WO2019148437A1 - 一种叠片机及电池极片叠片方法 - Google Patents

一种叠片机及电池极片叠片方法 Download PDF

Info

Publication number
WO2019148437A1
WO2019148437A1 PCT/CN2018/075003 CN2018075003W WO2019148437A1 WO 2019148437 A1 WO2019148437 A1 WO 2019148437A1 CN 2018075003 W CN2018075003 W CN 2018075003W WO 2019148437 A1 WO2019148437 A1 WO 2019148437A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
lamination
battery pole
stage
vacuum chamber
Prior art date
Application number
PCT/CN2018/075003
Other languages
English (en)
French (fr)
Inventor
余玉英
Original Assignee
深圳前海优容科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海优容科技有限公司 filed Critical 深圳前海优容科技有限公司
Priority to PCT/CN2018/075003 priority Critical patent/WO2019148437A1/zh
Publication of WO2019148437A1 publication Critical patent/WO2019148437A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of battery manufacturing, and more particularly to a lamination machine and a battery pole piece lamination method.
  • Lithium-ion batteries are manufactured in a wound type or a laminated type.
  • the laminated battery has better battery performance.
  • each battery piece is laminated, it needs to be repeated.
  • the process of taking, positioning, and laminating, the lamination takes a long time, and one cell has a plurality of pairs of pole pieces. Therefore, the above-mentioned conventional lamination method has a low rate and a low lamination efficiency.
  • the technical problem to be solved by the present invention is to provide a lamination machine and a battery pole piece lamination method, which can improve the lamination efficiency.
  • a technical solution adopted by the present invention is to provide a laminating machine, comprising: a vacuum chamber provided with a stage and a lamination mechanism; and a lamination mechanism for injecting The battery pole piece of the vacuum chamber is pressed down to a preset position of the stage; wherein the battery pole piece comprises a positive electrode piece and a negative electrode piece, and the positive electrode piece and the negative electrode piece are alternately injected into the vacuum chamber at the first speed and the second speed, respectively, and the The first speed and the second speed have a first velocity component parallel to the stage and a second velocity component parallel to the stage, respectively.
  • a battery pole piece lamination method for a battery pole piece laminating machine comprising a vacuum chamber and a stage disposed in the vacuum chamber And a lamination mechanism comprising: alternately introducing the positive electrode tab and the negative electrode tab into the vacuum chamber at a first speed and a second speed, respectively, wherein the first speed and the second speed have parallel to the stage, respectively The first velocity component and the second velocity component parallel to the stage; the battery pole piece injected into the vacuum chamber is pressed down to a preset position of the stage by the lamination mechanism.
  • the beneficial effects of the present invention are: different from the prior art, in some embodiments of the present invention, the positive electrode tab and the negative electrode tab are alternately injected into the vacuum chamber at a first speed and a second speed, respectively, wherein the first speed sum
  • the second speed has a first speed component parallel to the stage and a second speed component parallel to the stage, and then the battery pole piece injected into the vacuum chamber is pressed down to a preset position of the stage by using a lamination mechanism. Therefore, the positive and negative electrodes can be alternately stacked on the preset position of the stage, and the operation of taking out the film and positioning can be repeated, the lamination time is shortened, and the lamination efficiency is improved.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the lamination machine of the present invention
  • FIG. 2 is a top plan view of a preset position area on the stage of FIG. 1;
  • Figure 3 is a schematic structural view of a second embodiment of the lamination machine of the present invention.
  • Figure 4 is a bottom plan view of the lamination mechanism of Figure 3 toward the end of the battery pole piece;
  • Figure 5 is a schematic structural view of a third embodiment of the lamination machine of the present invention.
  • Figure 6 is a schematic structural view of a fourth embodiment of the lamination machine of the present invention.
  • Figure 7 is a schematic structural view of an edge position control device in a fourth embodiment of the lamination machine of the present invention.
  • Figure 8 is a schematic structural view of a fifth embodiment of the laminating machine of the present invention.
  • Figure 9 is a schematic view showing the shape of a set of cutting knives on the cylindrical roller of Figure 8.
  • FIG. 10 is a schematic flow chart of an embodiment of a battery pole piece lamination method of the present invention.
  • Figure 11 is a flow chart showing the step S13 of the embodiment of the battery pole piece lamination method of the present invention.
  • the first embodiment 10 of the laminator of the present invention comprises: a vacuum chamber 101, the vacuum chamber 101 is provided with a stage 102 and a lamination mechanism 103;
  • the lamination mechanism 103 is configured to press the battery pole piece 20 injected into the vacuum chamber 101 to a preset position of the stage 102;
  • the battery pole piece 20 includes a positive electrode sheet 201 and a negative electrode sheet 202, and the positive electrode sheet 201 and the negative electrode sheet 202 are alternately injected into the vacuum chamber 101, and have a first speed component and a second speed component parallel to the stage 102, respectively.
  • the vacuum chamber 101 can be a completely vacuum environment or an environment close to a vacuum, such as a low pressure or negative pressure environment.
  • the lamination mechanism 103 may be a mechanical mechanism that presses the battery pole piece 20 by mechanical motion, or may be a mechanism that can emit a high-speed high-pressure fluid, and applies pressure to the battery pole piece 20 by the high-speed high-pressure fluid, and presses the battery pole piece 20 below.
  • the high-speed high-pressure fluid may be a liquid flow or a gas flow, and the pressure and speed of the fluid may be set according to actual needs, which is not specifically limited herein.
  • the lamination mechanism 103 is described as an example of a mechanical mechanism that moves in a direction perpendicular to the stage 102.
  • the lamination mechanism 103 can press the battery pole piece 20 injected into the vacuum chamber 101 to a preset position of the stage 102 at a preset frequency.
  • the preset frequency is a preset frequency of the lamination mechanism 103 pressing the battery pole piece 20 in a direction perpendicular to the stage 102, and the specific value may be the speed of the battery pole piece, and the battery pole piece is shot.
  • the distance between the position of the vacuum chamber and the position of the stage is set.
  • the preset frequency may be a fixed frequency or a periodically varying frequency, and may be adjusted according to actual conditions, and is not specifically limited herein.
  • the positive electrode tab 201 and the negative electrode tab 202 are alternately incident from both sides of the vacuum chamber 101, wherein the positive electrode tab 201 and the negative electrode tab 202 have parallel to the stage 102, respectively.
  • the first velocity component v1 and the second velocity component v2, and the velocity component perpendicular to the stage is substantially smaller than the first velocity component v1 and the second velocity component v2, and the air resistance can be ignored in the vacuum chamber 101, then
  • the positive electrode tab 201 and the negative electrode tab 202 are considered to alternately move in parallel from the edge of the vacuum chamber 101 to the upper side of the stage 102.
  • the battery plate 20 can be quickly depressed by the lamination mechanism 103 as long as the lamination mechanism 103 is pressed down.
  • the lamination speed can be increased to achieve a quick lamination.
  • the positive electrode sheet 201 needs to be in the region of the negative electrode sheet 202, and the negative electrode sheet 202 needs to be in the diaphragm region, whereby the positive electrode sheet 201 and the negative electrode sheet 202 are specific.
  • the speed and the injection time may be determined according to the process requirements of the lamination of the positive electrode tab 201 and the negative electrode tab 202, and are not specifically limited herein.
  • the positive electrode sheet 201 is a composite of a positive electrode battery pole piece and a separator
  • the negative electrode sheet 202 is a composite of a negative electrode battery pole piece and a separator.
  • the positive and negative electrode sheets may also be incident from the same side of the vacuum chamber or from a plurality of different orientations of the vacuum chamber, and are not specifically limited herein.
  • the preset position is a predetermined position area in which the battery pole piece 20 is placed on the stage 102.
  • the positive electrode sheet 201 is a composite of a positive electrode battery pole piece and a separator
  • the negative electrode sheet 202 is a separate negative electrode battery pole piece.
  • the positive electrode sheet 201 and the negative electrode sheet 202 are on the stage 102.
  • the preset positions may be A area and B area, respectively.
  • the positive electrode tab 201 and the negative electrode tab 202 generally deviate from the A region and the B region due to mechanical errors or the like, but as long as the error range of the positive electrode tab 201 deviating from the A region is less than the allowable error range,
  • the error range of the negative electrode sheet 202 from the B region is also smaller than the allowable error range, wherein the positive electrode sheet 201 and the negative electrode sheet 202 may have the same error range or may be different as long as the process requirements of the battery laminate are met. No specific restrictions.
  • the preset position of the positive electrode battery piece may also be set, and the preset position of the positive electrode battery piece should be within the B area.
  • the positive electrode tab and the negative electrode tab are alternately injected into the vacuum chamber, wherein the positive electrode tab and the negative electrode tab respectively have a first speed component and a second velocity component parallel to the stage, and the lamination mechanism will inject the battery into the vacuum chamber.
  • the pole piece is pressed down to the preset position of the stage, so that the positive and negative pieces are alternately stacked on the preset position of the stage, and the operation of taking the film and positioning is not repeated, the lamination time is shortened, and the lamination efficiency is improved.
  • the laminator can further spray liquid onto the surface of the battery pole piece during lamination, maintaining the relative position of adjacent pole pieces by the adhesion of the liquid.
  • the structure of the second embodiment 30 of the lamination machine of the present invention is similar to that of the first embodiment 10 of the lamination machine of the present invention in FIG. 1, and the same portions are not described herein again, except that
  • the laminator 30 of the present invention further includes: a liquid discharge device 104 that communicates with a liquid outlet hole (such as the liquid outlet hole 1032 shown in FIG. 4) disposed at one end 1031 of the lamination mechanism 103 toward the battery pole piece.
  • a liquid outlet hole such as the liquid outlet hole 1032 shown in FIG. 4
  • the liquid may be water or an electrolyte such as DMC (dimethyl Carbonate, dimethyl carbonate), PC (Propylene carbonate), EMC (Ethylmentyl) Carbonate, methyl ethyl carbonate), EC (Ethylene carbonate), DEC (Diethyl Carbonate diethyl carbonate) and the like.
  • DMC dimethyl Carbonate, dimethyl carbonate
  • PC Propylene carbonate
  • EMC Ethylmentyl Carbonate, methyl ethyl carbonate
  • EC Ethylene carbonate
  • DEC Diethyl Carbonate diethyl carbonate
  • a plurality of liquid outlet holes 1032 are provided, and the plurality of liquid discharge holes 1032 are connected to a liquid discharge device 104.
  • the battery pole piece such as the positive electrode piece
  • the liquid is sprayed onto the surface of the positive electrode piece, for example, DMC, and the adhesion of the liquid is utilized when the negative electrode piece is pressed down to the stage for the next time.
  • the adhesion between the adjacent positive electrode tab and the negative electrode tab can be increased, thereby maintaining the relative positions of the positive electrode tab and the negative electrode tab to avoid the relationship between the positive electrode tab and the negative electrode tab due to vibration of the lamination process and the like.
