WO2019146010A1 - Apparatus for detecting defect in workpiece - Google Patents

Apparatus for detecting defect in workpiece Download PDF

Info

Publication number
WO2019146010A1
WO2019146010A1 PCT/JP2018/002079 JP2018002079W WO2019146010A1 WO 2019146010 A1 WO2019146010 A1 WO 2019146010A1 JP 2018002079 W JP2018002079 W JP 2018002079W WO 2019146010 A1 WO2019146010 A1 WO 2019146010A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
phase
unit
angular velocity
workpiece
Prior art date
Application number
PCT/JP2018/002079
Other languages
French (fr)
Japanese (ja)
Inventor
中原 崇
牧 晃司
見多 出口
雅寛 堀
金子 悟
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2018/002079 priority Critical patent/WO2019146010A1/en
Publication of WO2019146010A1 publication Critical patent/WO2019146010A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to a device for detecting a defect in a machined product which detects defects in a workpiece by various machining devices and molding devices.
  • Patent Document 1 there is known a prior art that automatically detects an injection abnormality that causes burrs and insufficient filling.
  • the present invention provides a defect detection apparatus for a workpiece that can detect defects of a workpiece with high accuracy with a relatively simple configuration.
  • the defect detection device for a workpiece detects defects in a workpiece manufactured by a processing device driven by a motor, and based on the current flowing to the motor, A phase determination unit that determines an operation phase of a processing apparatus, and a defect determination unit that determines the presence or absence of a defect of a workpiece based on a rotor angular velocity of a motor in a predetermined operation phase determined by the phase determination unit.
  • defects of a processed and formed product can be detected with high accuracy by a relatively simple configuration.
  • structure of the processing molded article defect detection system which is Example 1 of this invention is shown.
  • the hardware constitutions of the molded article defect detection apparatus are shown. It shows the hardware configuration of the server in FIG. It is a functional block diagram of a molding defect detection device. It is a functional block diagram of a molded article defect detection unit. It is a functional block diagram of the rotor angular velocity calculation part in FIG. It is a functional block diagram of each phase determination part. It is a functional block diagram of a defect determination part. It is a functional block diagram of a defect feature-value calculation part. It is a functional block diagram of a bad threshold value judgment part.
  • FIG. 5 shows a flow and sequence of processing in a workpiece molded part defect detection system. The detailed process flow and sequence of the phase determination process in FIG. 14 are shown.
  • FIG. 15 shows a detailed processing flow and a sequence of data collection processing in FIG.
  • FIG. 15 shows a detailed processing flow and a sequence of molded part defect detection processing in FIG. 14.
  • the processing flow and sequence of parameter learning / preservation processing which a server performs are shown.
  • the processing flow and sequence of parameter update processing F91 which a server performs are shown.
  • FIG. 21 shows a data configuration of a program temporary variable included in data for a molded part defect detection program in FIG. 20.
  • FIG. The data structure of the temporary variable for angular velocity calculation parts in FIG. 21 is shown.
  • the data structure of the phase determination threshold value group in FIG. 21 is shown.
  • the data structure of the temporary variable for defect determination parts in FIG. 21 is shown.
  • the data structure of the defect determination threshold value group in FIG. 21 is shown.
  • FIG. 21 shows a data configuration of a defect detection result in FIG. 20.
  • FIG. The data structure of the performance data in FIG. 20 is shown.
  • FIG. 21 shows a data configuration of learned parameter data in FIG. 20.
  • FIG. 37 is a functional block diagram of a defective feature quantity calculation unit included in the molding defect detection device in FIG. 36.
  • FIG. 37 is a functional block diagram of a defective threshold value determination unit included in the molding defect detection device in FIG. 36.
  • FIG. 1 shows a system configuration of a workpiece molded product defect detection system according to a first embodiment of the present invention.
  • the present processing molded article defect detection system includes an injection molding machine H1, a U-phase current sensor H2, a V-phase current sensor H3, a W-phase current sensor H4, a molded article defect detection device H5, a display H6, a speaker H7, an internet H8, and a server H9. It consists of In addition, you may apply not only the internet H8 but another wired or wireless communication network.
  • the injection molding machine H1 generates a molded product by injecting a molten material (for example, a plastic material) into a mold, sandwiching and holding the pressure with the mold.
  • the injection molding machine H1 includes a cylinder H100, a hopper H101, a screw H102, a mold H103, a tie bar H104, a mold clamping mechanism H105, an ejector H106, a crosshead H107, an injection motor H108, a metering motor H109, an ejector motor H110, a type A clamping motor H111, an ejection motor inverter H112, a weighing motor inverter H113, an ejector motor inverter H114, a clamping motor inverter H115, and a control device H116.
  • a permanent magnet synchronous motor or the like is applied as each motor.
  • the injection motor H108 is driven by the three-phase AC power output from the injection motor inverter H112.
  • the hopper H101 heats the material to flow.
  • the metering motor H109 agitates the material in a fluidized state with the hopper H101.
  • the metering motor inverter H113 applies a voltage to the metering motor H109 to drive the metering motor 109.
  • the cylinder H100 injects the material in the fluid state into the mold H103.
  • the screw H102 rotates in the cylinder H100 to push out the material.
  • the injection motor H108 rotates the screw H102.
  • the injection motor inverter H112 applies a voltage to the injection motor H108 to drive the injection motor H108.
  • the mold H103 molds a molded article.
  • the tie bars H104 are two or more support columns for guiding the opening and closing operation of the mold H103.
  • the clamping mechanism H105 opens and closes the mold H103.
  • the cross head H107 is a nut portion of a mold opening / closing ball screw.
  • the mold clamping motor H111 interlocks with the crosshead H107 to open and close the mold.
  • the clamping motor inverter H115 applies a voltage to the clamping motor H111 to drive the clamping motor H111.
  • the ejector H106 removes the molded material from the mold H103.
  • the ejector motor H110 rotates the ejector H106.
  • the ejector motor inverter H114 applies a voltage to the ejector motor H110 to drive the ejector motor H110.
  • the control device H116 sends a voltage command to the injection motor inverter H112, the weighing motor inverter H113, the ejector motor inverter H114, and the mold clamping motor inverter H115, whereby the injection molding machine H1
  • These inverters are controlled so that molded products can be made with high accuracy.
  • the operation of the injection molding machine H1 in the first embodiment is as follows. First, the plastic material is heated in the hopper H101 and stirred using the metering motor H109. Next, by driving the mold clamping mechanism H105 and the cross head H107 using the mold clamping motor 111, the two divided molds H103 are brought together. Next, the screw H102 is rotated using the injection motor H108 to inject the plastic material from the cylinder H100 into the mold H103. The mold is then held until the plastic material solidifies. Furthermore, after the mold is cooled, the mold clamping mechanism H 105 and the crosshead H 107 are driven using the mold clamping motor 111 to divide the mold into one, and the ejector motor H 110. The molded product is released from the mold H103 by driving the ejector H106 with using to eject the molded product. By repeating such an operation, a plurality of molded articles can be manufactured.
  • the U-phase current sensor H2 measures the U-phase current of the injection motor H108.
  • the V-phase current sensor H3 measures the V-phase current of the injection motor H108.
  • the W-phase current sensor H4 measures the W-phase current of the injection motor H108.
  • a current transformer (CT) or the like is applied as these current sensors.
  • the motor current used to control the injection motor inverter H112 for driving the injection motor H108 is an independent current different from the U-phase current sensor H2, the V-phase current sensor H3 and the W-phase current sensor H4. It is detected by a sensor (not shown).
  • clamp-type or clip-type CT is applied.
  • These types of CTs are detachably attached to a cable connecting between the injection motor H108 and the output of the injection motor inverter H112. Therefore, it is possible to provide the current sensor for the molding defect detection device without changing the device configuration of the drive device of the injection molding device including the injection motor H108 and the injection motor inverter H112.
  • the molded product defect detection device H5 detects whether or not the molded product has a defect using the U-phase current, V-phase current and W-phase current of the injection motor H108, and the defect detection result is the control device H116 of the injection molding machine H1. Send to or feedback.
  • the display H6 displays a molded product defect detection result screen generated by the molded product defect detection device H5.
  • the speaker H7 outputs a voice to notify the occurrence of a defect when a defect is detected in the molded product by the molded product defect detection device H5.
  • the Internet H8 is a communication path for performing data communication between the molded article defect detection device H5 and the server H9.
  • the server H9 is configured by a computer system, reads operation performance data of the injection molding machine H1 from the molded product defect detection device H5, and finds parameters to be used for molded product defect detection by learning processing based on the read operation performance data. The determined parameters are transmitted to the molded article defect detection device H5.
  • FIG. 2 shows the hardware configuration of the molded article defect detection device H5.
  • the molded article defect detection device H5 includes a central processing unit (CPU), a graphic processing unit (GPU), a sound function, a random access memory (RAM), a recording device, and interfaces (1 to 5). ing.
  • CPU central processing unit
  • GPU graphic processing unit
  • RAM random access memory
  • recording device and interfaces (1 to 5). ing.
  • the CPU executes arithmetic processing in accordance with a program for detecting a molded article defect.
  • the GPU generates screen data to be displayed on the display H6 from the molded article defect detection result, and outputs the generated screen data to the display H6 via the interface 3.
  • the sound function generates audio data to be output to the speaker H7 at a timing when a molded article defect is detected, and outputs the generated audio data to the display H7 via the interface 4.
  • the RAM temporarily stores data in a program for detecting a molding defect.
  • the recording device H50 records a program, data, and the like for detecting a molding defect.
  • a hard disk drive, a flash memory drive or the like is applied as the recording device H50.
  • the recording apparatus H50 stores a molded article defect detection program, a defect detection result transmission program, a defect detection result display program, a defect detection buzzer output program, a server data transmission / reception program, and various data H500. These computer programs (hereinafter referred to as "programs”) are executed by the CPU.
  • the molded article defect detection program is a program for detecting a defect in a molded article of the injection molding machine H1 from the U-phase current, the V-phase current and the W-phase current.
  • the defect detection result transmission program is a program for transmitting the defect detection result to the injection molding machine H1 via the interface 2.
  • the defect detection result display program is a program for generating screen data from the molded article defect result using the GPU, and outputting the generated screen data to the display H6 via the interface 3.
  • the defect detection buzzer output program is a program for generating voice data using a sound function at a timing when a molded article defect is detected, and outputting the generated voice data to the speaker H7 via the interface 4.
  • the server data transmission / reception program is a program for transmitting operation record data (hereinafter referred to as “result data”) to the Internet H8 via the interface 5 and receiving learned parameters from the Internet H8.
  • the various data H90 is data used in a program executed by the molded article defect detection device H5.
  • the molded article defect detection device H5 takes in the signals from the U-phase current sensor H2, the V-phase current sensor H3 and the W-phase current sensor H4 via the interface 1.
  • FIG. 3 shows the hardware configuration of the server H9 in FIG.
  • the server H 9 includes a central processing unit (CPU), a graphic processing unit (GPU), a random access memory (RAM), a recording device, an operation console, and an interface 1.
  • the server H9 learns various parameters used for detection of molded article failure using the actual data received from the Internet H8, and sends it to the Internet H8 as a learned parameter.
  • the CPU executes arithmetic processing in accordance with various programs described later.
  • the operation console displays a screen prompting the operator of the server H 9 to make an input, and receives an input from the operator regarding parameter learning execution and parameter update.
  • the GPU generates screen data to be displayed on the operation console, and outputs the generated screen data to the operation console.
  • the RAM temporarily stores data when executing various programs.
  • the recording device H90 records various programs and data executed by the server (CPU).
  • a hard disk drive, a flash memory drive or the like is applied as the recording device H90.
  • the recording device H90 stores an actual data reception program, a learned parameter transmission program, a parameter learning program, and various data H900.
  • the achievement data reception program is a program for receiving achievement data from the Internet H8 via the interface 1 and recording the received achievement data in the recording device H90.
  • the parameter learning program is a program for learning various parameters used for molded article defect detection using actual data and storing the parameters in the recording device H90 as learned parameters.
  • the learned parameter transmission program is a program for transmitting the learned parameters stored in the recording device H90 to the Internet H8 via the interface 1.
  • Various data H900 is data used by various programs executed by the server H9.
  • FIG. 4 is a functional block diagram of the molded article defect detection device H5.
  • the molded article defect detection device H5 has a molded article defect detection unit B50, a defect detection result transmission unit B51, a defect detection result display unit B52, a defect detection buzzer output unit B53, and a server data transmission unit B54. .
  • Molded product defect detection unit B50 detects U-phase current, V-phase current and W-phase detected by U-phase current sensor H2, V-phase current sensor H3 and W-phase current sensor H4, respectively, according to a molded product defect detection program (FIG. 2).
  • the phase current is used to detect a defect in the molded article of the injection molding machine H1.
  • the defect detection result transmission unit B51 transmits the defect detection result from the molded product defect detection unit B50 to the injection molding machine H1 in accordance with the defect detection result transmission program (FIG. 2).
  • Defect detection result display unit B 52 generates screen data according to a molding defect result from molding defect detection unit B 50 using a GPU according to a defect detection result display program (FIG. 2), and displays the generated screen data Output to H6.
  • the defect detection buzzer output unit B53 generates voice data using the sound function at the timing when the molding defect is detected by the molding defect detection unit B50 according to the defect detection buzzer output program (FIG. 2), and the generated voice is generated The data is output to the speaker H7.
  • the server data transmission / reception unit B54 transmits the result data to the Internet H8 according to the server data transmission / reception program (FIG. 2) and receives the learned parameters from the Internet H8.
  • FIG. 5 is a functional block diagram of the molded article defect detection unit B50.
  • the molded article defect detection unit B50 includes a rotor angular velocity calculation unit B500, each phase determination unit B501, a defect determination unit B502, a learning result decomposition unit B503, and a data aggregation unit B504.
  • the rotor angular velocity B500 uses the U-phase current, the V-phase current, and the W-phase current detected by the U-phase current sensor H2, the V-phase current sensor H3, and the W-phase current sensor H4, respectively.
  • the rotor angular velocity is calculated, and the d-axis current and the q-axis current in the rotational coordinates are calculated from the U-phase current, the V-phase current and the W-phase current.
  • Each phase determination unit B501 is based on the d-axis current and the q-axis current calculated by the rotor angular velocity B500, the injection phase start time in the injection molding machine H1 (FIG. 1), the pressure phase start time, the cooling phase start time In order.
  • the start time of each phase is also the end time of the immediately preceding phase.
  • Defect determination unit B 502 is a defect in the molded article of injection molding machine H 1 (presence or absence of defect, type based on the rotor angular velocity calculated by rotor angular velocity calculation unit B 500 and each phase start time determined by each phase determination unit Etc.).
  • the learning result disassembling unit B 503 uses the learned parameters sent from the server data transmitting / receiving unit B 54, a rotor angular velocity calculation coefficient used to calculate the rotor angular velocity, and a phase determination threshold group used to determine each phase start time And the defect determination threshold value group used for the determination of defects.
  • the data aggregation unit B 504 integrates the rotor angular velocity, the d-axis current and the q-axis current, the phase feature quantity serving as an index for determining each phase, and the defect feature quantity serving as an index for determining whether it is defective or not. Summarize as data.
  • FIG. 6 is a functional block diagram of rotor angular velocity calculation unit B 500 in FIG.
  • the rotor angular velocity calculation unit B500 includes an ⁇ conversion unit, a rotor angular velocity estimation unit, and a dq conversion unit.
  • the ⁇ conversion unit is a current in the U-phase current direction ( ⁇ -axis) from U-phase current, V-phase current and W-phase current respectively detected by U-phase current sensor H2, V-phase current sensor H3 and W-phase current sensor H4.
  • the ⁇ -axis current which is the component and the ⁇ -axis current which is the current component in the direction ( ⁇ -axis) perpendicular to the U-phase current direction are calculated. That is, the ⁇ conversion unit performs so-called three-phase / two-phase conversion.
  • the dq conversion unit is configured to use the injection motor H108 according to the rotor angle (provisional value in FIG. 6) estimated by the rotor angular velocity estimation unit described later from the ⁇ -axis current and ⁇ -axis current calculated by the ⁇ conversion unit.
  • D axis current which is a current component of the magnetic flux direction (d axis) of the rotating magnetic field of the stator
  • q axis current which is a current component of a direction (q axis) perpendicular to the magnetic flux direction of the stator
  • the current and the q-axis current are transmitted to each phase determination unit B501 and data aggregation unit B504.
  • the dq conversion unit converts the ⁇ -axis current and the ⁇ -axis current in the stationary coordinate system into the d-axis current and the q-axis current in the rotating coordinate system.
  • the magnetic flux direction of the rotor may be d axis
  • the direction perpendicular to the magnetic flux direction of the rotor may be q axis.
  • the rotor angular velocity estimation unit rotates based on the learning result decomposition unit B 503 based on the ⁇ axis current and ⁇ axis current calculated by the ⁇ conversion unit, or the d axis current and q axis current calculated by the dq conversion unit.
  • the rotor angle and the rotor angular velocity are calculated using the child angular velocity calculation coefficient, and the calculated rotor angular velocity is transmitted to defect determination unit B 502 and data aggregation unit B 504. Further, the rotor angular velocity estimation unit outputs the calculated rotor angle (provisional value) to the dq conversion unit.
  • FIG. 7 is a functional block diagram of each phase determination unit B501.
  • each phase determination unit B 501 includes a phase feature amount calculation unit and a phase threshold determination unit.
  • the phase feature quantity calculation unit is a phase feature quantity indicating the feature of the operation phase (injection, holding pressure, cooling) of the injection molding machine H1 based on the d-axis current and the q-axis current calculated in the rotor angular velocity determination unit B500. Is calculated, and the calculated phase feature amount is output to the phase threshold value determination unit. Further, the phase feature amount calculation unit transmits the calculated phase feature amount to the data aggregation unit B 504.
  • the phase feature value is, for example, the frequency at which the absolute value of the magnitude of the frequency component obtained by applying FFT (Fast Fourier Transform) to the d-axis current is maximum, or per unit time or in a predetermined period. It is the difference between the maximum value and the minimum value of the axis current.
  • the phase threshold determination unit acquires a phase determination threshold group indicating switching of the injection phase, the pressure holding phase, and the cooling phase from the learning result decomposition unit B 503, and performs threshold determination of the phase feature amount calculated by the phase feature amount determination unit. It is determined whether the time when the determination is made is the start time of each phase, and if it is the start time, the time when the determination is made is transmitted to the defect determination unit B 502 and the data aggregation unit B 504 as the start time of each phase. Do.
  • FIG. 8 is a functional block diagram of the defect determination unit B502.
  • the defect determination unit B 502 includes a defect feature amount calculation unit B 5020 and a defect threshold determination unit B 5021.
  • Defect feature quantity calculation unit B5020 calculates a defect feature quantity based on the rotor angular velocity acquired from rotor angular velocity calculation unit B500 and each phase start time output by each phase determination unit B501, and the calculated defect feature The amount is output to the defect threshold value determination unit B5021 and is also transmitted to the data aggregation unit B504.
  • the defect feature amount is a parameter having a correlation with the defect of the molded product, for example, a peak value of the rotor angular velocity at the time of holding pressure and a decay of the rotor angular velocity, which are correlated with burr generation and insufficient filling. Time constant, the rotational movement of the rotor, etc.
  • the defect threshold determination unit B5021 acquires a defect determination threshold group from the learning result decomposition unit B503, performs threshold determination of the defect feature amount calculated by the defect feature amount calculation unit B5020, and determines the determination result as a defect detection result. While transmitting to transmission part B51, defect detection result display part B52, and defect detection buzzer output part B53, it transmits also to data aggregation part B504.
  • FIG. 9 is a functional block diagram of the defect feature quantity calculation unit B5020.
  • the defect feature quantity calculation unit B5020 includes a pressure holding phase extraction unit, a pressure holding angular velocity extraction unit, an angular velocity peak value calculation unit, an attenuation time constant calculation unit, a rotor movement amount calculation unit, and a defect feature amount. It has an integrated part.
  • the pressure holding phase extraction unit extracts a pressure holding (phase) start time and a pressure holding (phase) end time, that is, a cooling (phase) start time, from each phase start time acquired from each phase determination unit B 501, and extracts it.
  • the pressure holding start time and the cooling start time are output to the pressure holding angular velocity extraction unit.
  • the pressure holding angular velocity extraction unit extracts the pressure holding angular velocity from the rotor angular velocity calculated by the rotor angular velocity calculation unit B500 between the pressure holding start time and the cooling start time extracted by the pressure holding phase extraction unit. Then, the extracted rotor angular velocity is output to the angular velocity peak value calculation unit, the attenuation time constant calculation unit, and the rotor movement amount calculation unit.
  • the pressure holding angular velocity extraction unit sets the rotor angular velocity to 0 before the pressure holding start time and after the cooling start time.
  • the angular velocity peak calculation unit calculates an angular velocity peak value as a defect feature based on the pressure holding angular velocity extracted by the pressure holding angular velocity extraction unit. At the time of pressure holding, the rotor angular velocity drops once due to pressure holding, but after rising due to the return of the material, it falls again. The peak value at the time of such a rise is the angular velocity peak value determined by the angular velocity peak calculation unit.
  • the damping time constant calculating unit calculates a damping time constant of the rotor angular velocity as a defect feature based on the pressure holding angular velocity extracted by the pressure holding angular velocity extracting unit. At the time of holding pressure, the rotor angular velocity attenuates after the peak value.
  • the damping time constant calculating unit calculates a time constant Tc when the angular velocity ⁇ (t) at the time of such damping is expressed by equation (1).
  • t represents time (s)
  • ⁇ peak represents the angular velocity peak value (rad / s)
  • T peak represents the value of time t when the value of the angular velocity ⁇ (t) reaches the peak value.
  • t ⁇ Tpeak .
  • the rotor movement amount calculation unit calculates the movement amount of the rotor as a defective feature amount by performing time integration calculation of the pressure holding time angular velocity extracted by the pressure holding time angular velocity extraction unit.
  • the defect feature amount aggregating unit integrates the angular velocity peak value, the attenuation time constant, and the rotor movement amount calculated respectively by the angular velocity peak value calculation unit, the attenuation time constant calculation unit, and the rotor movement amount calculation unit, and integrates them.
  • the defect feature amount is output to the defect threshold value determination unit B5021 and transmitted to the data aggregation unit B504.
  • FIG. 10 is a functional block diagram of the defective threshold value determination unit B5021.
  • the defective threshold judgment unit B5021 is a burr threshold judgment unit B50210, an overfill threshold judgment unit B50211, a void / sink threshold judgment unit B50212, a deformation / warp threshold judgment unit B50213, a color change ⁇ WL (weld line ) A threshold determination unit B50214 and a defect detection result aggregation unit B50215.
  • the flash threshold determination unit B50210 uses the defect feature amount calculated by the failure feature amount calculation unit B5020 and a threshold for determining the presence or absence of a flash included in the failure determination threshold value group acquired from the learning result decomposition unit B503. The presence or absence of a burr of a molded product is determined by thresholding, and the determination result is output to the defect detection result collecting unit B 50215.
  • the filling excess / deficiency threshold determination unit B50211 is a threshold for determining the excess / deficiency of the filling included in the defect determination threshold value group acquired by the defect feature amount calculation unit B5020 and the defect determination threshold value group acquired from the learning result decomposition unit B503. Is used to determine the filling excess or deficiency of the molded product as a threshold, and the determination result is output to the defect detection result aggregating unit B 50215.
  • the void / sink threshold determination unit B50212 determines the presence or absence of the void / sink included in the defect determination threshold value group acquired by the defect feature amount calculation unit B5020 and the defect determination threshold value group acquired from the learning result decomposition unit B503.
  • the threshold value is used to determine the presence or absence of voids and sink marks in the molded product using the threshold value, and the determination result is output to the defect detection result aggregation unit B 50215.
  • the deformation / warpage threshold determination unit B 50213 determines the presence or absence of the deformation / warpage included in the failure feature amount calculated by the failure feature amount calculation unit B 5020 and the failure determination threshold group acquired from the learning result decomposition unit B 503.
  • the threshold value is used to determine the presence or absence of deformation or warpage of the molded product using the threshold value, and the determination result is output to the defect detection result aggregation part B50215.
  • the threshold value is used to determine the occurrence of discoloration and weld line of the molded product using the threshold value, and the determination result is output to the defect detection result aggregation unit B50215.
  • Defect detection result aggregating part B50215 includes burr presence / absence by each of burr threshold judgment part B50210, filling excess / minus threshold judgment part B50211, void / sink threshold judgment part B50212, deformation / warpage threshold judgment part B50213, discoloration / WL threshold judgment part B50214 Judgment result, filling over / under judgment result, void / sinking judgment result, deformation / warp judgment result, discoloration / weld line judgment result are collected as defect detection results, and the collected defect detection results are shown in defect detection result transmitting portion B51, defect It transmits to the detection result display part B52, the defect detection buzzer output part B53, and the data collection part B504.
  • FIG. 11 is a functional block diagram of the flash threshold determination unit B50210. Note that the overfill threshold determination unit B50211, the void / sink threshold determination unit B50212, the deformation / warp threshold determination unit B50213, and the deformation / weld line threshold determination unit B50214 also have the same functional configuration as the burr threshold determination unit B50210, The description of these determination units is omitted.
  • the flash threshold judgment unit B 50210 has a defective feature amount division unit, a defective threshold judgment group division unit, a peak value threshold judgment unit, a time constant threshold judgment unit, a movement threshold judgment unit, and a logical operation unit. doing.
  • the defect feature quantity dividing unit divides the defect feature quantity acquired from the defect feature quantity calculation unit B 5020 into an angular velocity peak value, an attenuation time constant, and a rotor movement amount, and the peak value threshold judgment unit, time constant threshold judgment unit, movement Output to the amount threshold determination unit.
  • the defect threshold judgment group dividing unit divides the defect judgment threshold value group acquired from the learning result decomposing unit B 503 into the peak value threshold for burr judgment, the time constant threshold for burr judgment, and the movement amount threshold for burr judgment, and peak value threshold judgment respectively. It outputs to the unit, the time constant threshold determination unit, and the movement amount threshold determination unit. Further, the defective threshold value judgment group dividing unit outputs logical expression information to the logical operation unit.
  • the peak value threshold determination unit performs the threshold determination using the peak value threshold for burr determination acquired from the defect threshold determination group division unit based on the peak value acquired from the defect feature amount division unit, and the angular velocity peak value determination result Output
  • the time constant threshold determination unit performs threshold determination using the time constant threshold for flash determination acquired from the failure threshold determination group division unit based on the attenuation time constant acquired from the failure feature amount division unit, and the time constant determination result Output
  • the movement amount threshold determination unit performs the threshold determination using the movement threshold for burr determination acquired from the defect threshold determination group division unit based on the rotor movement amount acquired from the defect feature amount division unit, and the movement amount determination result Output
  • the logical operation unit is based on the peak value determination result output from the peak value threshold determination unit, the time constant threshold determination unit, and the movement amount threshold determination unit, the time constant determination result, and the movement amount determination result.
  • the logical expression information to be acquired is used to determine the presence or absence of a burr by logical operation, and the determination result is transmitted to the defect feature amount aggregating unit B 50215.
  • the peak value judgment result is R P (0 or 1)
  • the time constant judgment result is R T (0 or 1)
  • the movement amount judgment result is R M (0 or 1) (1 when the threshold is exceeded If it does not exceed 0, the burr presence / absence judgment result R B (0 (without burr) or 1 (with burr)) is expressed by a logical expression such as expression (2).
  • C PXX , C XTX , C XXM , C PTX , C PXM , C XTM , and C PTM are coefficients in respective logic terms, and take a value of 0 or 1.
  • the equation (2) is also applied to the overfill threshold determination unit B50211, the void / sink threshold determination unit B50212, the deformation / warp threshold determination unit B50213, and the deformation / weld line threshold determination unit B50214, and the value of each coefficient is And is appropriately set according to each determination unit.
  • FIG. 12 is a functional block diagram of the server H9 in FIG.
  • the server H 9 receives and saves actual data from the Internet H 8 and stores it in a server.
  • the actual data receiving / storing unit B 90 learns and stores parameters used for molding defect determination using the actual data.
  • FIG. 13 is a functional block diagram of the parameter learning / storage unit B91 in the server H9.
  • the parameter learning / storage unit B 91 includes an actual data decomposition unit, a rotor angular velocity calculation coefficient learning unit, a phase determination threshold value group learning unit, a failure determination threshold value group learning unit, and a learned parameter aggregation / storage unit. Have.
  • the actual data disassembling unit allows the actual data to be used in each learning unit, so that the rotor angular velocity, the d-axis current, the q-axis current, the phase feature, the injection start time, and the pressure holding start time And the cooling start time, the defect feature amount, and the defect determination result.
  • the rotor angular velocity calculation coefficient learning unit calculates a rotor angular velocity calculation coefficient so as to improve estimation accuracy of the rotor angular velocity based on actual data of the rotor angular velocity, d-axis current and q-axis current, and calculates a calculated value It outputs as a learning value of a rotor angular velocity calculation coefficient.
  • the rotor angular velocity calculation coefficient learning unit performs rotation when the magnitude of the difference between the rotor angular velocity calculated based on the d-axis current and the q-axis current and the rotor angular velocity of the actual data is larger than a predetermined value.
  • the child angular velocity calculation coefficient is adjusted, and if it does not exceed the predetermined value, the rotor angular velocity calculation coefficient is not changed and maintained at the current set value.
  • the phase determination threshold value group learning unit determines the phase determination threshold value group (injection phase determination threshold value, storage pressure phase determination threshold value, cooling phase determination, based on the phase feature amount and the actual data of injection start time, pressure holding start time, and cooling start time.
  • the threshold value and the in-shot phase determination threshold value are calculated, and the calculated value is output as a learning value of the phase determination threshold value group.
  • the phase determination threshold value group learning unit records the case where the injection start time, the pressure holding start time, and the cooling start time are extremely long or short, that is, when they are longer or shorter than a predetermined value.
  • the variance of the phase feature quantity per unit time is calculated, and in the part where there is a step in the variance, an intermediate value of the values before and after the step, that is, before and after the change of the phase feature quantity is calculated.
  • the “in-shot determination threshold” described in FIG. 13 is a threshold for determining whether or not a molded product is being generated.
  • the defect determination threshold value group learning unit calculates the defect determination threshold value group based on the defect feature amount and the actual result data of the defect determination result, and outputs the calculated value as a learning value. For example, the defect determination threshold value group learning unit calculates defect determination threshold value groups using so-called clustering. In this case, the defect determination threshold value group learning unit calculates a defect determination threshold value such that the cluster boundary that classifies the defect feature amount into a cluster with defect generation and a cluster without defect generation can classify the existence of defects with high probability. Do.
  • the learned parameter aggregating / storage unit is a parameter output by the rotor angular velocity calculation coefficient learning unit, the phase determination threshold value group learning unit, and the defect determination threshold value group learning unit, that is, the rotor angular velocity calculation coefficient, the phase determination threshold group.
  • the phase determination threshold, the pressure holding phase determination threshold, the cooling phase determination threshold, the in-shot phase determination threshold), and the defect determination threshold group are collected and stored.
  • the learned parameter reading / transmitting unit B 92 reads the parameters stored by the learned parameter aggregation / storage unit.
  • FIG. 14 shows the flow and sequence of processing in the system for detecting a defect in a formed molded article according to the first embodiment.
  • the molded product defect detection device H5 acquires values of the U-phase current, the V-phase current, and the W-phase current that are detected by the U-phase current sensor H2, the V-phase current sensor H3, and the W-phase current sensor H4, respectively.
  • the molded article defect detection device H 5 determines whether the current phase is injection, holding pressure, or cooling, and whether a shot is in progress.
  • a phase determination process F50 is performed. If the shot is in progress, the molded article defect detection device H5 performs data collection, and then returns to the process of acquiring the values of the U-phase current, the V-phase current, and the W-phase current. When the shot is not in progress, the molded article defect detection device H5 returns to acquisition processing of the values of U-phase current, V-phase current and W-phase current if the previous shot is not in shot, and if the previous shot is in shot The process F52 is executed.
