WO2019146726A1 - Composite long-fiber non-woven fabric using eccentric sheath/core composite fibers at one or both surfaces - Google Patents

Composite long-fiber non-woven fabric using eccentric sheath/core composite fibers at one or both surfaces Download PDF

Info

Publication number
WO2019146726A1
WO2019146726A1 PCT/JP2019/002363 JP2019002363W WO2019146726A1 WO 2019146726 A1 WO2019146726 A1 WO 2019146726A1 JP 2019002363 W JP2019002363 W JP 2019002363W WO 2019146726 A1 WO2019146726 A1 WO 2019146726A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
composite
fiber non
fiber
melting point
Prior art date
Application number
PCT/JP2019/002363
Other languages
French (fr)
Japanese (ja)
Inventor
祥吾 池田
瑛大 藤井
一哉 税所
矢放 正広
早織 田中
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201980009708.4A priority Critical patent/CN111630221B/en
Priority to JP2019567166A priority patent/JP6899453B2/en
Publication of WO2019146726A1 publication Critical patent/WO2019146726A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments

Definitions

  • the present invention relates to a composite long-fiber non-woven fabric using at least one surface of an eccentric sheath-core type composite fiber composed of two or more types of thermoplastic resins, which has bulkiness and high strength with cushioning softness suitable for sanitary materials
  • the present invention also relates to a composite long-fiber non-woven fabric having excellent surface properties required for sanitary materials such as surface smoothness and fuzz resistance.
  • the spread of disposable diapers has been remarkable, and the required quality and performance have been improved.
  • the performance required for the top sheet and the back sheet in the diaper construction is soft, and in particular, the diaper for adults may be accompanied by nursing care, and thus high strength and elongation are required.
  • staple fibers are often used, and an air through method of bonding staple fiber webs by a card method or air lay method by hot air is performed, and cushioning bulkiness Has a softness with.
  • the bonding temperature should be raised as a means to improve the strength and the elongation. It was necessary and the texture was hard.
  • long fibers by the spun bond method are also used for the top sheet and back sheet, but with the spun bond, high tenacity non-woven fabrics are obtained from the production method, but the fibers are arranged in the surface direction and the fibers occupying the thickness direction are It was difficult to obtain a small amount of bulkiness. That is, in the conventional long-fiber non-woven fabric, there is a problem that it is very difficult to achieve both bulkiness having cushioning softness and high strength and elongation.
  • Patent Document 1 discloses a non-woven fabric with eccentric sheath core type fibers, but the sheath core is a perfect circle shape, there is no description of the detailed design regarding the shape of the sheath component, and the number of crimped fibers is There is little and bulkiness is inferior.
  • Patent Document 2 discloses a fiber spherical body using an eccentric sheath core type fiber as a material suitable for filling of a cushion or a down jacket, a sheet suitable for a top sheet or a back sheet of a sanitary material It is not suitable for formation.
  • the problem to be solved by the present invention is to have both bulkiness and high strength having cushioning softness suitable for the top sheet and back sheet portion of the absorbent article used for sanitary materials It is an object of the present invention to provide a processable excellent long-fiber non-woven fabric having surface characteristics that can be suitably used for sanitary materials.
  • the present inventors diligently studied to solve the above problems, and as a result of repeating experiments, the temperature from the extruder to the spinneret regarding the low melting point component constituting the sheath and the high melting point component resin constituting the core And adjusting the residence time of the resin in the spinneret, controlling the viscosity difference of the resin in the spinneret, and designing the distribution of the resin in the spinneret to obtain a highly eccentric fiber. It was possible.
  • the highly eccentric fiber thus obtained was discharged from the spinneret by setting the core to an elliptical shape and controlling the film thickness to an appropriate range, with the sheath covering 100% of the fiber outer circumference.
  • the internal stress applied to the sheath in the fiber acts so as to cover the core from the periphery, and the crimp also occurs in long fibers having a fiber shape in which the sheath covers 100% of the core. It became possible to increase the number. As the number of crimps increases, the overlapping of the yarns increases in the thickness direction of the non-woven fabric, and the fibers are adhered while maintaining the overlapping of the yarns, and furthermore, the yarn surface is covered with the 100% low melting point component. The bonding frequency is increased, and the fabric strength can be increased even with a low heat amount, and high strength, bulkiness and fuzz resistance can be obtained.
  • the sheath portion has a fiber structure covering 100% of the fiber surface, and the fiber cross section does not appear on the non-woven fabric surface because it is composed of long fibers, and the friction resistance is small. It has been found that the skin feels smooth and can be suitably used for hygiene applications.
  • a portion with a thickness of 100 to 500 nm of the sheath covering the core occupies 30 to 60% of the entire surface of the fiber, and the thickness of the thickest portion of the sheath is 25% or more of the fiber radius.
  • the composite continuous fiber non-woven fabric according to the present invention is a composite continuous fiber non-woven fabric using at least one surface of an eccentric sheath-core type composite fiber composed of components utilizing two or more types of melting point differences. Since it is a non-woven fabric having excellent bulkiness and surface characteristics and high processing strength, it can be suitably used as a top sheet and a back sheet in hygiene material applications.
  • the composite continuous fiber non-woven fabric of the present embodiment is a composite continuous fiber non-woven fabric using at least one surface of an eccentric sheath-core type long fiber non-woven fabric composed of eccentric sheath-core type composite fibers containing two or more thermoplastic resins.
  • the eccentric sheath-core type composite fiber has a cross section of a true circle shape, is constituted by a core portion of an elliptical high melting point component and a sheath portion which is a low melting point component, and the fiber surface is a low melting point component.
  • the eccentric sheath core type long fiber constituting the eccentric sheath core type long fiber nonwoven fabric is made of a combination of two or more kinds of thermoplastic resins.
  • the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene and copolymerized polypropylene, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymer polyester, nylon-6, nylon-66, co-polymer Polyamide-based resins such as polymerized nylon, biodegradable resins such as polylactic acid, polybutylene succinate, and polyethylene succinate are used.
  • thermoplastic resins Any combination of the above-mentioned thermoplastic resins is possible as long as the desired effect is not impaired, and a combination of thermoplastic resins having a melting point difference is preferable in terms of bonding of the fibers.
  • a combination of thermoplastic resins having a melting point difference is preferable in terms of bonding of the fibers.
  • polyolefin resins For example, composite fibers combined from resins such as polyethylene, polypropylene and copolymers of those monomers with other ⁇ -olefins can be mentioned.
  • Other ⁇ -olefins are those having 3 to 10 carbon atoms, and specific examples thereof include propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, 1-octene and the like Be
  • the fiber shape of the eccentric sheath core type long fiber constituting the eccentric sheath core type long fiber nonwoven fabric is literally an eccentric sheath core type, crimped yarn can be easily obtained.
  • the core is elliptical and forms a thin film in the range of 30 to 60% of the surface layer of the fiber, the thin film has a thickness of 100 nm to 500 nm, and the thickest part of the sheath is 25% or more of the fiber radius By forming the occupied film, fibers having high eccentricity can be obtained.
  • the thickness of the sheath thin film is 100 nm to 500 nm, preferably 100 nm to 400 nm, and more preferably 100 nm to 300 nm.
  • the ratio of the thin film to the surface layer of the fiber is 30 to 60%, more preferably 30 to 50%, and still more preferably 30 to 40%.
  • the thickest part of the sheath part is 25% or more, preferably 30% or more, more preferably 35% or more of the fiber radius.
  • the core part is 100% covered with the sheath part, which results from the adhesion between the sheath parts, and high strength and fluff suppression can be obtained.
  • the cross-sectional shape of the eccentric sheath core long fiber constituting the eccentric sheath core long fiber non-woven fabric is a true circle shape.
  • the term "perfect circular shape” means that the ratio of the length of the longest diameter of the fiber cross section to the length of the shortest diameter is 0.8 to 1.0, preferably It is 0.9 to 1.0, more preferably 0.95 to 1.0. If the fiber cross section has a perfect circular shape, stable spinning is possible, and furthermore, it is possible to obtain a non-woven fabric having a good feeling that does not feel trapped when touching the fiber.
  • the sheath portion does not cover the entire circumference of the fiber, or the eccentricity is low and the number of crimps is small.
  • An appropriate range of the viscosity characteristic difference (MFR / MI ratio) of the high melting point component and the low melting point component is 1.0 or more and 3.5 or less as a value obtained by dividing the MFR of the high melting point component by the MI of the low melting point component. Is preferred.
  • the core By setting the MFR / MI ratio to 1.0 or more, the core can be formed into an elliptical shape, and as the MFR / MI ratio is larger, the viscosity difference becomes larger and the eccentricity becomes higher.
  • the lower limit value is more preferably 1.7 or more, still more preferably 2.0 or more, and most preferably 2.1 or more because the property is obtained.
  • the sheath can cover the entire circumference of the fiber, so 3.5 or less is preferable from the viewpoint of the adhesion between the fibers.
  • the high melting point component is polypropylene and the low melting point component is polyethylene.
  • the weight ratio of the high melting point component to the whole fiber is preferably 50 to 80%, more preferably 60 to 70%, and still more preferably 65 to 70%.
  • polypropylene as the high melting point component, it is high in strength and difficult to be broken at the time of use, and is excellent in dimensional stability at the time of production of the sanitary material.
  • polyethylene as the low melting point component, the sheath part is attributable to adhesion, so that high strength and fluff suppression can be obtained.
  • the high melting point component polypropylene in the case of forming with the above two types of thermoplastic resins may be a polymer synthesized by a general Ziegler Natta catalyst, or a polymer synthesized by a single site active catalyst represented by a metallocene, etc. Also, ethylene random copolymer polypropylene may be used. These may be used alone or in combination of two or more. In particular, homopolypropylene is preferred as the main component in terms of texture, strength and dimensional stability.
  • the lower limit of the MFR of polypropylene is preferably 20 g / 10 min or more, more preferably 30 g / 10 min or more, still more preferably 40 g / 10 min or more, and most preferably 53 g / 10 min or more.
  • the upper limit of the MFR of polypropylene is preferably 85 g / 10 min or less, more preferably 70 g / 10 min or less, and still more preferably 60 g / 10 min or less.
  • MFR was measured according to JIS-K7210 “Test method of melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastics”, test temperature 230 ° C., test load 2.16 kg. .
  • polyethylene resin of the low melting point component in the case of forming with the two types of thermoplastic resins can be suitably used as a hygienic material from the viewpoint that the adhesive strength after bonding of the fibers is strong and the texture as a non-woven fabric is good.
  • polyethylene may be a polymer synthesized by a general Ziegler-Natta catalyst, or a polymer synthesized by a single site activated catalyst represented by a metallocene.
  • high density polyethylene, linear low density polyethylene, low density polyethylene can be used, and the density is preferably 0.90 to 0.97 g / cm 3 , more preferably 0.91 to It is 0.96 g / cm 3 .
  • the lower limit of MI of polyethylene is preferably 10 g / 10 min or more, more preferably 15 g / 10 min or more.
  • the upper limit of MI of polyethylene is preferably 50 g / 10 min or less, more preferably 45 g / 10 min or less.
  • MI was measured according to JIS-K7210 “Test method of melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastics”, test temperature 190 ° C., test load 2.16 kg. .
  • the spinning temperature is preferably 200 ° C. or more and 260 ° C. or less, more preferably 230 ° C. or more and 250 ° C. to obtain a desired fiber cross-sectional shape. It is less than ° C.
  • the temperature is less than 200 ° C., the viscosity of both polypropylene and polyethylene becomes high, and the difference in viscosity becomes small, so a desired fiber shape can not be obtained. If the temperature exceeds 260 ° C., the flowability of the polyethylene which is the sheath becomes high, and after it is discharged from the spinning nozzle, the thickness of the sheath becomes large and the desired fiber shape can not be obtained.
  • the eccentric sheath core type long fibers constituting the eccentric sheath core type long fiber non-woven fabric preferably have a helical crimp in order to maintain the texture and bulkiness of the non-woven fabric.
  • the number of crimps of the fiber is preferably 5 to 45 / inch, and more preferably 10 to 40 / inch. If the number of crimps is less than 5 pieces / inch, the bulk of the obtained nonwoven fabric is insufficient, while if it exceeds 45 pieces / inch, the appearance of the obtained nonwoven fabric is impaired due to the uneven fiber dispersion of the obtained nonwoven fabric.
  • the eccentric sheath-cored long-fiber non-woven fabric is preferably a composite long-fiber non-woven web formed by a spunbond method from the viewpoint of strength and productivity.
  • Such composite long fibers are produced, for example, by melt extruding different thermoplastic resins from two or more different extruders, and as a yarn in a state in which two or more types of thermoplastic resins are compounded from a spinneret having a large number of spinning holes. It is discharged. Next, cold air controlled at 5 ° C. to 20 ° C. is applied to the discharged yarn, and it is pulled while being cooled. The yarn exiting from the pulling device is deposited on a conveyer and conveyed as a nonwoven web. The nonwoven web being transported may be laminated to form a multilayer laminated nonwoven web.
  • a joining means in the case of joining the nonwoven web comprised with a thermoplastic conjugate fiber and making it into a nonwoven fabric, it will not be limited especially if it is a method of heating more than the temperature which the intersection of fibers melts and adheres .
  • a heating method various heating methods such as a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air to both surfaces of a non-woven fabric, a method of introducing into a heating gas, and the like are used. From the viewpoint of obtaining more fiber bonding points at the intersections of the fibers and increasing the breaking strength of the non-woven fabric, heating with hot air is preferable, and in particular, a hot air penetrating type is preferable.
  • the temperature of the hot air is preferably adjusted to a temperature suitable for the thermoplastic resin having a low melting point and contributing to bonding. As the production speed increases, it is necessary to raise the temperature to secure the amount of heat that contributes to adhesion, and the appropriate temperature is adjusted according to the production conditions.
  • the thermoplastic resin is polyethylene
  • polyethylene is The temperature is 125 to 155 ° C., preferably 130 to 155 ° C., more preferably 135 ° C. to 150 ° C. for melting and bonding. If the bonding temperature is in this range, bonding of the fibers is developed at the intersection of the fibers without impairing the texture, and it becomes possible to develop the strength as a non-woven fabric.
  • the velocity of the hot air is preferably 0.5 m / sec to 3.0 m / sec, more preferably 0.7 m / sec to 2.5 m / sec, still more preferably 0.7 m / sec to 2.0 m / sec It is. If the wind speed of the hot air is in this range, adhesion of the fibers is developed at the intersection of the fibers without impairing the texture, and the strength as the non-woven fabric can be developed.
  • the non-woven web before bonding or after bonding of the non-woven fabric may be subjected to heat bonding by embossing. It is preferable from the viewpoint of productivity to process embossing through a pair of rolls of a combination of a metal embossing roll and a metal flat roll.
  • the embossed area ratio is preferably 5 to 30%, more preferably 5 to 20%, and still more preferably 6 to 15%, from the viewpoint of shape retention of the nonwoven web and the strength of the finally obtained nonwoven fabric.
  • the deeper the emboss depth the softer the non-woven fabric can be obtained, preferably 0.5 to 2.0 mm, more preferably 0.7 to 1.5 mm.
  • the emboss shape is not particularly limited, but is preferably circular, oval, diamond, or rectangular, in order to obtain a non-woven fabric having softness and appropriate strength and elongation suitable for use in sanitary materials. Can be selected as appropriate.
  • the composite continuous fiber non-woven fabric of the present embodiment may be obtained by laminating the eccentric sheath-core long-fiber non-woven fabric with a side-by-side long-fiber non-woven fabric and / or an eccentric sheath-core long-fiber non-woven fabric.
  • the side-by-side type long fiber non-woven fabric has high crimpability of fibers by separating the center of gravity position of the two components and can obtain non-woven fabric with high bulkiness, but the ratio of the fiber surface of low melting point component decreases. Fuzziness and strength may be reduced.
  • the composite continuous fiber nonwoven fabric of the present embodiment uses the nonwoven fabric as a sanitary material and the surface in contact with the skin is the surface layer
  • using the eccentric sheath core type composite long fiber as the surface layer impairs the texture. Absent.
