WO2019146461A1 - Electromagnetic wave detection device and information acquisition system - Google Patents

Electromagnetic wave detection device and information acquisition system Download PDF

Info

Publication number
WO2019146461A1
WO2019146461A1 PCT/JP2019/001035 JP2019001035W WO2019146461A1 WO 2019146461 A1 WO2019146461 A1 WO 2019146461A1 JP 2019001035 W JP2019001035 W JP 2019001035W WO 2019146461 A1 WO2019146461 A1 WO 2019146461A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
unit
detection device
detection
imaging unit
Prior art date
Application number
PCT/JP2019/001035
Other languages
French (fr)
Japanese (ja)
Inventor
絵梨 竹内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP19743191.9A priority Critical patent/EP3745708A4/en
Priority to CN201980006851.8A priority patent/CN111527740B/en
Priority to US16/959,106 priority patent/US11573316B2/en
Publication of WO2019146461A1 publication Critical patent/WO2019146461A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the present disclosure relates to an electromagnetic wave detection device and an information acquisition system.
  • an apparatus such as a DMD, which has an element for switching the traveling direction of an electromagnetic wave incident per pixel.
  • a device which temporarily forms an image of an object on a DMD surface once and then forms an image formed on the DMD surface on a CCD surface through a lens (see Patent Document 1).
  • the electromagnetic wave detection device is: A first imaging unit for imaging an incident electromagnetic wave; A traveling unit configured to arrange a plurality of pixels along a reference plane, and to cause an electromagnetic wave incident on the reference plane from the first imaging unit to travel in a first direction for each of the pixels; A second imaging unit that forms an image of the electromagnetic wave that has traveled in the first direction; A first detection unit that detects an electromagnetic wave incident from the second imaging unit; An extension surface of each of the reference surface and the detection surface of the first detection unit intersected, and a main axis of the second imaging unit passing through the detection surface of the reference surface and the first detection unit; The object plane of the first imaging unit whose distance from the advancing unit is determined and whose reference plane is the image plane intersects the reference plane with the respective extension planes, and the main axis of the first imaging unit An arrangement passing through the reference plane, At least one of the above is satisfied.
  • the electromagnetic wave detection device is A first imaging unit for imaging an incident electromagnetic wave;
  • a traveling unit configured to arrange a plurality of pixels along a reference plane, and to cause an electromagnetic wave incident on the reference plane from the first imaging unit to travel in a first direction for each of the pixels;
  • a second imaging unit that forms an image of the electromagnetic wave that has traveled in the first direction;
  • a first detection unit that detects an electromagnetic wave incident from the second imaging unit;
  • An arrangement in which an image in the vicinity of the main axis by the second imaging unit of the image by the first imaging unit on the reference plane is included in the detection surface of the first detection unit;
  • An arrangement in which an image in the vicinity of the main axis by the first image forming unit is included in the reference plane, of an object through which the main axis of the first image forming unit passes; At least one of the above is satisfied.
  • the information acquisition system is A first imaging unit for forming an incident electromagnetic wave, and a plurality of pixels are arranged along a reference plane, and an electromagnetic wave incident on the reference plane from the first imaging unit is firstly generated for each of the pixels.
  • the extension surfaces of the reference surface and the detection surface of the first detection unit intersect, and the main axis of the second imaging unit passes the detection surface of the reference surface and the first detection unit.
  • the object plane of the first imaging unit whose arrangement and spacing with respect to the advancing unit are determined and whose reference plane is the image plane intersects with the reference plane and the respective extension planes, and the first imaging unit
  • An electromagnetic wave detection device in which at least one of the arrangement in which the principal axis of the light source passes through the reference plane is satisfied.
  • a control device for acquiring information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the first detection unit.
  • the information acquisition system is A first imaging unit for forming an incident electromagnetic wave, and a plurality of pixels are arranged along a reference plane, and an electromagnetic wave incident on the reference plane from the first imaging unit is firstly generated for each of the pixels.
  • An extension surface of each of the detection surfaces of the first detection unit intersects, and an arrangement in which the main axis of the second imaging unit passes the detection surface of the reference surface and the first detection unit, and a distance from the advancing unit
  • the object plane of the first imaging unit and the reference plane, and the extension plane of each of the first imaging unit, the image plane having the Insert the arrangement of the first imaging portion of the main shaft passes through said reference plane, at least one has been met, the electromagnetic wave detection device, And a control device for acquiring information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the second detection unit.
  • the information acquisition system is A first imaging unit for forming an incident electromagnetic wave, and a plurality of pixels are arranged along a reference plane, and an electromagnetic wave incident on the reference plane from the first imaging unit is firstly generated for each of the pixels.
  • a traveling unit for advancing in a direction, a second imaging unit for imaging the electromagnetic wave traveling in the first direction, and a first detection unit for detecting an electromagnetic wave incident from the second imaging unit;
  • a third detection unit that detects an electromagnetic wave that has traveled in the third direction, wherein the extension surface of each of the reference surface and the detection surface of the first detection unit intersects the second imaging.
  • the electromagnetic wave detection device in which the main surface of the primary imaging optical system, the reference surface of the advancing portion, the main surface of the secondary imaging optical system, and the detection surface of the detection portion are parallel, two of the images formed on the detection surface
  • FIG. 3 is a view showing a field angle range of a second imaging unit of an image formed on a first detection surface in the electromagnetic wave detection device of FIG. 2; It is a block diagram which shows schematic structure of the electromagnetic wave detection apparatus which concerns on 2nd Embodiment.
  • an embodiment of an electromagnetic wave detection device to which the present invention is applied will be described with reference to the drawings.
  • the main surface of the primary imaging optical system 15 ' for imaging an electromagnetic wave on the reference surface of the traveling portion 18', the reference surface of the traveling portion 18 ', and the main surface of the secondary imaging optical system 19'.
  • an angle of view range away from the principal axis among the angle of view range of the secondary imaging optical system 19 ′ may be used for detection.
  • the resolution is lower than near the main axis.
  • the electromagnetic wave detection device to which the present invention is applied can improve the resolution of the image of the electromagnetic wave by being configured to be able to use the image of the electromagnetic wave in the vicinity of the main axis of the secondary imaging optical system 19 'for detection.
  • the vicinity of the main axis means an area within a predetermined range centered on the main axis of the imaging optical system on the imaging surface by the imaging optical system.
  • the predetermined range can be set according to the required resolution.
  • the information acquisition system 11 including the electromagnetic wave detection device 10 according to the first embodiment of the present disclosure includes the electromagnetic wave detection device 10, the irradiation unit 12, the reflection unit 13, and the control device 14. It is done.
  • broken lines connecting functional blocks indicate flows of control signals or information to be communicated.
  • the communication indicated by the broken line may be wired communication or wireless communication.
  • the solid lines protruding from the functional blocks indicate beam-like electromagnetic waves.
  • the electromagnetic wave detection device 10 includes a first imaging unit 15, a separation unit 16, a traveling unit 18, a second imaging unit 19, a first detection unit 20, and a third imaging unit.
  • a second detection unit 22 and a third detection unit 17 are provided.
  • the first imaging unit 15 is disposed at a position facing the opening ap formed in the housing of the electromagnetic wave detection device 10 so that the axis of the opening ap is parallel to the main axis.
  • the axis of the opening ap is the axis of the cylinder in the configuration in which the opening ap is defined by a cylinder such as a lens barrel, and in the configuration formed in the housing itself, the housing around the opening ap It is a line perpendicular to the wall and passing through the center of the opening ap.
  • the first imaging unit 15 includes, for example, at least one of a lens and a mirror.
  • the first imaging unit 15 forms an image of an electromagnetic wave incident from a target ob as a subject.
  • the first imaging unit 15 may be a retrofocus type lens system.
  • the separation unit 16 is provided between the first imaging unit 15 and a primary imaging position which is an imaging position of the object ob by the first imaging unit 15.
  • the separating unit 16 separates the electromagnetic wave incident from the first imaging unit 15 so as to travel in the traveling direction d a toward the traveling portion 18 and in the third direction d 3 toward the third detection unit 17.
  • the separating unit 16 may separate the electromagnetic waves of the first frequency among the incident electromagnetic waves so as to travel in the traveling direction d a and the electromagnetic waves of the second frequency in the third direction d 3.
  • the separating unit 16 separates the incident electromagnetic wave so as to travel in the third direction d3 and the traveling direction da by at least one of reflection, separation, and refraction.
  • the separation unit 16 reflects a part of the incident electromagnetic wave in the third direction d3 and transmits another part of the electromagnetic wave in the traveling direction da.
  • the separation unit 16 may transmit a part of the incident electromagnetic wave in the third direction d3 and reflect another part of the electromagnetic wave in the traveling direction da.
  • the separation unit 16 may refract part of the incident electromagnetic wave in the third direction d3 and transmit another part of the electromagnetic wave in the traveling direction da.
  • the separation unit 16 may transmit a part of the incident electromagnetic wave in the third direction d3 and may refract another part of the electromagnetic wave in the traveling part direction da. In addition, for example, the separation unit 16 may refract part of the incident electromagnetic wave in the third direction d3 and refract another part of the electromagnetic wave in the traveling direction da.
  • the separating unit 16 may include, for example, at least one of a half mirror, a beam splitter, a dichroic mirror, a cold mirror, a hot mirror, a metasurface, a deflecting element, and a prism.
  • the advancing portion 18 is provided on the path of the electromagnetic wave advancing from the separating portion 16 in the advancing portion direction da. Furthermore, the advancing unit 18 is provided at or near the primary imaging position of the object ob by the first imaging unit 15 in the advancing unit direction da.
  • the advancing unit 18 is provided at the primary imaging position.
  • the advancing unit 18 has a reference surface ss on which the electromagnetic wave having passed through the first imaging unit 15 and the separation unit 16 is incident.
  • the reference plane ss is constituted by a plurality of pixels px arranged along a two-dimensional shape.
  • the reference surface ss is a surface that causes the electromagnetic wave to have an action such as reflection and transmission in at least one of a first state and a second state described later.
  • the reference plane ss may be perpendicular to the central axis of the electromagnetic wave traveling from the separation unit 16 in the traveling part direction da.
  • the advancing unit 18 is switchable for each pixel px between a first state in which the electromagnetic wave incident on the reference plane ss is advanced in the first direction d1 and a second state in which the electromagnetic wave incident in the second direction d2 is advanced. is there.
  • the first state is a first reflection state in which an electromagnetic wave incident on the reference surface ss is reflected in a first direction d1.
  • the second state is a second reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the second direction d2.
  • the advancing unit 18 more specifically includes a reflection surface that reflects an electromagnetic wave for each pixel px.
  • the advancing unit 18 switches the first reflection state and the second reflection state for each pixel px by changing the direction of the reflection surface for each pixel px.
  • the advancing unit 18 includes, for example, a DMD (Digital Micro mirror Device).
  • the DMD can switch the reflective surface to any of + 12 ° and -12 ° with respect to the reference surface ss for each pixel px by driving a minute reflective surface that constitutes the reference surface ss.
  • the reference surface ss is parallel to the surface of the substrate on which the minute reflective surface of the DMD is placed.
  • the advancing unit 18 switches the first state and the second state for each pixel px based on the control of the control device 14 described later.
  • the advancing unit 18 may simultaneously cause the electromagnetic wave incident on the pixel px to advance in the first direction d1 by switching a part of the pixels px to the first state, and the other part of the pixels px By switching to the state of 2, the electromagnetic wave incident on the pixel px can be advanced in the second direction d2.
  • the second imaging unit 19 is disposed in the first direction d1 from the advancing unit 18.
  • the second imaging unit 19 includes, for example, at least one of a lens and a mirror.
  • the second imaging unit 19 is disposed such that the main surface is inclined with respect to the reference surface ss of the advancing unit 18.
  • the second imaging unit 19 may be disposed so that the main axis passes through the range of the reference surface ss of the advancing unit 18.
  • the second imaging unit 19 may be disposed such that the principal axis passes through the center of the reference plane ss, ie, the center pixel px.
  • the second imaging unit 19 forms an image of the object ob as an electromagnetic wave whose traveling direction has been switched by the traveling unit 18.
  • the first detection unit 20 is disposed on the path of the electromagnetic wave that travels through the second imaging unit 19 after traveling in the first direction d1 by the traveling unit 18.
  • the first detection unit 20 is disposed at or near the secondary imaging position by the second imaging unit 19 of the image of the electromagnetic wave formed on the reference plane ss of the advancing unit 18.
  • the first detection unit 20 is disposed such that the detection surface is inclined with respect to the reference surface ss, that is, the extension surfaces of the detection surface and the reference surface ss intersect. Further, the first detection unit 20 may be disposed to be inclined with respect to the main surface of the second imaging unit 19. Further, the first detection unit 20 is disposed such that the main axis of the second imaging unit 19 passes through the range of the detection surface of the first detection unit 20. Furthermore, the first detection unit 20 may be disposed such that the main axis of the second imaging unit 19 passes through the center of the detection surface of the first detection unit 20.
  • the first detection unit 20 may be arranged such that the extension surface of the detection surface intersects with the extension surfaces of the reference surface ss and the main surface of the second imaging unit 19 on a single straight line. Therefore, the reference surface ss, the main surface of the second imaging unit 19, and the detection surface of the first detection unit 20 may be arranged so as to satisfy the condition of the principle of shine proof.
  • the first detection unit 20 detects an electromagnetic wave that has passed through the second imaging unit 19, that is, an electromagnetic wave that has traveled in the first direction d1.
  • the first detection unit 20 is a passive sensor.
  • the first detection unit 20 more specifically includes an element array.
  • the first detection unit 20 includes an imaging element such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
  • the first detection unit 20 captures an image of visible light.
  • the first detection unit 20 transmits the generated image information as a signal to the control device 14.
  • the first detection unit 20 may capture an image other than visible light, such as an infrared, ultraviolet, and radio wave image. Also, the first detection unit 20 may include a distance measurement sensor. In this configuration, the electromagnetic wave detection device 10 can acquire distance information in the form of an image by the first detection unit 20. Further, the first detection unit 20 may include a thermo sensor or the like. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the first detection unit 20.
  • the third imaging unit 21 is disposed in the second direction d2 from the advancing unit 18.
  • the third imaging unit 21 includes, for example, at least one of a lens and a mirror.
  • the third imaging unit 21 is disposed such that the main surface is inclined with respect to the reference surface ss of the advancing unit 18.
  • the third imaging unit 21 may be disposed so that the main axis passes through the range of the reference surface ss of the advancing unit 18.
  • the third imaging unit 21 may be disposed such that the principal axis passes through the center of the reference plane ss, that is, the center pixel px.
  • the third imaging unit 21 forms an image of the object ob as an electromagnetic wave whose traveling direction has been switched by the traveling unit 18.
  • the second detection unit 22 is disposed on the path of the electromagnetic wave that travels through the third imaging unit 21 after traveling in the second direction d2 by the traveling unit 18.
  • the second detection unit 22 is disposed at or near the secondary imaging position by the third imaging unit 21 of the image of the electromagnetic wave formed on the reference plane ss of the advancing unit 18.
  • the second detection unit 22 is disposed such that the detection surface is inclined with respect to the reference surface ss, that is, the extension surfaces of the detection surface and the reference surface ss intersect with each other.
  • the second detection unit 22 is disposed to be inclined with respect to the main surface of the third imaging unit 21.
  • the second detection unit 22 may be disposed so that the main axis of the third imaging unit 21 passes through the range of the detection surface of the second detection unit 22. Furthermore, the second detection unit 22 may be disposed such that the main axis of the third imaging unit 21 passes through the center of the detection surface of the second detection unit 22.
  • the second detection unit 22 may be arranged such that the extension surface of the detection surface intersects with the extension surfaces of the reference surface ss and the main surface of the third imaging unit 21 on a single straight line. Therefore, the reference surface ss, the main surface of the third imaging unit 21 and the detection surface of the second detection unit 22 may be arranged so as to satisfy the condition of the principle of shine proof.
  • the second detection unit 22 detects an electromagnetic wave that has passed through the third imaging unit 21, that is, an electromagnetic wave that has traveled in the second direction d2.
  • the second detection unit 22 is an active sensor that detects a reflected wave of the electromagnetic wave emitted from the irradiation unit 12 toward the object ob from the object ob.
  • the second detection unit 22 is a reflected wave from the object ob of the electromagnetic wave emitted toward the object ob by being emitted from the irradiation unit 12 and reflected by the reflection unit 13.
  • the electromagnetic wave emitted from the irradiation unit 12 is at least one of infrared light, visible light, ultraviolet light, and radio waves, and the second detection unit 22 is different from or the same as the first detection unit 20. It is a sensor that detects different or the same kind of electromagnetic waves.
  • the second detection unit 22 more specifically includes an element that constitutes a distance measurement sensor.
  • the second detection unit 22 includes a single element such as an APD (Avalanche Photodiode), a PD (PhotoDiode), a SPAD (Single Photo Avalanche Diode), a millimeter wave sensor, a submillimeter wave sensor, and a distance measurement image sensor.
  • the second detection unit 22 may include an element array such as an APD array, a PD array, a multiphoton pixel counter (MPPC), a ranging imaging array, and a ranging image sensor.
  • MPPC multiphoton pixel counter
  • the second detection unit 22 transmits detection information indicating that a reflected wave from a subject is detected to the control device 14 as a signal. More specifically, the second detection unit 22 is an infrared sensor that detects electromagnetic waves in the infrared band.
  • the 2nd detection part 22 just detects electromagnetic waves, and it is not necessary to image-form in a detection surface. Therefore, the second detection unit 22 may not necessarily be provided in the vicinity of the secondary imaging position or the secondary imaging position which is the imaging position by the third imaging unit 21. That is, in this configuration, if the second detection unit 22 is a position where electromagnetic waves from all angles of view can be incident on the detection surface, the third detection is performed after the advancing unit 18 advances in the advancing portion direction da. It may be disposed anywhere on the path of the electromagnetic wave traveling through the image unit 21.
  • the third detection unit 17 is provided on the path of the electromagnetic wave traveling from the separation unit 16 in the third direction d3. Furthermore, the third detection unit 17 is provided at or near the imaging position of the object ob by the first imaging unit 15 in the third direction d3 from the separation unit 16. The third detection unit 17 detects an electromagnetic wave that has traveled from the separation unit 16 in the third direction d3.
  • the third detection unit 17 is a passive sensor.
  • the third detection unit 17 more specifically includes an element array.
  • the third detection unit 17 includes an imaging element such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
  • the third detection unit 17 more specifically captures an image of visible light.
  • the third detection unit 17 transmits the generated image information as a signal to the control device 14.
  • the third detection unit 17 may capture an image other than visible light, such as an infrared, ultraviolet, and radio wave image.
  • the third detection unit 17 may include a distance measurement sensor.
  • the electromagnetic wave detection device 10 can acquire image-like distance information by the third detection unit 17.
  • the third detection unit 17 may include a distance measuring sensor or a thermo sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the third detection unit 17.
  • the irradiation unit 12 emits at least one of infrared light, visible light, ultraviolet light, and radio waves. In the first embodiment, the irradiation unit 12 emits infrared light. The irradiating unit 12 irradiates the electromagnetic waves to be emitted toward the object ob directly or indirectly via the reflecting unit 13. In the first embodiment, the irradiating unit 12 indirectly irradiates the electromagnetic wave to be emitted toward the object ob via the reflecting unit 13.
  • the irradiation unit 12 emits an electromagnetic wave having a narrow width, for example, a 0.5 ° beam.
  • the irradiation unit 12 can emit an electromagnetic wave in a pulse shape.
  • the irradiation unit 12 includes a light emitting diode (LED), a laser diode (LD), and the like. The irradiation unit 12 switches between radiation and stop of the electromagnetic wave based on control of the control device 14 described later.
