WO2019146520A1 - Battery control device, battery pack, battery control method, and program - Google Patents

Battery control device, battery pack, battery control method, and program Download PDF

Info

Publication number
WO2019146520A1
WO2019146520A1 PCT/JP2019/001443 JP2019001443W WO2019146520A1 WO 2019146520 A1 WO2019146520 A1 WO 2019146520A1 JP 2019001443 W JP2019001443 W JP 2019001443W WO 2019146520 A1 WO2019146520 A1 WO 2019146520A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
information
abnormality
constant current
Prior art date
Application number
PCT/JP2019/001443
Other languages
French (fr)
Japanese (ja)
Inventor
誠 向野
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2019567041A priority Critical patent/JP7425607B2/en
Publication of WO2019146520A1 publication Critical patent/WO2019146520A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to control technology of a secondary battery.
  • secondary batteries are used as a power source.
  • Patent Document 1 An example of a technology related to a secondary battery is disclosed in Patent Document 1 below.
  • an abnormality such as overcharge, overdischarge, overcurrent, or the like
  • constant current control is performed for a certain period of time instead of shutting down the circuit immediately, and then the abnormality is a secondary battery.
  • a battery pack is disclosed that has a protection circuit that shuts off the circuit if it is caused by a short circuit or the like.
  • an inrush current generated at the time of power on or the like may adversely affect the secondary battery or a circuit component connected to the secondary battery.
  • another problem may occur by forcibly stopping the secondary battery. For example, if the battery pack 10 is forcibly stopped while the unmanned air vehicle (eg, drone or the like) is flying, the unmanned air vehicle may be damaged by the impact of a fall. In such a case, it is necessary to continue using the secondary battery knowing that the secondary battery and the circuit components connected to the secondary battery are adversely affected.
  • the adverse effect on the secondary battery and each circuit component is naturally desirably as small as possible.
  • the present invention has been made in view of the above problems.
  • One of the objects of the present invention is to provide a technology for protecting circuit components including a secondary battery.
  • one of the objects of the present invention is to provide a technique for reducing the adverse effect in the case where a secondary battery with an abnormality is inevitably used.
  • Operation control means for controlling the operation during charging and discharging of the battery pack including the secondary battery,
  • the operation control unit operates the battery pack in a constant current mode at the start of operation of the battery pack or at the time of maintenance of the battery pack.
  • a first battery control device is provided.
  • Abnormality detection means for detecting an abnormality of the battery pack; An information storage unit that stores forced stop availability information indicating whether the battery pack is forcibly stopped; Operation control means for controlling the operation at the time of charge and discharge of the battery pack; The operation control means is When the abnormality detection unit detects an abnormality in the battery pack, it is determined whether the battery pack is operated in a constant current mode or forcibly stopped based on the forced stopability information stored in the information storage unit. decide, A second battery control device is provided.
  • a battery pack comprising at least
  • the computer is A first battery control method is provided that includes operating the battery pack in a constant current mode at the start of operation of a battery pack including a secondary battery or at the time of maintenance of the battery pack.
  • the computer is When abnormality of the battery pack is detected, the battery pack is operated in the constant current mode or forcibly stopped based on the forcible stopability information indicating whether the forcible stop of the battery pack is stored, which is stored in the information storage means. To decide A second battery control device is provided.
  • a program is provided that causes a computer to execute the first battery control method.
  • a program is provided that causes a computer to execute the second battery control method.
  • circuit components including a secondary battery can be protected. Further, according to the present invention, it is possible to reduce the adverse effect in the case of using a secondary battery having an abnormality without fail.
  • FIG. 1 is a diagram illustrating the configuration of the battery pack 10 according to the first embodiment.
  • the battery pack 10 includes a battery unit 110, a battery control unit 120, a constant current control unit 130, a voltage measurement unit 140, an external positive terminal 150, an external negative terminal 160, and an external communication terminal 170. ing.
  • the battery unit 110 includes at least one or more secondary batteries 111.
  • the battery unit 110 includes n secondary batteries 111 (secondary batteries 111 1 to secondary batteries 111 n ) connected in series.
  • the secondary battery 111 is, for example, a lithium ion battery or a nickel hydrogen battery.
  • the first resistor R C on the positive electrode side of the battery unit 110, the first resistor R C , the first switch element FET C , the second switch element FET D , and the second resistor R D are They are arranged in series in the order described.
  • the first switch element FET C is used to control the magnitude of the charging current of the battery unit 110.
  • the second switch element FET D is used to control the magnitude of the discharge current of the battery unit 110.
  • the first switch element FETC and the second switch element FETD are described as n-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), but even if they are p-type MOSFETs Good.
  • the first resistor RC is used by the constant current control unit 130 described later to measure the magnitude of the charging current of the battery unit 110.
  • the second resistor RD is used by the constant current control unit 130 described later to measure the magnitude of the discharge current of the battery unit 110.
  • the battery control unit 120 controls the operation of the battery control unit 120 of the battery pack 10 based on measured values such as the voltage, current, and temperature of the battery pack 10. Details of the battery control unit 120 will be described later.
  • Constant current control unit 130 may be during charging of the battery unit 110, based on the voltage across the first resistor R C and the resistance value of the first resistor R C, and calculates the value of the charging current.
  • the constant current control unit 130 during discharging of the battery unit 110, the voltage value across the second resistor R D and based on the resistance value of the second resistor R D, and calculates the value of the discharge current Can.
  • the constant current control unit 130 also controls the charging current of the battery unit 110 by adjusting the gate voltage applied to the first switch element FET C in accordance with an instruction from the battery control unit 120.
  • the constant current control unit 130 by controlling the maximum value of the drain current of the first switching element FET C adjustments to the charging current of the gate voltage of the first switching element FET C, the battery pack 10 is constant The charging operation by the current becomes possible.
  • the constant current control unit 130 also controls the discharge current of the battery unit 110 by adjusting the gate voltage applied to the second switch element FET D in accordance with an instruction from the battery control unit 120.
  • the constant current control unit 130 by controlling the maximum value of the drain current of the second switching element FET D adjustments to the charging current of the gate voltage of the second switching element FET D, the battery pack 10 is constant Discharge operation with current is possible.
  • the voltage measurement unit 140 can measure the terminal voltage (V BAT + ⁇ V PACK + ) between the positive electrode side terminal of the battery unit 110 and the external positive electrode terminal 150.
  • the battery control unit 120 can refer to the terminal voltage (V BAT + -V PACK + ) measured by the voltage measurement unit 140.
  • the external positive electrode terminal 150, the external negative electrode terminal 160, and the external communication terminal 170 are terminals used to connect the battery pack 10 to an external electric device (not shown).
  • the external positive electrode terminal 150 is connected to the positive electrode terminal on the electrical device side.
  • the external negative electrode terminal 160 is connected to the negative electrode terminal on the electrical device side.
  • the external communication terminal 170 is connected to the communication terminal on the electrical device side.
  • the battery control unit 120 can obtain an output signal on the electrical device side via the external communication terminal 170.
  • a temperature sensor for example, a thermistor or the like
  • the battery control unit 120 can measure the temperature of the battery unit 110 and the temperature of the internal substrate of the battery pack 10 using a temperature sensor.
  • FIG. 2 is a block diagram conceptually showing the functional configuration of the battery control unit 120 according to the first embodiment.
  • the battery control unit 120 of the present embodiment at least includes an operation control unit 121.
  • the operation control unit 121 controls operations at the time of charging and discharging of the battery pack 10.
  • the operation control unit 121 operates the battery pack 10 in a constant current mode when the operation of the battery pack 10 is started or when the battery pack 10 is maintained.
  • the constant current mode means a mode in which the charge current or discharge current of the battery pack 10 is limited to a certain value.
  • the operation start time of the battery pack 10 means, for example, the timing at which power supply is started to start the electric device connected to the battery pack 10. Further, with the maintenance of the battery pack 10, for example, the battery pack 10 is inspected or repaired such as addition of a new secondary battery 111, replacement of a deteriorated secondary battery 111, addition / replacement of electronic parts such as a capacitor. It means timing.
  • the current flowing inside the battery pack 10 is limited to a fixed value at the start of operation or at the time of maintenance.
  • the start of the operation there is a difference between the terminal voltage of the battery unit 110 and the terminal voltage of the external terminal of the battery pack 10 connected to the external electric device, and rush current may occur.
  • a voltage difference occurs when connecting replacement parts, and rush current It may occur.
  • the battery control unit 120 of the present embodiment further includes an abnormality detection unit 122 and an information storage unit 123.
  • the abnormality detection unit 122 detects an abnormality of the battery pack 10.
  • the abnormality detection unit 122 can determine that an abnormality has occurred in the battery pack 10 when the measured values of the voltage, current, temperature, and the like of the battery pack 10 exceed the normal range.
  • a normal range defined for measured values such as voltage, current, and temperature is stored, for example, in a storage area (not shown) of the battery control unit 120.
  • the information storage unit 123 stores forced stop availability information.
  • the forced stop availability information indicates whether or not the battery pack 10 is forcibly stopped.
  • the operation control unit 121 determines the battery pack 10 based on the forced stop availability information stored in the information storage unit 123. It is determined whether to operate in the current mode or to forcibly stop. Specifically, when the forcible stop possibility information stored in the information storage unit 123 indicates “forcible stop possibility”, the operation control unit 121 forcibly stops the battery pack 10. On the other hand, when the forcible-stoppability information stored in the information storage unit 123 indicates “forced-stop impossible”, the operation control unit 121 operates the battery pack 10 in the constant current mode.
  • the battery pack 10 it is possible to control the operation of the battery pack 10 after the occurrence of an abnormality of the battery pack 10 according to the forcible stop possibility information stored in the information storage unit 123.
  • the information storage unit 123 stores the forcible stop availability information indicating "forced stop impossible"
  • the battery pack 10 is in the constant current mode in which the discharge current is limited. Keep working.
  • the electric devices operating with the power of the battery pack 10 do not stop.
  • the battery pack 10 is forcibly stopped while a drone such as a drone is flying at a relatively high position, the drone may be damaged by a falling impact. According to the above-described configuration, such a problem can be avoided.
  • the battery control unit 120 can be realized, for example, as an embedded microcomputer.
  • the microcomputer includes a processor such as a CPU (Central Processing Unit), a storage area such as a memory and a storage, and the like.
  • the microcomputer is connected to the battery unit 110, the external communication terminal 170, and other circuit components in the battery pack 10 by electrical wiring.
  • Program modules that realize the functions of the operation control unit 121, the abnormality detection unit 122, and the information storage unit 123 are stored in the storage area of the microcomputer.
  • the processor of the microcomputer calls and executes the program module stored in the storage area, and cooperates with the circuit components in the battery pack 10 to realize each of the functions described above.
  • Second Embodiment The present embodiment is the same as the first embodiment except for the points described later.
  • FIG. 3 is a block diagram conceptually showing the functional configuration of the battery control unit 120 according to the second embodiment.
  • the battery control unit 120 of the present embodiment has an event detection unit 124 and an information rewrite unit 125 in addition to the configuration of the first embodiment (example: FIG. 2).
  • the event detection unit 124 detects a rewrite event of the forcible stop availability information stored in the information storage unit 123. Further, the information rewriting unit 125 rewrites the forcible stop possibility information stored in the information storage unit 123 according to the rewriting event detected by the event detection unit 124.
  • the rewrite event of the forced stop availability information can be arbitrarily set according to the electric device connected to the battery pack 10 and operated by the power from the battery pack 10.
  • the electrical device is an unmanned air vehicle such as a drone
  • the event detection unit 124 detects an output signal from the unmanned air vehicle via the external communication terminal 170.
  • the event detection unit 124 can detect an output signal output from the unmanned air vehicle based on remote control by the operator of the unmanned air vehicle.
  • This remote control is an operation for transmitting to the unmanned air vehicle an instruction to set the forcible stop availability information to either "forcible stop possibility" or "forcible stop impossible".
  • This remote control is performed, for example, on a smartphone or tablet PC (Personal Computer) that communicates with the unmanned air vehicle.
  • the event detection unit 124 can detect output signals of various sensors provided in the unmanned air vehicle. For example, the event detection unit 124 can obtain a signal indicating the flight altitude of the unmanned air vehicle from an altitude sensor provided on the unmanned air vehicle.