  • an eccentric sheath-core type composite long fiber non-woven fabric having a structure difference in which the number of crimps and the fineness, and the weight ratio of the high melting point and the low melting point component are different may be laminated on the eccentric sheath-core type composite long fiber non-woven fabric.
  • the average single fiber fineness of the eccentric sheath-core type composite long fiber is preferably 1.0 dtex or more and 3.5 dtex or less, more preferably 1.2 dtex or more and 3.3 dtex or less, still more preferably 1.5 dtex or more and 3.0 dtex or less It is. From the viewpoint of spinning stability, the average single yarn fineness is preferably 1.0 dtex or more, and from the viewpoint of the feel of the non-woven fabric used for sanitary materials, it is preferably 3.5 dtex or less.
  • Basis weight of the composite long fiber nonwoven fabric of the present embodiment is preferably 10 g / m 2 or more 50 g / m 2 or less, more preferably 10 g / m 2 or more 40 g / m 2 or less, more preferably 12 g / m 2 or more 30 g / m 2 or less. If the weight per unit area is 10 g / m 2 or more, the nonwoven fabric used for the sanitary material satisfies the strength, while if 50 g / m 2 or less, the softness of the nonwoven fabric used for the sanitary material is satisfied, Do not give a thick impression.
  • a long fiber non-woven fabric having an average fiber diameter of 0.5 ⁇ m to 3.0 ⁇ m may be laminated on the eccentric sheath-core type composite long fiber non-woven fabric.
  • the coverage of the non-woven fabric can be improved, the dispersion unevenness of appearance is improved, and the hot melt agent escapes when used for sanitary materials Or, it can be suitably used to suppress the loss of a highly absorbent resin (SAP) when used as a top sheet.
  • SAP highly absorbent resin
  • the range of the fiber diameter is preferably 0.5 ⁇ m to 3.0 ⁇ m, more preferably 0.7 ⁇ m to 2.5 ⁇ m, and still more preferably 1.0 ⁇ m to 2.3 ⁇ m.
  • the bulk density of the composite continuous fiber non-woven fabric of the present embodiment is preferably in the range of 0.01 g / cm 3 to 0.07 g / cm 3 .
  • the bulk density is preferably 0.01 g / cm 3 or more from the viewpoint of strength, and is preferably 0.07 g / cm 3 or less from the viewpoint of texture.
  • the breaking strength of the composite continuous fiber non-woven fabric of the present embodiment is preferably 25 N / 5 cm to 60 N / 5 cm, more preferably 30 N / 5 cm to 50 N / 5 cm, and still more preferably 35 N / 5 cm to 45 N / 5 cm. is there.
  • the breaking strength is 25 N / 5 cm or more, when used for sanitary materials, it does not stretch or break when it is put on at the time of wearing, and if it is 60 N / 5 cm or less, the texture is soft and it is used for sanitary materials It can be used suitably.
  • the heat seal strength of the composite long fiber non-woven fabric of the present embodiment is preferably in the range of 3N / 5 cm to 15 N / 5 cm, more preferably 5 N / 5 cm to 12 N / 5 cm, still more preferably 7 N / 5 cm to 10 N / 5 cm. . If the heat seal strength is 3 N / 5 cm or more, the heat seal portion can be used without peeling or tearing when used as a sanitary material application, and if 15 N / 5 cm or less, the heat seal portion is over-welded. It does not form a film, has a soft texture, and can be suitably used for sanitary materials.
  • the mean deviation (SMD) of the surface roughness of the surface of the eccentric sheath core type long fiber non-woven fabric side of the composite long fiber non-woven fabric of this embodiment is preferably 1.0 ⁇ m or more and 2.4 ⁇ m or less, and 1.4 ⁇ m or more and 2.2 ⁇ m or less More preferably, it is more preferably 1.6 ⁇ m or more and 2.0 or less.
  • SMD mean deviation
  • the fluff grade of the surface on the eccentric sheath core type long fiber non-woven fabric side of the composite long fiber non-woven fabric of the present embodiment is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. If the fluff grade is grade 3 or higher, the fiber-bonded portion of the non-woven fabric surface is not easily peeled off even when rubbed with the skin, fluffing of the fiber surface is suppressed, and sticking to the skin and fingertips can be reduced. It can be obtained and can be suitably used in a guarding material application.
  • the composite long-fiber non-woven fabric of the present embodiment may contain a hydrophilizing agent.
  • a hydrophilizing agent to be used, in consideration of safety to the human body, safety in the process, etc., nonionic surfactants added with ethylene oxide such as higher alcohols, higher fatty acids, alkylphenols, alkyl phosphate salts And anionic surfactants such as alkyl sulfates, etc., which may be used alone or as a mixture.
  • an existing method such as a dipping method, a spraying method, a coating (kiss coater, gravure coater) method or the like can be usually employed using a diluted hydrophilizing agent, and hydrophilicity mixed in advance if necessary
  • the agent is diluted with a solvent such as water and then applied.
  • a drying step may be required.
  • a drying method in that case, a known method using convection heat transfer, conduction heat transfer, radiation heat transfer, etc. can be adopted, and drying by hot air or infrared rays, a drying method by thermal contact, etc. can be used.
  • the adhesion amount of the hydrophilizing agent varies depending on the required performance, it is usually preferably in the range of 0.05% by weight or more and 1.00% by weight or less, more preferably 0.15% by weight or more based on the fiber. .8% by weight or less, more preferably 0.2% by weight or more and 0.6% by weight or less.
  • the adhesion amount is in this range, the hydrophilic performance as a top sheet of the sanitary material is satisfied, and the processing suitability is also good.
  • the composite long-fiber non-woven fabric of the present embodiment can be suitably used for the production of a sanitary material because it has a bulkiness having a cushioning softness and a high strength and elongation.
  • Hygiene materials include disposable diapers, sanitary napkins, incontinence pads and the like, and the composite long-fiber non-woven fabric of the present embodiment can be suitably used particularly for the top sheet on the surface and the back sheet on the outside.
  • applications of the composite long fiber non-woven fabric of the present embodiment are not limited to the above applications, and, for example, masks, cairos, tape bases, waterproof sheet bases, patched medicine bases, first aid base, packaging materials, wipes It may be used for products, medical gowns, bandages, clothing, skin care sheets and the like.
  • the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to only the following examples.
  • the temperature in the bonding step, the hot wind speed and the like are appropriately changed depending on the weight of the fabric to be produced and the line speed.
  • the evaluation method of each characteristic is as follows, and the obtained physical property etc. are shown to the following Tables 1 and 2.
  • MD direction production line direction of fibers
  • CD direction width direction orthogonal to the flow direction of fibers
  • Basis weight (g / m 2 ) According to JIS-L 1906, five test pieces of 20 cm in the MD direction and 5 cm in the CD direction were arbitrarily collected to measure the mass, and the average value was converted into the weight per unit area.
  • Breaking strength (N / 5 cm) According to JIS L-1906, except for 10 cm on both ends of manufactured non-woven fabric, 5 samples of 5 cm in CD direction and 20 cm in MD direction are cut out so as to be uniform in CD direction, grip distance 10 cm, tensile speed with tensile tester It measured at 30 cm / min. The samples at five points in the MD direction were measured, and the measured values were averaged to calculate the breaking strength.
  • the test piece of 5 mm in the CD direction and 20 mm in the MD direction was sampled by dividing into approximately 5 equal parts in the CD direction except 10 cm of both ends of the manufactured non-woven fabric, and fibers were cut perpendicular to the fiber length direction.
  • Heat seal strength (N / 5 cm) A sample of 3 cm in the CD direction and 20 cm in the MD direction is cut out so as to be uniform in the CD direction except 10 cm at both ends of the manufactured nonwoven fabric, and folded so as to overlap both ends of the nonwoven fabric. The creased end was pressed for 1 second with a force of 70 N / 1 cm with a 3 cm ⁇ 10 cm hot plate heated at 125 ° C. for bonding. The breaking strength was calculated by averaging measured values of samples at five points in the MD direction with a tension tester at a grip distance of 10 cm and a tensile speed of 30 cm / min so as to split the non-bonded end up and down. .
  • SMD surface roughness
  • Fuzz grade (class) Take a 25 mm x 300 mm test piece in the CD direction, use the Japan Society for the Promotion of Science Fastness Tester, load the friction element 150 g, use the same cloth on the friction element side, and operate 100 times, It was judged by the following evaluation criteria: 5.0 grade: no fuzz grade 4.0: about 1 or 2 fibers, or a small floss at a single location, fuzziness grade 3.0: a clear floss begins to be produced, Or, a plurality of small pill is observed. Grade 2.0: The thinner the specimen, the more the fibers are peeled off. Grade 1.0: The larger the breakage of the specimen, the fibers are scraped off.
  • Example 1 A polypropylene (hereinafter also referred to as PP) resin with an MFR of 55 g / 10 min (measured according to JIS-K 7210 at a temperature of 230 ° C. and a load of 2.16 kg) as the high melting point component, and an MI of 26 g / 10 min (JIS-K A high-density polyethylene (hereinafter also referred to as HDPE) resin with a temperature of 190 ° C and a load of 2.16 kg according to K7210 as the low melting point component, and the ratio of the high melting point component to the low melting point component is 67/33. Were extruded at a spinning temperature of 230 ° C.
  • PP polypropylene
  • HDPE high-density polyethylene
  • Example 2 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1, except that the ratio of the high melting point component to the low melting point component was 75/25.
  • Example 3 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the ratio of the high melting point component to the low melting point component was 80/20.
  • Example 4 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the HDPE resin having a MI of 23 g / 10 min was used as the low melting point component.
  • Example 5 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that a PP resin having a MFR of 40 g / 10 min was used as the high melting point component and an HDPE resin having an MI of 19 g / 10 min was used as the low melting point component.
  • Example 6 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that a PP resin having MFR of 33 g / 10 min was used as the high melting point component and an HDPE resin having MI of 19 g / 10 min was used as the low melting point component.
  • Example 7 Example 1 and Example 1 except that the PP resin having MFR of 33 g / 10 min. Is a high melting point component and the linear low density polyethylene (hereinafter referred to as LLDPE) resin having an MI of 17 g / 10 min. In the same manner, a composite long fiber non-woven fabric was obtained.
  • the PP resin having MFR of 33 g / 10 min. Is a high melting point component and the linear low density polyethylene (hereinafter referred to as LLDPE) resin having an MI of 17 g / 10 min.
  • LLDPE linear low density polyethylene
  • Example 8 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that LLDPE resin having a MI of 17 g / 10 min was used as the low melting point component.
  • Example 9 A composite long-fiber non-woven fabric in the same manner as in Example 1 except that the PP resin having MFR of 33 g / 10 min is used as the high melting point component and the low density polyethylene (LDPE) resin having MI of 31 g / 10 min is used as the low melting point component. I got
  • Example 10 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the LDPE resin having a MI of 31 g / 10 min was used as the low melting point component.
  • Example 11 The composite long fiber non-woven fabric of the same condition was further laminated on the composite long fiber non-woven fabric obtained in Example 1, and the line speed was adjusted so that the fabric weight was 25 g / m 2 to obtain a composite long fiber non-woven fabric.
  • Example 12 A side-by-side type composite long fiber having a MFR of 55 g / 10 min as a PP resin as a high melting point component, an MI of 26 g / 10 min as a low melting point component, and a 50/50 ratio of a high melting point component to a low melting point component
  • the composite long fiber nonwoven fabric prepared by the same method as in Example 1 was laminated on the composite long fiber nonwoven fabric obtained in Example 1, and the line speed was adjusted to obtain a composite long fiber nonwoven fabric with a fabric weight of 25 g / m 2 .
  • Example 13 A single-component PP resin with an MFR of 1000 g / 10 min is extruded at a spinning temperature of 220 ° C. by a meltblown method at a single hole discharge rate of 0.1 g / m 2 , and this filament group is pulled at an HA temperature of 300 ° C.
  • a web adjusted to a diameter of 2.0 ⁇ m is sprayed onto the eccentric sheath-cored long-fiber non-woven web obtained in Example 1 and laminated, and the eccentric sheath-cored long-fiber non-woven fabric obtained in Example 1 on this laminated web The web was laminated and the line speed was adjusted to obtain a composite long fiber non-woven fabric having a basis weight of 15 g / m 2 .
  • Example 14 The eccentric sheath core type long fiber nonwoven fabric obtained in the same manner as in Example 1 is laminated on the laminate of the eccentric sheath core type long fiber nonwoven fabric obtained in Example 12 and the side-by-side type composite long fiber nonwoven fabric, and the line speed is adjusted.
  • the composite long fiber nonwoven fabric of 20 g / m 2 in basis weight was obtained.
  • Example 15 A laminate of the eccentric sheath core long fiber nonwoven web and the side-by-side long fiber nonwoven web obtained in Example 12 is laminated on the eccentric sheath core long fiber nonwoven web obtained in Example 1, and the line speed is It adjusted and obtained the composite long fiber nonwoven fabric of 20 g / m ⁇ 2 > of fabric weight.
  • Example 16 An eccentric sheath-cored long-fiber non-woven web is prepared in the same manner as in Example 1, and then the obtained non-woven fabric is applied with a polyether hydrophilizing agent by a spraying method, and then heated at 120 ° C for 1.0 seconds. It dried and obtained the composite long-fiber nonwoven fabric used as the agent concentration adhesion amount 0.5 weight%. The obtained non-woven fabric was a non-woven fabric of the same performance as Example 1 with satisfactory performance as a top sheet of a diaper.
  • Example 17 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 16, except that the amount of the agent concentration of the polyether-based hydrophilizing agent was 0.25% by weight. The obtained non-woven fabric had satisfactory performance as a diaper top sheet, and was a non-woven fabric of the same performance as Example 1.
  • Comparative Example 1 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the HDPE resin having a MI of 70 g / 10 min was used as the low melting point component.
  • Comparative Example 2 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that a PP resin having a MFR of 29 g / 10 min was used as the high melting point component and an HDPE resin having an MI of 32 g / 10 min was used as the low melting point component.
  • Comparative Example 3 A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that L LDPE resin having a MI of 120 g / 10 min was used as the low melting point component.
  • Comparative Example 4 A composite long fiber non-woven fabric was obtained in the same manner as Example 1, except that the ratio of the high melting point component to the low melting point component was 90/10.
  • Comparative Example 5 A composite long-fiber non-woven fabric was obtained in the same manner as Example 1, except that the ratio of the high melting point component to the low melting point component was 20/80.
  • Comparative Example 6 Composite long fiber in the same manner as Example 1, except that the HDPE resin having a MI of 32 g / 10 min is used as the low melting point component and the ratio of the high melting point component to the low melting point component is 50/50. I got a non-woven fabric.
  • Comparative Example 7 A composite long-fiber non-woven fabric was obtained in the same manner as in Comparative Example 6 except that the low melting point component MI was 48 g / 10 min.
  • Comparative Example 8 The composite length is the same as in Example 1, except that the low melting point component MI is 48 g / 10 min HDPE resin and the ratio of the high melting point component to the low melting point component is 67/33. A fiber non-woven fabric was obtained.
  • Comparative Example 9 Except that the eccentric sheath core type composite long fiber non-woven fabric obtained in Example 1 was laminated on the side-by-side type composite long fiber non-woven fabric obtained in Comparative Example 7 and further the side-by-side type composite long fiber non-woven fabric obtained in Comparative Example 7 was laminated. The line speed was adjusted in the same manner as in Example 1 to obtain a composite long-fiber non-woven fabric having a basis weight of 25 g / m 2 .
  • the composite continuous fiber non-woven fabric according to the present invention is a composite continuous fiber non-woven fabric using at least one surface of an eccentric sheath-core type composite fiber composed of components utilizing two or more types of melting point differences. Since it is a non-woven fabric having excellent bulkiness and surface characteristics and high processing strength, it can be suitably used as a top sheet and a back sheet in hygiene material applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a long-fiber non-woven fabric that: is suitable for a top-sheet or back-sheet part of an absorbent article that is to be used in a sanitary material; achieves both high strength and a bulkiness that provides a cushioning softness; has surface characteristics that can be suitably utilized in sanitary materials; and has excellent processability. The present invention relates to a composite long-fiber non-woven fabric that uses, at one or both surfaces, an eccentric sheath/core long-fiber non-woven fabric that comprises eccentric sheath/core composite fibers that include at least two types of thermoplastic resin, the composite long-fiber non-woven fabric being characterized in that the eccentric sheath/core composite fibers have perfectly circular cross-sections and are configured from an elliptical high-melting-point component core part and a low-melting-point component sheath part, in that 100% of the surface of the fibers is covered by the low-melting-point component sheath parts, in that the sheath parts that cover the core parts are 100–500 nm thick at 30%–60% of the surface of the fibers, and in that the thickest portion of the sheath parts is at least 25% of the radius of the fibers. The present invention also relates to a sanitary material that uses the composite long-fiber non-woven fabric.