  • the molded article defect detection device H5 After executing the detection process F52, the molded article defect detection device H5 transmits the defect detection result to the injection molding machine H1.
  • the injection molding machine H1 changes control setting values such as an injection speed setting value, a holding pressure setting value, and a mold pressure setting value according to the defect detection result received from the molded article defect detection device H5. Further, the molded article defect detection device H5 transmits the result data to the Internet H8, and transmits it to the server H9 (not shown in FIG. 14) via the Internet H8.
  • the molded article defect detection device H5 creates a defect detection screen and an audio output (buzzer output) based on the result of the defect detection, and transmits them to the display H6 and the speaker H7, respectively.
  • the display H8 displays a defect detection result screen from the molded article defect detection device H5, and the speaker H7 is a buzzer sound indicating that the molded article defect is detected when the voice output from the molded article defect detection device H5 is received.
  • FIG. 15 shows a detailed processing flow and sequence of the phase determination processing F50 in FIG.
  • the rotor angular velocity calculation unit B500 requests the learning result decomposition unit B503 for a rotor angular velocity calculation coefficient.
  • the learning result decomposition unit B 503 transmits the rotor angular velocity calculation coefficient to the rotor angular velocity calculation unit B 500.
  • the rotor angular velocity calculating unit B500 reads the U-phase current I u and the V-phase current I v and the W-phase current I w, running ⁇ conversion by equation (3), alpha -axis current I alpha and ⁇ -axis current I Calculate ⁇ .
  • the rotor angle estimation unit (FIG. 6) in the rotor angle calculation unit estimates the rotor angular velocity based on the ⁇ axis current and the ⁇ axis current.
  • rotation is performed using equation (4) from ⁇ -axis current I ⁇ (k) and ⁇ -axis current I ⁇ (k) calculated at time t
  • the child angle (provisional value) ⁇ d (k) is calculated.
  • the rotor angular velocity calculation unit B500 calculates the equation (5) based on the ⁇ axis current I ⁇ (k), the ⁇ axis current I ⁇ (k) and the rotor angle (provisional value) ⁇ d (k).
  • the dq conversion is performed to calculate the d-axis current I d (k) and the q-axis current I q (k).
  • the rotor angle estimation unit (FIG. 6) in the rotor angle calculation unit uses the equation (6) based on the calculated d-axis current I d (k) and q-axis current I q (k). The updated value ⁇ u (k) of the angle is calculated.
  • the rotor angle estimation unit determines whether the absolute value of the difference between the calculated updated value ⁇ u (k) of the rotor angular velocity and the temporary value ⁇ d (k) is equal to or greater than a predetermined threshold value. If the threshold value is greater than or equal to the threshold value, the temporary value ⁇ d (k) is recalculated by the equation (7), and the updated value ⁇ u is again calculated by the equations (5) and (6) using the recalculated value. Calculate (k).
  • C u is one of the rotor angular velocity calculation coefficients included in the learned parameters transmitted from the server H 9 (FIG. 12), and the absolute value of C u is 0 or more and less than 1 is there.
  • the rotor angle estimation unit determines the rotor angular velocity according to equation (8) ⁇ (k) is calculated and output as an estimated value of the rotor angle and stored. Note that ⁇ u (k ⁇ 1) is the updated value of the rotor angle that was calculated and stored one sampling period earlier.
  • the rotor angular velocity calculation unit B500 sends the d-axis current to each phase determination unit B501. And each value (I d (k), I q (k)) of the q-axis current.
  • each phase determination unit B 501 When receiving each value of the d-axis current and the q-axis current, each phase determination unit B 501 requests the phase determination threshold group to the learning result decomposition unit B 503. In response to this request, the learning result disassembly unit B 503 transmits the phase determination threshold value group to each phase determination unit B 501.
  • each phase determination unit B501 receives the phase determination threshold value group, each phase determination unit B501 stores the current phase number (identification number assigned to each operation phase (injection, holding pressure, cooling)) stored in each phase determination unit B501 or the like. Read and calculate phase feature quantities. When the calculated phase feature amount exceeds the phase threshold, each phase determination unit B501 determines that the operation phase is shifted from the operation phase indicated by the current phase number to the next phase, and saves the phase. Update the current phase number.
  • FIG. 16 shows a detailed process flow and sequence of the data collection process F51 in FIG.
  • the defect determination unit B 502 in the molded article defect detection unit B 50 requests the rotor angular velocity calculation unit B 500 to transmit the rotor angular velocity, the d-axis current, and the q-axis current.
  • the rotor angular velocity calculation unit B500 transmits the rotor angular velocity, the d-axis current, and the q-axis current to the defect determination unit B502 and the data aggregation unit B504.
  • the defect determination unit B 502 requests each phase determination unit B 501 to transmit the phase feature amount and each phase start time.
  • each phase determination unit B501 transmits the phase feature amount and each phase start time to the defect determination unit B502 and the data aggregation unit B504.
  • the failure determination unit B 502 acquires the current time, and transmits the acquired current time to the data aggregation unit B 504.
  • the defect determination unit B 502 and the data aggregation unit B 504 respectively store the acquired data (rotor angular velocity, d-axis current and q-axis current, phase feature amount and time to start each phase, time).
  • FIG. 17 shows a detailed processing flow and sequence of the molded part defect detection processing F52 in FIG.
  • the failure feature quantity calculation unit B 5020 in the failure judgment unit B 502 reads the rotor angular velocity, the pressure holding start time, and the cooling start time, and extracts the angular velocity at pressure holding.
  • the defect feature quantity calculation unit B 5020 calculates defect feature quantities according to the number of types of defect feature quantities, aggregates the calculated feature quantities, and sets them as defect feature quantities as a defect threshold decision unit B 5021 and data aggregation unit B 504. Send to
  • the defect threshold value determination unit B5021 When the defect threshold value determination unit B5021 receives the defect feature amount, the defect threshold value determination unit B5021 requests the learning result decomposition unit B503 to transmit the defect determination threshold value group. In response to this request, the learning result disassembly unit B 503 transmits a failure determination threshold value group to the failure threshold determination unit B 5021.
  • the defect threshold value determination unit B5021 executes threshold value determination processing using defect feature amounts and defect determination thresholds for the number of types of feature amounts. After all the threshold value determinations are completed, the defect threshold value determination unit B5021 determines the presence or absence of a defect by logical operation using the above-mentioned equation (2).
  • the defect threshold value determination unit B5021 aggregates defect detection results and transmits the result to the data aggregation unit B504.
  • the data aggregation unit B 504 stores the received defect detection result.
  • FIG. 18 shows the process flow and sequence of the parameter learning / storage process F90 executed by the server H9.
  • the operation receiving unit B 93 in the server H 9 transmits a learning command to the parameter learning / storage unit B 91.
  • the parameter learning / storage unit B91 When receiving the learning command, the parameter learning / storage unit B91 requests the actual data reception / storage unit B90 to transmit the actual data. In response to this request, the actual data reception / storage unit B90 transmits actual data to the parameter learning / storage unit B91.
  • the parameter learning / storage unit B 91 calculates each learning value of the rotor angular velocity calculation coefficient, the phase determination threshold group, and the failure determination threshold group based on the received actual data, and integrates these calculated learning values, Save as learned parameters.
  • FIG. 19 shows the process flow and the sequence of the parameter update process F91 executed by the server H9.
  • the operation accepting unit B 93 in the server H 9 accepts an operation of parameter update execution from the operator, the operation accepting unit B 93 transmits a parameter update command to the learned parameter reading and transmitting unit B 92.
  • the learned parameter reading / sending unit B 92 requests the parameter learning / storing unit B 91 to transmit the learned parameters.
  • the parameter learning / storage unit B91 transmits the learned parameters to the learned parameter learning / storage unit B92.
  • the learned parameter reading / transmitting unit B 92 receives the learned parameter
  • the learned parameter reading / transmitting unit B 92 transmits the learned parameter to the server data transmission / reception unit B 54 in the molded article defect detection device H 5 via the Internet H 8.
  • the server data transmission / reception unit B 54 stores the received learned parameter.
  • FIG. 20 shows the data configuration of various data H500 included in the molded article defect detection device.
  • various data H500 (FIG. 2) recorded in the recording device H50 in the molded article defect detection device H5 are data D50 for a molded article defect detection program, data D54 for a server data transmission / reception program, and a defect detection result It comprises data for transmission program, data for defect detection result display program, and data for defect detection buzzer output program.
  • Molded product defect detection program data D50 is a constant and a variable used by the molded product defect detection program, and includes setting data such as sampling cycle, temporary variable D500 for program, U-phase current value, V-phase current value, W-phase
  • the current value includes the defect detection result D501.
  • the setting data such as the sampling cycle is a setting value such as a sampling cycle in data collection or a coefficient used for various arithmetic processing.
  • the program temporary variable D500 is a collection of variables whose values are changed while being used while the molding defect detection program is being executed.
  • the U-phase current value, the V-phase current value, and the W-phase current value are digital data indicating the current values measured by the U-phase current sensor H2, the V-phase current sensor H3, and the W-phase current sensor H4, respectively.
  • the defect detection result D501 is data relating to the presence or absence of various defects of the molded product, calculated by the molded product defect detection program.
  • the server data transmission / reception program data D54 is a constant and a variable used by the server data transmission / reception program, and includes setting data such as communication speed, a program temporary variable, actual data D540, and a learned parameter D541.
  • the setting data such as the communication speed is a setting value such as the communication speed in communication with the server H 9 or a value indicating the type of communication protocol.
  • the program temporary variable is a collection of variables whose values are used while the server data transmission / reception program is being executed.
  • the performance data D540 is operation data of the molded article defect detection device H5, and time, rotor angular velocity, d axis current and q axis current, phase feature amount, injection start time, pressure holding start time, cooling start time, defect feature Includes quantity and defect judgment results.
  • the learned parameter is a group of various coefficients used for calculation of molded product defect detection received from the server H9, and includes a rotor angular velocity calculation coefficient, a phase determination threshold group, and a failure determination threshold
  • the defect detection result transmission program data is a constant and a variable used in the defect detection result transmission program, and includes setting data such as communication speed and a program temporary variable.
  • the setting data such as the communication speed is a setting value such as a communication speed in communication with the injection molding machine H1 or a value indicating the type of communication protocol.
  • the temporary variable for program is a collection of variables whose values are changed while the defect detection result transmission program is being executed.
  • the defect detection result display program data is a constant and a variable used by the defect detection result display program, and includes setting data such as a screen size, a program temporary variable, and display screen data.
  • the setting data such as the screen size is a setting value such as the size and the number of colors of the screen displayed on the display H6.
  • the program temporary variable is a collection of variables whose values are changed while the defect detection result display program is being executed.
  • the display screen data is image data of a screen showing a defect detection result.
  • the defect detection buzzer output program data is a constant and a variable used by the defect detection buzzer output program, and includes setting data such as a voice type, a program temporary variable, and voice data.
  • the setting data such as the sound type is the setting value of the type and volume of sound to be output to the speaker H7.
  • the program temporary variable is a collection of variables whose values are changed while being used during execution of the defect detection buzzer output program.
  • the voice data is waveform data of voice that sounds when defect detection occurs.
  • FIG. 21 shows a data configuration of a program temporary variable D500 included in the data for a molding defect detection program in FIG.
  • the program temporary variable D500 for the molded part defect detection program includes data D5000 for rotor angular velocity calculation unit, time series data for rotor angular velocity, data D5001 for each phase calculation unit, each phase start time, current , The current shot number, d-axis q-axis current time-series data, and data D5002 for defect determination unit.
  • the rotor angular velocity calculation unit data D5000 is a variable temporarily used by the rotor angular velocity calculation unit, and includes setting data and a temporary variable D50000 for the angular velocity calculation unit.
  • the setting data is a coefficient for calculating the rotor angular velocity, and includes a rotor angular velocity calculation coefficient, and a threshold of a difference between the updated estimated value of the rotor angle and the temporary value.
  • the angular velocity calculation unit temporary variable D50000 is a set of variables whose values are changed while the calculation of the rotor angular velocity is being performed.
  • the rotor angular velocity time-series data is data in which a plurality of values of time and rotor angular velocity exist as a set.
  • Each phase calculation unit data D5001 is a variable temporarily used in each phase calculation unit, and includes setting data and each phase calculation unit temporary variable D50010.
  • the setting data is a coefficient for calculating each phase start time, and includes a phase determination threshold group.
  • the temporary variables for each phase calculation unit are a collection of variables whose values are changed while calculation processing of each phase start time is being performed.
  • Each phase start time includes an injection start time which is a start time of the injection phase, a pressure holding start time which is a start time of the pressure holding phase, and a cooling start time which is a start time of the cooling phase.
  • the current phase number indicates the current phase number among the phase numbers assigned to the shot start phase, the injection phase, the pressure holding phase, the cooling phase, and the shot end phase.
  • the current shot number indicates the current shot number among the shot numbers indicating the number of times the molded product has been tried since the start of operation of the molded product defect detection device H5.
  • the d-axis and q-axis current time-series data are data that exist in a plurality of sets of time, d-axis current and q-axis current.
  • the defect determination unit data D5002 is a variable used in the defect determination unit, and includes setting data D50021 and a defect determination unit temporary variable D50020.
  • the setting data D50021 is setting data of the defect determination unit, and includes a defect determination threshold value group D500210.
  • the failure determination unit temporary variable D50020 is a variable used temporarily by the failure determination unit.
  • FIG. 22 shows a data configuration of the temporary variable D 50000 for the angular velocity calculation unit in FIG.
  • the temporary variables for the angular velocity calculation unit are ⁇ axis current value, ⁇ axis current value, d axis current value (temporary value), q axis current value (temporary value), rotor angular velocity tentative value, rotation
  • the child angular velocity update value is included.
  • FIG. 23 shows a data configuration of phase determination threshold value group D50010 in FIG.
  • the phase determination threshold group D50010 includes an injection phase determination threshold for determining an injection phase, a pressure holding phase determination threshold for determining a pressure holding phase, and an injection phase determination for determining an injection phase.
  • the threshold value, the cooling phase determination threshold value for determining the cooling phase, and the in-shot determination threshold value for determining whether the shot is in progress are included.
  • FIG. 24 shows a data configuration of the failure determination unit temporary variable D50020 in FIG.
  • the failure determination unit temporary variable D 50020 includes pressure holding angular velocity time-series data and a failure feature amount.
  • the pressure retention time angular velocity time series data is data in which a plurality of time and pressure retention time rotor angular velocities are present as a set.
  • the defect feature amount includes an angular velocity peak value, an attenuation time constant, and a rotor movement amount.
  • FIG. 25 shows a data configuration of failure determination threshold value group D500210 in FIG.
  • the defect determination threshold group D500210 includes a burr determination threshold group, an overfill determination threshold group, an underfill determination threshold group, a sink mark determination threshold group, and a void determination threshold group (FIG. 25). (Not shown), deformation determination threshold group (not shown in FIG. 25), warpage determination threshold group (not shown in FIG. 25), color change determination threshold group (not shown in FIG. 25), weld line determination A threshold group (not shown in FIG. 25) is included.
  • the burr determination threshold group includes a peak value threshold, a time constant threshold, a movement amount threshold, and logical expression data.
  • the peak value threshold indicates the boundary (threshold) of the rotor angular velocity peak value when burrs occur.
  • the time constant threshold indicates the boundary of the decay time constant when burrs occur.
  • the movement amount threshold indicates the boundary of the rotor movement amount when burrs occur.
  • the overfill determination threshold group also has the same data configuration as the burr judgment threshold value group.
  • FIG. 26 shows the data structure of the defect detection result D501 in FIG.
  • the defect detection result D501 indicates the presence or absence of burrs indicating whether or not there are burrs in the molded product, the overfilling determination result indicating whether the molded product is overfilled or not, whether the molded product is insufficiently filled or not.
  • the result of the lack of emphasis judgment shown the result of the void judgment showing whether or not a void is generated in the molded article, the result of a sinking judgment showing whether or not a sink mark is generated in the molded article, and whether or not the molded article has deformation.
  • the value of the determination result is indicated by a logical value, and is 1 when the corresponding defect occurs in the molded product, and 0 when it does not occur. is there.
  • FIG. 27 shows the data configuration of the performance data D 540 in FIG.
  • the performance data is a collection of performance data per shot, and the performance data per shot is a shot number, performance time series data, each phase start time, defect feature amount, defect determination Include the results.
  • the actual time-series data is data in which a plurality of time, rotor angular velocity, d-axis current, q-axis current, and phase feature amount exist as a set.
  • FIG. 28 shows the data configuration of the learned parameter data D 541 in FIG.
  • the learned parameter data D541 includes a rotor angular velocity calculation coefficient, a phase determination threshold group D50010, and a defect determination threshold group D500210.
  • FIG. 29 shows a data configuration of various data H900 possessed by the server H9 in FIG.
  • the various data H900 of the server H9 includes data for a performance data reception program, data for a learned data reception program, data for a parameter learning program, performance data D540, and a learned parameter D541.
  • the data for the actual data receiving program is a constant and a variable used by the actual data receiving program, and includes setting data such as communication speed and a temporary variable for the program.
  • the program setting data is a setting value such as a communication speed in communication with the molded article defect detection device H5 or a value indicating the type of communication protocol.
  • the temporary variable for program is a collection of variables whose values are used while the actual data receiving program is being executed.
  • the data for the learned data transmission program is a constant and a variable used by the learned data transmission program, and includes setting data such as communication speed and a temporary variable for the program.
  • the program setting data is a setting value such as a communication speed in communication with the molded article defect detection device H5 or a value indicating the type of communication protocol.
  • the program temporary variable is a collection of variables whose values are used while the learned data transmission program is being executed.
  • the data for the parameter learning program is a constant and a variable used by the parameter learning program, and includes setting data such as a learning coefficient and a temporary variable for the program.
  • Setting data such as learning coefficients are setting values such as learning coefficients used for parameter learning.
  • the program temporary variable is a collection of variables whose values are used while the parameter learning program is being executed.
  • FIG. 30 shows screen transition of the defect detection result screen display on the display H6 in FIG.
  • the shot selection screen G61 is a screen display prompting the user to select which shot of the defect detection results the defect detection result is to be displayed.
  • the molded product defect detection result screen G60 displayed when the shot number is selected includes the shot number, the presence or absence of burrs, the presence or absence of overfilling, the presence or absence of insufficient filling, the presence or absence of voids, the presence or absence of warpage, the presence or absence of warpage, or deformation
  • the presence or absence of threading, the presence or absence of a weld line, and a back button are displayed. When the back button is selected, the screen display returns to the shot selection screen G61.
  • the predetermined operation phase (hold pressure phase) for determining a defect is extracted and extracted based on the motor current detected by the current sensor provided for the molding defect detection device.
  • the operation phase the presence or absence of a defect of the injection molded product which is a workpiece is detected based on the rotor angular velocity of the motor estimated from the motor current.
  • defects of the injection-molded product can be detected with high accuracy by a relatively simple device configuration.
  • the injection molding apparatus can be provided with a molding defect detection function without substantially changing the device configuration of the injection molding machine, it is possible to suppress an increase in cost.
  • FIG. 31 shows a system configuration of a workpiece molded product defect detection system according to a second embodiment of the present invention. The following mainly describes differences from the first embodiment.
  • the present processing molded article defect detection system includes an injection molding machine H1, a display H6, a speaker H7 (buzzer sound), the Internet H8, and a server H9.
  • the injection motor inverter H112 includes a power generation unit H1120 that applies a voltage to the injection motor H108, and a molding defect detection function unit H1121.
  • the power generation unit H1120 includes a main circuit unit (not shown) formed of a semiconductor switching element, and a control unit (not shown) for driving the main circuit.
  • the molded product defect detection function unit H1121 detects the presence or absence of a defect in the molded product using the rotor angular velocity sensor value of the injection motor H108 and the U-phase current, and transmits or feedbacks the defect detection result to the control device H116.
  • the display H6 displays a molded product defect detection result screen generated by the molded product defect detection function unit H1121.
  • the speaker H7 outputs a voice (buzzer sound) when a defect of the molded product is detected by the molded product defect detection function unit H1121, and notifies the occurrence of the defect.
  • the Internet H8 is a communication path for performing data communication between the molded product defect detection function unit H1121 and the server H9.
  • the server H9 reads the operation result data of the injection molding machine H1 from the molded part defect detection function unit H1121, obtains the parameter used for molded part defect detection by learning processing, and transmits the calculated parameter to the molded part defect detection unit H1121 Do.
  • FIG. 32 is a functional block diagram of the molded article defect detection function unit H1121.
  • the molded article defect detection function unit H1121 includes a molded article defect detection unit B11210, a defect detection result transmission unit B11211, a defect detection result display unit B11212, a defect detection buzzer output unit B11213, and a server data transmission unit B11214.
  • a defect detection unit B11210 includes a defect detection result transmission unit B11211, a defect detection result display unit B11212, a defect detection buzzer output unit B11213, and a server data transmission unit B11214.
  • the molded part defect detection B11210 is detected by a sensor to control the injection motor inverter H112 according to the molded part defect detection program, and is taken in and stored in the control part of the injection motor inverter H112. Defects in the molded product of the injection molding machine H1 are detected using the rotor angular velocity and the U-phase current of the motor H108. In place of the U-phase current, a V-phase current or a W-phase current may be used.
  • the U-phase current is detected by a current sensor (CT or the like) for control of the injection motor inverter (not shown).
  • CT current sensor
  • the injection motor inverter not shown.
  • at least two of the three-phase motor currents are detected for control of the injection motor inverter (one-phase motor current is not detected because the sum of the three-phase motor currents is zero). Calculated).
  • the rotor angular velocity is detected by a rotation sensor (for example, a rotary encoder etc.) not shown, estimated from three-phase current of the motor as in the first embodiment, or induction voltage of the motor applying so-called sensorless control. It is estimated based on etc.
  • a rotation sensor for example, a rotary encoder etc.
  • Defect detection result transmission unit B11211, defect detection result display unit B11212, defect detection buzzer output unit B11213, and server data transmission unit B11214 respectively indicate defect detection result transmission unit B51 and defect detection result display in the first embodiment (FIG. 4). It has the same function as the unit B52, the defect detection buzzer output unit B53, and the server data transmission / reception unit B54.
  • FIG. 33 is a functional block diagram of the molded part defect detection unit H11210 in FIG.
  • the molded article defect detection unit B11210 includes each phase determination unit B112100, a defect determination unit B112101, a learning result decomposition unit B503, and a data aggregation unit B504.
  • Each phase determination unit B11210 determines each phase start time using the U-phase current of the injection motor H108 stored in the injection motor inverter H112 and the phase determination threshold group from the learning result decomposition unit B503. Do.
  • Defect determination unit B112101 starts the rotor angular velocity of injection motor H108 stored in injection motor inverter H112, defect determination threshold value group from learning result decomposition unit B503, and start of each phase from each phase determination unit B11210.
  • the defect detection result is calculated using time.
  • the learning result decomposing unit B 503 and the data aggregation unit B 504 in FIG. 33 have the same functions as the learning result decomposition unit B 503 and the data aggregation unit B 504 in the first embodiment (FIG. 5), respectively.
  • FIG. 34 is a functional block diagram of each phase determination unit B 112100 in FIG.
  • each phase determination unit B 112100 has a phase feature amount calculation unit and a phase threshold determination unit.
  • the phase feature amount determination unit calculates a phase feature amount indicating a feature of the phase from the U-phase current sensor H2.
  • the phase threshold determination unit in FIG. 34 has the same function as the phase threshold determination unit in the first embodiment (FIG. 7).
  • FIG. 35 is a functional block diagram of defect determination unit B 112101 in FIG.
  • the defect determination unit B 112101 includes a defect feature amount calculation unit and a defect threshold determination unit.
  • the defect determination unit calculates a defect feature amount from the rotor angular velocity of the injection motor H108 stored in the injection motor inverter H112 and each phase start time from each phase determination unit B11210.
  • the defect threshold determination unit in FIG. 35 has the same function as the defect threshold determination unit B5021 in the first embodiment (FIG. 8).
  • the control unit of the injection motor inverter for driving the injection motor is provided with a molded product defect detection function and mounted, and inverter control is performed on a predetermined operation phase (hold pressure phase) for judging a defect.
  • a predetermined operation phase to be extracted and extracted based on the motor current detected by the current sensor provided for the motor, based on the rotor angular velocity of the motor detected by the rotation sensor or estimated from the motor current.
  • the presence or absence of a defect of the injection-molded product which is a workpiece is detected.
  • defects of the injection molded product can be detected with high accuracy by a relatively simple device configuration.
  • the molding defect detection function is mounted on the control unit of the injection motor inverter, and the motor current and the rotor angular velocity used for controlling the inverter and motor in the control unit are used together for defect detection.
  • FIG. 36 shows a system configuration of a workpiece molded part defect detection system that is Embodiment 3 of the present invention. The following mainly describes differences from the first embodiment.
  • This machined molded product defect detection system is from cutting machine H0, U phase current sensor H2, V phase current sensor H3, W phase current sensor H4, molded product defect detection device H5, display H6, speaker H7, Internet H8, server H9 Configured
  • the cutting machine H0 includes a drill H001, a cutting machine H003 on which a material H002 to be processed is placed, a drill rotation motor H004, a height direction movement motor H005, a width direction movement motor H006, and a depth direction movement motor H007.
  • the cutting machine H0 manufactures a machined product by cutting the material H002 by rotating the drill H001 with the drill rotation motor H004.
  • the drill H 001 processes the material H 002 into a predetermined shape by contacting the material H 002 while rotating a bladed rotary body.
  • the cutting machine H003 is a base on which the material H002 is placed.
  • the drill rotation motor H004 is a motor for rotating the drill H001.
  • the height direction moving motor H 005, the width direction moving motor H 006, and the depth direction moving motor H 007 move the drill H 001 in the height direction, the width direction, and the depth direction by rotating the rotor.
  • the drive system for moving in the height direction H008, the drive system for moving in the width direction H009, and the drive system for moving in the depth direction H010 are each composed of a spindle, a gear and a reel, and each has a motor for moving in the height direction H005.
  • the power generated by the width direction moving motor H 006 and the depth direction moving motor H 007 is transmitted in each moving direction.
  • the drill rotation motor H011, the height direction movement motor inverter H012, the width direction movement motor inverter H013, and the depth direction movement motor inverter H014 are respectively the drill rotation motor H004 and the height direction movement.
  • a voltage is applied to the motor H 005, the width direction moving motor H 006, and the depth direction moving motor H 007 to drive.
  • the other components (H2 to H9) shown in FIG. 36 have the same functions as in the first embodiment (FIG. 1).
  • FIG. 37 is a functional block diagram of a defect feature amount calculation unit B 5020 included in the molding defect detection device in FIG. 36 (see FIG. 9 for Example 1).
  • the defective feature quantity calculation unit B5020 includes a contact phase extraction unit, an angular velocity extraction unit at contact time, an angular velocity peak value calculation unit, an attenuation time constant calculation unit, a rotor movement amount calculation unit, and a defective feature quantity aggregation unit Have.
  • the contact phase extraction unit extracts the contact start time and the contact end time of the drill H001 and the material H002 from each phase start time from each phase determination unit B501, and extracts the contact start time and the contact end time when contacting the angular velocity Send to department
  • the contact angular velocity extraction unit extracts the rotor angular velocity of the drill rotation motor H 004 at the time of contact from the rotor angular velocity from the rotor angular velocity calculation unit B 500 and the contact start time and contact end time from the contact phase extraction unit. Do.
  • the contact angular velocity extraction unit sets these values to 0 for the rotor angular velocity before the contact start time and after the contact end time.
  • the angular velocity peak time calculation unit, the attenuation time constant calculation unit, the rotor movement amount calculation unit, and the defect feature amount aggregation unit in FIG. 37 are the angular velocity peak time calculation unit and the attenuation time constant in Example 1 (FIG. 9), respectively. It has the same function as the calculation unit, the rotor movement amount calculation unit, and the defect feature amount aggregation unit.
  • FIG. 38 is a functional block diagram of a defective threshold value determination unit B5021 included in the molding defect detection device in FIG. 36 (see FIG. 10 for Example 1).
  • the defect threshold judgment unit B5021 is a breakage threshold judgment unit B50216, a substrate burr threshold judgment unit B50217, a dimension accuracy failure threshold judgment unit B50218, a chip clogging threshold judgment unit B50219, and a cutting surface roughness threshold judgment unit B5021A. , And a defect detection result aggregation part B50215.
  • the breakage threshold determination unit B 50216 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to determine whether there is a defect in the processed product due to breakage of the drill H 001. Then, the determination result is transmitted to the defect detection result aggregating unit B 50215.
  • the substrate burr threshold determination unit B 50217 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to threshold the presence or absence of a burr generated on the substrate of the processed molded article. It judges and transmits a judgment result to defect detection result intensive part B50215.
  • the dimensional accuracy defect threshold determination unit B 50218 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to determine whether there is a deviation in the dimensional accuracy of the processed product. Then, the determination result is transmitted to the defect detection result aggregating unit B 50215.
  • the chip clogging threshold determination unit B 50219 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to threshold the presence or absence of a defect in the processed product due to chipping. It judges and transmits a judgment result to defect detection result intensive part B50215.
  • the cutting surface roughness threshold determination unit B5021A uses the defect feature amount from the defect feature amount calculation unit B5020 and the defect determination threshold value group from the learning result decomposition unit B503 to threshold the presence or absence of roughening on the cutting surface of the processed product. It judges and transmits a judgment result to defect detection result intensive part B50215.
  • the defect detection result aggregating part B 50215 uses the judgment results of each judgment part, that is, the breakage presence / absence judgment result, the substrate burr presence / absence judgment result, the dimensional accuracy defect judgment result, the chip clogging judgment result, the cutting surface roughness judgment result as a defect detection result It gathers and it transmits to defect detection result transmission part B51, defect detection result display part B52, defect detection buzzer output part B53, and data aggregation part B504.
  • the predetermined operation phase (contact phase) for determining a failure is extracted based on the motor current detected by the current sensor provided for the molding failure detection device, and the predetermined operation is extracted.
  • the phase based on the rotor angular velocity of the motor estimated from the motor current, it is detected whether or not there is a defect in the machined product which is a workpiece.
  • defects can be detected with precision with a relatively simple device configuration.
  • the mechanical device can be provided with a molding defect detection function without substantially changing the device configuration of the cutting machine, the increase in cost can be suppressed.
  • the molding defect detection function may be mounted on the control unit of the drill rotation motor inverter.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • H001 drill, H002: material, H003: cutting machine, H004: Motor for drill rotation, H005: Motor for moving in the height direction, H006: Width direction movement motor, H007: Depth direction movement motor, H008: Drive system for moving in the height direction, H009: Drive unit for moving in the width direction, H010: Drive system for moving in the depth direction H011: Inverter for drill rotation motor, H012: Motor inverter for moving in the height direction H013: Inverter for width direction movement motor, H014: Inverter for moving motor in depth direction, H100: cylinder, H101: hopper, H102: screw, H103: mold, H104: tie bar, H105: clamping mechanism, H106: Ejector, H107: Crosshead, H108: Ejection motor, H109: Weighing motor H110: Ejector motor, H111: Clamping motor, H112: Inverter for motor for injection, H113: Motor for measuring motor, H114: Motor for drill

