WO2019148417A1 - 管材取向工艺控制系统及管材取向工艺 - Google Patents

管材取向工艺控制系统及管材取向工艺 Download PDF

Info

Publication number
WO2019148417A1
WO2019148417A1 PCT/CN2018/074926 CN2018074926W WO2019148417A1 WO 2019148417 A1 WO2019148417 A1 WO 2019148417A1 CN 2018074926 W CN2018074926 W CN 2018074926W WO 2019148417 A1 WO2019148417 A1 WO 2019148417A1
Authority
WO
WIPO (PCT)
Prior art keywords
orientation
pipe
temperature
section
blank tube
Prior art date
Application number
PCT/CN2018/074926
Other languages
English (en)
French (fr)
Inventor
勾迈
高长全
张贵锁
王迎涛
Original Assignee
河北建投宝塑管业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北建投宝塑管业有限公司 filed Critical 河北建投宝塑管业有限公司
Priority to PCT/CN2018/074926 priority Critical patent/WO2019148417A1/zh
Priority to BR112020015393-1A priority patent/BR112020015393B1/pt
Publication of WO2019148417A1 publication Critical patent/WO2019148417A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems

Definitions

  • the invention relates to the technical field of pipe production molding, in particular to a pipe orientation process control system and a pipe orientation process.
  • Orientation techniques are used in many plastic applications to achieve performance improvements.
  • the orientation of the molecules usually produced is to stretch the material in one direction or two directions to a certain extent to cause yield and material flow.
  • the material itself has a high degree of extensibility without shrinkage in a certain temperature range, and is very convenient for orientation processing.
  • the orientation process of the PVC PVC pipe is basically formed by free expansion of the mold, that is, the diameter of the PVC blank is expanded by a plug body having a predetermined shape to expand into a PVC pipe which meets the requirements.
  • the expanded polyvinyl chloride PVC pipe still has defects of uneven wall thickness.
  • the invention provides a pipe orientation process control system, comprising an acquisition component, a temperature adjustment device and a control device;
  • the number of the obtaining parts is at least two, and is arranged circumferentially along the blank tube orientation forming section for obtaining the temperature of the corresponding arc segment in the circumferential direction of the blank tube orientation forming section; and the temperature adjustment is provided on each arc section Means for adjusting the temperature of the corresponding arc of the blank tube;
  • the control device adjusts the working condition of the corresponding temperature adjusting device according to the temperature signal acquired by each of the acquiring components, so that the temperatures of the arc segments in the circumferential direction of the blank tube orientation forming section are all within a predetermined range of the pointing temperature.
  • the blank tube orientation forming section is divided into N segments in the circumferential direction, wherein N is an integer greater than or equal to 2, each segment is provided with an acquisition component for measuring the temperature of the arc segment, and the control device receives the temperature signals of all the acquired components. And adjusting the corresponding temperature adjusting device according to each temperature signal so that the temperature of all the arc segments is in a predetermined orientation temperature range.
  • the obtaining component comprises an external temperature sensor for detecting an outer peripheral wall temperature of the blank tube orienting section, and an internal temperature sensor for detecting the orientation of the blank tube The inner peripheral wall temperature of the forming section; the control device adjusts the operating condition of the corresponding temperature adjusting device according to the detection signals of each of the external temperature sensor and the internal temperature sensor, so that the detection temperatures of all the temperature sensors are in the The predetermined orientation temperature range.
  • the stretch orientation unit comprises an expansion structure and a hollow tube supporting the expansion structure, the hollow tube extends through the inner cavity of the expansion structure, and the internal temperature sensor is installed in the expansion structure The cavity has its detection end facing outward.
  • the internal temperature sensor is a radial sensor having a plurality of detecting ends, wherein the radial sensors are located in the inner cavity of the expansion structure; each arc segment corresponds to one of the external temperature sensor and one detecting end of the radial sensor .
  • all of the external temperature sensor and the internal temperature sensor are disposed in the same cross section.
  • all the external temperature sensors are disposed on the same support frame.
  • a bottom of the support frame is provided with a sliding mechanism, and the support frame is slidably supported by the working platform by the sliding mechanism.
  • the guide wheel assembly comprising at least one set of the first guide wheel set and at least one set of the second guide wheel set
  • the first guide wheel set includes two guide wheels disposed in parallel in the upper and lower directions
  • the second guide wheel set includes two guide wheels disposed in parallel on the left and right.
  • a fluid pipeline system is further included.
  • the expansion structure of the stretching orientation unit comprises a guiding section, a conical expansion section and a large diameter straight section, which are sequentially connected, and the guiding section and the conical expansion section And an outer surface of the large diameter straight section is provided with a fluid inlet and a fluid outlet, each of the fluid inlet and the fluid outlet communicating with the high pressure pipeline and the low pressure pipeline of the fluid pipeline system;
  • a pressure valve and a flow valve are disposed on the communication line between the fluid inlet and the high pressure pipeline.
  • the present invention also provides a pipe orientation process, and the specific processes include:
  • the blank tube is divided into N arc segments in the circumferential direction, and a temperature adjusting device and an acquisition member are installed in each of the arc segments, wherein the temperature adjusting device is disposed in a blank pipe section before the stretching and orientation unit, and the obtaining component An oriented forming section disposed on the blank tube;
  • the conditions of the respective temperature adjustment devices are adjusted according to the temperature signals acquired by the respective acquisition members such that the temperatures in the circumferential regions of the blank tube orientation forming section are all within a predetermined orientation temperature range.
  • At least one set of two parallel guide wheels and at least one set of left and right parallel guide wheels are pre-installed, and the outer surface of each guide wheel is matched with the blank tube or the large-diameter pipe segment after orientation molding;
  • the pressure adjustment between the guide wheels and the pipe on the pipe diameter is also adjusted according to the circumferential thickness of the pipe diameter so that the thickness of the peripheral wall after the orientation molding is substantially the same.
  • the pipe orientation process is based on any of the above pipe orientation process control systems, so the pipe orientation process also has the above technical effects.
  • FIG. 1 is a structural block diagram of a pipe orientation process control system according to a specific embodiment of the present invention