  • the relative position is deviated and does not meet the process requirements.
  • the liquid ejecting device 104 can be used to emit a high-speed high-pressure fluid to apply pressure to the battery pole piece using the high-speed high-pressure fluid, and the battery cell is pressed below. sheet.
  • the high speed high pressure fluid may be a liquid stream (eg, an electrolyte stream) or a gas stream.
  • the fluid is a liquid stream, the liquid can be simultaneously used to increase the adhesion between the adjacent stacked positive and negative electrode sheets, thereby maintaining the relative positions of the positive and negative electrode sheets.
  • the lamination mechanism 103 can also adjust the depression parameters such that the difference between the projected positive and negative tabs of the stage 102 is less than the tolerance range.
  • the pressing parameter includes a pressing position, a pressing distance and a speed of the lamination mechanism, and the allowable error range may be set according to a process requirement, and may be determined according to a lamination precision requirement, and is not specifically described herein. limited.
  • the positive electrode sheet is a composite of a positive electrode battery pole piece and a separator
  • the negative electrode piece is a composite of a negative electrode battery pole piece and a separator. Due to the battery process requirement, the projection area of the positive electrode battery pole piece on the stage should be the negative electrode battery pole. The projection area of the film is covered, and the projection area of the negative electrode battery piece on the stage should be covered by the projection area of the diaphragm. Therefore, when the positive electrode battery pole piece is in the central area of the positive electrode piece, the negative electrode battery piece is at the negative electrode.
  • the allowable error range of the negative electrode pole piece and the positive electrode battery pole piece may be set to be maximum when the center of the negative electrode battery pole piece overlaps the center of the positive electrode piece, and the negative electrode battery piece exceeds the positive electrode battery pole
  • the area or distance of the edge region of the sheet, the allowable error range of the negative electrode battery pole piece and the separator on the positive electrode battery pole piece may be set to be when the center of the negative electrode battery pole piece overlaps the center of the separator of the positive electrode piece, the positive electrode piece The area of the diaphragm beyond the edge area of the pole piece of the negative electrode.
  • adjusting the pressing parameter of the lamination mechanism 103 for example, reducing the pressing speed, can cause the projection area of the battery pole piece on the stage to be offset toward the first speed component of the battery pole piece, so that the battery can be adjusted.
  • the position of the pole pieces eventually causes the difference between the projected positive and negative tabs of the stage 102 to be less than the tolerance range.
  • the lamination machine can also test the stacked battery pole heights using a distance measuring device to adjust the stage or lamination mechanism using the height data. To improve the accuracy of the laminate.
  • the structure of the third embodiment 40 of the laminating machine of the present invention is similar to that of the first embodiment 10 of the lamination machine of the present invention in FIG. 1, and the same points are not described herein again, except that
  • the laminator 40 of the present invention further includes: a distance measuring device 105 disposed in the vacuum chamber 101 for measuring the height of the battery pole piece stacked on the stage 102 to adjust the stage 102 according to the height of the battery pole piece. The height or adjustment of the pressing parameters of the lamination mechanism 103.
  • the pressing parameter includes a pressing position, a pressing distance and a speed of the lamination mechanism.
  • the distance measuring device 105 may be a laser distance measuring device, an infrared distance measuring device, or the like.
  • the distance measuring device 105 may be disposed above the stage 102 or may be disposed at other positions, for example, at an angle to the surface of the stage 102. A certain position or the like can be measured as long as the height of the battery pole piece stacked on the stage 102 can be measured.
  • the distance measuring device 105 is a laser that can emit laser light to the battery pole piece 20 stacked on the stage 102 to utilize the light reflected by the battery pole piece 20, and is measured by laser.
  • the overall height of the battery pole piece 20 stacked on the stage 102 is measured by a distance principle such as a triangular reflection method or the like.
  • the stage 102 further includes: a height adjusting device 1021 connected to the distance measuring device 105 (not shown) for increasing the height of the battery pole piece 20 stacked on the stage 102.
  • the height of the stage 102 When the height of the stage 102 is lowered, for example, the height of the stage 102 is lowered to the increased height of the battery pole piece 20, thereby ensuring the position of the injected battery pole piece before pressing down on the stage 102 and after pressing down.
  • the height difference between the placed positions does not change, so that it is not necessary to frequently adjust the pressing parameters of the lamination mechanism 103, that is, the lamination can be realized.
  • the stage 102 can be a motor-driven lifting platform, and the height adjusting device 1021 is a driving motor.
  • the lamination mechanism 103 when the height of the battery pole piece 20 stacked on the stage 102 is increased, the lowering parameter of the lamination mechanism 103 may be adjusted without adjusting the height of the stage 102.
  • the lamination mechanism 103 further includes: a depression regulating device 1033 that is connected to the distance measuring device 105 (not shown) for increasing the height of the battery pole piece 20 stacked on the stage 102.
  • reducing the pressing distance of the lamination mechanism 103 and/or increasing the initial depression position of the lamination mechanism 103 for example, reducing the pressing distance by the increased height of the battery pole piece 20, or the initial depression Adjusting the height of the battery pole piece 20 to increase the height, or simultaneously reducing the pressing distance and increasing the initial pressing position, so that the injected battery pole piece is pressed down to the preset position of the stage 102, It is avoided that the error is increased due to the excessive or too small pressing distance of the lamination mechanism, and the precision of the lamination is further improved.
  • the laminating machine may also include the liquid discharging device as shown in FIG. 3, and the structure of the second embodiment of the laminating machine of the present invention may be specifically referred to, and is not repeated here.
  • the battery pole piece can be injected into the vacuum chamber using a transfer mechanism.
  • the structure of the fourth embodiment 50 of the laminating machine of the present invention is similar to that of the first embodiment 10 of the laminating machine of the present invention in FIG. 1, and the same points are not described herein again, except that
  • the laminator 50 of the present invention further includes a transport mechanism 106, one end of which is coupled to the vacuum chamber 101 for injecting the battery pole piece into the vacuum chamber 101.
  • the transport mechanism 106 may be a conveyor belt, a clamping mechanism that can clamp the movement of the battery pole piece, or other mechanism that can inject the battery pole piece into the vacuum chamber 101.
  • the transport mechanism 106 is a conveyor belt, and the transport mechanism 106 further includes: a first transport mechanism 1061 and a second transport mechanism 1062, the first transport mechanism 1061 is configured to transport The positive electrode sheet, the second conveying mechanism 1062 is for conveying the negative electrode sheet to alternately inject the positive electrode sheet and the negative electrode sheet into the vacuum chamber 101 at the first speed and the second speed, respectively.
  • the first transport mechanism 1061 and the second transport mechanism 1062 may be disposed on the same side of the vacuum chamber 101 or may be disposed on both sides of the vacuum chamber 101. In the present embodiment, the first transfer mechanism 1061 and the second transfer mechanism 1062 are respectively disposed on both sides of the vacuum chamber 101 as an example for description.
  • the first transport mechanism 1061 transports the positive electrode tab at the first speed v10 of the parallel stage 102
  • the second transport mechanism 1062 transports the negative electrode tab at the second speed v20 of the parallel stage 102, so that the positive electrode tab and The negative electrode tabs are alternately incident from both sides of the vacuum chamber 101, and the positive electrode tab has a first velocity component v1 of the parallel stage 102 having a second speed component v2 of the parallel stage 102, thereby causing the positive electrode tab and the negative electrode tab It is possible to move above the stage 102 to alternately press the positive and negative sheets onto the stage 102 by lamination mechanism 103.
  • the first speed component v1 is the same as the first speed v10
  • the second speed component v2 is the same as the second speed v20.
  • the first speed v10 and the second speed v20 may not be parallel to the stage, as long as the positive electrode and the negative electrode can be moved above the stage, and can be pressed by the lamination mechanism.
  • the first velocity component v1 is a velocity component of the first velocity v10 parallel to the stage direction
  • the second velocity component v2 is a velocity of the second velocity v20 parallel to the stage direction. Component.
  • the number and position of the first conveying mechanism and the second conveying mechanism may be set according to actual needs, and may be respectively disposed on opposite sides of the vacuum chamber as shown in FIG. 6, or may be separately disposed on two adjacent sides of the vacuum chamber, and A pair of the first conveying mechanism and the second conveying mechanism and the like may be separately disposed on the opposite other sides of FIG. 6 , and are not specifically limited herein.
  • the injection position of the battery pole piece may be preset according to the position where the stage is located, so that the battery pole piece is injected from the preset After the position enters the vacuum chamber, when moving to the top of the stage, the lamination mechanism can directly press the battery pole piece down to the preset position of the stage, thereby improving the precision and speed of the lamination.
  • the laminator 50 may further include: an edge position control device 107 disposed on the transport mechanism 106 for transporting with the battery pole piece 20 (see FIGS. 6 and 7).
  • the X-axis direction shown) and the pressing direction of the lamination mechanism 103 are simultaneously perpendicular to the first direction (the Y-axis direction shown in FIG. 7) to adjust the position of the battery pole piece 20.
  • the edge position control device 107 includes a position sensor 1071 and a position adjuster 1072 connected to each other for sensing the initial position of the battery pole piece 20 in the Y-axis direction and the battery pole piece 20 and the Y-axis direction.
  • the position adjuster 1072 is configured to adjust the actual position of the battery pole piece 20 in the Y-axis direction in real time according to the initial position, so that the positive electrode piece and the negative electrode piece are in the Y-axis direction when entering the vacuum chamber 101.
  • the difference in position above is less than the allowable error range.
  • the allowable error range is the maximum positional difference between the positive and negative electrode sheets required in the vertical direction of the battery lamination process, for example, the tolerance of the center position is 0.01 mm.
  • the difference in position between the two positions in the Y-axis direction may be the difference between the center positions of the two, or the difference between the edge positions of the two, or the relative Relative position difference at the same reference position, etc.
  • the position sensor 1071 may be a laser sensor, an infrared sensor, or an ultrasonic sensor.
  • the position adjuster 1072 may include two positioning blocks disposed at two ends of the conveying mechanism and movable in the Y-axis direction (eg, Fig. 7) may also be a mechanism such as a clamping mechanism or a robot arm.
  • the number of position sensors 1071 and position adjusters 1072 may be plural.
  • one edge position control device is disposed at a distance from the same transport mechanism, and each edge position control device includes at least one position sensor and one position adjuster.
  • an edge position control device 107 is provided on a conveyor belt 106, and the edge position control device 107 includes a position sensor 1071 and a position adjuster 1072, which is a laser.
  • a sensor is disposed at an edge of the conveyor belt 106.
  • the laser sensor 1071 can emit laser light onto the conveyor belt 106 in a reverse direction of the Y-axis direction. When the laser light contacts the battery pole piece 20 transmitted on the conveyor belt 106, the laser beam is reflected.
  • the sensor 1071 can measure the position of the battery pole piece 20, including the initial position and the adjusted actual position, by using the received reflected light, and the position adjuster 1072 includes two movable ends disposed on the conveyor belt 106 in the Y-axis direction.
  • the position adjuster 1072 can obtain an initial position of the battery pole piece 20, and determine, according to the initial position, whether an error between the position of the battery pole piece 20 and the set position is smaller than an error tolerance range, the setting
  • the position and the tolerance range can be the standard position and the maximum error range determined according to the battery lamination process requirements, respectively. Specific numerical values and ranges may be determined according to the actual needs of the precision, where not specifically defined.
  • the position adjuster 1072 can move the two positioning blocks in the vertical direction (Y-axis direction) to push the battery pole piece 20 between the two positioning blocks, By adjusting the actual position of the battery pole piece 20 in the vertical direction (Y-axis direction) in real time, the position adjustment process of the positive electrode sheet and the negative electrode sheet can finally cause the positive electrode sheet and the negative electrode sheet to be injected into the vacuum chamber 101.
  • the positional difference between the two positions in the vertical direction (Y-axis direction) is smaller than the allowable error range, thereby improving the lamination accuracy and speed.
  • the laminating machine may also include the liquid discharging device as shown in FIG. 3, and may also include a distance measuring device, a height adjusting device and a lower pressing adjusting device as shown in FIG. 4, and may specifically refer to the stack of the present invention.
  • the structure of the second and third embodiments of the tablet is not repeated here.
  • the transport mechanism can directly transport the electrode coil, cut into the required battery pole piece by the cutting mechanism, and then transport it to the vacuum chamber for lamination, and the edge position control device can also be used for adjustment. The position of the electrode coil.
  • the structure of the fifth embodiment 60 of the lamination machine of the present invention is similar to the structure of the fourth embodiment 50 of the lamination machine of the present invention in FIG. 6, and the same points are not described herein again, except that
  • the laminator 60 of the present invention further includes a cutting mechanism 108 disposed on the transport mechanism 106 for transporting the electrode web 203 for adjusting the position using the edge position control device 107.
  • the succeeding electrode web 203 is cut into the electrode pad 20 of a predetermined shape to inject the battery pole piece 20 of a predetermined shape into the vacuum chamber 101 by the transport mechanism 106.
  • the cutting mechanism 108 is disposed on the transport mechanism 106 toward at least one side of the electrode coil 203.
  • the edge position control device 107 can also be disposed upstream of the cutting mechanism 108 for adjusting the electrode coil 203.
  • the conveying direction of the electrode web 203 (the X-axis direction as shown in FIGS. 6 and 7) and the pressing direction of the lamination mechanism 103 (the reverse direction of the Z-axis direction of FIG. 6) are simultaneously perpendicular to the first direction.
  • the position that is, the adjustment cutting mechanism 108 cuts the position of the electrode web 203, so that the battery pole piece 20 of a predetermined shape is obtained after cutting.
  • the edge position control device may include at least two, respectively disposed upstream and downstream of the cutting mechanism, and the electrode coil and the cut battery pole piece may be respectively adjusted in the first direction. position.
  • the cutting mechanism 108 can include a set of cutters, and can also include a plurality of sets of cutters that can be disposed parallel to the transfer mechanism 106 or can be disposed on at least two of the cylindrical rollers.
  • the cutter is disposed perpendicular to the conveying mechanism 106, when the electrode coil 203 is cut, the cutter moves at the same rate as the conveying mechanism 106 in the conveying direction of the conveying mechanism 106, so that it is not necessary to stop the transmission every time the cutting is performed.
  • the electrode web 203 can thereby improve the cutting speed and efficiency.
  • the electrode web 203 can be simultaneously cut to simultaneously form a plurality of battery pole pieces 20 of a predetermined shape.
  • the cutter When the cutter is disposed on at least two of the cylindrical rollers, at least two of the cylindrical rollers are rotated at opposite speeds, and the rotation rate thereof is the same as the transmission speed of the conveying mechanism 106, so that the cutting can be performed on the conveying mechanism 106 while rotating.
  • the electrode coil 203 does not need to stop the transfer of the electrode web 203 every time the cutting is performed, whereby the cutting speed and efficiency can be improved.
  • the cutting knife and the cylindrical roller may also be integrally formed into a cylindrical roller cutter.
  • an edge position control device may be disposed downstream of the cutting mechanism to adjust the position of the cut battery pole piece in the vertical direction to further improve the accuracy and speed of the subsequent lamination.
  • the cutting mechanism 108 includes at least two cylindrical roller blades 108a and 108b, and the cylindrical roller blades 108a and 108b have a plurality of sets of cutters 1081 on the surface thereof, cylindrical rollers.
  • the knives 108a and 108b are rotated at opposite rotational speeds v3 and v4, and the rotational speeds of the cylindrical roller knives 108a and 108b are the same as those of the transport mechanism 106 for continuous cutting from the middle of the two cylindrical roller knives 108a and 108b.
  • the electrode coil 203 is such that the cutters on the cylindrical roller blades 108a and 108b and the electrode web 203 are relatively stationary in the transport direction, thereby achieving edge cutting and cutting speed.
  • the shape and position of each set of cutters 1081 may depend on the desired shape of the desired battery pole piece 20, such as the shape between the cutters 1081 shown in Figure 9, whereby, depending on the desired battery pole piece The shape can set the shape and position of the cutter 1081, and after cutting, a battery pole piece of a desired shape, such as a profiled pole piece, can be obtained.
  • one of the two cylindrical roller cutters has a plurality of sets of cutters on the surface of the roller cutter, and the other roller cutter surface is provided with a groove that meshes with the plurality of sets of cutters, and the two roller cutters rotate in opposite directions.
  • the cutter is inserted into the groove, so that the electrode web conveyed between the cutter and the groove is cut.
  • the laminating machine may also include the liquid discharging device as shown in FIG. 3, and may also include a distance measuring device, a height adjusting device and a lower pressing adjusting device as shown in FIG. 4, and may specifically refer to the stack of the present invention.
  • the structure of the second and third embodiments of the tablet is not repeated here.
  • FIG. 10 is a schematic flow chart of an embodiment of a battery pole piece lamination method of the present invention.
  • the battery pole piece lamination method of the embodiment is applied to a battery pole piece laminating machine, and the laminating machine comprises a vacuum chamber and a stage and a lamination mechanism disposed in the vacuum chamber, and the specific structure of the laminating machine can refer to the present The structure of any of the first to fifth embodiments of the lamination machine is invented and will not be repeated here.
  • the lamination method of this embodiment includes:
  • S11 alternately injecting the positive electrode tab and the negative electrode tab into the vacuum chamber at a first speed and a second speed, wherein the first speed and the second speed respectively have a first speed component parallel to the stage and parallel to the stage. Second speed component;
  • step S12 further includes:
  • the liquid discharging device is connected to the liquid discharging hole of the lamination mechanism toward one end of the battery pole piece, and the liquid is sprayed on the surface of the battery pole piece through the liquid discharging hole.
  • step S12 further includes:
  • the high speed high pressure fluid may be a liquid stream or a gas stream.
  • step S12 further includes:
  • the lamination method of this embodiment further includes:
  • S13 Measuring the height of the battery pole piece stacked on the stage by using the distance measuring device to adjust the height of the stage according to the height of the battery pole piece or adjusting the pressing parameter of the lamination mechanism.
  • the distance measuring device is disposed in the vacuum chamber.
  • step S13 further includes:
  • the method further includes:
  • the method further includes:
  • step S11 further includes:
  • the conveying mechanism may include a first conveying mechanism and a second conveying mechanism, and the first conveying mechanism and the second conveying mechanism may respectively convey the positive electrode sheet and the negative electrode sheet to respectively adopt the first speed and the negative electrode sheet at the first speed and the first The two speeds are alternately injected into the vacuum chamber.
  • first conveying mechanism and the second conveying mechanism may be disposed on the same side of the vacuum chamber, or may be respectively disposed on both sides of the vacuum chamber.
  • step S11 further includes:
  • the edge position control device is disposed on the transport mechanism.
  • the edge position control device includes a position sensor and a position adjuster connected to each other, and the position sensor can sense the initial position of the battery pole piece in the first direction, and the position adjuster can adjust the position according to the initial position in real time.
  • the actual position of the battery pole piece in the first direction is such that when the positive electrode tab and the negative electrode tab are injected into the vacuum chamber, the difference in position between the two positions in the first direction is less than the allowable error range.
  • the transport mechanism can also be used to transport the electrode web.
  • the edge position control device can also be used to adjust the position of the electrode coil.
  • the step S11 further includes:
  • the cutting mechanism is disposed on the conveying mechanism, and the cutting mechanism moves at the same rate as the conveying mechanism in the conveying direction of the conveying mechanism when cutting the electrode coil.
  • the cutting mechanism comprises a plurality of sets of cutters for simultaneously cutting the electrode coils to simultaneously form a plurality of battery pole pieces of a predetermined shape.
  • the cutting mechanism comprises two cylindrical roller cutters, the two cylindrical roller cutters rotating in opposite directions, the rotation speed of the two cylindrical roller cutters being the same as the transmission rate of the conveying mechanism, for continuously cutting from the two An electrode coil conveyed in the middle of a cylindrical roller cutter.
  • the positive electrode tab and the negative electrode tab are alternately injected into the vacuum chamber at a first speed and a second speed, respectively, wherein the first speed and the second speed respectively have a first speed component parallel to the stage and parallel to the stage
  • the lamination mechanism presses the battery pole piece injected into the vacuum chamber to a preset position of the stage, so that the positive and negative pole pieces are alternately stacked on the preset position of the stage, and no need to repeat
  • the operation of the film and the positioning shortens the lamination time, thereby improving the lamination efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种叠片机及电池极片叠片方法,该叠片机包括:真空室,该真空室内设置有载台和叠片机构;叠片机构用于将射入真空室的电池极片下压至载台的预设位置;其中,电池极片包括正极片和负极片,正极片和负极片分别以第一速度和第二速度交替射入真空室,其中第一速度和第二速度分别具有平行于载台的第一速度分量和平行于载台的第二速度分量。通过上述方式,本发明能够提高叠片效率。