Abstract

Disclosed is an apparatus which is for detecting a defect in a workpiece, and is capable of detecting, with high accuracy, a defect in a machined and molded product with a relatively simple configuration. An apparatus for detecting a defect in a workpiece according to the present invention is configured to detect a defect in a workpiece manufactured by a machining device (H1) driven by a motor (H108), the apparatus being provided with: a phase determining unit which determines an operation phase of the machining device on the basis of a current flowing in the motor; and a defect determining unit which determines whether there is a defect in the workpiece, on the basis of the angular speed of a rotor of the motor in the predetermined operation phase determined by the phase determining unit.

Description

加工物の不良検知装置Defect detection system for workpieces
 本発明は、種々の機械加工装置や成形装置による加工物の不良を検知する加工成形品不良検知装置に関する。 TECHNICAL FIELD The present invention relates to a device for detecting a defect in a machined product which detects defects in a workpiece by various machining devices and molding devices.
 射出成形や切削など、加工機械による加工においては、適切な制御パラメータを与えないと加工機械により製作される加工物にバリなどの不良が発生するため、不良を検知すると、制御条件を調整する。例えば射出成形においては、インジェクタから材料を射出し金型で挟み込み保圧することにより成形品を生成するが、適切な射出速度、金型圧、保圧などの条件を設定しないと成形品にバリが発生したり、充填が不足したりする。しかし、バリ発生や充填不足を目視で検知すると手間がかかり、生産性の低下を招く。 In processing by a processing machine such as injection molding and cutting, defects such as burrs occur in a workpiece manufactured by the processing machine unless an appropriate control parameter is given. Therefore, when a defect is detected, control conditions are adjusted. For example, in injection molding, a molded article is produced by injecting material from an injector and sandwiching and holding it with a mold. However, if the conditions such as the injection speed, mold pressure, and holding pressure are not set, burrs may form on the molded article. It may occur or filling will be insufficient. However, visual inspection of the occurrence of burrs and insufficient filling is time-consuming, leading to a decrease in productivity.
 これに対し、特許文献1に記載されるように、バリや充填不足を生じる射出異常を自動的に検知する従来技術が知られている。 On the other hand, as described in Patent Document 1, there is known a prior art that automatically detects an injection abnormality that causes burrs and insufficient filling.
 特許文献1に記載の技術では、射出保圧工程開始後において、モータによって駆動されるスクリューの移動速度を、予め設定された特定時点もしくはスクリュー位置において検出し、検出移動速度が設定許容範囲を越えた場合に射出異常と判定する。 In the technique described in Patent Document 1, after the injection holding process starts, the moving speed of the screw driven by the motor is detected at a predetermined point or screw position set in advance, and the detected moving speed exceeds the setting allowable range. If it is determined that the injection is abnormal.
特開平5-192969号公報Unexamined-Japanese-Patent No. 5-192969
 上記従来技術では、加工成形品の不良を検知するためのセンサの設置またはセンサ信号の取り込みが必要となる。また、加工成形品の不良を検知する時に、現在の工程の状態を加工機械自体の制御装置から取り込む必要がある。このため、装置構成が複雑になり、コストが増えるという問題がある。 In the above-mentioned prior art, installation of a sensor or detection of a sensor signal is required to detect a defect in a processed molded product. In addition, when detecting a defect in a processed and formed product, it is necessary to capture the current process state from the control device of the processing machine itself. For this reason, there is a problem that the device configuration becomes complicated and the cost increases.
 そこで、本発明は、比較的簡単な構成で、加工物の不良を精度よく検知できる加工物の不良検知装置を提供する。 Accordingly, the present invention provides a defect detection apparatus for a workpiece that can detect defects of a workpiece with high accuracy with a relatively simple configuration.
 上記課題を解決するために、本発明による加工物の不良検知装置は、モータによって駆動される加工装置によって製作される加工物の不良を検知するものであって、モータに流れる電流に基づいて、加工装置の動作フェーズを判定するフェーズ判定部と、フェーズ判定部によって判定される所定の動作フェーズにおけるモータの回転子角速度に基づいて、加工物の不良の有無を判定する不良判定部と、を備える。 In order to solve the above problems, the defect detection device for a workpiece according to the present invention detects defects in a workpiece manufactured by a processing device driven by a motor, and based on the current flowing to the motor, A phase determination unit that determines an operation phase of a processing apparatus, and a defect determination unit that determines the presence or absence of a defect of a workpiece based on a rotor angular velocity of a motor in a predetermined operation phase determined by the phase determination unit. .
 本発明によれば、比較的簡単な構成で、加工成形品の不良を精度よく検知できる。 According to the present invention, defects of a processed and formed product can be detected with high accuracy by a relatively simple configuration.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
本発明の実施例1である加工成形品不良検知システムのシステム構成を示す。BRIEF DESCRIPTION OF THE DRAWINGS The system configuration | structure of the processing molded article defect detection system which is Example 1 of this invention is shown. 成形品不良検知装置のハードウェア構成を示す。The hardware constitutions of the molded article defect detection apparatus are shown. 図1におけるサーバのハードウェア構成を示す。It shows the hardware configuration of the server in FIG. 成形品不良検知装置の機能ブロック図である。It is a functional block diagram of a molding defect detection device. 成形品不良検知部の機能ブロック図である。It is a functional block diagram of a molded article defect detection unit. 図5における回転子角速度算出部の機能ブロック図である。It is a functional block diagram of the rotor angular velocity calculation part in FIG. 各フェーズ判定部の機能ブロック図である。It is a functional block diagram of each phase determination part. 不良判定部の機能ブロック図である。It is a functional block diagram of a defect determination part. 不良特徴量算出部の機能ブロック図である。It is a functional block diagram of a defect feature-value calculation part. 不良閾値判定部の機能ブロック図である。It is a functional block diagram of a bad threshold value judgment part. バリ閾値判定部の機能ブロック図である。It is a functional block diagram of a burr | flash threshold-value determination part. 図1におけるサーバの機能ブロック図である。It is a functional block diagram of the server in FIG. サーバにおけるパラメータ学習・保存部の機能ブロック図である。It is a functional block diagram of parameter learning / preservation part in a server. 加工成形品不良検知システムにおける処理のフローおよびシーケンスを示す。Fig. 5 shows a flow and sequence of processing in a workpiece molded part defect detection system. 図14におけるフェーズ判定処理の詳細な処理フローおよびシーケンスを示す。The detailed process flow and sequence of the phase determination process in FIG. 14 are shown. 図14におけるデータ収集処理の詳細な処理フローおよびシーケンスを示す。FIG. 15 shows a detailed processing flow and a sequence of data collection processing in FIG. 図14における成形品不良検知処理の詳細な処理フローおよびシーケンスを示す。FIG. 15 shows a detailed processing flow and a sequence of molded part defect detection processing in FIG. 14. サーバが実行するパラメータ学習・保存処理の処理フローおよびシーケンスを示す。The processing flow and sequence of parameter learning / preservation processing which a server performs are shown. サーバが実行するパラメータ更新処理F91の処理フローおよびシーケンスを示す。The processing flow and sequence of parameter update processing F91 which a server performs are shown. 成形品不良検知装置が備える各種データのデータ構成である。It is a data structure of the various data with which a molded article defect detection apparatus is equipped. 図20における成形品不良検知プログラム用データに含まれるプログラムテンポラリ変数のデータ構成を示す。FIG. 21 shows a data configuration of a program temporary variable included in data for a molded part defect detection program in FIG. 20. FIG. 図21における角速度算出部用テンポラリ変数のデータ構成を示す。The data structure of the temporary variable for angular velocity calculation parts in FIG. 21 is shown. 図21におけるフェーズ判定閾値群のデータ構成を示す。The data structure of the phase determination threshold value group in FIG. 21 is shown. 図21における不良判定部用テンポラリ変数のデータ構成を示す。The data structure of the temporary variable for defect determination parts in FIG. 21 is shown. 図21における不良判定閾値群のデータ構成を示す。The data structure of the defect determination threshold value group in FIG. 21 is shown. 図20における不良検知結果のデータ構成を示す。FIG. 21 shows a data configuration of a defect detection result in FIG. 20. FIG. 図20における実績データのデータ構成を示す。The data structure of the performance data in FIG. 20 is shown. 図20における学習済パラメータデータのデータ構成を示す。FIG. 21 shows a data configuration of learned parameter data in FIG. 20. FIG. 図1におけるサーバが有する各種データのデータ構成を示す。The data structure of the various data which the server in FIG. 1 has is shown. 図1におけるディスプレイにおける不良検知結果画面表示の画面遷移を示す。The screen transition of the defect detection result screen display in the display in FIG. 1 is shown. 本発明の実施例2である加工成形品不良検知システムのシステム構成を示す。The system configuration | structure of the processing molded article defect detection system which is Example 2 of this invention is shown. 成形品不良検知機能部の機能ブロック図である。It is a functional block diagram of a molding defect detection function part. 図32における成形品不良検知部の機能ブロック図である。It is a functional block diagram of the molded article defect detection part in FIG. 図33における各フェーズ判定部の機能ブロック図である。It is a functional block diagram of each phase determination part in FIG. 図33における不良判定部の機能ブロック図である。It is a functional block diagram of the defect determination part in FIG. 本発明の実施例3である加工成形品不良検知システムのシステム構成を示す。The system configuration | structure of the processing molded article defect detection system which is Example 3 of this invention is shown. 図36における成形不良検知装置が備える不良特徴量算出部の機能ブロック図である。FIG. 37 is a functional block diagram of a defective feature quantity calculation unit included in the molding defect detection device in FIG. 36. 図36における成形不良検知装置が備える不良閾値判定部の機能ブロック図である。FIG. 37 is a functional block diagram of a defective threshold value determination unit included in the molding defect detection device in FIG. 36.
 以下、本発明の実施形態について、下記の実施例1~3により、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings in Examples 1 to 3 below. In the drawings, those with the same reference numerals indicate components having the same configuration or similar functions.
 図1は、本発明の実施例1である加工成形品不良検知システムのシステム構成を示す。 FIG. 1 shows a system configuration of a workpiece molded product defect detection system according to a first embodiment of the present invention.
 本加工成形品不良検知システムは、射出成形機H1、U相電流センサH2、V相電流センサH3、W相電流センサH4、成形品不良検知装置H5、ディスプレイH6、スピーカーH7、インターネットH8、サーバH9から構成されている。なお、インターネットH8に限らず、他の有線もしくは無線の通信網を適用しても良い。 The present processing molded article defect detection system includes an injection molding machine H1, a U-phase current sensor H2, a V-phase current sensor H3, a W-phase current sensor H4, a molded article defect detection device H5, a display H6, a speaker H7, an internet H8, and a server H9. It consists of In addition, you may apply not only the internet H8 but another wired or wireless communication network.
 射出成形機H1は、溶融された材料(例えば、プラスチック材料)を金型へ射出して金型で挟み込み保圧することにより成形品を生成する。射出成形機H1は、シリンダーH100、ホッパーH101、スクリューH102、金型H103、タイバーH104、型締機構H105、エジェクタH106、クロスヘッドH107、射出用モータH108、計量用モータH109、エジェクタ用モータH110、型締用モータH111、射出用モータ用インバータH112、計量用モータ用インバータH113、エジェクタ用モータ用インバータH114、型締用モータ用インバータH115、制御装置H116を備えている。 The injection molding machine H1 generates a molded product by injecting a molten material (for example, a plastic material) into a mold, sandwiching and holding the pressure with the mold. The injection molding machine H1 includes a cylinder H100, a hopper H101, a screw H102, a mold H103, a tie bar H104, a mold clamping mechanism H105, an ejector H106, a crosshead H107, an injection motor H108, a metering motor H109, an ejector motor H110, a type A clamping motor H111, an ejection motor inverter H112, a weighing motor inverter H113, an ejector motor inverter H114, a clamping motor inverter H115, and a control device H116.
 各モータとしては、永久磁石同期モータなどが適用される。なお、本実施例1において、射出用モータH108は、射出用モータ用インバータH112が出力する三相交流電力によって駆動される。 A permanent magnet synchronous motor or the like is applied as each motor. In the first embodiment, the injection motor H108 is driven by the three-phase AC power output from the injection motor inverter H112.
 ホッパーH101は、材料を加熱して流動状態にする。計量用モータH109は流動状態の材料をホッパーH101で攪拌する。計量用モータ用インバータH113は、計量用モータH109へ電圧を印加して、計量用モータ109を駆動する。 The hopper H101 heats the material to flow. The metering motor H109 agitates the material in a fluidized state with the hopper H101. The metering motor inverter H113 applies a voltage to the metering motor H109 to drive the metering motor 109.
 シリンダーH100は、流動状態の材料を金型H103へ注入する。スクリューH102は、シリンダーH100内で回転して材料を押し出す。射出用モータH108は、スクリューH102を回転させる。射出用モータ用インバータH112は、射出用モータH108へ電圧を印加して、射出用モータH108を駆動する。 The cylinder H100 injects the material in the fluid state into the mold H103. The screw H102 rotates in the cylinder H100 to push out the material. The injection motor H108 rotates the screw H102. The injection motor inverter H112 applies a voltage to the injection motor H108 to drive the injection motor H108.
 金型H103は、成形品を型取る。タイバーH104は、金型H103の開閉動作を案内する2本以上の支柱である。 The mold H103 molds a molded article. The tie bars H104 are two or more support columns for guiding the opening and closing operation of the mold H103.
 型締機構H105は、金型H103を開閉する。クロスヘッドH107は、金型開閉用ボールネジのナット部である。型締用モータH111は、クロスヘッドH107と連動して型を開閉させる。型締用モータ用インバータH115は、型締用モータH111へ電圧を印加して、型締用モータH111を駆動する。 The clamping mechanism H105 opens and closes the mold H103. The cross head H107 is a nut portion of a mold opening / closing ball screw. The mold clamping motor H111 interlocks with the crosshead H107 to open and close the mold. The clamping motor inverter H115 applies a voltage to the clamping motor H111 to drive the clamping motor H111.
 エジェクタH106は、金型H103から、成形された材料を外す。エジェクタ用モータH110は、エジェクタH106を回転させる。エジェクタ用モータ用インバータH114は、エジェクタ用モータH110へ電圧を印加して、エジェクタ用モータH110を駆動。 The ejector H106 removes the molded material from the mold H103. The ejector motor H110 rotates the ejector H106. The ejector motor inverter H114 applies a voltage to the ejector motor H110 to drive the ejector motor H110.
 制御装置H116は、射出用モータ用インバータH112と、計量用モータ用インバータH113と、エジェクタ用モータ用インバータH114と、型締用モータ用インバータH115とへ電圧指令を送ることにより、射出成形機H1が成形品を精度良く作れるように、これらインバータを制御する。 The control device H116 sends a voltage command to the injection motor inverter H112, the weighing motor inverter H113, the ejector motor inverter H114, and the mold clamping motor inverter H115, whereby the injection molding machine H1 These inverters are controlled so that molded products can be made with high accuracy.
 本実施例1における射出成形機H1の動作は次のとおりである。まず、ホッパーH101にて、プラスチック材料を加熱し、計量用モータH109を用いて攪拌する。次に、型締用モータ111を用いて型締機構H105およびクロスヘッドH107を駆動することにより、2つに分割された金型H103を1つに合わせる。次に、射出用モータH108を用いてスクリューH102を回し、シリンダーH100から金型H103へプラスチック材料を注入する。次に、プラスチック材料が固化するまで金型を保持しておく。さらに、金型が冷却された後、型締用モータ111を用いて型締機構H105およびクロスヘッドH107を駆動することにより、1つに合わさった金型を2つに分割し、エジェクタ用モータH110を用いてエジェクタH106を駆動して成形品を突き出すことより、成形品を金型H103から離す。このような動作を繰り返すことで、複数個の成形品を製作できる。 The operation of the injection molding machine H1 in the first embodiment is as follows. First, the plastic material is heated in the hopper H101 and stirred using the metering motor H109. Next, by driving the mold clamping mechanism H105 and the cross head H107 using the mold clamping motor 111, the two divided molds H103 are brought together. Next, the screw H102 is rotated using the injection motor H108 to inject the plastic material from the cylinder H100 into the mold H103. The mold is then held until the plastic material solidifies. Furthermore, after the mold is cooled, the mold clamping mechanism H 105 and the crosshead H 107 are driven using the mold clamping motor 111 to divide the mold into one, and the ejector motor H 110. The molded product is released from the mold H103 by driving the ejector H106 with using to eject the molded product. By repeating such an operation, a plurality of molded articles can be manufactured.
 U相電流センサH2は、射出用モータH108のU相電流を計測する。V相電流センサH3は、射出用モータH108のV相電流を計測する。W相電流センサH4は、射出用モータH108のW相電流を計測する。これら電流センサとしては、電流トランス(CT)などが適用される。なお、射出用モータH108を駆動する射出用モータ用インバータH112を制御するために用いられるモータ電流は、U相電流センサH2とV相電流センサH3およびW相電流センサH4とは別の独立した電流センサ(図示せず)によって検出される。 The U-phase current sensor H2 measures the U-phase current of the injection motor H108. The V-phase current sensor H3 measures the V-phase current of the injection motor H108. The W-phase current sensor H4 measures the W-phase current of the injection motor H108. As these current sensors, a current transformer (CT) or the like is applied. The motor current used to control the injection motor inverter H112 for driving the injection motor H108 is an independent current different from the U-phase current sensor H2, the V-phase current sensor H3 and the W-phase current sensor H4. It is detected by a sensor (not shown).
 なお、好ましくは、クランプ型またはクリップ型のCTが適用される。これらのタイプのCTは、射出用モータH108と射出用モータ用インバータH112の出力との間を接続するケーブルに着脱可能に取り付けられる。このため、射出用モータH108と射出用モータ用インバータH112から構成される射出成形装置の駆動装置の装置構成を変更することなく、成形不良検知装置用の電流センサを設けることができる。 Preferably, clamp-type or clip-type CT is applied. These types of CTs are detachably attached to a cable connecting between the injection motor H108 and the output of the injection motor inverter H112. Therefore, it is possible to provide the current sensor for the molding defect detection device without changing the device configuration of the drive device of the injection molding device including the injection motor H108 and the injection motor inverter H112.
 成形品不良検知装置H5は、射出用モータH108のU相電流とV相電流とW相電流を用いて成形品に不良がないかどうか検知し、不良検知結果を射出成形機H1の制御装置H116へ送信すなわちフィードバックする。ディスプレイH6は、成形品不良検知装置H5にて生成される成形品不良検知結果画面を表示する。スピーカーH7は、成形品不良検知装置H5にて成形品に不良が検知されたとき、音声を出力して不良の発生を報知する。 The molded product defect detection device H5 detects whether or not the molded product has a defect using the U-phase current, V-phase current and W-phase current of the injection motor H108, and the defect detection result is the control device H116 of the injection molding machine H1. Send to or feedback. The display H6 displays a molded product defect detection result screen generated by the molded product defect detection device H5. The speaker H7 outputs a voice to notify the occurrence of a defect when a defect is detected in the molded product by the molded product defect detection device H5.
 インターネットH8は、成形品不良検知装置H5とサーバH9との間でデータ通信を行うための通信経路である。サーバH9は、コンピュータシステムによって構成され、成形品不良検知装置H5から射出成型機H1の稼働実績データを読み込み、読み込んだ稼働実績データに基づいて成形品不良検知に用いられるパラメータを学習処理によって求め、求めたパラメータを成形品不良検知装置H5へ送信する。 The Internet H8 is a communication path for performing data communication between the molded article defect detection device H5 and the server H9. The server H9 is configured by a computer system, reads operation performance data of the injection molding machine H1 from the molded product defect detection device H5, and finds parameters to be used for molded product defect detection by learning processing based on the read operation performance data. The determined parameters are transmitted to the molded article defect detection device H5.
 図2は、成形品不良検知装置H5のハードウェア構成を示す。 FIG. 2 shows the hardware configuration of the molded article defect detection device H5.
 図2に示すように、成形品不良検知装置H5は、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、サウンド機能、RAM(Random Access Memory)、記録装置、インターフェース(1~5)を備えている。 As shown in FIG. 2, the molded article defect detection device H5 includes a central processing unit (CPU), a graphic processing unit (GPU), a sound function, a random access memory (RAM), a recording device, and interfaces (1 to 5). ing.
 CPUは、成形品不良検知を行うためのプログラムに従って演算処理を実行する。 The CPU executes arithmetic processing in accordance with a program for detecting a molded article defect.
 GPUは、成形品不良検知結果からディスプレイH6に表示する画面データを生成し、生成した画面データを、インターフェース3を介してディスプレイH6へ出力する。 The GPU generates screen data to be displayed on the display H6 from the molded article defect detection result, and outputs the generated screen data to the display H6 via the interface 3.
 サウンド機能は、成形品不良が検知されたタイミングでスピーカーH7へ出力する音声データを生成し、生成した音声データを、インターフェース4を介してディスプレイH7へ出力する。 The sound function generates audio data to be output to the speaker H7 at a timing when a molded article defect is detected, and outputs the generated audio data to the display H7 via the interface 4.
 RAMは、成形品不良検知を行うためのプログラムにおいてデータを一時記憶しておく。 The RAM temporarily stores data in a program for detecting a molding defect.
 記録装置H50は、成形品不良検知を行うためのプログラムやデータなどを記録する。記録装置H50としては、ハードディスクドライブやフラッシュメモリドライブなどが適用される。 The recording device H50 records a program, data, and the like for detecting a molding defect. A hard disk drive, a flash memory drive or the like is applied as the recording device H50.
 記録装置H50には、成形品不良検知プログラム、不良検知結果送信プログラム、不良検知結果表示プログラム、不良検知ブザー出力プログラム、サーバデータ送受信プログラム、各種データH500が格納されている。これらのコンピュータプログラム(以下、「プログラム」と記す)は、CPUによって実行される。 The recording apparatus H50 stores a molded article defect detection program, a defect detection result transmission program, a defect detection result display program, a defect detection buzzer output program, a server data transmission / reception program, and various data H500. These computer programs (hereinafter referred to as "programs") are executed by the CPU.
 成形品不良検知プログラムは、U相電流とV相電流とW相電流から射出成形機H1の成形品の不良を検知するためのプログラムである。 The molded article defect detection program is a program for detecting a defect in a molded article of the injection molding machine H1 from the U-phase current, the V-phase current and the W-phase current.
 不良検知結果送信プログラムは、不良検知結果を、インターフェース2を介して射出成形機H1へ送信するためプグラムである。 The defect detection result transmission program is a program for transmitting the defect detection result to the injection molding machine H1 via the interface 2.
 不良検知結果表示プログラムは、GPUを用いて成形品不良結果から画面データを生成し、生成された画面データを、インターフェース3を介してディスプレイH6へ出力するためのプグラムである。 The defect detection result display program is a program for generating screen data from the molded article defect result using the GPU, and outputting the generated screen data to the display H6 via the interface 3.
 不良検知ブザー出力プログラムは、成形品不良が検知されたタイミングでサウンド機能を用いて音声データを生成し、生成された音声データを、インターフェース4を介してスピーカーH7へ出力するためのプログラムである。 The defect detection buzzer output program is a program for generating voice data using a sound function at a timing when a molded article defect is detected, and outputting the generated voice data to the speaker H7 via the interface 4.
 サーバデータ送受信プログラムは、稼動実績データ(以下、「実績データ」と記す)を、インターフェース5を介してインターネットH8へ送出するとともに、インターネットH8から学習済パラメータを受信するためのプログラムである。 The server data transmission / reception program is a program for transmitting operation record data (hereinafter referred to as “result data”) to the Internet H8 via the interface 5 and receiving learned parameters from the Internet H8.
 各種データH90は、成形品不良検知装置H5にて実行するプログラムにて使用されるデータである。 The various data H90 is data used in a program executed by the molded article defect detection device H5.
 なお、成形品不良検知装置H5は、インターフェース1を介して、U相電流センサH2とV相電流センサH3とW相電流センサH4からの各信号を取り込む。 The molded article defect detection device H5 takes in the signals from the U-phase current sensor H2, the V-phase current sensor H3 and the W-phase current sensor H4 via the interface 1.
 図3は、図1におけるサーバH9のハードウェア構成を示す。 FIG. 3 shows the hardware configuration of the server H9 in FIG.
 図3に示すように、サーバH9は、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、RAM(Random Access Memory)、記録装置、操作コンソール、インターフェース1を備えている。本構成により、サーバH9は、インターネットH8から受信する実績データを用いて、成形品不良検知に使用する各種パラメータを学習し、学習済パラメータとしてインターネットH8へ送出する。 As shown in FIG. 3, the server H 9 includes a central processing unit (CPU), a graphic processing unit (GPU), a random access memory (RAM), a recording device, an operation console, and an interface 1. According to this configuration, the server H9 learns various parameters used for detection of molded article failure using the actual data received from the Internet H8, and sends it to the Internet H8 as a learned parameter.
 CPUは、後述する各種プログラムに従って演算処理を実行する。 The CPU executes arithmetic processing in accordance with various programs described later.
 操作コンソールは、サーバH9のオペレータに対して入力を促す画面を表示し、オペレータからのパラメータ学習実施およびパラメータ更新に関する入力を受け付ける。 The operation console displays a screen prompting the operator of the server H 9 to make an input, and receives an input from the operator regarding parameter learning execution and parameter update.
 GPUは、操作コンソールへ表示する画面データを生成し、生成した画面データを操作コンソールへ出力する。 The GPU generates screen data to be displayed on the operation console, and outputs the generated screen data to the operation console.
 RAMは、各種プログラムの実行時に、データを一時記憶する。 The RAM temporarily stores data when executing various programs.
 記録装置H90は、サーバ(CPU)が実行する各種プログラムやデータなどを記録する。記録装置H90としては、ハードディスクドライブやフラッシュメモリドライブなどが適用される。 The recording device H90 records various programs and data executed by the server (CPU). A hard disk drive, a flash memory drive or the like is applied as the recording device H90.
 記録装置H90には、実績データ受信プログラム、学習済パラメータ送信プログラム、パラメータ学習プログラム、各種データH900が格納されている。 The recording device H90 stores an actual data reception program, a learned parameter transmission program, a parameter learning program, and various data H900.
 実績データ受信プログラムは、インターネットH8からインターフェース1を介して実績データを受信し、受信した実績データを記録装置H90に記録するためのプログラムである。 The achievement data reception program is a program for receiving achievement data from the Internet H8 via the interface 1 and recording the received achievement data in the recording device H90.