  • FIG. 2 is a schematic view showing the positional structure of a stretching orientation unit and a blank tube in an orientation molding process according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view of Figure 2;
  • FIG. 4 is a schematic view showing the installation of a guide wheel assembly according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view of Figure 4.
  • Figure 6 is a partial layout view of a fluid pipeline system in an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a pipe orientation process according to an embodiment of the present invention.
  • Stretching orientation unit 1 guiding section 11, tapered expansion section 12, large diameter straight section 13, hollow tube 14;
  • a first guide wheel set 51 a guide wheel 51a, a second guide wheel set 52, a guide wheel 52a;
  • FIG. 1 is a structural block diagram of a pipe orientation process control system according to a specific embodiment of the present invention.
  • the pipe orientation molding apparatus mainly includes an extruder, a head, a temperature adjustment device, a tractor, and a stretch orientation unit 1.
  • the PVC compound of the specific formula is extruded through the extruder to the thick-walled blank tube 2, and the extruded thick-walled blank tube 2 is exported from the head and then continuously temperature-adjusted by a temperature regulating device to reach a suitable orientation temperature.
  • the orientation temperature range is usually from 90 ° C to 100 ° C, and the stability of the orientation temperature range plays a crucial role in stabilizing the orientation properties.
  • the stretch orientation unit 1 is provided with an expansion structure, and the green tube 2 heated by the temperature adjustment device is expanded into a large diameter pipe through the expansion structure.
  • the expanded structure is typically a rigid body that is incompressible.
  • the expansion structure comprises a guide section 11, a conical expansion section 12 and a large diameter straight section 13 which are connected in series, wherein the guide section 11 is close to the head position of the extruder, and the outer diameter is larger than the inner diameter of the blank tube 2.
  • the conical expansion section 12 is a conical section whose outer diameter is gradually enlarged.
  • the specific structure of the conical section may be in various forms, which will not be described in detail herein, as long as the expansion expansion of the blank tube 2 is satisfied. can.
  • the large diameter straight section is a cylindrical section of equal diameter, and the outer diameter thereof is substantially the inner diameter of the expanded blank tube 2.
  • the blank tube 2 In order for the blank tube 2 to successfully complete the expansion, the blank tube 2 is usually passed through the stretching orientation unit 1 under the traction of the tractor. That is, the stretching and orientation process of the blank tube 2 is roughly as follows: the blank tube 2 derived from the head is expanded into a large-diameter tube by the tensile guiding unit under the traction force of the tractor, and then can continue to enter the follow-up under the action of the tractor Production Process.
  • the present invention provides a tube orientation process control system including an acquisition component 4, a temperature adjustment device, and a control device.
  • the number of the obtaining parts 4 is at least two, and the temperature of the corresponding arc segments in the circumferential direction of the forming section is oriented along the blank tube 2.
  • the tube tube 2 is defined in the section of the tapered expanding section 12 of the stretching orienting unit 1 herein.
  • the preformed section is formed for the blank tube 2.
  • the blank tube 2 is in a different position of the stretch orientation unit 1 in that the blank tube 2 in the guide section 11 is an initial blank tube 2 having a relatively small diameter, that is, the diameter of the blank tube 2 has not been enlarged yet.
  • the number of circumferential segments divided into arcs may be determined according to specific conditions. In one embodiment, a 360 degree circumference is divided into 8 segments, and each arc segment corresponds to one acquisition component 4, that is, the number of acquisition components 4 is 8. .
  • the acquisition component 4 can be a temperature sensor.
  • Each arc segment is provided with a temperature adjusting device for adjusting the temperature of the corresponding arc segment of the blank tube 2, that is, the temperature adjusting device corresponds to the arc segment one by one, and the corresponding arc segment can be heated or cooled.
  • the specific structure of the temperature regulating device can be in various forms, such as an electric heating tube, etc., which will not be described one by one.
  • the temperature adjusting means is preferably disposed in front of the guide section 11 to heat the blank tube 2 which has not yet entered the guide section 11.
  • the temperature adjustment device is not disposed in other positions of the blank tube 2, and the specific position of the temperature adjustment device is not limited herein, as long as the above functions can be realized.
  • the control device adjusts the operating conditions of the respective temperature adjusting devices according to the temperature signals acquired by the respective acquiring members 4, so that the temperatures of the arc segments in the circumferential direction of the orientation forming section of the blank tube 2 are all within a predetermined orientation temperature range. That is, the control device causes the temperatures measured by the respective acquisition members 4 to be in a predetermined orientation temperature range by adjusting the power of the temperature adjustment device.
  • the predetermined orientation temperature range is determined based on the material of the blank tube 2.
  • the orientation section of the blank tube 2 is circumferentially divided into N segments, wherein N is an integer greater than or equal to 2, and each segment is provided with an acquisition member 4 for measuring the temperature of the arc segment, and the control device receives all the acquisition components 4 The temperature signal is adjusted, and the corresponding temperature adjustment device is adjusted according to each temperature signal so that the temperature of all the arc segments is within a predetermined orientation temperature range.
  • FIG. 7 is a schematic flow chart of a pipe orientation process according to an embodiment of the present invention.
  • the present invention also provides a pipe orientation process, and the specific processes include:
  • the blank tube 2 is divided into N arc segments in the circumferential direction, and a temperature adjusting device and an obtaining member 4 are installed in each arc segment, wherein the temperature adjusting device is disposed in the blank tube 2 before the stretching and orientation unit 1 a pipe section, the obtaining part 4 is disposed on the orientation forming section of the blank tube 2;
  • the blank tube 2 is affected by the ambient temperature during the molding process, and the temperature of the outer surface and the inner surface of the blank tube 2 may be inconsistent, that is, there is a temperature gradient change along the radial line.
  • the following settings are further made herein.
  • FIG. 2 is a schematic view showing the positional structure of the stretching and orientation unit and the blank tube in the orientation molding process according to the embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing the structure of FIG.