Description

一种叠片机及电池极片叠片方法
【技术领域】
本发明涉及电池制造领域,尤其是涉及一种叠片机及电池极片叠片方法。
【背景技术】
锂离子电芯的制造方式有卷绕式,也有叠片式,叠片式电芯的电池性能更好,但目前的电池极片叠片方式中,由于每层叠一片电池极片,就需要重复进行取片、定位、叠片的过程,叠片耗时长,而一个电芯具有多对极片,因此,上述传统的叠片方式速率低,叠片效率低。
【发明内容】
本发明主要解决的技术问题是提供一种叠片机及电池极片叠片方法,能够提高叠片效率。
为了解决上述问题,本发明采用的一个技术方案是:提供一种叠片机,其特征在于,包括:真空室,该真空室内设置有载台和叠片机构;叠片机构用于将射入真空室的电池极片下压至载台的预设位置;其中,电池极片包括正极片和负极片,正极片和负极片分别以第一速度和第二速度交替射入真空室,且该第一速度和第二速度分别具有平行于载台的第一速度分量和平行于载台的第二速度分量。
为了解决上述问题,本发明采用的另一个技术方案是:提供一种电池极片叠片方法,应用于电池极片叠片机,该叠片机包括真空室以及设置于真空室中的载台和叠片机构,该叠片方法包括:将正极片和负极片分别以第一速度和第二速度交替射入真空室,其中,该第一速度和该第二速度分别具有平行于载台的第一速度分量和平行于载台的第二速度分量;利用叠片机构将射入真空室的电池极片下压至载台的预设位置。
本发明的有益效果是:区别于现有技术的情况,本发明的部分实施例中,正极片和负极片分别以第一速度和第二速度交替射入真空室,其中,该第一速度和该第二速度分别具有平行于载台的第一速度分量和平行于载台的第二速度分量,然后利用叠片机构将射入真空室的电池极片下压至载台的预设位置,从而可以将正负极片交替层叠在载台的预设位置上,不需要重复进行取片、定位的操作,缩短叠片时间,进而提高叠片效率。
【附图说明】
图1是本发明叠片机第一实施例的结构示意图;
图2是图1中载台上预设位置区域的俯视示意图;
图3是本发明叠片机第二实施例的结构示意图;
图4是图3中叠片机构朝向电池极片一端的仰视示意图;
图5是本发明叠片机第三实施例的结构示意图;
图6是本发明叠片机第四实施例的结构示意图;
图7是本发明叠片机第四实施例中边缘位置控制装置的结构示意图;
图8是本发明叠片机第五实施例的结构示意图;
图9是图8中柱状辊上一组裁刀的形状示意图;
图10是本发明电池极片叠片方法一实施例的流程示意图;
图11是本发明电池极片叠片方法一实施例的步骤S13的流程示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
如图1所示,本发明叠片机第一实施例10包括:真空室101,该真空室101内设置有载台102和叠片机构103;
该叠片机构103用于将射入真空室101的电池极片20下压至载台102的预设位置;
其中,电池极片20包括正极片201和负极片202,正极片201和负极片202交替射入真空室101,且分别具有平行于载台102的第一速度分量和第二速度分量。
该真空室101可以是完全真空的环境,也可以是接近真空的环境,例如低压或负压环境。该叠片机构103可以是机械机构,利用机械运动下压电池极片20,也可以是可发射高速高压流体的机构,利用该高速高压流体向电池极片20施加压力,以下压电池极片20。其中,该高速高压流体可以是液体流或者气体流,该流体的压力和速度可以根据实际需求设置,此处不做具体限定。
本实施例中,该叠片机构103以沿垂直于载台102方向移动的机械机构为例进行说明。该叠片机构103可以预设频率将射入真空室101的电池极片20下压至载台102的预设位置。其中,该预设频率是预先设定的该叠片机构103沿垂直于载台102方向下压电池极片20的频率,其具体取值可以该电池极片的速度,以及该电池极片射入真空室的位置与载台位置之间的距离设置,当然,该预设频率可以是固定频率,也可以是周期性变化的频率,还可以根据实际情况调整,此处不做具体限定。
具体地,在一个应用例中,如图1所示,正极片201和负极片202从真空室101的两侧交替射入,其中,正极片201和负极片202分别具有平行于载台102的第一速度分量v1和第二速度分量v2,且其垂直于所述载台的速度分量大大小于该第一速度分量v1和第二速度分量v2,并且真空室101中可以忽略空气阻力,则可以将该正极片201和负极片202视为交替从真空室101边缘匀速平行移动到该载台102上方。由于该第一速度分量v1和第二速度分量v2可以很大,例如大于100m/s,因此,利用叠片机构103可以实现快速下压电池极片20,只要将叠片机构103的下压时机和电池极片20的速度配合,则可以提高叠片速度,实现快速叠片。其中,由于正极片201和负极片202叠片时的工艺要求,正极片201需要处于负极片202区域内,负极片202需要处于隔膜区域内,由此,该正极片201和负极片202的具体速度和射入时间可以根据正极片201和负极片202叠片时工艺要求而定,此处不做具体限定。其中,该正极片201是正极电池极片和隔膜的复合物,和/或该负极片202是负极电池极片和隔膜的复合物。在其他应用例中,该正极片和负极片也可以从真空室的同一侧射入,或者从真空室的多个不同方位射入,此处不做具体限定。
该预设位置是预先设定的该电池极片20叠放在载台102上时所处的位置区域。本实施例中,该正极片201是正极电池极片和隔膜的复合物,负极片202是单独的负极电池极片,结合图2所示,该正极片201和负极片202在载台102上的预设位置可以分别为A区域和B区域,当叠片机构103下压该正极片201或负极片202至载台102时,该正极片201和负极片202应分别位于载台102上的A区域和B区域。当然,叠片过程中,由于机械误差等的存在,该正极片201和负极片202通常会偏离A区域和B区域,但只要该正极片201偏离该A区域的误差范围小于容许的误差范围,负极片202偏离该B区域的误差范围也小于容许的误差范围即可,其中该正极片201和负极片202容许的误差范围可以相同,也可以不同,只要符合电池叠片的工艺要求,此处不做具体限定。当然,在其他实施例中,还可以设置正极电池极片的预设位置,该正极电池极片的预设位置应处于该B区域范围内。
本实施例中,正极片和负极片交替射入真空室,其中,正极片和负极片分别具有平行于载台的第一速度分量和第二速度分量,叠片机构将射入真空室的电池极片下压至载台的预设位置,从而使得正负极片交替层叠在载台的预设位置上,不需要重复进行取片、定位的操作,缩短叠片时间,进而提高叠片效率。
在其他实施例中,该叠片机还可以进一步在叠片时,向电池极片表面喷洒液体,利用液体的粘附性保持相邻极片的相对位置。
具体如图3所示,本发明叠片机第二实施例30的结构与图1中本发明叠片机第一实施例10的结构类似,相同之处此处不再赘述,不同之处在于,本发明叠片机30进一步包括:出液装置104,该出液装置104连通设置于叠片机构103朝向电池极片的一端1031的出液孔(如图4所示的出液孔1032),用于在将电池极片下压至载台102时,向电池极片表面喷洒液体,以利用该液体保持相邻层叠放置的正极片和负极片的相对位置。
其中,该液体可以是水或电解液,例如DMC(dimethyl carbonate,碳酸二甲酯)、PC(Propylene carbonate,碳酸丙烯酯)、EMC(Ethylmentyl carbonate,碳酸甲基乙基酯)、EC(Ethylene carbonate,碳酸乙烯酯)、DEC(Diethyl carbonate碳酸二乙酯)等。当该液体是水时,为了避免极片之间短路等情况出现,后续电池制造工艺需要将该水滴蒸发。
具体地,在一个应用例中,结合图4所示,在叠片机构103朝向电池极片的一端1031,设置有多个出液孔1032,该多个出液孔1032连接一出液装置104,用于在将电池极片(如正极片)下压至载台102时,向正极片表面喷洒液体,例如DMC,则在下一次下压负极片至载台时,利用该液体的粘附性,可以增加该相邻层叠的正极片和负极片之间的附着力,从而保持该正极片和负极片的相对位置,以避免由于叠片过程的振动等因素导致正极片和负极片之间的相对位置偏离而不符合工艺要求。