 パラメータ学習プログラムは、実績データを用いて成形品不良検知に使用する各種パラメータを学習し、学習済パラメータとして記録装置H90へ保存するためのプログラムである。 The parameter learning program is a program for learning various parameters used for molded article defect detection using actual data and storing the parameters in the recording device H90 as learned parameters.
 学習済パラメータ送信プログラムは、記録装置H90に保存された学習済パラメータを、インターフェース1を介してインターネットH8へ送出するためのプログラムある。 The learned parameter transmission program is a program for transmitting the learned parameters stored in the recording device H90 to the Internet H8 via the interface 1.
 各種データH900は、サーバH9にて実行される各種プログラムにて使用されるデータである。 Various data H900 is data used by various programs executed by the server H9.
 図4は、成形品不良検知装置H5の機能ブロック図である。 FIG. 4 is a functional block diagram of the molded article defect detection device H5.
 図4に示すように、成形品不良検知装置H5は、成形品不良検知部B50、不良検知結果送信部B51、不良検知結果表示部B52、不良検知ブザー出力部B53、サーバデータ送信部B54を有する。 As shown in FIG. 4, the molded article defect detection device H5 has a molded article defect detection unit B50, a defect detection result transmission unit B51, a defect detection result display unit B52, a defect detection buzzer output unit B53, and a server data transmission unit B54. .
 成形品不良検知部B50は、成形品不良検知プログラム(図2)に従って、U相電流センサH2とV相電流センサH3とW相電流センサH4によってそれぞれ検出されるU相電流とV相電流とW相電流を用いて、射出成形機H1の成形品の不良を検知する。 Molded product defect detection unit B50 detects U-phase current, V-phase current and W-phase detected by U-phase current sensor H2, V-phase current sensor H3 and W-phase current sensor H4, respectively, according to a molded product defect detection program (FIG. 2). The phase current is used to detect a defect in the molded article of the injection molding machine H1.
 不良検知結果送信部B51は、不良検知結果送信プログラム(図2)に従って、成形品不良検知部B50からの不良検知結果を射出成形機H1へ送信する。 The defect detection result transmission unit B51 transmits the defect detection result from the molded product defect detection unit B50 to the injection molding machine H1 in accordance with the defect detection result transmission program (FIG. 2).
 不良検知結果表示部B52は、不良検知結果表示プログラム(図2)に従って、GPUを用いて成形品不良検知部B50からの成形品不良結果に応じて画面データを生成し、生成した画面データをディスプレイH6へ出力する。 Defect detection result display unit B 52 generates screen data according to a molding defect result from molding defect detection unit B 50 using a GPU according to a defect detection result display program (FIG. 2), and displays the generated screen data Output to H6.
 不良検知ブザー出力部B53は、不良検知ブザー出力プログラム(図2)に従って、成形品不良検知部B50により成形品不良が検知されたタイミングで、サウンド機能を用いて音声データを生成し、生成した音声データをスピーカーH7へ出力する。 The defect detection buzzer output unit B53 generates voice data using the sound function at the timing when the molding defect is detected by the molding defect detection unit B50 according to the defect detection buzzer output program (FIG. 2), and the generated voice is generated The data is output to the speaker H7.
 サーバデータ送受信部B54は、サーバデータ送受信プログラム(図2)に従って、実績データをインターネットH8へ送出するとともに、学習済パラメータをインターネットH8から受信する。 The server data transmission / reception unit B54 transmits the result data to the Internet H8 according to the server data transmission / reception program (FIG. 2) and receives the learned parameters from the Internet H8.
 図5は、成形品不良検知部B50の機能ブロック図である。 FIG. 5 is a functional block diagram of the molded article defect detection unit B50.
 図5に示すように、成形品不良検知部B50は、回転子角速度算出部B500、各フェーズ判定部B501、不良判定部B502、学習結果分解部B503、データ集約部B504を有する。 As shown in FIG. 5, the molded article defect detection unit B50 includes a rotor angular velocity calculation unit B500, each phase determination unit B501, a defect determination unit B502, a learning result decomposition unit B503, and a data aggregation unit B504.
 回転子角速度B500は、U相電流センサH2とV相電流センサH3とW相電流センサH4によってそれぞれ検出されるU相電流とV相電流とW相電流を用いて射出用モータH108(図1)の回転子角速度を算出するとともに、U相電流とV相電流とW相電流とから回転座標におけるd軸電流とq軸電流を算出する。 The rotor angular velocity B500 uses the U-phase current, the V-phase current, and the W-phase current detected by the U-phase current sensor H2, the V-phase current sensor H3, and the W-phase current sensor H4, respectively. The rotor angular velocity is calculated, and the d-axis current and the q-axis current in the rotational coordinates are calculated from the U-phase current, the V-phase current and the W-phase current.
 各フェーズ判定部B501は、回転子角速度B500によって算出されるd軸電流およびq軸電流に基づいて、射出成型機H1(図1)における射出フェーズ開始時間、保圧フェーズ開始時間、冷却フェーズ開始時間を、順に判定する。なお、各フェーズの開始時間は、直前のフェーズの終了時間でもある。 Each phase determination unit B501 is based on the d-axis current and the q-axis current calculated by the rotor angular velocity B500, the injection phase start time in the injection molding machine H1 (FIG. 1), the pressure phase start time, the cooling phase start time In order. The start time of each phase is also the end time of the immediately preceding phase.
 不良判定部B502は、回転子角速度算出部B500によって算出される回転子角速度と各フェーズ判定部によって判定される各フェーズ開始時間に基づいて射出成形機H1の成形品の不良(不良の有無、種類など)を判定する。 Defect determination unit B 502 is a defect in the molded article of injection molding machine H 1 (presence or absence of defect, type based on the rotor angular velocity calculated by rotor angular velocity calculation unit B 500 and each phase start time determined by each phase determination unit Etc.).
 学習結果分解部B503は、サーバデータ送受信部B54から送られてくる学習済パラメータを、回転子角速度の計算に用いられる回転子角速度算出係数と、各フェーズ開始時間の判定に使用するフェーズ判定閾値群と、不良の判定に用いられる不良判定閾値群に分ける。 The learning result disassembling unit B 503 uses the learned parameters sent from the server data transmitting / receiving unit B 54, a rotor angular velocity calculation coefficient used to calculate the rotor angular velocity, and a phase determination threshold group used to determine each phase start time And the defect determination threshold value group used for the determination of defects.
 データ集約部B504は、回転子角速度と、d軸電流およびq軸電流と、各フェーズを判定する指標となるフェーズ特徴量と、不良かどうかを判定する指標となる不良特徴量を集約し、実績データとしてまとめる。 The data aggregation unit B 504 integrates the rotor angular velocity, the d-axis current and the q-axis current, the phase feature quantity serving as an index for determining each phase, and the defect feature quantity serving as an index for determining whether it is defective or not. Summarize as data.
 図6は、図5における回転子角速度算出部B500の機能ブロック図である。 FIG. 6 is a functional block diagram of rotor angular velocity calculation unit B 500 in FIG.
 図6に示すように、回転子角速度算出部B500は、αβ変換部、回転子角速度推定部、dq変換部を有する。 As shown in FIG. 6, the rotor angular velocity calculation unit B500 includes an αβ conversion unit, a rotor angular velocity estimation unit, and a dq conversion unit.
 αβ変換部は、U相電流センサH2とV相電流センサH3とW相電流センサH4によってそれぞれ検出されるU相電流とV相電流とW相電流から、U相電流方向(α軸)の電流成分であるα軸電流と、U相電流方向に垂直な方向(β軸)の電流成分であるβ軸電流を算出する。すなわち、αβ変換部は、いわゆる三相/二相変換を実行する。 The αβ conversion unit is a current in the U-phase current direction (α-axis) from U-phase current, V-phase current and W-phase current respectively detected by U-phase current sensor H2, V-phase current sensor H3 and W-phase current sensor H4. The α-axis current which is the component and the β-axis current which is the current component in the direction (β-axis) perpendicular to the U-phase current direction are calculated. That is, the αβ conversion unit performs so-called three-phase / two-phase conversion.
 dq変換部は、αβ変換部によって算出されるα軸電流およびβ軸電流から、後述する回転子角速度推定部によって推定される回転子角度(図6では仮値)に応じて、射出用モータH108のステータの回転磁界の磁束方向(d軸)の電流成分であるd軸電流と、ステータの磁束方向に垂直な方向(q軸)の電流成分であるq軸電流を算出し、算出したd軸電流およびq軸電流を各フェーズ判定部B501とデータ集約部B504へ送信する。すなわち、dq変換部は、静止座標系におけるα軸電流およびβ軸電流を、回転座標系におけるd軸電流およびq軸電流に変換する。なお、同期電動機などの場合、回転子の磁束方向をd軸とし、回転子の磁束方向に垂直な方向をq軸としてもよい。 The dq conversion unit is configured to use the injection motor H108 according to the rotor angle (provisional value in FIG. 6) estimated by the rotor angular velocity estimation unit described later from the α-axis current and β-axis current calculated by the αβ conversion unit. D axis current which is a current component of the magnetic flux direction (d axis) of the rotating magnetic field of the stator and q axis current which is a current component of a direction (q axis) perpendicular to the magnetic flux direction of the stator The current and the q-axis current are transmitted to each phase determination unit B501 and data aggregation unit B504. That is, the dq conversion unit converts the α-axis current and the β-axis current in the stationary coordinate system into the d-axis current and the q-axis current in the rotating coordinate system. In the case of a synchronous motor or the like, the magnetic flux direction of the rotor may be d axis, and the direction perpendicular to the magnetic flux direction of the rotor may be q axis.
 回転子角速度推定部は、αβ変換部によって算出されるα軸電流およびβ軸電流、もしくは、dq変換部によって算出されるd軸電流およびq軸電流に基づいて、学習結果分解部B503からの回転子角速度算出係数を用いて回転子角度および回転子角速度を算出し、算出した回転子角速度を不良判定部B502とデータ集約部B504へ送信する。また、回転子角速度推定部は、算出した回転子角度(仮値)をdq変換部に出力する。 The rotor angular velocity estimation unit rotates based on the learning result decomposition unit B 503 based on the α axis current and β axis current calculated by the αβ conversion unit, or the d axis current and q axis current calculated by the dq conversion unit. The rotor angle and the rotor angular velocity are calculated using the child angular velocity calculation coefficient, and the calculated rotor angular velocity is transmitted to defect determination unit B 502 and data aggregation unit B 504. Further, the rotor angular velocity estimation unit outputs the calculated rotor angle (provisional value) to the dq conversion unit.
 図7は、各フェーズ判定部B501の機能ブロック図である。 FIG. 7 is a functional block diagram of each phase determination unit B501.
 図7に示すように、各フェーズ判定部B501は、フェーズ特徴量算出部、フェーズ閾値判定部を有する。 As shown in FIG. 7, each phase determination unit B 501 includes a phase feature amount calculation unit and a phase threshold determination unit.
 フェーズ特徴量算出部は、回転子角速度判定部B500において算出されるd軸電流およびq軸電流に基づいて、射出成型機H1の動作フェーズ(射出、保圧、冷却)の特徴を示すフェーズ特徴量を算出し、算出したフェーズ特徴量をフェーズ閾値判定部へ出力する。また、フェーズ特徴量算出部は、算出したフェーズ特徴量をデータ集約部B504へ送信する。ここで、フェーズ特徴量は、例えば、d軸電流にFFT(Fast Fourier Transform)を施して得られる周波数成分の大きさの絶対値が最大となる周波数や、単位時間あたり、もしくは所定期間における、d軸電流の最大値と最小値の差分である。 The phase feature quantity calculation unit is a phase feature quantity indicating the feature of the operation phase (injection, holding pressure, cooling) of the injection molding machine H1 based on the d-axis current and the q-axis current calculated in the rotor angular velocity determination unit B500. Is calculated, and the calculated phase feature amount is output to the phase threshold value determination unit. Further, the phase feature amount calculation unit transmits the calculated phase feature amount to the data aggregation unit B 504. Here, the phase feature value is, for example, the frequency at which the absolute value of the magnitude of the frequency component obtained by applying FFT (Fast Fourier Transform) to the d-axis current is maximum, or per unit time or in a predetermined period. It is the difference between the maximum value and the minimum value of the axis current.
 フェーズ閾値判定部は、射出フェーズ、保圧フェーズ、冷却フェーズの切り替わりを示すフェーズ判定閾値群を学習結果分解部B503から取得し、フェーズ特徴量判定部が算出するフェーズ特徴量の閾値判定を行い、判定を行った時刻が各フェーズの開始時間であるか否かを判定し、開始時間である場合、判定を行った時刻を各フェーズの開始時間として、不良判定部B502およびデータ集約部B504へ送信する。 The phase threshold determination unit acquires a phase determination threshold group indicating switching of the injection phase, the pressure holding phase, and the cooling phase from the learning result decomposition unit B 503, and performs threshold determination of the phase feature amount calculated by the phase feature amount determination unit. It is determined whether the time when the determination is made is the start time of each phase, and if it is the start time, the time when the determination is made is transmitted to the defect determination unit B 502 and the data aggregation unit B 504 as the start time of each phase. Do.
 図8は、不良判定部B502の機能ブロック図である。 FIG. 8 is a functional block diagram of the defect determination unit B502.
 図8に示すように、不良判定部B502は、不良特徴量算出部B5020、不良閾値判定部B5021を有する。 As shown in FIG. 8, the defect determination unit B 502 includes a defect feature amount calculation unit B 5020 and a defect threshold determination unit B 5021.
 不良特徴量算出部B5020は、回転子角速度算出部B500から取得する回転子角速度と、各フェーズ判定部B501が出力する各フェーズ開始時間とに基づいて、不良特徴量を算出し、算出した不良特徴量を不良閾値判定部B5021へ出力すると共に、データ集約部B504へ送信する。ここで、不良特徴量は、成形品の不良と相関のあるパラメータであり、例えば、バリ発生や充填不足などと相関のある、保圧時の回転子角速度のピーク値、回転子角速度の減衰時の時定数、回転子の回転移動量などである。 Defect feature quantity calculation unit B5020 calculates a defect feature quantity based on the rotor angular velocity acquired from rotor angular velocity calculation unit B500 and each phase start time output by each phase determination unit B501, and the calculated defect feature The amount is output to the defect threshold value determination unit B5021 and is also transmitted to the data aggregation unit B504. Here, the defect feature amount is a parameter having a correlation with the defect of the molded product, for example, a peak value of the rotor angular velocity at the time of holding pressure and a decay of the rotor angular velocity, which are correlated with burr generation and insufficient filling. Time constant, the rotational movement of the rotor, etc.
 不良閾値判定部B5021は、不良判定閾値群を学習結果分解部B503から取得し、不良特徴量算出部B5020が算出する不良特徴量の閾値判定を行い、判定結果を不良検知結果として、不良検知結果送信部B51、不良検知結果表示部B52および不良検知ブザー出力部B53に送信すると共に、データ集約部B504へも送信する。 The defect threshold determination unit B5021 acquires a defect determination threshold group from the learning result decomposition unit B503, performs threshold determination of the defect feature amount calculated by the defect feature amount calculation unit B5020, and determines the determination result as a defect detection result. While transmitting to transmission part B51, defect detection result display part B52, and defect detection buzzer output part B53, it transmits also to data aggregation part B504.
 図9は、不良特徴量算出部B5020の機能ブロック図である。 FIG. 9 is a functional block diagram of the defect feature quantity calculation unit B5020.
 図9に示すように、不良特徴量算出部B5020は、保圧フェーズ抽出部、保圧時角速度抽出部、角速度ピーク値算出部、減衰時定数算出部、回転子移動量算出部、不良特徴量集約部を有する。 As shown in FIG. 9, the defect feature quantity calculation unit B5020 includes a pressure holding phase extraction unit, a pressure holding angular velocity extraction unit, an angular velocity peak value calculation unit, an attenuation time constant calculation unit, a rotor movement amount calculation unit, and a defect feature amount. It has an integrated part.
 保圧フェーズ抽出部は、各フェーズ判定部B501から取得する各フェーズ開始時間から、保圧(フェーズ)開始時間と、保圧(フェーズ)終了時間すなわち冷却(フェーズ)開始時間を抽出して、抽出した保圧開始時間と、冷却開始時間を、保圧時角速度抽出部へ出力する。 The pressure holding phase extraction unit extracts a pressure holding (phase) start time and a pressure holding (phase) end time, that is, a cooling (phase) start time, from each phase start time acquired from each phase determination unit B 501, and extracts it. The pressure holding start time and the cooling start time are output to the pressure holding angular velocity extraction unit.
 保圧時角速度抽出部は、保圧フェーズ抽出部によって抽出される保圧開始時間と冷却開始時間の間において、回転子角速度算出部B500によって算出される回転子角速度から、保圧時角速度を抽出して、抽出した回転子角速度を、角速度ピーク値算出部と減衰時定数算出部と回転子移動量算出部へ出力する。なお、保圧時角速度抽出部は、保圧開始時間以前および冷却開始時間以降の回転子角速度を0に設定する。 The pressure holding angular velocity extraction unit extracts the pressure holding angular velocity from the rotor angular velocity calculated by the rotor angular velocity calculation unit B500 between the pressure holding start time and the cooling start time extracted by the pressure holding phase extraction unit. Then, the extracted rotor angular velocity is output to the angular velocity peak value calculation unit, the attenuation time constant calculation unit, and the rotor movement amount calculation unit. The pressure holding angular velocity extraction unit sets the rotor angular velocity to 0 before the pressure holding start time and after the cooling start time.
 角速度ピーク時算出部は、保圧時角速度抽出部によって抽出される保圧時角速度に基づいて、不良特徴量として、角速度ピーク値を算出する。保圧時において、回転子角速度は、保圧のため一旦下降するが、材料の戻りにより上昇した後、再度下降する。このような上昇時におけるピーク値が、角速度ピーク時算出部によって求められる角速度ピーク値である。 The angular velocity peak calculation unit calculates an angular velocity peak value as a defect feature based on the pressure holding angular velocity extracted by the pressure holding angular velocity extraction unit. At the time of pressure holding, the rotor angular velocity drops once due to pressure holding, but after rising due to the return of the material, it falls again. The peak value at the time of such a rise is the angular velocity peak value determined by the angular velocity peak calculation unit.
 減衰時定数算出部は、保圧時角速度抽出部によって抽出される保圧時角速度に基づいて、不良特徴量として、回転子角速度の減衰時定数を算出する。保圧時において、回転子角速度は、ピーク値以降、減衰する。減衰時定数算出部は、このような減衰時における角速度ω(t)を式(1)で表したときの時定数Tを算出する。 The damping time constant calculating unit calculates a damping time constant of the rotor angular velocity as a defect feature based on the pressure holding angular velocity extracted by the pressure holding angular velocity extracting unit. At the time of holding pressure, the rotor angular velocity attenuates after the peak value. The damping time constant calculating unit calculates a time constant Tc when the angular velocity ω (t) at the time of such damping is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
 式(1)において、tは時間(s)、ωpeakは角速度ピーク値(rad/s)、Tpeakは角速度ω(t)の値がピーク値になるときの時間tの値を示す。なお、式(1)において、t≧Tpeakである。
Figure JPOXMLDOC01-appb-M000001
In equation (1), t represents time (s), ω peak represents the angular velocity peak value (rad / s), and T peak represents the value of time t when the value of the angular velocity ω (t) reaches the peak value. In equation (1), t ≧ Tpeak .
 回転子移動量算出部は、保圧時角速度抽出部によって抽出される保圧時角速度を時間積分演算して、不良特徴量として、回転子の移動量を算出する。 The rotor movement amount calculation unit calculates the movement amount of the rotor as a defective feature amount by performing time integration calculation of the pressure holding time angular velocity extracted by the pressure holding time angular velocity extraction unit.
 不良特徴量集約部は、角速度ピーク値算出部と減衰時定数算出部と回転子移動量算出部がそれぞれ算出する角速度ピーク値と減衰時定数と回転子移動量を集約して、集約されたこれら不良特徴量を、不良閾値判定部B5021へ出力すると共に、データ集約部B504へ送信する。 The defect feature amount aggregating unit integrates the angular velocity peak value, the attenuation time constant, and the rotor movement amount calculated respectively by the angular velocity peak value calculation unit, the attenuation time constant calculation unit, and the rotor movement amount calculation unit, and integrates them. The defect feature amount is output to the defect threshold value determination unit B5021 and transmitted to the data aggregation unit B504.
 図10は、不良閾値判定部B5021の機能ブロック図である。 FIG. 10 is a functional block diagram of the defective threshold value determination unit B5021.
 図10に示すように、不良閾値判定部B5021は、バリ閾値判定部B50210、充填過不足閾値判定部B50211、ボイド・ヒケ閾値判定部B50212、変形・反り閾値判定部B50213、変色・WL(ウエルドライン)閾値判定部B50214、不良検知結果集約部B50215を有している。 As shown in FIG. 10, the defective threshold judgment unit B5021 is a burr threshold judgment unit B50210, an overfill threshold judgment unit B50211, a void / sink threshold judgment unit B50212, a deformation / warp threshold judgment unit B50213, a color change · WL (weld line ) A threshold determination unit B50214 and a defect detection result aggregation unit B50215.
 バリ閾値判定部B50210は、不良特徴量算出部B5020によって算出される不良特徴量と、学習結果分解部B503から取得される不良判定閾値群に含まれるバリの有無を判定するための閾値を用いて、成形品のバリの有無を閾値判定して、判定結果を不良検知結果集約部B50215へ出力する。 The flash threshold determination unit B50210 uses the defect feature amount calculated by the failure feature amount calculation unit B5020 and a threshold for determining the presence or absence of a flash included in the failure determination threshold value group acquired from the learning result decomposition unit B503. The presence or absence of a burr of a molded product is determined by thresholding, and the determination result is output to the defect detection result collecting unit B 50215.
 充填過不足閾値判定部B50211は、不良特徴量算出部B5020によって算出される不良特徴量と、学習結果分解部B503から取得される不良判定閾値群に含まれる充填の過不足を判定するための閾値を用いて、成形品の充填過不足を閾値判定して、判定結果を不良検知結果集約部B50215へ出力する。 The filling excess / deficiency threshold determination unit B50211 is a threshold for determining the excess / deficiency of the filling included in the defect determination threshold value group acquired by the defect feature amount calculation unit B5020 and the defect determination threshold value group acquired from the learning result decomposition unit B503. Is used to determine the filling excess or deficiency of the molded product as a threshold, and the determination result is output to the defect detection result aggregating unit B 50215.
 ボイド・ヒケ閾値判定部B50212は、不良特徴量算出部B5020によって算出される不良特徴量と、学習結果分解部B503から取得される不良判定閾値群に含まれるボイド・ヒケの有無を判定するための閾値を用いて、成形品のボイド・ヒケの有無を閾値判定して、判定結果を不良検知結果集約部B50215へ出力する。 The void / sink threshold determination unit B50212 determines the presence or absence of the void / sink included in the defect determination threshold value group acquired by the defect feature amount calculation unit B5020 and the defect determination threshold value group acquired from the learning result decomposition unit B503. The threshold value is used to determine the presence or absence of voids and sink marks in the molded product using the threshold value, and the determination result is output to the defect detection result aggregation unit B 50215.
 変形・反り閾値判定部B50213は、不良特徴量算出部B5020によって算出される不良特徴量と、学習結果分解部B503から取得される不良判定閾値群に含まれる変形・反りの有無を判定するための閾値を用いて、成形品の変形・反りの有無を閾値判定して、判定結果を不良検知結果集約部B50215へ出力する。 The deformation / warpage threshold determination unit B 50213 determines the presence or absence of the deformation / warpage included in the failure feature amount calculated by the failure feature amount calculation unit B 5020 and the failure determination threshold group acquired from the learning result decomposition unit B 503. The threshold value is used to determine the presence or absence of deformation or warpage of the molded product using the threshold value, and the determination result is output to the defect detection result aggregation part B50215.
 変色・WL閾値判定部B50214、不良特徴量算出部B5020によって算出される不良特徴量と、学習結果分解部B503から取得される不良判定閾値群に含まれる変色・ウエルドラインの発生を判定するための閾値を用いて、成形品の変色・ウエルドラインの発生を閾値判定して、判定結果を不良検知結果集約部B50215へ出力する。 For determining the occurrence of the color change / weld line included in the failure feature amount calculated by the color change / WL threshold value determination unit B50214 and the failure feature amount calculation unit B5020 and the failure determination threshold value group acquired from the learning result decomposition unit B503 The threshold value is used to determine the occurrence of discoloration and weld line of the molded product using the threshold value, and the determination result is output to the defect detection result aggregation unit B50215.
 不良検知結果集約部B50215は、バリ閾値判定部B50210、充填過不足閾値判定部B50211、ボイド・ヒケ閾値判定部B50212、変形・反り閾値判定部B50213、変色・WL閾値判定部B50214のそれぞれによるバリ有無判定結果、充填過不足判定結果、ボイド・ヒケ判定結果、変形・反り判定結果、変色・ウエルドライン判定結果を不良検知結果として集約し、集約した不良検知結果を、不良検知結果送信部B51、不良検知結果表示部B52、不良検知ブザー出力部B53、データ集約部B504へ送信する。 Defect detection result aggregating part B50215 includes burr presence / absence by each of burr threshold judgment part B50210, filling excess / minus threshold judgment part B50211, void / sink threshold judgment part B50212, deformation / warpage threshold judgment part B50213, discoloration / WL threshold judgment part B50214 Judgment result, filling over / under judgment result, void / sinking judgment result, deformation / warp judgment result, discoloration / weld line judgment result are collected as defect detection results, and the collected defect detection results are shown in defect detection result transmitting portion B51, defect It transmits to the detection result display part B52, the defect detection buzzer output part B53, and the data collection part B504.
 図11は、バリ閾値判定部B50210の機能ブロック図である。なお、充填過不足閾値判定部B50211、ボイド・ヒケ閾値判定部B50212、変形・反り閾値判定部B50213、変形・ウエルドライン閾値判定部B50214も、バリ閾値判定部B50210と同様の機能構成を有するので、これらの判定部については説明を省略する。 FIG. 11 is a functional block diagram of the flash threshold determination unit B50210. Note that the overfill threshold determination unit B50211, the void / sink threshold determination unit B50212, the deformation / warp threshold determination unit B50213, and the deformation / weld line threshold determination unit B50214 also have the same functional configuration as the burr threshold determination unit B50210, The description of these determination units is omitted.
 図11に示すように、バリ閾値判定部B50210は、不良特徴量分割部、不良閾値判定群分割部、ピーク値閾値判定部、時定数閾値判定部、移動量閾値判定部、論理演算部を有している。 As shown in FIG. 11, the flash threshold judgment unit B 50210 has a defective feature amount division unit, a defective threshold judgment group division unit, a peak value threshold judgment unit, a time constant threshold judgment unit, a movement threshold judgment unit, and a logical operation unit. doing.