  • the acquisition component 4 can include an external temperature sensor 41 and an internal temperature sensor 42 for detecting the temperature of the peripheral wall of the oriented section of the blank tube 2.
  • the internal temperature sensor 42 is used to detect the inner peripheral wall temperature of the oriented section of the blank tube 2.
  • the control device adjusts the operating conditions of the respective temperature adjusting devices according to the detection signals of the respective external temperature sensors 41 and the internal temperature sensors 42 such that the detected temperatures of all the temperature sensors are within a predetermined orientation temperature range.
  • the influence of the radial temperature gradient on the pipe forming can be minimized, and the inner and outer surfaces of the blank tube 2 are all in the predetermined orientation temperature range, which is favorable for forming the pipe with higher quality.
  • the mounting method of the obtaining component 4 can be implemented in various structures, for example, a special mounting bracket is provided for fixed mounting, and of course, the existing structure can be used for fixing.
  • the stretch orientation unit 1 includes an expansion structure which can be supported by the hollow tube 14, which extends through the inner cavity of the expansion structure, and the internal temperature sensor 42 can be mounted to the hollow tube 14, the detection end thereof outward.
  • This embodiment realizes the mounting of the internal temperature sensor 42 by means of the structure of the stretching orientation unit 1, so that the system structure is relatively compact.
  • the internal temperature sensor 42 may be a radial sensor having a plurality of detecting ends, the radial sensors being located inside the inner cavity of the expansion structure, each arc segment corresponding to an external temperature sensor 41 and a detecting end of the self-defense sensor.
  • the radial sensor and the hollow tube 14 have fewer fixing points and occupy less space.
  • the external temperature sensor 41 and the internal temperature sensor 42 may be disposed on the same cross section.
  • Different tensile orientation units 1 can be processed on the same production line to process pipes of different pipe diameters. In order to reduce the use cost of the production line, the following settings are also made.
  • All the external temperature sensors 41 in the above embodiments may be disposed on the same support frame 3.
  • the bottom of the support frame 3 is provided with a sliding mechanism 31, and the support frame 3 is slidably supported by the sliding mechanism 31 on the ground or the table.
  • the ground or the work table is also provided with a structure that slides in cooperation with the sliding mechanism 31 of the support frame 3.
  • the sliding mechanism 31 disposed at the bottom of the support frame 3 may be a roller or a mechanism such as a chute or a slide rail.
  • FIG. 4 is a schematic view showing the installation of the guide wheel assembly according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the same.
  • the tube orientation process control system further includes a guide wheel assembly disposed in the unoriented shaped tube section or/and the oriented shaped large diameter tube section.
  • the guide wheel assembly includes at least one set of first guide wheel assemblies, at least one set of second guide wheel sets, the first guide wheel set includes two guide wheels disposed in parallel above and below, and the second guide wheel set includes two guide wheels disposed in parallel on the left and right sides .
  • the large diameter pipe section before or after the orientation of the blank tube 2 can be enclosed inside the four guide wheels composed of the first guide wheel set and the second guide wheel set, and the space enclosed by the four guide wheels
  • the internal forward movement is beneficial to ensure that the axial direction of the blank tube 2 and the large diameter pipe section are coaxial with the traction force, and the quality of the orientation molding is ensured.
  • control system of each of the above embodiments may further include a detecting component that measures the circumferential multi-point thickness of the pipe wall, and the control device further adjusts the pressure between each of the guide wheels and the blank tube 2 according to the signal measured by the detecting component, thereby obtaining an orientation.
  • the circumferential thickness of the tube after molding is the same.
  • step S1 is further increased: at least one set of two parallel guide wheels and at least one set of left and right parallel guide wheels are installed in advance, and the outer surface of each guide wheel and the blank tube 2 or the orientation molding The large diameter pipe sections fit together.
  • step S2 the following is added: at the same time, the pressure adjustment between the guide wheels and the pipe on the pipe diameter is adjusted according to the circumferential thickness of the pipe diameter, so that the thickness of the peripheral wall after the orientation molding is substantially the same.
  • FIG. 6 is a partial schematic view of a fluid pipeline system according to an embodiment of the present invention.
  • the pipe orientation process control system may further include a fluid pipe system.
  • the outer surfaces of the guiding section 11, the tapered expansion section 12 and the large diameter straight section 13 are provided with a fluid inlet and a fluid outlet.
  • Each fluid inlet and fluid outlet communicates with the high pressure line and the low pressure line of the fluid line system; fluid inlet tube 61, fluid inlet tube 62, fluid inlet tube 63, outlet line 64, outlet line are shown in FIG. 65.
  • the outlet line 66 The outlet line 66.
  • a pressure valve 67 and a flow valve are disposed on the communication line between each fluid inlet and the high pressure pipeline, and the flow valves on the fluid inlet pipe 61, the fluid inlet pipe 62, and the fluid inlet pipe 63 are respectively a flow valve 61a and a flow valve 62a.
  • Flow valve 63a is disposed on the communication line between each fluid inlet and the high pressure pipeline, and the flow valves on the fluid inlet pipe 61, the fluid inlet pipe 62, and the fluid inlet pipe 63 are respectively a flow valve 61a and a flow valve 62a.
  • the control device controls the pressure valve to a certain pressure and opens all the flow valves, and the fluid medium in the high-pressure pipeline is filled with both the stretching orientation unit 1 and the corresponding blank tube 2 Space, the fluid pressure exerts a certain outwardly expanding expansion force on the blank tube 2, and the pressure distribution is uniform, and the fluid plays a certain lubricating action to reduce the friction between the stretching orientation unit 1 and the blank tube 2.
  • the force to a certain extent, is beneficial to the uniform expansion of the billet 2 in the circumferential direction, and the tube forming quality is improved.
  • the controller can close several inlet flow valves at the front end, so that the fluid flows in from the rear fluid inlet and flows out from the front fluid outlet, so that the fluid rapidly cools the formed pipe segment to a certain extent. The role.
  • the pipe orientation process is based on the above-described pipe orientation process control system, so the pipe orientation process also has the above-mentioned technical effects of the pipe orientation process control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