Description

偏心鞘芯型複合繊維を少なくとも片方の面に用いた複合長繊維不織布Composite long fiber non-woven fabric using eccentric sheath-core type composite fiber on at least one surface
 本発明は、2種以上の熱可塑性樹脂からなる偏心鞘芯型複合繊維を少なくとも片方の面に用いた複合長繊維不織布に関し、衛生材料に適したクッション性の柔らかさを有する嵩高性と高い強度、更に表面の滑らかさ、耐毛羽性といった衛生材料に要求される表面特性に優れた複合長繊維不織布に関する。 The present invention relates to a composite long-fiber non-woven fabric using at least one surface of an eccentric sheath-core type composite fiber composed of two or more types of thermoplastic resins, which has bulkiness and high strength with cushioning softness suitable for sanitary materials The present invention also relates to a composite long-fiber non-woven fabric having excellent surface properties required for sanitary materials such as surface smoothness and fuzz resistance.
 近年、使い捨てオムツの普及はめざましく、要求される品質や性能は向上していきている。特にオムツ構成の中でトップシート、バックシートに求められる性能は柔らかさであり、また、特に大人用オムツでは介護を伴うこともあることから高強伸度が求められてきている。従来オムツのトップシート、バックシートの高品質分野では短繊維が用いられていることが多く、カード法やエアレイ法による短繊維ウェブを熱風でボンディングするエアスルー方法がなされており、クッション性の嵩高性を持った柔らかさを有している。但し、短繊維では繊維自身の伸度がほとんどなく、不織布としての強度、伸度は繊維接着点の強度に依存するものであったため、強度と伸度を向上させる手段としてはボンディング温度を高くする必要があり、風合いが硬いものとなっていた。また、スパンボンド方法による長繊維もトップシート、バックシートに用いられるがスパンボンドではその製造方法から高強伸度な不織布は得られるが、繊維が面方向に配列され、厚み方向を占有する繊維は少なく、嵩高性を得ることは困難であった。すなわち、従来の長繊維不織布ではクッション性の柔らかさを有する嵩高性と高強伸度を両立させることは非常に困難であるという問題がある。 In recent years, the spread of disposable diapers has been remarkable, and the required quality and performance have been improved. In particular, the performance required for the top sheet and the back sheet in the diaper construction is soft, and in particular, the diaper for adults may be accompanied by nursing care, and thus high strength and elongation are required. In the high quality field of diaper top sheets and back sheets in the past, staple fibers are often used, and an air through method of bonding staple fiber webs by a card method or air lay method by hot air is performed, and cushioning bulkiness Has a softness with. However, since the short fiber has almost no elongation of the fiber itself, and the strength and elongation as a non-woven fabric depend on the strength of the fiber bonding point, the bonding temperature should be raised as a means to improve the strength and the elongation. It was necessary and the texture was hard. In addition, long fibers by the spun bond method are also used for the top sheet and back sheet, but with the spun bond, high tenacity non-woven fabrics are obtained from the production method, but the fibers are arranged in the surface direction and the fibers occupying the thickness direction are It was difficult to obtain a small amount of bulkiness. That is, in the conventional long-fiber non-woven fabric, there is a problem that it is very difficult to achieve both bulkiness having cushioning softness and high strength and elongation.
 他方、以下の特許文献1には、偏心鞘芯型繊維による不織布の開示があるが、鞘芯ともに真円形状であり、鞘成分の形状に関して詳細設計の記載はなく、繊維の捲縮数が少なく嵩高性が劣るものである。 On the other hand, Patent Document 1 below discloses a non-woven fabric with eccentric sheath core type fibers, but the sheath core is a perfect circle shape, there is no description of the detailed design regarding the shape of the sheath component, and the number of crimped fibers is There is little and bulkiness is inferior.
 また、以下の特許文献2には、クッションやダウンジャケットの中綿に好適な素材として偏心鞘芯型繊維を使用した繊維球状体の開示があるが、衛生材料のトップシートやバックシートに適したシート形成には適していないものである。 Moreover, although the following Patent Document 2 discloses a fiber spherical body using an eccentric sheath core type fiber as a material suitable for filling of a cushion or a down jacket, a sheet suitable for a top sheet or a back sheet of a sanitary material It is not suitable for formation.
 また、以下の特許文献3には、偏心鞘芯型複合繊維による捲縮発現による嵩高性を有した短繊維不織布の開示があるが、長繊維不織布についての記載はなく、短繊維の端面が不織布表面上にあることで摩擦が高く、滑らかな風合いが損なわれてしまう。 Moreover, although the following patent document 3 has disclosed the short fiber nonwoven fabric which has bulkiness by the crimp expression by eccentric sheath core type | mold composite fiber, there is no description about a long fiber nonwoven fabric, and the end face of a short fiber is a nonwoven fabric The friction on the surface is high and the smooth texture is lost.
特開2015-165061号公報JP, 2015-165061, A 特開2015-175074号公報JP, 2015-175074, A 特開2014-234559号公報JP 2014-234559
 前記した従来技術に鑑み、本発明が解決しようとする課題は、衛生材料に用いられる吸収性物品のトップシートやバックシート部に適した、クッション性の柔らかさを有する嵩高性と高い強度を両立し、衛生材料に好適に利用することができる表面特性を有した、加工適正の優れた長繊維不織布を提供することである。 In view of the above-described prior art, the problem to be solved by the present invention is to have both bulkiness and high strength having cushioning softness suitable for the top sheet and back sheet portion of the absorbent article used for sanitary materials It is an object of the present invention to provide a processable excellent long-fiber non-woven fabric having surface characteristics that can be suitably used for sanitary materials.
 本発明者らは、前記課題を解決すべく鋭意検討し実験を重ねた結果、鞘部を構成する低融点成分と芯部を構成する高融点成分の樹脂に関して、押出機から紡糸口金までの温度と紡糸口金内の樹脂の滞留時間を調整し、また、紡糸口金内での樹脂の粘度差を制御し、紡糸口金内の樹脂の分配を設計することで、偏芯性の高い繊維を得ることができた。こうして得られた偏芯性の高い繊維では、繊維外周の100%を鞘が覆った状態で、芯部を楕円形状とし、膜厚を適切な範囲に制御することにより、紡糸口金から吐出された糸が牽引される工程で、繊維内にて鞘部にかかる内部応力が芯部を周囲から覆い込むように作用し、鞘部が100%芯部を覆う繊維形状を有する長繊維においても捲縮数を多くすることが可能となった。
 捲縮数が多くなることで不織布の厚み方向で糸の重なりが増え、糸の重なりを維持した状態で繊維接着し、さらに糸表面が100%低融点成分で覆っているため、鞘成分同士の接着頻度が増え、低熱量でも布強度を高くすることができ、高強度と嵩高性、耐毛羽性を得るに至った。また、鞘部の最も厚い部分の厚みを繊維半径の25%以上となるように芯部を楕円形状とすることで、鞘の厚い部分が接着し繊維接着点の接着体積が増えたことで、より強度を増すことができた。更に、本発明では、鞘部が繊維表面を100%覆った繊維構造を有しており、長繊維から構成されることから繊維断面が不織布表面に出ることはなく、摩擦抵抗が少なく、触れた肌が滑らかな風合いを感じることができ、衛生材料用途に好適に使用できることを見出したものである。
The present inventors diligently studied to solve the above problems, and as a result of repeating experiments, the temperature from the extruder to the spinneret regarding the low melting point component constituting the sheath and the high melting point component resin constituting the core And adjusting the residence time of the resin in the spinneret, controlling the viscosity difference of the resin in the spinneret, and designing the distribution of the resin in the spinneret to obtain a highly eccentric fiber. It was possible. The highly eccentric fiber thus obtained was discharged from the spinneret by setting the core to an elliptical shape and controlling the film thickness to an appropriate range, with the sheath covering 100% of the fiber outer circumference. In the process of drawing the yarn, the internal stress applied to the sheath in the fiber acts so as to cover the core from the periphery, and the crimp also occurs in long fibers having a fiber shape in which the sheath covers 100% of the core. It became possible to increase the number.
As the number of crimps increases, the overlapping of the yarns increases in the thickness direction of the non-woven fabric, and the fibers are adhered while maintaining the overlapping of the yarns, and furthermore, the yarn surface is covered with the 100% low melting point component. The bonding frequency is increased, and the fabric strength can be increased even with a low heat amount, and high strength, bulkiness and fuzz resistance can be obtained. Also, by making the core part elliptical so that the thickness of the thickest part of the sheath part is 25% or more of the fiber radius, the thick part of the sheath adheres and the adhesion volume of the fiber adhesion point increases, It was possible to increase the strength more. Furthermore, in the present invention, the sheath portion has a fiber structure covering 100% of the fiber surface, and the fiber cross section does not appear on the non-woven fabric surface because it is composed of long fibers, and the friction resistance is small. It has been found that the skin feels smooth and can be suitably used for hygiene applications.
 すなわち、本発明は下記の通りのものである。
 [1]2種以上の熱可塑性樹脂を含む偏心鞘芯型複合繊維からなる偏心鞘芯型長繊維不織布を少なくとも片方の面に用いた複合長繊維不織布であって、該偏心鞘芯型複合繊維は、真円形状の断面を有し、楕円形状の高融点成分の芯部と、低融点成分である鞘部によって構成され、かつ、該繊維表面を低融点成分である鞘部が100%覆った構造を有し、そして該芯部を覆う鞘部の厚みが100~500nmである部分が、該繊維の全表面の30~60%を占め、かつ、該鞘部の最も厚い部分の厚みが該繊維半径の25%以上であることを特徴とする前記複合長繊維不織布。
 [2]前記高融点成分のMFRと低融点成分のMIの比(高融点成分のMFR÷低融点成分のMI)が1.0以上3.5以下である、前記[1]に記載の複合長繊維不織布。
 [3]前記偏心鞘芯型長繊維不織布に、サイドバイサイド型長繊維不織布、及び/又は偏心鞘芯型長繊維不織布を積層させてなる、前記[1]又は[2]に記載の複合長繊維不織布。
 [4]前記偏心鞘芯型長繊維不織布に、0.5~3.0μmの平均繊維径を有する長繊維不織布を積層させてなる、前記[1]~[3]のいずれかに記載の複合長繊維不織布。
 [5]前記偏心鞘芯型複合繊維の鞘部を構成する低融点成分の熱可塑性樹脂が密度0.900~0.970g/cmのポリエチレンである、前記[1]~[4]のいずれかに記載の複合長繊維不織布。
 [6]前記偏心鞘芯型複合繊維の捲縮数が5~45個/インチである、前記[1]~[5]のいずれかに記載の複合長繊維不織布。
 [7]前記偏心鞘芯型複合繊維の芯部の高融点成分の、該繊維の総重量に対する重量比が50~80%である、前記[1]~[6]のいずれかに記載の複合長繊維不織布。
 [8]前記複合長繊維不織布の破断強度が25~60N/5cmである、前記[1]~[7]のいずれかに記載の複合長繊維不織布。
 [9]前記複合長繊維不織布の嵩密度が0.01~0.07g/cmである、前記[1]~[8]のいずれかに記載の複合長繊維不織布。
 [10]前記複合長繊維不織布の偏心鞘芯型長繊維不織布側表面のヒートシール強力が3~15N/5cmである、前記[1]~[9]のいずれかに記載の複合長繊維不織布。
 [11]前記複合長繊維不織布の偏心鞘芯型長繊維不織布側表面の表面粗さの平均偏差(SMD)が1.0~2.4μm以下である、前記[1]~[10]のいずれかに記載の複合長繊維不織布。
 [12]前記複合長繊維不織布の偏心鞘芯型長繊維不織布側表面の毛羽等級が3級以上である、前記[1]~[11]のいずれかに記載の複合長繊維不織布。
 [13]前記複合長繊維不織布に親水化剤が含有されてなる、前記[1]~[12]のいずれかに記載の複合長繊維不織布。
 [14]前記[1]~[13]のいずれかに記載の複合長繊維不織布を用いてなる衛生材料。
That is, the present invention is as follows.
[1] A composite long-fiber non-woven fabric using an eccentric sheath-core long-fiber non-woven fabric composed of an eccentric sheath-core composite fiber containing two or more types of thermoplastic resins on at least one surface thereof, the eccentric sheath-core composite fiber Has a perfectly circular cross section, is constituted by a core of an elliptical high melting point component and a sheath which is a low melting point component, and the sheath surface which is a low melting point component covers 100% of the fiber surface A portion with a thickness of 100 to 500 nm of the sheath covering the core occupies 30 to 60% of the entire surface of the fiber, and the thickness of the thickest portion of the sheath is 25% or more of the fiber radius.
[2] The composite according to the above [1], wherein the ratio of the MFR of the high melting point component to the MI of the low melting point component (MFR of the high melting point component ÷ MI of the low melting point component) is 1.0 or more and 3.5 or less. Long fiber non-woven fabric.
[3] The composite continuous fiber non-woven fabric according to [1] or [2], wherein the side-by-side long-fiber non-woven fabric and / or the eccentric sheath-core long-fiber non-woven fabric is laminated on the eccentric sheath-core long fiber non-woven fabric .
[4] The composite according to any one of the above [1] to [3], wherein a long fiber non-woven fabric having an average fiber diameter of 0.5 to 3.0 μm is laminated on the eccentric sheath core long fiber non-woven fabric Long fiber non-woven fabric.
[5] Any one of the above [1] to [4], wherein the low melting point component thermoplastic resin constituting the sheath portion of the eccentric sheath-core type composite fiber is polyethylene having a density of 0.900 to 0.970 g / cm 3 Composite long-fiber non-woven fabric described in.
[6] The composite long-fiber non-woven fabric according to any one of the above [1] to [5], wherein the number of crimps of the eccentric sheath-core type composite fiber is 5 to 45 pieces / inch.
[7] The composite according to any one of the above [1] to [6], wherein the weight ratio of the high melting point component of the core of the eccentric sheath-core type composite fiber to the total weight of the fiber is 50 to 80%. Long fiber non-woven fabric.
[8] The composite long fiber non-woven fabric according to any one of the above [1] to [7], which has a breaking strength of 25 to 60 N / 5 cm.
[9] The composite continuous fiber non-woven fabric according to any one of the above [1] to [8], wherein the bulk density of the composite continuous fiber non-woven fabric is 0.01 to 0.07 g / cm 3 .
[10] The composite long fiber non-woven fabric according to any one of the above [1] to [9], wherein the heat seal strength of the surface on the eccentric sheath core long fiber non-woven fabric side of the composite long fiber non-woven fabric is 3 to 15 N / 5 cm.
[11] Any of the above [1] to [10], wherein the mean deviation (SMD) of the surface roughness on the eccentric sheath core type long fiber non-woven fabric side surface of the composite long fiber non-woven fabric is 1.0 to 2.4 μm or less Composite long-fiber non-woven fabric described in.
[12] The composite long fiber non-woven fabric according to any one of the above [1] to [11], wherein the fluff grade of the surface on the eccentric sheath core long fiber non-woven fabric side of the composite long fiber non-woven fabric is third grade or higher.
[13] The composite long fiber non-woven fabric according to any one of the above [1] to [12], wherein the composite long fiber non-woven fabric contains a hydrophilizing agent.
[14] A sanitary material comprising the composite long fiber non-woven fabric according to any one of the above [1] to [13].
 本発明に係る複合長繊維不織布は、2種以上の融点差を利用した成分から構成される偏心鞘芯型複合繊維を少なくとも片方の面に用いた複合長繊維不織布であって、クッション性の柔らかさを有する嵩高性と表面特性、高強度となる加工適正に優れた不織布であるため、衛生材料用途におけるトップシート、バックシートに好適に利用可能である。 The composite continuous fiber non-woven fabric according to the present invention is a composite continuous fiber non-woven fabric using at least one surface of an eccentric sheath-core type composite fiber composed of components utilizing two or more types of melting point differences. Since it is a non-woven fabric having excellent bulkiness and surface characteristics and high processing strength, it can be suitably used as a top sheet and a back sheet in hygiene material applications.
 以下、本発明の実施形態を詳細に説明する。
 本実施形態の複合長繊維不織布は、2種以上の熱可塑性樹脂を含む偏心鞘芯型複合繊維からなる偏心鞘芯型長繊維不織布を少なくとも片方の面に用いた複合長繊維不織布であって、該偏心鞘芯型複合繊維は、真円形状の断面を有し、楕円形状の高融点成分の芯部と、低融点成分である鞘部によって構成され、かつ、該繊維表面を低融点成分である鞘部が100%覆った構造を有し、そして該芯部を覆う鞘部の厚みが100~500nmである部分が、該繊維の全表面の30~60%を占め、かつ、該鞘部の最も厚い部分の厚みが該繊維半径の25%以上であることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The composite continuous fiber non-woven fabric of the present embodiment is a composite continuous fiber non-woven fabric using at least one surface of an eccentric sheath-core type long fiber non-woven fabric composed of eccentric sheath-core type composite fibers containing two or more thermoplastic resins. The eccentric sheath-core type composite fiber has a cross section of a true circle shape, is constituted by a core portion of an elliptical high melting point component and a sheath portion which is a low melting point component, and the fiber surface is a low melting point component. A portion having a structure in which a sheath portion is 100% covered and the thickness of the sheath portion covering the core portion is 100 to 500 nm occupies 30 to 60% of the entire surface of the fiber, and the sheath portion The thickness of the thickest portion of the fiber is 25% or more of the fiber radius.
 偏心鞘芯型長繊維不織布を構成する偏心鞘芯型長繊維は、2種以上の熱可塑性樹脂の組み合わせからなる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、共重合ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、共重合ポリエステルなどのポリエステル系樹脂、ナイロン-6、ナイロン-66、共重合ナイロンなどのポリアミド系樹脂、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネートなどの生分解性樹脂などが用いられる。所望の効果を損なわない範囲であれば、前記熱可塑性樹脂の何れの組合せでも可能であり、繊維同士の接合の面から融点差のある熱可塑性樹脂の組合せが好ましい。なかでも風合いの観点から、ポリオレフィン系樹脂を組み合わせて用いることが好ましい。例えば、ポリエチレン、ポリプロピレン及びそれらのモノマーと他のα-オレフィンとの共重合体などの樹脂から組み合わせた複合繊維が挙げられる。他のα-オレフィンとしては、炭素数3~10のものであり、具体的にはプロピレン、1-ブテン、1-ペンテン、1-ヘキサン、4-メチル-1-ペンテン、1-オクテンなどが挙げられる。 The eccentric sheath core type long fiber constituting the eccentric sheath core type long fiber nonwoven fabric is made of a combination of two or more kinds of thermoplastic resins. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene and copolymerized polypropylene, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymer polyester, nylon-6, nylon-66, co-polymer Polyamide-based resins such as polymerized nylon, biodegradable resins such as polylactic acid, polybutylene succinate, and polyethylene succinate are used. Any combination of the above-mentioned thermoplastic resins is possible as long as the desired effect is not impaired, and a combination of thermoplastic resins having a melting point difference is preferable in terms of bonding of the fibers. Among them, in terms of texture, it is preferable to use a combination of polyolefin resins. For example, composite fibers combined from resins such as polyethylene, polypropylene and copolymers of those monomers with other α-olefins can be mentioned. Other α-olefins are those having 3 to 10 carbon atoms, and specific examples thereof include propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, 1-octene and the like Be