 不良特徴量分割部は、不良特徴量算出部B5020から取得する不良特徴量を、角速度ピーク値と減衰時定数と回転子移動量に分け、それぞれピーク値閾値判定部、時定数閾値判定部、移動量閾値判定部へ出力する。 The defect feature quantity dividing unit divides the defect feature quantity acquired from the defect feature quantity calculation unit B 5020 into an angular velocity peak value, an attenuation time constant, and a rotor movement amount, and the peak value threshold judgment unit, time constant threshold judgment unit, movement Output to the amount threshold determination unit.
 不良閾値判定群分割部は、学習結果分解部B503から取得する不良判定閾値群を、バリ判定用ピーク値閾値とバリ判定用時定数閾値とバリ判定用移動量閾値に分け、それぞれピーク値閾値判定部、時定数閾値判定部、移動量閾値判定部へ出力する。また、不良閾値判定群分割部は、論理演算部に論理式情報を出力する。 The defect threshold judgment group dividing unit divides the defect judgment threshold value group acquired from the learning result decomposing unit B 503 into the peak value threshold for burr judgment, the time constant threshold for burr judgment, and the movement amount threshold for burr judgment, and peak value threshold judgment respectively. It outputs to the unit, the time constant threshold determination unit, and the movement amount threshold determination unit. Further, the defective threshold value judgment group dividing unit outputs logical expression information to the logical operation unit.
 ピーク値閾値判定部は、不良特徴量分割部から取得するピーク値に基づいて、不良閾値判定群分割部から取得するバリ判定用のピーク値閾値を用いて閾値判定を行い、角速度ピーク値判定結果を出力する。 The peak value threshold determination unit performs the threshold determination using the peak value threshold for burr determination acquired from the defect threshold determination group division unit based on the peak value acquired from the defect feature amount division unit, and the angular velocity peak value determination result Output
 時定数閾値判定部は、不良特徴量分割部から取得する減衰時定数に基づいて、不良閾値判定群分割部から取得するバリ判定用の時定数閾値を用いて閾値判定を行い、時定数判定結果を出力する。 The time constant threshold determination unit performs threshold determination using the time constant threshold for flash determination acquired from the failure threshold determination group division unit based on the attenuation time constant acquired from the failure feature amount division unit, and the time constant determination result Output
 移動量閾値判定部は、不良特徴量分割部から取得する回転子移動量に基づいて、不良閾値判定群分割部から取得するバリ判定用移動量閾値を用いて閾値判定を行い、移動量判定結果を出力する。 The movement amount threshold determination unit performs the threshold determination using the movement threshold for burr determination acquired from the defect threshold determination group division unit based on the rotor movement amount acquired from the defect feature amount division unit, and the movement amount determination result Output
 論理演算部は、ピーク値閾値判定部、時定数閾値判定部、移動量閾値判定部がそれぞれ出力するピーク値判定結果、時定数判定結果、移動量判定結果に基づき、不良閾値判定群分割部から取得する論理式情報を用いて、論理演算によりバリの有無を判定し、判定結果を不良特徴量集約部B50215へ送信する。 The logical operation unit is based on the peak value determination result output from the peak value threshold determination unit, the time constant threshold determination unit, and the movement amount threshold determination unit, the time constant determination result, and the movement amount determination result. The logical expression information to be acquired is used to determine the presence or absence of a burr by logical operation, and the determination result is transmitted to the defect feature amount aggregating unit B 50215.
 例えば、ピーク値判定結果をR(0または1)、時定数判定結果をR(0または1)、移動量判定結果をR(0または1)として(閾値を超えていると1、超えていないと0)、バリ有無判定結果R(0(バリなし)または1(バリ有))を式(2)のような論理式で表す。 For example, the peak value judgment result is R P (0 or 1), the time constant judgment result is R T (0 or 1), and the movement amount judgment result is R M (0 or 1) (1 when the threshold is exceeded If it does not exceed 0, the burr presence / absence judgment result R B (0 (without burr) or 1 (with burr)) is expressed by a logical expression such as expression (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、CPXX,CXTX,CXXM,CPTX,CPXM,CXTM,CPTMは各論理項における係数であり、0または1の値を取る。なお、式(2)は、充填過不足閾値判定部B50211、ボイド・ヒケ閾値判定部B50212、変形・反り閾値判定部B50213、変形・ウエルドライン閾値判定部B50214においても適用され、各係数の値は、各判定部に応じて、適宜設定される。
Figure JPOXMLDOC01-appb-M000002
Here, C PXX , C XTX , C XXM , C PTX , C PXM , C XTM , and C PTM are coefficients in respective logic terms, and take a value of 0 or 1. The equation (2) is also applied to the overfill threshold determination unit B50211, the void / sink threshold determination unit B50212, the deformation / warp threshold determination unit B50213, and the deformation / weld line threshold determination unit B50214, and the value of each coefficient is And is appropriately set according to each determination unit.
 図12は、図1におけるサーバH9の機能ブロック図である。 FIG. 12 is a functional block diagram of the server H9 in FIG.
 図12に示すように、サーバH9は、インターネットH8から実績データを受信してサーバ内へ保存する実績データ受信・保存部B90、実績データを用いて成形不良判定に用いられるパラメータを学習して保存するパラメータ学習・保存部B91、学習済パラメータを読み込みインターネットH8へ送出する学習済パラメータ読込・送信部B92、操作コンソールを介してオペレータからの操作を受け付けパラメータ学習・保存部B91へ学習コマンドを出力する操作受付部B93を有している。 As shown in FIG. 12, the server H 9 receives and saves actual data from the Internet H 8 and stores it in a server. The actual data receiving / storing unit B 90 learns and stores parameters used for molding defect determination using the actual data. Parameter learning / storing unit B91, learning parameter reading / sending unit B92 for reading the learned parameters and sending it to the Internet H8, receiving an operation from the operator via the operation console and outputting a learning command to the parameter learning / storing unit B91 It has an operation reception unit B93.
 図13は、サーバH9におけるパラメータ学習・保存部B91の機能ブロック図である。 FIG. 13 is a functional block diagram of the parameter learning / storage unit B91 in the server H9.
 図13に示すように、パラメータ学習・保存部B91は、実績データ分解部、回転子角速度算出係数学習部、フェーズ判定閾値群学習部、不良判定閾値群学習部、学習済パラメータ集約・保存部を有する。 As shown in FIG. 13, the parameter learning / storage unit B 91 includes an actual data decomposition unit, a rotor angular velocity calculation coefficient learning unit, a phase determination threshold value group learning unit, a failure determination threshold value group learning unit, and a learned parameter aggregation / storage unit. Have.
 実績データ分解部は、実績データを、各学習部で使用できるようにするため、回転子角速度と、d軸電流と、q軸電流と、フェーズ特徴量と、射出開始時間と、保圧開始時間と、冷却開始時間と、不良特徴量と、不良判定結果とに分解する。 The actual data disassembling unit allows the actual data to be used in each learning unit, so that the rotor angular velocity, the d-axis current, the q-axis current, the phase feature, the injection start time, and the pressure holding start time And the cooling start time, the defect feature amount, and the defect determination result.
 回転子角速度算出係数学習部は、回転子角速度とd軸電流とq軸電流の実績データに基づいて、回転子角速度の推定精度が向上するように回転子角速度算出係数を算出し、算出値を回転子角速度算出係数の学習値として出力する。たとえば、回転子角速度算出係数学習部は、d軸電流およびq軸電流に基づいて計算した回転子角速度と実績データの回転子角速度との差分の大きさが、所定値よりも大きい場合には回転子角速度算出係数を調整し、所定値を超えない場合には回転子角速度算出係数を変更せず現設定値に維持する。 The rotor angular velocity calculation coefficient learning unit calculates a rotor angular velocity calculation coefficient so as to improve estimation accuracy of the rotor angular velocity based on actual data of the rotor angular velocity, d-axis current and q-axis current, and calculates a calculated value It outputs as a learning value of a rotor angular velocity calculation coefficient. For example, the rotor angular velocity calculation coefficient learning unit performs rotation when the magnitude of the difference between the rotor angular velocity calculated based on the d-axis current and the q-axis current and the rotor angular velocity of the actual data is larger than a predetermined value. The child angular velocity calculation coefficient is adjusted, and if it does not exceed the predetermined value, the rotor angular velocity calculation coefficient is not changed and maintained at the current set value.
 フェーズ判定閾値群学習部は、フェーズ特徴量と射出開始時間と保圧開始時間と冷却開始時間の実績データに基づいて、フェーズ判定閾値群(射出フェーズ判定閾値、保圧フェーズ判定閾値、冷却フェーズ判定閾値、ショット中フェーズ判定閾値)を算出して、算出値をフェーズ判定閾値群の学習値として出力する。たとえば、フェーズ判定閾値群学習部は、射出開始時間と保圧開始時間と冷却開始時間の実績データが、極端に長かったり短かったりした場合、すなわち所定値よりも長かったり短かったりした場合、実績データのフェーズ特徴量の単位時間あたりの分散を算出し、分散に段差のある部分において、段差の前後、すなわちフェーズ特徴量の変更前後の値の中間値を算出する。なお、図13に記載される「ショット中判定閾値」は、成形品生成中であるか否かを判定するための閾値である。 The phase determination threshold value group learning unit determines the phase determination threshold value group (injection phase determination threshold value, storage pressure phase determination threshold value, cooling phase determination, based on the phase feature amount and the actual data of injection start time, pressure holding start time, and cooling start time. The threshold value and the in-shot phase determination threshold value are calculated, and the calculated value is output as a learning value of the phase determination threshold value group. For example, the phase determination threshold value group learning unit records the case where the injection start time, the pressure holding start time, and the cooling start time are extremely long or short, that is, when they are longer or shorter than a predetermined value. The variance of the phase feature quantity per unit time is calculated, and in the part where there is a step in the variance, an intermediate value of the values before and after the step, that is, before and after the change of the phase feature quantity is calculated. The “in-shot determination threshold” described in FIG. 13 is a threshold for determining whether or not a molded product is being generated.
 不良判定閾値群学習部は、不良特徴量と不良判定結果の実績データに基づいて、不良判定閾値群を算出して、算出値を学習値として出力する。たとえば、不良判定閾値群学習部は、いわゆるクラスタリングを用いて、不良判定閾値群を算出する。この場合、不良判定閾値群学習部は、不良特徴量を不良発生ありのクラスタと不良発生無のクラスタとに分類するクラスタ境界が不良発生の有無を高確率で区分けできるような不良判定閾値を算出する。 The defect determination threshold value group learning unit calculates the defect determination threshold value group based on the defect feature amount and the actual result data of the defect determination result, and outputs the calculated value as a learning value. For example, the defect determination threshold value group learning unit calculates defect determination threshold value groups using so-called clustering. In this case, the defect determination threshold value group learning unit calculates a defect determination threshold value such that the cluster boundary that classifies the defect feature amount into a cluster with defect generation and a cluster without defect generation can classify the existence of defects with high probability. Do.
 学習済パラメータ集約・保存部は、回転子角速度算出係数学習部、フェーズ判定閾値群学習部、不良判定閾値群学習部がそれぞれ出力するパラメータ、すなわち、回転子角速度算出係数、フェーズ判定閾値群(射出フェーズ判定閾値、保圧フェーズ判定閾値、冷却フェーズ判定閾値、ショット中フェーズ判定閾値)、不良判定閾値群を集約して保存する。なお、学習済パラメータ読込・送信部B92は、学習済パラメータ集約・保存部が保存するパラメータを読み込む。 The learned parameter aggregating / storage unit is a parameter output by the rotor angular velocity calculation coefficient learning unit, the phase determination threshold value group learning unit, and the defect determination threshold value group learning unit, that is, the rotor angular velocity calculation coefficient, the phase determination threshold group The phase determination threshold, the pressure holding phase determination threshold, the cooling phase determination threshold, the in-shot phase determination threshold), and the defect determination threshold group are collected and stored. The learned parameter reading / transmitting unit B 92 reads the parameters stored by the learned parameter aggregation / storage unit.
 図14は、本実施例1の加工成形品不良検知システムにおける処理のフローおよびシーケンスを示す。 FIG. 14 shows the flow and sequence of processing in the system for detecting a defect in a formed molded article according to the first embodiment.
 まず、成形品不良検知装置H5が、U相電流センサH2、V相電流センサH3、W相電流センサH4がそれぞれ検出するU相電流、V相電流、W相電流の値を取得する。 First, the molded product defect detection device H5 acquires values of the U-phase current, the V-phase current, and the W-phase current that are detected by the U-phase current sensor H2, the V-phase current sensor H3, and the W-phase current sensor H4, respectively.
 次に、成形品不良検知装置H5は、各フェーズ判定部B501(図5)を用いて、現在のフェーズが射出、保圧、冷却のいずれであるか、またショット中であるか否かを判定するためのフェーズ判定処理F50を実行する。ショット中である場合、成形品不良検知装置H5は、データ収集を行った後、U相電流、V相電流、W相電流の値の取得処理に戻る。ショット中でない場合、成形品不良検知装置H5は、前回がショット中でなければU相電流、V相電流、W相電流の値の取得処理に戻り、前回がショット中であれば成形品不良検知処理F52を実行する。 Next, using the phase determination unit B 501 (FIG. 5), the molded article defect detection device H 5 determines whether the current phase is injection, holding pressure, or cooling, and whether a shot is in progress. A phase determination process F50 is performed. If the shot is in progress, the molded article defect detection device H5 performs data collection, and then returns to the process of acquiring the values of the U-phase current, the V-phase current, and the W-phase current. When the shot is not in progress, the molded article defect detection device H5 returns to acquisition processing of the values of U-phase current, V-phase current and W-phase current if the previous shot is not in shot, and if the previous shot is in shot The process F52 is executed.
 成形品不良検知装置H5は、検知処理F52を実行後、不良検知結果を射出成形機H1へ送信する。射出成形機H1は、成形品不良検知装置H5から受信する不良検知結果に応じて、射出速度設定値、保圧設定値、金型圧設定値などの制御設定値を変更する。さらに、成形品不良検知装置H5は、実績データをインターネットH8へ送出し、インターネットH8を介してサーバH9(図14では図示せず)へ送信する。 After executing the detection process F52, the molded article defect detection device H5 transmits the defect detection result to the injection molding machine H1. The injection molding machine H1 changes control setting values such as an injection speed setting value, a holding pressure setting value, and a mold pressure setting value according to the defect detection result received from the molded article defect detection device H5. Further, the molded article defect detection device H5 transmits the result data to the Internet H8, and transmits it to the server H9 (not shown in FIG. 14) via the Internet H8.
 次に、成形品不良検知装置H5は、不良検知結果に基づいて不良検知画面および音声出力(ブザー出力)を作成し、それぞれディスプレイH6およびスピーカーH7へ送信する。ディスプレイH8は、成形品不良検知装置H5からの不良検知結果画面を表示し、スピーカーH7は、成形品不良検知装置H5からの音声出力を受けると、成形品の不良を検知したことを示すブザー音を出力する。 Next, the molded article defect detection device H5 creates a defect detection screen and an audio output (buzzer output) based on the result of the defect detection, and transmits them to the display H6 and the speaker H7, respectively. The display H8 displays a defect detection result screen from the molded article defect detection device H5, and the speaker H7 is a buzzer sound indicating that the molded article defect is detected when the voice output from the molded article defect detection device H5 is received. Output
 成形品不良検知装置H5は、以上の一連の処理を実行後、電流取得処理に戻る。 After the molded article defect detection device H5 executes the above-described series of processes, the process returns to the current acquisition process.
 図15は、図14におけるフェーズ判定処理F50の詳細な処理フローおよびシーケンスを示す。 FIG. 15 shows a detailed processing flow and sequence of the phase determination processing F50 in FIG.
 まず、成形品不良検知装置H5が有する成形品不良検知部B50において、回転子角速度算出部B500は、学習結果分解部B503に対して回転子角速度算出係数を要求する。学習結果分解部B503は、回転子角速度算出部B500へ回転子角速度算出係数を送信する。回転子角速度算出部B500は、U相電流IとV相電流IとW相電流Iを読み込み、式(3)によりαβ変換を実行して、α軸電流Iαとβ軸電流Iβを算出する。 First, in the molded article defect detection unit B50 included in the molded article defect detection device H5, the rotor angular velocity calculation unit B500 requests the learning result decomposition unit B503 for a rotor angular velocity calculation coefficient. The learning result decomposition unit B 503 transmits the rotor angular velocity calculation coefficient to the rotor angular velocity calculation unit B 500. The rotor angular velocity calculating unit B500 reads the U-phase current I u and the V-phase current I v and the W-phase current I w, running αβ conversion by equation (3), alpha -axis current I alpha and β-axis current I Calculate β .
Figure JPOXMLDOC01-appb-M000003
 回転子角度算出部における回転子角度推定部(図6)は、α軸電流とβ軸電流に基づいて回転子角速度を推定する。ここで、サンプリング周期をΔT、時刻をt=k×ΔTとすると、時刻tにおいて算出されるα軸電流Iα(k)とβ軸電流Iβ(k)から式(4)を用いて回転子角度(仮値)θ(k)が算出される。
Figure JPOXMLDOC01-appb-M000003
The rotor angle estimation unit (FIG. 6) in the rotor angle calculation unit estimates the rotor angular velocity based on the α axis current and the β axis current. Here, assuming that the sampling period is ΔT and time is t = k × ΔT, rotation is performed using equation (4) from α-axis current I α (k) and β-axis current I β (k) calculated at time t The child angle (provisional value) θ d (k) is calculated.
Figure JPOXMLDOC01-appb-M000004
 次に、回転子角速度算出部B500は、α軸電流Iα(k)とβ軸電流Iβ(k)および回転子角度(仮値)θ(k)に基づいて、式(5)によりdq変換を実行して、d軸電流I(k)とq軸電流I(k)を算出する。
Figure JPOXMLDOC01-appb-M000004
Next, the rotor angular velocity calculation unit B500 calculates the equation (5) based on the α axis current I α (k), the β axis current I β (k) and the rotor angle (provisional value) θ d (k). The dq conversion is performed to calculate the d-axis current I d (k) and the q-axis current I q (k).
Figure JPOXMLDOC01-appb-M000005
 回転子角度算出部における回転子角度推定部(図6)は、算出されたd軸電流I(k)とq軸電流I(k)に基づいて、式(6)を用いて回転子角度の更新値θ(k)を算出する。
Figure JPOXMLDOC01-appb-M000005
The rotor angle estimation unit (FIG. 6) in the rotor angle calculation unit uses the equation (6) based on the calculated d-axis current I d (k) and q-axis current I q (k). The updated value θ u (k) of the angle is calculated.
Figure JPOXMLDOC01-appb-M000006
 回転子角度推定部(図6)は、算出された回転子角速度の更新値θ(k)と仮値θ(k)との差分の絶対値が、所定の閾値以上であるか否かを判定し、閾値以上であれば、式(7)により仮値θ(k)を再計算して、再計算値を用いて、再度、式(5)および(6)により更新値θ(k)を算出する。
Figure JPOXMLDOC01-appb-M000006
The rotor angle estimation unit (FIG. 6) determines whether the absolute value of the difference between the calculated updated value θ u (k) of the rotor angular velocity and the temporary value θ d (k) is equal to or greater than a predetermined threshold value. If the threshold value is greater than or equal to the threshold value, the temporary value θ d (k) is recalculated by the equation (7), and the updated value θ u is again calculated by the equations (5) and (6) using the recalculated value. Calculate (k).
Figure JPOXMLDOC01-appb-M000007
 なお、式(7)において、Cは、サーバH9(図12)から送信される学習済パラメータに含まれる回転子角速度算出係数の一つであり、Cの絶対値は0以上1未満である。
Figure JPOXMLDOC01-appb-M000007
In Formula (7), C u is one of the rotor angular velocity calculation coefficients included in the learned parameters transmitted from the server H 9 (FIG. 12), and the absolute value of C u is 0 or more and less than 1 is there.
 更新値θ(k)と仮値θ(k)との差分の絶対値が、所定の閾値未満であれば、回転子角度推定部(図6)は、式(8)により回転子角速度ω(k)を算出して、回転子角度の推定値として出力するとともに保存する。なお、θ(k-1)は、1サンプリング周期前に算出され保存されていた回転子角度の更新値である。 If the absolute value of the difference between the updated value θ u (k) and the temporary value θ d (k) is less than a predetermined threshold, the rotor angle estimation unit (FIG. 6) determines the rotor angular velocity according to equation (8) ω (k) is calculated and output as an estimated value of the rotor angle and stored. Note that θ u (k−1) is the updated value of the rotor angle that was calculated and stored one sampling period earlier.
Figure JPOXMLDOC01-appb-M000008
 また、更新値θ(k)と仮値θ(k)との差分の絶対値が所定の閾値未満である場合、回転子角速度算出部B500は、各フェーズ判定部B501へ、d軸電流およびq軸電流の各値(I(k),I(k))を送信する。
Figure JPOXMLDOC01-appb-M000008
Further, when the absolute value of the difference between the update value θ u (k) and the temporary value θ d (k) is less than a predetermined threshold, the rotor angular velocity calculation unit B500 sends the d-axis current to each phase determination unit B501. And each value (I d (k), I q (k)) of the q-axis current.
 各フェーズ判定部B501は、d軸電流およびq軸電流の各値を受信すると、学習結果分解部B503へフェーズ判定閾値群を要求する。この要求に応じて、学習結果分解部B503は、フェーズ判定閾値群を各フェーズ判定部B501へ送信する。各フェーズ判定部B501は、フェーズ判定閾値群を受信すると、各フェーズ判定部B501などに保存されている現在のフェーズ番号(動作フェーズ(射出、保圧、冷却)ごとに付与される識別番号)を読み込み、さらに、フェーズ特徴量を算出する。算出されたフェーズ特徴量がフェーズ閾値を超えている場合、各フェーズ判定部B501は、動作フェーズが現在のフェーズ番号が示す動作フェーズから次のフェーズに移行していると判定して、保存しているフェーズ番号を更新する。 When receiving each value of the d-axis current and the q-axis current, each phase determination unit B 501 requests the phase determination threshold group to the learning result decomposition unit B 503. In response to this request, the learning result disassembly unit B 503 transmits the phase determination threshold value group to each phase determination unit B 501. When each phase determination unit B501 receives the phase determination threshold value group, each phase determination unit B501 stores the current phase number (identification number assigned to each operation phase (injection, holding pressure, cooling)) stored in each phase determination unit B501 or the like. Read and calculate phase feature quantities. When the calculated phase feature amount exceeds the phase threshold, each phase determination unit B501 determines that the operation phase is shifted from the operation phase indicated by the current phase number to the next phase, and saves the phase. Update the current phase number.
 図16は、図14におけるデータ収集処理F51の詳細な処理フローおよびシーケンスを示す。 FIG. 16 shows a detailed process flow and sequence of the data collection process F51 in FIG.
 まず、成形品不良検知部B50における不良判定部B502は、回転子角速度算出部B500に対して、回転子角速度、d軸電流、q軸電流の送信を要求する。この要求に応じ、回転子角速度算出部B500は、不良判定部B502およびデータ集約部B504へ、回転子角速度、d軸電流、q軸電流を送信する。 First, the defect determination unit B 502 in the molded article defect detection unit B 50 requests the rotor angular velocity calculation unit B 500 to transmit the rotor angular velocity, the d-axis current, and the q-axis current. In response to this request, the rotor angular velocity calculation unit B500 transmits the rotor angular velocity, the d-axis current, and the q-axis current to the defect determination unit B502 and the data aggregation unit B504.
 次に、不良判定部B502は、各フェーズ判定部B501に対して、フェーズ特徴量と各フェーズ開始時間の送信を要求する。この要求に応じて、各フェーズ判定部B501は、不良判定部B502およびデータ集約部B504へ、フェーズ特徴量および各フェーズ開始時間を送信する。 Next, the defect determination unit B 502 requests each phase determination unit B 501 to transmit the phase feature amount and each phase start time. In response to this request, each phase determination unit B501 transmits the phase feature amount and each phase start time to the defect determination unit B502 and the data aggregation unit B504.
 不良判定部B502は、フェーズ特徴量および各フェーズ開始時間を受信すると、現在時刻を取得し、取得した現在時刻をデータ集約部B504へ送信する。不良判定部B502とデータ集約部B504はそれぞれ、取得したデータ(回転子角速度、d軸電流およびq軸電流、フェーズ特徴量および各フェーズ開始時間、時刻)を保存する。 When the defect determination unit B 502 receives the phase feature amount and each phase start time, the failure determination unit B 502 acquires the current time, and transmits the acquired current time to the data aggregation unit B 504. The defect determination unit B 502 and the data aggregation unit B 504 respectively store the acquired data (rotor angular velocity, d-axis current and q-axis current, phase feature amount and time to start each phase, time).
 図17は、図14における成形品不良検知処理F52の詳細な処理フローおよびシーケンスを示す。 FIG. 17 shows a detailed processing flow and sequence of the molded part defect detection processing F52 in FIG.
 まず、不良判定部B502における不良特徴量算出部B5020は、回転子角速度と保圧開始時間と冷却開始時間を読み込み、保圧時の角速度を抽出する。次に、不良特徴量算出部B5020は、不良特徴量の種類の数だけ不良特徴量を計算し、計算した各特徴量を集約して、不良特徴量として不良閾値判定部B5021およびデータ集約部B504へ送信する。 First, the failure feature quantity calculation unit B 5020 in the failure judgment unit B 502 reads the rotor angular velocity, the pressure holding start time, and the cooling start time, and extracts the angular velocity at pressure holding. Next, the defect feature quantity calculation unit B 5020 calculates defect feature quantities according to the number of types of defect feature quantities, aggregates the calculated feature quantities, and sets them as defect feature quantities as a defect threshold decision unit B 5021 and data aggregation unit B 504. Send to
 不良閾値判定部B5021は、不良特徴量を受信すると、学習結果分解部B503に対して不良判定閾値群の送信を要求する。この要求に応じて、学習結果分解部B503は、不良閾値判定部B5021に対して不良判定閾値群を送信する。不良閾値判定部B5021は、特徴量の種類の数だけ不良特徴量と不良判定閾値を用いて閾値判定処理を実行する。不良閾値判定部B5021は、全ての閾値判定が完了した後、前述の式(2)を用いて論理演算により不良の有無を判定する。 When the defect threshold value determination unit B5021 receives the defect feature amount, the defect threshold value determination unit B5021 requests the learning result decomposition unit B503 to transmit the defect determination threshold value group. In response to this request, the learning result disassembly unit B 503 transmits a failure determination threshold value group to the failure threshold determination unit B 5021. The defect threshold value determination unit B5021 executes threshold value determination processing using defect feature amounts and defect determination thresholds for the number of types of feature amounts. After all the threshold value determinations are completed, the defect threshold value determination unit B5021 determines the presence or absence of a defect by logical operation using the above-mentioned equation (2).