一种管材取向工艺控制系统及管材取向工艺,该控制系统包括获取部件(4)、温度调节装置和控制装置,预先沿周向将坯管(2)取向成型段分成N段,其中N为大于等于2的整数,每一段都设置一个获取部件(4)进行测量该弧段的温度,控制装置接收所有获取部件(4)的温度信号,并根据各温度信号调节相应的温度调节装置,以使所有弧段的温度处于预定取向温度范围。通过上述控制,坯管(2)取向成型段周向各弧段的温度基本相同或者差异不大,提高了周向各段向外扩大一致性,也提高了成型后管材周向性能的一致性。

Description

管材取向工艺控制系统及管材取向工艺 技术领域
本发明涉及管材生产成型技术领域,尤其涉及一种管材取向工艺控制系统及管材取向工艺。
背景技术
在很多塑料的应用中采用取向技术来达到性能的提高。通常产生分子的取向是在一个方向或者两个方向拉伸材料到一定程度造成屈服和材料流动。
对于聚氯乙烯PVC管而言,其材料自身在一定温度范围具有不缩径的高度可伸展性,非常方便取向加工。目前,聚氯乙烯PVC管的取向工艺基本为通过模具使其自由膨胀制造成型,即利用一个具有预定形状的塞体对PVC料胚的直径进行扩大,以使其扩大为符合要求的PVC管材。
在聚氯乙烯膨胀过程中需要将管材始终控制在预定的温度,使管材按照预定的轴向拉伸,使进入和离开膨胀区的不同速度不变,以便获得周向壁厚均匀的管材。
虽然现有技术对于管材的膨胀温度进行了调控,但是膨胀后的聚氯乙烯PVC管依旧部分存在壁厚不均匀的缺陷。
因此,如何提供一种管材取向工艺控制系统,提高管材取向成型质量,是本领域内技术人员亟待解决的技术问题。
发明内容
本发明提供了一种管材取向工艺控制系统,包括获取部件、温度调节装置和控制装置;
所述获取部件的数量至少为两个,沿坯管取向成型段周向布置,用于获取坯管取向成型段周向相应弧段的温度;并且每一弧段上均设有所述温度调节装置,用于调节坯管的相应弧段的温度;
所述控制装置根据各所述获取部件所获取的温度信号调节相应所述温度调节装置的工况,以使坯管取向成型段周向各弧段的温度均处于预定取 向温度范围。
本发明中沿周向将坯管取向成型段分成N段,其中N为大于等于2的整数,每一段都设置一个获取部件进行测量该弧段的温度,控制装置接收所有获取部件的温度信号,并根据各温度信号调节相应的温度调节装置,以使所有弧段的温度处于预定取向温度范围。通过上述控制,坯管取向成型段周向各弧段的温度基本相同或者差异不大,大大提高周向各段向外扩大一致性,提高成型后管材周向性能的一致性。
可选的,所述获取部件包括外部温度传感器和内部温度传感器,所述外部温度传感器用于检测所述坯管取向成型段的外周壁温度;所述内部温度传感器用于检测所述坯管取向成型段的内周壁温度;所述控制装置根据各所述外部温度传感器和所述内部温度传感器的检测信号调节相应所述温度调节装置的工况,以使所有温度传感器的检测温度均处于所述预定取向温度范围。
可选的,所述拉伸取向单元包括膨胀结构和支撑所述膨胀结构的中空管,所述中空管纵贯所述膨胀结构内腔,所述内部温度传感器安装于所述膨胀结构内腔,其检测端朝外。
可选的,所述内部温度传感器为具有多个检测端的放射状传感器,所述放射状传感器位于所述膨胀结构内腔;每一弧段对应一个所述外部温度传感器和所述放射状传感器的一个检测端。
可选的,所有所述外部温度传感器和所述内部温度传感器设置于同一横截面内。
可选的,所有所述外部温度传感器设置于同一支撑架上,沿纵向,所述支撑架的底部设置滑动机构,所述支撑架通过所述滑动机构滑动支撑于工作台。
可选的,还包括导向轮组件,布置于未取向成型的管段或者/和取向成型后大径管段,所述导向轮组件包括至少一组第一导向轮组和至少一组第二导向轮组,所述第一导向轮组包括上下平行设置的两个导向轮,所述第 二导向轮组包括左右平行设置的两个导向轮。
可选的,还包括流体管路系统,沿纵向,拉伸取向单元的膨胀结构包括依次连接的导向段、锥形膨胀段和大径平直段,所述导向段、所述锥形膨胀段和所述大径平直段的外表面均设置有流体进口和流体出口,各所述流体进口和所述流体出口连通所述流体管路系统的高压管路和低压管路;并且各所述流体进口与所述高压管路的连通管路上均设置有压力阀和流量阀。
此外,本发明还提供了一种管材取向工艺,具体工艺包括:
预先将坯管沿周向划分成N个弧段,并在每一个弧段安装温度调节装置和获取部件,其中所述温度调节装置设置于拉伸取向单元之前的坯管管段,所述获取部件设置于坯管的取向成型段;
在进行取向加工过程中,根据各获取部件所获取的温度信号调节相应所述温度调节装置的工况,以使坯管取向成型段周向各区域的温度均处于预定取向温度范围。
可选的,还预先安装至少一组上下平行的两个导向轮以及至少一组左右平行设置的导向轮,各导向轮的外表面与坯管或者取向成型后的大径管段相贴合;
在进行取向加工过程中,还同时根据管径的周向厚度调节该管径上的各导向轮与管之间的压力调节,以使取向成型后周壁厚度大致相同。