 偏心鞘芯型長繊維不織布を構成する偏心鞘芯型長繊維の繊維形状は、文字通り、偏心鞘芯型であるため、捲縮糸を容易に得ることができる。芯部は楕円形状であり、繊維表層部の30~60%の範囲で薄膜を形成し、その薄膜は100nm~500nmの膜厚であり、鞘部の最も厚い箇所は繊維半径の25%以上を占める膜を形成することで、高い偏芯性を有する繊維が得られる。捲縮性の観点から、鞘部の薄膜の厚みは100nm~500nmであり、好ましくは100nm~400nm、より好ましくは100nm~300nmである。また、同じく捲縮性の観点から、薄膜の繊維表層部に占める割合は、30~60%であり、30~50%がより好ましく、30~40%がさらに好ましい。鞘部の最も厚い箇所は、繊維半径の25%以上であり、好ましくは30%以上で、より好ましくは35%以上である。芯部は鞘部で100%覆った構造であることが、鞘部同士の接着に起因し、高い強度と毛羽抑制性が得られるものとなる。 Since the fiber shape of the eccentric sheath core type long fiber constituting the eccentric sheath core type long fiber nonwoven fabric is literally an eccentric sheath core type, crimped yarn can be easily obtained. The core is elliptical and forms a thin film in the range of 30 to 60% of the surface layer of the fiber, the thin film has a thickness of 100 nm to 500 nm, and the thickest part of the sheath is 25% or more of the fiber radius By forming the occupied film, fibers having high eccentricity can be obtained. From the viewpoint of crimpability, the thickness of the sheath thin film is 100 nm to 500 nm, preferably 100 nm to 400 nm, and more preferably 100 nm to 300 nm. In addition, similarly, from the viewpoint of crimpability, the ratio of the thin film to the surface layer of the fiber is 30 to 60%, more preferably 30 to 50%, and still more preferably 30 to 40%. The thickest part of the sheath part is 25% or more, preferably 30% or more, more preferably 35% or more of the fiber radius. The core part is 100% covered with the sheath part, which results from the adhesion between the sheath parts, and high strength and fluff suppression can be obtained.
 偏心鞘芯型長繊維不織布を構成する偏心鞘芯型長繊維の断面形状は、真円形状である。
 本明細書中、用語「真円形状」とは、繊維断面の最も長くなる直径の長さと最も短くなる直径の長さの比が、0.8~1.0であるものをいい、好ましくは0.9~1.0、より好ましくは0.95~1.0である。繊維断面が真円形状であれば、安定紡糸が可能であり、更に繊維を触れた際にひっかかる感じのない風合いの良好な不織布を得ることができる。
The cross-sectional shape of the eccentric sheath core long fiber constituting the eccentric sheath core long fiber non-woven fabric is a true circle shape.
In the present specification, the term "perfect circular shape" means that the ratio of the length of the longest diameter of the fiber cross section to the length of the shortest diameter is 0.8 to 1.0, preferably It is 0.9 to 1.0, more preferably 0.95 to 1.0. If the fiber cross section has a perfect circular shape, stable spinning is possible, and furthermore, it is possible to obtain a non-woven fabric having a good feeling that does not feel trapped when touching the fiber.
 芯部の形状の制御と高い偏芯性を得るためには芯部を構成する高融点成分と鞘部を構成する低融点成分の粘度特性差を制御することが非常に重要である。しかしながら、芯部と鞘部に特性差を持たせすぎると繊維全周を鞘部が覆わない構造となる場合や偏芯性が低く捲縮数の少ない構造となる。
 高融点成分と低融点成分の粘度特性差(MFR/MI比)の適切な範囲は、高融点成分のMFRを低融点成分のMIで除した値で、1.0以上3.5以下であることが好ましい。MFR/MI比を1.0以上とすることで、芯部を楕円形状に形成することができ、MFR/MIの比が大きい程粘度差が大きくなり偏芯性が高くなるため良好な捲縮性が得られるため、下限値は、より好ましくは1.7以上、さらに好ましくは2.0以上、最も好ましくは2.1以上である。他方、MFR/MI比を3.5以下とすることで、繊維全周を鞘部が覆う構造を保てるため、繊維同士の接着性の観点から、3.5以下が好ましい。
In order to control the shape of the core and obtain high eccentricity, it is very important to control the difference in viscosity characteristics between the high melting point component constituting the core and the low melting point component constituting the sheath. However, when the core portion and the sheath portion have too much characteristic difference, the sheath portion does not cover the entire circumference of the fiber, or the eccentricity is low and the number of crimps is small.
An appropriate range of the viscosity characteristic difference (MFR / MI ratio) of the high melting point component and the low melting point component is 1.0 or more and 3.5 or less as a value obtained by dividing the MFR of the high melting point component by the MI of the low melting point component. Is preferred. By setting the MFR / MI ratio to 1.0 or more, the core can be formed into an elliptical shape, and as the MFR / MI ratio is larger, the viscosity difference becomes larger and the eccentricity becomes higher. The lower limit value is more preferably 1.7 or more, still more preferably 2.0 or more, and most preferably 2.1 or more because the property is obtained. On the other hand, by setting the MFR / MI ratio to 3.5 or less, the sheath can cover the entire circumference of the fiber, so 3.5 or less is preferable from the viewpoint of the adhesion between the fibers.
 偏心鞘芯型長繊維不織布を構成する偏心鞘芯型長繊維を2種の熱可塑性樹脂で形成する場合、高融点成分はポリプロピレン、低融点成分はポリエチレンであることが好ましい。高融点成分が繊維全体に占める重量比率は、50~80%が好ましく、60~70%がより好ましく、65~70%がさらに好ましい。高融点成分をポリプロピレンとすることで、強度が高く使用時において破断しにくく、且つ衛生材料の生産時における寸法安定性に優れる。低融点成分をポリエチレンとすることで、鞘部が接着に起因するため、高い強度と毛羽抑制性が得られるものとなる。 When the eccentric sheath core long fibers constituting the eccentric sheath core long fiber nonwoven fabric are formed of two types of thermoplastic resins, it is preferable that the high melting point component is polypropylene and the low melting point component is polyethylene. The weight ratio of the high melting point component to the whole fiber is preferably 50 to 80%, more preferably 60 to 70%, and still more preferably 65 to 70%. By using polypropylene as the high melting point component, it is high in strength and difficult to be broken at the time of use, and is excellent in dimensional stability at the time of production of the sanitary material. By using polyethylene as the low melting point component, the sheath part is attributable to adhesion, so that high strength and fluff suppression can be obtained.
 前記2種の熱可塑性樹脂で形成する場合の高融点成分のポリプロピレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーであってもよく、また、エチレンランダム共重合ポリプロピレンでもよい。これらは単独でも2種類以上を組み合わせてもよい。特に風合い、強度、寸法安定性からホモポリプロピレンを主成分とするものであることが好ましい。
 また、ポリプロピレンのMFRの下限は、好ましくは20g/10分以上、より好ましくは30g/10分以上、さらに好ましくは40g/10分以上、最も好ましくは53g/10分以上である。ポリプロピレンのMFRの上限は、好ましくは85g/10分以下、より好ましくは70g/10分以下、さらに好ましくは60g/10分以下である。MFRは、JIS-K7210「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」の表1、試験温度230℃、試験荷重2.16kgに準じて測定した。
The high melting point component polypropylene in the case of forming with the above two types of thermoplastic resins may be a polymer synthesized by a general Ziegler Natta catalyst, or a polymer synthesized by a single site active catalyst represented by a metallocene, etc. Also, ethylene random copolymer polypropylene may be used. These may be used alone or in combination of two or more. In particular, homopolypropylene is preferred as the main component in terms of texture, strength and dimensional stability.
The lower limit of the MFR of polypropylene is preferably 20 g / 10 min or more, more preferably 30 g / 10 min or more, still more preferably 40 g / 10 min or more, and most preferably 53 g / 10 min or more. The upper limit of the MFR of polypropylene is preferably 85 g / 10 min or less, more preferably 70 g / 10 min or less, and still more preferably 60 g / 10 min or less. MFR was measured according to JIS-K7210 “Test method of melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastics”, test temperature 230 ° C., test load 2.16 kg. .
 前記2種の熱可塑性樹脂で形成する場合の低融点成分のポリエチレン系樹脂は、繊維同士の接合後の接着強度が強く、不織布としての風合いが良い点から衛生材料に好適に利用できる。また、ポリエチレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーであってもよい。ポリエチレンとしては、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンを使用することができ、密度は0.90~0.97g/cmであることが好ましく、より好ましくは0.91~0.96g/cmである。 The polyethylene resin of the low melting point component in the case of forming with the two types of thermoplastic resins can be suitably used as a hygienic material from the viewpoint that the adhesive strength after bonding of the fibers is strong and the texture as a non-woven fabric is good. Also, polyethylene may be a polymer synthesized by a general Ziegler-Natta catalyst, or a polymer synthesized by a single site activated catalyst represented by a metallocene. As polyethylene, high density polyethylene, linear low density polyethylene, low density polyethylene can be used, and the density is preferably 0.90 to 0.97 g / cm 3 , more preferably 0.91 to It is 0.96 g / cm 3 .
 ポリエチレンのMIの下限は、好ましくは10g/10分以上、より好ましくは15g/10分超である。他方、ポリエチレンのMIの上限は、好ましくは50g/10分以下、より好ましくは45g/10分以下である。MIは、JIS-K7210「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」の表1、試験温度190℃、試験荷重2.16kgに準じて測定した。 The lower limit of MI of polyethylene is preferably 10 g / 10 min or more, more preferably 15 g / 10 min or more. On the other hand, the upper limit of MI of polyethylene is preferably 50 g / 10 min or less, more preferably 45 g / 10 min or less. MI was measured according to JIS-K7210 “Test method of melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastics”, test temperature 190 ° C., test load 2.16 kg. .
 偏心鞘芯型長繊維不織布を構成する偏心鞘芯型長繊維において所望の鞘芯形状を得るためには、紡口から吐出された際に低融点成分と高融点成分の粘度に差があることが重要であり、紡糸温度の制御が必要である。低融点成分としてポリエチレンを、高融点成分としてポリプロピレンを選択した場合、所望の繊維断面形状を得るためには、紡糸温度を200℃以上260℃以下とすることが好ましく、より好ましくは230℃以上250℃以下である。200℃未満ではポリプロピレンとポリエチレンの両者の粘度が高くなり、粘度差が小さくなってしまうため、所望の繊維形状が得られない。また、260℃を超えると鞘部であるポリエチレンの流動性が高くなり、紡口から吐出された後、ポリプロピレン周囲を取り囲むため、鞘部の厚みが厚くなり所望の繊維形状が得られない。 In order to obtain a desired sheath core shape in the eccentric sheath core long fiber constituting the eccentric sheath core long fiber non-woven fabric, there is a difference between the viscosity of the low melting point component and the high melting point component when discharged from the spinning port Is important and control of the spinning temperature is necessary. When polyethylene is selected as the low melting point component and polypropylene is selected as the high melting point component, the spinning temperature is preferably 200 ° C. or more and 260 ° C. or less, more preferably 230 ° C. or more and 250 ° C. to obtain a desired fiber cross-sectional shape. It is less than ° C. If the temperature is less than 200 ° C., the viscosity of both polypropylene and polyethylene becomes high, and the difference in viscosity becomes small, so a desired fiber shape can not be obtained. If the temperature exceeds 260 ° C., the flowability of the polyethylene which is the sheath becomes high, and after it is discharged from the spinning nozzle, the thickness of the sheath becomes large and the desired fiber shape can not be obtained.
 偏心鞘芯型長繊維不織布を構成する偏心鞘芯型長繊維は、不織布の風合いと嵩高を保持するために、らせん状の捲縮を有していることが好ましい。該繊維の捲縮数は5個/インチ以上45個/インチ以下が好ましく、より好ましくは10個/インチ以上40個/インチ以下である。捲縮数が5個/インチ未満であると得られる不織布の嵩が不足し、他方、45個/インチを超えると得られる不織布の繊維分散ムラにより見栄えを損なってしまう。 The eccentric sheath core type long fibers constituting the eccentric sheath core type long fiber non-woven fabric preferably have a helical crimp in order to maintain the texture and bulkiness of the non-woven fabric. The number of crimps of the fiber is preferably 5 to 45 / inch, and more preferably 10 to 40 / inch. If the number of crimps is less than 5 pieces / inch, the bulk of the obtained nonwoven fabric is insufficient, while if it exceeds 45 pieces / inch, the appearance of the obtained nonwoven fabric is impaired due to the uneven fiber dispersion of the obtained nonwoven fabric.
 偏心鞘芯型長繊維不織布は、強度及び生産性の観点からスパンボンド法により形成された複合長繊維不織ウェブであることが好ましい。かかる複合長繊維は、例えば、2つ以上の異なる押出機からそれぞれ異なる熱可塑性樹脂を溶融押出し、多数の紡糸孔を有する紡糸口金から2種以上の熱可塑性樹脂が複合された状態で糸条として吐出される。次いで、吐出された糸条に5℃~20℃に制御した冷風をあて、冷却しながら牽引する。牽引装置より出た糸条は搬送コンベア上に堆積され不織ウェブとして搬送される。搬送中の不織ウェブは積層され、多層積層の不織ウェブとしてもよい。 The eccentric sheath-cored long-fiber non-woven fabric is preferably a composite long-fiber non-woven web formed by a spunbond method from the viewpoint of strength and productivity. Such composite long fibers are produced, for example, by melt extruding different thermoplastic resins from two or more different extruders, and as a yarn in a state in which two or more types of thermoplastic resins are compounded from a spinneret having a large number of spinning holes. It is discharged. Next, cold air controlled at 5 ° C. to 20 ° C. is applied to the discharged yarn, and it is pulled while being cooled. The yarn exiting from the pulling device is deposited on a conveyer and conveyed as a nonwoven web. The nonwoven web being transported may be laminated to form a multilayer laminated nonwoven web.
 熱可塑性複合繊維で構成された不織ウェブを接合して不織布となす場合の接合手段としては、繊維同士の交点が溶融し接着できる温度以上に加熱する方法であれば特に限定されるものではない。加熱する方法としては、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、加熱気体中に導入する方法等、各種の加熱する方法が用いられる。繊維同士の交点でより多くの繊維接着点が得られ且つ不織布の破断強度が高くなる観点から、熱風による加熱が好ましく、特に熱風貫通型が好ましい。 As a joining means in the case of joining the nonwoven web comprised with a thermoplastic conjugate fiber and making it into a nonwoven fabric, it will not be limited especially if it is a method of heating more than the temperature which the intersection of fibers melts and adheres . As a heating method, various heating methods such as a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air to both surfaces of a non-woven fabric, a method of introducing into a heating gas, and the like are used. From the viewpoint of obtaining more fiber bonding points at the intersections of the fibers and increasing the breaking strength of the non-woven fabric, heating with hot air is preferable, and in particular, a hot air penetrating type is preferable.
 熱風の温度は、組み合わせた熱可塑性樹脂の中でも、融点が低く且つ接合に寄与する熱可塑性樹脂に適した温度に調整することが好ましい。生産速度が速くなるにつれ、接着に寄与する熱量を確保するために温度を上げる必要があり、生産条件に合わせて適正温度を合わせるものであるが、例えば、熱可塑性樹脂がポリエチレンの場合、ポリエチレンが溶融し接着する125~155℃であり、好ましくは130~155℃、より好ましくは135℃~150℃である。接着温度がこの範囲であれば風合いを損なうことなく、繊維同士の交点で繊維同士の接着が発現し、不織布としての強度を発現することが可能となる。 Among the combined thermoplastic resins, the temperature of the hot air is preferably adjusted to a temperature suitable for the thermoplastic resin having a low melting point and contributing to bonding. As the production speed increases, it is necessary to raise the temperature to secure the amount of heat that contributes to adhesion, and the appropriate temperature is adjusted according to the production conditions. For example, when the thermoplastic resin is polyethylene, polyethylene is The temperature is 125 to 155 ° C., preferably 130 to 155 ° C., more preferably 135 ° C. to 150 ° C. for melting and bonding. If the bonding temperature is in this range, bonding of the fibers is developed at the intersection of the fibers without impairing the texture, and it becomes possible to develop the strength as a non-woven fabric.
 熱風の風速は、好ましくは0.5m/秒~3.0m/秒であり、より好ましくは0.7m/秒~2.5m/秒、更に好ましくは0.7m/秒~2.0m/秒である。熱風の風速がこの範囲であれば、風合いを損なうことなく、繊維同士の交点で繊維同士の接着が発現し、不織布としての強度を発現することが可能となる。 The velocity of the hot air is preferably 0.5 m / sec to 3.0 m / sec, more preferably 0.7 m / sec to 2.5 m / sec, still more preferably 0.7 m / sec to 2.0 m / sec It is. If the wind speed of the hot air is in this range, adhesion of the fibers is developed at the intersection of the fibers without impairing the texture, and the strength as the non-woven fabric can be developed.
