。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的终端的一种可能的功能单元组成框图。终端800包括:处理单元802和通信单元803。处理单元802用于对终端的动作进行控制管理,例如,处理单元802用于支持终端执行图3中的步骤301,图4中的步骤402和/或用于本文所描述的技术的其它过程。通信单元803用于支持终端与其他设备的通信,例如与图5中示出的网络设备之间的通信。终端还可以包括存储单元801,用于存储终端的程序代码和数据。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元803可以是收发器、收发电路等,存储单元801可以是存储器。
其中,所述处理单元802用于通过所述通信单元接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
在一个可能的示例中,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
在一个可能的示例中,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
在一个可能的示例中,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
在一个可能的示例中,所述同步raster的位置由小区标识确定。
在一个可能的示例中,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
在一个可能的示例中,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
在一个可能的示例中,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
在一个可能的示例中,所述多个频分的DRS是所述网络设备在预设时段内对预设载波的信道进行空闲信道评估CCA检测,且在检测到所述预设载波的信道的状态为空闲状态之后发送的,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波。
当处理单元802为处理器,通信单元803为通信接口,存储单元801为存储器时,本申请实施例所涉及的终端可以为图6所示的终端。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法中网络设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被 存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (30)

  1. 一种信道发送方法,其特征在于,包括:
    网络设备发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
  2. 根据权利要求1所述的方法,其特征在于,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
  4. 根据权利要求1或2所述的方法,其特征在于,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    每个DRS包括1个同步信号块SSB;或者,
    所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,
    所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
  7. 根据权利要求6所述的方法,其特征在于,所述同步raster的位置由小区标识确定。
  8. 根据权利要求6或7所述的方法,其特征在于,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
  9. 根据权利要求1-5任一项所述的方法,其特征在于,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述网络设备发送多个频分的发现参考信号DRS之前,所述方法还包括:
    所述网络设备在预设时段内对预设载波的信道进行空闲信道评估CCA检测,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波;
    所述网络设备检测到所述预设载波的信道的状态为空闲状态。
  13. 一种信道发送方法,其特征在于,包括:
    终端接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
  14. 根据权利要求13所述的方法,其特征在于,所述最大信道带宽由所述多个频分的DRS中任意两个DRS的频域距离中的最大频域距离确定。
  15. 根据权利要求13或14所述的方法,其特征在于,所述参考带宽小于或等于预设载波的载波带宽,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载 波包括免授权载波。