  • the event detection unit 124 can obtain a signal indicating the flight position of the unmanned air vehicle from a GPS (Global Positioning System) sensor provided on the unmanned air vehicle. Furthermore, as another example, the event detection unit 124 outputs, from the unmanned air vehicle, an indication that the safety device operated normally when the safety device (for example, a parachute etc.) provided to the unmanned air vehicle operates normally. The signal can be detected. The event detection unit 124 detects at least one of the output signals exemplified above.
  • GPS Global Positioning System
  • the information rewriting unit 125 rewrites the forcible stop availability information stored in the information storage unit 123 based on the output signal from the electrical geometry detected by the event detection unit 124.
  • the information storage unit 123 stores forced stop availability information indicating “forced stop impossible”.
  • the event detection unit 124 detects, from the unmanned air vehicle, an output signal indicating that the forced stop availability information is rewritten as “forced stoppable” according to the remote control by the operator of the unmanned air vehicle.
  • the information rewriting unit 125 rewrites the forcible stop possibility information stored in the information storage unit 123 into “forcible stop possible”.
  • the event detection unit 124 detects the output signal of the altitude sensor from the unmanned air vehicle.
  • the information rewriting unit 125 determines whether the altitude of the unmanned air vehicle indicated by the output signal is less than or equal to a predetermined threshold.
  • the predetermined threshold is stored in the storage area of the battery control unit 120 as, for example, a height that causes no problem even if the unmanned air vehicle falls by forcibly stopping the battery pack 10. Then, in accordance with the determination result, the information rewriting unit 125 sets the forced stop availability information stored in the information storage unit 123 to either “forced stop possible” or “forced stop not possible”. As yet another example.
  • the event detection unit 124 acquires an output signal indicating that a safety device such as a parachute has normally operated from the unmanned air vehicle.
  • the information rewriting unit 125 can set the forcible stop possibility information stored in the information storage unit 123 to “forcible stop possible”.
  • the operation control unit 121 controls the battery pack 10 based on the forced stopability information stored in the information storage unit 123. Is operated in constant current mode or forced to stop.
  • the forcible stopability information stored in the information storage unit 123 by the information rewriting unit 125 is It may be rewritten as "forced stoppable". Therefore, the operation control unit 121 of the present embodiment is configured to determine whether to forcibly stop the battery pack 10 based on the forcible stop possibility information after the rewriting.
  • program modules for realizing the functions of the event detection unit 124 and the information rewriting unit 125 are further stored in the storage area of the microcomputer.
  • the processor of the microcomputer calls and executes the program module stored in the storage area, and cooperates with the circuit components in the battery pack 10 to realize each of the functions described above.
  • FIG. 4 is a flowchart illustrating the flow of processing from the start of operation of the battery pack 10.
  • the battery pack 10 receives a start instruction from the electric device via the external communication terminal 170 (S102).
  • the abnormality detection unit 122 refers to the history of the test measurement values such as the current, voltage, and temperature before the activation of the battery pack 10 and the measurement values at the time of the immediately preceding operation in response to the activation instruction from the electrical device. It is determined whether there is an abnormality in the pack (S104).
  • the operation control unit 121 ends the process without activating the battery pack 10. In this case, the operation control unit 121 may notify the electric device side of a signal indicating a start error due to a battery abnormality via the external communication terminal 170.
  • the operation control unit 121 activates the battery pack 10.
  • the operation control unit 121 controls the operation of the battery pack 10 in the constant current mode (S106).
  • the abnormality detection unit 122 appropriately measures the voltage, current, temperature, and the like of the battery pack 10, and monitors whether or not an abnormality occurs in the battery pack 10 (S108).
  • the operation control unit 121 cancels the operation in the constant current mode and operates the battery pack 10 in the normal mode. It is determined whether or not there is a problem. Specifically, operation control unit 121 determines whether or not the difference value between voltage V BAT + of the positive electrode terminal of battery pack 10 and voltage V PACK + of external negative electrode terminal 160 has become equal to or less than a predetermined threshold voltage V th. (S110).
  • the predetermined threshold voltage V th is set to a voltage value that does not generate a current having a magnitude that affects the circuit of the battery pack 10.
  • the predetermined threshold voltage V th is stored, for example, in a storage area of the battery control unit 120.
  • the operation control unit 121 cancels the operation in the constant current mode and controls the operation of the battery pack 10 in the normal mode (S112). Specifically, the operation control unit 121 transmits, to the constant current control unit 130, an instruction to release the current limitation by the gate voltage. The constant current control unit 130 raises the gate voltage according to the instruction. This releases the restriction on the drain current of the first switch element FET C or the second switch element FET D.
  • the abnormality detection unit 122 appropriately measures the voltage, current, temperature, and the like of the battery pack 10 as in the process of S108, and monitors whether or not an abnormality occurs in the battery pack 10 (S114).
  • the operation control unit 121 instructs the operation of the battery pack 10 to stop with the end of the operation of the electric device (operation stop Instruction) It is monitored whether or not it has been received from an electric device connected to the battery pack 10 (S116).
  • the operation control unit 121 stops the operation of the battery pack 10 (S118). Specifically, the operation control unit 121 transmits, to the constant current control unit 130, an instruction to turn off the first switch element FET C and the second switch element FET D. The constant current control unit 130 adjusts the gate voltage of each switch element according to this instruction, and turns off each switch element. Thereby, the operation of the battery pack 10 is stopped.
  • FIG. 5 is a flowchart illustrating the flow of the battery abnormality processing.
  • the operation control unit 121 confirms the forced stopability information stored in the information storage unit 123 (S202).
  • the operation control unit 121 controls the operation of the battery pack in the constant current mode (S204) .
  • the operation control unit 121 controls the operation of the battery pack 10 in the constant current mode until the forcible-stoppability information is rewritten to “impossible”.
  • the process of rewriting the forced stopability information is executed separately from the processes of FIGS. 4 and 5. The process of rewriting the forced stop availability information will be described later.
  • the operation control unit 121 stops the operation of the battery pack 10 (S206).
  • the operation control unit 121 transmits, to the constant current control unit 130, an instruction to turn off the first switch element FET C and the second switch element FET D.
  • the constant current control unit 130 adjusts the gate voltage of each switch element according to this instruction, and turns off each switch element. Thereby, the operation of the battery pack 10 is stopped.
  • FIG. 6 is a flowchart illustrating the flow of the process of rewriting the forced stop availability information.
  • the event detection unit 124 determines whether or not the rewrite event of the forced stop availability information has been detected (S302).
  • the event detection unit 124 can determine, for example, based on an output signal from an electrical device connected to the battery pack 10, whether or not a rewrite event has occurred.
  • the event detection unit 124 can receive an output signal from the electrical device via the external communication terminal 170.
  • the information rewrite unit 125 determines the setting value of the forcible stop possibility information corresponding to the detected rewrite event (S304).
  • the setting value is either a setting value (“possible”) that enables the forced stop of the battery pack 10 or a setting value (“impossible”) that makes the forced stop of the battery pack 10 impossible.
  • the set value for each rewrite event is stored in advance in, for example, a storage area of the battery control unit 120.
  • the information rewriting unit 125 can acquire the setting value of the forcible stopability information corresponding to the rewriting event detected in the process of S302 with reference to the information stored in the storage area.
  • the setting value corresponding to the detected rewrite event is "possible” (S304: “possible")
  • the information rewrite unit 125 rewrites the forced stopability information stored in the information storage unit 123 into "possible”. (S306).
  • the setting value corresponding to the detected rewriting event is "impossible" (S304: “impossible")
  • FIG. 7 is a flowchart illustrating the flow of processing at the time of maintenance of the battery pack 10.
  • the operation control unit 121 determines whether a transition event of the battery pack 10 to the maintenance mode is detected (S402).
  • the operation control unit 121 can detect, for example, removal of the battery pack 10 from the electrical device, removal of an exterior part of the battery pack 10, and the like as a transition event to the maintenance mode.
  • the operation control unit 121 can detect that the battery pack 10 has been removed from the electrical device from the conduction state of the external positive electrode terminal 150, the external negative electrode terminal 160, or the external communication terminal 170.
  • the operation control unit 121 indicates, for example, that a button provided on the exterior part has been removed (for example, “during installation” when the button is pressed) that the exterior part of the battery pack 10 has been removed. When the button is not pressed, it can be determined based on "during removal” and the like.
  • the operation control unit 121 controls the operation of the battery pack 10 in the constant current mode (S404).
  • operation control unit 121 sets the difference between voltage V BAT + of the positive terminal of battery pack 10 and voltage V PACK + of external positive terminal 150 to a predetermined value. It may be monitored whether or not the threshold value V Th of the threshold value is less than or equal to the threshold value V Th .
  • the operation control unit 121 when the difference between the positive terminal of the voltage V BAT + and an external positive terminal 150 of the voltage V PACK + of the battery pack 10 is equal to or less than a predetermined threshold value V Th, the operation in the constant current mode You may cancel it.
  • the first switch element FETC, the first resistor RC, the second switch element FETD, and the second resistor RD are not limited to the configurations of the respective drawings used in the description of the respective embodiments. It may be
  • Operation control means for controlling the operation during charging and discharging of the battery pack including the secondary battery
  • the operation control unit operates the battery pack in a constant current mode at the start of operation of the battery pack or at the time of maintenance of the battery pack.
  • Battery control unit 2.
  • the operation control means when operating the battery pack in a constant current mode, a voltage of an external connection terminal of the battery pack connected to a device operated by power from the battery pack, and the secondary battery Release the constant current mode when the difference between the open circuit voltage of 1.
  • the battery control device as described in. 3.
  • Abnormality detection means for detecting an abnormality of the battery pack; An information storage unit that stores forced stop availability information indicating whether the battery pack is forcibly stopped; Operation control means for controlling the operation at the time of charge and discharge of the battery pack; The operation control means is When the abnormality detection unit detects an abnormality in the battery pack, it is determined whether the battery pack is operated in a constant current mode or forcibly stopped based on the forced stopability information stored in the information storage unit. decide, Battery control unit. 4.
  • An event detection unit that detects a rewrite event of the forced stop availability information; Information rewriting means for rewriting the forced stopability information stored in the information storage means according to the rewriting event detected by the event detection means;
  • the operation control means rewrites the forced stopability information stored in the information storage means by the information rewriting means after the abnormality detection means detects an abnormality in the battery pack. It is determined whether to forcibly stop the battery pack, based on the later forced-stoppability information. 3.
  • the battery control device as described in. 5.
  • the event detection means detects an output signal from a device operated by the power from the battery pack,
  • the information rewriting unit rewrites the forced stop availability information stored in the information storage unit based on the output from the device detected by the event detection unit. 4.
  • the device is a drone. 5.
  • the event detection means normally operates an output signal based on a remote control by the unmanned aerial vehicle operator, an output signal of a sensor provided on the unmanned aerial vehicle, and a safety device provided on the unmanned aerial vehicle. Detect at least one of the output signals indicating that 6.
  • the computer is A battery control method comprising operating the battery pack in a constant current mode at the start of operation of a battery pack including a secondary battery or at the time of maintenance of the battery pack. 10.
  • the computer When the computer is operating the battery pack in a constant current mode, the voltage of the external connection terminal of the battery pack connected with the device operated by the power from the battery pack, and the release of the secondary battery The constant current mode is canceled when the difference from the voltage becomes lower than the reference, 9. further including The battery control method described in. 11.
  • the computer is When abnormality of the battery pack is detected, the battery pack is operated in the constant current mode or forcibly stopped based on the forcible stopability information indicating whether the forcible stop of the battery pack is stored, which is stored in the information storage means. To decide Battery control method including. 12.
  • the computer Detecting a rewrite event of the forced stop availability information; Rewriting the forced stopability information stored in the information storage means in accordance with the detected rewrite event.
  • the battery pack is forced based on the forcible stopability information after the rewriting. Decide whether to stop or not 11. further including The battery control method described in. 13. The computer Detecting an output signal from a device operated by the power from the battery pack; The forced stop availability information stored in the information storage unit is rewritten based on the detected output from the device. Further including 12. The battery control method described in. 14. The device is a drone. 13. The battery control method described in. 15.
  • the computer An output signal based on remote control by the pilot of the unmanned aerial vehicle, an output signal of a sensor provided on the unmanned aerial vehicle, and an output signal indicating that a safety device provided on the unmanned aerial vehicle has operated normally. Detect at least one of Further including 14.