 本実施形態では、不織布の接合前又は接合後の不織ウェブにエンボス加工で熱接着を施すことがある。エンボス加工は、金属エンボスロールと金属フラットロールの組合せの一対のロールに通して加工することが生産性の観点から好ましい。不織ウェブの形態保持や最終的に得られる不織布の強度の観点から、エンボス面積率は、好ましくは5~30%、より好ましくは5~20%、更に好ましくは6~15%である。また、エンボスの深さは深いほど、不織布の柔らかさを得ることが可能であり、好ましくは0.5~2.0mm、より好ましくは0.7~1.5mmである。エンボス形状は特に限定することはないが、円形状、楕円形状、ダイヤ形状、矩形状であることが好ましく、衛生材料に好適に用いる柔らかさと、適度な強度と伸度とを有する不織布を得るために適宜選定することができる。 In this embodiment, the non-woven web before bonding or after bonding of the non-woven fabric may be subjected to heat bonding by embossing. It is preferable from the viewpoint of productivity to process embossing through a pair of rolls of a combination of a metal embossing roll and a metal flat roll. The embossed area ratio is preferably 5 to 30%, more preferably 5 to 20%, and still more preferably 6 to 15%, from the viewpoint of shape retention of the nonwoven web and the strength of the finally obtained nonwoven fabric. In addition, the deeper the emboss depth, the softer the non-woven fabric can be obtained, preferably 0.5 to 2.0 mm, more preferably 0.7 to 1.5 mm. The emboss shape is not particularly limited, but is preferably circular, oval, diamond, or rectangular, in order to obtain a non-woven fabric having softness and appropriate strength and elongation suitable for use in sanitary materials. Can be selected as appropriate.
 本実施形態の複合長繊維不織布は、前記偏心鞘芯型長繊維不織布を、サイドバイサイド型長繊維不織布、及び/又は偏心鞘芯型長繊維不織布と積層させたものでもよい。サイドバイサイド型長繊維不織布は、2成分の重心位置が離れることで繊維の捲縮性が高く、嵩高性の高い不織布を得ることができるものの、低融点成分の繊維表面の割合が少なくなることから耐毛羽性と強度が低くなることがある。層構造で構成を組み合わせることでサイドバイサイド型と偏心鞘芯型の良好となる部分を兼ね備える複合長繊維不織布とすることができる。さらに、本実施形態の複合長繊維不織布は、不織布を衛生材料とした際に肌と接触する面を表層とした場合、前記偏心鞘芯型複合長繊維を表層に使用することで、風合いを損なわない。また、偏心鞘芯型複合長繊維不織布に、捲縮数や繊度、高融点と低融点成分の重量比率が異なる構造違いの偏心鞘芯型複合長繊維不織布を積層させてもよい。 The composite continuous fiber non-woven fabric of the present embodiment may be obtained by laminating the eccentric sheath-core long-fiber non-woven fabric with a side-by-side long-fiber non-woven fabric and / or an eccentric sheath-core long-fiber non-woven fabric. The side-by-side type long fiber non-woven fabric has high crimpability of fibers by separating the center of gravity position of the two components and can obtain non-woven fabric with high bulkiness, but the ratio of the fiber surface of low melting point component decreases. Fuzziness and strength may be reduced. By combining the layers in the layer structure, it is possible to obtain a composite long fiber non-woven fabric having a part with good side-by-side type and eccentric sheath core type. Furthermore, when the composite continuous fiber nonwoven fabric of the present embodiment uses the nonwoven fabric as a sanitary material and the surface in contact with the skin is the surface layer, using the eccentric sheath core type composite long fiber as the surface layer impairs the texture. Absent. In addition, an eccentric sheath-core type composite long fiber non-woven fabric having a structure difference in which the number of crimps and the fineness, and the weight ratio of the high melting point and the low melting point component are different may be laminated on the eccentric sheath-core type composite long fiber non-woven fabric.
 偏心鞘芯型複合長繊維の平均単糸繊度は1.0dtex以上3.5dtex以下であることが好ましく、より好ましくは1.2dtex以上3.3dtex以下、更に好ましくは1.5dtex以上3.0dtex以下である。紡糸安定性の観点から、平均単糸繊度は、1.0dtex以上であることが好ましく、他方、衛生材料に使用される不織布の風合いの観点から、3.5dtex以下であることが好ましい。 The average single fiber fineness of the eccentric sheath-core type composite long fiber is preferably 1.0 dtex or more and 3.5 dtex or less, more preferably 1.2 dtex or more and 3.3 dtex or less, still more preferably 1.5 dtex or more and 3.0 dtex or less It is. From the viewpoint of spinning stability, the average single yarn fineness is preferably 1.0 dtex or more, and from the viewpoint of the feel of the non-woven fabric used for sanitary materials, it is preferably 3.5 dtex or less.
 本実施形態の複合長繊維不織布の目付は、10g/m以上50g/m以下が好ましく、より好ましくは10g/m以上40g/m以下、更に好ましくは12g/m以上30g/m以下である。目付が10g/m以上であれば衛生材料に使用される不織布としては強力を満足し、他方、50g/m以下であれば衛生材料に使用される不織布の柔軟性を満足し、外観的に厚ぼったい印象を与えない。 Basis weight of the composite long fiber nonwoven fabric of the present embodiment is preferably 10 g / m 2 or more 50 g / m 2 or less, more preferably 10 g / m 2 or more 40 g / m 2 or less, more preferably 12 g / m 2 or more 30 g / m 2 or less. If the weight per unit area is 10 g / m 2 or more, the nonwoven fabric used for the sanitary material satisfies the strength, while if 50 g / m 2 or less, the softness of the nonwoven fabric used for the sanitary material is satisfied, Do not give a thick impression.
 本実施形態では、偏心鞘芯型複合長繊維不織布に、繊維径が0.5μm~3.0μmの平均繊維径を有する長繊維不織布を積層させてもよい。平均繊維径が0.5μm~3.0μmの長繊維を積層させることで不織布のカバー率をよくすることができ、見た目の分散ムラを改良し、衛生材料用途に用いる際のホットメルト剤の抜けや、トップシートで用いる際の高吸収性樹脂(SAP)抜けなどを抑えるのに好適に利用することができる。平均繊維径が0.5μm~3.0μmとなる繊維を得る方法としては特に制限はないが、生産性とスパンボンド法との組み合わせからメルトブローン法であることが好ましい。繊維径の範囲は、0.5μm以上3.0μm以下が好ましく、0.7μm以上2.5μmがより好ましく、1.0μm以上2.3μm以下がさらに好ましい。 In this embodiment, a long fiber non-woven fabric having an average fiber diameter of 0.5 μm to 3.0 μm may be laminated on the eccentric sheath-core type composite long fiber non-woven fabric. By laminating long fibers with an average fiber diameter of 0.5 μm to 3.0 μm, the coverage of the non-woven fabric can be improved, the dispersion unevenness of appearance is improved, and the hot melt agent escapes when used for sanitary materials Or, it can be suitably used to suppress the loss of a highly absorbent resin (SAP) when used as a top sheet. There is no particular limitation on the method for obtaining the fiber having an average fiber diameter of 0.5 μm to 3.0 μm, but the melt-blown method is preferable from the combination of the productivity and the spun bond method. The range of the fiber diameter is preferably 0.5 μm to 3.0 μm, more preferably 0.7 μm to 2.5 μm, and still more preferably 1.0 μm to 2.3 μm.
 本実施形態の複合長繊維不織布の嵩密度は0.01g/cm以上0.07g/cm以下の範囲となるものが好ましい。嵩密度は、強度の観点から0.01g/cm以上が好ましく、他方、風合いの観点から0.07g/cm以下とすることが好ましい。 The bulk density of the composite continuous fiber non-woven fabric of the present embodiment is preferably in the range of 0.01 g / cm 3 to 0.07 g / cm 3 . The bulk density is preferably 0.01 g / cm 3 or more from the viewpoint of strength, and is preferably 0.07 g / cm 3 or less from the viewpoint of texture.
 本実施形態の複合長繊維不織布の破断強度は、好ましくは25N/5cm以上60N/5cm以下であり、より好ましくは30N/5cm以上50N/5cm以下、さらに好ましくは35N/5cm以上45N/5cm以下である。破断強度が25N/5cm以上であれば、衛生材料用途で使用する場合、装着時に引っ張った際の伸びや破れることがなく、他方、60N/5cm以下であれば、風合いが柔らかく、衛生材料用途に好適に使用できる。 The breaking strength of the composite continuous fiber non-woven fabric of the present embodiment is preferably 25 N / 5 cm to 60 N / 5 cm, more preferably 30 N / 5 cm to 50 N / 5 cm, and still more preferably 35 N / 5 cm to 45 N / 5 cm. is there. When the breaking strength is 25 N / 5 cm or more, when used for sanitary materials, it does not stretch or break when it is put on at the time of wearing, and if it is 60 N / 5 cm or less, the texture is soft and it is used for sanitary materials It can be used suitably.
 本実施形態の複合長繊維不織布のヒートシール強力は、3N/5cm以上15N/5cm以下の範囲が好ましく、5N/5cm以上12N/5cm以下がより好ましく、7N/5cm以上10N/5cm以下が更に好ましい。ヒートシール強力が3N/5cm以上であれば、衛生材料用途として使用する際に、ヒートシール部の剥がれや破れがなく使用でき、他方、15N/5cm以下であれば、ヒートシール部が過溶着によりフィルム化せず、風合いが柔らかく、衛生材料用途に好適に使用することができる。 The heat seal strength of the composite long fiber non-woven fabric of the present embodiment is preferably in the range of 3N / 5 cm to 15 N / 5 cm, more preferably 5 N / 5 cm to 12 N / 5 cm, still more preferably 7 N / 5 cm to 10 N / 5 cm. . If the heat seal strength is 3 N / 5 cm or more, the heat seal portion can be used without peeling or tearing when used as a sanitary material application, and if 15 N / 5 cm or less, the heat seal portion is over-welded. It does not form a film, has a soft texture, and can be suitably used for sanitary materials.
 本実施形態の複合長繊維不織布の偏心鞘芯型長繊維不織布側表面の表面粗さの平均偏差(SMD)は、1.0μm以上2.4μm以下が好ましく、1.4μm以上2.2μm以下がより好ましく、1.6μm以上2.0以下が更に好ましい。表面粗さの平均偏差は2.4μm以下とすることで、肌面への刺激が少なく風合いがよくなるため、衛材用途で好適に使用することができ、他方、1.0μm以上とすることで、適度な凹凸感を与えることでクッション性のある柔らかい風合いが得られる。 The mean deviation (SMD) of the surface roughness of the surface of the eccentric sheath core type long fiber non-woven fabric side of the composite long fiber non-woven fabric of this embodiment is preferably 1.0 μm or more and 2.4 μm or less, and 1.4 μm or more and 2.2 μm or less More preferably, it is more preferably 1.6 μm or more and 2.0 or less. By setting the average deviation of the surface roughness to 2.4 μm or less, there is less irritation to the skin surface and the texture is improved, so it can be suitably used in the application of a guarding material, while it is 1.0 μm or more By giving a moderate uneven feeling, a soft texture with cushioning properties can be obtained.
 本実施形態の複合長繊維不織布の偏心鞘芯型長繊維不織布側表面の毛羽等級は3級以上が好ましく、4級以上がより好ましく、5級以上がさらに好ましい。毛羽等級が3級以上であれば、肌と擦れた際でも不織布表面の繊維接着部が剥がれにくく、繊維表面の毛羽立ちが抑えられ、肌や指先への引っ掛かりを少なくできるため、風合いのよい不織布が得られ、衛材用途で好適に使用することができる。 The fluff grade of the surface on the eccentric sheath core type long fiber non-woven fabric side of the composite long fiber non-woven fabric of the present embodiment is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more. If the fluff grade is grade 3 or higher, the fiber-bonded portion of the non-woven fabric surface is not easily peeled off even when rubbed with the skin, fluffing of the fiber surface is suppressed, and sticking to the skin and fingertips can be reduced. It can be obtained and can be suitably used in a guarding material application.
 本実施形態の複合長繊維不織布には、親水化剤が含有されていてもよい。使用される親水化剤としては、人体への安全性、工程での安全性等を考慮して、高級アルコール、高級脂肪酸、アルキルフェノール等のエチレンオキサイドを付加した非イオン系活性剤、アルキルフォスフェート塩、アルキル硫酸塩等のアニオン系活性剤等が挙げられ、単独で又は混合物等で用いてもよい。 The composite long-fiber non-woven fabric of the present embodiment may contain a hydrophilizing agent. As a hydrophilizing agent to be used, in consideration of safety to the human body, safety in the process, etc., nonionic surfactants added with ethylene oxide such as higher alcohols, higher fatty acids, alkylphenols, alkyl phosphate salts And anionic surfactants such as alkyl sulfates, etc., which may be used alone or as a mixture.
 親水化剤を含有させる方法としては、通常、希釈した親水化剤を用いて、浸漬法、噴霧法、コーティング(キスコーター、グラビアコーター)法等の既存の方法が採用でき、必要により予め混合した親水化剤を、水等の溶媒で希釈して塗布することが好ましい。 As a method of incorporating a hydrophilizing agent, an existing method such as a dipping method, a spraying method, a coating (kiss coater, gravure coater) method or the like can be usually employed using a diluted hydrophilizing agent, and hydrophilicity mixed in advance if necessary Preferably, the agent is diluted with a solvent such as water and then applied.
 親水化剤を水等の溶媒で希釈して塗布すると、乾燥工程を必要とする場合がある。その際の乾燥方法としては、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法が採用でき、熱風や赤外線による乾燥、熱接触による乾燥方法等を用いることができる。 If the hydrophilizing agent is diluted with a solvent such as water and then applied, a drying step may be required. As a drying method in that case, a known method using convection heat transfer, conduction heat transfer, radiation heat transfer, etc. can be adopted, and drying by hot air or infrared rays, a drying method by thermal contact, etc. can be used.
 親水化剤の付着量は、要求される性能によって異なるが、通常は、繊維に対して0.05重量%以上1.00重量%以下の範囲が好ましく、より好ましくは0.15重量%以上0.8重量%以下、更に好ましくは0.2重量%以上0.6重量%以下である。付着量がこの範囲にあると、衛生材料のトップシートとしての親水性能を満足し、加工適正も良好となる。 Although the adhesion amount of the hydrophilizing agent varies depending on the required performance, it is usually preferably in the range of 0.05% by weight or more and 1.00% by weight or less, more preferably 0.15% by weight or more based on the fiber. .8% by weight or less, more preferably 0.2% by weight or more and 0.6% by weight or less. When the adhesion amount is in this range, the hydrophilic performance as a top sheet of the sanitary material is satisfied, and the processing suitability is also good.
 本実施形態の複合長繊維不織布は、クッション性の柔らかさを有する嵩高性と高い強伸度を有するため、衛生材料の製造に好適に使用することができる。衛生材料としては使い捨てオムツ、生理用ナプキン、失禁パット等が挙げられ、本実施形態の複合長繊維不織布は、特に表面のトップシート、外側のバックシートに好適に使用することができる。 The composite long-fiber non-woven fabric of the present embodiment can be suitably used for the production of a sanitary material because it has a bulkiness having a cushioning softness and a high strength and elongation. Hygiene materials include disposable diapers, sanitary napkins, incontinence pads and the like, and the composite long-fiber non-woven fabric of the present embodiment can be suitably used particularly for the top sheet on the surface and the back sheet on the outside.
 また、本実施形態の複合長繊維不織布の用途は、前記用途に限られず、例えば、マスク、カイロ、テープ基布、防水シート基布、貼布薬基布、救急絆基布、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどに使用してもよい。 In addition, applications of the composite long fiber non-woven fabric of the present embodiment are not limited to the above applications, and, for example, masks, cairos, tape bases, waterproof sheet bases, patched medicine bases, first aid base, packaging materials, wipes It may be used for products, medical gowns, bandages, clothing, skin care sheets and the like.
 以下、実施例、比較例により本発明を具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。構成される繊維、不織布の特性から、生産する目付、ライン速度により、接着工程における温度、熱風風速等は適宜変更するものである。尚、各特性の評価方法は下記のとおりであり、得られた物性等を以下の表1、2に示す。本明細書では、本実施形態の複合長繊維不織布の製造ライン方向(繊維の流れ方向)をMD方向、繊維の流れ方向と直交する幅方向をCD方向という。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to only the following examples. From the characteristics of the fibers and non-woven fabric to be produced, the temperature in the bonding step, the hot wind speed and the like are appropriately changed depending on the weight of the fabric to be produced and the line speed. In addition, the evaluation method of each characteristic is as follows, and the obtained physical property etc. are shown to the following Tables 1 and 2. In this specification, the production line direction (flow direction of fibers) of the composite long fiber nonwoven fabric of the present embodiment is referred to as MD direction, and the width direction orthogonal to the flow direction of fibers is referred to as CD direction.
1.平均単糸繊度(dtex)、平均繊維径(μm)
 製造された不織布の両端10cmを除き、CD方向にほぼ5等分して1cm角の試験片をサンプリングし、キーエンス社製マイクロスコープVHX-700Fで繊維の直径を各20点ずつ測定し、その平均値から繊度、繊維径を算出した。
1. Average single yarn fineness (dtex), average fiber diameter (μm)
Except for 10 cm at both ends of the manufactured non-woven fabric, the test piece of 1 cm square is sampled in approximately 5 equal parts in the CD direction, and the diameter of fibers is measured at 20 points each with a Keyence microscope VHX-700F. The fineness and the fiber diameter were calculated from the values.
2.目付(g/m
 JIS-L1906に準じ、MD方向20cm×CD方向5cmの試験片を任意に5枚採取して質量を測定し、その平均値を単位面積あたりの重量に換算して求めた。
2. Basis weight (g / m 2 )
According to JIS-L 1906, five test pieces of 20 cm in the MD direction and 5 cm in the CD direction were arbitrarily collected to measure the mass, and the average value was converted into the weight per unit area.
3.破断強度(N/5cm)
 JIS L-1906に準じ、製造された不織布の両端10cmを除き、CD方向均等になるように、CD方向5cm、MD方向20cmの試料を5点切り取り、引張試験機で、つかみ間隔10cm、引張速度30cm/分で測定した。MD方向に各5点の試料を測定し、測定値を平均して破断強度を算出した。
3. Breaking strength (N / 5 cm)
According to JIS L-1906, except for 10 cm on both ends of manufactured non-woven fabric, 5 samples of 5 cm in CD direction and 20 cm in MD direction are cut out so as to be uniform in CD direction, grip distance 10 cm, tensile speed with tensile tester It measured at 30 cm / min. The samples at five points in the MD direction were measured, and the measured values were averaged to calculate the breaking strength.
4.嵩密度(g/cm
 製造された不織布の両端10cmを除き、CD方向均等になる様にピーコック式厚み計(5gf/4cm)で20点測定し、平均の厚みを算出した。その平均値から下記式:
    嵩密度(g/cm)=目付(g/m)/厚み(mm)/1000
により、嵩密度を算出した。
4. Bulk density (g / cm 3 )
The average thickness was calculated by measuring 20 points with a peacock-type thickness gauge (5 gf / 4 cm 2 ) so as to make the CD direction uniform except for both ends 10 cm of the manufactured non-woven fabric. The following formula:
Bulk density (g / cm 3 ) = area weight (g / m 2 ) / thickness (mm) / 1000
The bulk density was calculated by
5.鞘部の厚み(nm)、繊維表面の占有率(%)
 製造された不織布の両端10cmを除き、CD方向にほぼ5等分してCD方向5mm、MD方向20mmの試験片をサンプリングし、繊維長方向に直角になるように繊維を切断した。切断した端面が観察できるように試料台にセットし、キーエンス社製マイクロスコープVHX-700Fで繊維断面を観察し、芯部の高融点成分と鞘部の低融点成分の境界面に接線を引き、その接線に垂線を引いた時に、芯部を通らない方の垂線と繊維表面が交わる点から境界面の接点までの距離を鞘部の厚みとして測定し、最も厚い箇所の厚みと、厚みが100~500nmの範囲の占める割合を測定した。繊維20本ずつ測定し、その平均値から算出した。
5. Sheath thickness (nm), fiber surface occupancy (%)
The test piece of 5 mm in the CD direction and 20 mm in the MD direction was sampled by dividing into approximately 5 equal parts in the CD direction except 10 cm of both ends of the manufactured non-woven fabric, and fibers were cut perpendicular to the fiber length direction. Set on the sample stand so that the cut end face can be observed, observe the fiber cross section with a microscope VHX-700F manufactured by Keyence Corporation, draw a tangent at the interface between the high melting point component of the core and the low melting point component of the sheath When the perpendicular is drawn to the tangent, the distance from the point where the perpendicular not passing through the core intersects the fiber surface to the contact point of the boundary surface is measured as the thickness of the sheath, and the thickness of the thickest part is 100 The proportion of the range of ̃500 nm was measured. Twenty fibers were measured at a time and calculated from the average value.
6.ヒートシール強力(N/5cm)
 製造された不織布の両端10cmを除き、CD方向で均等になるように、CD方向3cm、MD方向20cmの試料を5点切り取り、不織布の両端を重ね合わせるように折る。折り目のついた端部を125℃で加熱した3cm×10cmの熱板で70N/1cmの力で1秒間プレスし、貼り合わせた。張り合わせていない側の端部を上下に割くように引張試験機で、つかみ間隔10cm、引張速度30cm/分で測定し、MD方向各5点の試料の測定値を平均して破断強度を算出した。
6. Heat seal strength (N / 5 cm)
A sample of 3 cm in the CD direction and 20 cm in the MD direction is cut out so as to be uniform in the CD direction except 10 cm at both ends of the manufactured nonwoven fabric, and folded so as to overlap both ends of the nonwoven fabric. The creased end was pressed for 1 second with a force of 70 N / 1 cm with a 3 cm × 10 cm hot plate heated at 125 ° C. for bonding. The breaking strength was calculated by averaging measured values of samples at five points in the MD direction with a tension tester at a grip distance of 10 cm and a tensile speed of 30 cm / min so as to split the non-bonded end up and down. .
7.表面粗さの平均偏差(SMD)(μm)
 製造された不織布の任意の場所より、6cm×8cmの試料を3点作製した。カトーテック(株)社製摩擦感テスター(KES-SE)の測定台に試料を装着し、試料と摩擦感テスターの標準摩擦端子(10mm角金属ワイヤー端子)を用いて、測定荷重25g/cmにて表面粗さの平均偏差(SMD)を測定し、試料のMD方向の平均値を算出した。
7. Average deviation of surface roughness (SMD) (μm)
Three samples of 6 cm × 8 cm were prepared from arbitrary places of the manufactured non-woven fabric. A sample is mounted on the measuring stand of Friction Feel Tester (KES-SE) manufactured by Kato Tech Co., Ltd., and a load of 25 g / cm 2 is measured using the sample and a standard friction terminal (10 mm square metal wire terminal) of the friction feel tester. The average deviation (SMD) of the surface roughness was measured by the above, and the average value in the MD direction of the sample was calculated.
8.毛羽等級(級)
 CD方向に25mm×300mmの試験片を採取し、日本学術振興会堅牢度試験機を用いて、摩擦子の荷重が150g、摩擦子側には同布を使用し、100回動作をさせて、以下の評価基準で判定した:
  5.0級:毛羽立ちがない
  4.0級:繊維が1~2本程度、又は一ヶ所に小さな毛玉ができ始める程度に毛羽立っている
  3.0級:はっきりとした毛玉ができ始め、または小さな毛玉が複数見られる
  2.0級:試験片が薄くなるほど甚だしく繊維が剥ぎ取られる
  1.0級:試験片が破損するほど繊維が剥ぎ取られる。
8. Fuzz grade (class)
Take a 25 mm x 300 mm test piece in the CD direction, use the Japan Society for the Promotion of Science Fastness Tester, load the friction element 150 g, use the same cloth on the friction element side, and operate 100 times, It was judged by the following evaluation criteria:
5.0 grade: no fuzz grade 4.0: about 1 or 2 fibers, or a small floss at a single location, fuzziness grade 3.0: a clear floss begins to be produced, Or, a plurality of small pill is observed. Grade 2.0: The thinner the specimen, the more the fibers are peeled off. Grade 1.0: The larger the breakage of the specimen, the fibers are scraped off.
9.捲縮数(個/インチ)
 不織布の両端10cmを除き、CD方向にほぼ5等分して5cm角の試験片をサンプリングし、キーエンス社製マイクロスコープVH-Z450にて繊維に荷重がかからない状態で2.54cm(1インチ)当たりの捲縮数を測定し、その平均値から捲縮数を算出した。
9. Number of crimps (pieces / inch)
Except for 10 cm at both ends of the non-woven fabric, a test piece of 5 cm square is sampled in approximately 5 equal parts in the CD direction, and 2.54 cm (1 inch) per 2.54 cm (one inch) with no load applied to fibers with a Keyence Microscope VH-Z450. The number of crimps was measured, and the number of crimps was calculated from the average value.
[実施例1]
 MFRが55g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(以下、PPともいう。)樹脂を高融点成分とし、MIが26g/10分(JIS-K7210に準じ、温度190℃、荷重2.16kgで測定)の高密度ポリエチレン(以下、HDPEともいう。)樹脂を低融点成分とし、高融点成分と低融点成分の比が67/33となる繊維をスパンボンド法により紡糸温度230℃で押出し、移動捕集面で捕捉し、平均単糸繊度2.9dtexの偏心鞘芯型長繊維不織ウェブを調製した。
 次いで、得られたウェブを熱風温度140℃、熱風風速1.0m/秒の熱風により繊維同士を接着し、目付25g/mで、捲縮数20個/インチの複合長繊維不織布を得た。
Example 1
A polypropylene (hereinafter also referred to as PP) resin with an MFR of 55 g / 10 min (measured according to JIS-K 7210 at a temperature of 230 ° C. and a load of 2.16 kg) as the high melting point component, and an MI of 26 g / 10 min (JIS-K A high-density polyethylene (hereinafter also referred to as HDPE) resin with a temperature of 190 ° C and a load of 2.16 kg according to K7210 as the low melting point component, and the ratio of the high melting point component to the low melting point component is 67/33. Were extruded at a spinning temperature of 230 ° C. by a spunbond method, and captured on a moving collection surface to prepare an eccentric sheath-cored long-fiber non-woven web having an average single fiber fineness of 2.9 dtex.
Then, the obtained web was bonded to each other with a hot air temperature of 140 ° C. and a hot air velocity of 1.0 m / sec to obtain a composite long-fiber non-woven fabric with a crimp number of 20 / inch at a basis weight of 25 g / m 2 .
[実施例2]
 高融点成分と低融点成分の比を75/25とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Example 2
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1, except that the ratio of the high melting point component to the low melting point component was 75/25.
[実施例3]
 高融点成分と低融点成分の比を80/20とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 3]
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the ratio of the high melting point component to the low melting point component was 80/20.
[実施例4]
 MIが23g/10分のHDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Example 4
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the HDPE resin having a MI of 23 g / 10 min was used as the low melting point component.
[実施例5]
 MFRが40g/10分のPP樹脂を高融点成分とし、MIが19g/10分のHDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 5]
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that a PP resin having a MFR of 40 g / 10 min was used as the high melting point component and an HDPE resin having an MI of 19 g / 10 min was used as the low melting point component.
[実施例6]
 MFRが33g/10分のPP樹脂を高融点成分とし、MIが19g/10分のHDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 6]
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that a PP resin having MFR of 33 g / 10 min was used as the high melting point component and an HDPE resin having MI of 19 g / 10 min was used as the low melting point component.
[実施例7]
 MFRが33g/10分のPP樹脂を高融点成分とし、MIが17g/10分の直鎖状低密度ポリエチレン(以下、LLDPEともいう。)樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 7]
Example 1 and Example 1 except that the PP resin having MFR of 33 g / 10 min. Is a high melting point component and the linear low density polyethylene (hereinafter referred to as LLDPE) resin having an MI of 17 g / 10 min. In the same manner, a composite long fiber non-woven fabric was obtained.
[実施例8]
 MIが17g/10分のLLDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 8]
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that LLDPE resin having a MI of 17 g / 10 min was used as the low melting point component.
[実施例9]
 MFRが33g/10分のPP樹脂を高融点成分とし、MIが31g/10分の低密度ポリエチレン(LDPE)樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 9]
A composite long-fiber non-woven fabric in the same manner as in Example 1 except that the PP resin having MFR of 33 g / 10 min is used as the high melting point component and the low density polyethylene (LDPE) resin having MI of 31 g / 10 min is used as the low melting point component. I got
[実施例10]
 MIが31g/10分のLDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
[Example 10]
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the LDPE resin having a MI of 31 g / 10 min was used as the low melting point component.
[実施例11]
 実施例1で得た複合長繊維不織布に、さらにもう一層同条件の複合長繊維不織布を積層させ、目付が25g/mとなるようにライン速度を調整し、複合長繊維不織布を得た。
[Example 11]
The composite long fiber non-woven fabric of the same condition was further laminated on the composite long fiber non-woven fabric obtained in Example 1, and the line speed was adjusted so that the fabric weight was 25 g / m 2 to obtain a composite long fiber non-woven fabric.
[実施例12]
 MFRが55g/10分のPP樹脂を高融点成分とし、MIが26g/10分のHDPE樹脂を低融点成分とし、高融点成分と低融点成分の比が50/50のサイドバイサイド型複合長繊維を実施例1と同様の方法で調製した複合長繊維不織布を、実施例1で得た複合長繊維不織布に、積層させ、ライン速度を調整し、目付25g/mの複合長繊維不織布を得た。
[Example 12]
A side-by-side type composite long fiber having a MFR of 55 g / 10 min as a PP resin as a high melting point component, an MI of 26 g / 10 min as a low melting point component, and a 50/50 ratio of a high melting point component to a low melting point component The composite long fiber nonwoven fabric prepared by the same method as in Example 1 was laminated on the composite long fiber nonwoven fabric obtained in Example 1, and the line speed was adjusted to obtain a composite long fiber nonwoven fabric with a fabric weight of 25 g / m 2 .
[実施例13]
 MFRが1000g/10分のPP樹脂を単成分にて単孔吐出量が0.1g/mでメルトブローン法により紡糸温度220℃で押し出し、HA温度300℃でこのフィラメント群を牽引し、平均繊維径2.0μmに調整したウェブを、実施例1で得た偏心鞘芯型長繊維不織ウェブに吹き付けて積層させ、さらにこの積層ウェブに実施例1で得た偏心鞘芯型長繊維不織ウェブを積層させ、ライン速度を調整し、目付15g/mの複合長繊維不織布を得た。
[Example 13]
A single-component PP resin with an MFR of 1000 g / 10 min is extruded at a spinning temperature of 220 ° C. by a meltblown method at a single hole discharge rate of 0.1 g / m 2 , and this filament group is pulled at an HA temperature of 300 ° C. A web adjusted to a diameter of 2.0 μm is sprayed onto the eccentric sheath-cored long-fiber non-woven web obtained in Example 1 and laminated, and the eccentric sheath-cored long-fiber non-woven fabric obtained in Example 1 on this laminated web The web was laminated and the line speed was adjusted to obtain a composite long fiber non-woven fabric having a basis weight of 15 g / m 2 .
[実施例14]
 実施例12で得た偏心鞘芯型複合長繊維不織布とサイドバイサイド型複合長繊維不織布の積層体に、実施例1と同様にして得た偏心鞘芯型長繊維不織布を積層させ、ライン速度を調整し、目付20g/mの複合長繊維不織布を得た。
Example 14
The eccentric sheath core type long fiber nonwoven fabric obtained in the same manner as in Example 1 is laminated on the laminate of the eccentric sheath core type long fiber nonwoven fabric obtained in Example 12 and the side-by-side type composite long fiber nonwoven fabric, and the line speed is adjusted. The composite long fiber nonwoven fabric of 20 g / m 2 in basis weight was obtained.
[実施例15]
 実施例1で得た偏心鞘芯型長繊維不織ウェブに、実施例12で得た偏心鞘芯型長繊維不織ウェブとサイドバイサイド型長繊維不織ウェブの積層体を積層させ、ライン速度を調整し、目付20g/mの複合長繊維不織布を得た。
[Example 15]
A laminate of the eccentric sheath core long fiber nonwoven web and the side-by-side long fiber nonwoven web obtained in Example 12 is laminated on the eccentric sheath core long fiber nonwoven web obtained in Example 1, and the line speed is It adjusted and obtained the composite long fiber nonwoven fabric of 20 g / m < 2 > of fabric weight.
[実施例16]
 実施例1と同様にして偏心鞘芯型長繊維不織ウェブを調製し、次いで、得られた不織布にポリエーテル系の親水化剤を噴霧法により付与し、次いで120℃で1.0秒間熱風乾燥し、剤濃度付着量0.5重量%となる複合長繊維不織布を得た。得られた不織布はおむつのトップシートとして、満足できる性能であり、実施例1と同性能の不織布であった。
[Example 16]
An eccentric sheath-cored long-fiber non-woven web is prepared in the same manner as in Example 1, and then the obtained non-woven fabric is applied with a polyether hydrophilizing agent by a spraying method, and then heated at 120 ° C for 1.0 seconds. It dried and obtained the composite long-fiber nonwoven fabric used as the agent concentration adhesion amount 0.5 weight%. The obtained non-woven fabric was a non-woven fabric of the same performance as Example 1 with satisfactory performance as a top sheet of a diaper.
[実施例17]
 ポリエーテル系の親水化剤の剤濃度付着量を0.25重量%となるようにした以外は、実施例16と同様にして、複合長繊維不織布を得た。得られた不織布はおむつトップシートとして満足できる性能であり、実施例1と同性能の不織布であった。
[Example 17]
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 16, except that the amount of the agent concentration of the polyether-based hydrophilizing agent was 0.25% by weight. The obtained non-woven fabric had satisfactory performance as a diaper top sheet, and was a non-woven fabric of the same performance as Example 1.
[比較例1]
 MIが70g/10分のHDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 1
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the HDPE resin having a MI of 70 g / 10 min was used as the low melting point component.
[比較例2]
 MFRが29g/10分のPP樹脂を高融点成分とし、MIが32g/10分のHDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 2
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that a PP resin having a MFR of 29 g / 10 min was used as the high melting point component and an HDPE resin having an MI of 32 g / 10 min was used as the low melting point component.
[比較例3]
 MIが120g/10分のLLDPE樹脂を低融点成分とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 3
A composite long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that L LDPE resin having a MI of 120 g / 10 min was used as the low melting point component.
[比較例4]
 高融点成分と低融点成分の比を90/10とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 4
A composite long fiber non-woven fabric was obtained in the same manner as Example 1, except that the ratio of the high melting point component to the low melting point component was 90/10.
[比較例5]
 高融点成分と低融点成分の比を20/80とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 5
A composite long-fiber non-woven fabric was obtained in the same manner as Example 1, except that the ratio of the high melting point component to the low melting point component was 20/80.
[比較例6]
 MIが32g/10分のHDPE樹脂を低融点成分とし、高融点成分と低融点成分の比が50/50となるサイドバイサイド型長繊維とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 6
Composite long fiber in the same manner as Example 1, except that the HDPE resin having a MI of 32 g / 10 min is used as the low melting point component and the ratio of the high melting point component to the low melting point component is 50/50. I got a non-woven fabric.
[比較例7]
 低融点成分のMIが48g/10分のHDPE樹脂とした以外は、比較例6と同様にして、複合長繊維不織布を得た。
Comparative Example 7
A composite long-fiber non-woven fabric was obtained in the same manner as in Comparative Example 6 except that the low melting point component MI was 48 g / 10 min.
[比較例8]
 低融点成分のMIが48g/10分のHDPE樹脂とし、高融点成分と低融点成分の比が67/33となる鞘芯型長繊維とした以外は、実施例1と同様にして、複合長繊維不織布を得た。
Comparative Example 8
The composite length is the same as in Example 1, except that the low melting point component MI is 48 g / 10 min HDPE resin and the ratio of the high melting point component to the low melting point component is 67/33. A fiber non-woven fabric was obtained.
[比較例9]
 比較例7で得たサイドバイサイド型複合長繊維不織布に、実施例1で得た偏心鞘芯型複合長繊維不織布を積層させ、さらに比較例7で得たサイドバイサイド型複合長繊維不織布を積層させた以外は、実施例1と同様にして、ライン速度を調整し、目付25g/mの複合長繊維不織布を得た。
Comparative Example 9
Except that the eccentric sheath core type composite long fiber non-woven fabric obtained in Example 1 was laminated on the side-by-side type composite long fiber non-woven fabric obtained in Comparative Example 7 and further the side-by-side type composite long fiber non-woven fabric obtained in Comparative Example 7 was laminated. The line speed was adjusted in the same manner as in Example 1 to obtain a composite long-fiber non-woven fabric having a basis weight of 25 g / m 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る複合長繊維不織布は、2種以上の融点差を利用した成分から構成される偏心鞘芯型複合繊維を少なくとも片方の面に用いた複合長繊維不織布であって、クッション性の柔らかさを有する嵩高性と表面特性、高強度となる加工適正に優れた不織布であるため、衛生材料用途におけるトップシート、バックシートに好適に利用可能である。 The composite continuous fiber non-woven fabric according to the present invention is a composite continuous fiber non-woven fabric using at least one surface of an eccentric sheath-core type composite fiber composed of components utilizing two or more types of melting point differences. Since it is a non-woven fabric having excellent bulkiness and surface characteristics and high processing strength, it can be suitably used as a top sheet and a back sheet in hygiene material applications.