该管材取向工艺是以上述任一项管材取向工艺控制系统为实施基础的,故该管材取向工艺也具有上述技术效果。
附图说明
图1为本发明一种具体实施方式中管材取向工艺控制系统的结构框图;
图2为本发明实施例的取向成型工艺时拉伸取向单元与坯管的位置结构示意图;
图3为图2的横截面剖视示意图;
图4为本发明实施例中导向轮组件的安装示意图;
图5为图4的横截面剖视示意图;
图6为本发明实施例中流体管路系统的局部布置示意图;
图7为本发明实施例中管材取向工艺的流程示意图。
其中,图2至图6中部件名称和附图标记之间的一一对应关系如下所示:
拉伸取向单元1、导向段11、锥形膨胀段12、大径平直段13、中空管14;
坯管2;
支撑架3、滑动机构31;
获取部件4、外部温度传感器41、内部温度传感器42;
第一导向轮组51、导向轮51a、第二导向轮组52、导向轮52a;
流体进管61、流体进管62、流体进管63、出口管路64、出口管路65、出口管路66、压力阀67、流量阀61a、流量阀62a、流量阀63a。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参考图1,图1为本发明一种具体实施方式中管材取向工艺控制系统的结构框图。
管材取向成型设备主要包括挤出机、机头、温度调节装置、牵引机和拉伸取向单元1。特定配方的PVC混配料经挤出机挤出厚壁坯管2,挤出厚壁坯管2由机头导出后经过温度调节装置连续温度调节,达到适宜的取向温度。对于聚氯乙烯PVC管而言,取向温度范围通常为90℃至100℃,取向温度范围的稳定对取向性能的稳定起着至关重要的作用。
拉伸取向单元1设置有膨胀结构,经温度调节装置加热后的坯管2经膨胀结构被膨胀成大管径的管材。膨胀结构通常为不可压缩变形的刚性体。 沿管材运动方向,膨胀结构包括依次连接的导向段11、锥形膨胀段12和大径平直段13,其中导向段11靠近挤出机的机头位置,外径大于坯管2内径。
沿管材运动方向,锥形膨胀段12为外径逐渐扩大的锥形段,锥形段的具体结构可以由多种形式,本文不做一一详细介绍,只要能满足坯管2的扩大膨胀即可。
大径平直段为等径的圆柱段,其外径大致为扩张后坯管2的内径。
为了使坯管2顺利完成扩张,坯管2通常在牵引机的牵引力作用下通过拉伸取向单元1。即坯管2的拉伸取向工艺大致为:由机头导出的坯管2在牵引机的牵引力作用下通过拉伸导向单元被扩大为大径管材,然后可以继续在牵引机的作用下进入后续生产工艺。
本发明提供了一种管材取向工艺控制系统,该控制系统包括获取部件4、温度调节装置和控制装置。获取部件4的数量至少为两个,沿坯管2取向成型段周向相应弧段的温度,需要说明的是,本文将坯管2处于拉伸取向单元1的锥形膨胀段12的管段定义为坯管2取向成型段。具体地,坯管2处于拉伸取向单元1不同位置的状态为:处于导向段11的坯管2为管径比较小的初始坯管2,即此时坯管2的管径还没有被扩大;初始坯管2经过锥形膨胀段12时管径被逐渐扩大,经过锥形膨胀段12的右端最大径时扩大至最大管径,位于大径平直段13的管段为取向成型后管段。
上述周向分成弧段的数量可以根据具体情况而定,本文一种具体实施例中将360度的圆周分成8段,每一个弧段对应一个获取部件4,即获取部件4的数量为8个。通常,获取部件4可以为温度传感器。
每一弧段上均设有温度调节装置,用于调节坯管2的相应弧段的温度,也就是说,温度调节装置与弧段一一对应,可以对相应的弧段进行加热或者降温。对于温度调节装置的具体结构可以由多种形式,例如电加热管等等,本文不做一一介绍。
为了设置的方便,温度调节装置优先设置于位于导向段11之前,对还 未进入导向段11的坯管2进行加热。当然,本文也不排除温度调节装置设置于坯管2的其他位置,对于温度调节装置的具体位置本文不做限定,只要能够实现上述功能即可。
控制装置根据各获取部件4所获取的温度信号调节相应温度调节装置的工况,以使坯管2取向成型段周向各弧段的温度均处于预定取向温度范围。也就是说,控制装置通过调节温度调节装置的功率使各获取部件4所测量的温度都处于预定取向温度范围。预定取向温度范围根据坯管2材料确定。
本发明中沿周向将坯管2取向成型段分成N段,其中N为大于等于2的整数,每一段都设置一个获取部件4进行测量该弧段的温度,控制装置接收所有获取部件4的温度信号,并根据各温度信号调节相应的温度调节装置,以使所有弧段的温度处于预定取向温度范围。通过上述控制,坯管2取向成型段周向各弧段的温度基本相同或者差异不大,大大提高周向各段向外扩大一致性,提高成型后管材周向性能的一致性。
请参考图7,图7为本发明实施例中管材取向工艺的流程示意图。
在上述管材取向工艺控制系统的基础上,本发明还提供了一种管材取向工艺,具体工艺包括:
S1、预先将坯管2沿周向划分成N个弧段,并在每一个弧段安装温度调节装置和获取部件4,其中所述温度调节装置设置于拉伸取向单元1之前的坯管2管段,所述获取部件4设置于坯管2的取向成型段;