Abstract

A battery control unit (120) is provided with an operation control unit which controls the operation of a battery pack (10) including a secondary battery (111) during charging and discharging. The operation control unit, at the start of operation of the battery pack (10) or during maintenance of the battery pack (10), causes the battery pack (10) to operate in a constant current mode. The battery control unit (120) may also be provided with an abnormality sensing unit for sensing abnormality in the battery pack (10), and an information storage unit for storing compulsory shutdown appropriateness information indicating the appropriateness of compulsory shutdown of the battery pack (10). In this case, the operation control unit, if abnormality in the battery pack (10) has been detected by the abnormality sensing unit, determines whether the battery pack (10) should be allowed to operate in the constant current mode or be caused to be shut down compulsorily on the basis of the compulsory shutdown appropriateness information stored in the information storage unit.

Description

電池制御装置、電池パック、電池制御方法、およびプログラムBattery control device, battery pack, battery control method, and program
 本発明は、二次電池の制御技術に関する。 The present invention relates to control technology of a secondary battery.
 様々な機器において、二次電池は動力源として使用されている。 In various devices, secondary batteries are used as a power source.
 二次電池に関連する技術の一例が、下記特許文献1に開示されている。下記特許文献1には、過充電、過放電、過電流等の異常を検出した場合に、直ちに回路を遮断するのではなく、一定期間定電流制御を行い、その後、当該異常が二次電池の短絡等に起因する場合に回路を遮断する保護回路を有するバッテリーパックが開示されている。 An example of a technology related to a secondary battery is disclosed in Patent Document 1 below. According to Patent Document 1 below, when an abnormality such as overcharge, overdischarge, overcurrent, or the like is detected, constant current control is performed for a certain period of time instead of shutting down the circuit immediately, and then the abnormality is a secondary battery. A battery pack is disclosed that has a protection circuit that shuts off the circuit if it is caused by a short circuit or the like.
特開2008-029067号公報JP, 2008-029067, A
 二次電池の異常とは関係なく、電源投入時等に生じる突入電流が二次電池、または、二次電池と接続される回路部品に悪影響を与える可能性がある。また、二次電池に異常があったとしても、二次電池を強制停止させることによって、別の問題が発生する可能性もある。例えば、無人飛行体(例:ドローンなど)の飛行中に電池パック10が強制停止した場合、その無人飛行体が落下の衝撃で破損してしまう可能性もある。このような場合、二次電池および二次電池に接続されている回路部品に悪影響を与えることを承知の上で、その二次電池の使用を継続しなければならない。異常のある二次電池の使用をやむを得ず継続する場合において、二次電池および各回路部品への悪影響は、当然、小さい方が望ましい。 Regardless of the abnormality of the secondary battery, an inrush current generated at the time of power on or the like may adversely affect the secondary battery or a circuit component connected to the secondary battery. In addition, even if there is an abnormality in the secondary battery, another problem may occur by forcibly stopping the secondary battery. For example, if the battery pack 10 is forcibly stopped while the unmanned air vehicle (eg, drone or the like) is flying, the unmanned air vehicle may be damaged by the impact of a fall. In such a case, it is necessary to continue using the secondary battery knowing that the secondary battery and the circuit components connected to the secondary battery are adversely affected. In the case where the use of an abnormal secondary battery is unavoidable, the adverse effect on the secondary battery and each circuit component is naturally desirably as small as possible.
 本発明は、上記の課題に鑑みてなされたものである。本発明の目的の一つは、二次電池を含む回路部品の保護とする技術を提供することである。また、本発明の目的の一つは、異常のある二次電池をやむを得ず使用する場合における悪影響を低減させる技術を提供することである。 The present invention has been made in view of the above problems. One of the objects of the present invention is to provide a technology for protecting circuit components including a secondary battery. In addition, one of the objects of the present invention is to provide a technique for reducing the adverse effect in the case where a secondary battery with an abnormality is inevitably used.
 本発明によれば、
 二次電池を含む電池パックの充電時および放電時の動作を制御する動作制御手段を備え、
 前記動作制御手段は、前記電池パックの動作開始時または前記電池パックのメンテナンス時に、前記電池パックを定電流モードで動作させる、
 第1の電池制御装置が提供される。
According to the invention
Operation control means for controlling the operation during charging and discharging of the battery pack including the secondary battery,
The operation control unit operates the battery pack in a constant current mode at the start of operation of the battery pack or at the time of maintenance of the battery pack.
A first battery control device is provided.
 本発明によれば、
 電池パックの異常を検知する異常検知手段と、
 前記電池パックの強制停止の可否を示す強制停止可否情報を記憶する情報記憶手段と、
 前記電池パックの充電時および放電時の動作を制御する動作制御手段と、を備え、
 前記動作制御手段は、
  前記異常検知手段により前記電池パックの異常が検出された場合、前記情報記憶手段に記憶されている前記強制停止可否情報に基づいて、前記電池パックを定電流モードで動作させるか強制停止させるかを決定する、
 第2の電池制御装置が提供される。
According to the invention
Abnormality detection means for detecting an abnormality of the battery pack;
An information storage unit that stores forced stop availability information indicating whether the battery pack is forcibly stopped;
Operation control means for controlling the operation at the time of charge and discharge of the battery pack;
The operation control means is
When the abnormality detection unit detects an abnormality in the battery pack, it is determined whether the battery pack is operated in a constant current mode or forcibly stopped based on the forced stopability information stored in the information storage unit. decide,
A second battery control device is provided.
 本発明によれば、
 二次電池と、
 上記第1の電池制御装置および上記第2の電池制御装置のいずれかと、
 を少なくとも備える電池パックが提供される。
According to the invention
With a secondary battery,
One of the first battery control device and the second battery control device;
A battery pack comprising at least
 本発明によれば、
 コンピュータが、
 二次電池を含む電池パックの動作開始時または前記電池パックのメンテナンス時に、前記電池パックを定電流モードで動作させることを含む第1の電池制御方法が提供される。
According to the invention
The computer is
A first battery control method is provided that includes operating the battery pack in a constant current mode at the start of operation of a battery pack including a secondary battery or at the time of maintenance of the battery pack.
 本発明によれば、
 コンピュータが、
 電池パックの異常を検知した場合、情報記憶手段に記憶されている、前記電池パックの強制停止の可否を示す強制停止可否情報に基づいて、前記電池パックを定電流モードで動作させるか強制停止させるかを決定する、
 ことを含む第2の電池制御装置が提供される。
According to the invention
The computer is
When abnormality of the battery pack is detected, the battery pack is operated in the constant current mode or forcibly stopped based on the forcible stopability information indicating whether the forcible stop of the battery pack is stored, which is stored in the information storage means. To decide
A second battery control device is provided.
 本発明によれば、
 コンピュータに上記第1の電池制御方法を実行させるプログラムが提供される。
According to the invention
A program is provided that causes a computer to execute the first battery control method.
 本発明によれば、
 コンピュータに上記第2の電池制御方法を実行させるプログラムが提供される。
According to the invention
A program is provided that causes a computer to execute the second battery control method.
 本発明によれば、二次電池を含む回路部品を保護することができる。また、本発明によれば、異常のある二次電池をやむを得ず使用する場合における悪影響を低減させることができる。 According to the present invention, circuit components including a secondary battery can be protected. Further, according to the present invention, it is possible to reduce the adverse effect in the case of using a secondary battery having an abnormality without fail.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
第1実施形態に係る電池パックの構成を例示する図である。It is a figure which illustrates the composition of the battery pack concerning a 1st embodiment. 第1実施形態に係る電池制御部の機能構成を概念的に示すブロック図である。It is a block diagram which shows notionally the function composition of the battery control part concerning a 1st embodiment. 第2実施形態に係る電池制御部の機能構成を概念的に示すブロック図である。It is a block diagram which shows notionally the function composition of the battery control part concerning a 2nd embodiment. 電池パックの動作開始時からの処理の流れを例示するフローチャートである。It is a flowchart which illustrates the flow of the processing from the operation start time of a battery pack. 電池異常時処理の流れを例示するフローチャートである。It is a flowchart which illustrates the flow of processing at the time of battery abnormality. 強制停止可否情報を書き換える処理の流れを例示するフローチャートである。It is a flowchart which illustrates the flow of the processing which rewrites forced stop decision information. 電池パックのメンテナンス時の処理の流れを例示するフローチャートである。5 is a flowchart illustrating the flow of processing at the time of maintenance of the battery pack.
 以下、本発明の実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described using the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
 [第1実施形態]
 〔構成例〕
 図1は、第1実施形態に係る電池パック10の構成を例示する図である。図1の例において、電池パック10は、電池部110、電池制御部120、定電流制御部130、電圧測定部140、外部正極端子150、外部負極端子160、および、外部通信端子170を有している。
First Embodiment
[Configuration example]
FIG. 1 is a diagram illustrating the configuration of the battery pack 10 according to the first embodiment. In the example of FIG. 1, the battery pack 10 includes a battery unit 110, a battery control unit 120, a constant current control unit 130, a voltage measurement unit 140, an external positive terminal 150, an external negative terminal 160, and an external communication terminal 170. ing.
 電池部110は、少なくとも1つ以上の二次電池111を含んで構成される。図1の例では、電池部110は、直列に接続されたn個の二次電池111(二次電池111~二次電池111)を有している。特に限定されないが、二次電池111は、例えば、リチウムイオン電池やニッケル水素電池などである。 The battery unit 110 includes at least one or more secondary batteries 111. In the example of FIG. 1, the battery unit 110 includes n secondary batteries 111 (secondary batteries 111 1 to secondary batteries 111 n ) connected in series. Although not particularly limited, the secondary battery 111 is, for example, a lithium ion battery or a nickel hydrogen battery.
 また、図1の例において、電池部110の正極側には、第1の抵抗R、第1のスイッチ素子FET、第2のスイッチ素子FET、および、第2の抵抗Rが、記載した順序で直列に配置されている。第1のスイッチ素子FETは、電池部110の充電電流の大きさを制御するために利用される。第2のスイッチ素子FETは、電池部110の放電電流の大きさを制御するために利用される。なお、図1の例において、第1のスイッチ素子FETCおよび第2のスイッチ素子FETDは、n型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)として記載されているが、p型のMOSFETであってもよい。第1の抵抗Rは、後述の定電流制御部130が電池部110の充電電流の大きさを測定するために利用される。第2の抵抗Rは、後述の定電流制御部130が電池部110の放電電流の大きさを測定するために利用される。 Further, in the example of FIG. 1, on the positive electrode side of the battery unit 110, the first resistor R C , the first switch element FET C , the second switch element FET D , and the second resistor R D are They are arranged in series in the order described. The first switch element FET C is used to control the magnitude of the charging current of the battery unit 110. The second switch element FET D is used to control the magnitude of the discharge current of the battery unit 110. In the example of FIG. 1, the first switch element FETC and the second switch element FETD are described as n-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), but even if they are p-type MOSFETs Good. The first resistor RC is used by the constant current control unit 130 described later to measure the magnitude of the charging current of the battery unit 110. The second resistor RD is used by the constant current control unit 130 described later to measure the magnitude of the discharge current of the battery unit 110.
 電池制御部120は、電池パック10の電圧、電流、温度などの計測値を基に電池パック10の電池制御部120の動作を制御する。電池制御部120の詳細については後述する。 The battery control unit 120 controls the operation of the battery control unit 120 of the battery pack 10 based on measured values such as the voltage, current, and temperature of the battery pack 10. Details of the battery control unit 120 will be described later.
 定電流制御部130は、電池部110の充電時に、第1の抵抗Rの両端の電圧と第1の抵抗Rの抵抗値とに基づいて、充電電流の値を算出することができる。また、定電流制御部130は、電池部110の放電時に、第2の抵抗Rの両端の電圧値と第2の抵抗Rの抵抗値とに基づいて、放電電流の値を算出することができる。また、定電流制御部130は、電池制御部120からの指示に応じて第1のスイッチ素子FETに印加するゲート電圧を調整することにより、電池部110の充電電流を制御する。例えば、定電流制御部130が、第1のスイッチ素子FETのゲート電圧を調整して充電電流の第1のスイッチ素子FETのドレイン電流の最大値を制御することによって、電池パック10は定電流での充電動作が可能となる。また、定電流制御部130は、電池制御部120からの指示に応じて、第2のスイッチ素子FETに印加するゲート電圧を調整することにより、電池部110の放電電流を制御する。えば、定電流制御部130が、第2のスイッチ素子FETのゲート電圧を調整して充電電流の第2のスイッチ素子FETのドレイン電流の最大値を制御することによって、電池パック10は定電流での放電動作が可能となる。 Constant current control unit 130 may be during charging of the battery unit 110, based on the voltage across the first resistor R C and the resistance value of the first resistor R C, and calculates the value of the charging current. The constant current control unit 130, during discharging of the battery unit 110, the voltage value across the second resistor R D and based on the resistance value of the second resistor R D, and calculates the value of the discharge current Can. The constant current control unit 130 also controls the charging current of the battery unit 110 by adjusting the gate voltage applied to the first switch element FET C in accordance with an instruction from the battery control unit 120. For example, the constant current control unit 130, by controlling the maximum value of the drain current of the first switching element FET C adjustments to the charging current of the gate voltage of the first switching element FET C, the battery pack 10 is constant The charging operation by the current becomes possible. The constant current control unit 130 also controls the discharge current of the battery unit 110 by adjusting the gate voltage applied to the second switch element FET D in accordance with an instruction from the battery control unit 120. Example, the constant current control unit 130, by controlling the maximum value of the drain current of the second switching element FET D adjustments to the charging current of the gate voltage of the second switching element FET D, the battery pack 10 is constant Discharge operation with current is possible.
 図1の例において、電圧測定部140は、電池部110の正極側端子と外部正極端子150との間の端子電圧(VBAT+-VPACK+)を測定することができる。電池制御部120は、電池パック10の動作を制御する際に、電圧測定部140により測定された端子電圧(VBAT+-VPACK+)を参照することができる。 In the example of FIG. 1, the voltage measurement unit 140 can measure the terminal voltage (V BAT + −V PACK + ) between the positive electrode side terminal of the battery unit 110 and the external positive electrode terminal 150. When controlling the operation of the battery pack 10, the battery control unit 120 can refer to the terminal voltage (V BAT + -V PACK + ) measured by the voltage measurement unit 140.