 不良閾値判定部B5021は、以上の処理を不良の種類の数だけ実行後、不良検知結果を集約してデータ集約部B504へ送信する。データ集約部B504は、受信した不良検知結果を保存する。 After executing the above processing for the number of types of defects, the defect threshold value determination unit B5021 aggregates defect detection results and transmits the result to the data aggregation unit B504. The data aggregation unit B 504 stores the received defect detection result.
 図18は、サーバH9が実行するパラメータ学習・保存処理F90の処理フローおよびシーケンスを示す。 FIG. 18 shows the process flow and sequence of the parameter learning / storage process F90 executed by the server H9.
 まず、サーバH9における操作受付部B93は、オペレータからパラメータ学習実行の操作を受け付けると、パラメータ学習・保存部B91へ学習コマンドを送信する。 First, when receiving an operation of parameter learning execution from the operator, the operation receiving unit B 93 in the server H 9 transmits a learning command to the parameter learning / storage unit B 91.
 パラメータ学習・保存部B91は、学習コマンドを受信すると、実績データ受信・保存部B90に対して実績データの送信を要求する。この要求に応じて、実績データ受信・保存部B90は、パラメータ学習・保存部B91に対して実績データを送信する。 When receiving the learning command, the parameter learning / storage unit B91 requests the actual data reception / storage unit B90 to transmit the actual data. In response to this request, the actual data reception / storage unit B90 transmits actual data to the parameter learning / storage unit B91.
 パラメータ学習・保存部B91は、受信した実績データに基づいて、回転子角速度算出係数、フェーズ判定閾値群および不良判定閾値群の各学習値を算出して、算出したこれら学習値を集約して、学習済パラメータとして保存する。 The parameter learning / storage unit B 91 calculates each learning value of the rotor angular velocity calculation coefficient, the phase determination threshold group, and the failure determination threshold group based on the received actual data, and integrates these calculated learning values, Save as learned parameters.
 図19は、サーバH9が実行するパラメータ更新処理F91の処理フローおよびシーケンスを示す。 FIG. 19 shows the process flow and the sequence of the parameter update process F91 executed by the server H9.
 まず、サーバH9における操作受付部B93は、オペレータからパラメータ更新実行の操作を受け付けると、学習済パラメータ読込・送信部B92へパラメータ更新コマンドを送信する。学習済パラメータ読込・送信部B92は、パラメータ更新コマンドを受信すると、パラメータ学習・保存部B91に対して学習済パラメータの送信を要求する。この要求に応じて、パラメータ学習・保存部B91は、学習済パラメータ学習・保存部B92に対して学習済パラメータ送信する。学習済パラメータ読込・送信部B92は、学習済パラメータを受信すると、インターネットH8を介して成形品不良検知装置H5におけるサーバデータ送受信部B54に対して学習済パラメータを送信する。サーバデータ送受信部B54は、受信した学習済パラメータを保存する。 First, when the operation accepting unit B 93 in the server H 9 accepts an operation of parameter update execution from the operator, the operation accepting unit B 93 transmits a parameter update command to the learned parameter reading and transmitting unit B 92. When receiving the parameter update command, the learned parameter reading / sending unit B 92 requests the parameter learning / storing unit B 91 to transmit the learned parameters. In response to this request, the parameter learning / storage unit B91 transmits the learned parameters to the learned parameter learning / storage unit B92. When the learned parameter reading / transmitting unit B 92 receives the learned parameter, the learned parameter reading / transmitting unit B 92 transmits the learned parameter to the server data transmission / reception unit B 54 in the molded article defect detection device H 5 via the Internet H 8. The server data transmission / reception unit B 54 stores the received learned parameter.
 図20は、成形品不良検知装置が備える各種データH500のデータ構成である。 FIG. 20 shows the data configuration of various data H500 included in the molded article defect detection device.
 図20に示すように、成形品不良検知装置H5における記録装置H50に記録される各種データH500(図2)は、成形品不良検知プログラム用データD50、サーバデータ送受信プログラム用データD54、不良検知結果送信プログラム用データ、不良検知結果表示プログラム用データ、不良検知ブザー出力プログラム用データによって構成されている。 As shown in FIG. 20, various data H500 (FIG. 2) recorded in the recording device H50 in the molded article defect detection device H5 are data D50 for a molded article defect detection program, data D54 for a server data transmission / reception program, and a defect detection result It comprises data for transmission program, data for defect detection result display program, and data for defect detection buzzer output program.
 成形品不良検知プログラム用データD50は、成形品不良検知プログラムによって使用される定数および変数であり、サンプリング周期などの設定データ、プログラム用テンポラリ変数D500、U相電流値、V相電流値、W相電流値、不良検知結果D501を含む。サンプリング周期などの設定データは、データ収集におけるサンプリング周期や各種演算処理に使用する係数などの設定値である。プログラム用テンポラリ変数D500は、成形品不良検知プログラムが実行されている間に使用されて、値が変更される変数の集合体である。U相電流値、V相電流値、W相電流値はそれぞれU相電流センサH2、V相電流センサH3、W相電流センサH4で計測された電流値を示すディジタルデータである。不良検知結果D501は、成形品不良検知プログラムによって算出された、成形品の各種不良の有無に関するデータである。 Molded product defect detection program data D50 is a constant and a variable used by the molded product defect detection program, and includes setting data such as sampling cycle, temporary variable D500 for program, U-phase current value, V-phase current value, W-phase The current value includes the defect detection result D501. The setting data such as the sampling cycle is a setting value such as a sampling cycle in data collection or a coefficient used for various arithmetic processing. The program temporary variable D500 is a collection of variables whose values are changed while being used while the molding defect detection program is being executed. The U-phase current value, the V-phase current value, and the W-phase current value are digital data indicating the current values measured by the U-phase current sensor H2, the V-phase current sensor H3, and the W-phase current sensor H4, respectively. The defect detection result D501 is data relating to the presence or absence of various defects of the molded product, calculated by the molded product defect detection program.
 サーバデータ送受信プログラム用データD54は、サーバデータ送受信プログラムによって使用される定数および変数であり、通信速度などの設定データ、プログラム用テンポラリ変数、実績データD540、学習済パラメータD541を含む。通信速度などの設定データは、サーバH9との通信における通信速度や通信プロトコルの種類を示す値などの設定値である。プログラム用テンポラリ変数は、サーバデータ送受信プログラムが実行されている間に使用され、値が変更される変数の集合体である。実績データD540は、成形品不良検知装置H5の稼働データであり、時刻、回転子角速度、d軸電流およびq軸電流、フェーズ特徴量、射出開始時間、保圧開始時間、冷却開始時間、不良特徴量、不良判定結果を含む。学習済パラメータは、サーバH9から受信した成形品不良検知の計算に用いられる各種係数群であり、回転子角速度算出係数、フェーズ判定閾値群、不良判定閾値群を含む。 The server data transmission / reception program data D54 is a constant and a variable used by the server data transmission / reception program, and includes setting data such as communication speed, a program temporary variable, actual data D540, and a learned parameter D541. The setting data such as the communication speed is a setting value such as the communication speed in communication with the server H 9 or a value indicating the type of communication protocol. The program temporary variable is a collection of variables whose values are used while the server data transmission / reception program is being executed. The performance data D540 is operation data of the molded article defect detection device H5, and time, rotor angular velocity, d axis current and q axis current, phase feature amount, injection start time, pressure holding start time, cooling start time, defect feature Includes quantity and defect judgment results. The learned parameter is a group of various coefficients used for calculation of molded product defect detection received from the server H9, and includes a rotor angular velocity calculation coefficient, a phase determination threshold group, and a failure determination threshold group.
 不良検知結果送信プログラム用データは、不良検知結果送信プログラムにおいて使用される定数および変数であり、通信速度などの設定データとプログラム用テンポラリ変数を含む。通信速度などの設定データは、射出成形機H1との通信における通信速度や通信プロトコルの種類を示す値などの設定値である。プログラム用テンポラリ変数は、不良検知結果送信プログラムが実行されている間に使用され、値が変更される変数の集合体である。 The defect detection result transmission program data is a constant and a variable used in the defect detection result transmission program, and includes setting data such as communication speed and a program temporary variable. The setting data such as the communication speed is a setting value such as a communication speed in communication with the injection molding machine H1 or a value indicating the type of communication protocol. The temporary variable for program is a collection of variables whose values are changed while the defect detection result transmission program is being executed.
 不良検知結果表示プログラム用データは、不良検知結果表示プログラムによって使用される定数および変数であり、画面サイズなどの設定データ、プログラム用テンポラリ変数、表示画面データを含む。画面サイズなどの設定データは、ディスプレイH6に表示する画面のサイズや色数などの設定値である。プログラム用テンポラリ変数は、不良検知結果表示プログラムが実行されている間に使用され、値が変更される変数の集合体である。表示画面データは、不良検知結果を示す画面のイメージデータである。 The defect detection result display program data is a constant and a variable used by the defect detection result display program, and includes setting data such as a screen size, a program temporary variable, and display screen data. The setting data such as the screen size is a setting value such as the size and the number of colors of the screen displayed on the display H6. The program temporary variable is a collection of variables whose values are changed while the defect detection result display program is being executed. The display screen data is image data of a screen showing a defect detection result.
 不良検知ブザー出力プログラム用データは、不良検知ブザー出力プログラムによって使用される定数および変数であり、音声種類などの設定データ、プログラム用テンポラリ変数、音声データを含む。音声種類などの設定データは、スピーカーH7に出力する音声の種類や音量の設定値である。プログラム用テンポラリ変数は、不良検知ブザー出力プログラムが実行されている間に使用され、値が変更される変数の集合体である。音声データは、不良検知が発生したときに鳴らす音声の波形データである。 The defect detection buzzer output program data is a constant and a variable used by the defect detection buzzer output program, and includes setting data such as a voice type, a program temporary variable, and voice data. The setting data such as the sound type is the setting value of the type and volume of sound to be output to the speaker H7. The program temporary variable is a collection of variables whose values are changed while being used during execution of the defect detection buzzer output program. The voice data is waveform data of voice that sounds when defect detection occurs.
 図21は、図20における成形品不良検知プログラム用データに含まれるプログラムテンポラリ変数D500のデータ構成を示す。 FIG. 21 shows a data configuration of a program temporary variable D500 included in the data for a molding defect detection program in FIG.
 図21に示すように、成形品不良検知プログラム用のプログラムテンポラリ変数D500は、回転子角速度算出部用データD5000、回転子角速度時系列データ、各フェーズ算出部用データD5001、各フェーズ開始時間、現在のフェーズ番号、現在のショット番号、d軸q軸電流時系列データ、不良判定部用データD5002から構成されている。 As shown in FIG. 21, the program temporary variable D500 for the molded part defect detection program includes data D5000 for rotor angular velocity calculation unit, time series data for rotor angular velocity, data D5001 for each phase calculation unit, each phase start time, current , The current shot number, d-axis q-axis current time-series data, and data D5002 for defect determination unit.
 回転子角速度算出部用データD5000は、回転子角速度算出部にてテンポラリに使用する変数であり、設定データと角速度算出部用テンポラリ変数D50000を含む。設定データは、回転子角速度を計算するための係数であり、回転子角速度算出係数、回転子角度の更新推定値と仮値との差分の閾値を含む。角速度算出部用テンポラリ変数D50000は、回転子角速度の算出が実行されている間に使用され、値が変更される変数の集合体である。 The rotor angular velocity calculation unit data D5000 is a variable temporarily used by the rotor angular velocity calculation unit, and includes setting data and a temporary variable D50000 for the angular velocity calculation unit. The setting data is a coefficient for calculating the rotor angular velocity, and includes a rotor angular velocity calculation coefficient, and a threshold of a difference between the updated estimated value of the rotor angle and the temporary value. The angular velocity calculation unit temporary variable D50000 is a set of variables whose values are changed while the calculation of the rotor angular velocity is being performed.
 回転子角速度時系列データは、時刻と回転子角速度の値がセットとして複数存在するデータである。 The rotor angular velocity time-series data is data in which a plurality of values of time and rotor angular velocity exist as a set.
 各フェーズ算出部用データD5001は、各フェーズ算出部にてテンポラリに使用する変数であり、設定データと各フェーズ算出部用テンポラリ変数D50010を含む。設定データは、各フェーズ開始時間を計算するための係数であり、フェーズ判定閾値群を含む。各フェーズ算出部用テンポラリ変数は、各フェーズ開始時間の計算処理が実行されている間に使用され、値が変更される変数の集合体である。 Each phase calculation unit data D5001 is a variable temporarily used in each phase calculation unit, and includes setting data and each phase calculation unit temporary variable D50010. The setting data is a coefficient for calculating each phase start time, and includes a phase determination threshold group. The temporary variables for each phase calculation unit are a collection of variables whose values are changed while calculation processing of each phase start time is being performed.
 各フェーズ開始時間は、射出フェーズの開始時間である射出開始時間と、保圧フェーズの開始時間である保圧開始時間と、冷却フェーズの開始時間である冷却開始時間を含む。 Each phase start time includes an injection start time which is a start time of the injection phase, a pressure holding start time which is a start time of the pressure holding phase, and a cooling start time which is a start time of the cooling phase.
 現在のフェーズ番号は、ショット開始フェーズ、射出フェーズ、保圧フェーズ、冷却フェーズ、ショット終了フェーズに割り振った番号であるフェーズ番号のうち、現在のフェーズ番号を示す。 The current phase number indicates the current phase number among the phase numbers assigned to the shot start phase, the injection phase, the pressure holding phase, the cooling phase, and the shot end phase.
 現在のショット番号は、成形品不良検知装置H5を稼働開始してから成形品を何回作ろうとしたかを示す番号であるショット番号の内、現在のショット番号を示す。 The current shot number indicates the current shot number among the shot numbers indicating the number of times the molded product has been tried since the start of operation of the molded product defect detection device H5.
 d軸q軸電流時系列データは、時刻と、d軸電流およびq軸電流とをセットにして、複数存在するデータである。 The d-axis and q-axis current time-series data are data that exist in a plurality of sets of time, d-axis current and q-axis current.
 不良判定部用データD5002は、不良判定部にて使用する変数であり、設定データD50021と不良判定部用テンポラリ変数D50020を含む。設定データD50021は、不良判定部の設定データであり、不良判定閾値群D500210を含む。不良判定部用テンポラリ変数D50020は、不良判定部にてテンポラリに使用する変数である。 The defect determination unit data D5002 is a variable used in the defect determination unit, and includes setting data D50021 and a defect determination unit temporary variable D50020. The setting data D50021 is setting data of the defect determination unit, and includes a defect determination threshold value group D500210. The failure determination unit temporary variable D50020 is a variable used temporarily by the failure determination unit.
 図22は、図21における角速度算出部用テンポラリ変数D50000のデータ構成を示す。 FIG. 22 shows a data configuration of the temporary variable D 50000 for the angular velocity calculation unit in FIG.
 図22に示すように、角速度算出部用テンポラリ変数は、α軸電流値、β軸電流値、d軸電流値(仮値)、q軸電流値(仮値)、回転子角速度仮値、回転子角速度更新値を含む。 As shown in FIG. 22, the temporary variables for the angular velocity calculation unit are α axis current value, β axis current value, d axis current value (temporary value), q axis current value (temporary value), rotor angular velocity tentative value, rotation The child angular velocity update value is included.
 図23は、図21におけるフェーズ判定閾値群D50010のデータ構成を示す。 FIG. 23 shows a data configuration of phase determination threshold value group D50010 in FIG.
 図23に示すように、フェーズ判定閾値群D50010は、射出フェーズを判定するための射出フェーズ判定閾値、保圧フェーズを判定するための保圧フェーズ判定閾値、射出フェーズを判定するための射出フェーズ判定閾値、冷却フェーズを判定するための冷却フェーズ判定閾値、ショット中かどうかを判定するためのショット中判定閾値を含む。 As shown in FIG. 23, the phase determination threshold group D50010 includes an injection phase determination threshold for determining an injection phase, a pressure holding phase determination threshold for determining a pressure holding phase, and an injection phase determination for determining an injection phase. The threshold value, the cooling phase determination threshold value for determining the cooling phase, and the in-shot determination threshold value for determining whether the shot is in progress are included.
 図24は、図21における不良判定部用テンポラリ変数D50020のデータ構成を示す。 FIG. 24 shows a data configuration of the failure determination unit temporary variable D50020 in FIG.
 図24に示すように、不良判定部用テンポラリ変数D50020は、保圧時角速度時系列データと不良特徴量を含む。保圧時角速度時系列データは、時刻と保圧時回転子角速度をセットにして複数存在するデータである。不良特徴量は、角速度ピーク値と減衰時定数と回転子移動量を含む。 As shown in FIG. 24, the failure determination unit temporary variable D 50020 includes pressure holding angular velocity time-series data and a failure feature amount. The pressure retention time angular velocity time series data is data in which a plurality of time and pressure retention time rotor angular velocities are present as a set. The defect feature amount includes an angular velocity peak value, an attenuation time constant, and a rotor movement amount.
 図25は、図21における不良判定閾値群D500210のデータ構成を示す。 FIG. 25 shows a data configuration of failure determination threshold value group D500210 in FIG.
 図25に示すように、不良判定閾値群D500210は、バリ判定用閾値群、過充填判定用閾値群、充填不足判定用閾値群、ヒケ判定用閾値群、ボイド判定用閾値群(図25では図示せず)、変形判定用閾値群(図25では図示せず)、反り判定用閾値群(図25では図示せず)、変色判定用閾値群(図25では図示せず)、ウエルドライン判定用閾値群(図25では図示せず)を含む。 As shown in FIG. 25, the defect determination threshold group D500210 includes a burr determination threshold group, an overfill determination threshold group, an underfill determination threshold group, a sink mark determination threshold group, and a void determination threshold group (FIG. 25). (Not shown), deformation determination threshold group (not shown in FIG. 25), warpage determination threshold group (not shown in FIG. 25), color change determination threshold group (not shown in FIG. 25), weld line determination A threshold group (not shown in FIG. 25) is included.
 バリ判定用閾値群は、ピーク値用閾値、時定数用閾値、移動量用閾値、論理式データを含む。ピーク値閾値は、バリが発生するときの回転子角速度ピーク値の境界(閾値)を示す。時定数閾値は、バリが発生するときの減衰時定数の境界を示す。移動量閾値は、バリが発生するときの回転子移動量の境界を示す。論理式データは、前述の式(2)におけるCPXX,CXTX,CXXM,CPTX,CPXM,CXTM,CPTMである。 The burr determination threshold group includes a peak value threshold, a time constant threshold, a movement amount threshold, and logical expression data. The peak value threshold indicates the boundary (threshold) of the rotor angular velocity peak value when burrs occur. The time constant threshold indicates the boundary of the decay time constant when burrs occur. The movement amount threshold indicates the boundary of the rotor movement amount when burrs occur. Logical expression data, C PXX in equation (2) described above, C XTX, C XXM, C PTX, C PXM, C XTM, a C PTM.
 なお、過充填判定用閾値群、充填不足判定用閾値群、ヒケ判定用閾値群、ボイド判定用閾値群、変形判定用閾値群、反り判定用閾値群、変色判定用閾値群、ウエルドライン判定用閾値群についても、それぞれバリ判定用閾値群と同様のデータ構成を有する。 Note that the overfill determination threshold group, the underfill determination threshold group, the sinking determination threshold group, the void determination threshold group, the deformation determination threshold group, the warpage determination threshold group, the color change determination threshold group, for weld line determination The threshold value group also has the same data configuration as the burr judgment threshold value group.
 図26は、図20における不良検知結果D501のデータ構成を示す。 FIG. 26 shows the data structure of the defect detection result D501 in FIG.
 図26に示すように、不良検知結果D501は、成形品にバリがあるかどうかを示すバリ有無判定結果、成形品が過充填かどうかを示す過充填判定結果、成形品が充填不足かどうかを示す重点不足判定結果、成形品にボイドが発生しているかどうかを示すボイド判定結果、成形品にヒケが発生しているかどうかを示すヒケ判定結果、成形品に変形が存在しているかどうかを示す変形判定結果、成形品に反りが発生しているかどうかを示す反り判定結果、成形品にウエルドラインが発生しているかどうかを示すウエルドライン判定結果、成形品に糸引きが発生しているかどうかを示す糸引き判定結果を含む。なお、図示するように、本実施例1において、判定結果の値は、論理値で示され、該当する不良が成形品に発生している場合は1であり、発生していない場合は0である。 As shown in FIG. 26, the defect detection result D501 indicates the presence or absence of burrs indicating whether or not there are burrs in the molded product, the overfilling determination result indicating whether the molded product is overfilled or not, whether the molded product is insufficiently filled or not The result of the lack of emphasis judgment shown, the result of the void judgment showing whether or not a void is generated in the molded article, the result of a sinking judgment showing whether or not a sink mark is generated in the molded article, and whether or not the molded article has deformation. As a result of deformation determination, as a result of warpage determination indicating whether warpage occurs in the molded article, as a result of weld line determination indicating whether a weld line occurs in the molded article, whether or not stringing occurs in the formed article It includes the stringing determination result shown. As illustrated, in the first embodiment, the value of the determination result is indicated by a logical value, and is 1 when the corresponding defect occurs in the molded product, and 0 when it does not occur. is there.
 図27は、図20における実績データD540のデータ構成を示す。 FIG. 27 shows the data configuration of the performance data D 540 in FIG.
 図27に示すように、実績データは、1ショットあたりの実績データの集合体であり、1ショットあたりの実績データは、ショット番号、実績時系列データ、各フェーズ開始時間、不良特徴量、不良判定結果を含む。なお、実績時系列データは、時刻と、回転子角速度とd軸電流とq軸電流およびフェーズ特徴量とが、セットとして複数存在するデータである。 As shown in FIG. 27, the performance data is a collection of performance data per shot, and the performance data per shot is a shot number, performance time series data, each phase start time, defect feature amount, defect determination Include the results. The actual time-series data is data in which a plurality of time, rotor angular velocity, d-axis current, q-axis current, and phase feature amount exist as a set.
 図28は、図20における学習済パラメータデータD541のデータ構成を示す。 FIG. 28 shows the data configuration of the learned parameter data D 541 in FIG.
 図28に示すように、学習済パラメータデータD541は、回転子角速度算出係数、フェーズ判定閾値群D50010、不良判定閾値群D500210を含む。 As shown in FIG. 28, the learned parameter data D541 includes a rotor angular velocity calculation coefficient, a phase determination threshold group D50010, and a defect determination threshold group D500210.
 図29は、図1におけるサーバH9が有する各種データH900のデータ構成を示す。 FIG. 29 shows a data configuration of various data H900 possessed by the server H9 in FIG.
 図29に示すように、サーバH9の各種データH900は、実績データ受信プログラム用データ、学習済データ受信プログラム用データ、パラメータ学習プログラム用データ、実績データD540,学習済パラメータD541を含む。 As shown in FIG. 29, the various data H900 of the server H9 includes data for a performance data reception program, data for a learned data reception program, data for a parameter learning program, performance data D540, and a learned parameter D541.
 実績データ受信プログラム用データは、実績データ受信プログラムによって使用される定数および変数であり、通信速度などの設定データ、プログラム用テンポラリ変数を含む。プログラム設定データは、成形品不良検知装置H5との通信における通信速度や通信プロトコルの種類を示す値などの設定値である。プログラム用テンポラリ変数は、実績データ受信プログラムが実行されている間に使用され、値が変更される変数の集合体である。 The data for the actual data receiving program is a constant and a variable used by the actual data receiving program, and includes setting data such as communication speed and a temporary variable for the program. The program setting data is a setting value such as a communication speed in communication with the molded article defect detection device H5 or a value indicating the type of communication protocol. The temporary variable for program is a collection of variables whose values are used while the actual data receiving program is being executed.
 学習済データ送信プログラム用データは、学習済データ送信プログラムによって使用される定数および変数であり、通信速度などの設定データ、プログラム用テンポラリ変数を含む。プログラム設定データは、成形品不良検知装置H5との通信における通信速度や通信プロトコルの種類を示す値などの設定値である。プログラム用テンポラリ変数は、学習済データ送信プログラムが実行されている間に使用され、値が変更される変数の集合体である。 The data for the learned data transmission program is a constant and a variable used by the learned data transmission program, and includes setting data such as communication speed and a temporary variable for the program. The program setting data is a setting value such as a communication speed in communication with the molded article defect detection device H5 or a value indicating the type of communication protocol. The program temporary variable is a collection of variables whose values are used while the learned data transmission program is being executed.
 パラメータ学習プログラム用データは、パラメータ学習プログラムによって使用される定数および変数であり、学習係数などの設定データ、プログラム用テンポラリ変数を含む。学習係数などの設定データは、パラメータ学習に使用する学習係数などの設定値である。プログラム用テンポラリ変数は、パラメータ学習プログラムが実行されている間に使用され、値が変更される変数の集合体である。 The data for the parameter learning program is a constant and a variable used by the parameter learning program, and includes setting data such as a learning coefficient and a temporary variable for the program. Setting data such as learning coefficients are setting values such as learning coefficients used for parameter learning. The program temporary variable is a collection of variables whose values are used while the parameter learning program is being executed.
 図30は、図1におけるディスプレイH6における不良検知結果画面表示の画面遷移を示す。 FIG. 30 shows screen transition of the defect detection result screen display on the display H6 in FIG.
 図30において、ショット選択画面G61は、不良検知結果のうちどのショットの不良検知結果を表示するかを選択するようにユーザを促す画面表示である。また、ショット番号を選択したときに表示する成形品不良検知結果画面G60は、ショット番号、バリの有無、過充填の有無、充填不足の有無、ボイドの有無、ヒケの有無、反りの有無、変形の有無、糸引きの有無、ウエルドラインの有無、並びに、戻るボタンを表示する。戻るボタンが選択されると、画面表示は、ショット選択画面G61へ戻る。 In FIG. 30, the shot selection screen G61 is a screen display prompting the user to select which shot of the defect detection results the defect detection result is to be displayed. The molded product defect detection result screen G60 displayed when the shot number is selected includes the shot number, the presence or absence of burrs, the presence or absence of overfilling, the presence or absence of insufficient filling, the presence or absence of voids, the presence or absence of warpage, the presence or absence of warpage, or deformation The presence or absence of threading, the presence or absence of a weld line, and a back button are displayed. When the back button is selected, the screen display returns to the shot selection screen G61.
