JPS59187439A - Tool damage detecting device - Google Patents

Tool damage detecting device

Info

Publication number
JPS59187439A
JPS59187439A JP5935383A JP5935383A JPS59187439A JP S59187439 A JPS59187439 A JP S59187439A JP 5935383 A JP5935383 A JP 5935383A JP 5935383 A JP5935383 A JP 5935383A JP S59187439 A JPS59187439 A JP S59187439A
Authority
JP
Japan
Prior art keywords
tool
circuit
detecting section
detection
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5935383A
Other languages
Japanese (ja)
Other versions
JPS635214B2 (en
Inventor
Yorito Uematsu
植松 偉人
Takatoshi Suzuki
隆敏 鈴木
Kazutaka Okura
和孝 大庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Toyota Shiyatai KK
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Toyota Shiyatai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc, Toyota Shiyatai KK filed Critical Toyota Auto Body Co Ltd
Priority to JP5935383A priority Critical patent/JPS59187439A/en
Publication of JPS59187439A publication Critical patent/JPS59187439A/en
Publication of JPS635214B2 publication Critical patent/JPS635214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • B23Q17/0919Arrangements for measuring or adjusting cutting-tool geometry in presetting devices
    • B23Q17/0947Monitoring devices for measuring cutting angles

Abstract

PURPOSE:To extract wave forms accompanying abrupt rise of characteristic wave form and fall due to working heat included in the variation of level value when a tool is damaged, catch and calculate the time width and raised value of this wave form for automatically judging the damage of the tool. CONSTITUTION:A machine tool controlling circuit 3 is connected to the rear stage of a detecting section 1 through a tool damage detecting section 2 which is connected to the input sides of a CR circuit 4, a raised value comparator 5 and a maximum level value comparator 6. The detecting section 1 shapes the detected signal to convert it to voltage and send it to the detecting section 2. Also, the circuit 4 of the detecting section 2 figures out the differential value in the rise and fall of the output signal wave form of the detecting section 1. Further, the comparators 5, 6 compare respectively voltage generated from a reference voltage source with voltage from the detecting section 1. By this constitution can be automatically judged the damage of tool.

Description

【発明の詳細な説明】 この発明は、切削加工などにおいて加工中に工具が欠損
したとき、これを自動的に検出できるようにした工具欠
損検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tool chipping detection device that can automatically detect when a tool is chipped during cutting or the like.

フライス加工機等においてld、機械加工の省力化のた
め、数値制御や倣い制御が行なわれる。
Numerical control and tracing control are performed in milling machines and the like to save labor in LD and machining.

これら数値制御や倣い制御を行なう自動工作機械にあっ
ては、被加工物の加工精度を向上させるために、工具が
欠損したときこれを検出し、この検出信号により工作機
械を停止させ、あるいけ警報を発生させる必要がある。
In automatic machine tools that perform numerical control or tracing control, in order to improve the machining accuracy of the workpiece, they detect when a tool breaks, stop the machine tool using this detection signal, and It is necessary to generate an alarm.

この目的で、現在まで多くの提案がなされている。特に
最近では、各種検出器および信号処理技術の発達によシ
、フライス加工中の検出、すなわち、インプロセスでの
検出方法と装置に関心が高まっている。
Many proposals have been made to date for this purpose. Particularly in recent years, with the development of various detectors and signal processing techniques, there has been increasing interest in detection during milling, that is, in-process detection methods and devices.

従来における工具欠損の検出に、工具が欠損することに
よって、切削抵抗、切削温度、振動、主軸モータ電流、
およびアコースティック・エミッションなどが変化する
ことに着目し、これらの信号を測定して処理することに
より、工具欠損を間接的に検出するとhう方法がとられ
ていた。
In conventional tool chipping detection, cutting resistance, cutting temperature, vibration, spindle motor current,
A method has been used in which tool damage is indirectly detected by measuring and processing these signals, paying attention to changes in acoustic emissions and the like.

しかしながらこのような間接的な検出方法では、一定の
切削条件下、すなわち、切削速度、切込み、送り速度お
よび被加工物の形状等がそれぞれ一定であることによシ
、検出される信号、切削抵抗、切削温度、振動、主軸モ
ータ電流、およびアコースティック・エミッションなど
の信号が一定であり、工具欠損時の信号変化があれば明
確に区別できるので、検出可能となる。
However, in such an indirect detection method, the detected signal and cutting force are , cutting temperature, vibration, spindle motor current, acoustic emission, and other signals are constant, and if there is a signal change when a tool breaks, it can be clearly distinguished, making it possible to detect it.