Claims (14)

  1.  2種以上の熱可塑性樹脂を含む偏心鞘芯型複合繊維からなる偏心鞘芯型長繊維不織布を少なくとも片方の面に用いた複合長繊維不織布であって、該偏心鞘芯型複合繊維は、真円形状の断面を有し、楕円形状の高融点成分の芯部と、低融点成分である鞘部によって構成され、かつ、該繊維表面を低融点成分である鞘部が100%覆った構造を有し、そして該芯部を覆う鞘部の厚みが100~500nmである部分が、該繊維の全表面の30~60%を占め、かつ、該鞘部の最も厚い部分の厚みが該繊維半径の25%以上であることを特徴とする前記複合長繊維不織布。 A composite long fiber non-woven fabric using an eccentric sheath core long fiber non-woven fabric composed of an eccentric sheath core type composite fiber containing two or more kinds of thermoplastic resins on at least one surface, said eccentric sheath core type composite fiber being true A structure having a circular cross section, a core of an elliptical high melting point component, and a sheath of a low melting point component, and a sheath of the low melting point component covering the fiber surface 100% The portion having a thickness of 100 to 500 nm of the sheath covering the core occupies 30 to 60% of the entire surface of the fiber, and the thickness of the thickest portion of the sheath represents the fiber radius 25% or more of the composite long-fiber non-woven fabric characterized in that
  2.  前記高融点成分のMFRと低融点成分のMIの比(高融点成分のMFR÷低融点成分のMI)が1.0以上3.5以下である、請求項1に記載の複合長繊維不織布。 The composite long-fiber non-woven fabric according to claim 1, wherein a ratio of MFR of the high melting point component to MI of the low melting point component (MFR of high melting point componentMIMI of low melting point component) is 1.0 or more and 3.5 or less.
  3.  前記偏心鞘芯型長繊維不織布に、サイドバイサイド型長繊維不織布、及び/又は偏心鞘芯型長繊維不織布を積層させてなる、請求項1又は2に記載の複合長繊維不織布。 The composite continuous fiber non-woven fabric according to claim 1 or 2, wherein the side-by-side long-fiber non-woven fabric and / or the eccentric sheath-core long-fiber non-woven fabric is laminated on the eccentric sheath-core long fiber non-woven fabric.
  4.  前記偏心鞘芯型長繊維不織布に、0.5~3.0μmの平均繊維径を有する長繊維不織布を積層させてなる、請求項1~3のいずれか1項に記載の複合長繊維不織布。 The composite long fiber non-woven fabric according to any one of claims 1 to 3, which is formed by laminating a long fiber non-woven fabric having an average fiber diameter of 0.5 to 3.0 μm on the eccentric sheath core long fiber non-woven fabric.
  5.  前記偏心鞘芯型複合繊維の鞘部を構成する低融点成分の熱可塑性樹脂が密度0.900~0.970g/cmのポリエチレンである、請求項1~4のいずれか1項に記載の複合長繊維不織布。 The thermoplastic resin of the low melting point component which comprises the sheath part of the said eccentric sheath core type | mold composite fiber is a polyethylene of the density 0.900-0.970 g / cm < 3 > of any one of Claim 1 to 4 Composite long fiber non-woven fabric.
  6.  前記偏心鞘芯型複合繊維の捲縮数が5~45個/インチである、請求項1~5のいずれか1項に記載の複合長繊維不織布。 The composite long-fiber non-woven fabric according to any one of claims 1 to 5, wherein the number of crimps of the eccentric sheath-cored composite fiber is 5 to 45 / inch.
  7.  前記偏心鞘芯型複合繊維の芯部の高融点成分の、該繊維の総重量に対する重量比が50~80%である、請求項1~6のいずれか1項に記載の複合長繊維不織布。 The composite long fiber nonwoven fabric according to any one of claims 1 to 6, wherein a weight ratio of the high melting point component of the core of the eccentric sheath-core type composite fiber to the total weight of the fiber is 50 to 80%.
  8.  前記複合長繊維不織布の破断強度が25~60N/5cmである、請求項1~7のいずれか1項に記載の複合長繊維不織布。 The composite continuous fiber nonwoven fabric according to any one of claims 1 to 7, wherein a breaking strength of the composite continuous fiber nonwoven fabric is 25 to 60 N / 5 cm.
  9.  前記複合長繊維不織布の嵩密度が0.01~0.07g/cmである、請求項1~8のいずれか1項に記載の複合長繊維不織布。 The bulk density of the composite long fiber nonwoven fabric is 0.01 ~ 0.07g / cm 3, composite long fiber nonwoven fabric according to any one of claims 1-8.
  10.  前記複合長繊維不織布の偏心鞘芯型長繊維不織布側表面のヒートシール強力が3~15N/5cmである、請求項1~9のいずれか1項に記載の複合長繊維不織布。 The composite long fiber non-woven fabric according to any one of claims 1 to 9, wherein the heat seal strength of the surface on the eccentric sheath core long fiber non-woven fabric side of the composite long fiber non-woven fabric is 3 to 15 N / 5 cm.
  11.  前記複合長繊維不織布の偏心鞘芯型長繊維不織布側表面の表面粗さの平均偏差(SMD)が1.0~2.4μm以下である、請求項1~10のいずれか1項に記載の複合長繊維不織布。 The average deviation (SMD) of the surface roughness of the eccentric sheath core type long fiber non-woven fabric side surface of the composite long fiber non-woven fabric is 1.0 to 2.4 μm or less according to any one of claims 1 to 10. Composite long fiber non-woven fabric.
  12.  前記複合長繊維不織布の偏心鞘芯型長繊維不織布側表面の毛羽等級が3級以上である、請求項1~11のいずれか1項に記載の複合長繊維不織布。 The composite long fiber non-woven fabric according to any one of claims 1 to 11, wherein the fluff grade of the surface on the eccentric sheath core long fiber non-woven fabric side of the composite long fiber non-woven fabric is third grade or higher.
  13.  前記複合長繊維不織布に親水化剤が含有されてなる、請求項1~12のいずれか1項に記載の複合長繊維不織布。 The composite long fiber non-woven fabric according to any one of claims 1 to 12, wherein the composite long fiber non-woven fabric contains a hydrophilizing agent.
  14.  請求項1~13のいずれか1項に記載の複合長繊維不織布を用いてなる衛生材料。 A hygienic material comprising the composite long fiber nonwoven fabric according to any one of claims 1 to 13.
PCT/JP2019/002363 2018-01-24 2019-01-24 Composite long-fiber non-woven fabric using eccentric sheath/core composite fibers at one or both surfaces WO2019146726A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980009708.4A CN111630221B (en) 2018-01-24 2019-01-24 Nonwoven fabric of composite long fibers using eccentric sheath-core composite fibers on at least one surface
JP2019567166A JP6899453B2 (en) 2018-01-24 2019-01-24 Composite long fiber non-woven fabric using eccentric sheath core type composite fiber on at least one side