可选地,当该叠片机构103是可发射高速高压流体的机构时,该出液装置104可以用于发射高速高压流体,以利用该高速高压流体向电池极片施加压力,以下压电池极片。其中,该高速高压流体可以是液体流(例如电解液流)或者气体流。当该流体是液体流时,同时可以利用该液体增加该相邻层叠的正极片和负极片之间的附着力,从而保持该正极片和负极片的相对位置。
可选地,叠片机构103还可以通过调整其下压参数使得层叠放置的正极片和负极片在载台102的投影区域之间的差异小于容许的误差范围。
其中,该下压参数包括该叠片机构的下压位置、下压距离和速度等,该容许的误差范围可以根据工艺需求设定,具体可以根据叠片精度要求而定,此处不做具体限定。
例如,正极片是正极电池极片和隔膜的复合物,负极片是负极电池极片和隔膜的复合物,由于电池工艺需求,正极电池极片在载台上的投影区域应被该负极电池极片的投影区域覆盖,该负极电池极片在载台上的投影区域应被隔膜的投影区域覆盖,因此,当该正极电池极片处于该正极片的中心区域,该负极电池极片处于该负极片的中心区域时,该负极电池极片与该正极电池极片的容许的误差范围最大可以设置为当负极电池极片的中心与该正极片的中心重叠时,负极电池极片超出正极电池极片边缘区域的面积或距离,该负极电池极片与该正极电池极片上的隔膜的容许误差范围可以设置为当负极电池极片的中心与该正极片的隔膜的中心重叠时,该正极片的隔膜超出负极电池极片边缘区域的面积或距离。
具体地,调整叠片机构103的下压参数,例如减小下压速度,可以使得电池极片在载台上的投影区域向该电池极片的第一速度分量方向偏移,从而可以调整电池极片的位置,最终使得层叠放置的正极片和负极片在载台102的投影区域之间的差异小于容许的误差范围。
在其他实施例中,随着载台上层叠的电池极片高度的增加,该叠片机还可以利用测距装置测试层叠的电池极片高度,以利用该高度数据调整载台或叠片机构,提高叠片的准确性。
具体如图5所示,本发明叠片机第三实施例40的结构与图1中本发明叠片机第一实施例10的结构类似,相同之处此处不再赘述,不同之处在于,本发明叠片机40进一步包括:设置于真空室101内的测距装置105,用于测量叠放在载台102上的电池极片的高度,以根据电池极片的高度调整载台102的高度或者调整叠片机构103的下压参数。
其中,该下压参数包括该叠片机构的下压位置、下压距离和速度等。该测距装置105可以是激光测距装置、红外测距装置等,该测距装置105可以设置于该载台102上方,也可以设置于其他位置,例如与该载台102表面呈一定角度的某个位置等,只要可以测量叠放在载台102上的电池极片的高度即可。
可选地,在一个应用例中,该测距装置105是激光器,该激光器可以向叠放在载台102上的电池极片20发射激光,以利用电池极片20反射的光线,采用激光测距原理,例如三角反射法等,测量叠放在载台102上的电池极片20的整体高度。每叠放一片电池极片,则计算载台102上叠放的电池极片20增加的高度,然后,根据该增加的高度,调低该载台的高度。例如图5所示,该载台102进一步包括:高度调节装置1021,连接该测距装置105(连接方式图未示),用于在叠放在载台102上的电池极片20的高度增加时,调低载台102的高度,例如将载台102的高度调低该电池极片20增加的高度,从而保证射入的电池极片在载台102上方下压前的位置和下压后放置的位置之间的高度差不变,进而不需要频繁调整叠片机构103的下压参数,即可以实现叠片。其中,该载台102可以是一个电机驱动的升降台,该高度调节装置1021为驱动电机。
可选地,在另一个应用例中,在叠放在载台102上的电池极片20的高度增加时,也可以不调整载台102的高度,而调整叠片机构103的下压参数。例如图5所示,叠片机构103进一步包括:下压调节装置1033,连接测距装置105(连接方式图未示),用于叠放在载台102上的电池极片20的高度增加时,将叠片机构103的下压距离调小和/或将叠片机构103的初始下压位置调高,例如将下压距离调小该电池极片20增加的高度,或者将该初始下压位置调高该电池极片20增加的高度,又或者同时调小该下压距离和调高该初始下压位置,从而使得射入的电池极片被下压至载台102的预设位置,避免由于叠片机构下压距离过大或过小导致误差增大,进一步提高叠片的精度。
本实施例中,该叠片机也可以包括如图3所示的出液装置,具体可以参考本发明叠片机第二实施例的结构,此处不再重复。
在其他实施例中,可以利用传送机构将电池极片射入真空室中。
具体如图6所示,本发明叠片机第四实施例50的结构与图1中本发明叠片机第一实施例10的结构类似,相同之处此处不再赘述,不同之处在于,本发明叠片机50进一步包括:传送机构106,该传送机构106一端连接真空室101,用于将电池极片射入至真空室101内。
其中,该传送机构106可以是传送带,也可以是可夹持电池极片移动的夹持机构,还可以是其他可以将电池极片射入至真空室101内的机构。
具体地,在一个应用例中,如图6所示,该传送机构106是传送带,该传送机构106进一步包括:第一传送机构1061和第二传送机构1062,该第一传送机构1061用于输送正极片,第二传送机构1062用于输送负极片,以将正极片和负极片分别以第一速度和第二速度交替射入至真空室101内。
其中,第一传送机构1061和第二传送机构1062可以设置于真空室101的同一侧,也可以分别设置于真空室101的两侧。本实施例中,以第一传送机构1061和第二传送机构1062分别设置于真空室101的两侧为例进行说明。
在上述应用例中,第一传送机构1061以平行载台102的第一速度v10传送正极片,第二传送机构1062以平行载台102的第二速度v20传送负极片,以使得该正极片和负极片交替从真空室101两侧射入,且该正极片具有平行载台102的第一速度分量v1,该负极片具有平行载台102的第二速度分量v2,从而使得正极片和负极片可以移动到载台102上方,以利用叠片机构103将正负极片交替下压至该载台102上层叠放置。本应用例中,由于该第一速度v10和第二速度v20平行于载台102,因此该第一速度分量v1与该第一速度v10相同,该第二速度分量v2与该第二速度v20相同。当然,在其他应用例中,该第一速度v10和第二速度v20也可以不平行于载台,只要使得该正极片和该负极片可以移动到载台上方,并可以利用叠片机构下压至载台上放置即可,此时该第一速度分量v1是该第一速度v10平行于载台方向的速度分量,该第二速度分量v2是该第二速度v20平行于载台方向的速度分量。该第一传送机构和第二传送机构的数量和位置可以根据实际需求设置,可以是如图6中在真空室相对的两侧分别设置,也可以在真空室相邻的两侧分别设置,还可以在图6中相对的另外两侧再分别设置一对该第一传送机构和第二传送机构等,此处不做具体限定。
可选地,为了进一步提高叠片效率,在电池极片射入真空室前,可以根据载台所处的位置预先设置电池极片的射入位置,使得该电池极片从该预先设置的射入位置进入真空室后,移动到载台上方时,利用该叠片机构可以直接较准确的将该电池极片下压至载台的预设位置,从而提高叠片的精度和速度。
具体结合图6和图7所示,该叠片机50可以进一步包括:边缘位置控制装置107,设置于传送机构106上,用于在与电池极片20的输送方向(如图6和图7所示的X轴方向)和叠片机构103的下压方向(如图6的Z轴方向)同时垂直的第一方向(如图7所示的Y轴方向)调整电池极片20的位置。
其中,该边缘位置控制装置107包括相互连接的位置传感器1071和位置调整器1072,该位置传感器1071用于感测电池极片20在Y轴方向上的初始位置及电池极片20与Y轴方向的角度,位置调整器1072用于根据该初始位置实时调整电池极片20在Y轴方向上的实际位置,以使得正极片和负极片在射入真空室101时,二者位置在Y轴方向上的位置差异小于容许的误差范围。