ところが数値制御または倣い制御加工などでは、被加工
物の形状が複雑に変化しているのが一般的であ、す、こ
のために切込み、切削幅などが不均一となる加工のため
、正常切削時でも検出信号の変動が大きく、工具欠損時
との区別がつきにぐいことになる問題があった。すなわ
ち、従来の工具欠損検出装置では、上述のごとき加工に
実用させるには不適当であり、加工中には切削状態の監
視者が必要であシ、無人化に大きな障害となっている。
However, in numerical control or profile control machining, the shape of the workpiece usually changes in a complex manner, and this results in uneven cutting depth and width, making normal cutting difficult. There was a problem in that the detection signal fluctuated greatly even when the tool was damaged, making it difficult to distinguish it from when the tool was missing. That is, the conventional tool defect detection device is not suitable for practical use in the above-mentioned machining, and requires a person to monitor the cutting state during machining, which is a major obstacle to unmanned machining.

この発明はこのような障害を除去し、多機種の工作機様
に適用出来て、被加工物の形状に応じて異なる切削条件
にも対応し得る、加工中の間接的な工具欠損検出を可能
とする工具欠損検出装置を提供することを目的とするも
のである。
This invention eliminates such obstacles, can be applied to a wide variety of machine tools, can handle different cutting conditions depending on the shape of the workpiece, and enables indirect tool breakage detection during machining. It is an object of the present invention to provide a tool defect detection device.

この発明の工具欠損検出装置は、切削加工中での工作機
械の主軸モータの電力または電流(消費電力筐たは消費
電流)r直を利用し、工具欠損時、レベル値の変動に含
まれる特徴的々波形、すなわち、工具欠損時の急激な上
昇、加工熱による下降に伴なう波形を抽出して、この波
形の時間巾(周期)、上昇値を捉え、演匁処理をするこ
とによって、工具欠損を自動的に判定できるようにした
ものである。
The tool chipping detection device of the present invention utilizes the power or current (power consumption or current consumption) of the spindle motor of a machine tool during cutting, and detects the characteristics included in the level value fluctuation when a tool is chipped. By extracting the targeted waveform, that is, the waveform that accompanies the sudden rise when the tool breaks and the waveform that falls due to machining heat, capture the time width (period) and rise value of this waveform, and perform the modulation process, This allows automatic determination of tool damage.

次に、この発明を図を用いて説明する。−第1図は切削
加工機における切削時間と主軸モータの電力または電流
値の関係を示すものである。
Next, this invention will be explained using figures. - Figure 1 shows the relationship between the cutting time and the power or current value of the spindle motor in a cutting machine.

数値制御または倣い制御加工においては、正常な状況で
の切削過程の主軸モータの電力または電流は変動があっ
て不安定であるが、欠損が発生した時に、特徴的な挙動
を示すものである。
In numerical control or profile control machining, the power or current of the spindle motor during the cutting process under normal conditions fluctuates and is unstable, but when a defect occurs, it exhibits characteristic behavior.

第1図はこの状態を示すもので、この図に示すように、
正常切削時(図中のaより左の部分)のレベルは被加工
物の形状が複雑に変化すること、および切込み量が不均
一な加工においては、変動があって不安定である。
Figure 1 shows this state, and as shown in this figure,
The level during normal cutting (the part to the left of a in the figure) fluctuates and is unstable when the shape of the workpiece changes complexly and when the depth of cut is uneven.

しかしながら第1図のaより先の部分(右側部分)は工
具欠損時の状態を示すもので、主軸モータの消費する電
力または電流がさらに上昇または下降するので、それ以
前の状況と区別できることになる。工具の欠損時、この
ように特徴的に電力または電流が変化するのは、その欠
損部が被加工物と工具との間に挾まるとか、あるいは欠
損過程において一時的に工具に加わる過負荷状前によっ
て、′C力または電流が急激に上昇し、また次に−これ
に関連して生ずる切削熱の増加にともない減少する切削
抵抗によって、急激に下降することになるのである。
However, the part beyond a in Figure 1 (the right part) shows the state when the tool is missing, and since the power or current consumed by the spindle motor further increases or decreases, it can be distinguished from the previous situation. . When a tool breaks, the electric power or current changes characteristically because the broken part is caught between the workpiece and the tool, or because of an overload condition that is temporarily applied to the tool during the cutting process. This causes the 'C force or current to rise sharply, and then - due to the associated decreasing cutting forces with the resulting increase in cutting heat - to drop rapidly.

この発明はこのような理論に基づいて成されたものであ
、す、電力または電流の前記特徴的ガ波形変化を捉え、
その時点を工具の欠損発生時として検出するようにした
検出装置を提供するものである。
The present invention was made based on such a theory.
The object of the present invention is to provide a detection device that detects that point in time as the time when a tool becomes defective.

次にこの発明の一実施例を第2図について説明すると、
1は電力または電流の検出部であって、図示しないt7
JV4[1加工機の主軸モータに接続され、眠力寸たは
電流を常時検出しているものである。検出部1゛の後段
にtま、次に詳細に説明する工具欠損検出部2を介して
、工作機械制御用回路3が接続されている。
Next, one embodiment of this invention will be explained with reference to FIG.
1 is a power or current detection unit, and t7 (not shown)
JV4 [1] It is connected to the main shaft motor of the processing machine and constantly detects the level of sleepiness or current. A machine tool control circuit 3 is connected downstream of the detection section 1' through a tool loss detection section 2, which will be described in detail next.

工具欠損検出部2ば、CR回路部4、上昇(tit用比
較器5、お工び最高レベル11u用比較器6が    
The tool missing detection section 2, CR circuit section 4, rise (tit comparator 5, machining maximum level 11u comparator 6)
.

入力側に接続されている。検出部1は検出した信号を整
形して電圧に変換し、工具欠損検出部2に送信するもの
である。工具欠損検出部2のうちのCR回路部4は、検
出部1の出力信号波形の上昇時と下降時の微分値を算出
するものである。上昇値用比較器5および最高レベル値
用比較器6は、それぞれ図示しない基準電圧源の発生電
圧と検出部1からの電圧?比較するものである。
Connected to the input side. The detection section 1 shapes the detected signal, converts it into a voltage, and sends it to the tool loss detection section 2. The CR circuit section 4 of the tool loss detection section 2 calculates differential values when the output signal waveform of the detection section 1 rises and falls. The rising value comparator 5 and the highest level value comparator 6 are connected to a voltage generated by a reference voltage source (not shown) and a voltage from the detection unit 1, respectively. It is for comparison.

CR回路部4の後段には、スリップフロップ回路7、波
形演算回路8が接続され、波形演算回路8の後段には、
アンド回路9の1つの入力端が接続されている。アンド
回路9の他の入力端に/−1、前述の上昇値用比較器5
の出力側が接続されている。アンド回路9の出力側は、
前述の最高レベル値用比較器6とともに、工作機械制御
用回路3の入力端に接続されている。1゜は、波形時間
巾用しきい値設定回路部1oがらの信号をフリップフロ
ップ回路7の制御信号としてフリップフロップ回路7に
与えるものである。
A slip-flop circuit 7 and a waveform calculation circuit 8 are connected to the rear stage of the CR circuit section 4, and the rear stage of the waveform calculation circuit 8 is
One input terminal of the AND circuit 9 is connected. /-1 at the other input terminal of the AND circuit 9, the above-mentioned rising value comparator 5
The output side of is connected. The output side of the AND circuit 9 is
It is connected to the input end of the machine tool control circuit 3 together with the maximum level value comparator 6 mentioned above. 1.degree. is for applying a signal from the waveform time width threshold setting circuit section 1o to the flip-flop circuit 7 as a control signal for the flip-flop circuit 7.

次に、このように構成されたこの装檻の作動を説明する
と、まず、上昇値用比較器5と最高レベル値用比較器6
を、あらかじめ行なう実験により、前述した電力またI
″OiOi電流な変化に感応するように設定しておく。
Next, to explain the operation of this cage configured in this way, first, the rise value comparator 5 and the highest level value comparator 6
Through experiments conducted in advance, we determined that the above-mentioned power and I
``Set it so that it responds to changes in the OiOi current.

これは、@1図における波形の時間巾11上昇値V、上
昇と下降の微分値dV/dt、およびM高レベル佃Tを
監視することによって行なうことができる。
This can be done by monitoring the waveform time width 11 rise value V, rise and fall differential value dV/dt, and M high level T in Figure @1.

工作機械主軸モータの寛力捷だは電流は検出部1で検出
され、ここで整形され、司圧に変換される。工具欠損検
出部2のCR回路部4id、検出部1の出力信号波形の
上昇時と下降時の微分イ直(dV/dt)算出をし、こ
れをスリップフロップ回路7に与えて記憶させる。次段
の波形演算回路8は、波形時間巾tを測定し、フリップ
フロップ回路7に記憶された係号波形が、欠損時特有の
ものであるか否かを識別する。
The current of the machine tool spindle motor is detected by the detection unit 1, shaped there, and converted into pressure. The CR circuit section 4id of the tool missing detection section 2 calculates the differential voltage (dV/dt) when the output signal waveform of the detection section 1 rises and falls, and provides this to the slip-flop circuit 7 for storage. The waveform calculation circuit 8 at the next stage measures the waveform time width t, and identifies whether or not the coefficient waveform stored in the flip-flop circuit 7 is unique to the time of a loss.

この結果、適合波形であった場合、波形時間巾用しきい
値設定回路部10、波形時間巾信号回路部11、および
波形演算回路8により、波形時間巾tを測定し、欠損時
特有の時間巾を持った波形であるか否かを判断し、かつ
、波形の上昇値Vとも初期設定しきい値に適合すれば、
アンド回路9を通じて工作機械制御用回路3を作動させ
、工作機械の非常停止を行なうことになる。欠本実施例
のごとく、レベルTを検出し、最高レベル値用比較器6
による最高レベル値との比較からも工具欠損の信号をと
れば、より確実な検出が出来る。
As a result, if the waveform is compatible, the waveform time width threshold setting circuit section 10, the waveform time width signal circuit section 11, and the waveform calculation circuit 8 measure the waveform time width t, and calculate the time characteristic at the time of loss. If it is determined whether or not the waveform has a width, and if both the rise value V of the waveform conforms to the initial setting threshold,
The machine tool control circuit 3 is activated through the AND circuit 9 to effect an emergency stop of the machine tool. As in the missing embodiment, the level T is detected and the highest level value comparator 6
If the tool defect signal is obtained by comparing it with the highest level value, more reliable detection can be achieved.

工具欠損時における女際例として鋼切削時の上昇時と下
降時の微分価は+5. OIcp・nl/sec〜±4
.0に9・m/secであり、波形時間巾tは0.5秒
〜1.5秒である。一方、絹鉄では+2.0 kg・m
/See〜±4.0に7−m/seeであり、tけ鋼の
場合と同様に05秒〜15秒である。これをさらに具体
例としてのgASKDllの場合を説明すると、上昇時
と下降時の微分値が+5.71印−m / Hと−4,
0kg m/g<であり、波形時間巾tは09秒である
。捷た鋳鉄FC20でId +3.6 k4− m /
巽cと−5,0kg ・m 15prであり、波形1)
5i刊巾tは1.3秒である。
As an example of the difference when a tool breaks, the differential value when ascending and descending when cutting steel is +5. OIcp・nl/sec~±4
.. 0 to 9 m/sec, and the waveform time width t is 0.5 seconds to 1.5 seconds. On the other hand, silk iron has +2.0 kg・m
/See~±4.0 to 7m/see, and the time is 05 seconds to 15 seconds as in the case of steel. To further explain this in the case of gASKDll as a specific example, the differential value at the time of rising and falling is +5.71 mark -m/H and -4,
0 kg m/g<, and the waveform time width t is 09 seconds. Id +3.6 k4- m / with rolled cast iron FC20
Tatsumi c and -5,0kg・m 15pr, waveform 1)
5i paper width t is 1.3 seconds.

以上、実施例とともに11体的に説明したように、この
発明によれば、切削過程での各信号の挙動を解析するこ
とから、工具欠損を検出することが町卵である。なお、
上記実施例で廻、各ブロックごとに別体としたもので説
明したが、これらの一部ある1/′1は全体を、マイク
ロコンピュータ、あるいけミニコンピユータなどに置換
することは可能である。
As described above in detail along with the embodiments, according to the present invention, tool damage is detected by analyzing the behavior of each signal during the cutting process. In addition,
In the above embodiment, each block has been described as a separate unit, but some of these 1/'1 can be replaced as a whole with a microcomputer, a minicomputer, or the like.

この発明は以上説明したよシに構成したものであるから
、工具の欠損を過鉦vc判断(7て、工具の作動を停止
できるとと(r(なるy:JJ果がある。
Since this invention is configured as explained above, there is a result that the tool operation can be stopped by determining whether the tool is damaged or not.

【図面の簡単な説明】[Brief explanation of drawings]

耐11ン1は電力または′市流介自と切削時間との関係
を示すグラフ、 第2し]I′iこの発明の一笑施例を示すブDツク図で
ある。 1・・・検出部      2・・・工兵欠招検1i−
3部6・・・工作機械制御用回路 4・・・CR回路部    5・・・上昇(++1.+
i4比較器7′・°フリノプフロソフ回路
Figure 11 is a graph showing the relationship between electric power or commercial power consumption and cutting time; 1...Detection part 2...Engineer shortage inspection 1i-
Part 3 6...Machine tool control circuit 4...CR circuit section 5...Rise (++1.+
i4 comparator 7'・°Frinopfrosov circuit

Claims (1)

【特許請求の範囲】[Claims] 旬 工具欠損時に工作機械主軸モータの電力または電流
の変化を捉える検出部と、該検出部の出力信号の上昇お
よび下降時の時間に対する微分値を演算するCR回路部
と、該CR回路部の出力信号を記憶するフリップフロッ
グ回路と、該フリップフロップ回路に記憶された信号が
あらかじめ記憶された欠損時特有のものか否かを判断す
る波形演算回路と、前記検出部の出力信号の上昇値を検
出する上昇値用比較器と、該上昇値用比較器と前記波形
演算回路の出力信号を入力するアンド(ロ)路と、該ア
ンド回路に接続された工作機械制御用回路とを備えた工
具欠損検出装置。
A detection unit that detects changes in power or current of the machine tool spindle motor when a tool is missing, a CR circuit unit that calculates differential values with respect to time when the output signal of the detection unit rises and falls, and an output of the CR circuit unit. A flip-flop circuit that stores a signal, a waveform calculation circuit that determines whether the signal stored in the flip-flop circuit is unique to a pre-stored loss, and detects an increase value of the output signal of the detection section. A tool chipping device comprising: a rise value comparator; an AND path for inputting output signals of the rise value comparator and the waveform calculation circuit; and a machine tool control circuit connected to the AND circuit. Detection device.
JP5935383A 1983-04-06 1983-04-06 Tool damage detecting device Granted JPS59187439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5935383A JPS59187439A (en) 1983-04-06 1983-04-06 Tool damage detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5935383A JPS59187439A (en) 1983-04-06 1983-04-06 Tool damage detecting device

Publications (2)

Publication Number Publication Date
JPS59187439A true JPS59187439A (en) 1984-10-24
JPS635214B2 JPS635214B2 (en) 1988-02-02

Family

ID=13110822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5935383A Granted JPS59187439A (en) 1983-04-06 1983-04-06 Tool damage detecting device

Country Status (1)

Country Link
JP (1) JPS59187439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146010A1 (en) * 2018-01-24 2019-08-01 株式会社日立製作所 Apparatus for detecting defect in workpiece

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432884A (en) * 1977-08-19 1979-03-10 Komatsu Ltd Device for giving warn of abnormality in cutter in machine tools

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432884A (en) * 1977-08-19 1979-03-10 Komatsu Ltd Device for giving warn of abnormality in cutter in machine tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146010A1 (en) * 2018-01-24 2019-08-01 株式会社日立製作所 Apparatus for detecting defect in workpiece

Also Published As

Publication number Publication date
JPS635214B2 (en) 1988-02-02

Similar Documents

Publication Publication Date Title
US4694686A (en) Cutting tool wear monitor
US4786220A (en) Cutting tool wear monitor
JP4860444B2 (en) Abnormality detection method in cutting
RU2180967C2 (en) Automatic current test of condition of tool
JP3095881B2 (en) Tool life prediction device
US4894644A (en) Tool break/wear detection using a tracking minimum of detected vibrational signal
CN108015626A (en) A kind of cutting tool state recognition methods for being capable of the adjust automatically monitoring limit
JPH06344246A (en) Abrasion detecting method for cutting tool
CN107932186A (en) A kind of cutting tool state recognition methods based on machining coordinate alignment reference signal
JPH0985585A (en) Monitoring method and device for state of machining cutter for machine tool
KR102412920B1 (en) Apparatus For Detecting Of Abnormal State In Numerically Controlled Machine Tool
JPS59187439A (en) Tool damage detecting device
JP2000107987A (en) Tool abnormality detecting device
RU2496629C2 (en) Method of control over multi-blade built-up tool cutting edges state
JP2575323B2 (en) Cutting load monitoring method by data extraction averaging method
JPH06320396A (en) Life deciding method and automatic exchanging method for blade tool
JPH0616981B2 (en) Tool loss detector
JPS609640A (en) Tool failure sensing device
JPH0661676B2 (en) Life detection device for drilling tools
Tansel Monitoring micro-drilling operations using neural networks
JPS59201748A (en) Apparatus for detecting breakage of cutting tool
CN108044405A (en) A kind of cutting tool state recognition methods based on average signal alignment reference signal
Chen et al. Study on acoustic emission in the grinding process automation
Xiaoli et al. Identification of tool wear states with fuzzy classification
JPH0215954A (en) Tool abnormality monitoring method