  16. 根据权利要求13或14所述的方法,其特征在于,所述参考带宽相对于预设载波的载波带宽的占比大于0,且小于或等于1,所述多个DRS的频域位置在所述载波带宽对应的带宽范围内,所述预设载波包括免授权载波。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,每个DRS包括1个同步信号块SSB;或者,所述每个DRS包括主同步信号PSS和辅同步信号SSS;或者,所述每个DRS包括PSS、SSS和物理广播信道解调参考信号DMRS for PBCH。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置由预设载波的载波带宽的同步栅格raster的位置确定,所述预设载波包括免授权载波。
  19. 根据权利要求18所述的方法,其特征在于,所述同步raster的位置由小区标识确定。
  20. 根据权利要求18或19所述的方法,其特征在于,所述同步raster的位置通过系统消息或者无线资源控制RRC信令进行配置。
  21. 根据权利要求13-17任一项所述的方法,其特征在于,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的频域位置在预设载波的载波带宽的非同步栅格raster所关联的频域位置上发送,所述预设载波包括免授权载波。
  22. 根据权利要求13-21任一项所述的方法,其特征在于,所述多个频分的DRS对应多个频分的SSB;所述多个频分的SSB的索引号index相同,且所述多个频分的SSB对应的小区标识相同。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,所述多个频分的DRS关联相同的小区,且任意两个频分的DRS之间具有准共位置QCL关系。
  24. 根据权利要求13-23任一项所述的方法,其特征在于,所述多个频分的DRS是所述网络设备在预设时段内对预设载波的信道进行空闲信道评估CCA检测,以及在检测到所述预设载波的信道的状态为空闲状态后发送的,所述预设时段在DRS发送时间窗之前,所述预设载波包括免授权载波。
  25. 一种网络设备,其特征在于,包括处理单元和通信单元,
    所述处理单元,用于发送多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
  26. 一种终端,其特征在于,包括处理单元和通信单元,
    所述处理单元,用于接收来自网络设备的多个频分的发现参考信号DRS,所述多个频分的DRS的频域位置决定的最大信道带宽大于或等于参考带宽。
  27. 一种网络设备,其特征在于,包括处理器、存储器、收发器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-12任一项所述的方法中的步骤的指令。
  28. 一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求13-24任一项所述的方法中的步骤的指令。
  29. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-12任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求13-24任一项所述的方法。
PCT/CN2018/075004 2018-02-01 2018-02-01 信道发送方法及相关产品 WO2019148438A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207024044A KR20200115548A (ko) 2018-02-01 2018-02-01 채널 송신 방법 및 관련 제품
CN201880087552.7A CN111630930A (zh) 2018-02-01 2018-02-01 信道发送方法及相关产品
AU2018406777A AU2018406777A1 (en) 2018-02-01 2018-02-01 Channel transmission method, and related products
EP18903997.7A EP3745801A4 (en) 2018-02-01 2018-02-01 CHANNEL TRANSMISSION PROCEDURES AND RELATED PRODUCTS
PCT/CN2018/075004 WO2019148438A1 (zh) 2018-02-01 2018-02-01 信道发送方法及相关产品
JP2020541987A JP2021518063A (ja) 2018-02-01 2018-02-01 チャネル送信方法及び関連製品
US16/942,559 US20200366452A1 (en) 2018-02-01 2020-07-29 Channel transmission method, and related products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075004 WO2019148438A1 (zh) 2018-02-01 2018-02-01 信道发送方法及相关产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/942,559 Continuation US20200366452A1 (en) 2018-02-01 2020-07-29 Channel transmission method, and related products