S2、在进行取向加工过程中,根据各获取部件4所获取的温度信号调节相应所述温度调节装置的工况,以使坯管2取向成型段周向各区域的温度均处于预定取向温度范围。
坯管2在成型过程中受环境温度的影响,坯管2外表面和内表面温度可以不一致,即沿径行存在温度梯度变化。为了进一步提高坯管2成型质量,本文进一步进行以下设置。
请参考图2和图3,图2为本发明实施例的取向成型工艺时拉伸取向 单元与坯管的位置结构示意图;图3为图2的横截面剖视示意图。
在一种具体实施方式中,获取部件4可以包括外部温度传感器41和内部温度传感器42,外部温度传感器41用于检测坯管2取向成型段的外周壁温度。内部温度传感器42用于检测坯管2取向成型段的内周壁温度。控制装置根据各外部温度传感器41和各内部温度传感器42的检测信号调节相应温度调节装置的工况,以使所有温度传感器的检测温度均处于预定取向温度范围。
通过以上控制可以尽量降低径向温度梯度对管材成型的影响,保证坯管2内外表面均处于预定取向温度范围,有利于成型质量较高的管材。
获取部件4的安装方式可以有多种结构实现,例如设置专门的安装架进行固定安装,当然也可以利用现有的结构对其进行固定。
如上所述,拉伸取向单元1包括膨胀结构,膨胀结构可以通过中空管14支撑,中空管14纵贯膨胀结构的内腔,内部温度传感器42可以安装于中空管14,其检测端朝外。该实施方式借助拉伸取向单元1的结构实现内部温度传感器42的安装,这样系统结构比较紧凑。
进一步地,内部温度传感器42可以为具有多个检测端的放射状传感器,放射状传感器位于膨胀结构内腔的内部,每一弧段对应一个外部温度传感器41和防身装传感器的一个检测端。
该实施例中放射状传感器与中空管14的固定点少,对于空间占据小。
为了实现精确控制,外部温度传感器41和内部温度传感器42可以设置于同一横截面上。
同一生产线安装不同的拉伸取向单元1可以加工不同管径的管材,为了降低生产线的使用成本,本文还进行了以下设置。
上述各实施例中的所有外部温度传感器41可以设置于同一支撑架3上,沿纵向,支撑架3的底部设置滑动机构31,支撑架3通过滑动机构31滑动支撑于地面或者工作台。当然,地面或者工作台上也相应设置有与支撑架3的滑动机构31配合滑动的结构。设置于支撑架3底部的滑动机构 31可以为滚轮,也可以为滑槽或者滑轨等机构。
坯管2在牵引力拉伸扩张过程中,影响坯管2成型质量的另一重要因素为坯管2的同轴性。
请参考图4和图5,图4为本发明实施例中导向轮组件的安装示意图;图5为图4的横截面剖视示意图。
进一步地,本文所提供的管材取向工艺控制系统还进一步包括导向轮组件,布置于未取向成型的管段或者/和取向成型后的大径管段。导向轮组件包括至少一组第一导向轮组件至少一组第二导向轮组,第一导向轮组包括上下平行设置的两个导向轮,第二导向轮组包括左右平行设置的两个导向轮。
也就是说,坯管2取向成型前或者成型后的大径管段可以被围合于第一导向轮组和第二导向轮组组成的四个导向轮内部,在四个导向轮围成的空间内部向前运动,有利于保证坯管2以及大径管段各段轴向与牵引力同轴,保障取向成型质量。
另外,上述各实施方式的控制系统还可以包括测量管壁周向多点厚度的检测部件,控制装置进一步根据检测部件所测量的信号调整各导向轮与坯管2之间的压力,进而获得取向成型后管的周向厚度相同。
对于工艺而言,上述步骤S1中进一步增加:预先安装至少一组上下平行的两个导向轮以及至少一组左右平行设置的导向轮,各导向轮的外表面与坯管2或者取向成型后的大径管段相贴合。
上述步骤S2中增加以下内容:同时根据管径的周向厚度调节该管径上的各导向轮与管之间的压力调节,以使取向成型后周壁厚度大致相同。
请参考图6,图6为本发明实施例中流体管路系统的局部布置示意图。
上述各实施例中,管材取向工艺控制系统还可以包括流体管路系统,沿纵向,上述导向段11、锥形膨胀段12和大径平直段13的外表面均设置有流体进口和流体出口,各流体进口和流体出口连通流体管路系统的高压管路和低压管路;图6中示出了流体进管61、流体进管62、流体进管63、 出口管路64、出口管路65、出口管路66。并且各流体进口与高压管路的连通管路上均设置有压力阀67和流量阀,流体进管61、流体进管62、流体进管63上的流量阀分别为流量阀61a、流量阀62a、流量阀63a。
这样当进行取向扩大成型初始阶段时,控制装置控制压力阀至一定压力以及打开所有流量阀,高压管路中的流体介质充满拉伸取向单元1和与之相应的坯管2二者围成的空间,流体压力对坯管2起到一定的向外扩大的膨胀力,并且该压力分配均匀,并且流体在起到一定的润滑作用以减小拉伸取向单元1与坯管2之间的摩擦力,在一定程度上有利于坯管2周向扩大膨胀受力均匀,提高管成型质量。
另外,在取向扩大成型中后期,控制器可以关闭前端几个进口流量阀,使流体从后端流体进口流入,从前端流体出口流出,这样流体在一定程度上对成型后的管段起到迅速降温的作用。