  • the reflection unit 13 changes the irradiation position of the electromagnetic wave emitted to the object ob by reflecting the electromagnetic wave emitted from the irradiation unit 12 while changing the direction. That is, the reflection unit 13 scans the object ob with the electromagnetic wave emitted from the irradiation unit 12. Therefore, in the first embodiment, the second detection unit 22 cooperates with the reflection unit 13 to configure a scanning distance measuring sensor.
  • the reflecting unit 13 scans the object ob in a one-dimensional direction or a two-dimensional direction. In the first embodiment, the reflection unit 13 scans the object ob in a two-dimensional direction.
  • the reflection unit 13 is configured such that at least a part of the irradiation area of the electromagnetic wave emitted and reflected by the irradiation unit 12 is included in the detection range of the electromagnetic wave in the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic wave emitted to the object ob through the reflection unit 13 can be detected by the electromagnetic wave detection device 10.
  • At least a part of the irradiation area of the electromagnetic wave emitted from the irradiation unit 12 and reflected by the reflection unit 13 is included in the detection range of the second detection unit 22 in the first embodiment. Is configured. Therefore, in the first embodiment, at least a part of the electromagnetic wave irradiated to the object ob via the reflection unit 13 can be detected by the second detection unit 22.
  • the reflection unit 13 includes, for example, a micro electro mechanical systems (MEMS) mirror, a polygon mirror, a galvano mirror, and the like.
  • MEMS micro electro mechanical systems
  • the reflection unit 13 includes a MEMS mirror.
  • the reflection unit 13 changes the direction in which the electromagnetic wave is reflected based on the control of the control device 14 described later.
  • the reflection unit 13 may have an angle sensor such as an encoder, for example, and may notify the control device 14 of an angle detected by the angle sensor as direction information for reflecting an electromagnetic wave.
  • the control device 14 can calculate the irradiation position based on the direction information acquired from the reflection unit 13.
  • the control device 14 can calculate the irradiation position based on the drive signal input to cause the reflection unit 13 to change the direction in which the electromagnetic wave is reflected.
  • Controller 14 includes one or more processors and memory.
  • the processor may include a general-purpose processor that loads a specific program to execute a specific function, and / or a dedicated processor specialized for a specific process.
  • the dedicated processor may include an application specific integrated circuit (ASIC).
  • the processor may include a programmable logic device (PLD).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the controller 14 may include at least one of a system-on-a-chip (SoC) with which one or more processors cooperate, and / or a system in package (SiP).
  • SoC system-on-a-chip
  • SiP system in package
  • the control device 14 acquires information related to the periphery of the electromagnetic wave detection device 10 based on the electromagnetic waves detected by the first detection unit 20, the second detection unit 22, and the third detection unit 17, respectively.
  • the information on the surroundings is, for example, image information, distance information, and temperature information.
  • the control device 14 acquires, as image information, the electromagnetic wave detected by the first detection unit 20 or the third detection unit 17 as an image. Further, in the first embodiment, the control device 14 performs the irradiation unit 12 by the time-of-flight (ToF) method as described below based on the detection information detected by the second detection unit 22.
  • the control device 14 causes the irradiation unit 12 to emit a pulse-like electromagnetic wave by inputting an electromagnetic wave emission signal to the irradiation unit 12 (see “Electromagnetic wave emission signal” column).
  • the irradiating unit 12 irradiates an electromagnetic wave based on the input electromagnetic wave radiation signal (see the “irradiating unit radiation amount” column).
  • the electromagnetic wave emitted by the irradiation unit 12 and reflected by the reflection unit 13 and irradiated to an arbitrary irradiation area is reflected in the irradiation area.
  • the control device 14 switches at least a part of the pixels px in the imaging region in the advancing portion 18 by the first imaging portion 15 of the reflected wave of the irradiation region to the first state, and the other pixels px Switch to state 2. Then, when detecting the electromagnetic wave reflected in the irradiation area (see the “electromagnetic wave detection amount” column), the first detection unit 20 notifies the control device 14 of detection information as described above.
  • the control device 14 has, for example, a time measurement LSI (Large Scale Integrated circuit), and obtains detection information from the time T1 at which the irradiation unit 12 emits an electromagnetic wave (see “Detection information acquisition” column) The time ⁇ T to T2 is measured.
  • the control device 14 calculates the distance to the irradiation position by multiplying the time ⁇ T by the speed of light and dividing it by two. As described above, the control device 14 calculates the irradiation position based on the direction information acquired from the reflection unit 13 or the drive signal output to the reflection unit 13 itself.
  • the control device 14 creates the image-like distance information by calculating the distances to the respective irradiation positions while changing the irradiation positions.
  • the information acquisition system 11 is configured to generate distance information by Direct ToF which directly measures the time until the electromagnetic wave is emitted and returned.
  • the information acquisition system 11 is not limited to such a configuration.
  • the information acquisition system 11 irradiates an electromagnetic wave at a constant cycle, and based on the phase difference between the irradiated electromagnetic wave and the returned electromagnetic wave, the distance information is indirectly measured using Flash ToF, which measures the time to return. You may create it.
  • the information acquisition system 11 may create distance information by another ToF method, for example, Phased ToF.
  • the traveling unit 18, the second imaging unit 19, and the first detection unit 20 include the reference plane ss and the first detection unit 20.
  • the extension planes of the detection planes intersect, and the principal axis of the second imaging unit 19 is disposed to pass through the reference plane ss and the detection plane of the first detection unit 20.
  • the reference plane ss of the advancing unit 18, the main surface of the second imaging unit 19, and the detection surface of the first detection unit 20 are conditions of the principle of shine proof.
  • the electromagnetic wave detection device 10 can be arranged to meet Therefore, while the electromagnetic wave detection device 10 is arranged with the second imaging unit 19 shifted from the position facing the traveling unit 18, the second result of the image by the first imaging unit 19 on the reference plane ss is obtained.
  • the image of the electromagnetic wave in the vicinity of the main axis of the image unit 19 can be included in the detection surface of the first detection unit 20 to form an image.
  • the electromagnetic wave detection device 10 can improve the resolution of the image of the electromagnetic wave detected by the first detection unit 20.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
  • the electromagnetic wave detection device 10 can switch the electromagnetic wave between the first state and the second state for each pixel px.
  • the electromagnetic wave detection device 10 sets the principal axis of the first imaging unit 15 to be the principal axis of the second imaging unit 19 in the first direction d1 in which the electromagnetic wave travels in the first state, and In the second state, it is possible to align with the main axis of the third imaging unit 21 in the second direction d2 in which the electromagnetic wave travels. Therefore, the electromagnetic wave detection device 10 switches the displacement of the main axes of the first detection unit 20 and the second detection unit 22 by switching the pixel px of the advancing unit 18 to either the first state or the second state. It can be reduced. Thereby, the electromagnetic wave detection device 10 can reduce the deviation of the coordinate system in the detection result by the first detection unit 20 and the second detection unit 22. In addition, such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
  • the electromagnetic wave detection device 10 of the first embodiment includes a third imaging unit 21 and a second detection unit 22.
  • the electromagnetic wave detection device 10 can cause the second detection unit 22 to detect information based on the electromagnetic wave for each portion of the target ob that emits the electromagnetic wave incident on each pixel px.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
  • the traveling unit 18, the third imaging unit 21, and the second detection unit 22 include the reference plane ss, the main surface of the third imaging unit 21, The detection surfaces of the second detection unit 22 and their extension surfaces are all arranged to intersect on the same straight line.
  • the reference plane ss of the advancing unit 18, the main surface of the third imaging unit 21, and the detection surface of the second detection unit 22 can be arranged to satisfy the condition of the principle of shine proof. . Therefore, in the electromagnetic wave detection device 10, while the third imaging unit 21 is disposed offset from the position facing the traveling unit 18, the second detection of the electromagnetic wave image in the vicinity of the main axis of the third imaging unit 21 is performed. The detection surface of the part 22 can be detected. Thereby, the electromagnetic wave detection device 10 can improve the resolution of the image of the electromagnetic wave detected by the second detection unit 22.
  • the electromagnetic wave detection device 10 separates the electromagnetic wave incident from the first imaging unit 15 so as to travel in the traveling direction d a and the third direction d 3.
  • the electromagnetic wave detection device 10 has the central axis of the electromagnetic wave advancing the main axis of the first imaging unit 15 in the traveling direction d.sub.a and the central axis of the electromagnetic wave advancing the third direction d.sub.3. It is possible to adjust to Therefore, the electromagnetic wave detection device 10 can reduce the deviation of the coordinate system between the first detection unit 20 and the second detection unit 22 and the third detection unit 17.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
  • the electromagnetic wave detection device 10 of the first embodiment includes a third detection unit 17.
  • the electromagnetic wave detection device 10 can separately detect an electromagnetic wave that is the same image as the image formed on the first detection unit 20.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
  • the control device 14 is based on the electromagnetic waves detected by the first detection unit 20, the second detection unit 22, and the third detection unit 17, respectively. Information on the surroundings of the electromagnetic wave detection device 10 is acquired. With such a configuration, the information acquisition system 11 can provide useful information based on the detected electromagnetic wave.
  • the first embodiment is implemented in the attitude of the advancing unit and the third detecting unit with respect to the first imaging unit, and the position and attitude of the third imaging unit and the second detecting unit with respect to the advancing unit. It is different from the form.
  • the second embodiment will be described below focusing on differences from the first embodiment.
  • symbol is attached
  • the electromagnetic wave detection device 100 includes a first imaging unit 150, a separation unit 16, a traveling unit 180, a second imaging unit 19, and a first detection unit 20. , A third imaging unit 210, a second detection unit 220, and a third detection unit 170.
  • the configuration other than the electromagnetic wave detection device 100 in the information acquisition system 11 according to the second embodiment is the same as that in the first embodiment.
  • the configurations and functions of the separation unit 16, the second imaging unit 19, and the first detection unit 20 in the second embodiment are the same as those in the first embodiment.
  • the first imaging unit 150 is disposed such that the main axis is inclined with respect to the axis of the opening ap, and the main axis passes through the opening ap .
  • the structure and function of the first imaging unit 150 are the same as the first imaging unit 150 of the first embodiment.
  • the advancing unit 180 is inclined such that the reference surface ss is inclined with respect to an imaginary plane vp through which the principal axis of the first imaging unit 150 passes, ie, a virtual The extension planes of the plane vp and the reference plane ss are arranged to intersect with each other.
  • the virtual plane vp may be a plane which is separated from the first imaging unit 150 by a predetermined distance and which is perpendicular to the axis of the opening ap.
  • the predetermined distance is the distance from the first image forming unit 150 to the object plane where the distance to the advancing unit 180 is determined and the reference plane ss is the image plane.
  • the reference surface ss is the main surface of the first imaging portion 150. It may be arranged to be inclined with respect to In the second embodiment, when the separation of the reference surface ss with respect to the main surface of the first imaging unit 150 with respect to the main surface of the first imaging unit 150 is refraction, the incident angle
  • the reference plane ss of the advancing portion 180 rotated about the position of the separating portion 16 in the direction opposite to the direction of refraction by the angle of refraction means the inclined arrangement with respect to the main surface of the first imaging portion 150.
  • the separation of the reference surface ss with respect to the main surface of the first imaging unit 150 with respect to the main surface of the first imaging unit 150 is the separation in the traveling direction d a
  • the reference plane ss is inclined relative to the main surface of the first imaging unit 150 in a plane-symmetrical posture on the reflection surface of
  • the advancing unit 180 is disposed such that the main axis of the first imaging unit 150 passes through the range of the reference plane ss of the advancing unit 180. Furthermore, the advancing unit 180 may be disposed such that the principal axis of the first imaging unit 150 passes through the center of the reference plane ss of the advancing unit 180.
  • the advancing portion 180 may be disposed such that the extension surface of the reference surface ss intersects with the main surface of the first imaging portion 150 and the imaginary plane vp on a single straight line. Therefore, the main surface of the first imaging unit 150, the reference surface ss, and the virtual plane vp are arranged so as to satisfy the condition of the principle of the shine proof.
  • the advancing portion 180 may be disposed such that the second direction d2 advanced by the advancing portion 180 is perpendicular to the reference plane ss.
  • the structure and function of the advancing portion 180 other than the above-described posture are the same as the advancing portion 18 of the first embodiment.
  • the main surface of the second imaging unit 19 is inclined to the reference surface ss of the advancing portion 180 in the first direction d1 advanced by the advancing portion 180. It is arranged as.
  • the other arrangement conditions, structure, and function of the second imaging unit 19 in the second embodiment are the same as those of the second imaging unit 19 in the first embodiment.
  • the first detection unit 20 generates a second-order connection of the image of the electromagnetic wave formed on the reference surface ss of the advancing unit 18 by the second imaging unit 19. It is disposed near the image position or the secondary imaging position.
  • the extension surface of the detection surface is an extension surface of each of the reference surface ss and the main surface of the second imaging unit 19, They are arranged to intersect on a single straight line. Therefore, also in the second embodiment, as in the first embodiment, the reference surface ss, the main surface of the second imaging unit 19, and the detection surface of the first detection unit 20 are of the principle of shine proof. It is arranged to meet the conditions.
  • the other arrangement conditions, structure, and function of the first detection unit 20 in the second embodiment are the same as those of the first detection unit 20 in the first embodiment.
  • the third imaging unit 210 is disposed such that the main surface is parallel to the reference surface ss of the advancing portion 18.
  • the other arrangement conditions, structure, and function of the third imaging unit 210 in the second embodiment are the same as those of the third imaging unit 21 in the first embodiment.
  • the second detection unit 220 is disposed such that the detection surface is perpendicular to the main axis of the third imaging unit 210.
  • the other arrangement conditions, structure, and function of the second detection unit 220 in the second embodiment are the same as those of the second detection unit 22 in the first embodiment.
  • the extension surface of each of the main surface of the first imaging unit 150 and the detection surface of the third detection unit 170 intersect. That is, the detection surface is disposed to be inclined with respect to the main surface of the first imaging unit 150.
  • the inclined arrangement of the detection surface with respect to the main surface of the first imaging unit 150 corresponds to the case where the separation in the third direction d3 by the separation unit 16 is refraction (incident angle (Refractive angle) means the inclined arrangement of the detection surface of the third detection unit 170 with respect to the main surface of the first imaging unit 150 rotated in the direction opposite to the refractive direction about the position of the separation unit 16 as the axis.
  • the inclined arrangement of the detection surface with respect to the main surface of the first imaging unit 150 is the separation unit 16 when the separation by the separation unit 16 in the third direction d3 is reflection. This means that the detection surface is inclined relative to the main surface of the first imaging unit 150 in a plane-symmetrical posture on the reflection surface of
  • the extension surfaces of the main surface of the first imaging unit 150 and the detection surface of the third detection unit 170 are on the imaginary plane vp. , Are arranged to intersect. Therefore, the main surface of the first imaging unit 150, the detection surface of the third detection unit 170, and the imaginary plane vp are arranged so as to satisfy the condition of the principle of the shine proof.
  • the other arrangement conditions, structure, and function of the third detection unit 170 in the second embodiment are the same as those of the third detection unit 17 in the first embodiment.
  • the first imaging unit 150 and the advancing unit 180 are based on the virtual plane vp through which the main axis of the first imaging unit 150 passes and the reference of the advancing unit 180
  • the extension planes of the planes ss intersect, and the principal axis of the first imaging unit 150 is disposed to pass through the reference plane ss.
  • the main surface of the portion 19 and the detection surface of the first detection portion 20 can be arranged to satisfy the conditions of the principle of shine proof.
  • the first imaging unit 150 is the first object on the virtual plane through which the main axis passes.
  • the image of the electromagnetic wave in the vicinity of the main axis by the first imaging unit 150 may be included in the reference plane ss of the advancing unit 180 to form an image.
  • the third imaging unit 210 can be disposed at a position facing the traveling unit 180. As a result, the main axis of the third imaging unit 210 passes through the reference plane ss of the advancing unit 180 while the reference plane ss of the advancing unit 180 and the main surface of the third imaging unit 210 are parallel.
  • the electromagnetic wave detection device 10 can form an image of a field angle range in the vicinity of the main axis of the third imaging unit 210 on the second detection unit 220, so detection is performed in the second detection unit 220.
  • the resolution of the electromagnetic wave image can be improved.
  • the irradiation unit 12, the reflection unit 13, and the control device 14 together with the electromagnetic wave detection devices 10 and 100 constitute the information acquisition system 11, but the electromagnetic wave detection device 10, 100 may be configured to include at least one of them, for example, the control device 14 as a control unit.
  • the traveling units 18 and 180 can switch the traveling direction of the electromagnetic wave incident on the reference plane ss in two directions, the first direction d1 and the second direction d2. However, it may be switchable to three or more directions instead of switching to any of the two directions.
  • the first state and the second state reflect electromagnetic waves incident on the reference plane ss in the first direction d1.
  • the first reflection state and the second reflection state of reflection in the second direction d2 may be other modes.
  • the first state may be a passing state in which an electromagnetic wave incident on the reference surface ss is allowed to pass and travel in the first direction d1.
  • the advancing units 18 and 180 may include a shutter having a reflection surface that reflects an electromagnetic wave in the second direction d2 for each pixel px.
  • the traveling units 18 and 180 having such a configuration by switching the shutter for each pixel px, the pass state or the transmission state as the first state and the reflection state as the second state are switched for each pixel px. obtain.
  • a MEMS shutter in which a plurality of openable and closable shutters are arranged in an array in a plane can be mentioned.
  • the advancing portions 18 and 181 may include a liquid crystal shutter capable of switching between the reflection state of reflecting the electromagnetic wave and the transmission state of transmitting the electromagnetic wave according to the liquid crystal alignment.
  • the transmission state as the first state and the reflection state as the second state can be switched for each pixel px by switching the liquid crystal alignment for each pixel px.
  • the information acquisition system 11 causes the reflection unit 13 to scan a beam of electromagnetic waves emitted from the irradiation unit 12, thereby the second detection unit 22, 220. And the reflection unit 13 to function as a scanning type active sensor.
  • the information acquisition system 11 is not limited to such a configuration. For example, even when the information acquisition system 11 does not include the reflection unit 13 and radiates radial electromagnetic waves from the irradiation unit 12 and acquires information without scanning, an effect similar to that of the first embodiment can be obtained.
  • the first detection unit 20 and the third detection units 17 and 170 are passive sensors, and the second detection unit 220 is active. It has a configuration that is a sensor.
  • the information acquisition system 11 is not limited to such a configuration.
  • the first detection unit 20, the second detection units 22 and 220, and the third detection units 17 and 170 are all active sensors or passive sensors, Even in the configuration in which any one is a passive sensor, an effect similar to that of the first embodiment and the second embodiment can be obtained.
  • the system is disclosed as having various modules and / or units for performing specific functions, and these modules and units are schematically shown to briefly describe their functionality. It should be noted that what is shown is not necessarily indicative of a specific hardware and / or software. In that sense, these modules, units, and other components may be hardware and / or software implemented to perform substantially the particular functions described herein. The various functions of different components may be any combination or separation of hardware and / or software, and may be used separately or in any combination. Also, connect input / output or I / O devices or user interfaces, including but not limited to keyboards, displays, touch screens, pointing devices, etc., directly to the system or through intervening I / O controllers Can. As such, various aspects of the disclosure may be embodied in many different aspects, all of which are within the scope of the disclosure.
  • Electromagnetic wave detection apparatus 10
  • Information acquisition system 12
  • Irradiation part 13
  • Reflection part 14
  • Control part 15
  • 1st imaging part 15
  • Primary imaging optical system 16
  • Separation part 17
  • 3rd detection part 180
  • Progress part 18'
  • second imaging part 19
  • secondary imaging optical system 20
  • first detection part 20' detection part
  • third imaging part 22
  • second detection part ap aperture da traveling part direction d1, d2, d3 First direction, second direction, third direction ob target px pixel ss action surface vp virtual plane