Publications (1)

Publication Number Publication Date
WO2019148438A1 true WO2019148438A1 (zh) 2019-08-08

Family

ID=67479934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075004 WO2019148438A1 (zh) 2018-02-01 2018-02-01 信道发送方法及相关产品

Country Status (7)

Country Link
US (1) US20200366452A1 (zh)
EP (1) EP3745801A4 (zh)
JP (1) JP2021518063A (zh)
KR (1) KR20200115548A (zh)
CN (1) CN111630930A (zh)
AU (1) AU2018406777A1 (zh)
WO (1) WO2019148438A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089235A (ko) * 2019-09-30 2021-07-15 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 단말 장치
WO2024088220A1 (zh) * 2022-10-25 2024-05-02 维沃移动通信有限公司 发送信号方法、装置、终端及网络侧设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11259238B2 (en) 2018-07-20 2022-02-22 Apple Inc. PBCH content for NR unlicensed
EP3629507A1 (en) * 2018-09-28 2020-04-01 Intel IP Corporation Methods and devices for device-to-device communications
US11109448B2 (en) 2018-12-11 2021-08-31 Samsung Electronics Co., Ltd. Method and apparatus for timing configuration of discovery signal and channel
CN111435904B (zh) * 2019-03-27 2021-12-24 维沃移动通信有限公司 搜索空间的配置方法及装置、通信设备
US20230403641A1 (en) * 2022-06-10 2023-12-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting a discovery signal
CN115208733B (zh) * 2022-07-20 2024-02-13 成都华日通讯技术股份有限公司 一种lte与5gnr信号联合识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577217A (zh) * 2009-06-19 2012-07-11 捷讯研究有限公司 无线通信系统的参考信号设计
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN106162922A (zh) * 2015-01-27 2016-11-23 中兴通讯股份有限公司 发现信号的处理方法及装置
CN106686603A (zh) * 2015-11-05 2017-05-17 中兴通讯股份有限公司 信道干净评估检测方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091659B2 (en) * 2015-05-08 2018-10-02 Samsung Electronics Co., Ltd. Methods and apparatus for partial subframe transmission and broadcast channel on unlicensed spectrum in a licensed assisted access (LAA) cell
US9979522B2 (en) * 2015-09-30 2018-05-22 Mediatek Inc. Multiplexing DRS within a transmission burst for opportunistic spectrum access
US10270573B2 (en) * 2017-05-16 2019-04-23 Qualcomm Incorporated Techniques and apparatuses for reusing remaining minimum system information configuration bits to signal a synchronization signal block location
US11160050B2 (en) * 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577217A (zh) * 2009-06-19 2012-07-11 捷讯研究有限公司 无线通信系统的参考信号设计
CN106162922A (zh) * 2015-01-27 2016-11-23 中兴通讯股份有限公司 发现信号的处理方法及装置
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN106686603A (zh) * 2015-11-05 2017-05-17 中兴通讯股份有限公司 信道干净评估检测方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745801A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089235A (ko) * 2019-09-30 2021-07-15 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 단말 장치
EP3873142A4 (en) * 2019-09-30 2021-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
US11387971B2 (en) 2019-09-30 2022-07-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining system information of cell and terminal
AU2019468915B2 (en) * 2019-09-30 2022-09-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
KR102491331B1 (ko) * 2019-09-30 2023-01-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법과 단말 장치
EP4213432A1 (en) * 2019-09-30 2023-07-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
WO2024088220A1 (zh) * 2022-10-25 2024-05-02 维沃移动通信有限公司 发送信号方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
CN111630930A (zh) 2020-09-04
EP3745801A4 (en) 2021-01-13
KR20200115548A (ko) 2020-10-07
EP3745801A1 (en) 2020-12-02
AU2018406777A1 (en) 2020-09-10
US20200366452A1 (en) 2020-11-19
JP2021518063A (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2019148438A1 (zh) 信道发送方法及相关产品
KR102381712B1 (ko) 통신 방법 및 통신 장치
JP7206023B2 (ja) リソース場所を示し、それを受信するための方法、デバイス、装置、および記憶媒体
CN109076387B (zh) 用户终端以及无线通信方法
US10827528B2 (en) Method and apparatuses for providing parameter coordination for base stations and wireless devices
CN109076525B (zh) 终端、基站、系统以及无线通信方法
US11129155B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
US12010728B2 (en) Random access method and device
US10314089B2 (en) Method performed by a user equipment, method performed by an enodeb, user equipment and enodeb
CN108476506B (zh) 用户终端、无线基站以及无线通信方法
US11909676B2 (en) Method for coordination of resources between a next generation radio access network node and at least one further RAN node
WO2020177521A1 (zh) Prs的频域资源映射方法、装置及存储介质
KR20190039568A (ko) 데이터 송신 방법, 단말기, 및 기지국
JP2014027429A (ja) 通信システム、移動端末装置、ローカルエリア基地局装置及び通信方法
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
CN117546568A (zh) 用于通信的方法、设备和计算机存储介质
WO2021051306A1 (zh) 传输同步信号块的方法、终端设备和网络设备
US11108531B2 (en) Method and apparatus for setting symbol
CN110225556A (zh) 一种资源预留方法及相关设备
JP7111171B2 (ja) リソーススケジューリング方法、データ送信方法及びその装置、通信システム
WO2022151948A1 (zh) 高频段非授权频谱内的初始接入参数确定方法及相关装置
CN115002915B (zh) 信息指示方法及相关设备
WO2021147106A1 (zh) 一种dmrs配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024044

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018903997

Country of ref document: EP

Effective date: 20200825

ENP Entry into the national phase

Ref document number: 2018406777

Country of ref document: AU

Date of ref document: 20180201

Kind code of ref document: A