管材取向工艺是以上述管材取向工艺控制系统为实施基础的,故管材取向工艺也具有管材取向工艺控制系统的上述技术效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种管材取向工艺控制系统,其特征在于,包括获取部件、温度调节装置和控制装置;
    所述获取部件的数量至少为两个,沿坯管取向成型段周向布置,用于获取坯管取向成型段周向相应弧段的温度;并且每一弧段上均设有所述温度调节装置,用于调节坯管的相应弧段的温度;
    所述控制装置根据各所述获取部件所获取的温度信号调节相应所述温度调节装置的工况,以使坯管取向成型段周向各弧段的温度均处于预定取向温度范围。
  2. 根据权利要求1所述的管材取向工艺控制系统,其特征在于,所述获取部件包括外部温度传感器和内部温度传感器,所述外部温度传感器用于检测所述坯管取向成型段的外周壁温度;所述内部温度传感器用于检测所述坯管取向成型段的内周壁温度;所述控制装置根据各所述外部温度传感器和所述内部温度传感器的检测信号调节相应所述温度调节装置的工况,以使所有温度传感器的检测温度均处于所述预定取向温度范围。
  3. 根据权利要求2所述的管材取向工艺控制系统,其特征在于,所述拉伸取向单元包括膨胀结构和支撑所述膨胀结构的中空管,所述中空管纵贯所述膨胀结构内腔,所述内部温度传感器安装于所述膨胀结构内腔,其检测端朝外。
  4. 根据权利要求3所述的管材取向工艺控制系统,其特征在于,所述内部温度传感器为具有多个检测端的放射状传感器,所述放射状传感器位于所述膨胀结构内腔的内部;每一弧段对应一个所述外部温度传感器和所述放射状传感器的一个检测端。
  5. 根据权利要求2所述的管材取向工艺控制系统,其特征在于,所有所述外部温度传感器和所述内部温度传感器设置于同一横截面内。
  6. 根据权利要求2所述的管材取向工艺控制系统,其特征在于,所有所述外部温度传感器设置于同一支撑架上,沿纵向,所述支撑架的底部设 置滑动机构,所述支撑架通过所述滑动机构滑动支撑于工作台。
  7. 根据权利要求1至6任一项所述的管材取向工艺控制系统,其特征在于,还包括导向轮组件,布置于未取向成型的管段或者/和取向成型后大径管段,所述导向轮组件包括至少一组第一导向轮组和至少一组第二导向轮组,所述第一导向轮组包括上下平行设置的两个导向轮,所述第二导向轮组包括左右平行设置的两个导向轮。
  8. 根据权利要求1至6任一项所述的管材取向工艺控制系统,其特征在于,还包括流体管路系统,沿纵向,拉伸取向单元的膨胀结构包括依次连接的导向段、锥形膨胀段和大径平直段,所述导向段、所述锥形膨胀段和所述大径平直段的外表面均设置有流体进口和流体出口,各所述流体进口和所述流体出口连通所述流体管路系统的高压管路和低压管路;并且各所述流体进口与所述高压管路的连通管路上均设置有压力阀和流量阀。
  9. 一种管材取向工艺,其特征在于,具体工艺包括:
    预先将坯管沿周向划分成N个弧段,并在每一个弧段安装温度调节装置和获取部件,其中所述温度调节装置设置于拉伸取向单元之前的坯管管段,所述获取部件设置于坯管的取向成型段;
    在进行取向加工过程中,根据各获取部件所获取的温度信号调节相应所述温度调节装置的工况,以使坯管取向成型段周向各区域的温度均处于预定取向温度范围。
  10. 如权利要求9所述的管材取向工艺,其特征在于,还预先安装至少一组上下平行的两个导向轮以及至少一组左右平行设置的导向轮,各导向轮的外表面与坯管或者取向成型后的大径管段相贴合;
    在进行取向加工过程中,还同时根据管径的周向厚度调节该管径上的各导向轮与管之间的压力调节,以使取向成型后周壁厚度大致相同。
PCT/CN2018/074926 2018-02-01 2018-02-01 管材取向工艺控制系统及管材取向工艺 WO2019148417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/074926 WO2019148417A1 (zh) 2018-02-01 2018-02-01 管材取向工艺控制系统及管材取向工艺
BR112020015393-1A BR112020015393B1 (pt) 2018-02-01 2018-02-01 Sistema de controle de processo de orientação de tubo e processo de orientação de tubo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074926 WO2019148417A1 (zh) 2018-02-01 2018-02-01 管材取向工艺控制系统及管材取向工艺