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-009692 2018-01-24
JP2018009692 2018-01-24

Publications (1)

Publication Number Publication Date
WO2019146726A1 true WO2019146726A1 (en) 2019-08-01

Family

ID=67396052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002363 WO2019146726A1 (en) 2018-01-24 2019-01-24 Composite long-fiber non-woven fabric using eccentric sheath/core composite fibers at one or both surfaces

Country Status (3)

Country Link
JP (1) JP6899453B2 (en)
CN (1) CN111630221B (en)
WO (1) WO2019146726A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200682A1 (en) * 2020-03-31 2021-10-07 三井化学株式会社 Nonwoven fabric laminate, cover sheet, and absorbent article
WO2021256146A1 (en) * 2020-06-15 2021-12-23 東レ株式会社 Spun-bonded nonwoven fabric and sanitary material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402951B1 (en) * 2020-09-01 2022-05-26 도레이첨단소재 주식회사 Multilayer spun-bonded fabric for sanitary material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930623A (en) * 1972-07-27 1974-03-19
JPS5285512A (en) * 1975-12-29 1977-07-15 Toray Ind Inc Polyurethane conjugate fiber
JPH03193915A (en) * 1989-12-20 1991-08-23 Kanebo Ltd Conjugate fiber and production thereof
US20050133948A1 (en) * 2003-12-22 2005-06-23 Cook Michael C. Apparatus and method for multicomponent fibers
JP2009046785A (en) * 2007-08-22 2009-03-05 Toray Ind Inc Crimped conductive yarn
CN104562233A (en) * 2015-01-19 2015-04-29 上海理工大学 Collateral spinning head wrapped with Teflon and application thereof
US20170145602A1 (en) * 2015-11-20 2017-05-25 Fiber Innovation Technology, Inc. Multicomponent self-bulking fibers
JP2017179653A (en) * 2016-03-30 2017-10-05 東レ株式会社 Sea-island composite fiber
WO2018110523A1 (en) * 2016-12-14 2018-06-21 東レ株式会社 Eccentric core-sheath composite fiber and combined filament yarn

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165388A (en) * 1997-12-04 1999-06-22 Mitsui Chem Inc Manufacture of spun bond nonwoven fabric laminated sheet
KR100497583B1 (en) * 1998-03-24 2005-07-01 미쓰이 가가쿠 가부시키가이샤 Flexible nonwoven fabric laminate
JP4104299B2 (en) * 2001-06-22 2008-06-18 大和紡績株式会社 Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
WO2003046266A1 (en) * 2001-11-30 2003-06-05 Teijin Limited Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof
DE10244778B4 (en) * 2002-09-26 2006-06-14 Trevira Gmbh Eccentric polyester-polyethylene bicomponent fiber
WO2007086429A1 (en) * 2006-01-25 2007-08-02 Asahi Kasei Fibers Corporation Heat-bondable laminated nonwoven fabric
TW200934897A (en) * 2007-12-14 2009-08-16 Es Fiber Visions Co Ltd Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber
TWI509122B (en) * 2008-12-25 2015-11-21 Kao Corp Nonwoven and its manufacturing method
DK2708623T3 (en) * 2011-05-11 2015-10-05 Mitsui Chemicals Inc Creped composite fiber and nonwoven fabric comprising this
CN202530268U (en) * 2012-03-07 2012-11-14 厦门延江工贸有限公司 Long-fiber non-woven fabric
WO2014022988A1 (en) * 2012-08-08 2014-02-13 Daiwabo Holdings Co., Ltd. Nonwoven, sheet for absorbent article from the same, and absorbent article using the same
WO2015159978A1 (en) * 2014-04-18 2015-10-22 ダイワボウホールディングス株式会社 Composite short fibers for absorbent article, process for producing same, thermally bonded nonwoven fabric for absorbent article, surface sheet for absorbent article, and absorbent article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930623A (en) * 1972-07-27 1974-03-19
JPS5285512A (en) * 1975-12-29 1977-07-15 Toray Ind Inc Polyurethane conjugate fiber
JPH03193915A (en) * 1989-12-20 1991-08-23 Kanebo Ltd Conjugate fiber and production thereof
US20050133948A1 (en) * 2003-12-22 2005-06-23 Cook Michael C. Apparatus and method for multicomponent fibers
JP2009046785A (en) * 2007-08-22 2009-03-05 Toray Ind Inc Crimped conductive yarn
CN104562233A (en) * 2015-01-19 2015-04-29 上海理工大学 Collateral spinning head wrapped with Teflon and application thereof
US20170145602A1 (en) * 2015-11-20 2017-05-25 Fiber Innovation Technology, Inc. Multicomponent self-bulking fibers
JP2017179653A (en) * 2016-03-30 2017-10-05 東レ株式会社 Sea-island composite fiber
WO2018110523A1 (en) * 2016-12-14 2018-06-21 東レ株式会社 Eccentric core-sheath composite fiber and combined filament yarn

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200682A1 (en) * 2020-03-31 2021-10-07 三井化学株式会社 Nonwoven fabric laminate, cover sheet, and absorbent article
JPWO2021200682A1 (en) * 2020-03-31 2021-10-07
AU2021249344B2 (en) * 2020-03-31 2023-11-09 Mitsui Chemicals Asahi Life Materials Co. Ltd. Nonwoven fabric laminate, cover sheet, and absorbent article
JP7461460B2 (en) 2020-03-31 2024-04-03 エム・エーライフマテリアルズ株式会社 Nonwoven fabric laminate, covering sheet and absorbent article
WO2021256146A1 (en) * 2020-06-15 2021-12-23 東レ株式会社 Spun-bonded nonwoven fabric and sanitary material

Also Published As

Publication number Publication date
JPWO2019146726A1 (en) 2020-11-19
CN111630221B (en) 2022-07-29
CN111630221A (en) 2020-09-04
JP6899453B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP6633783B2 (en) Extensible nonwoven fabric
JP6865063B2 (en) Bulky composite long fiber non-woven fabric with excellent barrier properties
KR100384663B1 (en) Conjugate Fiber Nonwoven Fabric
EP0896081A2 (en) Fabrics formed of hollow filaments and fibers and methods of making the same
JP6714982B2 (en) Bulky composite long fiber non-woven fabric
EP0908549B1 (en) Nonwoven fabric of long fibers and absorbent article made therefrom
WO1993025746A1 (en) Composite nonwoven fabric and method of making same
MXPA05005755A (en) Tufted fibrous web.
US5994244A (en) Non-woven fabric comprising filaments and an absorbent article using the same
JP6899453B2 (en) Composite long fiber non-woven fabric using eccentric sheath core type composite fiber on at least one side
JP6542974B2 (en) Long fiber non-woven fabric with excellent feel
JP2002069820A (en) Spun-bonded nonwoven fabric and absorbing article
JP2541523B2 (en) Nonwoven webs with improved softness
JP5139669B2 (en) Crimped composite fiber and method for producing the same
JP2002038364A (en) Spun-bonded nonwoven fabric and absorbable article
JP5276305B2 (en) Mixed fiber non-woven fabric
JP5503768B2 (en) Mixed fiber non-woven fabric
JP7223215B1 (en) Nonwoven fabric, use thereof, and method for producing nonwoven fabric
JP2001200463A (en) Nonwoven fabric and fiber article using the same
JP4581185B2 (en) Non-woven fabric and fiber product using the same
JP2019157306A (en) Bulky soft nonwoven fabric
JP2019094584A (en) Nonwoven fabric
JP7028695B2 (en) Bulky flexible non-woven fabric
JP4442013B2 (en) Composite nonwoven fabric and fiber product using the same
MXPA00005571A (en) Porous sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744517

Country of ref document: EP

Kind code of ref document: A1