 外部正極端子150、外部負極端子160、外部通信端子170は、電池パック10を外部の電気機器(図示せず)と接続するために用いられる端子である。外部正極端子150は、電気機器側の正極端子と接続される。外部負極端子160は、電気機器側の負極端子と接続される。外部通信端子170は、電気機器側の通信端子と接続される。電池制御部120は、外部通信端子170を介して電気機器側の出力信号を取得することができる。 The external positive electrode terminal 150, the external negative electrode terminal 160, and the external communication terminal 170 are terminals used to connect the battery pack 10 to an external electric device (not shown). The external positive electrode terminal 150 is connected to the positive electrode terminal on the electrical device side. The external negative electrode terminal 160 is connected to the negative electrode terminal on the electrical device side. The external communication terminal 170 is connected to the communication terminal on the electrical device side. The battery control unit 120 can obtain an output signal on the electrical device side via the external communication terminal 170.
 また、図1では示されていないが、電池パック10の内部に温度センサ(例えば、サーミスタなど)が更に設けられていてもよい。電池制御部120は、温度センサを用いて、電池部110の温度や電池パック10の内部基板の温度を測定することができる。 Further, although not shown in FIG. 1, a temperature sensor (for example, a thermistor or the like) may be further provided inside the battery pack 10. The battery control unit 120 can measure the temperature of the battery unit 110 and the temperature of the internal substrate of the battery pack 10 using a temperature sensor.
 以下、図2を用いて、本実施形態の電池制御部120の機能構成を説明する。図2は、第1実施形態に係る電池制御部120の機能構成を概念的に示すブロック図である。図2に示されるように、本実施形態の電池制御部120は、動作制御部121を少なくとも有する。 Hereinafter, the functional configuration of the battery control unit 120 according to the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram conceptually showing the functional configuration of the battery control unit 120 according to the first embodiment. As shown in FIG. 2, the battery control unit 120 of the present embodiment at least includes an operation control unit 121.
 動作制御部121は、電池パック10の充電時および放電時の動作を制御する。動作制御部121は、電池パック10の動作開始時または電池パック10のメンテナンス時に、電池パック10を定電流モードで動作させる。定電流モードとは、電池パック10の充電電流または放電電流が、ある一定値に制限されるモードを意味する。電池パック10の動作開始時とは、例えば、電池パック10に接続された電気機器を始動させるために電力を供給し始めるタイミングを意味する。また、電池パック10のメンテナンス時とは、例えば、新しい二次電池111の追加、劣化した二次電池111の交換、キャパシタ等の電子部品の追加/交換など、電池パック10の点検や修理を行うタイミングを意味する。 The operation control unit 121 controls operations at the time of charging and discharging of the battery pack 10. The operation control unit 121 operates the battery pack 10 in a constant current mode when the operation of the battery pack 10 is started or when the battery pack 10 is maintained. The constant current mode means a mode in which the charge current or discharge current of the battery pack 10 is limited to a certain value. The operation start time of the battery pack 10 means, for example, the timing at which power supply is started to start the electric device connected to the battery pack 10. Further, with the maintenance of the battery pack 10, for example, the battery pack 10 is inspected or repaired such as addition of a new secondary battery 111, replacement of a deteriorated secondary battery 111, addition / replacement of electronic parts such as a capacitor. It means timing.
 上記構成によれば、動作開始時またはメンテナンス時には、電池パック10の内部に流れる電流がある一定値に制限される。ここで、動作開始時には、電池部110の端子電圧と、外部の電気機器に接続される電池パック10の外部端子の端子電圧とに差があり、突入電流が発生する可能性がある。また、メンテナンス時に、新しい二次電池111の追加、劣化した二次電池111の交換、キャパシタ等の電子部品の追加/交換などを行う場合、交換部品を接続するに電圧差が生じて突入電流が発生する可能性がある。上述の構成によれば、電池パック10の動作開始時または電池パック10のメンテナンス時に発生し得る突入電流を防ぎ、電池パック10の回路部品を保護することができる。 According to the above configuration, the current flowing inside the battery pack 10 is limited to a fixed value at the start of operation or at the time of maintenance. Here, at the start of the operation, there is a difference between the terminal voltage of the battery unit 110 and the terminal voltage of the external terminal of the battery pack 10 connected to the external electric device, and rush current may occur. In addition, when adding a new secondary battery 111, replacing a degraded secondary battery 111, or adding / replacing an electronic component such as a capacitor at the time of maintenance, a voltage difference occurs when connecting replacement parts, and rush current It may occur. According to the above-described configuration, it is possible to prevent inrush current that may occur at the start of operation of battery pack 10 or at the time of maintenance of battery pack 10, and to protect circuit components of battery pack 10.
 また、図2に示されるように、本実施形態の電池制御部120は、異常検知部122、および情報記憶部123をさらに有する。 Further, as shown in FIG. 2, the battery control unit 120 of the present embodiment further includes an abnormality detection unit 122 and an information storage unit 123.
 異常検知部122は、電池パック10の異常を検知する。異常検知部122は、電池パック10の電圧、電流、温度等の測定値が正常な範囲を超える場合に、電池パック10に異常が発生したと判断することができる。なお、電圧、電流、温度等の測定値に対して定義される正常な範囲は、例えば、電池制御部120の記憶領域(図示せず)に記憶されている。 The abnormality detection unit 122 detects an abnormality of the battery pack 10. The abnormality detection unit 122 can determine that an abnormality has occurred in the battery pack 10 when the measured values of the voltage, current, temperature, and the like of the battery pack 10 exceed the normal range. A normal range defined for measured values such as voltage, current, and temperature is stored, for example, in a storage area (not shown) of the battery control unit 120.
 情報記憶部123は、強制停止可否情報を記憶している。強制停止可否情報は、電池パック10の強制停止の可否を示している。本実施形態の動作制御部121は、異常検知部122により電池パック10の異常が検知された場合、情報記憶部123に記憶されている強制停止可否情報に基づいて、電池パック10を上述の定電流モードで動作させるか或いは強制停止させるかを決定する。具体的には、情報記憶部123に記憶されている強制停止可否情報が「強制停止可能」を示す場合、動作制御部121は、電池パック10を強制停止させる。一方、情報記憶部123に記憶されている強制停止可否情報が「強制停止不可」を示す場合、動作制御部121は、電池パック10を定電流モードで動作させる。 The information storage unit 123 stores forced stop availability information. The forced stop availability information indicates whether or not the battery pack 10 is forcibly stopped. When the abnormality detection unit 122 detects an abnormality in the battery pack 10, the operation control unit 121 according to the present embodiment determines the battery pack 10 based on the forced stop availability information stored in the information storage unit 123. It is determined whether to operate in the current mode or to forcibly stop. Specifically, when the forcible stop possibility information stored in the information storage unit 123 indicates “forcible stop possibility”, the operation control unit 121 forcibly stops the battery pack 10. On the other hand, when the forcible-stoppability information stored in the information storage unit 123 indicates “forced-stop impossible”, the operation control unit 121 operates the battery pack 10 in the constant current mode.
 上述の構成によれば、情報記憶部123に記憶される強制停止可否情報に応じて、電池パック10の異常発生後における当該電池パック10の動作を制御することができる。例えば、情報記憶部123が「強制停止不可」を示す強制停止可否情報を記憶している場合、電池パック10に異常が発生したとしても、電池パック10は放電電流が制限された定電流モードで動作し続ける。そして、電池パック10が定電流モードで動作し続けることにより、電池パック10の電力で動作する電気機器は停止しない。このようにすることで、電池パック10に異常が発生した場合に電池パック10の動作を強制停止させることによって、別の問題が発生することを防止できる。例えば、ドローンといった無人飛行体がある程度高い位置を飛行しているときに電池パック10を強制停止させた場合、その無人飛行体が落下の衝撃で破損してしまう可能性もある。上述の構成によれば、このような問題を回避することができる。 According to the above-described configuration, it is possible to control the operation of the battery pack 10 after the occurrence of an abnormality of the battery pack 10 according to the forcible stop possibility information stored in the information storage unit 123. For example, when the information storage unit 123 stores the forcible stop availability information indicating "forced stop impossible", even if an abnormality occurs in the battery pack 10, the battery pack 10 is in the constant current mode in which the discharge current is limited. Keep working. Then, as the battery pack 10 continues to operate in the constant current mode, the electric devices operating with the power of the battery pack 10 do not stop. By doing this, it is possible to prevent another problem from occurring by forcibly stopping the operation of the battery pack 10 when an abnormality occurs in the battery pack 10. For example, if the battery pack 10 is forcibly stopped while a drone such as a drone is flying at a relatively high position, the drone may be damaged by a falling impact. According to the above-described configuration, such a problem can be avoided.
 〔電池制御部120のハードウエア構成〕
 電池制御部120は、例えば、組込型のマイクロコンピュータとして実現され得る。マイクロコンピュータは、CPU(Central Processing Unit)などのプロセッサ、メモリやストレージといった記憶領域などを備える。マイクロコンピュータは、電気的配線によって、電池部110、外部通信端子170、および電池パック10内のその他の回路部品と接続される。マイクロコンピュータの記憶領域には、動作制御部121、異常検知部122、および情報記憶部123の機能をそれぞれ実現するプログラムモジュールが記憶されている。マイクロコンピュータのプロセッサが、記憶領域に記憶されたプログラムモジュールを呼び出して実行し、電池パック10内の回路部品と協働することにより、上述の各機能が実現される。
[Hardware Configuration of Battery Control Unit 120]
The battery control unit 120 can be realized, for example, as an embedded microcomputer. The microcomputer includes a processor such as a CPU (Central Processing Unit), a storage area such as a memory and a storage, and the like. The microcomputer is connected to the battery unit 110, the external communication terminal 170, and other circuit components in the battery pack 10 by electrical wiring. Program modules that realize the functions of the operation control unit 121, the abnormality detection unit 122, and the information storage unit 123 are stored in the storage area of the microcomputer. The processor of the microcomputer calls and executes the program module stored in the storage area, and cooperates with the circuit components in the battery pack 10 to realize each of the functions described above.
 [第2実施形態]
 本実施形態は、後述の点を除き、第1実施形態と同様である。
Second Embodiment
The present embodiment is the same as the first embodiment except for the points described later.
 〔機能構成〕
 図3は、第2実施形態に係る電池制御部120の機能構成を概念的に示すブロック図である。図3に示されるように、本実施形態の電池制御部120は、第1実施形態の構成(例:図2)に加えて、イベント検出部124および情報書換部125を有する。
[Functional configuration]
FIG. 3 is a block diagram conceptually showing the functional configuration of the battery control unit 120 according to the second embodiment. As shown in FIG. 3, the battery control unit 120 of the present embodiment has an event detection unit 124 and an information rewrite unit 125 in addition to the configuration of the first embodiment (example: FIG. 2).
 イベント検出部124は、情報記憶部123に記憶されている強制停止可否情報の書換イベントを検出する。また、情報書換部125は、イベント検出部124により検出された書換イベントに応じて、情報記憶部123に記憶されている強制停止可否情報を書き換える。 The event detection unit 124 detects a rewrite event of the forcible stop availability information stored in the information storage unit 123. Further, the information rewriting unit 125 rewrites the forcible stop possibility information stored in the information storage unit 123 according to the rewriting event detected by the event detection unit 124.
 強制停止可否情報の書換イベントは、電池パック10に接続され、当該電池パック10からの電力により動作する電気機器に応じて任意に設定され得る。例えば、電気機器がドローンなどの無人飛行体である場合、イベント検出部124は、外部通信端子170を介して当該無人飛行体からの出力信号を検出する。 The rewrite event of the forced stop availability information can be arbitrarily set according to the electric device connected to the battery pack 10 and operated by the power from the battery pack 10. For example, when the electrical device is an unmanned air vehicle such as a drone, the event detection unit 124 detects an output signal from the unmanned air vehicle via the external communication terminal 170.
 一例として、イベント検出部124は、無人飛行体の操縦者による遠隔操作に基づいて当該無人飛行体から出力される出力信号を検出することができる。この遠隔操作は、強制停止可否情報を「強制停止可能」または「強制停止不可」のいずれかに設定する指示を無人飛行体に向けて送信する操作である。この遠隔操作は、例えば、無人飛行体と通信するスマートフォンやタブレットPC(Personal Computer)上で行われる。他の一例として、イベント検出部124は、無人飛行体に備えられた各種センサの出力信号を検出することができる。例えば、イベント検出部124は、無人飛行体に備えられた高度センサから、当該無人飛行体の飛行高度を示す信号を取得することができる。また例えば、イベント検出部124は、無人飛行体に備えられたGPS(Global Positioning System)センサから、当該無人飛行体の飛行位置を示す信号を取得することができる。さらに他の一例として、イベント検出部124は、無人飛行体に備えられた安全装置(例えば、パラシュートなど)が正常に作動した場合、無人飛行体から当該安全装置が正常に作動したことを示す出力信号を検出することができる。イベント検出部124は、先に例示した出力信号の少なくとも1つを検出する。 As one example, the event detection unit 124 can detect an output signal output from the unmanned air vehicle based on remote control by the operator of the unmanned air vehicle. This remote control is an operation for transmitting to the unmanned air vehicle an instruction to set the forcible stop availability information to either "forcible stop possibility" or "forcible stop impossible". This remote control is performed, for example, on a smartphone or tablet PC (Personal Computer) that communicates with the unmanned air vehicle. As another example, the event detection unit 124 can detect output signals of various sensors provided in the unmanned air vehicle. For example, the event detection unit 124 can obtain a signal indicating the flight altitude of the unmanned air vehicle from an altitude sensor provided on the unmanned air vehicle. Also, for example, the event detection unit 124 can obtain a signal indicating the flight position of the unmanned air vehicle from a GPS (Global Positioning System) sensor provided on the unmanned air vehicle. Furthermore, as another example, the event detection unit 124 outputs, from the unmanned air vehicle, an indication that the safety device operated normally when the safety device (for example, a parachute etc.) provided to the unmanned air vehicle operates normally. The signal can be detected. The event detection unit 124 detects at least one of the output signals exemplified above.
 そして、情報書換部125は、イベント検出部124により検出された、電気幾何からの出力信号に基づいて、情報記憶部123に記憶されている強制停止可否情報を書き換える。一例として、電気機器が無人飛行体である場合において、初期状態で、情報記憶部123には「強制停止不可」を示す強制停止可否情報が記憶されていたとする。そして、イベント検出部124が、無人飛行体の操縦者による遠隔操作に応じて、当該無人飛行体から、強制停止可否情報を「強制停止可能」に書き換える旨の出力信号を検出したとする。この場合、情報書換部125は、情報記憶部123に記憶される強制停止可否情報を「強制停止可能」に書き換える。他の一例として、イベント検出部124が、無人飛行体からの高度センサの出力信号を検出したとする。この場合、情報書換部125は、当該出力信号が示す無人飛行体の高度が所定の閾値以下か否かを判定する。この所定の閾値は、例えば、電池パック10を強制停止して無人飛行体が落下しても問題ない程度の高さとして、電池制御部120の記憶領域に記憶されている。そして、情報書換部125は、その判定結果に応じて、情報記憶部123に記憶される強制停止可否情報を「強制停止可能」または「強制停止不可」のいずれかに設定する。さらに他の一例として。イベント検出部124が、パラシュートなどの安全装置が正常に作動したことを示す出力信号を無人飛行体から取得したとする。この場合、電池パック10を強制停止させても、安全装置によって無人飛行体が落下時に破損する可能性が低い。よって、この場合、情報書換部125は、情報記憶部123に記憶される強制停止可否情報を「強制停止可能」に設定することができる。 Then, the information rewriting unit 125 rewrites the forcible stop availability information stored in the information storage unit 123 based on the output signal from the electrical geometry detected by the event detection unit 124. As an example, when the electric device is an unmanned air vehicle, it is assumed that in the initial state, the information storage unit 123 stores forced stop availability information indicating “forced stop impossible”. Then, it is assumed that the event detection unit 124 detects, from the unmanned air vehicle, an output signal indicating that the forced stop availability information is rewritten as “forced stoppable” according to the remote control by the operator of the unmanned air vehicle. In this case, the information rewriting unit 125 rewrites the forcible stop possibility information stored in the information storage unit 123 into “forcible stop possible”. As another example, it is assumed that the event detection unit 124 detects the output signal of the altitude sensor from the unmanned air vehicle. In this case, the information rewriting unit 125 determines whether the altitude of the unmanned air vehicle indicated by the output signal is less than or equal to a predetermined threshold. The predetermined threshold is stored in the storage area of the battery control unit 120 as, for example, a height that causes no problem even if the unmanned air vehicle falls by forcibly stopping the battery pack 10. Then, in accordance with the determination result, the information rewriting unit 125 sets the forced stop availability information stored in the information storage unit 123 to either “forced stop possible” or “forced stop not possible”. As yet another example. It is assumed that the event detection unit 124 acquires an output signal indicating that a safety device such as a parachute has normally operated from the unmanned air vehicle. In this case, even if the battery pack 10 is forcibly stopped, the safety device is less likely to damage the unmanned air vehicle when it falls. Therefore, in this case, the information rewriting unit 125 can set the forcible stop possibility information stored in the information storage unit 123 to “forcible stop possible”.
 第1実施形態で説明したように、動作制御部121は、異常検知部122により電池パック10の異常が検出された場合、情報記憶部123に記憶された強制停止可否情報に基づき、電池パック10を定電流モードで動作させるか或いは強制停止させる。なお、動作制御部121が強制停止可否情報に基づいて電池パック10を定電流モードで動作させた後、上述したように、情報書換部125によって情報記憶部123に記憶される強制停止可否情報が「強制停止可能」に書き換えられる可能性がある。そこで、本実施形態の動作制御部121は、書き換え後の強制停止可否情報に基づいて、電池パック10を強制停止させるか否かを決定するように構成される。 As described in the first embodiment, when the abnormality detection unit 122 detects an abnormality in the battery pack 10, the operation control unit 121 controls the battery pack 10 based on the forced stopability information stored in the information storage unit 123. Is operated in constant current mode or forced to stop. In addition, after the operation control unit 121 operates the battery pack 10 in the constant current mode based on the forcible stopability information, as described above, the forcible stopability information stored in the information storage unit 123 by the information rewriting unit 125 is It may be rewritten as "forced stoppable". Therefore, the operation control unit 121 of the present embodiment is configured to determine whether to forcibly stop the battery pack 10 based on the forcible stop possibility information after the rewriting.
 〔電池制御部120のハードウエア構成〕
 本実施形態において、マイクロコンピュータの記憶領域には、更に、イベント検出部124および情報書換部125の機能をそれぞれ実現するプログラムモジュールが記憶されている。マイクロコンピュータのプロセッサが、記憶領域に記憶されたプログラムモジュールを呼び出して実行し、電池パック10内の回路部品と協働することにより、上述の各機能が実現される。
[Hardware Configuration of Battery Control Unit 120]
In the present embodiment, program modules for realizing the functions of the event detection unit 124 and the information rewriting unit 125 are further stored in the storage area of the microcomputer. The processor of the microcomputer calls and executes the program module stored in the storage area, and cooperates with the circuit components in the battery pack 10 to realize each of the functions described above.
 〔処理の流れ〕
 以下、図を用いて、本実施形態における処理の流れの具体例を説明する。
[Flow of processing]
Hereinafter, a specific example of the flow of processing in the present embodiment will be described using the drawings.
 <動作開始時からの処理の流れ>
 図4は、電池パック10の動作開始時からの処理の流れを例示するフローチャートである。
<Flow of processing from the start of operation>
FIG. 4 is a flowchart illustrating the flow of processing from the start of operation of the battery pack 10.
 まず、電池パック10は、外部通信端子170を介して、電気機器からの起動指示を受信する(S102)。異常検知部122は、電気機器からの起動指示に応じて、電池パック10の起動前の電流、電圧、温度などのテスト測定値や直前の動作時の測定値の履歴などを参照して、電池パックに異常がないか否かを判断する(S104)。 First, the battery pack 10 receives a start instruction from the electric device via the external communication terminal 170 (S102). The abnormality detection unit 122 refers to the history of the test measurement values such as the current, voltage, and temperature before the activation of the battery pack 10 and the measurement values at the time of the immediately preceding operation in response to the activation instruction from the electrical device. It is determined whether there is an abnormality in the pack (S104).
 S104の判定処理で電池パックの異常が検出された場合(S104:YES)、動作制御部121は、電池パック10を起動させず、処理を終了する。この場合において、動作制御部121は、電気機器側に電池異常による起動エラーを示す信号を外部通信端子170を介して通知してもよい。 If an abnormality of the battery pack is detected in the determination process of S104 (S104: YES), the operation control unit 121 ends the process without activating the battery pack 10. In this case, the operation control unit 121 may notify the electric device side of a signal indicating a start error due to a battery abnormality via the external communication terminal 170.
 一方、S104の判定処理で電池パックの異常が検出されなかった場合(S104:NO)、動作制御部121は、電池パック10を起動させる。なお、ここでは電池パック10の動作開始時であるため、動作制御部121は、定電流モードで電池パック10の動作を制御する(S106)。 On the other hand, when the abnormality of the battery pack is not detected in the determination process of S104 (S104: NO), the operation control unit 121 activates the battery pack 10. Here, since it is at the start of the operation of the battery pack 10, the operation control unit 121 controls the operation of the battery pack 10 in the constant current mode (S106).
 その後、異常検知部122は、電池パック10の電圧、電流、温度などを適宜測定して、電池パック10に異常が発生していないかどうかを監視する(S108)。 Thereafter, the abnormality detection unit 122 appropriately measures the voltage, current, temperature, and the like of the battery pack 10, and monitors whether or not an abnormality occurs in the battery pack 10 (S108).
 S108の判定処理で電池パック10に異常が検出された場合(S108:YES)、詳しくは後述するような、電池異常時処理が実行される。 If an abnormality is detected in the battery pack 10 in the determination process of S108 (S108: YES), a battery abnormality process, which will be described in detail later, is executed.
 一方、S108の判定処理で電池パック10に異常が検出されなかった場合(S108:NO)、動作制御部121は、定電流モードでの動作を解除して、電池パック10を通常モードで動作させても問題かないか否かを判定する。具体的には、動作制御部121は、電池パック10の正極端子の電圧VBAT+と外部負極端子160の電圧VPACK+との差分値が所定の閾値電圧Vth以下となったか否かを判定する(S110)。なお、所定の閾値電圧Vthは、電池パック10の回路に影響を与える大きさの電流が生じない程度の電圧値に設定される。所定の閾値電圧Vthは、例えば、電池制御部120の記憶領域に記憶されている。 On the other hand, if no abnormality is detected in the battery pack 10 in the determination process of S108 (S108: NO), the operation control unit 121 cancels the operation in the constant current mode and operates the battery pack 10 in the normal mode. It is determined whether or not there is a problem. Specifically, operation control unit 121 determines whether or not the difference value between voltage V BAT + of the positive electrode terminal of battery pack 10 and voltage V PACK + of external negative electrode terminal 160 has become equal to or less than a predetermined threshold voltage V th. (S110). The predetermined threshold voltage V th is set to a voltage value that does not generate a current having a magnitude that affects the circuit of the battery pack 10. The predetermined threshold voltage V th is stored, for example, in a storage area of the battery control unit 120.
 電池パック10の正極端子の電圧VBAT+と外部負極端子160の電圧VPACK+との差分値が所定の閾値電圧Vthを超えている場合(S110:NO)、処理はS108に戻る。 If the difference between the voltage V BAT + of the positive electrode terminal of the battery pack 10 and the voltage V PACK + of the external negative electrode terminal 160 exceeds the predetermined threshold voltage V th (S110: NO), the process returns to S108.
 一方、電池パック10の正極端子の電圧VBAT+と外部負極端子160の電圧VPACK+との差分値が所定の閾値電圧Vth以下である場合(S110:YES)、電池パック10の回路に影響を与える大きさ電流(突入電流)が生じない。よって、この場合、動作制御部121は、定電流モードでの動作を解除して、通常モードで電池パック10の動作を制御する(S112)。具体的には、動作制御部121は、定電流制御部130に対してゲート電圧による電流制限を解除させる指示を送信する。定電流制御部130は、当該指示に応じてゲート電圧を上げる。これにより、第1のスイッチ素子FETまたは第2のスイッチ素子FETのドレイン電流に対する制限が解除される。 On the other hand, when the difference between voltage V BAT + of the positive electrode terminal of battery pack 10 and voltage V PACK + of external negative electrode terminal 160 is equal to or less than predetermined threshold voltage V th (S110: YES), the circuit of battery pack 10 is affected. There is no magnitude current (inrush current) generated. Therefore, in this case, the operation control unit 121 cancels the operation in the constant current mode and controls the operation of the battery pack 10 in the normal mode (S112). Specifically, the operation control unit 121 transmits, to the constant current control unit 130, an instruction to release the current limitation by the gate voltage. The constant current control unit 130 raises the gate voltage according to the instruction. This releases the restriction on the drain current of the first switch element FET C or the second switch element FET D.
 その後、異常検知部122は、S108の処理と同様に、電池パック10の電圧、電流、温度などを適宜測定して、電池パック10に異常が発生していないかどうかを監視する(S114)。 Thereafter, the abnormality detection unit 122 appropriately measures the voltage, current, temperature, and the like of the battery pack 10 as in the process of S108, and monitors whether or not an abnormality occurs in the battery pack 10 (S114).
 S114の判定処理で電池パック10に異常が検出された場合(S114:YES)、詳しくは後述するような、電池異常時処理が実行される。 If an abnormality is detected in the battery pack 10 in the determination process of S114 (S114: YES), a battery abnormality process, which will be described in detail later, is executed.
  一方、S114の判定処理で電池パック10に異常が検出されなかった場合(S114:NO)、動作制御部121は、電気機器の動作の終了に伴い電池パック10の動作を停止させる指示(動作停止指示)、電池パック10に接続された電気機器から受信したか否かを監視する(S116)。 On the other hand, if no abnormality is detected in the battery pack 10 in the determination process of S114 (S114: NO), the operation control unit 121 instructs the operation of the battery pack 10 to stop with the end of the operation of the electric device (operation stop Instruction) It is monitored whether or not it has been received from an electric device connected to the battery pack 10 (S116).
 電池パック10に接続された電気機器から動作停止指示を受領していない場合(S116:NO)、処理はS114に戻る。 If the operation stop instruction has not been received from the electric device connected to the battery pack 10 (S116: NO), the process returns to S114.
 一方、 電池パック10に接続された電気機器から動作停止指示を受領した場合(S116:YES)、動作制御部121は、電池パック10の動作を停止させる(S118)。具体的には、動作制御部121は、第1のスイッチ素子FETおよび第2のスイッチ素子FETをオフ状態とする旨の指示を定電流制御部130に送信する。定電流制御部130は、この指示に応じて各スイッチ素子のゲート電圧を調整し、各スイッチ素子をオフする。これにより、電池パック10の動作は停止する。 On the other hand, when the operation stop instruction is received from the electric device connected to the battery pack 10 (S116: YES), the operation control unit 121 stops the operation of the battery pack 10 (S118). Specifically, the operation control unit 121 transmits, to the constant current control unit 130, an instruction to turn off the first switch element FET C and the second switch element FET D. The constant current control unit 130 adjusts the gate voltage of each switch element according to this instruction, and turns off each switch element. Thereby, the operation of the battery pack 10 is stopped.
 <電池異常時処理>
 図5は、電池異常時処理の流れを例示するフローチャートである。
<Battery abnormal processing>
FIG. 5 is a flowchart illustrating the flow of the battery abnormality processing.
 まず、動作制御部121は、情報記憶部123に記憶されている強制停止可否情報を確認する(S202)。情報記憶部123に記憶されている強制停止可否情報が「不可」を示している場合(S202:「不可」)、動作制御部121は、定電流モードで電池パックの動作を制御する(S204)。その後、動作制御部121は、強制停止可否情報が「不可」に書き換えられるまで、定電流モードで電池パック10の動作を制御する。強制停止可否情報を書き換る処理は、図4および図5の処理とは別に実行されている。強制停止可否情報を書き換える処理については後述する。 First, the operation control unit 121 confirms the forced stopability information stored in the information storage unit 123 (S202). When the forcible stop possibility information stored in the information storage unit 123 indicates "impossible" (S202: "impossible"), the operation control unit 121 controls the operation of the battery pack in the constant current mode (S204) . Thereafter, the operation control unit 121 controls the operation of the battery pack 10 in the constant current mode until the forcible-stoppability information is rewritten to “impossible”. The process of rewriting the forced stopability information is executed separately from the processes of FIGS. 4 and 5. The process of rewriting the forced stop availability information will be described later.
 一方、情報記憶部123に記憶されている強制停止可否情報が「可能」を示している場合(S202:「可能」)、動作制御部121は、電池パック10の動作を停止させる(S206)。動作制御部121は、上述したように、第1のスイッチ素子FETおよび第2のスイッチ素子FETをオフ状態とする旨の指示を定電流制御部130に送信する。定電流制御部130は、この指示に応じて各スイッチ素子のゲート電圧を調整し、各スイッチ素子をオフする。これにより、電池パック10の動作は停止する。 On the other hand, when the forcible stop possibility information stored in the information storage unit 123 indicates "possible" (S202: "possible"), the operation control unit 121 stops the operation of the battery pack 10 (S206). As described above, the operation control unit 121 transmits, to the constant current control unit 130, an instruction to turn off the first switch element FET C and the second switch element FET D. The constant current control unit 130 adjusts the gate voltage of each switch element according to this instruction, and turns off each switch element. Thereby, the operation of the battery pack 10 is stopped.
 <強制停止可否情報書換処理>
 図6は、強制停止可否情報を書き換える処理の流れを例示するフローチャートである。
<Forced stop possibility information rewrite process>
FIG. 6 is a flowchart illustrating the flow of the process of rewriting the forced stop availability information.
 イベント検出部124は、強制停止可否情報の書換イベントが検出されたか否かを判定する(S302)。イベント検出部124は、例えば、電池パック10と接続されている電気機器からの出力信号に基づいて、書換イベントが発生したか否かを判定することができる。イベント検出部124は、電気機器からの出力信号を、外部通信端子170を介して受信することができる。 The event detection unit 124 determines whether or not the rewrite event of the forced stop availability information has been detected (S302). The event detection unit 124 can determine, for example, based on an output signal from an electrical device connected to the battery pack 10, whether or not a rewrite event has occurred. The event detection unit 124 can receive an output signal from the electrical device via the external communication terminal 170.
 書換イベントが検出されない場合(S302:NO)、以下に記載する処理は実行されない。一方、書換イベントが検出された場合、情報書換部125は、当該検出された書換イベントに対応する、強制停止可否情報の設定値を判別する(S304)。この設定値は、電池パック10の強制停止を可能とする設定値(「可能」)、および、電池パック10の強制停止を不可能とする設定値(「不可」)のいずれかである。書換イベント毎の設定値は、例えば、電池制御部120の記憶領域に予め記憶されている。情報書換部125は、当該記憶領域に記憶されている情報を参照して、S302の処理で検出された書換イベントに対応する、強制停止可否情報の設定値を取得することができる。検出された書換イベントに対応する設定値が「可能」である場合(S304:「可能」)、情報書換部125は、情報記憶部123に記憶されている強制停止可否情報を「可能」に書き換える(S306)。一方、検出された書換イベントに対応する設定値が「不可」である場合(S304:「不可」)、情報書換部125hは、情報記憶部123に記憶されている強制停止可否情報を「不可」に書き換える(S308)。 When the rewrite event is not detected (S302: NO), the process described below is not executed. On the other hand, when the rewrite event is detected, the information rewrite unit 125 determines the setting value of the forcible stop possibility information corresponding to the detected rewrite event (S304). The setting value is either a setting value (“possible”) that enables the forced stop of the battery pack 10 or a setting value (“impossible”) that makes the forced stop of the battery pack 10 impossible. The set value for each rewrite event is stored in advance in, for example, a storage area of the battery control unit 120. The information rewriting unit 125 can acquire the setting value of the forcible stopability information corresponding to the rewriting event detected in the process of S302 with reference to the information stored in the storage area. When the setting value corresponding to the detected rewrite event is "possible" (S304: "possible"), the information rewrite unit 125 rewrites the forced stopability information stored in the information storage unit 123 into "possible". (S306). On the other hand, when the setting value corresponding to the detected rewriting event is "impossible" (S304: "impossible"), the information rewriting unit 125h "impossible" the forcible stop possibility information stored in the information storage unit 123. (S308).
 <メンテナンス時の処理の流れ>
 図7は、電池パック10のメンテナンス時の処理の流れを例示するフローチャートである。
<Flow of processing during maintenance>
FIG. 7 is a flowchart illustrating the flow of processing at the time of maintenance of the battery pack 10.
 まず、動作制御部121は、電池パック10のメンテナンスモードへの移行イベントが検出されたか否かを判定する(S402)。動作制御部121は、メンテナンスモードへの移行イベントとして、例えば、電池パック10が電気機器から取り外されたこと、電池パック10の外装パーツが取り外されたことなどを検出することができる。なお、動作制御部121は、電池パック10が電気機器から取り外されたことを、外部正極端子150、外部負極端子160、または、外部通信端子170の導通状態から検出することができる。また、動作制御部121は、電池パック10の外装パーツが取り外されたことを、例えば、外装パーツに設けたボタンの押下状態(例えば、当該ボタンが押下されている場合は「取り付け中」、当該ボタンが押下されていない場合は「取り外し中」など)に基づいて判別することができる。 First, the operation control unit 121 determines whether a transition event of the battery pack 10 to the maintenance mode is detected (S402). The operation control unit 121 can detect, for example, removal of the battery pack 10 from the electrical device, removal of an exterior part of the battery pack 10, and the like as a transition event to the maintenance mode. The operation control unit 121 can detect that the battery pack 10 has been removed from the electrical device from the conduction state of the external positive electrode terminal 150, the external negative electrode terminal 160, or the external communication terminal 170. In addition, the operation control unit 121 indicates, for example, that a button provided on the exterior part has been removed (for example, “during installation” when the button is pressed) that the exterior part of the battery pack 10 has been removed. When the button is not pressed, it can be determined based on "during removal" and the like.
 メンテナンスモードへの移行イベントが検出されない場合(S402:NO)、後述の処理は実行されない。一方、メンテナンスモードへの移行イベントが検出された場合(S402:YES)、動作制御部121は、定電流モードで電池パック10の動作を制御する(S404)。また、メンテナンス時に定電流モードで電池パック10の動作を制御している際、動作制御部121は、電池パック10の正極端子の電圧VBAT+と外部正極端子150の電圧VPACK+との差分が所定の閾値VTh以下となったか否かを監視していてもよい。そして、動作制御部121は、電池パック10の正極端子の電圧VBAT+と外部正極端子150の電圧VPACK+との差分が所定の閾値VTh以下となった場合に、定電流モードでの動作を解除してもよい。 When the transition event to the maintenance mode is not detected (S402: NO), the process described later is not executed. On the other hand, when a transition event to the maintenance mode is detected (S402: YES), the operation control unit 121 controls the operation of the battery pack 10 in the constant current mode (S404). In addition, when controlling the operation of battery pack 10 in the constant current mode at the time of maintenance, operation control unit 121 sets the difference between voltage V BAT + of the positive terminal of battery pack 10 and voltage V PACK + of external positive terminal 150 to a predetermined value. It may be monitored whether or not the threshold value V Th of the threshold value is less than or equal to the threshold value V Th . Then, the operation control unit 121, when the difference between the positive terminal of the voltage V BAT + and an external positive terminal 150 of the voltage V PACK + of the battery pack 10 is equal to or less than a predetermined threshold value V Th, the operation in the constant current mode You may cancel it.
 以上、図面を参照して本発明の施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention and can also employ | adopt various structures other than the above.
 例えば、各実施形態の説明に用いた各図の構成に限らず、第1のスイッチ素子FETC、第1の抵抗RC、第2のスイッチ素子FETD、第2の抵抗RDは負極端子側にもうけられていてもよい。 For example, the first switch element FETC, the first resistor RC, the second switch element FETD, and the second resistor RD are not limited to the configurations of the respective drawings used in the description of the respective embodiments. It may be
 また、上述の説明で用いた複数のフローチャートでは、複数の工程(処理)が順番に記載されているが、各実施形態で実行される工程の実行順序は、その記載の順番に制限されない。各実施形態では、図示される工程の順番を内容的に支障のない範囲で変更することができる。また、上述の各実施形態は、内容が相反しない範囲で組み合わせることができる。 In addition, although the plurality of steps (processes) are described in order in the plurality of flowcharts used in the above description, the execution order of the steps performed in each embodiment is not limited to the described order. In each embodiment, the order of the illustrated steps can be changed within the scope of the content. Moreover, the above-mentioned each embodiment can be combined within the range in which the contents do not contradict each other.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
1.
 二次電池を含む電池パックの充電時および放電時の動作を制御する動作制御手段を備え、
 前記動作制御手段は、前記電池パックの動作開始時または前記電池パックのメンテナンス時に、前記電池パックを定電流モードで動作させる、
 電池制御装置。
2.
 前記動作制御手段は、前記電池パックを定電流モードで動作させているときに、前記電池パックからの電力により動作する機器と接続される前記電池パックの外部接続端子の電圧と、前記二次電池の開放電圧との差分が基準以下となった場合、前記定電流モードを解除する、
 1.に記載の電池制御装置。
3.
 電池パックの異常を検知する異常検知手段と、
 前記電池パックの強制停止の可否を示す強制停止可否情報を記憶する情報記憶手段と、
 前記電池パックの充電時および放電時の動作を制御する動作制御手段と、を備え、
 前記動作制御手段は、
  前記異常検知手段により前記電池パックの異常が検出された場合、前記情報記憶手段に記憶されている前記強制停止可否情報に基づいて、前記電池パックを定電流モードで動作させるか強制停止させるかを決定する、
 電池制御装置。
4.
 前記強制停止可否情報の書換イベントを検出するイベント検出手段と、
 前記イベント検出手段により検出された前記書換イベントに応じて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換える情報書換手段と、を更に備え、
 前記動作制御手段は、前記異常検知手段により前記電池パックの異常が検出された後、前記情報書換手段により前記情報記憶手段に記憶されている前記強制停止可否情報が書き換えられた場合に、当該書き換え後の前記強制停止可否情報に基づいて、前記電池パックを強制停止させるか否かを決定する、
 3.に記載の電池制御装置。
5.
 前記イベント検出手段は、前記電池パックからの電力により動作する機器からの出力信号を検出し、
 前記情報書換手段は、前記イベント検出手段により検出された前記機器からの出力に基づいて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換える、
 4.に記載の電池制御装置。
6.
 前記機器は無人飛行体である、
 5.に記載の電池制御装置。
7.
 前記イベント検出手段は、前記無人飛行体の操縦者による遠隔操作に基づく出力信号、前記無人飛行体に備えられたセンサの出力信号、および、前記無人飛行体に備えられた安全装置が正常に作動したことを示す出力信号の少なくともいずれか1つを検出する、
 6.に記載の電池制御装置。
8.
 二次電池と、
 1.から7.のいずれか1つに記載の電池制御装置と、
 を備える電池パック。
9.
 コンピュータが、
 二次電池を含む電池パックの動作開始時または前記電池パックのメンテナンス時に、前記電池パックを定電流モードで動作させることを含む電池制御方法。
10.
 前記コンピュータが、前記電池パックを定電流モードで動作させているときに、前記電池パックからの電力により動作する機器と接続される前記電池パックの外部接続端子の電圧と、前記二次電池の開放電圧との差分が基準以下となった場合、前記定電流モードを解除する、
 ことを更に含む9.に記載の電池制御方法。
11.
 コンピュータが、
 電池パックの異常を検知した場合、情報記憶手段に記憶されている、前記電池パックの強制停止の可否を示す強制停止可否情報に基づいて、前記電池パックを定電流モードで動作させるか強制停止させるかを決定する、
 ことを含む電池制御方法。
12.
 前記コンピュータが、
 前記強制停止可否情報の書換イベントを検出し、
 検出された前記書換イベントに応じて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換え、
 前記電池パックの異常が検出された後、前記情報記憶手段に記憶されている前記強制停止可否情報が書き換えられた場合に、当該書き換え後の前記強制停止可否情報に基づいて、前記電池パックを強制停止させるか否かを決定する、
 ことを更に含む11.に記載の電池制御方法。
13.
 前記コンピュータが、
 前記電池パックからの電力により動作する機器からの出力信号を検出し、
 検出された前記機器からの出力に基づいて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換える、
 ことを更に含む12.に記載の電池制御方法。
14.
 前記機器は無人飛行体である、
 13.に記載の電池制御方法。
15.
 前記コンピュータが、
 前記無人飛行体の操縦者による遠隔操作に基づく出力信号、前記無人飛行体に備えられたセンサの出力信号、および、前記無人飛行体に備えられた安全装置が正常に作動したことを示す出力信号の少なくともいずれか1つを検出する、
 ことを更に含む14.に記載の電池制御方法。
16.
 コンピュータに9.または10.に記載の電池制御方法を実行させるプログラム。
17.
 コンピュータに11.から15.のいずれか1項に記載の電池制御方法を実行させるプログラム。
Some or all of the above embodiments may be described as in the following appendices, but is not limited to the following.
1.
Operation control means for controlling the operation during charging and discharging of the battery pack including the secondary battery,
The operation control unit operates the battery pack in a constant current mode at the start of operation of the battery pack or at the time of maintenance of the battery pack.
Battery control unit.
2.
The operation control means, when operating the battery pack in a constant current mode, a voltage of an external connection terminal of the battery pack connected to a device operated by power from the battery pack, and the secondary battery Release the constant current mode when the difference between the open circuit voltage of
1. The battery control device as described in.
3.
Abnormality detection means for detecting an abnormality of the battery pack;
An information storage unit that stores forced stop availability information indicating whether the battery pack is forcibly stopped;
Operation control means for controlling the operation at the time of charge and discharge of the battery pack;
The operation control means is
When the abnormality detection unit detects an abnormality in the battery pack, it is determined whether the battery pack is operated in a constant current mode or forcibly stopped based on the forced stopability information stored in the information storage unit. decide,
Battery control unit.
4.
An event detection unit that detects a rewrite event of the forced stop availability information;
Information rewriting means for rewriting the forced stopability information stored in the information storage means according to the rewriting event detected by the event detection means;
The operation control means rewrites the forced stopability information stored in the information storage means by the information rewriting means after the abnormality detection means detects an abnormality in the battery pack. It is determined whether to forcibly stop the battery pack, based on the later forced-stoppability information.
3. The battery control device as described in.
5.
The event detection means detects an output signal from a device operated by the power from the battery pack,
The information rewriting unit rewrites the forced stop availability information stored in the information storage unit based on the output from the device detected by the event detection unit.
4. The battery control device as described in.
6.
The device is a drone.
5. The battery control device as described in.
7.
The event detection means normally operates an output signal based on a remote control by the unmanned aerial vehicle operator, an output signal of a sensor provided on the unmanned aerial vehicle, and a safety device provided on the unmanned aerial vehicle. Detect at least one of the output signals indicating that
6. The battery control device as described in.
8.
With a secondary battery,
1. To 7. The battery control device according to any one of
Battery pack.
9.
The computer is
A battery control method comprising operating the battery pack in a constant current mode at the start of operation of a battery pack including a secondary battery or at the time of maintenance of the battery pack.
10.
When the computer is operating the battery pack in a constant current mode, the voltage of the external connection terminal of the battery pack connected with the device operated by the power from the battery pack, and the release of the secondary battery The constant current mode is canceled when the difference from the voltage becomes lower than the reference,
9. further including The battery control method described in.
11.
The computer is
When abnormality of the battery pack is detected, the battery pack is operated in the constant current mode or forcibly stopped based on the forcible stopability information indicating whether the forcible stop of the battery pack is stored, which is stored in the information storage means. To decide
Battery control method including.
12.
The computer
Detecting a rewrite event of the forced stop availability information;
Rewriting the forced stopability information stored in the information storage means in accordance with the detected rewrite event.
After the abnormality of the battery pack is detected, when the forcible stopability information stored in the information storage unit is rewritten, the battery pack is forced based on the forcible stopability information after the rewriting. Decide whether to stop or not
11. further including The battery control method described in.
13.
The computer
Detecting an output signal from a device operated by the power from the battery pack;
The forced stop availability information stored in the information storage unit is rewritten based on the detected output from the device.
Further including 12. The battery control method described in.
14.
The device is a drone.
13. The battery control method described in.
15.
The computer
An output signal based on remote control by the pilot of the unmanned aerial vehicle, an output signal of a sensor provided on the unmanned aerial vehicle, and an output signal indicating that a safety device provided on the unmanned aerial vehicle has operated normally. Detect at least one of
Further including 14. The battery control method described in.
16.
9. on the computer. Or 10. A program for executing the battery control method described in.
17.
11. on the computer To 15. A program for executing the battery control method according to any one of the above.
 この出願は、2018年1月26日に出願された日本出願特願2018-012011号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-012011 filed on Jan. 26, 2018, the entire disclosure of which is incorporated herein.

Claims (17)

  1.  二次電池を含む電池パックの充電時および放電時の動作を制御する動作制御手段を備え、
     前記動作制御手段は、前記電池パックの動作開始時または前記電池パックのメンテナンス時に、前記電池パックを定電流モードで動作させる、
     電池制御装置。
    Operation control means for controlling the operation during charging and discharging of the battery pack including the secondary battery,
    The operation control unit operates the battery pack in a constant current mode at the start of operation of the battery pack or at the time of maintenance of the battery pack.
    Battery control unit.
  2.  前記動作制御手段は、前記電池パックを定電流モードで動作させているときに、前記電池パックからの電力により動作する機器と接続される前記電池パックの外部接続端子の電圧と、前記二次電池の開放電圧との差分が基準以下となった場合、前記定電流モードを解除する、
     請求項1に記載の電池制御装置。
    The operation control means, when operating the battery pack in a constant current mode, a voltage of an external connection terminal of the battery pack connected to a device operated by power from the battery pack, and the secondary battery Release the constant current mode when the difference between the open circuit voltage of
    The battery control device according to claim 1.
  3.  電池パックの異常を検知する異常検知手段と、
     前記電池パックの強制停止の可否を示す強制停止可否情報を記憶する情報記憶手段と、
     前記電池パックの充電時および放電時の動作を制御する動作制御手段と、を備え、
     前記動作制御手段は、
      前記異常検知手段により前記電池パックの異常が検出された場合、前記情報記憶手段に記憶されている前記強制停止可否情報に基づいて、前記電池パックを定電流モードで動作させるか強制停止させるかを決定する、
     電池制御装置。
    Abnormality detection means for detecting an abnormality of the battery pack;
    An information storage unit that stores forced stop availability information indicating whether the battery pack is forcibly stopped;
    Operation control means for controlling the operation at the time of charge and discharge of the battery pack;
    The operation control means is
    When the abnormality detection unit detects an abnormality in the battery pack, it is determined whether the battery pack is operated in a constant current mode or forcibly stopped based on the forced stopability information stored in the information storage unit. decide,
    Battery control unit.
  4.  前記強制停止可否情報の書換イベントを検出するイベント検出手段と、
     前記イベント検出手段により検出された前記書換イベントに応じて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換える情報書換手段と、を更に備え、
     前記動作制御手段は、前記異常検知手段により前記電池パックの異常が検出された後、前記情報書換手段により前記情報記憶手段に記憶されている前記強制停止可否情報が書き換えられた場合に、当該書き換え後の前記強制停止可否情報に基づいて、前記電池パックを強制停止させるか否かを決定する、
     請求項3に記載の電池制御装置。
    An event detection unit that detects a rewrite event of the forced stop availability information;
    Information rewriting means for rewriting the forced stopability information stored in the information storage means according to the rewriting event detected by the event detection means;
    The operation control means rewrites the forced stopability information stored in the information storage means by the information rewriting means after the abnormality detection means detects an abnormality in the battery pack. It is determined whether to forcibly stop the battery pack, based on the later forced-stoppability information.
    The battery control device according to claim 3.
  5.  前記イベント検出手段は、前記電池パックからの電力により動作する機器からの出力信号を検出し、
     前記情報書換手段は、前記イベント検出手段により検出された前記機器からの出力に基づいて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換える、
     請求項4に記載の電池制御装置。
    The event detection means detects an output signal from a device operated by the power from the battery pack,
    The information rewriting unit rewrites the forced stop availability information stored in the information storage unit based on the output from the device detected by the event detection unit.
    The battery control device according to claim 4.
  6.  前記機器は無人飛行体である、
     請求項5に記載の電池制御装置。
    The device is a drone.
    The battery control device according to claim 5.
  7.  前記イベント検出手段は、前記無人飛行体の操縦者による遠隔操作に基づく出力信号、前記無人飛行体に備えられたセンサの出力信号、および、前記無人飛行体に備えられた安全装置が正常に作動したことを示す出力信号の少なくともいずれか1つを検出する、
     請求項6に記載の電池制御装置。
    The event detection means normally operates an output signal based on a remote control by the unmanned aerial vehicle operator, an output signal of a sensor provided on the unmanned aerial vehicle, and a safety device provided on the unmanned aerial vehicle. Detect at least one of the output signals indicating that
    The battery control apparatus of Claim 6.
  8.  二次電池と、
     請求項1から7のいずれか1項に記載の電池制御装置と、
     を備える電池パック。
    With a secondary battery,
    The battery control device according to any one of claims 1 to 7,
    Battery pack.
  9.  コンピュータが、
     二次電池を含む電池パックの動作開始時または前記電池パックのメンテナンス時に、前記電池パックを定電流モードで動作させることを含む電池制御方法。
    The computer is
    A battery control method comprising operating the battery pack in a constant current mode at the start of operation of a battery pack including a secondary battery or at the time of maintenance of the battery pack.
  10.  前記コンピュータが、前記電池パックを定電流モードで動作させているときに、前記電池パックからの電力により動作する機器と接続される前記電池パックの外部接続端子の電圧と、前記二次電池の開放電圧との差分が基準以下となった場合、前記定電流モードを解除する、
     ことを更に含む請求項9に記載の電池制御方法。
    When the computer is operating the battery pack in a constant current mode, the voltage of the external connection terminal of the battery pack connected with the device operated by the power from the battery pack, and the release of the secondary battery The constant current mode is canceled when the difference from the voltage becomes lower than the reference,
    The battery control method according to claim 9, further comprising:
  11.  コンピュータが、
     電池パックの異常を検知した場合、情報記憶手段に記憶されている、前記電池パックの強制停止の可否を示す強制停止可否情報に基づいて、前記電池パックを定電流モードで動作させるか強制停止させるかを決定する、
     ことを含む電池制御方法。
    The computer is
    When abnormality of the battery pack is detected, the battery pack is operated in the constant current mode or forcibly stopped based on the forcible stopability information indicating whether the forcible stop of the battery pack is stored, which is stored in the information storage means. To decide
    Battery control method including.
  12.  前記コンピュータが、
     前記強制停止可否情報の書換イベントを検出し、
     検出された前記書換イベントに応じて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換え、
     前記電池パックの異常が検出された後、前記情報記憶手段に記憶されている前記強制停止可否情報が書き換えられた場合に、当該書き換え後の前記強制停止可否情報に基づいて、前記電池パックを強制停止させるか否かを決定する、
     ことを更に含む請求項11に記載の電池制御方法。
    The computer
    Detecting a rewrite event of the forced stop availability information;
    Rewriting the forced stopability information stored in the information storage means in accordance with the detected rewrite event.
    After the abnormality of the battery pack is detected, when the forcible stopability information stored in the information storage unit is rewritten, the battery pack is forced based on the forcible stopability information after the rewriting. Decide whether to stop or not
    The battery control method according to claim 11, further comprising:
  13.  前記コンピュータが、
     前記電池パックからの電力により動作する機器からの出力信号を検出し、
     検出された前記機器からの出力に基づいて、前記情報記憶手段に記憶されている前記強制停止可否情報を書き換える、
     ことを更に含む請求項12に記載の電池制御方法。
    The computer
    Detecting an output signal from a device operated by the power from the battery pack;
    The forced stop availability information stored in the information storage unit is rewritten based on the detected output from the device.
    The battery control method according to claim 12, further comprising:
  14.  前記機器は無人飛行体である、
     請求項13に記載の電池制御方法。
    The device is a drone.
    The battery control method according to claim 13.
  15.  前記コンピュータが、
     前記無人飛行体の操縦者による遠隔操作に基づく出力信号、前記無人飛行体に備えられたセンサの出力信号、および、前記無人飛行体に備えられた安全装置が正常に作動したことを示す出力信号の少なくともいずれか1つを検出する、
     ことを更に含む請求項14に記載の電池制御方法。
    The computer
    An output signal based on remote control by the pilot of the unmanned aerial vehicle, an output signal of a sensor provided on the unmanned aerial vehicle, and an output signal indicating that a safety device provided on the unmanned aerial vehicle has operated normally. Detect at least one of
    The battery control method according to claim 14, further comprising:
  16.  コンピュータに請求項9または10に記載の電池制御方法を実行させるプログラム。 A program that causes a computer to execute the battery control method according to claim 9 or 10.
  17.  コンピュータに請求項11から15のいずれか1項に記載の電池制御方法を実行させるプログラム。 A program that causes a computer to execute the battery control method according to any one of claims 11 to 15.
PCT/JP2019/001443 2018-01-26 2019-01-18 Battery control device, battery pack, battery control method, and program WO2019146520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567041A JP7425607B2 (en) 2018-01-26 2019-01-18 Battery control device, battery pack, battery control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-012011 2018-01-26
JP2018012011 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019146520A1 true WO2019146520A1 (en) 2019-08-01

Family

ID=67395398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001443 WO2019146520A1 (en) 2018-01-26 2019-01-18 Battery control device, battery pack, battery control method, and program

Country Status (2)

Country Link
JP (1) JP7425607B2 (en)
WO (1) WO2019146520A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029067A (en) * 2006-07-19 2008-02-07 Elm Technology Corp Battery pack comprising protective circuit for secondary battery
JP2008134060A (en) * 2006-11-27 2008-06-12 Matsushita Electric Ind Co Ltd Abnormality detection device of electric storage device, abnormality detection method of electric storage device, and abnormality detection program
JP2010239670A (en) * 2009-03-30 2010-10-21 Fujitsu Ten Ltd Device and method for control of vehicle
WO2013076877A1 (en) * 2011-11-25 2013-05-30 株式会社日立製作所 Storage battery system
JP2014045551A (en) * 2012-08-24 2014-03-13 Sanyo Electric Co Ltd Battery pack and discharge control method therefor
JP2014131431A (en) * 2012-12-28 2014-07-10 Hitachi Koki Co Ltd Power source device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965481A2 (en) 2007-02-28 2008-09-03 STMicroelectronics, Inc. Integrated circuit and method for monitoring and controlling power and for detecting open load state
JP2010178495A (en) * 2009-01-29 2010-08-12 Panasonic Corp Power conversion apparatus and power conversion system
JP5958640B2 (en) * 2013-07-05 2016-08-02 三洋電機株式会社 Pack battery and charging method
US10576827B2 (en) 2015-04-27 2020-03-03 Panasonic Intellectual Property Management Co., Ltd. Battery management device and power supply system
JP6164573B2 (en) * 2015-05-19 2017-07-19 株式会社アドテックス Unmanned flying vehicle and control system therefor
JP2018006047A (en) * 2016-06-28 2018-01-11 トヨタ自動車株式会社 Diagnostic device of battery pack
JP6771735B2 (en) * 2016-06-28 2020-10-21 津田 訓範 Aircraft with parachute system and parachute system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029067A (en) * 2006-07-19 2008-02-07 Elm Technology Corp Battery pack comprising protective circuit for secondary battery
JP2008134060A (en) * 2006-11-27 2008-06-12 Matsushita Electric Ind Co Ltd Abnormality detection device of electric storage device, abnormality detection method of electric storage device, and abnormality detection program
JP2010239670A (en) * 2009-03-30 2010-10-21 Fujitsu Ten Ltd Device and method for control of vehicle
WO2013076877A1 (en) * 2011-11-25 2013-05-30 株式会社日立製作所 Storage battery system
JP2014045551A (en) * 2012-08-24 2014-03-13 Sanyo Electric Co Ltd Battery pack and discharge control method therefor
JP2014131431A (en) * 2012-12-28 2014-07-10 Hitachi Koki Co Ltd Power source device

Also Published As

Publication number Publication date
JPWO2019146520A1 (en) 2021-01-28
JP7425607B2 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
US10985575B2 (en) Thermal runaway detection circuit and method
EP1867029B1 (en) Monitoring device for power supply system
US9843205B2 (en) Secondary protection IC, method of controlling secondary protection IC, protection module, and battery pack
US11303141B2 (en) Protection circuit for battery and power supply device provided with said protection circuit
WO2015181866A1 (en) Battery system
US20020113574A1 (en) Charge and discharge controller
US20160043583A1 (en) Battery pack, mobile body, and control method thereof
TWI493207B (en) Battery status monitoring circuit and battery device
US11491877B2 (en) Protection circuit for in-vehicle battery
KR20130075640A (en) Battery protection circuit
JP2007028746A (en) Battery pack
JP2014022282A (en) Secondary battery abnormality detector, secondary battery, and method for detecting secondary battery abnormality
JP4449885B2 (en) Secondary battery protection device
US11381095B2 (en) Management device, energy storage apparatus, and management method for energy storage device
EP3671236B1 (en) Apparatus and method for diagnosing watchdog timer
KR20120010061A (en) Battery pack and method for controlling of charging and dischraging of the same
JP5422810B2 (en) Standby power system and protection power system protection method
KR20180115239A (en) Safety monitoring unit
US11742686B2 (en) Battery device and battery charging system
US20220200307A1 (en) Protective apparatus, energy storage apparatus, and method for protecting energy storage device
WO2019146520A1 (en) Battery control device, battery pack, battery control method, and program
JP5373446B2 (en) Protection circuit and battery pack
US20190363549A1 (en) Battery pack having communication terminal isolation function
JP2009194980A (en) Secondary battery device
WO2013118401A1 (en) Battery control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743206

Country of ref document: EP

Kind code of ref document: A1