Publications (1)

Publication Number Publication Date
WO2019148417A1 true WO2019148417A1 (zh) 2019-08-08

Family

ID=67478551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074926 WO2019148417A1 (zh) 2018-02-01 2018-02-01 管材取向工艺控制系统及管材取向工艺

Country Status (2)

Country Link
BR (1) BR112020015393B1 (zh)
WO (1) WO2019148417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116252464A (zh) * 2023-05-15 2023-06-13 河北建投宝塑管业有限公司 一种取向pvc-o管材取向过程控制系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908499A (zh) * 2005-08-03 2007-02-07 成都市兴岷江电热电器有限责任公司 管道电加热器
CN203198226U (zh) * 2013-02-04 2013-09-18 惠升管业有限公司 一种管材挤出模具
CN205614920U (zh) * 2016-04-29 2016-10-05 常州市永邦塑业有限公司 Peek管材模压模具
CN206112376U (zh) * 2016-08-29 2017-04-19 镇江市三维电加热器有限公司 高温管道加热保温模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908499A (zh) * 2005-08-03 2007-02-07 成都市兴岷江电热电器有限责任公司 管道电加热器
CN203198226U (zh) * 2013-02-04 2013-09-18 惠升管业有限公司 一种管材挤出模具
CN205614920U (zh) * 2016-04-29 2016-10-05 常州市永邦塑业有限公司 Peek管材模压模具
CN206112376U (zh) * 2016-08-29 2017-04-19 镇江市三维电加热器有限公司 高温管道加热保温模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116252464A (zh) * 2023-05-15 2023-06-13 河北建投宝塑管业有限公司 一种取向pvc-o管材取向过程控制系统及控制方法
CN116252464B (zh) * 2023-05-15 2023-08-11 河北建投宝塑管业有限公司 一种取向pvc-o管材取向过程控制系统及控制方法

Also Published As

Publication number Publication date
BR112020015393A2 (pt) 2020-12-08
BR112020015393B1 (pt) 2024-04-30

Similar Documents

Publication Publication Date Title
US6905642B2 (en) Method and continuous production line of plastic tubes with bi-axial drawing, and resulting plastic tube
CA2944135C (en) Thickness variation adjustment-type air ring
AU2004220294B2 (en) Method for continuously producing plastic tubes by biaxial drawing and a production line for carrying out said method
US4137028A (en) Apparatus for the extrusion of tubular bodies of synthetic-resin material
GB1383001A (en) Method and apparatus of making oriented tubular film
WO2019148417A1 (zh) 管材取向工艺控制系统及管材取向工艺
CN102615805B (zh) 一种多腔塑料微管直角挤出模具
EP0758293B1 (en) Method and device for manufacturing biaxially oriented tubing from thermoplastic material
CN104002465B (zh) 一种胀-微缩式双轴向拉伸管连续成型方法及设备
US6050805A (en) Extrusion equipment having means for adjusting a delivery end of a die with respect to the extruder for alignment with downstream equipment
CN106915053A (zh) 一种不停机转产不同规格管材的装置及控制方法
CN103395183A (zh) 一种双轴取向pvc及聚烯烃材料管材的制造设备及其生产工艺和方法
CN201389977Y (zh) 连续生产双向拉伸聚氯乙烯管材的专用机头
CN105235228A (zh) 一种一步法制备双轴取向塑料管材的工艺方法及设备
CZ292714B6 (cs) Způsob kontinuální výroby dvouose orientované trubky z termoplastu
US11718009B2 (en) Concentricity adjustment sleeve
EP0850136B1 (en) Biaxial stretching of plastic tubes
IE38545B1 (en) Improvements in and relating to a method and apparatus for the production and accurate internal calibration of extruded thermiplastic tubular mouldings
GB854369A (en) Extrusion of seamless tubing
CA2229752C (en) Control method for the manufacture of oriented plastics tubes
CA2521666C (en) Method and apparatus for control of plastics tube orientation process
CN116274501B (zh) 一种用于镁合金管材的矫直装置
CN105196514A (zh) 一种在线双轴取向塑料大口径管材的挤出成型模具
CN205033555U (zh) 一种在线双轴取向塑料大口径管材的挤出成型模具
RU2135361C1 (ru) Способ и устройство для изготовления двухосно ориентированного трубопровода из термопластичного материла

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020015393

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020015393

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200728

122 Ep: pct application non-entry in european phase

Ref document number: 18904424

Country of ref document: EP

Kind code of ref document: A1