该容许的误差范围是电池叠片工艺要求的该正极片和负极片之间在该垂直方向上的最大位置差异,例如中心位置的容许误差范围为0.01毫米。该正极片和负极片在射入真空室101时,二者位置在Y轴方向上的位置差异可以是二者中心位置的差异,也可以是二者边缘位置的差异,还可以是二者相对于同一个参考位置时的相对位置差异等。
该位置传感器1071可以是激光传感器,也可以是红外传感器,还可以是超声波传感器等,该位置调整器1072可以包括设置于传送机构两端的可在该Y轴方向上移动的两个定位块(如图7所示),也可以是夹持机构或机械臂等机构。该位置传感器1071和位置调整器1072的数量可以是多个,例如在同一传送机构每间隔一段距离设置一个边缘位置控制装置,每个边缘位置控制装置至少包括一个位置传感器和一个位置调整器。
具体地,在一个应用例中,如图7所示,在一传送带106上设置有边缘位置控制装置107,该边缘位置控制装置107包括位置传感器1071和位置调整器1072,该位置传感器1071是激光传感器,设置于该传送带106的边缘,该激光传感器1071可以沿Y轴方向的反方向向传送带106上发射激光,当激光接触到在传送带106上传输的电池极片20时会发生反射,该激光传感器1071可以利用接收到的反射光线,测量该电池极片20的位置,包括初始位置和调整后的实际位置,该位置调整器1072包括设置于传送带106两端的可在Y轴方向上移动的两个定位块,该位置调整器1072可以获取该电池极片20的初始位置,并根据该初始位置判断该电池极片20的位置与设定位置之间的误差是否小于误差容许范围,该设定位置和该误差容许范围可以分别是根据电池叠片工艺要求确定的标准位置和最大误差范围,具体数值和范围可以根据实际精度需求而定,此处不做具体限定。当该初始位置偏离该设定位置超过容许范围时,该位置调整器1072可以移动该垂直方向(Y轴方向)上的两个定位块,以推动两个定位块之间的电池极片20,以实时调整该电池极片20在垂直方向(Y轴方向)上的实际位置,通过上述对正极片和负极片的位置调整过程,最终可以使得正极片和负极片在射入真空室101时,二者位置在该垂直方向(Y轴方向)上的位置差异小于容许的误差范围,从而提高叠片精度和速度。
本实施例中,该叠片机也可以包括如图3所示的出液装置,也可以包括如图4所示的测距装置、高度调节装置和下压调节装置,具体可以参考本发明叠片机第二和第三实施例的结构,此处不再重复。
在其他实施例中,该传送机构可以直接传输电极卷材,利用裁切机构裁切为所需的电池极片后,输送到真空室中进行叠片,该边缘位置控制装置也可以用于调整该电极卷材的位置。
具体如图8所示,本发明叠片机第五实施例60的结构与图6中本发明叠片机第四实施例50的结构类似,相同之处此处不再赘述,不同之处在于,本发明叠片机60进一步包括:裁切机构108,设置于传送机构106上,该传送机构106用于传输电极卷材203,该裁切机构108用于将利用边缘位置控制装置107调整位置后的电极卷材203裁切为预设形状的电极极片20,以利用传送机构106将预设形状的电池极片20射入至真空室101。
其中,该裁切机构108设置于该传送机构106朝向电极卷材203的至少一侧,该边缘位置控制装置107还可以设置于该裁切机构108的上游,用于调整该电极卷材203在与电极卷材203的输送方向(如图6和图7所示的X轴方向)和叠片机构103的下压方向(如图6的Z轴方向的反方向)同时垂直的第一方向的位置,即调整裁切机构108裁切该电极卷材203的位置,从而使得裁切后得到预设形状的电池极片20。当然,在其他实施例中,该边缘位置控制装置可以包括至少两个,分别设置于该裁切机构的上游和下游,可以分别调整电极卷材和裁切后的电池极片在第一方向上的位置。
该裁切机构108可以包括一组裁刀,也可以包括多组裁刀,该裁刀可以平行于该传送机构106设置,也可以设置于至少两个柱状辊上。当裁刀垂直于该传送机构106设置时,在裁切电极卷材203时,裁刀在传送机构106的传输方向上与传送机构106同速率运动,从而不需要每次裁切均停止传输该电极卷材203,由此可以提高裁切速度和效率,当采用多组裁刀时,可以同时裁切电极卷材203,以同时形成多个预设形状的电池极片20。当裁刀设置于至少两个柱状辊上时,至少两个柱状辊以方向相反的速度转动,并且其转动速率与传送机构106传输速率相同,从而可以边转动边裁切在传送机构106上传输的电极卷材203,而并不需要每次裁切均停止传输该电极卷材203,由此可以提高裁切速度和效率。其中,该裁刀和柱状辊也可以一体成型制作成一柱状辊刀。当然,在其他实施例中,也可以在裁切机构下游设置边缘位置控制装置,以调整裁切后的电池极片在该垂直方向上的位置,以进一步提高后续叠片的精度和速度。
具体地,在一个应用例中,结合图8和图9所示,该裁切机构108包括至少两个柱状辊刀108a和108b,柱状辊刀108a和108b表面有多组裁刀1081,柱状辊刀108a和108b以相反方向的转动速度v3和v4转动,该柱状辊刀108a和108b的转动速率与传送机构106的传输速率相同,以连续裁切从该两个柱状辊刀108a和108b中间传输的电极卷材203,使得该柱状辊刀108a和108b上的裁刀与电极卷材203在该传输方向上相对静止,从而实现边传送边裁切,提高裁切速度。每组裁刀1081的形状和位置可以根据所需的电池极片20的预设形状而定,例如图9所示的裁刀1081之间的形状,由此,根据所需的电池极片的形状,可以设置裁刀1081的形状和位置,裁切后可以获得所需形状的电池极片,例如异形极片等。在其他应用例中,两个柱状辊刀中,其中一个辊刀表面有多组裁刀,另一个辊刀表面设置有与该多组裁刀相啮合的凹槽,两个辊刀反向转动,在裁切该电极卷材时,裁刀嵌入凹槽中,从而使得裁刀和凹槽之间传输的该电极卷材被切断。
本实施例中,该叠片机也可以包括如图3所示的出液装置,也可以包括如图4所示的测距装置、高度调节装置和下压调节装置,具体可以参考本发明叠片机第二和第三实施例的结构,此处不再重复。
请参阅图10,图10是本发明电池极片叠片方法一实施例的流程示意图。本实施例的电池极片叠片方法应用于电池极片叠片机,该叠片机包括真空室以及设置于真空室中的载台和叠片机构,该叠片机的具体结构可以参考本发明叠片机第一至第五任一实施例的结构,此处不再重复。本实施例的叠片方法包括:
S11:将正极片和负极片分别以第一速度和第二速度交替射入真空室,其中该第一速度和该第二速度分别具有平行于载台的第一速度分量和平行于载台的第二速度分量;
S12:利用叠片机构将射入真空室的电池极片下压至载台的预设位置。
可选地,步骤S12进一步包括:
步骤:在将电池极片下压至载台时,利用出液装置向电池极片表面喷洒液体,以利用液体保持相邻层叠放置的正极片和负极片的相对位置。
其中,该出液装置连通设置于叠片机构朝向电池极片一端的出液孔,通过出液孔向电池极片表面喷洒液体。
可选地,步骤S12进一步包括:
步骤:向射入真空室的电池极片喷射高速高压流体,以利用该高速高压流体将电池极片下压至预设位置。
其中,该高速高压流体可以是液体流或气体流。
可选地,步骤S12进一步包括:
步骤:叠片机构通过调整下压参数使得层叠放置的正极片和负极片在载台的投影区域之间的差异小于容许的误差范围。
可选地,如图11所示,本实施例的叠片方法进一步包括:
S13:利用测距装置测量叠放在载台上的电池极片的高度,以根据电池极片的高度调整载台的高度或者调整叠片机构的下压参数。
其中,该测距装置设置于所述真空室内。
可选地,该测距装置是激光器,步骤S13进一步包括:
步骤:利用该激光器向叠放在载台上的电池极片发射激光,以利用电池极片反射的光线测量叠放在载台上的电池极片的高度。
可选地,步骤S13之后进一步包括:
步骤:在叠放在载台上的电池极片的高度增加时,利用高度调节装置调低载台的高度。其中,该高度调节装置连接测距装置。
可选地,步骤S13之后进一步包括:
步骤:在叠放在载台上的电池极片的高度增加时,利用下压调节装置将叠片机构的下压距离调小和/或将叠片机构的初始下压位置调高。其中,该下压调节装置连接测距装置。
可选地,步骤S11进一步包括:
步骤:利用传送机构将正极片和负极片交替射入至真空室内。其中,该传送机构一端连接真空室。
其中,该传送机构可以包括第一传送机构和第二传送机构,利用第一传送机构和第二传送机构可以分别输送正极片和负极片,以将正极片和负极片分别以第一速度和第二速度交替射入至真空室内。
其中,第一传送机构和第二传送机构可以设置于真空室的同一侧,也可以分别设置于真空室的两侧。
可选地,步骤S11进一步包括:
步骤:利用边缘位置控制装置在与电池极片的输送方向和叠片机构的下压方向同时垂直的第一方向调整电池极片的位置。
其中,该边缘位置控制装置设置于传送机构上。
可选地,该边缘位置控制装置包括相互连接的位置传感器和位置调整器,利用位置传感器可以感测电池极片在该第一方向上的初始位置,利用位置调整器可以根据该初始位置实时调整电池极片在该第一方向上的实际位置,以使得正极片和负极片在射入真空室时,二者位置在该第一方向上的位置差异小于容许的误差范围。
可选地,传送机构还可以用于传输电极卷材,该边缘位置控制装置还可以用于调整该电极卷材的位置,步骤S11进一步包括:
步骤:利用裁切机构将利用边缘位置控制装置调整位置后的电极卷材裁切为预设形状的电极极片,以利用传送机构将预设形状的电池极片射入至真空室。
其中,该裁切机构设置于传送机构上,该裁切机构在裁切电极卷材时,在传送机构的传输方向上与传送机构同速率运动。
可选地,该裁切机构包括多组裁刀,该多组裁刀用于同时裁切电极卷材,以同时形成多个预设形状的电池极片。
可选地,该裁切机构包括两个柱状辊刀,该两个柱状辊刀以相反方向转动,该两个柱状辊刀的转动速率与传送机构的传输速率相同,以连续裁切从该两个柱状辊刀中间传输的电极卷材。
本实施例中的上述步骤的具体实施过程可以参考本发明叠片机第一至第五任一实施例的内容,此处不再重复。
本实施例中,正极片和负极片分别以第一速度和第二速度交替射入真空室,其中,第一速度和第二速度分别具有平行于载台的第一速度分量和平行于载台的第二速度分量,叠片机构将射入真空室的电池极片下压至载台的预设位置,从而使得正负极片交替层叠在载台的预设位置上,不需要重复进行取片、定位的操作,缩短叠片时间,进而提高叠片效率。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种叠片机,其特征在于,包括:
    真空室,所述真空室内设置有载台和叠片机构;
    所述叠片机构用于将射入所述真空室的电池极片下压至所述载台的预设位置;
    其中,所述电池极片包括正极片和负极片,所述正极片和所述负极片分别以第一速度和第二速度交替射入所述真空室,其中所述第一速度和所述第二速度分别具有平行于所述载台的第一速度分量和平行于所述载台的第二速度分量。
  2. 根据权利要求1所述的叠片机,其特征在于,进一步包括:出液装置,所述出液装置连通设置于所述叠片机构朝向所述电池极片一端的出液孔,用于在将所述电池极片下压至所述载台时,通过所述出液孔向所述电池极片表面喷洒液体,以利用所述液体保持相邻层叠放置的正极片和负极片的相对位置。
  3. 根据权利要求1所述的叠片机,其特征在于,所述叠片机构进一步用于向射入所述真空室的所述电池极片喷射流体,以利用所述流体将所述电池极片下压至所述预设位置。
  4. 根据权利要求1所述的叠片机,其特征在于,所述叠片机构通过调整下压参数使得层叠放置的正极片和负极片在所述载台的投影区域之间的差异小于容许的误差范围。
  5. 根据权利要求1所述的叠片机,其特征在于,进一步包括:设置于所述真空室内的测距装置,用于测量叠放在所述载台上的所述电池极片的高度,以根据所述电池极片的高度调整所述载台的高度或者调整所述叠片机构的下压参数。
  6. 根据权利要求5所述的叠片机,其特征在于,所述测距装置是激光器,用于向叠放在所述载台上的所述电池极片发射激光,以利用所述电池极片反射的光线测量叠放在所述载台上的所述电池极片的高度。
  7. 根据权利要求5所述的叠片机,其特征在于,所述载台进一步包括:高度调节装置,连接所述测距装置,用于在叠放在所述载台上的所述电池极片的高度增加时,调低所述载台的高度。
  8. 根据权利要求5所述的叠片机,其特征在于,所述叠片机构进一步包括:下压调节装置,连接所述测距装置,用于叠放在所述载台上的所述电池极片的高度增加时,将所述叠片机构的下压距离调小和/或将所述叠片机构的初始下压位置调高。
  9. 根据权利要求1所述的叠片机,其特征在于,进一步包括:传送机构,所述传送机构一端连接所述真空室,用于将所述电池极片射入至所述真空室内。
  10. 根据权利要求9所述的叠片机,其特征在于,所述传送机构进一步包括:第一传送机构和第二传送机构,所述第一传送机构用于输送所述正极片,所述第二传送机构用于输送所述负极片,以将所述正极片和所述负极片分别以所述第一速度和所述第二速度交替射入至所述真空室内。
  11. 根据权利要求10所述的叠片机,其特征在于,所述第一传送机构和所述第二传送机构设置于所述真空室的同一侧。
  12. 根据权利要求10所述的叠片机,其特征在于,所述第一传送机构和所述第二传送机构分别设置于所述真空室的两侧。
  13. 根据权利要求9所述的叠片机,其特征在于,进一步包括:边缘位置控制装置,设置于所述传送机构上,用于在与所述电池极片的输送方向和所述叠片机构的下压方向同时垂直的第一方向调整所述电池极片的位置。
  14. 根据权利要求13所述的叠片机,其特征在于,所述边缘位置控制装置包括相互连接的位置传感器和位置调整器,所述位置传感器用于感测所述电池极片在所述第一方向上的初始位置,所述位置调整器用于根据所述初始位置实时调整所述电池极片在所述第一方向上的实际位置,以使得所述正极片和负极片在射入所述真空室时,二者位置在所述第一方向上的位置差异小于容许的误差范围。
  15. 根据权利要求13所述的叠片机,其特征在于,进一步包括:裁切机构,设置于所述传送机构上,所述传送机构用于传输电极卷材,所述裁切机构用于将利用所述边缘位置控制装置调整位置后的所述电极卷材裁切为预设形状的所述电极极片,以利用所述传送机构将预设形状的所述电池极片射入至所述真空室。
  16. 根据权利要求15所述的叠片机,其特征在于,所述裁切机构在裁切所述电极卷材时,在所述传送机构的传输方向上与所述传送机构同速率运动。
  17. 根据权利要求16所述的叠片机,其特征在于,所述裁切机构包括多组裁刀,所述多组裁刀用于同时裁切所述电极卷材,以同时形成多个预设形状的所述电池极片。
  18. 根据权利要求16所述的叠片机,其特征在于,所述裁切机构包括两个柱状辊刀,所述两个柱状辊刀以相反方向的转动,所述两个柱状辊刀的转动速率与所述传送机构的传输速度相同,以连续裁切从所述两个柱状辊刀中间传输的所述电极卷材。
  19. 根据权利要求1所述的叠片机,其特征在于,所述正极片是正极电池极片和隔膜的复合物,和/或所述负极片是负极电池极片和隔膜的复合物。
  20. 一种电池极片叠片方法,应用于电池极片叠片机,所述叠片机包括真空室以及设置于所述真空室中的载台和叠片机构,其特征在于,所述叠片方法包括:
    将正极片和负极片分别以第一速度和第二速度交替射入真空室,其中,所述第一速度和所述第二速度分别具有平行于所述载台的第一速度分量和平行于所述载台的第二速度分量;
    利用叠片机构将射入所述真空室的电池极片下压至所述载台的预设位置。
PCT/CN2018/075003 2018-02-01 2018-02-01 一种叠片机及电池极片叠片方法 WO2019148437A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075003 WO2019148437A1 (zh) 2018-02-01 2018-02-01 一种叠片机及电池极片叠片方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075003 WO2019148437A1 (zh) 2018-02-01 2018-02-01 一种叠片机及电池极片叠片方法

Publications (1)

Publication Number Publication Date
WO2019148437A1 true WO2019148437A1 (zh) 2019-08-08

Family

ID=67478526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075003 WO2019148437A1 (zh) 2018-02-01 2018-02-01 一种叠片机及电池极片叠片方法

Country Status (1)

Country Link
WO (1) WO2019148437A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201859921U (zh) * 2010-11-10 2011-06-08 河海大学常州校区 锂电池电芯叠片机
CN102412419A (zh) * 2010-09-25 2012-04-11 深圳市吉阳自动化科技有限公司 一种叠片机及电芯叠片机构
CN202905907U (zh) * 2012-10-26 2013-04-24 东莞市鸿宝锂电科技有限公司 锂离子动力电池的电芯叠片机
WO2017073677A1 (ja) * 2015-10-28 2017-05-04 株式会社豊田自動織機 積層装置、及び電極積層方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412419A (zh) * 2010-09-25 2012-04-11 深圳市吉阳自动化科技有限公司 一种叠片机及电芯叠片机构
CN201859921U (zh) * 2010-11-10 2011-06-08 河海大学常州校区 锂电池电芯叠片机
CN202905907U (zh) * 2012-10-26 2013-04-24 东莞市鸿宝锂电科技有限公司 锂离子动力电池的电芯叠片机
WO2017073677A1 (ja) * 2015-10-28 2017-05-04 株式会社豊田自動織機 積層装置、及び電極積層方法

Similar Documents

Publication Publication Date Title
US20020007552A1 (en) Apparatus and method of manufacturing a battery cell
WO2022125529A1 (en) Method and apparatus for the production of electrode assemblies for secondary batteries
JP7488911B2 (ja) リチウム補充機器
US12002919B2 (en) Winding shaft, cell manufacturing apparatus, and cell manufacturing method
EP4095953A1 (en) Laminating device
KR20040005898A (ko) 이차전지 및 이차전지 제조방법 과 이차전지 제조장치
WO2020085835A1 (ko) 버큠 벨트 컨베이어를 이용한 각형 이차전지의 극판 적층 장치 및 자체 정렬 기능을 구비한 버큠 벨트 컨베이어
JP5371243B2 (ja) 膜/電極ユニットを製作するための方法および装置
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2022065890A1 (ko) 듀얼 슬롯 다이 코터
WO2022109019A1 (en) Spacers for electrodes, electrode stacks and batteries and systems and methods therefor
WO2022206195A1 (zh) 叠片方法、电芯及叠片系统
EP2816652B1 (en) Battery pressing apparatus and battery pressing method
CN109921084A (zh) 叠片方法以及叠片设备
WO2019148437A1 (zh) 一种叠片机及电池极片叠片方法
EP1665442A1 (en) Stacking apparatus and method for assembly of polymer batteries
CN208655820U (zh) 一种叠片机
KR20020089717A (ko) 자동화된 리튬 2차전지 제조 시스템용 라미네이션 장치
WO2019148436A1 (zh) 一种电池极片裁切设备及电池极片裁切叠片系统
CN113851790B (zh) 一种极耳贴胶装置
CN108417903A (zh) 一种叠片机及电池极片叠片方法
CN212277281U (zh) 叠片电芯折叠机构
KR20230153767A (ko) 이차전지 셀 제조용 전극 절단장치 및 그 제어 방법
CN210668567U (zh) 一种摇摆叠片机
CN113903972A (zh) 电芯叠放设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18904092

Country of ref document: EP

Kind code of ref document: A1