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Radiation Pyrometers (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Studio Devices (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

An electromagnetic wave detection device 10 comprises a first image formation unit 15, a travel unit 18, a second image formation unit 19, and a first detection unit 20. In the travel unit 18, a plurality of pixels px are arranged along a reference surface ss. The travel unit 18 causes an electromagnetic wave incident on the reference surface ss from the first image formation unit 15 to travel in a first direction d1. The first detection unit 20 detects the electromagnetic wave incident from the second image formation unit 19. An arrangement in which extension surfaces of the reference surface ss and a detection surface of the first detection unit 20 cross each other, and a principal axis of the second image formation unit 19 crosses the reference surface ss and the detection surface of the first detection unit 20 and/or an arrangement in which extension surfaces of an object surface vp of the first image formation unit 15 having a determined distance from the travel unit 18 and using the reference surface ss as an image surface and the reference surface ss cross each other, and a principal axis of the first image formation unit 15 crosses the reference surface ss is satisfied.

Description

電磁波検出装置および情報取得システムElectromagnetic wave detection device and information acquisition system 関連出願の相互参照Cross-reference to related applications
 本出願は、2018年1月26日に日本国に特許出願された特願2018-11881の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims priority to Japanese Patent Application No. 2018-11881 filed on Jan. 26, 2018, the entire disclosure of which is incorporated herein by reference.
 本開示は、電磁波検出装置および情報取得システムに関するものである。 The present disclosure relates to an electromagnetic wave detection device and an information acquisition system.
 DMDのような、画素毎に入射する電磁波の進行方向を切替える素子を備える装置が知られている。例えば、DMD表面に物体の像をいったん一次結像させ、そのDMD表面に一次結像した像をさらにレンズを通してCCD表面に二次結像させる装置が知られている(特許文献1参照)。 There is known an apparatus, such as a DMD, which has an element for switching the traveling direction of an electromagnetic wave incident per pixel. For example, a device is known which temporarily forms an image of an object on a DMD surface once and then forms an image formed on the DMD surface on a CCD surface through a lens (see Patent Document 1).
特許3507865号公報Patent No. 3507865
 上述した諸課題を解決すべく、第1の観点による電磁波検出装置は、
 入射する電磁波を結像する第1の結像部と、
 基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、
 前記第1の方向に進行した電磁波を結像する第2の結像部と、
 前記第2の結像部から入射する電磁波を検出する第1の検出部と、を備え、
 前記基準面および前記第1の検出部の検出面それぞれの延長面が交差し、前記第2の結像部の主軸が前記基準面および前記第1の検出部の検出面を通る配置と、
 前記進行部に対する間隔が定められ且つ前記基準面を像面とする前記第1の結像部の物体面と前記基準面とそれぞれの延長面が交差し、前記第1の結像部の主軸が前記基準面を通る配置と、
の少なくとも一方が満たされている。
In order to solve the various problems described above, the electromagnetic wave detection device according to the first aspect is:
A first imaging unit for imaging an incident electromagnetic wave;
A traveling unit configured to arrange a plurality of pixels along a reference plane, and to cause an electromagnetic wave incident on the reference plane from the first imaging unit to travel in a first direction for each of the pixels;
A second imaging unit that forms an image of the electromagnetic wave that has traveled in the first direction;
A first detection unit that detects an electromagnetic wave incident from the second imaging unit;
An extension surface of each of the reference surface and the detection surface of the first detection unit intersected, and a main axis of the second imaging unit passing through the detection surface of the reference surface and the first detection unit;
The object plane of the first imaging unit whose distance from the advancing unit is determined and whose reference plane is the image plane intersects the reference plane with the respective extension planes, and the main axis of the first imaging unit An arrangement passing through the reference plane,
At least one of the above is satisfied.
 また、第2の観点による電磁波検出装置は、
 入射する電磁波を結像する第1の結像部と、
 基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、
 前記第1の方向に進行した電磁波を結像する第2の結像部と、
 前記第2の結像部から入射する電磁波を検出する第1の検出部と、を備え、
 前記基準面における前記第1の結像部による像の、前記第2の結像部による主軸近傍の像が前記第1の検出部の検出面に含まれる配置と、
 前記第1の結像部の主軸が通る対象物の、前記第1の結像部による主軸近傍の像が前記基準面に含まれる配置と、
の少なくとも一方が満たされている。
Moreover, the electromagnetic wave detection device according to the second aspect is
A first imaging unit for imaging an incident electromagnetic wave;
A traveling unit configured to arrange a plurality of pixels along a reference plane, and to cause an electromagnetic wave incident on the reference plane from the first imaging unit to travel in a first direction for each of the pixels;
A second imaging unit that forms an image of the electromagnetic wave that has traveled in the first direction;
A first detection unit that detects an electromagnetic wave incident from the second imaging unit;
An arrangement in which an image in the vicinity of the main axis by the second imaging unit of the image by the first imaging unit on the reference plane is included in the detection surface of the first detection unit;
An arrangement in which an image in the vicinity of the main axis by the first image forming unit is included in the reference plane, of an object through which the main axis of the first image forming unit passes;
At least one of the above is satisfied.
 また、第3の観点による情報取得システムは、
 入射する電磁波を結像する第1の結像部と、基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、前記第1の方向に進行した電磁波を結像する第2の結像部と、前記第2の結像部から入射する電磁波を検出する第1の検出部と、を有し、前記基準面および前記第1の検出部の検出面それぞれの延長面が交差し、前記第2の結像部の主軸が前記基準面および前記第1の検出部の検出面を通る配置と、前記進行部に対する間隔が定められ且つ前記基準面を像面とする前記第1の結像部の物体面と前記基準面とそれぞれの延長面が交差し、前記第1の結像部の主軸が前記基準面を通る配置と、の少なくとも一方が満たされている、電磁波検出装置と、
 前記第1の検出部により検出された電磁波に基づいて前記電磁波検出装置の周囲に関する情報を取得する制御装置と、を備える。
In addition, the information acquisition system according to the third aspect is
A first imaging unit for forming an incident electromagnetic wave, and a plurality of pixels are arranged along a reference plane, and an electromagnetic wave incident on the reference plane from the first imaging unit is firstly generated for each of the pixels. A traveling unit for advancing in a direction, a second imaging unit for imaging the electromagnetic wave traveling in the first direction, and a first detection unit for detecting an electromagnetic wave incident from the second imaging unit; The extension surfaces of the reference surface and the detection surface of the first detection unit intersect, and the main axis of the second imaging unit passes the detection surface of the reference surface and the first detection unit The object plane of the first imaging unit whose arrangement and spacing with respect to the advancing unit are determined and whose reference plane is the image plane intersects with the reference plane and the respective extension planes, and the first imaging unit An electromagnetic wave detection device in which at least one of the arrangement in which the principal axis of the light source passes through the reference plane is satisfied.
And a control device for acquiring information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the first detection unit.
 また、第4の観点による情報取得システムは、
 入射する電磁波を結像する第1の結像部と、基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、前記第1の方向に進行した電磁波を結像する第2の結像部と、前記第2の結像部から入射する電磁波を検出する第1の検出部と、前記第2の方向に進行した電磁波を結像する第3の結像部と、前記第3の結像部から入射する電磁波を検出する第2の検出部と、を有し、前記基準面および前記第1の検出部の検出面それぞれの延長面が交差し、前記第2の結像部の主軸が前記基準面および前記第1の検出部の検出面を通る配置と、前記進行部に対する間隔が定められ且つ前記基準面を像面とする前記第1の結像部の物体面と前記基準面とそれぞれの延長面が交差し、前記第1の結像部の主軸が前記基準面を通る配置と、の少なくとも一方が満たされている、電磁波検出装置と、
 前記第2の検出部により検出された電磁波に基づいて前記電磁波検出装置の周囲に関する情報を取得する制御装置と、を備える。
In addition, the information acquisition system according to the fourth aspect is
A first imaging unit for forming an incident electromagnetic wave, and a plurality of pixels are arranged along a reference plane, and an electromagnetic wave incident on the reference plane from the first imaging unit is firstly generated for each of the pixels. A traveling unit for advancing in a direction, a second imaging unit for imaging the electromagnetic wave traveling in the first direction, and a first detection unit for detecting an electromagnetic wave incident from the second imaging unit; And a third imaging unit configured to image an electromagnetic wave that has traveled in the second direction, and a second detection unit configured to detect an electromagnetic wave incident from the third imaging unit; An extension surface of each of the detection surfaces of the first detection unit intersects, and an arrangement in which the main axis of the second imaging unit passes the detection surface of the reference surface and the first detection unit, and a distance from the advancing unit The object plane of the first imaging unit and the reference plane, and the extension plane of each of the first imaging unit, the image plane having the Insert the arrangement of the first imaging portion of the main shaft passes through said reference plane, at least one has been met, the electromagnetic wave detection device,
And a control device for acquiring information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the second detection unit.
 また、第5の観点による情報取得システムは、
 入射する電磁波を結像する第1の結像部と、基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、前記第1の方向に進行した電磁波を結像する第2の結像部と、前記第2の結像部から入射する電磁波を検出する第1の検出部と、前記第3の方向に進行した電磁波を検出する第3の検出部と、を有し、前記基準面および前記第1の検出部の検出面それぞれの延長面が交差し、前記第2の結像部の主軸が前記基準面および前記第1の検出部の検出面を通る配置と、前記進行部に対する間隔が定められ且つ前記基準面を像面とする前記第1の結像部の物体面と前記基準面とそれぞれの延長面が交差し、前記第1の結像部の主軸が前記基準面を通る配置と、の少なくとも一方が満たされている、電磁波検出装置と、
 前記第3の検出部により検出された電磁波に基づいて前記電磁波検出装置の周囲に関する情報を取得する制御装置と、を備える。
In addition, the information acquisition system according to the fifth aspect is
A first imaging unit for forming an incident electromagnetic wave, and a plurality of pixels are arranged along a reference plane, and an electromagnetic wave incident on the reference plane from the first imaging unit is firstly generated for each of the pixels. A traveling unit for advancing in a direction, a second imaging unit for imaging the electromagnetic wave traveling in the first direction, and a first detection unit for detecting an electromagnetic wave incident from the second imaging unit; And a third detection unit that detects an electromagnetic wave that has traveled in the third direction, wherein the extension surface of each of the reference surface and the detection surface of the first detection unit intersects the second imaging. An arrangement in which the principal axis of the unit passes through the reference plane and the detection plane of the first detection unit, and an object plane of the first imaging unit whose distance from the advancing unit is determined and whose reference plane is the image plane An arrangement in which the reference plane intersects with each of the extension planes, and the main axis of the first imaging unit passes through the reference plane. Kutomo one is satisfied, and the electromagnetic wave detecting device,
And a control device for acquiring information on the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the third detection unit.
一次結像光学系の主面、進行部の基準面、二次結像光学系の主面、および検出部の検出面が平行である電磁波検出装置において、検出面に結像する画像の、二次結像光学系の画角範囲を示す図である。In the electromagnetic wave detection device in which the main surface of the primary imaging optical system, the reference surface of the advancing portion, the main surface of the secondary imaging optical system, and the detection surface of the detection portion are parallel, two of the images formed on the detection surface It is a figure which shows the view | field angle range of a next imaging optical system. 第1の実施形態に係る電磁波検出装置を含む情報取得システムの概略構成を示す構成図である。It is a block diagram which shows schematic structure of the information acquisition system containing the electromagnetic wave detection apparatus which concerns on 1st Embodiment. 図2の電磁波検出装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the electromagnetic wave detection apparatus of FIG. 照射部、第2の検出部、および制御部が構成する測距センサによる測距の原理を説明するための電磁波の放射の時期と検出の時期を示すタイミングチャートである。It is a timing chart which shows the time of radiation of electromagnetic waves, and the time of detection for explaining the principle of distance measurement by the distance measurement sensor which an irradiation part, the 2nd detection part, and a control part constitute. 図2の電磁波検出装置において、第1の検出面に結像する画像の、第2の結像部の画角範囲を示す図である。FIG. 3 is a view showing a field angle range of a second imaging unit of an image formed on a first detection surface in the electromagnetic wave detection device of FIG. 2; 第2の実施形態に係る電磁波検出装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the electromagnetic wave detection apparatus which concerns on 2nd Embodiment.
 以下、本発明を適用した電磁波検出装置の実施形態について、図面を参照して説明する。図1に示すように、電磁波を進行部18’の基準面に結像させる一次結像光学系15’の主面、進行部18’の基準面、二次結像光学系19’の主面、および検出部20’の検出面をすべて平行に配置する構成においては、二次結像光学系19’の画角範囲のうち主軸から離れた画角範囲が検出に用いられる場合がある。一般的に、結像系の主軸から離れた画角範囲では主軸近傍に比べて解像度が低い。そこで、本発明を適用した電磁波検出装置は、二次結像光学系19’の主軸近傍の電磁波の像を検出に用い得るように構成することにより、電磁波の像の解像度を向上し得る。以下、主軸近傍とは、結像光学系による結像面上において、その結像光学系の主軸を中心とした所定の範囲内の領域のことである。所定の範囲は、要求される解像度に応じて設定可能である。 Hereinafter, an embodiment of an electromagnetic wave detection device to which the present invention is applied will be described with reference to the drawings. As shown in FIG. 1, the main surface of the primary imaging optical system 15 'for imaging an electromagnetic wave on the reference surface of the traveling portion 18', the reference surface of the traveling portion 18 ', and the main surface of the secondary imaging optical system 19'. And, in the configuration in which all detection surfaces of the detection unit 20 ′ are arranged in parallel, an angle of view range away from the principal axis among the angle of view range of the secondary imaging optical system 19 ′ may be used for detection. Generally, in the angle of view range away from the main axis of the imaging system, the resolution is lower than near the main axis. Therefore, the electromagnetic wave detection device to which the present invention is applied can improve the resolution of the image of the electromagnetic wave by being configured to be able to use the image of the electromagnetic wave in the vicinity of the main axis of the secondary imaging optical system 19 'for detection. Hereinafter, the vicinity of the main axis means an area within a predetermined range centered on the main axis of the imaging optical system on the imaging surface by the imaging optical system. The predetermined range can be set according to the required resolution.
 図2に示すように、本開示の第1の実施形態に係る電磁波検出装置10を含む情報取得システム11は、電磁波検出装置10、照射部12、反射部13、および制御装置14を含んで構成されている。 As shown in FIG. 2, the information acquisition system 11 including the electromagnetic wave detection device 10 according to the first embodiment of the present disclosure includes the electromagnetic wave detection device 10, the irradiation unit 12, the reflection unit 13, and the control device 14. It is done.
 以後の図において、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを示す。破線が示す通信は有線通信であってもよいし、無線通信であってもよい。また、各機能ブロックから突出する実線は、ビーム状の電磁波を示す。 In the following figures, broken lines connecting functional blocks indicate flows of control signals or information to be communicated. The communication indicated by the broken line may be wired communication or wireless communication. The solid lines protruding from the functional blocks indicate beam-like electromagnetic waves.
 図3に示すように、電磁波検出装置10は、第1の結像部15、分離部16、進行部18、第2の結像部19、第1の検出部20、第3の結像部21、第2の検出部22、および第3の検出部17を有している。 As shown in FIG. 3, the electromagnetic wave detection device 10 includes a first imaging unit 15, a separation unit 16, a traveling unit 18, a second imaging unit 19, a first detection unit 20, and a third imaging unit. A second detection unit 22 and a third detection unit 17 are provided.
 第1の結像部15は、電磁波検出装置10の筐体に形成される開口apに対向する位置において、開口apの軸と主軸とが平行となるように配置されている。なお、開口apの軸とは、開口apを鏡筒などの筒により画定されている構成においては筒の軸であり、筐体そのものに形成されている構成においては当該開口ap周囲の筐体の壁面に垂直で開口apの中心を通る線である。 The first imaging unit 15 is disposed at a position facing the opening ap formed in the housing of the electromagnetic wave detection device 10 so that the axis of the opening ap is parallel to the main axis. The axis of the opening ap is the axis of the cylinder in the configuration in which the opening ap is defined by a cylinder such as a lens barrel, and in the configuration formed in the housing itself, the housing around the opening ap It is a line perpendicular to the wall and passing through the center of the opening ap.
 第1の結像部15は、例えば、レンズおよびミラーの少なくとも一方を含む。第1の結像部15は、被写体となる対象obから入射する電磁波の像を結像させる。第1の結像部15は、レトロフォーカスタイプのレンズ系であってよい。 The first imaging unit 15 includes, for example, at least one of a lens and a mirror. The first imaging unit 15 forms an image of an electromagnetic wave incident from a target ob as a subject. The first imaging unit 15 may be a retrofocus type lens system.
 分離部16は、第1の結像部15と、第1の結像部15による対象obの結像位置である一次結像位置との間に設けられている。分離部16は、第1の結像部15から入射した電磁波を、進行部18に向かう進行部方向da、および第3の検出部17に向かう第3の方向d3に進行するように分離する。分離部16は、入射する電磁波のうち第1の周波数の電磁波を進行部方向daに、第2の周波数の電磁波を第3の方向d3に進行するように分離してもよい。 The separation unit 16 is provided between the first imaging unit 15 and a primary imaging position which is an imaging position of the object ob by the first imaging unit 15. The separating unit 16 separates the electromagnetic wave incident from the first imaging unit 15 so as to travel in the traveling direction d a toward the traveling portion 18 and in the third direction d 3 toward the third detection unit 17. The separating unit 16 may separate the electromagnetic waves of the first frequency among the incident electromagnetic waves so as to travel in the traveling direction d a and the electromagnetic waves of the second frequency in the third direction d 3.
 分離部16は、反射、分離、および屈折の少なくともいずれかにより、入射する電磁波を第3の方向d3および進行部方向daに進行するように分離する。第1の実施形態においては、分離部16は、例えば、入射する電磁波の一部を第3の方向d3に反射し、電磁波の別の一部を進行部方向daに透過する。また、例えば、分離部16は、入射する電磁波の一部を第3の方向d3に透過し、電磁波の別の一部を進行部方向daに反射してもよい。また、例えば、分離部16は、入射する電磁波の一部を第3の方向d3に屈折させ、電磁波の別の一部を進行部方向daに透過させてもよい。また、例えば、分離部16は、入射する電磁波の一部を第3の方向d3に透過させ、電磁波の別の一部を進行部方向daに屈折させてもよい。また、例えば、分離部16は、入射する電磁波の一部を第3の方向d3に屈折させ、電磁波の別の一部を進行部方向daに屈折させてもよい。 The separating unit 16 separates the incident electromagnetic wave so as to travel in the third direction d3 and the traveling direction da by at least one of reflection, separation, and refraction. In the first embodiment, for example, the separation unit 16 reflects a part of the incident electromagnetic wave in the third direction d3 and transmits another part of the electromagnetic wave in the traveling direction da. In addition, for example, the separation unit 16 may transmit a part of the incident electromagnetic wave in the third direction d3 and reflect another part of the electromagnetic wave in the traveling direction da. In addition, for example, the separation unit 16 may refract part of the incident electromagnetic wave in the third direction d3 and transmit another part of the electromagnetic wave in the traveling direction da. In addition, for example, the separation unit 16 may transmit a part of the incident electromagnetic wave in the third direction d3 and may refract another part of the electromagnetic wave in the traveling part direction da. In addition, for example, the separation unit 16 may refract part of the incident electromagnetic wave in the third direction d3 and refract another part of the electromagnetic wave in the traveling direction da.
 分離部16は、例えば、ハーフミラー、ビームスプリッタ、ダイクロイックミラー、コールドミラー、ホットミラー、メタサーフェス、偏向素子、およびプリズムなどの少なくともいずれかを含んでよい。 The separating unit 16 may include, for example, at least one of a half mirror, a beam splitter, a dichroic mirror, a cold mirror, a hot mirror, a metasurface, a deflecting element, and a prism.
 進行部18は、分離部16から進行部方向daに進行する電磁波の経路上に設けられている。さらに、進行部18は、進行部方向daにおける第1の結像部15による対象obの一次結像位置または当該一次結像位置近傍に、設けられている。 The advancing portion 18 is provided on the path of the electromagnetic wave advancing from the separating portion 16 in the advancing portion direction da. Furthermore, the advancing unit 18 is provided at or near the primary imaging position of the object ob by the first imaging unit 15 in the advancing unit direction da.
 第1の実施形態においては、進行部18は、当該一次結像位置に設けられている。進行部18は、第1の結像部15および分離部16を通過した電磁波が入射する基準面ssを有している。基準面ssは、2次元状に沿って配置される複数の画素pxによって構成されている。基準面ssは、後述する第1の状態および第2の状態の少なくともいずれかにおいて、電磁波に、例えば、反射および透過などの作用を生じさせる面である。基準面ssは、分離部16から進行部方向daに進行する電磁波の中心軸に垂直であってよい。 In the first embodiment, the advancing unit 18 is provided at the primary imaging position. The advancing unit 18 has a reference surface ss on which the electromagnetic wave having passed through the first imaging unit 15 and the separation unit 16 is incident. The reference plane ss is constituted by a plurality of pixels px arranged along a two-dimensional shape. The reference surface ss is a surface that causes the electromagnetic wave to have an action such as reflection and transmission in at least one of a first state and a second state described later. The reference plane ss may be perpendicular to the central axis of the electromagnetic wave traveling from the separation unit 16 in the traveling part direction da.
 進行部18は、基準面ssに入射する電磁波を、第1の方向d1に進行させる第1の状態と、第2の方向d2に進行させる第2の状態とに、画素px毎に切替可能である。第1の実施形態において、第1の状態は、基準面ssに入射する電磁波を、第1の方向d1に反射する第1の反射状態である。また、第2の状態は、基準面ssに入射する電磁波を、第2の方向d2に反射する第2の反射状態である。 The advancing unit 18 is switchable for each pixel px between a first state in which the electromagnetic wave incident on the reference plane ss is advanced in the first direction d1 and a second state in which the electromagnetic wave incident in the second direction d2 is advanced. is there. In the first embodiment, the first state is a first reflection state in which an electromagnetic wave incident on the reference surface ss is reflected in a first direction d1. The second state is a second reflection state in which the electromagnetic wave incident on the reference surface ss is reflected in the second direction d2.
 第1の実施形態において、進行部18は、さらに具体的には、画素px毎に電磁波を反射する反射面を含んでいる。進行部18は、画素px毎の反射面の向きを変更することにより、第1の反射状態および第2の反射状態を画素px毎に切替える。 In the first embodiment, the advancing unit 18 more specifically includes a reflection surface that reflects an electromagnetic wave for each pixel px. The advancing unit 18 switches the first reflection state and the second reflection state for each pixel px by changing the direction of the reflection surface for each pixel px.
 第1の実施形態において、進行部18は、例えばDMD(Digital Micro mirror Device:デジタルマイクロミラーデバイス)を含む。DMDは、基準面ssを構成する微小な反射面を駆動することにより、画素px毎に当該反射面を基準面ssに対して+12°および-12°のいずれかの傾斜状態に切替可能である。なお、基準面ssは、DMDにおける微小な反射面を載置する基板の板面に平行である。 In the first embodiment, the advancing unit 18 includes, for example, a DMD (Digital Micro mirror Device). The DMD can switch the reflective surface to any of + 12 ° and -12 ° with respect to the reference surface ss for each pixel px by driving a minute reflective surface that constitutes the reference surface ss. . The reference surface ss is parallel to the surface of the substrate on which the minute reflective surface of the DMD is placed.
 進行部18は、後述する制御装置14の制御に基づいて、第1の状態および第2の状態を、画素px毎に切替える。例えば、進行部18は、同時に、一部の画素pxを第1の状態に切替えることにより当該画素pxに入射する電磁波を第1の方向d1に進行させ得、別の一部の画素pxを第2の状態に切替えることにより当該画素pxに入射する電磁波を第2の方向d2に進行させ得る。 The advancing unit 18 switches the first state and the second state for each pixel px based on the control of the control device 14 described later. For example, the advancing unit 18 may simultaneously cause the electromagnetic wave incident on the pixel px to advance in the first direction d1 by switching a part of the pixels px to the first state, and the other part of the pixels px By switching to the state of 2, the electromagnetic wave incident on the pixel px can be advanced in the second direction d2.
 第2の結像部19は、進行部18から第1の方向d1に配置されている。第2の結像部19は、例えば、レンズおよびミラーの少なくとも一方を含む。また、第2の結像部19は、主面が進行部18の基準面ssに対して傾斜するように、配置されている。また、第2の結像部19は、主軸が進行部18の基準面ssの範囲内を通るように配置されてよい。さらには、第2の結像部19は、主軸が基準面ssの中心、すなわち中央の画素pxを通るように配置されてよい。第2の結像部19は、進行部18において進行方向を切替えられた電磁波としての対象obの像を結像させる。 The second imaging unit 19 is disposed in the first direction d1 from the advancing unit 18. The second imaging unit 19 includes, for example, at least one of a lens and a mirror. The second imaging unit 19 is disposed such that the main surface is inclined with respect to the reference surface ss of the advancing unit 18. In addition, the second imaging unit 19 may be disposed so that the main axis passes through the range of the reference surface ss of the advancing unit 18. Furthermore, the second imaging unit 19 may be disposed such that the principal axis passes through the center of the reference plane ss, ie, the center pixel px. The second imaging unit 19 forms an image of the object ob as an electromagnetic wave whose traveling direction has been switched by the traveling unit 18.
 第1の検出部20は、進行部18により第1の方向d1に進行した後に第2の結像部19を経由して進行する電磁波の経路上に配置されている。第1の検出部20は、進行部18の基準面ssに形成される電磁波の像の、第2の結像部19による二次結像位置または二次結像位置近傍に配置されている。また、第1の検出部20は、検出面が基準面ssに対して傾斜するように、すなわち検出面および基準面ssそれぞれの延長面が交差するように、配置されている。また、第1の検出部20は、第2の結像部19の主面に対して傾斜するように、配置されてよい。また、第1の検出部20は、第2の結像部19の主軸が第1の検出部20の検出面の範囲内を通るように配置されている。さらには、第1の検出部20は、第2の結像部19の主軸が第1の検出部20の検出面の中心を通るように配置されてよい。 The first detection unit 20 is disposed on the path of the electromagnetic wave that travels through the second imaging unit 19 after traveling in the first direction d1 by the traveling unit 18. The first detection unit 20 is disposed at or near the secondary imaging position by the second imaging unit 19 of the image of the electromagnetic wave formed on the reference plane ss of the advancing unit 18. The first detection unit 20 is disposed such that the detection surface is inclined with respect to the reference surface ss, that is, the extension surfaces of the detection surface and the reference surface ss intersect. Further, the first detection unit 20 may be disposed to be inclined with respect to the main surface of the second imaging unit 19. Further, the first detection unit 20 is disposed such that the main axis of the second imaging unit 19 passes through the range of the detection surface of the first detection unit 20. Furthermore, the first detection unit 20 may be disposed such that the main axis of the second imaging unit 19 passes through the center of the detection surface of the first detection unit 20.
 第1の検出部20は、検出面の延長面が、基準面ssおよび第2の結像部19の主面それぞれの延長面と、単一の直線上で交差するように配置されてよい。したがって、基準面ss、第2の結像部19の主面、および第1の検出部20の検出面は、シャインプルーフの原理の条件を満たすように、配置されてよい。第1の検出部20は、第2の結像部19を経由した電磁波、すなわち第1の方向d1に進行した電磁波を検出する。 The first detection unit 20 may be arranged such that the extension surface of the detection surface intersects with the extension surfaces of the reference surface ss and the main surface of the second imaging unit 19 on a single straight line. Therefore, the reference surface ss, the main surface of the second imaging unit 19, and the detection surface of the first detection unit 20 may be arranged so as to satisfy the condition of the principle of shine proof. The first detection unit 20 detects an electromagnetic wave that has passed through the second imaging unit 19, that is, an electromagnetic wave that has traveled in the first direction d1.
 第1の実施形態において、第1の検出部20は、パッシブセンサである。第1の実施形態において、第1の検出部20は、さらに具体的には、素子アレイを含む。例えば、第1の検出部20は、イメージセンサまたはイメージングアレイなどの撮像素子を含み、検出面において結像した電磁波による像を撮像して、撮像した対象obに相当する画像情報を生成する。 In the first embodiment, the first detection unit 20 is a passive sensor. In the first embodiment, the first detection unit 20 more specifically includes an element array. For example, the first detection unit 20 includes an imaging element such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
 なお、第1の実施形態において、第1の検出部20は、さらに具体的には可視光の像を撮像する。第1の検出部20は、生成した画像情報を信号として制御装置14に送信する。 In the first embodiment, more specifically, the first detection unit 20 captures an image of visible light. The first detection unit 20 transmits the generated image information as a signal to the control device 14.
 なお、第1の検出部20は、赤外線、紫外線、および電波の像など、可視光以外の像を撮像してもよい。また、第1の検出部20は測距センサを含んでいてもよい。この構成において、電磁波検出装置10は、第1の検出部20により画像状の距離情報を取得し得る。また、第1の検出部20はサーモセンサなどを含んでいてもよい。この構成において、電磁波検出装置10は、第1の検出部20により画像状の温度情報を取得し得る。 The first detection unit 20 may capture an image other than visible light, such as an infrared, ultraviolet, and radio wave image. Also, the first detection unit 20 may include a distance measurement sensor. In this configuration, the electromagnetic wave detection device 10 can acquire distance information in the form of an image by the first detection unit 20. Further, the first detection unit 20 may include a thermo sensor or the like. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the first detection unit 20.
 第3の結像部21は、進行部18から第2の方向d2に配置されている。第3の結像部21は、例えば、レンズおよびミラーの少なくとも一方を含む。また、第3の結像部21は、主面が進行部18の基準面ssに対して傾斜するように、配置されている。また、第3の結像部21は、主軸が進行部18の基準面ssの範囲内を通るように配置されてよい。さらには、第3の結像部21は、主軸が基準面ssの中心、すなわち中央の画素pxを通るように配置されてよい。第3の結像部21は、進行部18において進行方向を切替えられた電磁波としての対象obの像を結像させる。 The third imaging unit 21 is disposed in the second direction d2 from the advancing unit 18. The third imaging unit 21 includes, for example, at least one of a lens and a mirror. The third imaging unit 21 is disposed such that the main surface is inclined with respect to the reference surface ss of the advancing unit 18. In addition, the third imaging unit 21 may be disposed so that the main axis passes through the range of the reference surface ss of the advancing unit 18. Furthermore, the third imaging unit 21 may be disposed such that the principal axis passes through the center of the reference plane ss, that is, the center pixel px. The third imaging unit 21 forms an image of the object ob as an electromagnetic wave whose traveling direction has been switched by the traveling unit 18.
 第2の検出部22は、進行部18により第2の方向d2に進行した後に第3の結像部21を経由して進行する電磁波の経路上に配置されている。第2の検出部22は、進行部18の基準面ssに形成される電磁波の像の、第3の結像部21による二次結像位置または二次結像位置近傍に配置されている。また、第2の検出部22は、検出面が基準面ssに対して傾斜するように、すなわち検出面および基準面ssそれぞれの延長面が交差するように、配置されている。また、第2の検出部22は、第3の結像部21の主面に対して傾斜するように、配置されている。また、第2の検出部22は、第3の結像部21の主軸が第2の検出部22の検出面の範囲内を通るように配置されてよい。さらには、第2の検出部22は、第3の結像部21の主軸が第2の検出部22の検出面の中心を通るように配置されてよい。 The second detection unit 22 is disposed on the path of the electromagnetic wave that travels through the third imaging unit 21 after traveling in the second direction d2 by the traveling unit 18. The second detection unit 22 is disposed at or near the secondary imaging position by the third imaging unit 21 of the image of the electromagnetic wave formed on the reference plane ss of the advancing unit 18. The second detection unit 22 is disposed such that the detection surface is inclined with respect to the reference surface ss, that is, the extension surfaces of the detection surface and the reference surface ss intersect with each other. In addition, the second detection unit 22 is disposed to be inclined with respect to the main surface of the third imaging unit 21. In addition, the second detection unit 22 may be disposed so that the main axis of the third imaging unit 21 passes through the range of the detection surface of the second detection unit 22. Furthermore, the second detection unit 22 may be disposed such that the main axis of the third imaging unit 21 passes through the center of the detection surface of the second detection unit 22.
 第2の検出部22は、検出面の延長面が、基準面ssおよび第3の結像部21の主面それぞれの延長面と、単一の直線上で交差するように配置されてよい。したがって、基準面ss、第3の結像部21の主面、および第2の検出部22の検出面は、シャインプルーフの原理の条件を満たすように、配置されてよい。第2の検出部22は、第3の結像部21を経由した電磁波、すなわち第2の方向d2に進行した電磁波を検出する。 The second detection unit 22 may be arranged such that the extension surface of the detection surface intersects with the extension surfaces of the reference surface ss and the main surface of the third imaging unit 21 on a single straight line. Therefore, the reference surface ss, the main surface of the third imaging unit 21 and the detection surface of the second detection unit 22 may be arranged so as to satisfy the condition of the principle of shine proof. The second detection unit 22 detects an electromagnetic wave that has passed through the third imaging unit 21, that is, an electromagnetic wave that has traveled in the second direction d2.
 第1の実施形態において、第2の検出部22は、照射部12から対象obに向けて照射された電磁波の当該対象obからの反射波を検出するアクティブセンサである。なお、第1の実施形態において、第2の検出部22は、照射部12から照射され且つ反射部13により反射されることにより対象obに向けて照射された電磁波の当該対象obからの反射波を検出する。後述するように、照射部12から照射される電磁波は赤外線、可視光線、紫外線、および電波の少なくともいずれかであり、第2の検出部22は、第1の検出部20とは異種または同種のセンサであり、異種または同種の電磁波を検出する。 In the first embodiment, the second detection unit 22 is an active sensor that detects a reflected wave of the electromagnetic wave emitted from the irradiation unit 12 toward the object ob from the object ob. In the first embodiment, the second detection unit 22 is a reflected wave from the object ob of the electromagnetic wave emitted toward the object ob by being emitted from the irradiation unit 12 and reflected by the reflection unit 13. To detect As described later, the electromagnetic wave emitted from the irradiation unit 12 is at least one of infrared light, visible light, ultraviolet light, and radio waves, and the second detection unit 22 is different from or the same as the first detection unit 20. It is a sensor that detects different or the same kind of electromagnetic waves.
 第1の実施形態において、第2の検出部22は、さらに具体的には、測距センサを構成する素子を含む。例えば、第2の検出部22は、APD(Avalanche PhotoDiode)、PD(PhotoDiode)、SPAD(Single Photon Avalanche Diode)、ミリ波センサ、サブミリ波センサ、および測距イメージセンサなどの単一の素子を含む。また、第2の検出部22は、APDアレイ、PDアレイ、MPPC(Multi Photon Pixel Counter)、測距イメージングアレイ、および測距イメージセンサなどの素子アレイを含むものであってもよい。 In the first embodiment, the second detection unit 22 more specifically includes an element that constitutes a distance measurement sensor. For example, the second detection unit 22 includes a single element such as an APD (Avalanche Photodiode), a PD (PhotoDiode), a SPAD (Single Photo Avalanche Diode), a millimeter wave sensor, a submillimeter wave sensor, and a distance measurement image sensor. . Further, the second detection unit 22 may include an element array such as an APD array, a PD array, a multiphoton pixel counter (MPPC), a ranging imaging array, and a ranging image sensor.
 第1の実施形態において、第2の検出部22は、被写体からの反射波を検出したことを示す検出情報を信号として制御装置14に送信する。第2の検出部22は、さらに具体的には、赤外線の帯域の電磁波を検出する赤外線センサである。 In the first embodiment, the second detection unit 22 transmits detection information indicating that a reflected wave from a subject is detected to the control device 14 as a signal. More specifically, the second detection unit 22 is an infrared sensor that detects electromagnetic waves in the infrared band.
 なお、第2の検出部22は、上述した測距センサを構成する単一の素子である構成において、電磁波を検出できればよく、検出面において結像される必要はない。それゆえ、第2の検出部22は、第3の結像部21による結像位置である二次結像位置または二次結像位置近傍に必ずしも設けられなくてもよい。すなわち、この構成において、第2の検出部22は、すべての画角からの電磁波が検出面上に入射可能な位置であれば、進行部18により進行部方向daに進行した後に第3の結像部21を経由して進行する電磁波の経路上のどこに配置されてもよい。 In addition, in the structure which is the single element which comprises the ranging sensor mentioned above, the 2nd detection part 22 just detects electromagnetic waves, and it is not necessary to image-form in a detection surface. Therefore, the second detection unit 22 may not necessarily be provided in the vicinity of the secondary imaging position or the secondary imaging position which is the imaging position by the third imaging unit 21. That is, in this configuration, if the second detection unit 22 is a position where electromagnetic waves from all angles of view can be incident on the detection surface, the third detection is performed after the advancing unit 18 advances in the advancing portion direction da. It may be disposed anywhere on the path of the electromagnetic wave traveling through the image unit 21.
 第3の検出部17は、分離部16から第3の方向d3に進行する電磁波の経路上に、設けられている。さらに、第3の検出部17は、分離部16から第3の方向d3における第1の結像部15による対象obの結像位置または当該結像位置近傍に、設けられている。第3の検出部17は、分離部16から第3の方向d3に進行した電磁波を検出する。 The third detection unit 17 is provided on the path of the electromagnetic wave traveling from the separation unit 16 in the third direction d3. Furthermore, the third detection unit 17 is provided at or near the imaging position of the object ob by the first imaging unit 15 in the third direction d3 from the separation unit 16. The third detection unit 17 detects an electromagnetic wave that has traveled from the separation unit 16 in the third direction d3.
 第1の実施形態において、第3の検出部17は、パッシブセンサである。第1の実施形態において、第3の検出部17は、さらに具体的には、素子アレイを含む。例えば、第3の検出部17は、イメージセンサまたはイメージングアレイなどの撮像素子を含み、検出面において結像した電磁波による像を撮像して、撮像した対象obに相当する画像情報を生成する。 In the first embodiment, the third detection unit 17 is a passive sensor. In the first embodiment, the third detection unit 17 more specifically includes an element array. For example, the third detection unit 17 includes an imaging element such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
 なお、第1の実施形態において、第3の検出部17は、さらに具体的には可視光の像を撮像する。第3の検出部17は、生成した画像情報を信号として制御装置14に送信する。 In the first embodiment, the third detection unit 17 more specifically captures an image of visible light. The third detection unit 17 transmits the generated image information as a signal to the control device 14.
 なお、第3の検出部17は、赤外線、紫外線、および電波の像など、可視光以外の像を撮像してもよい。また、第3の検出部17は測距センサを含んでいてもよい。この構成において、電磁波検出装置10は、第3の検出部17により画像状の距離情報を取得し得る。また、第3の検出部17は測距センサまたはサーモセンサなどを含んでいてもよい。この構成において、電磁波検出装置10は、第3の検出部17により画像状の温度情報を取得し得る。 The third detection unit 17 may capture an image other than visible light, such as an infrared, ultraviolet, and radio wave image. In addition, the third detection unit 17 may include a distance measurement sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like distance information by the third detection unit 17. Further, the third detection unit 17 may include a distance measuring sensor or a thermo sensor. In this configuration, the electromagnetic wave detection device 10 can acquire image-like temperature information by the third detection unit 17.
 照射部12は、赤外線、可視光線、紫外線、および電波の少なくともいずれかを放射する。第1の実施形態において、照射部12は、赤外線を放射する。照射部12は、放射する電磁波を、対象obに向けて、直接または反射部13を介して間接的に、照射する。第1の実施形態においては、照射部12は、放射する電磁波を、対象obに向けて、反射部13を介して間接的に照射する。 The irradiation unit 12 emits at least one of infrared light, visible light, ultraviolet light, and radio waves. In the first embodiment, the irradiation unit 12 emits infrared light. The irradiating unit 12 irradiates the electromagnetic waves to be emitted toward the object ob directly or indirectly via the reflecting unit 13. In the first embodiment, the irradiating unit 12 indirectly irradiates the electromagnetic wave to be emitted toward the object ob via the reflecting unit 13.
 第1の実施形態においては、照射部12は、幅の細い、例えば0.5°のビーム状の電磁波を放射する。また、第1の実施形態において、照射部12は電磁波をパルス状に放射可能である。例えば、照射部12は、LED(Light Emitting Diode)およびLD(Laser Diode)などを含む。照射部12は、後述する制御装置14の制御に基づいて、電磁波の放射および停止を切替える。 In the first embodiment, the irradiation unit 12 emits an electromagnetic wave having a narrow width, for example, a 0.5 ° beam. In the first embodiment, the irradiation unit 12 can emit an electromagnetic wave in a pulse shape. For example, the irradiation unit 12 includes a light emitting diode (LED), a laser diode (LD), and the like. The irradiation unit 12 switches between radiation and stop of the electromagnetic wave based on control of the control device 14 described later.
 反射部13は、照射部12から放射された電磁波を、向きを変えながら反射することにより、対象obに照射される電磁波の照射位置を変更する。すなわち、反射部13は、照射部12から放射される電磁波により、対象obを走査する。したがって、第1の実施形態において、第2の検出部22は、反射部13と協同して、走査型の測距センサを構成する。なお、反射部13は、一次元方向または二次元方向に対象obを走査する。第1の実施形態においては、反射部13は、二次元方向に対象obを走査する。 The reflection unit 13 changes the irradiation position of the electromagnetic wave emitted to the object ob by reflecting the electromagnetic wave emitted from the irradiation unit 12 while changing the direction. That is, the reflection unit 13 scans the object ob with the electromagnetic wave emitted from the irradiation unit 12. Therefore, in the first embodiment, the second detection unit 22 cooperates with the reflection unit 13 to configure a scanning distance measuring sensor. The reflecting unit 13 scans the object ob in a one-dimensional direction or a two-dimensional direction. In the first embodiment, the reflection unit 13 scans the object ob in a two-dimensional direction.
 反射部13は、照射部12から放射されて反射した電磁波の照射領域の少なくとも一部が、電磁波検出装置10における電磁波の検出範囲に含まれるように、構成されている。したがって、反射部13を介して対象obに照射される電磁波の少なくとも一部は、電磁波検出装置10において検出され得る。 The reflection unit 13 is configured such that at least a part of the irradiation area of the electromagnetic wave emitted and reflected by the irradiation unit 12 is included in the detection range of the electromagnetic wave in the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic wave emitted to the object ob through the reflection unit 13 can be detected by the electromagnetic wave detection device 10.
 なお、第1の実施形態において、反射部13は、照射部12から放射され且つ反射部13に反射した電磁波の照射領域の少なくとも一部が、第2の検出部22における検出範囲に含まれるように、構成されている。したがって、第1の実施形態において、反射部13を介して対象obに照射される電磁波の少なくとも一部は、第2の検出部22により検出され得る。 In the first embodiment, at least a part of the irradiation area of the electromagnetic wave emitted from the irradiation unit 12 and reflected by the reflection unit 13 is included in the detection range of the second detection unit 22 in the first embodiment. Is configured. Therefore, in the first embodiment, at least a part of the electromagnetic wave irradiated to the object ob via the reflection unit 13 can be detected by the second detection unit 22.
 反射部13は、例えば、MEMS(Micro Electro Mechanical Systems)ミラー、ポリゴンミラー、およびガルバノミラーなどを含む。第1の実施形態においては、反射部13は、MEMSミラーを含む。 The reflection unit 13 includes, for example, a micro electro mechanical systems (MEMS) mirror, a polygon mirror, a galvano mirror, and the like. In the first embodiment, the reflection unit 13 includes a MEMS mirror.
 反射部13は、後述する制御装置14の制御に基づいて、電磁波を反射する向きを変える。また、反射部13は、例えばエンコーダなどの角度センサを有してもよく、角度センサが検出する角度を、電磁波を反射する方向情報として、制御装置14に通知してもよい。このような構成において、制御装置14は、反射部13から取得する方向情報に基づいて、照射位置を算出し得る。また、制御装置14は、反射部13に電磁波を反射する向きを変えさせるために入力する駆動信号に基づいて照射位置を算出し得る。 The reflection unit 13 changes the direction in which the electromagnetic wave is reflected based on the control of the control device 14 described later. The reflection unit 13 may have an angle sensor such as an encoder, for example, and may notify the control device 14 of an angle detected by the angle sensor as direction information for reflecting an electromagnetic wave. In such a configuration, the control device 14 can calculate the irradiation position based on the direction information acquired from the reflection unit 13. In addition, the control device 14 can calculate the irradiation position based on the drive signal input to cause the reflection unit 13 to change the direction in which the electromagnetic wave is reflected.
 制御装置14は、1以上のプロセッサおよびメモリを含む。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサの少なくともいずれかを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御装置14は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、およびSiP(System In a Package)の少なくともいずれかを含んでもよい。 Controller 14 includes one or more processors and memory. The processor may include a general-purpose processor that loads a specific program to execute a specific function, and / or a dedicated processor specialized for a specific process. The dedicated processor may include an application specific integrated circuit (ASIC). The processor may include a programmable logic device (PLD). The PLD may include an FPGA (Field-Programmable Gate Array). The controller 14 may include at least one of a system-on-a-chip (SoC) with which one or more processors cooperate, and / or a system in package (SiP).
 制御装置14は、第1の検出部20、第2の検出部22、および第3の検出部17がそれぞれ検出した電磁波に基づいて、電磁波検出装置10の周囲に関する情報を取得する。周囲に関する情報は、例えば画像情報、距離情報、および温度情報などである。第1の実施形態において、制御装置14は、前述のように、第1の検出部20または第3の検出部17が画像として検出した電磁波を画像情報として取得する。また、第1の実施形態において、制御装置14は、第2の検出部22が検出する検出情報に基づいて、以下に説明するように、ToF(Time-of-Flight)方式により、照射部12に照射される照射位置の距離情報を取得する。 The control device 14 acquires information related to the periphery of the electromagnetic wave detection device 10 based on the electromagnetic waves detected by the first detection unit 20, the second detection unit 22, and the third detection unit 17, respectively. The information on the surroundings is, for example, image information, distance information, and temperature information. In the first embodiment, as described above, the control device 14 acquires, as image information, the electromagnetic wave detected by the first detection unit 20 or the third detection unit 17 as an image. Further, in the first embodiment, the control device 14 performs the irradiation unit 12 by the time-of-flight (ToF) method as described below based on the detection information detected by the second detection unit 22. The distance information of the irradiation position irradiated to
 図4に示すように、制御装置14は、照射部12に電磁波放射信号を入力することにより、照射部12にパルス状の電磁波を放射させる(“電磁波放射信号”欄参照)。照射部12は、入力された当該電磁波放射信号に基づいて電磁波を照射する(“照射部放射量”欄参照)。照射部12が放射し且つ反射部13が反射して任意の照射領域に照射された電磁波は、当該照射領域において反射する。制御装置14は、当該照射領域の反射波の第1の結像部15による進行部18における結像領域の中の少なくとも一部の画素pxを第1の状態に切替え、他の画素pxを第2の状態に切替える。そして、第1の検出部20は、当該照射領域において反射された電磁波を検出するとき(“電磁波検出量”欄参照)、前述のように、検出情報を制御装置14に通知する。 As shown in FIG. 4, the control device 14 causes the irradiation unit 12 to emit a pulse-like electromagnetic wave by inputting an electromagnetic wave emission signal to the irradiation unit 12 (see “Electromagnetic wave emission signal” column). The irradiating unit 12 irradiates an electromagnetic wave based on the input electromagnetic wave radiation signal (see the “irradiating unit radiation amount” column). The electromagnetic wave emitted by the irradiation unit 12 and reflected by the reflection unit 13 and irradiated to an arbitrary irradiation area is reflected in the irradiation area. The control device 14 switches at least a part of the pixels px in the imaging region in the advancing portion 18 by the first imaging portion 15 of the reflected wave of the irradiation region to the first state, and the other pixels px Switch to state 2. Then, when detecting the electromagnetic wave reflected in the irradiation area (see the “electromagnetic wave detection amount” column), the first detection unit 20 notifies the control device 14 of detection information as described above.
 制御装置14は、例えば、時間計測LSI(Large Scale Integrated circuit)を有しており、照射部12に電磁波を放射させた時期T1から、検出情報を取得(“検出情報取得”欄参照)した時期T2までの時間ΔTを計測する。制御装置14は、当該時間ΔTに、光速を乗算し、且つ2で除算することにより、照射位置までの距離を算出する。なお、制御装置14は、上述のように、反射部13から取得する方向情報、または自身が反射部13に出力する駆動信号に基づいて、照射位置を算出する。制御装置14は、照射位置を変えながら、各照射位置までの距離を算出することにより、画像状の距離情報を作成する。 The control device 14 has, for example, a time measurement LSI (Large Scale Integrated circuit), and obtains detection information from the time T1 at which the irradiation unit 12 emits an electromagnetic wave (see “Detection information acquisition” column) The time ΔT to T2 is measured. The control device 14 calculates the distance to the irradiation position by multiplying the time ΔT by the speed of light and dividing it by two. As described above, the control device 14 calculates the irradiation position based on the direction information acquired from the reflection unit 13 or the drive signal output to the reflection unit 13 itself. The control device 14 creates the image-like distance information by calculating the distances to the respective irradiation positions while changing the irradiation positions.
 なお、第1の実施形態において、情報取得システム11は、上述のように、電磁波を照射して、返ってくるまでの時間を直接測定するDirect ToFにより距離情報を作成する構成である。しかし、情報取得システム11は、このような構成に限られない。例えば、情報取得システム11は、電磁波を一定の周期で照射し、照射された電磁波と返ってきた電磁波との位相差から、返ってくるまでの時間を間接的に測定するFlash ToFにより距離情報を作成しても良い。また、情報取得システム11は、他のToF方式、例えば、Phased ToFにより距離情報を作成しても良い。 In the first embodiment, as described above, the information acquisition system 11 is configured to generate distance information by Direct ToF which directly measures the time until the electromagnetic wave is emitted and returned. However, the information acquisition system 11 is not limited to such a configuration. For example, the information acquisition system 11 irradiates an electromagnetic wave at a constant cycle, and based on the phase difference between the irradiated electromagnetic wave and the returned electromagnetic wave, the distance information is indirectly measured using Flash ToF, which measures the time to return. You may create it. Further, the information acquisition system 11 may create distance information by another ToF method, for example, Phased ToF.
 以上のような構成の第1の実施形態の電磁波検出装置10では、進行部18、第2の結像部19、および第1の検出部20は、基準面ssおよび第1の検出部20の検出面それぞれの延長面が交差し、第2の結像部19の主軸が基準面ssおよび第1の検出部20の検出面を通るように配置されている。このような構成により、図5に示すように、進行部18の基準面ss、第2の結像部19の主面、および第1の検出部20の検出面は、シャインプルーフの原理の条件を満たすように配置され得る。したがって、電磁波検出装置10は、第2の結像部19を進行部18に対向する位置からずらして配置しながらも、基準面ssにおける第1の結像部19による像の、第2の結像部19の主軸近傍の電磁波の像を第1の検出部20の検出面に含ませて、結像させ得る。これにより、電磁波検出装置10は、第1の検出部20において検出する電磁波の像の解像度を向上し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置についても同じである。 In the electromagnetic wave detection device 10 according to the first embodiment configured as described above, the traveling unit 18, the second imaging unit 19, and the first detection unit 20 include the reference plane ss and the first detection unit 20. The extension planes of the detection planes intersect, and the principal axis of the second imaging unit 19 is disposed to pass through the reference plane ss and the detection plane of the first detection unit 20. With such a configuration, as shown in FIG. 5, the reference plane ss of the advancing unit 18, the main surface of the second imaging unit 19, and the detection surface of the first detection unit 20 are conditions of the principle of shine proof. Can be arranged to meet Therefore, while the electromagnetic wave detection device 10 is arranged with the second imaging unit 19 shifted from the position facing the traveling unit 18, the second result of the image by the first imaging unit 19 on the reference plane ss is obtained. The image of the electromagnetic wave in the vicinity of the main axis of the image unit 19 can be included in the detection surface of the first detection unit 20 to form an image. Thereby, the electromagnetic wave detection device 10 can improve the resolution of the image of the electromagnetic wave detected by the first detection unit 20. In addition, such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
 また、第1の実施形態の電磁波検出装置10は、画素px毎に、電磁波を第1の状態および第2の状態に切替え可能である。このような構成により、電磁波検出装置10は、第1の結像部15の主軸を、第1の状態において電磁波を進行させる第1の方向d1における第2の結像部19の主軸に、かつ第2の状態において電磁波を進行させる第2の方向d2における第3の結像部21の主軸に合わせることが可能となる。したがって、電磁波検出装置10は、進行部18の画素pxを第1の状態および第2の状態のいずれかに切替えることにより、第1の検出部20および第2の検出部22の主軸のズレを低減し得る。これにより、電磁波検出装置10は、第1の検出部20および第2の検出部22による検出結果における座標系のズレを低減し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置についても同じである。 Further, the electromagnetic wave detection device 10 according to the first embodiment can switch the electromagnetic wave between the first state and the second state for each pixel px. With such a configuration, the electromagnetic wave detection device 10 sets the principal axis of the first imaging unit 15 to be the principal axis of the second imaging unit 19 in the first direction d1 in which the electromagnetic wave travels in the first state, and In the second state, it is possible to align with the main axis of the third imaging unit 21 in the second direction d2 in which the electromagnetic wave travels. Therefore, the electromagnetic wave detection device 10 switches the displacement of the main axes of the first detection unit 20 and the second detection unit 22 by switching the pixel px of the advancing unit 18 to either the first state or the second state. It can be reduced. Thereby, the electromagnetic wave detection device 10 can reduce the deviation of the coordinate system in the detection result by the first detection unit 20 and the second detection unit 22. In addition, such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
 また、第1の実施形態の電磁波検出装置10は、第3の結像部21および第2の検出部22を有している。このような構成により、電磁波検出装置10は、各画素pxに入射する電磁波を出射する対象obの部分毎の電磁波に基づく情報を第2の検出部22に検出させ得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置についても同じである。 Further, the electromagnetic wave detection device 10 of the first embodiment includes a third imaging unit 21 and a second detection unit 22. With such a configuration, the electromagnetic wave detection device 10 can cause the second detection unit 22 to detect information based on the electromagnetic wave for each portion of the target ob that emits the electromagnetic wave incident on each pixel px. In addition, such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
 また、第1の実施形態の電磁波検出装置10では、進行部18、第3の結像部21、および第2の検出部22は、基準面ss、第3の結像部21の主面、および第2の検出部22の検出面、それぞれの延長面がすべて同一の直線上で交差するように配置されている。このような構成により、進行部18の基準面ss、第3の結像部21の主面、および第2の検出部22の検出面は、シャインプルーフの原理の条件を満たすように配置され得る。したがって、電磁波検出装置10では、第3の結像部21を進行部18に対向する位置からずらして配置しながらも、第3の結像部21の主軸近傍の電磁波の像を第2の検出部22の検出面に検出し得る。これにより、電磁波検出装置10は、第2の検出部22において検出する電磁波の像の解像度を向上し得る。 Further, in the electromagnetic wave detection device 10 according to the first embodiment, the traveling unit 18, the third imaging unit 21, and the second detection unit 22 include the reference plane ss, the main surface of the third imaging unit 21, The detection surfaces of the second detection unit 22 and their extension surfaces are all arranged to intersect on the same straight line. With such a configuration, the reference plane ss of the advancing unit 18, the main surface of the third imaging unit 21, and the detection surface of the second detection unit 22 can be arranged to satisfy the condition of the principle of shine proof. . Therefore, in the electromagnetic wave detection device 10, while the third imaging unit 21 is disposed offset from the position facing the traveling unit 18, the second detection of the electromagnetic wave image in the vicinity of the main axis of the third imaging unit 21 is performed. The detection surface of the part 22 can be detected. Thereby, the electromagnetic wave detection device 10 can improve the resolution of the image of the electromagnetic wave detected by the second detection unit 22.
 また、第1の実施形態の電磁波検出装置10は、第1の結像部15から入射した電磁波を進行部方向daおよび第3の方向d3に進行するように分離する。このような構成により、電磁波検出装置10は、第1の結像部15の主軸を、進行部方向daに進行させた電磁波の中心軸、および第3の方向d3に進行させた電磁波の中心軸に合わせることが可能となる。したがって、電磁波検出装置10は、第1の検出部20および第2の検出部22と、第3の検出部17との座標系のズレを低減し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置についても同じである。 The electromagnetic wave detection device 10 according to the first embodiment separates the electromagnetic wave incident from the first imaging unit 15 so as to travel in the traveling direction d a and the third direction d 3. With such a configuration, the electromagnetic wave detection device 10 has the central axis of the electromagnetic wave advancing the main axis of the first imaging unit 15 in the traveling direction d.sub.a and the central axis of the electromagnetic wave advancing the third direction d.sub.3. It is possible to adjust to Therefore, the electromagnetic wave detection device 10 can reduce the deviation of the coordinate system between the first detection unit 20 and the second detection unit 22 and the third detection unit 17. In addition, such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
 また、第1の実施形態の電磁波検出装置10は、第3の検出部17を有している。このような構成により、電磁波検出装置10は、第1の検出部20に結像する像と同じ像である電磁波を別に検出し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置についても同じである。 In addition, the electromagnetic wave detection device 10 of the first embodiment includes a third detection unit 17. With such a configuration, the electromagnetic wave detection device 10 can separately detect an electromagnetic wave that is the same image as the image formed on the first detection unit 20. In addition, such a structure and effect are the same also about the electromagnetic wave detection apparatus of 2nd Embodiment mentioned later.
 また、第1の実施形態の情報取得システム11では、制御装置14が、第1の検出部20、第2の検出部22、および第3の検出部17それぞれにより検出された電磁波に基づいて、電磁波検出装置10の周囲に関する情報を取得する。このような構成により、情報取得システム11は、検出した電磁波に基づく有益な情報を提供し得る。 Moreover, in the information acquisition system 11 of the first embodiment, the control device 14 is based on the electromagnetic waves detected by the first detection unit 20, the second detection unit 22, and the third detection unit 17, respectively. Information on the surroundings of the electromagnetic wave detection device 10 is acquired. With such a configuration, the information acquisition system 11 can provide useful information based on the detected electromagnetic wave.
 次に、本開示の第2の実施形態に係る電磁波検出装置について説明する。第2の実施形態では、第1の結像部に対する進行部および第3の検出部の姿勢、ならびに進行部に対する第3の結像部および第2の検出部の位置および姿勢において第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ構成を有する部位には同じ符号を付す。 Next, an electromagnetic wave detection device according to a second embodiment of the present disclosure will be described. In the second embodiment, the first embodiment is implemented in the attitude of the advancing unit and the third detecting unit with respect to the first imaging unit, and the position and attitude of the third imaging unit and the second detecting unit with respect to the advancing unit. It is different from the form. The second embodiment will be described below focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the site | part which has the same structure as 1st Embodiment.
 図6に示すように、第2の実施形態に係る電磁波検出装置100は、第1の結像部150、分離部16、進行部180、第2の結像部19、第1の検出部20、第3の結像部210、第2の検出部220、および第3の検出部170を有している。なお、第2の実施形態に係る情報取得システム11における、電磁波検出装置100以外の構成は、第1の実施形態と同じである。第2の実施形態における分離部16、第2の結像部19、および第1の検出部20の構成および機能は、第1の実施形態と同じである。 As shown in FIG. 6, the electromagnetic wave detection device 100 according to the second embodiment includes a first imaging unit 150, a separation unit 16, a traveling unit 180, a second imaging unit 19, and a first detection unit 20. , A third imaging unit 210, a second detection unit 220, and a third detection unit 170. The configuration other than the electromagnetic wave detection device 100 in the information acquisition system 11 according to the second embodiment is the same as that in the first embodiment. The configurations and functions of the separation unit 16, the second imaging unit 19, and the first detection unit 20 in the second embodiment are the same as those in the first embodiment.
 第2の実施形態において、第1の結像部150は、第1の実施形態と異なり、主軸が開口apの軸に対して傾斜し、かつ主軸が開口apを通過するように配置されている。第1の結像部150の構造および機能は第1の実施形態の第1の結像部150と同じである。 In the second embodiment, unlike the first embodiment, the first imaging unit 150 is disposed such that the main axis is inclined with respect to the axis of the opening ap, and the main axis passes through the opening ap . The structure and function of the first imaging unit 150 are the same as the first imaging unit 150 of the first embodiment.
 第2の実施形態において、進行部180は、第1の実施形態と異なり、基準面ssが第1の結像部150の主軸が通る仮想の平面vpに対して傾斜するように、すなわち仮想の平面vpおよび基準面ssそれぞれの延長面が交差するように、配置されている。なお、仮想の平面vpは、第1の結像部150から所定の距離だけ離れ、開口apの軸に垂直な平面であってよい。なお、所定の距離は、進行部180に対する間隔が定められ且つ基準面ssを像面とする第1の結像部150からの、物体面までの距離である。 In the second embodiment, unlike the first embodiment, the advancing unit 180 is inclined such that the reference surface ss is inclined with respect to an imaginary plane vp through which the principal axis of the first imaging unit 150 passes, ie, a virtual The extension planes of the plane vp and the reference plane ss are arranged to intersect with each other. The virtual plane vp may be a plane which is separated from the first imaging unit 150 by a predetermined distance and which is perpendicular to the axis of the opening ap. The predetermined distance is the distance from the first image forming unit 150 to the object plane where the distance to the advancing unit 180 is determined and the reference plane ss is the image plane.
 また、進行部180は、第1の結像部150の主面および進行部180の基準面ssそれぞれの延長面が交差するように、すなわち基準面ssが第1の結像部150の主面に対して傾斜するように配置されてよい。なお、第2の実施形態において、基準面ssの第1の結像部150の主面に対する傾斜配置は、分離部16による進行部方向daへの分離が屈折である場合には、(入射角-屈折角)だけ分離部16の位置を軸に屈折の反対方向に回転させた進行部180の基準面ssの第1の結像部150の主面に対する傾斜配置を意味する。また、第2の実施形態において、基準面ssの第1の結像部150の主面に対する傾斜配置は、分離部16による進行部方向daへの分離が反射である場合には、分離部16の反射面における面対称な姿勢における基準面ssの第1の結像部150の主面に対する傾斜配置を意味する。 Further, in the advancing portion 180, the main surface of the first imaging portion 150 and the extension surface of each of the reference surfaces ss of the advancing portion 180 intersect, that is, the reference surface ss is the main surface of the first imaging portion 150. It may be arranged to be inclined with respect to In the second embodiment, when the separation of the reference surface ss with respect to the main surface of the first imaging unit 150 with respect to the main surface of the first imaging unit 150 is refraction, the incident angle The reference plane ss of the advancing portion 180 rotated about the position of the separating portion 16 in the direction opposite to the direction of refraction by the angle of refraction) means the inclined arrangement with respect to the main surface of the first imaging portion 150. Further, in the second embodiment, when the separation of the reference surface ss with respect to the main surface of the first imaging unit 150 with respect to the main surface of the first imaging unit 150 is the separation in the traveling direction d a This means that the reference plane ss is inclined relative to the main surface of the first imaging unit 150 in a plane-symmetrical posture on the reflection surface of
 また、進行部180は、第1の結像部150の主軸が進行部180の基準面ssの範囲内を通るように配置されている。さらには、進行部180は、第1の結像部150の主軸が進行部180の基準面ssの中心を通るように配置されてよい。 Further, the advancing unit 180 is disposed such that the main axis of the first imaging unit 150 passes through the range of the reference plane ss of the advancing unit 180. Furthermore, the advancing unit 180 may be disposed such that the principal axis of the first imaging unit 150 passes through the center of the reference plane ss of the advancing unit 180.
 また、進行部180は、基準面ssの延長面が、第1の結像部150の主面および仮想の平面vpと、単一の直線上で、交差するように、配置されてよい。したがって、第1の結像部150の主面、基準面ss、および仮想の平面vpは、シャインプルーフの原理の条件を満たすように、配置されている。 Further, the advancing portion 180 may be disposed such that the extension surface of the reference surface ss intersects with the main surface of the first imaging portion 150 and the imaginary plane vp on a single straight line. Therefore, the main surface of the first imaging unit 150, the reference surface ss, and the virtual plane vp are arranged so as to satisfy the condition of the principle of the shine proof.
 さらに、第2の実施形態では、進行部180は、進行部180が進行させる第2の方向d2が、基準面ssに垂直となるように、配置されてよい。上述の姿勢以外の、進行部180の構造および機能は、第1の実施形態の進行部18と同じである。 Furthermore, in the second embodiment, the advancing portion 180 may be disposed such that the second direction d2 advanced by the advancing portion 180 is perpendicular to the reference plane ss. The structure and function of the advancing portion 180 other than the above-described posture are the same as the advancing portion 18 of the first embodiment.
 第2の実施形態において、第2の結像部19は、第1の実施形態と同じく、進行部180が進行させる第1の方向d1に、主面が進行部180の基準面ssに傾斜するように配置されている。第2の実施形態における第2の結像部19の他の配置条件、構造、および機能は第1の実施形態の第2の結像部19と同じである。 In the second embodiment, as in the first embodiment, the main surface of the second imaging unit 19 is inclined to the reference surface ss of the advancing portion 180 in the first direction d1 advanced by the advancing portion 180. It is arranged as. The other arrangement conditions, structure, and function of the second imaging unit 19 in the second embodiment are the same as those of the second imaging unit 19 in the first embodiment.
 第2の実施形態において、第1の検出部20は、第1の実施形態と同じく、進行部18の基準面ssに形成される電磁波の像の、第2の結像部19による二次結像位置または二次結像位置近傍に配置されている。第2の実施形態において、第1の検出部20は、第1の実施形態と同じく、検出面の延長面が、基準面ssおよび第2の結像部19の主面それぞれの延長面と、単一の直線上で交差するように配置されている。したがって、第2の実施形態においても、第1の実施形態と同じく、基準面ss、第2の結像部19の主面、および第1の検出部20の検出面は、シャインプルーフの原理の条件を満たすように、配置されている。第2の実施形態における第1の検出部20の他の配置条件、構造、および機能は第1の実施形態の第1の検出部20と同じである。 In the second embodiment, as in the first embodiment, the first detection unit 20 generates a second-order connection of the image of the electromagnetic wave formed on the reference surface ss of the advancing unit 18 by the second imaging unit 19. It is disposed near the image position or the secondary imaging position. In the second embodiment, in the first detection unit 20, as in the first embodiment, the extension surface of the detection surface is an extension surface of each of the reference surface ss and the main surface of the second imaging unit 19, They are arranged to intersect on a single straight line. Therefore, also in the second embodiment, as in the first embodiment, the reference surface ss, the main surface of the second imaging unit 19, and the detection surface of the first detection unit 20 are of the principle of shine proof. It is arranged to meet the conditions. The other arrangement conditions, structure, and function of the first detection unit 20 in the second embodiment are the same as those of the first detection unit 20 in the first embodiment.
 第2の実施形態において、第3の結像部210は、第1の実施形態と異なり、主面が進行部18の基準面ssに対して平行になるように、配置されている。第2の実施形態における第3の結像部210の他の配置条件、構造、および機能は第1の実施形態の第3の結像部21と同じである。 In the second embodiment, unlike the first embodiment, the third imaging unit 210 is disposed such that the main surface is parallel to the reference surface ss of the advancing portion 18. The other arrangement conditions, structure, and function of the third imaging unit 210 in the second embodiment are the same as those of the third imaging unit 21 in the first embodiment.
 第2の実施形態において、第2の検出部220は、第1の実施形態と異なり、検出面が第3の結像部210の主軸に垂直となるように、配置されている。第2の実施形態における第2の検出部220の他の配置条件、構造、および機能は第1の実施形態の第2の検出部22と同じである。 In the second embodiment, unlike the first embodiment, the second detection unit 220 is disposed such that the detection surface is perpendicular to the main axis of the third imaging unit 210. The other arrangement conditions, structure, and function of the second detection unit 220 in the second embodiment are the same as those of the second detection unit 22 in the first embodiment.
 第2の実施形態において、第3の検出部170は、第1の実施形態と異なり、第1の結像部150の主面および第3の検出部170の検出面それぞれの延長面が交差する、すなわち検出面が第1の結像部150の主面に対して傾斜するように配置されている。なお、第2の実施形態において、検出面の第1の結像部150の主面に対する傾斜配置は、分離部16による第3の方向d3への分離が屈折である場合には、(入射角-屈折角)だけ分離部16の位置を軸に屈折の反対方向に回転させた第3の検出部170の検出面の第1の結像部150の主面に対する傾斜配置を意味する。また、第2の実施形態において、検出面の第1の結像部150の主面に対する傾斜配置は、分離部16による第3の方向d3への分離が反射である場合には、分離部16の反射面における面対称な姿勢における検出面の第1の結像部150の主面に対する傾斜配置を意味する。 In the second embodiment, unlike the first embodiment, in the third detection unit 170, the extension surface of each of the main surface of the first imaging unit 150 and the detection surface of the third detection unit 170 intersect. That is, the detection surface is disposed to be inclined with respect to the main surface of the first imaging unit 150. In the second embodiment, the inclined arrangement of the detection surface with respect to the main surface of the first imaging unit 150 corresponds to the case where the separation in the third direction d3 by the separation unit 16 is refraction (incident angle (Refractive angle) means the inclined arrangement of the detection surface of the third detection unit 170 with respect to the main surface of the first imaging unit 150 rotated in the direction opposite to the refractive direction about the position of the separation unit 16 as the axis. In the second embodiment, the inclined arrangement of the detection surface with respect to the main surface of the first imaging unit 150 is the separation unit 16 when the separation by the separation unit 16 in the third direction d3 is reflection. This means that the detection surface is inclined relative to the main surface of the first imaging unit 150 in a plane-symmetrical posture on the reflection surface of
 また、第3の検出部170および第1の結像部150は、第1の結像部150の主面および第3の検出部170の検出面それぞれの延長面が、仮想の平面vp上で、交差するように、配置されている。したがって、第1の結像部150の主面、第3の検出部170の検出面、および仮想の平面vpは、シャインプルーフの原理の条件を満たすように、配置されている。第2の実施形態における第3の検出部170の他の配置条件、構造、および機能は第1の実施形態の第3の検出部17と同じである。 In the third detection unit 170 and the first imaging unit 150, the extension surfaces of the main surface of the first imaging unit 150 and the detection surface of the third detection unit 170 are on the imaginary plane vp. , Are arranged to intersect. Therefore, the main surface of the first imaging unit 150, the detection surface of the third detection unit 170, and the imaginary plane vp are arranged so as to satisfy the condition of the principle of the shine proof. The other arrangement conditions, structure, and function of the third detection unit 170 in the second embodiment are the same as those of the third detection unit 17 in the first embodiment.
 以上のように、第2の実施形態の電磁波検出装置100では、第1の結像部150および進行部180は、第1の結像部150の主軸が通る仮想平面vpおよび進行部180の基準面ssそれぞれの延長面が交差し、第1の結像部150の主軸が基準面ssを通るように配置されている。このような構成により、第1の結像部150から所定の距離だけ離れた仮想の平面vp、第1の結像部150の主面、および進行部180の基準面ss、第2の結像部19の主面、および第1の検出部20の検出面は、シャインプルーフの原理の条件を満たすように配置され得る。したがって、電磁波検出装置10では、進行部180に対向する位置に第1の結像部150を配置しない構成でも、第1の結像部150の主軸が通る仮想の平面上の対象物の、第1の結像部150による主軸近傍の電磁波の像を進行部180の基準面ssに含ませて、結像させ得る。これにより、電磁波検出装置10では、第3の結像部210を進行部180に対向する位置に配置し得る。その結果、進行部180の基準面ssと第3の結像部210の主面とが平行でありながら、第3の結像部210の主軸が進行部180の基準面ss内を通るように、第3の結像部210を配置し得る。このような配置により、電磁波検出装置10は、第3の結像部210の主軸近傍の画角範囲の像を第2の検出部220に結像し得るので、第2の検出部220において検出する電磁波の像の解像度を向上し得る。 As described above, in the electromagnetic wave detection device 100 of the second embodiment, the first imaging unit 150 and the advancing unit 180 are based on the virtual plane vp through which the main axis of the first imaging unit 150 passes and the reference of the advancing unit 180 The extension planes of the planes ss intersect, and the principal axis of the first imaging unit 150 is disposed to pass through the reference plane ss. With such a configuration, a virtual plane vp away from the first imaging unit 150 by a predetermined distance, the main surface of the first imaging unit 150, and the reference plane ss of the traveling unit 180, and the second imaging The main surface of the portion 19 and the detection surface of the first detection portion 20 can be arranged to satisfy the conditions of the principle of shine proof. Therefore, in the electromagnetic wave detection device 10, even when the first imaging unit 150 is not disposed at the position facing the advancing unit 180, the first imaging unit 150 is the first object on the virtual plane through which the main axis passes. The image of the electromagnetic wave in the vicinity of the main axis by the first imaging unit 150 may be included in the reference plane ss of the advancing unit 180 to form an image. Thus, in the electromagnetic wave detection device 10, the third imaging unit 210 can be disposed at a position facing the traveling unit 180. As a result, the main axis of the third imaging unit 210 passes through the reference plane ss of the advancing unit 180 while the reference plane ss of the advancing unit 180 and the main surface of the third imaging unit 210 are parallel. , And the third imaging unit 210 can be disposed. With such an arrangement, the electromagnetic wave detection device 10 can form an image of a field angle range in the vicinity of the main axis of the third imaging unit 210 on the second detection unit 220, so detection is performed in the second detection unit 220. The resolution of the electromagnetic wave image can be improved.
 本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。従って、これらの変形および修正は本発明の範囲に含まれることに留意されたい。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
 例えば、第1の実施形態および第2の実施形態において、照射部12、反射部13、および制御装置14が、電磁波検出装置10、100とともに情報取得システム11を構成しているが、電磁波検出装置10、100は、これらの少なくとも1つを、例えば、制御装置14を制御部として、含んで構成されてよい。 For example, in the first and second embodiments, the irradiation unit 12, the reflection unit 13, and the control device 14 together with the electromagnetic wave detection devices 10 and 100 constitute the information acquisition system 11, but the electromagnetic wave detection device 10, 100 may be configured to include at least one of them, for example, the control device 14 as a control unit.
 また、第1の実施形態および第2の実施形態において、進行部18、180は、基準面ssに入射する電磁波の進行方向を第1の方向d1および第2の方向d2の2方向に切替可能であるが、2方向のいずれかへの切替えでなく、3以上の方向に切替可能であってよい。 In the first and second embodiments, the traveling units 18 and 180 can switch the traveling direction of the electromagnetic wave incident on the reference plane ss in two directions, the first direction d1 and the second direction d2. However, it may be switchable to three or more directions instead of switching to any of the two directions.
 また、第1の実施形態および第2の実施形態の進行部18、180において、第1の状態および第2の状態は、基準面ssに入射する電磁波を、それぞれ、第1の方向d1に反射する第1の反射状態、および第2の方向d2に反射する第2の反射状態であるが、他の態様であってもよい。 Furthermore, in the traveling units 18 and 180 of the first embodiment and the second embodiment, the first state and the second state reflect electromagnetic waves incident on the reference plane ss in the first direction d1. Of the first reflection state and the second reflection state of reflection in the second direction d2, but may be other modes.
 例えば、第1の状態が、基準面ssに入射する電磁波を、通過させて第1の方向d1に進行させる通過状態であってもよい。進行部18、180は、さらに具体的には、画素px毎に電磁波を第2の方向d2に反射する反射面を有するシャッタを含んでいてもよい。このような構成の進行部18、180においては、画素px毎のシャッタを開閉することにより、第1の状態としての通過状態または透過状態および第2の状態としての反射状態を画素px毎に切替え得る。このような構成の進行部18、180として、例えば、開閉可能な複数のシャッタが平面にアレイ状に配列されたMEMSシャッタが挙げられる。 For example, the first state may be a passing state in which an electromagnetic wave incident on the reference surface ss is allowed to pass and travel in the first direction d1. More specifically, the advancing units 18 and 180 may include a shutter having a reflection surface that reflects an electromagnetic wave in the second direction d2 for each pixel px. In the traveling units 18 and 180 having such a configuration, by switching the shutter for each pixel px, the pass state or the transmission state as the first state and the reflection state as the second state are switched for each pixel px. obtain. As the advancing parts 18 and 180 of such a configuration, for example, a MEMS shutter in which a plurality of openable and closable shutters are arranged in an array in a plane can be mentioned.
 また、進行部18、181は、電磁波を反射する反射状態と電磁波を透過する透過状態とを液晶配向に応じて切替え可能な液晶シャッタを含んでもよい。このような構成の進行部18、180においては、画素px毎の液晶配向を切替えることにより、第1の状態としての透過状態および第2の状態としての反射状態を画素px毎に切替え得る。 In addition, the advancing portions 18 and 181 may include a liquid crystal shutter capable of switching between the reflection state of reflecting the electromagnetic wave and the transmission state of transmitting the electromagnetic wave according to the liquid crystal alignment. In the traveling units 18 and 180 having such a configuration, the transmission state as the first state and the reflection state as the second state can be switched for each pixel px by switching the liquid crystal alignment for each pixel px.
 また、第1の実施形態および第2の実施形態において、情報取得システム11は、照射部12から放射されるビーム状の電磁波を反射部13に走査させることにより、第2の検出部22、220を反射部13と協同させて走査型のアクティブセンサとして機能させる構成を有する。しかし、情報取得システム11は、このような構成に限られない。例えば、情報取得システム11は、反射部13を備えず、照射部12から放射状の電磁波を放射させ、走査なしで情報を取得する構成でも、第1の実施形態と類似の効果が得られる。 Further, in the first embodiment and the second embodiment, the information acquisition system 11 causes the reflection unit 13 to scan a beam of electromagnetic waves emitted from the irradiation unit 12, thereby the second detection unit 22, 220. And the reflection unit 13 to function as a scanning type active sensor. However, the information acquisition system 11 is not limited to such a configuration. For example, even when the information acquisition system 11 does not include the reflection unit 13 and radiates radial electromagnetic waves from the irradiation unit 12 and acquires information without scanning, an effect similar to that of the first embodiment can be obtained.
 また、第1の実施形態および第2の実施形態において、情報取得システム11は、第1の検出部20および第3の検出部17、170がパッシブセンサであり、第2の検出部220がアクティブセンサである構成を有する。しかし、情報取得システム11は、このような構成に限られない。例えば、情報取得システム11において、第1の検出部20、第2の検出部22、220、および第3の検出部17、170のすべてがアクティブセンサである構成でも、パッシブセンサである構成でも、いずれか1つがパッシブセンサである構成でも第1の実施形態および第2の実施形態と類似の効果が得られる。 In the first and second embodiments, in the information acquisition system 11, the first detection unit 20 and the third detection units 17 and 170 are passive sensors, and the second detection unit 220 is active. It has a configuration that is a sensor. However, the information acquisition system 11 is not limited to such a configuration. For example, in the information acquisition system 11, even if the first detection unit 20, the second detection units 22 and 220, and the third detection units 17 and 170 are all active sensors or passive sensors, Even in the configuration in which any one is a passive sensor, an effect similar to that of the first embodiment and the second embodiment can be obtained.
 なお、ここでは、特定の機能を実行する種々のモジュール及び/またはユニットを有するものとしてのシステムを開示しており、これらのモジュール及びユニットは、その機能性を簡略に説明するために模式的に示されたものであって、必ずしも、特定のハードウェア及び/またはソフトウェアを示すものではないことに留意されたい。その意味において、これらのモジュール、ユニット、その他の構成要素は、ここで説明された特定の機能を実質的に実行するように実装されたハードウェア及び/またはソフトウェアであればよい。異なる構成要素の種々の機能は、ハードウェア及び/もしくはソフトウェアのいかなる組合せまたは分離したものであってもよく、それぞれ別々に、またはいずれかの組合せにより用いることができる。また、キーボード、ディスプレイ、タッチスクリーン、ポインティングデバイス等を含むがこれらに限られない入力/出力もしくはI/Oデバイスまたはユーザインターフェースは、システムに直接にまたは介在するI/Oコントローラを介して接続することができる。このように、本開示内容の種々の側面は、多くの異なる態様で実施することができ、それらの態様はすべて本開示内容の範囲に含まれる。 Here, the system is disclosed as having various modules and / or units for performing specific functions, and these modules and units are schematically shown to briefly describe their functionality. It should be noted that what is shown is not necessarily indicative of a specific hardware and / or software. In that sense, these modules, units, and other components may be hardware and / or software implemented to perform substantially the particular functions described herein. The various functions of different components may be any combination or separation of hardware and / or software, and may be used separately or in any combination. Also, connect input / output or I / O devices or user interfaces, including but not limited to keyboards, displays, touch screens, pointing devices, etc., directly to the system or through intervening I / O controllers Can. As such, various aspects of the disclosure may be embodied in many different aspects, all of which are within the scope of the disclosure.
 10、100 電磁波検出装置
 11 情報取得システム
 12 照射部
 13 反射部
 14 制御部
 15 第1の結像部
 15’ 一次結像光学系
 16 分離部
 17 第3の検出部
 18、180 進行部
 18’ 進行部
 19 第2の結像部
 19’ 二次結像光学系
 20 第1の検出部
 20’ 検出部
 21 第3の結像部
 22 第2の検出部
 ap 開口
 da 進行部方向
 d1、d2、d3 第1の方向、第2の方向、第3の方向
 ob 対象
 px 画素
 ss 作用面
 vp 仮想の平面
DESCRIPTION OF SYMBOLS 10, 100 Electromagnetic wave detection apparatus 11 Information acquisition system 12 Irradiation part 13 Reflection part 14 Control part 15 1st imaging part 15 'Primary imaging optical system 16 Separation part 17 3rd detection part 18, 180 Progress part 18' Progress Part 19 second imaging part 19 'secondary imaging optical system 20 first detection part 20' detection part 21 third imaging part 22 second detection part ap aperture da traveling part direction d1, d2, d3 First direction, second direction, third direction ob target px pixel ss action surface vp virtual plane

Claims (40)

  1.   入射する電磁波を結像する第1の結像部と、
     基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、
     前記第1の方向に進行した電磁波を結像する第2の結像部と、
     前記第2の結像部から入射する電磁波を検出する第1の検出部と、を備え、
     前記基準面および前記第1の検出部の検出面それぞれの延長面が交差し、前記第2の結像部の主軸が前記基準面および前記第1の検出部の検出面を通る配置と、
     前記進行部に対する間隔が定められ且つ前記基準面を像面とする前記第1の結像部の物体面と前記基準面とそれぞれの延長面が交差し、前記第1の結像部の主軸が前記基準面を通る配置と、
    の少なくとも一方が満たされている
     電磁波検出装置。
    A first imaging unit for imaging an incident electromagnetic wave;
    A traveling unit configured to arrange a plurality of pixels along a reference plane, and to cause an electromagnetic wave incident on the reference plane from the first imaging unit to travel in a first direction for each of the pixels;
    A second imaging unit that forms an image of the electromagnetic wave that has traveled in the first direction;
    A first detection unit that detects an electromagnetic wave incident from the second imaging unit;
    An extension surface of each of the reference surface and the detection surface of the first detection unit intersected, and a main axis of the second imaging unit passing through the detection surface of the reference surface and the first detection unit;
    The object plane of the first imaging unit whose distance from the advancing unit is determined and whose reference plane is the image plane intersects the reference plane with the respective extension planes, and the main axis of the first imaging unit An arrangement passing through the reference plane,
    An electromagnetic wave detection device in which at least one of the two is satisfied.
  2.  請求項1に記載の電磁波検出装置において、
     前記第2の結像部の主軸が前記基準面の中心と前記第1の検出部の検出面の中心を通る配置と、
     前記第1の結像部の主軸が前記基準面の中心を通る配置と、
    の少なくとも一方が満たされている、
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 1,
    An arrangement in which the main axis of the second imaging unit passes through the center of the reference surface and the center of the detection surface of the first detection unit;
    An arrangement in which the main axis of the first imaging unit passes through the center of the reference plane;
    At least one of is satisfied,
    Electromagnetic wave detector.
  3.  請求項1または2に記載の電磁波検出装置において、
     前記基準面、前記第2の結像部の主面、および前記第1の検出部の検出面それぞれの延長面が同一の直線上ですべて交差する配置と、
     前記基準面および前記第1の結像部の主面それぞれの延長面が交差する配置と、
    の少なくとも一方が満たされている、
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 1 or 2,
    An arrangement in which the extension surfaces of the reference surface, the main surface of the second imaging unit, and the detection surface of the first detection unit all intersect on the same straight line;
    An arrangement in which the extension surfaces of the reference surface and the main surface of the first imaging unit intersect each other;
    At least one of is satisfied,
    Electromagnetic wave detector.
  4.  請求項1から3のいずれか1項に記載の電磁波検出装置において、
     前記基準面、前記第2の結像部の主面、および、前記第1の検出部の検出面がシャインプルーフの原理の条件を満たす配置と、
     前記第1の結像部の主面、および、前記基準面がシャインプルーフの原理の条件を満たす配置と、
    の少なくとも一方が満たされている、
     電磁波検出装置。
    In the electromagnetic wave detection device according to any one of claims 1 to 3,
    An arrangement in which the reference surface, the main surface of the second imaging unit, and the detection surface of the first detection unit satisfy the condition of the principle of shine proof;
    An arrangement in which the main surface of the first imaging unit and the reference surface satisfy the condition of the principle of shine proof;
    At least one of is satisfied,
    Electromagnetic wave detector.
  5.  請求項1から4のいずれか1項に記載の電磁波検出装置において、
     前記進行部は、前記画素毎に、前記第1の結像部から前記基準面に入射する電磁波を前記第1の方向に進行させる第1の状態および第2の方向に進行させる第2の状態に切替え可能である
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 1 to 4.
    The advancing unit advances, in each of the pixels, a first state in which an electromagnetic wave incident on the reference surface from the first imaging unit is advanced in the first direction and a second state in which the electromagnetic wave is advanced in a second direction. An electromagnetic wave detection device that can be switched to
  6.  請求項5に記載の電磁波検出装置において、
     前記第2の方向に進行した電磁波を結像する第3の結像部と、
     前記第3の結像部から入射する電磁波を検出する第2の検出部と、をさらに備える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 5,
    A third imaging unit for imaging the electromagnetic wave that has traveled in the second direction;
    And a second detection unit that detects an electromagnetic wave incident from the third imaging unit.
  7.  請求項6に記載の電磁波検出装置において、
     前記基準面および前記第2の検出部の検出面それぞれの延長面が交差し、前記第3の結像部の主軸が前記基準面および前記第2の検出部の検出面を通る配置である
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 6,
    The extension plane of each of the reference plane and the detection plane of the second detection unit intersects, and the main axis of the third imaging unit passes through the detection plane of the reference plane and the second detection unit. Detection device.
  8.  請求項6または7に記載の電磁波検出装置において、
     前記第3の結像部の主軸が前記基準面の中心と前記第2の検出部の検出面の中心を通る配置である
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 6 or 7,
    The main axis of said 3rd image formation part is the arrangement | positioning which passes along the center of said reference plane, and the center of the detection surface of said 2nd detection part. The electromagnetic wave detection apparatus.
  9.  請求項6から8のいずれか1項に記載の電磁波検出装置において、
     前記基準面、前記第3の結像部の主面、および、前記第2の検出部の検出面は、それぞれの延長面が同一の直線上ですべて交差する配置である
     電磁波検出装置。
    In the electromagnetic wave detection device according to any one of claims 6 to 8,
    An electromagnetic wave detection device, wherein the reference surface, the main surface of the third imaging unit, and the detection surface of the second detection unit are arranged such that their extension surfaces all intersect on the same straight line.
  10.  請求項6から9のいずれか1項に記載の電磁波検出装置において、
     前記基準面、前記第3の結像部の主面、および、前記第2の検出部の検出面は、シャインプルーフの原理の条件を満たす配置である
     電磁波検出装置。
    In the electromagnetic wave detection device according to any one of claims 6 to 9,
    The reference plane, the main surface of the third imaging unit, and the detection surface of the second detection unit are arranged to satisfy the condition of the principle of shine proof.
  11.  請求項7から10のいずれか1項に記載の電磁波検出装置において、
     前記進行部は、前記画素毎に反射面を含み、前記反射面の向きを前記画素毎に変更可能である
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 7 to 10.
    The advancing unit includes a reflective surface for each of the pixels, and the direction of the reflective surface can be changed for each of the pixels.
  12.  請求項11に記載の電磁波検出装置において、
     前記進行部は、前記反射面の向きを前記画素毎に変更することで、前記画素毎に前記第1の状態および前記第2の状態を切替える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 11,
    The advancing unit switches the first state and the second state for each pixel by changing the direction of the reflective surface for each pixel.
  13.  請求項12に記載の電磁波検出装置において、
     前記進行部は、複数のミラーが平面に配列されたデジタルマイクロミラーデバイスを含み、前記デジタルマイクロミラーデバイスの各ミラーの向きを前記画素毎に変更することで、前記画素毎に前記第1の状態および前記第2の状態を切替える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 12,
    The advancing portion includes a digital micro mirror device in which a plurality of mirrors are arranged in a plane, and the first state is changed for each pixel by changing the direction of each mirror of the digital micro mirror device for each pixel. And an electromagnetic wave detection device that switches the second state.
  14.  請求項7から10のいずれか1項に記載の電磁波検出装置において、
     前記進行部は、前記画素毎に反射面を含み、前記反射面を前記画素毎に開閉可能である
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 7 to 10.
    The advancing unit includes a reflection surface for each of the pixels, and the reflection surface can be opened and closed for each of the pixels.
  15.  請求項14に記載の電磁波検出装置において、
     前記進行部は、前記反射面を前記画素毎に開閉することで、前記画素毎に前記第1の状態および前記第2の状態を切り替える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 14,
    The advancing unit switches the first state and the second state for each pixel by opening and closing the reflective surface for each pixel. An electromagnetic wave detection device.
  16.  請求項15に記載の電磁波検出装置において、
     前記進行部は、前記反射面を前記画素毎に開閉可能である複数のシャッタが平面に配列されたMEMSシャッタを含み、前記MEMSシャッタの各シャッタを開閉することで、前記画素毎に前記第1の状態および前記第2の状態を切り替える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 15,
    The advancing unit includes a MEMS shutter in which a plurality of shutters capable of opening and closing the reflective surface for each pixel are arranged in a plane, and opening and closing each shutter of the MEMS shutter allows the first for each pixel. An electromagnetic wave detection device that switches the state of and the second state.
  17.  請求項7から10のいずれか1項に記載の電磁波検出装置において、
     前記進行部は、前記画素毎に電磁波を反射する反射状態と透過する透過状態とを液晶配向に応じて切替え可能である
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 7 to 10.
    The advancing unit is capable of switching a reflection state of reflecting an electromagnetic wave and a transmission state of transmitting an electromagnetic wave for each pixel according to a liquid crystal alignment.
  18.  請求項17に記載の電磁波検出装置において、
     前記進行部は、前記液晶配向に応じて前記反射状態と前記透過状態とを前記画素毎に切替えることで、前記画素毎に前記第1の状態と前記第2の状態とを切替える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 17,
    The advancing unit switches the first state and the second state for each pixel by switching the reflection state and the transmission state for each pixel according to the liquid crystal alignment.
  19.  請求項18に記載の電磁波検出装置において、
     前記進行部は、前記反射状態と前記透過状態とを前記液晶配向に応じて切替え可能である液晶シャッタを含み、前記液晶シャッタの液晶配向を切り替えることで、前記画素毎に前記第1の状態および前記第2の状態を切り替える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 18,
    The advancing portion includes a liquid crystal shutter capable of switching between the reflection state and the transmission state according to the liquid crystal alignment, and switching the liquid crystal alignment of the liquid crystal shutter allows the first state and the first state for each pixel. An electromagnetic wave detection device that switches the second state.
  20.  請求項1から19のいずれか1項に記載の電磁波検出装置において、
     前記第1の検出部は、PD、APD、SPAD、MPPC、イメージセンサ、赤外線センサ、ミリ波センサ、サブミリ波センサ、測距イメージセンサ、測距センサ、またはサーモセンサの少なくともいずれかを含む
     電磁波検出装置。
    In the electromagnetic wave detection device according to any one of claims 1 to 19,
    The first detection unit includes at least one of PD, APD, SPAD, MPPC, image sensor, infrared sensor, millimeter wave sensor, submillimeter wave sensor, distance measurement image sensor, distance measurement sensor, or thermo sensor. apparatus.
  21.  請求項1から20のいずれか1項に記載の電磁波検出装置において、
     前記第1の検出部は、赤外線、可視光線、紫外線、および電波の少なくともいずれかを検出する
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 1 to 20,
    The first detection unit detects at least one of infrared light, visible light, ultraviolet light, and radio waves.
  22.  請求項8に記載の電磁波検出装置において、
     前記第2の検出部は、前記第1の検出部と同種、又は、異種のセンサを含む
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 8,
    The second detection unit includes a sensor of the same type or different type as the first detection unit.
  23.  請求項1から22のいずれか1項に記載の電磁波検出装置において、
     前記第1の結像部から入射した電磁波を前記進行部および第3の方向に進行するように分離する分離部を、さらに備える
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 1 to 22,
    An electromagnetic wave detection device, further comprising: a separation unit configured to separate an electromagnetic wave incident from the first imaging unit so as to travel in the traveling direction and a third direction.
  24.  請求項23に記載の電磁波検出装置において、
     前記分離部は、前記第1の結像部から入射した電磁波のうち第1の周波数の電磁波を前記進行部に、第2の周波数の電磁波を前記第3の方向に進行するように分離する、
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 23,
    The separation unit separates an electromagnetic wave of a first frequency among the electromagnetic waves incident from the first imaging unit to the traveling unit, and an electromagnetic wave of a second frequency to travel in the third direction.
    Electromagnetic wave detector.
  25.  請求項23または24に記載の電磁波検出装置において、
     前記分離部は、反射、透過および屈折の少なくともいずれかにより、入射する電磁波を前記進行部および第3の方向に進行するように分離する
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 23 or 24,
    The separating unit separates an incident electromagnetic wave so as to travel in the traveling direction and a third direction by at least one of reflection, transmission, and refraction.
  26.  請求項23から25のいずれか1項に記載の電磁波検出装置において、
     前記分離部は、入射する電磁波の一部を前記進行部に透過し、該電磁波の別の一部を前記第3の方向に反射する
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 25,
    The separation unit transmits part of an incident electromagnetic wave to the traveling part, and reflects another part of the electromagnetic wave in the third direction.
  27.  請求項23から25のいずれか1項に記載の電磁波検出装置において、
     前記分離部は、入射する電磁波の一部を前記進行部に反射し、該電磁波の別の一部を前記第3の方向に透過する
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 25,
    The separation unit reflects a part of the incident electromagnetic wave to the traveling part, and transmits another part of the electromagnetic wave in the third direction.
  28.  請求項23から25のいずれか1項に記載の電磁波検出装置において、
     前記分離部は、入射する電磁波の一部を前記進行部に透過し、該電磁波の別の一部を前記第3の方向に屈折させる
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 25,
    The separation unit transmits a part of the incident electromagnetic wave to the traveling part, and refracts another part of the electromagnetic wave in the third direction.
  29.  請求項23から25のいずれか1項に記載の電磁波検出装置において、
     前記分離部は、入射する電磁波の一部を前記進行部に屈折させ、該電磁波の別の一部を前記第3の方向に透過させる
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 25,
    The separation unit refracts a part of the incident electromagnetic wave to the traveling part, and transmits another part of the electromagnetic wave in the third direction.
  30.  請求項23から25のいずれか1項に記載の電磁波検出装置において、
     前記分離部は、入射する電磁波の一部を前記進行部に屈折させ、該電磁波の別の一部を前記第3の方向に屈折させる
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 25,
    The separation unit refracts a part of the incident electromagnetic wave to the traveling part, and refracts another part of the electromagnetic wave in the third direction.
  31.  請求項23から30のいずれか1項に記載の電磁波検出装置において、
     前記分離部は、ハーフミラー、ビームスプリッタ、ダイクロイックミラー、コールドミラー、ホットミラー、メタサーフェス、偏向素子、およびプリズムの少なくともいずれかを含む
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 30,
    The separation unit includes at least one of a half mirror, a beam splitter, a dichroic mirror, a cold mirror, a hot mirror, a metasurface, a deflection element, and a prism.
  32.  請求項23から31のいずれか1項に記載の電磁波検出装置において、
     前記第3の方向に進行した電磁波を検出する第3の検出部を、さらに備える
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 23 to 31,
    An electromagnetic wave detection device, further comprising: a third detection unit that detects an electromagnetic wave that has traveled in the third direction.
  33.  請求項1から32のいずれか1項に記載の電磁波検出装置において、
     前記第1の結像部は、レトロフォーカスタイプのレンズ系である
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 1 to 32,
    The first imaging unit is a retrofocus type lens system.
  34.  請求項1から33のいずれか1項に記載の電磁波検出装置において、
     前記第1の検出部により検出された電磁波に基づいて周囲に関する情報を取得する制御部を、さらに備える
     電磁波検出装置。
    The electromagnetic wave detection device according to any one of claims 1 to 33,
    An electromagnetic wave detection device, further comprising: a control unit that acquires information on surroundings based on the electromagnetic wave detected by the first detection unit.
  35.  請求項8に記載の電磁波検出装置において、
     前記第2の検出部により検出された電磁波に基づいて周囲に関する情報を取得する制御部を、さらに備える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 8,
    An electromagnetic wave detection device, further comprising: a control unit that acquires information on the surroundings based on the electromagnetic wave detected by the second detection unit.
  36.  請求項32に記載の電磁波検出装置において、
     前記第3の検出部により検出された電磁波に基づいて周囲に関する情報を取得する制御部を、さらに備える
     電磁波検出装置。
    In the electromagnetic wave detection device according to claim 32,
    An electromagnetic wave detection device, further comprising: a control unit that acquires information on the surroundings based on the electromagnetic wave detected by the third detection unit.
  37.  請求項1から33のいずれか1項に記載の電磁波検出装置と、
     前記第1の検出部により検出された電磁波に基づいて前記電磁波検出装置の周囲に関する情報を取得する制御装置と、を備える
     情報取得システム。
    The electromagnetic wave detection device according to any one of claims 1 to 33,
    An information acquisition system comprising: a control device for acquiring information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the first detection unit.
  38.  請求項6に記載の電磁波検出装置と、
     前記第2の検出部により検出された電磁波に基づいて前記電磁波検出装置の周囲に関する情報を取得する制御装置と、を備える
     情報取得システム。
    An electromagnetic wave detection device according to claim 6;
    An information acquisition system comprising: a control device that acquires information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the second detection unit.
  39.  請求項32に記載の電磁波検出装置と、
     前記第3の検出部により検出された電磁波に基づいて前記電磁波検出装置の周囲に関する情報を取得する制御装置と、を備える
     情報取得システム。
    An electromagnetic wave detection device according to claim 32;
    An information acquisition system comprising: a control device for acquiring information related to the periphery of the electromagnetic wave detection device based on the electromagnetic wave detected by the third detection unit.
  40.  入射する電磁波を結像する第1の結像部と、
     基準面に沿って複数の画素が配置され、前記第1の結像部から前記基準面に入射する電磁波を前記画素毎に第1の方向に進行させる進行部と、
     前記第1の方向に進行した電磁波を結像する第2の結像部と、
     前記第2の結像部から入射する電磁波を検出する第1の検出部と、を備え、
     前記基準面における前記第1の結像部による像の、前記第2の結像部による主軸近傍の像が前記第1の検出部の検出面に含まれる配置と、
     前記第1の結像部の主軸が通る対象物の、前記第1の結像部による主軸近傍の像が前記基準面に含まれる配置と、
    の少なくとも一方が満たされている、
     電磁波検出装置。
     
    A first imaging unit for imaging an incident electromagnetic wave;
    A traveling unit configured to arrange a plurality of pixels along a reference plane, and to cause an electromagnetic wave incident on the reference plane from the first imaging unit to travel in a first direction for each of the pixels;
    A second imaging unit that forms an image of the electromagnetic wave that has traveled in the first direction;
    A first detection unit that detects an electromagnetic wave incident from the second imaging unit;
    An arrangement in which an image in the vicinity of the main axis by the second imaging unit of the image by the first imaging unit on the reference plane is included in the detection surface of the first detection unit;
    An arrangement in which an image in the vicinity of the main axis by the first image forming unit is included in the reference plane, of an object through which the main axis of the first image forming unit passes;
    At least one of is satisfied,
    Electromagnetic wave detector.
PCT/JP2019/001035 2018-01-26 2019-01-16 Electromagnetic wave detection device and information acquisition system WO2019146461A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19743191.9A EP3745708A4 (en) 2018-01-26 2019-01-16 Electromagnetic wave detection device and information acquisition system
CN201980006851.8A CN111527740B (en) 2018-01-26 2019-01-16 Electromagnetic wave detection device
US16/959,106 US11573316B2 (en) 2018-01-26 2019-01-16 Electromagnetic wave detection apparatus and information acquisition system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-011881 2018-01-26
JP2018011881A JP7025940B2 (en) 2018-01-26 2018-01-26 Electromagnetic wave detection device and information acquisition system

Publications (1)

Publication Number Publication Date
WO2019146461A1 true WO2019146461A1 (en) 2019-08-01

Family

ID=67395458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001035 WO2019146461A1 (en) 2018-01-26 2019-01-16 Electromagnetic wave detection device and information acquisition system

Country Status (5)

Country Link
US (1) US11573316B2 (en)
EP (1) EP3745708A4 (en)
JP (1) JP7025940B2 (en)
CN (1) CN111527740B (en)
WO (1) WO2019146461A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115718307A (en) * 2021-02-02 2023-02-28 华为技术有限公司 Detection device, control method, fusion detection system and terminal
CN115327560B (en) * 2022-08-11 2024-05-07 天津市特种设备监督检验技术研究院(天津市特种设备事故应急调查处理中心) Device and method for detecting natural slipping quantity of forklift fork based on laser reflection

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507865B1 (en) 1970-05-19 1975-03-29
JPH04196878A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Automatic swing device for video camera
JPH11190864A (en) * 1997-12-25 1999-07-13 Canon Inc Image pickup device provided with swing mechanism, image pickup method and storage medium
JPH11508359A (en) * 1995-06-22 1999-07-21 3ディブイ・システムズ・リミテッド Improved optical ranging camera
JP2001201699A (en) * 1999-11-17 2001-07-27 Lucent Technol Inc Optical switch
JP2002325199A (en) * 2001-04-25 2002-11-08 Ricoh Co Ltd Electronic imaging device
WO2004077819A1 (en) * 2003-02-25 2004-09-10 Matsushita Electric Industrial Co., Ltd. Optical sensor
WO2009133849A1 (en) * 2008-04-28 2009-11-05 株式会社ニコン Inspection device
JP2013145145A (en) * 2012-01-13 2013-07-25 Hst Vision Corp Observation device
WO2016062785A2 (en) * 2014-10-21 2016-04-28 University College Cork - National University Of Ireland, Cork Smart photonic imaging method and apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507865B2 (en) 2001-02-02 2004-03-15 和歌山大学長 Method and apparatus for real-time shape measurement by CCD camera using DMD
US8675119B2 (en) 2001-08-09 2014-03-18 Trustees Of Columbia University In The City Of New York Adaptive imaging using digital light processing
US7236285B2 (en) * 2004-02-12 2007-06-26 Seiko Epson Corporation Light modulation device and optical display device, and light modulation method and image display method
DE102005049471B4 (en) 2005-10-13 2007-09-13 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Distance sensor with single surface scan
JP2010085472A (en) 2008-09-29 2010-04-15 Hitachi Ltd Image projection/imaging apparatus
US20140043610A1 (en) * 2012-08-07 2014-02-13 Carl Zeiss Industrielle Messtechnik Gmbh Apparatus for inspecting a measurement object with triangulation sensor
JP2014143383A (en) * 2012-12-27 2014-08-07 Nikon Corp Surface position detector, exposure device, and method of manufacturing device
US20140192187A1 (en) * 2013-01-08 2014-07-10 Faro Technologies, Inc. Non-contact measurement device
EP3138285A4 (en) 2014-04-26 2018-01-03 Tetravue, Inc. Method and system for robust and extended illumination waveforms for depth sensing in 3d imaging

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507865B1 (en) 1970-05-19 1975-03-29
JPH04196878A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Automatic swing device for video camera
JPH11508359A (en) * 1995-06-22 1999-07-21 3ディブイ・システムズ・リミテッド Improved optical ranging camera
JPH11190864A (en) * 1997-12-25 1999-07-13 Canon Inc Image pickup device provided with swing mechanism, image pickup method and storage medium
JP2001201699A (en) * 1999-11-17 2001-07-27 Lucent Technol Inc Optical switch
JP2002325199A (en) * 2001-04-25 2002-11-08 Ricoh Co Ltd Electronic imaging device
WO2004077819A1 (en) * 2003-02-25 2004-09-10 Matsushita Electric Industrial Co., Ltd. Optical sensor
WO2009133849A1 (en) * 2008-04-28 2009-11-05 株式会社ニコン Inspection device
JP2013145145A (en) * 2012-01-13 2013-07-25 Hst Vision Corp Observation device
WO2016062785A2 (en) * 2014-10-21 2016-04-28 University College Cork - National University Of Ireland, Cork Smart photonic imaging method and apparatus

Also Published As

Publication number Publication date
US20200333458A1 (en) 2020-10-22
CN111527740A (en) 2020-08-11
JP7025940B2 (en) 2022-02-25
JP2019129510A (en) 2019-08-01
EP3745708A4 (en) 2021-09-22
EP3745708A1 (en) 2020-12-02
CN111527740B (en) 2022-09-20
US11573316B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
KR102456631B1 (en) Electromagnetic wave detection device and information acquisition system
WO2019198568A1 (en) Electromagnetic wave detection device and information acquisition system
US11675052B2 (en) Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system
WO2019146461A1 (en) Electromagnetic wave detection device and information acquisition system
WO2019220978A1 (en) Electromagnetic wave detection device and information acquisition system
WO2020105419A1 (en) Electromagnetic wave detection device and information acquisition system
WO2019159933A1 (en) Electromagnetic wave detection device and information acquisition system
JP7194709B2 (en) rangefinder
US11381722B2 (en) Electromagnetic wave detection apparatus and information acquisition system
JP7260966B2 (en) Electromagnetic wave detector
JP2020073895A (en) Electromagnetic wave detection device and information acquisition system
JP2020073894A (en) Electromagnetic wave detection device and information acquisition system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743191

Country of ref document: EP

Effective date: 20200826