 上述の実施例1によれば、不良を判定する所定の動作フェーズ(保圧フェーズ)を、成形不良検知装置用に設けられる電流センサによって検出されるモータ電流に基づいて抽出し、抽出される所定の動作フェーズにおいて、モータ電流から推定されるモータの回転子角速度に基づいて、加工物である射出成形品の不良の有無が検出される。これにより、比較的簡単な装置構成により、精度よく射出成形品の不良を検出することができる。また、射出成形機の装置構成をほとんど変更することなく、射出成形装置に成形不良検知機能を備えることができるので、コストの増加が抑制できる。 According to the first embodiment described above, the predetermined operation phase (hold pressure phase) for determining a defect is extracted and extracted based on the motor current detected by the current sensor provided for the molding defect detection device. In the operation phase, the presence or absence of a defect of the injection molded product which is a workpiece is detected based on the rotor angular velocity of the motor estimated from the motor current. As a result, defects of the injection-molded product can be detected with high accuracy by a relatively simple device configuration. In addition, since the injection molding apparatus can be provided with a molding defect detection function without substantially changing the device configuration of the injection molding machine, it is possible to suppress an increase in cost.
 図31は、本発明の実施例2である加工成形品不良検知システムのシステム構成を示す。なお、以下、主に実施例1と異なる点について説明する。 FIG. 31 shows a system configuration of a workpiece molded product defect detection system according to a second embodiment of the present invention. The following mainly describes differences from the first embodiment.
 本加工成形品不良検知システムは、射出成形機H1、ディスプレイH6、スピーカーH7(ブザー音)、インターネットH8、サーバH9から構成されている。 The present processing molded article defect detection system includes an injection molding machine H1, a display H6, a speaker H7 (buzzer sound), the Internet H8, and a server H9.
 射出成形機H1において、射出用モータ用インバータH112は、射出用モータH108へ電圧を印加する電力発生部H1120と、成形品不良検知機能部H1121を備えている。電力発生部H1120は、半導体スイッチング素子によって構成される主回路部(図示せず)と、主回路を駆動する制御部(図示せず)とを備える。成形品不良検知機能部H1121は、射出用モータH108の回転子角速度センサ値とU相電流を用いて、成形品における不良の有無を検知し、不良検知結果を制御装置H116へ送信すなわちフィードバックする。ディスプレイH6は、成形品不良検知機能部H1121によって生成される成形品不良検知結果画面を表示する。スピーカーH7は、成形品不良検知機能部H1121よって成形品の不良が検知されたとき音声(ブザー音)を出力して、不良の発生を報知する。 In the injection molding machine H1, the injection motor inverter H112 includes a power generation unit H1120 that applies a voltage to the injection motor H108, and a molding defect detection function unit H1121. The power generation unit H1120 includes a main circuit unit (not shown) formed of a semiconductor switching element, and a control unit (not shown) for driving the main circuit. The molded product defect detection function unit H1121 detects the presence or absence of a defect in the molded product using the rotor angular velocity sensor value of the injection motor H108 and the U-phase current, and transmits or feedbacks the defect detection result to the control device H116. The display H6 displays a molded product defect detection result screen generated by the molded product defect detection function unit H1121. The speaker H7 outputs a voice (buzzer sound) when a defect of the molded product is detected by the molded product defect detection function unit H1121, and notifies the occurrence of the defect.
 インターネットH8は、成形品不良検知機能部H1121とサーバH9との間でデータ通信を行うための通信経路である。サーバH9は、成形品不良検知機能部H1121から射出成型機H1の稼働実績データを読み込み、成形品不良検知に用いられるパラメータを学習処理によって求め、求めたパラメータを成形品不良検知機能部H1121へ送信する。 The Internet H8 is a communication path for performing data communication between the molded product defect detection function unit H1121 and the server H9. The server H9 reads the operation result data of the injection molding machine H1 from the molded part defect detection function unit H1121, obtains the parameter used for molded part defect detection by learning processing, and transmits the calculated parameter to the molded part defect detection unit H1121 Do.
 図32は、成形品不良検知機能部H1121の機能ブロック図である。 FIG. 32 is a functional block diagram of the molded article defect detection function unit H1121.
 図32に示すように、成形品不良検知機能部H1121は、成形品不良検知部B11210、不良検知結果送信部B11211、不良検知結果表示部B11212、不良検知ブザー出力部B11213、サーバデータ送信部B11214を有する。 As shown in FIG. 32, the molded article defect detection function unit H1121 includes a molded article defect detection unit B11210, a defect detection result transmission unit B11211, a defect detection result display unit B11212, a defect detection buzzer output unit B11213, and a server data transmission unit B11214. Have.
 成形品不良検知B11210は、成形品不良検知プログラムに従って、射出用モータ用インバータH112を制御するためにセンサによって検出され、射出用モータ用インバータH112の制御部に取込まれて格納されている、射出用モータH108の回転子角速度とU相電流を用いて、射出成形機H1の成形品の不良を検知する。なお、U相電流に代えて、V相電流あるいはW相電流を用いても良い。 The molded part defect detection B11210 is detected by a sensor to control the injection motor inverter H112 according to the molded part defect detection program, and is taken in and stored in the control part of the injection motor inverter H112. Defects in the molded product of the injection molding machine H1 are detected using the rotor angular velocity and the U-phase current of the motor H108. In place of the U-phase current, a V-phase current or a W-phase current may be used.
 ここで、U相電流は、図示しない、射出用モータ用インバータの制御用の電流センサ(CTなど)によって検出される。なお、射出用モータ用インバータの制御用としては、3相の内、少なくとも2相のモータ電流が検出される(3相のモータ電流の和が0という関係から、検出されない1相のモータ電流が算出される)。 Here, the U-phase current is detected by a current sensor (CT or the like) for control of the injection motor inverter (not shown). Of the three phases, at least two of the three-phase motor currents are detected for control of the injection motor inverter (one-phase motor current is not detected because the sum of the three-phase motor currents is zero). Calculated).
 また、回転子角速度は、図示しない回転センサ(例えば、ロータリエンコーダなど)によって検出されたり、実施例1と同様にモータの三相電流から推定されたり、いわゆるセンサレス制御を適用してモータの誘起電圧などに基づいて推定されたりする。 Further, the rotor angular velocity is detected by a rotation sensor (for example, a rotary encoder etc.) not shown, estimated from three-phase current of the motor as in the first embodiment, or induction voltage of the motor applying so-called sensorless control. It is estimated based on etc.
 不良検知結果送信部B11211、不良検知結果表示部B11212、不良検知ブザー出力部B11213、サーバデータ送信部B11214は、それぞれ、実施例1(図4)における、不良検知結果送信部B51、不良検知結果表示部B52、不良検知ブザー出力部B53、サーバデータ送受信部B54と、同等の機能を有する。 Defect detection result transmission unit B11211, defect detection result display unit B11212, defect detection buzzer output unit B11213, and server data transmission unit B11214 respectively indicate defect detection result transmission unit B51 and defect detection result display in the first embodiment (FIG. 4). It has the same function as the unit B52, the defect detection buzzer output unit B53, and the server data transmission / reception unit B54.
 図33は、図32における成形品不良検知部H11210の機能ブロック図である。 FIG. 33 is a functional block diagram of the molded part defect detection unit H11210 in FIG.
 図33に示すように、成形品不良検知部B11210は、各フェーズ判定部B112100、不良判定部B112101、学習結果分解部B503、データ集約部B504を有する。 As shown in FIG. 33, the molded article defect detection unit B11210 includes each phase determination unit B112100, a defect determination unit B112101, a learning result decomposition unit B503, and a data aggregation unit B504.
 各フェーズ判定部B11210は、射出用モータ用インバータH112に格納されている射出用モータH108のU相電流と、学習結果分解部B503からのフェーズ判定閾値群とを用いて、各フェーズ開始時間を判定する。 Each phase determination unit B11210 determines each phase start time using the U-phase current of the injection motor H108 stored in the injection motor inverter H112 and the phase determination threshold group from the learning result decomposition unit B503. Do.
 不良判定部B112101は、射出用モータ用インバータH112に格納されている射出用モータH108の回転子角速度と、学習結果分解部B503からの不良判定閾値群と、各フェーズ判定部B11210からの各フェーズ開始時間とを用いて、不良検知結果を算出する。 Defect determination unit B112101 starts the rotor angular velocity of injection motor H108 stored in injection motor inverter H112, defect determination threshold value group from learning result decomposition unit B503, and start of each phase from each phase determination unit B11210. The defect detection result is calculated using time.
 なお、図33における学習結果分解部B503およびデータ集約部B504は、それぞれ、実施例1(図5)における学習結果分解部B503およびデータ集約部B504と同等の機能を有する。 The learning result decomposing unit B 503 and the data aggregation unit B 504 in FIG. 33 have the same functions as the learning result decomposition unit B 503 and the data aggregation unit B 504 in the first embodiment (FIG. 5), respectively.
 図34は、図33における各フェーズ判定部B112100の機能ブロック図である。 FIG. 34 is a functional block diagram of each phase determination unit B 112100 in FIG.
 図34に示すように、各フェーズ判定部B112100は、フェーズ特徴量算出部とフェーズ閾値判定部を有する。フェーズ特徴量判定部は、U相電流センサH2からフェーズの特徴を示すフェーズ特徴量を算出する。なお、図34におけるフェーズ閾値判定部は、実施例1(図7)におけるフェーズ閾値判定部と同等の機能を有する。 As shown in FIG. 34, each phase determination unit B 112100 has a phase feature amount calculation unit and a phase threshold determination unit. The phase feature amount determination unit calculates a phase feature amount indicating a feature of the phase from the U-phase current sensor H2. The phase threshold determination unit in FIG. 34 has the same function as the phase threshold determination unit in the first embodiment (FIG. 7).
 図35は、図33における不良判定部B112101の機能ブロック図である。 FIG. 35 is a functional block diagram of defect determination unit B 112101 in FIG.
 図35に示すように、不良判定部B112101は、不良特徴量算出部と不良閾値判定部を有する。不良判定部は、射出用モータ用インバータH112に格納されている射出用モータH108の回転子角速度と、各フェーズ判定部B11210からの各フェーズ開始時間から、不良特徴量を算出する。なお、図35における不良閾値判定部は、実施例1(図8)における不良閾値判定部B5021と同等の機能を有する。 As shown in FIG. 35, the defect determination unit B 112101 includes a defect feature amount calculation unit and a defect threshold determination unit. The defect determination unit calculates a defect feature amount from the rotor angular velocity of the injection motor H108 stored in the injection motor inverter H112 and each phase start time from each phase determination unit B11210. The defect threshold determination unit in FIG. 35 has the same function as the defect threshold determination unit B5021 in the first embodiment (FIG. 8).
 本実施例2によれば、射出用モータを駆動する射出用モータ用インバータの制御部に成形品不良検知機能を備実装し、不良を判定する所定の動作フェーズ(保圧フェーズ)を、インバータ制御用に設けられる電流センサによって検出されるモータ電流に基づいて抽出し、抽出される所定の動作フェーズにおいて、回転センサによって検出されたり、モータ電流から推定したりするモータの回転子角速度に基づいて、加工物である射出成形品の不良の有無が検出される。これにより、比較的簡単な装置構成により、精度良く射出成形品の不良を検出することができる。 According to the second embodiment, the control unit of the injection motor inverter for driving the injection motor is provided with a molded product defect detection function and mounted, and inverter control is performed on a predetermined operation phase (hold pressure phase) for judging a defect. In the predetermined operation phase to be extracted and extracted based on the motor current detected by the current sensor provided for the motor, based on the rotor angular velocity of the motor detected by the rotation sensor or estimated from the motor current, The presence or absence of a defect of the injection-molded product which is a workpiece is detected. As a result, defects of the injection molded product can be detected with high accuracy by a relatively simple device configuration.
 また、本実施例2によれば、成形不良検知機能が射出用モータ用インバータの制御部に実装され、制御部においてインバータおよびモータ制御のために用いられるモータ電流および回転子角速度が不良検知に併用することにより、射出成形機の装置構成をほとんど変更することなく、射出成形装置に成形不良検知機能を備えることができるので、コストの増加が抑制できる。 Further, according to the second embodiment, the molding defect detection function is mounted on the control unit of the injection motor inverter, and the motor current and the rotor angular velocity used for controlling the inverter and motor in the control unit are used together for defect detection. By doing this, since the injection molding apparatus can be provided with a molding defect detection function without substantially changing the device configuration of the injection molding machine, the increase in cost can be suppressed.
 図36は、本発明の実施例3である加工成形品不良検知システムのシステム構成を示す。なお、以下、主に実施例1と異なる点について説明する。 FIG. 36 shows a system configuration of a workpiece molded part defect detection system that is Embodiment 3 of the present invention. The following mainly describes differences from the first embodiment.
 本加工成形品不良検知システムは、切削機械H0、U相電流センサH2、V相電流センサH3、W相電流センサH4、成形品不良検知装置H5、ディスプレイH6、スピーカーH7、インターネットH8、サーバH9から構成される。 This machined molded product defect detection system is from cutting machine H0, U phase current sensor H2, V phase current sensor H3, W phase current sensor H4, molded product defect detection device H5, display H6, speaker H7, Internet H8, server H9 Configured
 切削機械H0は、ドリルH001、加工対象となる材料H002が載置される切削盤H003、ドリル回転用モータH004、高さ方向移動用モータH005、幅方向移動用モータH006、奥行き方向移動用モータH007、高さ方向移動用駆動系装置H008、幅方向移動用駆動系装置H009、奥行き方向移動用駆動系装置H010、ドリル回転用モータ用インバータH011、高さ方向移動用モータ用インバータH012、幅方向移動用インバータH013、奥行き方向移動用モータ用インバータH014、制御装置H015から構成される。切削機械H0は、ドリル回転用モータH004によりドリルH001を回転させて材料H002を削ることにより切削加工品を製作する。 The cutting machine H0 includes a drill H001, a cutting machine H003 on which a material H002 to be processed is placed, a drill rotation motor H004, a height direction movement motor H005, a width direction movement motor H006, and a depth direction movement motor H007. Height direction movement drive system H008, width direction movement drive system H009, depth direction movement drive system H010, drill rotation motor inverter H011, height direction movement motor inverter H012, width direction movement It comprises an inverter H013, a depth direction moving motor inverter H014, and a control device H015. The cutting machine H0 manufactures a machined product by cutting the material H002 by rotating the drill H001 with the drill rotation motor H004.
 ドリルH001は、刃のある回転体を回転させながら材料H002へ接触させることにより材料H002を所定の形状へ加工する。 The drill H 001 processes the material H 002 into a predetermined shape by contacting the material H 002 while rotating a bladed rotary body.
 切削盤H003は、材料H002を置く土台である。 The cutting machine H003 is a base on which the material H002 is placed.
 ドリル回転用モータH004は、ドリルH001を回転させるための電動機である。高さ方向移動用モータH005、幅方向移動用モータH006、奥行き方向移動用モータH007は、回転子を回転させることにより、それぞれ、ドリルH001を、高さ方向、幅方向、奥行き方向に移動する。 The drill rotation motor H004 is a motor for rotating the drill H001. The height direction moving motor H 005, the width direction moving motor H 006, and the depth direction moving motor H 007 move the drill H 001 in the height direction, the width direction, and the depth direction by rotating the rotor.
 高さ方向移動用駆動系装置H008、幅方向移動用駆動系装置H009、奥行き方向移動用駆動系装置H010は、いずれもスピンドルとギアとリールとから構成され、それぞれ、高さ方向移動用モータH005、幅方向移動用モータH006、奥行き方向移動用モータH007の発する動力を各移動方向へ伝達する。 The drive system for moving in the height direction H008, the drive system for moving in the width direction H009, and the drive system for moving in the depth direction H010 are each composed of a spindle, a gear and a reel, and each has a motor for moving in the height direction H005. The power generated by the width direction moving motor H 006 and the depth direction moving motor H 007 is transmitted in each moving direction.
 ドリル回転用モータ用インバータH011、高さ方向移動用モータ用インバータH012、幅方向移動用モータ用インバータH013、奥行き方向移動用モータ用インバータH014は、それぞれ、ドリル回転用モータH004、高さ方向移動用モータH005、幅方向移動用モータH006、奥行き方向移動用モータH007に電圧を印加して駆動する。 The drill rotation motor H011, the height direction movement motor inverter H012, the width direction movement motor inverter H013, and the depth direction movement motor inverter H014 are respectively the drill rotation motor H004 and the height direction movement. A voltage is applied to the motor H 005, the width direction moving motor H 006, and the depth direction moving motor H 007 to drive.
 なお、図36に示す他の構成要素(H2~H9)については、実施例1(図1)と同等の機能を有する。 The other components (H2 to H9) shown in FIG. 36 have the same functions as in the first embodiment (FIG. 1).
 図37は、図36における成形不良検知装置が備える不良特徴量算出部B5020の機能ブロック図である(実施例1については図9参照)。 FIG. 37 is a functional block diagram of a defect feature amount calculation unit B 5020 included in the molding defect detection device in FIG. 36 (see FIG. 9 for Example 1).
 図37に示すように、不良特徴量算出部B5020は、接触フェーズ抽出部、接触時角速度抽出部、角速度ピーク値算出部、減衰時定数算出部、回転子移動量算出部、不良特徴量集約部を有する。 As shown in FIG. 37, the defective feature quantity calculation unit B5020 includes a contact phase extraction unit, an angular velocity extraction unit at contact time, an angular velocity peak value calculation unit, an attenuation time constant calculation unit, a rotor movement amount calculation unit, and a defective feature quantity aggregation unit Have.
 接触フェーズ抽出部は、各フェーズ判定部B501からの各フェーズ開始時間から、ドリルH001と材料H002の接触開始時間および接触終了時間を抽出し、抽出した接触開始時間および接触終了時間を接触時角速度抽出部へ送信する。 The contact phase extraction unit extracts the contact start time and the contact end time of the drill H001 and the material H002 from each phase start time from each phase determination unit B501, and extracts the contact start time and the contact end time when contacting the angular velocity Send to department
 接触時角速度抽出部は、回転子角速度算出部B500からの回転子角速度と、接触フェーズ抽出部からの接触開始時間および接触終了時間とから、接触時におけるドリル回転用モータH004の回転子角速度を抽出する。なお、接触時角速度抽出部は、接触開始時間以前および接触終了時間以降の回転子角速度については、これらの値を0に設定する。 The contact angular velocity extraction unit extracts the rotor angular velocity of the drill rotation motor H 004 at the time of contact from the rotor angular velocity from the rotor angular velocity calculation unit B 500 and the contact start time and contact end time from the contact phase extraction unit. Do. The contact angular velocity extraction unit sets these values to 0 for the rotor angular velocity before the contact start time and after the contact end time.
 なお、図37における角速度ピーク時算出部、減衰時定数算出部、回転子移動量算出部、不良特徴量集約部は、それぞれ、実施例1(図9)における角速度ピーク時算出部、減衰時定数算出部、回転子移動量算出部、不良特徴量集約部と同等の機能を有する。 The angular velocity peak time calculation unit, the attenuation time constant calculation unit, the rotor movement amount calculation unit, and the defect feature amount aggregation unit in FIG. 37 are the angular velocity peak time calculation unit and the attenuation time constant in Example 1 (FIG. 9), respectively. It has the same function as the calculation unit, the rotor movement amount calculation unit, and the defect feature amount aggregation unit.
 図38は、図36における成形不良検知装置が備える不良閾値判定部B5021の機能ブロック図である(実施例1については図10参照)。 FIG. 38 is a functional block diagram of a defective threshold value determination unit B5021 included in the molding defect detection device in FIG. 36 (see FIG. 10 for Example 1).
 図38に示すように、不良閾値判定部B5021は、折損閾値判定部B50216、基板バリ閾値判定部B50217、寸法精度不良閾値判定部B50218、切粉詰まり閾値判定部B50219、切削面荒れ閾値判定部B5021A、不良検知結果集約部B50215を有する。 As shown in FIG. 38, the defect threshold judgment unit B5021 is a breakage threshold judgment unit B50216, a substrate burr threshold judgment unit B50217, a dimension accuracy failure threshold judgment unit B50218, a chip clogging threshold judgment unit B50219, and a cutting surface roughness threshold judgment unit B5021A. , And a defect detection result aggregation part B50215.
 折損閾値判定部B50216は、不良特徴量算出部B5020からの不良特徴量と、学習結果分解部B503からの不良判定閾値群とを用いて、ドリルH001の折損による加工品の不良の有無を閾値判定し、判定結果を不良検知結果集約部B50215へ送信する。 The breakage threshold determination unit B 50216 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to determine whether there is a defect in the processed product due to breakage of the drill H 001. Then, the determination result is transmitted to the defect detection result aggregating unit B 50215.
 基板バリ閾値判定部B50217は、不良特徴量算出部B5020からの不良特徴量と、学習結果分解部B503からの不良判定閾値群とを用いて、加工成形品の基板に発生するバリの有無を閾値判定し、判定結果を不良検知結果集約部B50215へ送信する。 The substrate burr threshold determination unit B 50217 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to threshold the presence or absence of a burr generated on the substrate of the processed molded article. It judges and transmits a judgment result to defect detection result intensive part B50215.
 寸法精度不良閾値判定部B50218は、不良特徴量算出部B5020からの不良特徴量と、学習結果分解部B503からの不良判定閾値群とを用いて、加工品の寸法精度のズレの有無を閾値判定し、判定結果を不良検知結果集約部B50215へ送信する。 The dimensional accuracy defect threshold determination unit B 50218 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to determine whether there is a deviation in the dimensional accuracy of the processed product. Then, the determination result is transmitted to the defect detection result aggregating unit B 50215.
 切粉詰まり閾値判定部B50219は、不良特徴量算出部B5020からの不良特徴量と、学習結果分解部B503からの不良判定閾値群とを用いて、切粉詰まりによる加工品の不良の有無を閾値判定し、判定結果を不良検知結果集約部B50215へ送信する。 The chip clogging threshold determination unit B 50219 uses the defect feature amount from the defect feature amount calculation unit B 5020 and the defect determination threshold value group from the learning result decomposition unit B 503 to threshold the presence or absence of a defect in the processed product due to chipping. It judges and transmits a judgment result to defect detection result intensive part B50215.
 切削面荒れ閾値判定部B5021Aは、不良特徴量算出部B5020からの不良特徴量と、学習結果分解部B503からの不良判定閾値群とを用いて、加工品の切削面における荒れ発生の有無を閾値判定し、判定結果を不良検知結果集約部B50215へ送信する。 The cutting surface roughness threshold determination unit B5021A uses the defect feature amount from the defect feature amount calculation unit B5020 and the defect determination threshold value group from the learning result decomposition unit B503 to threshold the presence or absence of roughening on the cutting surface of the processed product. It judges and transmits a judgment result to defect detection result intensive part B50215.
 不良検知結果集約部B50215は、各判定部の判定結果、すなわち、折損有無判定結果、基板バリ有無判定結果、寸法精度不良判定結果、切り粉詰まり判定結果、切削面荒れ判定結果を不良検知結果として集約し、不良検知結果送信部B51、不良検知結果表示部B52、不良検知ブザー出力部B53およびデータ集約部B504へ送信する。 The defect detection result aggregating part B 50215 uses the judgment results of each judgment part, that is, the breakage presence / absence judgment result, the substrate burr presence / absence judgment result, the dimensional accuracy defect judgment result, the chip clogging judgment result, the cutting surface roughness judgment result as a defect detection result It gathers and it transmits to defect detection result transmission part B51, defect detection result display part B52, defect detection buzzer output part B53, and data aggregation part B504.
 本実施例3によれば、不良を判定する所定の動作フェーズ(接触フェーズ)を、成形不良検知装置用に設けられる電流センサによって検出されるモータ電流に基づいて抽出し、抽出される所定の動作フェーズにおいて、モータ電流から推定されるモータの回転子角速度に基づいて、加工物である切削加工成形品の不良の有無が検出される。これにより、比較的簡単な装置構成により、精度よく不良を切削加工成形品の検出することができる。また、切削機械の装置構成をほとんど変更することなく、機械装置に成形不良検知機能を備えることができるので、コストの増加が抑制できる。 According to the third embodiment, the predetermined operation phase (contact phase) for determining a failure is extracted based on the motor current detected by the current sensor provided for the molding failure detection device, and the predetermined operation is extracted. In the phase, based on the rotor angular velocity of the motor estimated from the motor current, it is detected whether or not there is a defect in the machined product which is a workpiece. As a result, defects can be detected with precision with a relatively simple device configuration. In addition, since the mechanical device can be provided with a molding defect detection function without substantially changing the device configuration of the cutting machine, the increase in cost can be suppressed.
 なお、本実施例3において、前述の実施例2と同様に、ドリル回転用モータ用インバータの制御部に成形不良検知機能を実装しても良い。 In the third embodiment, as in the second embodiment described above, the molding defect detection function may be mounted on the control unit of the drill rotation motor inverter.
 本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. In addition, it is possible to add, delete, and replace another configuration for part of the configuration of each embodiment.
H001:ドリル、H002:材料、H003:切削盤、
H004:ドリル回転用モータ、H005:高さ方向移動用モータ、
H006:幅方向移動用モータ、H007:奥行き方向移動用モータ、
H008:高さ方向移動用駆動系装置、
H009:幅方向移動用駆動系装置、
H010:奥行き方向移動用駆動系装置、
H011:ドリル回転用モータ用インバータ、
H012:高さ方向移動用モータ用インバータ、
H013:幅方向移動用モータ用インバータ、
H014:奥行き方向移動用モータ用インバータ、
H100:シリンダー、H101:ホッパー、H102:スクリュー、
H103:金型、H104:タイバー、H105:型締機構、
H106:エジェクタ、H107:クロスヘッド、
H108:射出用モータ、H109:計量用モータ
H110:エジェクタ用モータ、H111:型締用モータ、
H112:射出用モータ用インバータ、
H113:計量用モータ用インバータ、
H114:エジェクタ用モータ用インバータ、
H115:型締用モータ用インバータ
H001: drill, H002: material, H003: cutting machine,
H004: Motor for drill rotation, H005: Motor for moving in the height direction,
H006: Width direction movement motor, H007: Depth direction movement motor,
H008: Drive system for moving in the height direction,
H009: Drive unit for moving in the width direction,
H010: Drive system for moving in the depth direction
H011: Inverter for drill rotation motor,
H012: Motor inverter for moving in the height direction
H013: Inverter for width direction movement motor,
H014: Inverter for moving motor in depth direction,
H100: cylinder, H101: hopper, H102: screw,
H103: mold, H104: tie bar, H105: clamping mechanism,
H106: Ejector, H107: Crosshead,
H108: Ejection motor, H109: Weighing motor H110: Ejector motor, H111: Clamping motor,
H112: Inverter for motor for injection,
H113: Motor for measuring motor,
H114: Motor for ejector motor,
H115: Motor for clamping motor

Claims (10)

  1.  モータによって駆動される加工装置によって製作される加工物の不良を検知する不良検知装置であって、
     前記モータに流れる電流に基づいて、前記加工装置の動作フェーズを判定するフェーズ判定部と、
     前記フェーズ判定部によって判定される所定の前記動作フェーズにおける前記モータの回転子角速度に基づいて、前記加工物の不良の有無を判定する不良判定部と、
    を備えることを特徴とする加工物の不良検知装置。
    A defect detection device for detecting defects in a workpiece manufactured by a processing device driven by a motor, comprising:
    A phase determination unit that determines an operation phase of the processing apparatus based on the current flowing through the motor;
    A defect determination unit that determines the presence or absence of a defect of the workpiece based on a rotor angular velocity of the motor in the predetermined operation phase determined by the phase determination unit;
    An apparatus for detecting defects in a workpiece, comprising:
  2.  請求項1に記載の加工物の不良検知装置であって、
     前記フェーズ判定部は、前記電流から前記動作フェーズを示すフェーズ特徴量を算出し、算出する前記フェーズ特徴量に基づいて前記動作フェーズを判定することを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 1, wherein
    The apparatus for detecting a defect in a workpiece according to claim 1, wherein the phase determination unit calculates a phase feature amount indicating the operation phase from the current, and determines the operation phase based on the calculated phase feature amount.
  3.  請求項2に記載の加工物の不良検知装置であって、
     前記フェーズ特徴量は、前記モータに流れる前記電流から算出されるd軸電流の周波成分、または前記d軸電流の最大値と最小値の差分であることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 2, wherein
    The apparatus for detecting a defect in a workpiece, wherein the phase feature quantity is a frequency component of a d-axis current calculated from the current flowing through the motor or a difference between a maximum value and a minimum value of the d-axis current.
  4.  請求項1に記載の加工物の不良検知装置であって、
     前記不良判定部は、前記回転子角速度から前記加工物の前記不良を示す不良特徴量を算出し、算出される前記不良特徴量に基づいて前記加工物の前記不良を判定することを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 1, wherein
    The defect determination unit calculates a defect feature amount indicating the defect of the workpiece from the rotor angular velocity, and determines the defect of the workpiece based on the calculated defect feature amount. Defect detection device for workpieces.
  5.  請求項4に記載の加工物の不良検知装置であって、
     前記不良特徴量は、前記回転子角速度のピーク値、前記回転子角速度の減衰時定数、回転子移動量のいずれかであることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 4, wherein
    The defect detection device for a workpiece according to claim 1, wherein the defect feature amount is any one of a peak value of the rotor angular velocity, an attenuation time constant of the rotor angular velocity, and a rotor movement amount.
  6.  請求項1に記載の加工物の不良検知装置であって、
     前記モータに流れる前記電流は電流センサによって検出され、
     検出される前記電流に基づいて前記回転子角速度を算出する回転子角速度算出部を備えることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 1, wherein
    The current flowing through the motor is detected by a current sensor,
    An apparatus for detecting defects in a workpiece, comprising a rotor angular velocity calculation unit that calculates the rotor angular velocity based on the detected current.
  7.  請求項1に記載の加工物の不良検知装置であって、
     前記モータを駆動するインバータを備え、
     前記フェーズ判定部および前記不良判定部は、前記インバータの制御部に実装され、
     前記モータに流れる前記電流は、前記インバータを制御するために前記制御部で用いられることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 1, wherein
    An inverter for driving the motor;
    The phase determination unit and the failure determination unit are mounted on a control unit of the inverter,
    An apparatus for detecting a defect in a workpiece, wherein the current flowing through the motor is used by the control unit to control the inverter.
  8.  請求項7に記載の加工物の不良検知装置であって、
     前記回転子角速度は、前記モータに設けられる回転センサによって検出されることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 7, wherein
    The apparatus for detecting a defect in a workpiece is characterized in that the rotor angular velocity is detected by a rotation sensor provided in the motor.
  9.  請求項1に記載の加工物の不良検知装置であって、
     前記加工装置は射出成形機であり、
     前記加工物は射出成形品であり、
     前記不良は、バリ、過充填、充填不足、ボイド、ヒケ、反り、変形、変色、糸引き、ウエルドラインの内のいずれかであり、
     前記所定の前記動作フェーズは保圧期間であることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 1, wherein
    The processing device is an injection molding machine,
    The workpiece is an injection molded article,
    The defect is any of burr, overfill, underfill, void, sink marks, warp, deformation, discoloration, stringing, and weld line,
    An apparatus for detecting defects in a workpiece, wherein the predetermined operation phase is a pressure holding period.
  10.  請求項1に記載の加工物の不良検知装置であって、
     前記加工装置は切削機械であり、
     前記加工物は切削加工品であり、
     前記不良は、折損、バリ、寸法精度不良、切粉詰まり、切削面荒れの内のいずれかであり、
     前記所定の前記動作フェーズは接触期間であることを特徴とする加工物の不良検知装置。
    The apparatus for detecting defects in a workpiece according to claim 1, wherein
    The processing device is a cutting machine,
    The workpiece is a machined product,
    The defect is any one of breakage, burrs, dimensional error, chip clogging, and rough cutting surface,
    An apparatus for detecting defects in a workpiece, wherein the predetermined operation phase is a contact period.
PCT/JP2018/002079 2018-01-24 2018-01-24 Apparatus for detecting defect in workpiece WO2019146010A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002079 WO2019146010A1 (en) 2018-01-24 2018-01-24 Apparatus for detecting defect in workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002079 WO2019146010A1 (en) 2018-01-24 2018-01-24 Apparatus for detecting defect in workpiece

Publications (1)

Publication Number Publication Date
WO2019146010A1 true WO2019146010A1 (en) 2019-08-01

Family

ID=67395960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002079 WO2019146010A1 (en) 2018-01-24 2018-01-24 Apparatus for detecting defect in workpiece

Country Status (1)

Country Link
WO (1) WO2019146010A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200206998A1 (en) * 2018-12-28 2020-07-02 Jtekt Corporation Quality prediction system and molding machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187439A (en) * 1983-04-06 1984-10-24 Toyota Auto Body Co Ltd Tool damage detecting device
JPS59201748A (en) * 1983-04-27 1984-11-15 Toyota Central Res & Dev Lab Inc Apparatus for detecting breakage of cutting tool
JPS6056853A (en) * 1983-09-05 1985-04-02 Omron Tateisi Electronics Co Abnormality monitor for tool
JPS62119021A (en) * 1985-11-20 1987-05-30 Japan Steel Works Ltd:The Control device for electric injection molding machine
JPH0357616A (en) * 1989-07-26 1991-03-13 Canon Inc Device for detecting abnormality in injection pressure of injection molder
WO2004080690A1 (en) * 2003-03-13 2004-09-23 Sumitomo Heavy Industries, Ltd. Molding device and control method thereof
JP2005161557A (en) * 2003-11-28 2005-06-23 Yazaki Corp Injection molding machine and quality judging method of molded product
JP2012076454A (en) * 2010-09-07 2012-04-19 Sumitomo Heavy Ind Ltd Injection molding machine, and consumption monitoring system of power semiconductor element
WO2013018189A1 (en) * 2011-08-01 2013-02-07 三菱電機株式会社 Control device and control method for injection molding machine
JP2017154448A (en) * 2016-03-04 2017-09-07 住友重機械工業株式会社 Injection molding machine and converter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187439A (en) * 1983-04-06 1984-10-24 Toyota Auto Body Co Ltd Tool damage detecting device
JPS59201748A (en) * 1983-04-27 1984-11-15 Toyota Central Res & Dev Lab Inc Apparatus for detecting breakage of cutting tool
JPS6056853A (en) * 1983-09-05 1985-04-02 Omron Tateisi Electronics Co Abnormality monitor for tool
JPS62119021A (en) * 1985-11-20 1987-05-30 Japan Steel Works Ltd:The Control device for electric injection molding machine
JPH0357616A (en) * 1989-07-26 1991-03-13 Canon Inc Device for detecting abnormality in injection pressure of injection molder
WO2004080690A1 (en) * 2003-03-13 2004-09-23 Sumitomo Heavy Industries, Ltd. Molding device and control method thereof
JP2005161557A (en) * 2003-11-28 2005-06-23 Yazaki Corp Injection molding machine and quality judging method of molded product
JP2012076454A (en) * 2010-09-07 2012-04-19 Sumitomo Heavy Ind Ltd Injection molding machine, and consumption monitoring system of power semiconductor element
WO2013018189A1 (en) * 2011-08-01 2013-02-07 三菱電機株式会社 Control device and control method for injection molding machine
JP2017154448A (en) * 2016-03-04 2017-09-07 住友重機械工業株式会社 Injection molding machine and converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200206998A1 (en) * 2018-12-28 2020-07-02 Jtekt Corporation Quality prediction system and molding machine

Similar Documents

Publication Publication Date Title
Medjmadj et al. PMSM drive position estimation: Contribution to the high-frequency injection voltage selection issue
EP0911959B1 (en) Injection molding machine
CN105531919B (en) Control device and control method for linear motor
CN108718167B (en) Torque estimation method, medium, device and system for permanent magnet synchronous motor
CN111010059B (en) Detection system, equipment and method for initial position of permanent magnet synchronous motor
WO2019146010A1 (en) Apparatus for detecting defect in workpiece
BR102015032076B1 (en) Motor control unit and method for tuning a current regulator
CN109526244A (en) Motor module, controller for motor, temperature estimation rneans and temperature estimation method
CN108418492B (en) A kind of permanent magnet synchronous motor Zero positioning method, caliberating device and control system
CN100453297C (en) Molding device and control method thereof
CN103378795B (en) Motor control apparatus equipped with delta-sigma modulation ad converter
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
US11088640B2 (en) Drive apparatus for oil-pump motor and drive control method for oil-pump motor
CN101719755B (en) Method and device for checking lost steps of stepping motor and impedance matching device
JP3933108B2 (en) Electric drive control device, electric drive control method and program thereof
JP2008219982A (en) Method and program for estimating position of synchronous motor
US11342871B2 (en) Angular position error estimation at standstill for high-frequency voltage injection
Lee Position estimator employing Kalman filter for PM motors driven with binary-type Hall sensors
JP7153879B2 (en) Electric tool
JP4068493B2 (en) Monitoring device and monitoring method for injection molding machine
JP2021005943A (en) Position determination device
CN106376168A (en) Impedance matching device, impedance matching method, and semiconductor processing apparatus
Korzonek et al. Influence of parameters identification errors on the stability boundaries of the modified MRASCC speed estimator of the induction motor drive
Lin et al. Sensorless IPMSM drive system using saliency back-EMF-based observer with MTPA control
Yan et al. Speed measurement algorithm for low speed permanent magnet synchronous motor based on overlapped measurement regions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP