JPH0985585A - Monitoring method and device for state of machining cutter for machine tool - Google Patents

Monitoring method and device for state of machining cutter for machine tool

Info

Publication number
JPH0985585A
JPH0985585A JP24271695A JP24271695A JPH0985585A JP H0985585 A JPH0985585 A JP H0985585A JP 24271695 A JP24271695 A JP 24271695A JP 24271695 A JP24271695 A JP 24271695A JP H0985585 A JPH0985585 A JP H0985585A
Authority
JP
Japan
Prior art keywords
value
blade
machining
peak value
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24271695A
Other languages
Japanese (ja)
Other versions
JP3291677B2 (en
Inventor
Yoichi Seki
陽一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP24271695A priority Critical patent/JP3291677B2/en
Publication of JPH0985585A publication Critical patent/JPH0985585A/en
Application granted granted Critical
Publication of JP3291677B2 publication Critical patent/JP3291677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect abnormalities of a machining cutter by starting a warning means when a discriminating means judges that a value corresponds to either peak value upper and lower discriminated values or a cutter break discriminated value. SOLUTION: Either command that the rotation of an electric motor 4 for driving a machining cutter 9 is stopped or that an annunciation means 3 is started is performed according to the wear level of the machining cutter 9 output from a discriminating means 11. The judging values of the absolute value measurement and the relative value measurement and the machining load rise judging value are input in this discriminating means 11, abnormalities such as break of the machining cutter 9, the poor cutting edge, overload, abrasion, etc., are discriminated on the basis of the judging values of the absolute value measurement and the relative value measurement, and the using limit of the machining cutter 9 is discriminated on the basis of the machining load rise judging value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、旋盤のバイトやボ
ール盤のドリル,フライス盤のフライスカッタ等の加工
刃を電動モータで駆動する各種工作機械にあって、切削
や穴開けの加工を行なう前記加工刃の状態を常時監視し
て、加工刃の正常な状態或いは折損や刃先不良,過負
荷,摩耗等の異常や、使用限界による交換時期を検出す
るようにした工作機械用加工刃の状態監視方法とその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various types of machine tools such as a turning tool for a lathe, a drill for a drilling machine, a milling cutter for a milling machine and the like, which are driven by an electric motor to perform cutting and drilling. A method for monitoring the state of the machining blade, which constantly monitors the state of the blade and detects the normal state of the machining blade or abnormalities such as breakage, defective cutting edge, overload, wear, etc. And its equipment.

【0002】[0002]

【従来の技術】旋盤に用いるバイト等の工作機械用の加
工刃にあっては、加工中に構成刃先や刃こぼれ,切粉等
の巻き込きみによる過負荷や折損等の異常を生じたり、
使用限界に到達した場合に、作業者が刃物異常に気付か
ずに加工を継続して不良品を出してしまうことがある。
特に、作業者が加工状態や加工済み品を目視できない状
態にあったり、工作機械が大量数を連続加工する自動機
であった場合には、大量の不良品を発生することとなる
ため、加工刃の状態を常時監視できるようにした監視装
置が提案されている。
2. Description of the Related Art In machining blades for machine tools such as cutting tools used for lathes, abnormalities such as overload and breakage due to entrapment of constituent blade tips, blade spills, chips, etc. may occur during machining.
When the usage limit is reached, the operator may continue to process the cutting tool without giving notice of any abnormalities in the cutting tool, and produce a defective product.
In particular, if the operator is in a state where the machined state or the machined item cannot be visually observed, or the machine tool is an automatic machine that continuously processes a large number of products, a large amount of defective products will be generated. There has been proposed a monitoring device capable of constantly monitoring the state of the blade.

【0003】この監視装置には、センサバーを加工刃
に取付けるタッチセンサ方式や、加工刃と被加工物と
の間に微弱電流を流す漏電方式、加工刃の折損時に発
生する振動を検出する振動方式、光や赤外線等を用い
たリング状のセンサに加工刃を接近させたり内部に挿通
させるリングセンサ方式等がある。
This monitoring device includes a touch sensor system in which a sensor bar is attached to a machining blade, an electric leakage system in which a weak current is passed between the machining blade and a workpiece, and a vibration system for detecting vibration generated when the machining blade is broken. There is a ring sensor method in which a processing blade is brought close to or inserted into a ring-shaped sensor using light or infrared rays.

【0004】[0004]

【発明が解決しようとする課題】このうち、のタッチ
センサ方式では、a.センサバーが加工刃へタッチ動作
を行なう分、加工サイクルが長くなる。b.タッチ動作
を加工毎に行なうため、センサバーが著しく摩耗したり
作動不良になることが多い。c.センサバーの動作タイ
ミングの調整がむずかしい。d.被加工物と接触する刃
先にはセンサバーをタッチさせることができないので、
刃先折れは検出できない。e.加工刃の治具にガイドブ
ッシュがあると、センサバーを取付けできない。という
不具合がある。
Among the above, the touch sensor method includes: a. Since the sensor bar touches the machining blade, the machining cycle becomes longer. b. Since the touch operation is performed for each machining, the sensor bar often wears significantly or malfunctions. c. It is difficult to adjust the operation timing of the sensor bar. d. Since the sensor bar cannot be touched on the cutting edge that comes into contact with the workpiece,
The edge breakage cannot be detected. e. If there is a guide bush in the jig of the processing blade, the sensor bar cannot be attached. There is a problem called.

【0005】またの漏電方式では、a.加工刃と被加
工物とに通電するため、水溶性の切削油との併用は好ま
しくない。の振動方式では、a.正常な加工中での微
震動と区別することがむずかしい。b.加工刃の折損し
か検出できない。c.振動測定物である刃物が折損する
際に発生する振動を監視するため、折損の検出が一度し
か行なえない。のリングセンサ方式では、a.精度が
悪い。b.加工刃の中間が折損した場合には検出できな
い。等の不具合がある。
Further, in the electric leakage system, a. It is not preferable to use it in combination with a water-soluble cutting oil because it energizes the working blade and the work piece. The vibration method of a. It is difficult to distinguish from microtremors during normal processing. b. Only breakage of the processing blade can be detected. c. Since the vibration generated when the blade, which is a vibration measurement object, is broken is monitored, the breakage can be detected only once. In the ring sensor method of a. The accuracy is poor. b. It cannot be detected when the middle of the processing blade is broken. And so on.

【0006】更に、これら方式の殆どが、加工刃の折損
を検出するのみの折損監視装置であって、折損前の構成
刃先、刃こぼれや傷、切粉等の異物の巻き込み,切削油
の濃度低下による過負荷等の異常や、使用限界を検出す
ることは殆どできず、不良品の大量発生を未然に回避す
る有効な手段とはなり得なかった。しかも、高価な加工
刃を折損の度に交換しているとコストアップにつながる
ため、不要な交換は極力避けたい。
Further, most of these systems are breakage monitoring devices only for detecting breakage of a working blade, and the constituent cutting edge before breakage, entrapment of foreign matter such as blade spills or scratches, cutting chips, and concentration of cutting oil. Since it is almost impossible to detect abnormalities such as overload due to deterioration and usage limits, it cannot be an effective means for avoiding the mass production of defective products. Moreover, if expensive cutting blades are replaced every time they are broken, the cost will increase, so unnecessary replacement should be avoided as much as possible.

【0007】そこで本発明者は、加工刃が被加工物を加
工する際に、電動モータからの有効電力が、被加工物の
加工開始から加工終了までの1工程の間に変化し、更に
この有効電力が、被加工物の切削等で加工刃にかかる負
荷に対しての変化率が高い点に着目し、この有効電力の
変化を監視して、加工刃に対する加工負荷の僅かな変化
を知ることにより、加工刃の折損はもとより、折損前の
加工刃の異常な状態をも検出することのできる経済性に
優れた工作機械用加工刃の状態監視方法とその装置を提
供しようとするものである。
Therefore, the inventor of the present invention, when the processing blade processes the workpiece, the effective electric power from the electric motor changes during one step from the processing start to the processing end of the workpiece. Focusing on the fact that the effective power has a high rate of change with respect to the load applied to the processing blade due to cutting of the workpiece, etc., monitor this change in active power to know the slight change in the processing load on the processing blade. By doing so, it is intended to provide a state-of-the-art method for monitoring the state of a machining blade for machine tools, which is capable of detecting not only the breakage of the machining blade, but also the abnormal state of the machining blade before it breaks. is there.

【0008】[0008]

【課題を解決するための手段】上述の目的に従い、本発
明の工作機械用加工刃の状態を監視する第1の方法とし
て、被加工物の加工を行なう工作機械用加工刃の状態を
監視する方法において、前記被加工物の加工開始から加
工終了までの1工程に、正常な加工刃が動力として使用
する有効電力の加工負荷の波形変化を基準グラフとして
測定し、該基準グラフの基準ピーク値を挟んだ上下に、
前記加工刃の過負荷を示すピーク値上限判定値と、加工
刃の刃先不良を示すピーク値下限判定値とを設定して、
これらピーク値上限判定値とピーク値下限判定値との間
を前記加工刃の正常域となすと共に、前記ピーク値下限
判定値の下位に、前記加工刃の折損を示す刃折れ判定値
を設定して、該刃折れ判定値と前記ピーク値上限判定値
及びピーク値下限判定値とを判定手段に入力し、前記加
工刃が1工程中に使用する有効電力の加工負荷の波形変
化を実測グラフとして測定し、該実測グラフを前記判定
手段に入力して、実測グラフ中の実測ピーク値が前記加
工刃の正常域を外れて、前記ピーク値上限判定値とピー
ク値下限判定値と刃折れ判定値のいずれかに該当したこ
とを判定手段が判定した場合に、警報音や警告灯等の報
知手段の起動や工作機械の作動停止を行なう。
According to the above-mentioned object, as a first method of monitoring the state of the machining blade for machine tools of the present invention, the state of the machining blade for machine tools for machining a workpiece is monitored. In the method, in one step from the processing start to the processing end of the work piece, a waveform change of a processing load of active power used by a normal processing blade as power is measured as a reference graph, and a reference peak value of the reference graph. Above and below the
Set a peak value upper limit determination value indicating the overload of the processing blade, and a peak value lower limit determination value indicating the cutting edge defect of the processing blade,
Between the peak value upper limit judgment value and the peak value lower limit judgment value and the normal region of the working blade, and below the peak value lower limit judgment value, the blade breakage judgment value indicating the breakage of the working blade is set. Then, the blade breakage determination value and the peak value upper limit determination value and the peak value lower limit determination value are input to the determination means, and the waveform change of the processing load of active power used by the processing blade during one step is measured graph. Measure, input the measured graph to the determination means, the measured peak value in the measured graph is out of the normal range of the machining blade, the peak value upper limit judgment value, peak value lower limit judgment value and blade breakage judgment value When the determination means determines that any of the above conditions is met, the alarm means such as an alarm sound or a warning light is activated, or the operation of the machine tool is stopped.

【0009】また、本発明の第2の方法として、被加工
物の加工を行なう工作機械用加工刃の状態を監視する方
法において、前記加工刃が前記被加工物の加工開始から
加工終了までの1工程を行なう前に、前記加工刃が動力
として使用する有効電力の空転負荷を一定時間測定して
空転負荷平均値を算出し、該空転負荷平均値に、予め設
定された前記加工刃の過負荷を示すピーク値上限判定値
と、加工刃の刃先不良を示すピーク値下限判定値と、該
ピーク値下限判定値の下位で加工刃の折損を示す刃折れ
判定値の各定数をそれぞれ乗じて、ピーク値上限判定値
とピーク値下限判定値と刃折れ判定値とを決定すると共
に、これらピーク値上限判定値とピーク値下限判定値と
刃折れ判定値とを判定手段に入力し、前記加工刃が前記
被加工物の加工開始から加工終了までの1工程に使用す
る有効電力の加工負荷の波形変化を実測グラフとして測
定し、該実測グラフを前記判定手段に入力して、実測グ
ラフ中の実測ピーク値が、前記ピーク値上限判定値とピ
ーク値下限判定値との間の加工刃の正常域を外れて、ピ
ーク値上限判定値とピーク値下限判定値と刃折れ判定値
のいずれかに該当したことを判定手段が判定した場合
に、警報音や警告灯等の報知手段の起動や工作機械の作
動停止を行なう。
As a second method of the present invention, in a method of monitoring the state of a machining blade for a machine tool for machining a workpiece, the machining blade is used from the start to the end of machining of the workpiece. Before performing one step, the idling load of active power used by the machining blade as power is measured for a certain period of time to calculate an idling load average value, and the idling load average value is set to a preset value of the machining blade excess. Peak value upper limit judgment value showing the load, peak value lower limit judgment value showing the cutting edge defect of the working blade, and multiplying each constant of the blade breakage judgment value showing the breakage of the working blade at the lower of the peak value lower limit judgment value The peak value upper limit determination value, the peak value lower limit determination value, and the blade breakage determination value are determined, and the peak value upper limit determination value, the peak value lower limit determination value, and the blade breakage determination value are input to the determination means, and the processing is performed. The blade is used to open the workpiece. The change in the waveform of the processing load of active power used in one process from the process to the end of processing is measured as a measured graph, and the measured graph is input to the determination means so that the measured peak value in the measured graph is the upper limit of the peak value. Departing from the normal range of the processing blade between the judgment value and the peak value lower limit judgment value, the judgment means judged that the peak value upper limit judgment value, the peak value lower limit judgment value or the blade breakage judgment value was met. In this case, warning means such as alarm sounds and warning lights are activated and the machine tool is deactivated.

【0010】上記第1または第2の方法の判定手段に、
加工刃の加工負荷上昇判断値を入力しておき、1工程毎
の実測グラフ中の実測ピーク値を加算して、所定数の実
測ピーク値から実測ピーク平均値を算出し、該実測ピー
ク平均値を前記判定手段の加工負荷上昇判断値と比較し
て、該判定手段が実測ピーク平均値を前記判定手段の加
工負荷上昇判断値を越えたことを判定した場合に、前記
警報音や警告灯等の報知手段の起動や工作機械の作動停
止を行なうこともできる。
In the judging means of the first or second method,
The processing load increase judgment value of the processing blade is input, the measured peak values in the measured graph for each process are added, and the measured peak average value is calculated from a predetermined number of measured peak values. Is compared with the processing load increase determination value of the determination means, and when the determination means determines that the measured peak average value exceeds the processing load increase determination value of the determination means, the alarm sound, warning light, etc. It is also possible to activate the notifying means and stop the operation of the machine tool.

【0011】更に、本発明の工作機械用加工刃の状態監
視装置として、加工刃の作動によって被加工物の加工を
行なう工作機械用加工刃の状態を監視する装置におい
て、前記被加工物の加工開始から加工終了までの1工程
に、前記加工刃が動力として使用する有効電力の加工負
荷の波形変化を実測グラフとして測定する有効電力測定
手段と、前記加工刃の過負荷を示すピーク値上限判定値
及び、加工刃の刃先不良を示すピーク値下限判定値及
び、該ピーク値下限判定値の下位で、前記加工刃の折損
を示す刃折れ判定値とが入力されていて、前記有効電力
測定手段から受けた実測グラフ中の実測ピーク値が、前
記ピーク値上限判定値とピーク値下限判定値との間の加
工刃の正常域から外れて、前記ピーク値上限判定値とピ
ーク値下限判定値と刃折れ判定値のいずれかに該当した
ことを判定する判定手段と、該判定手段の判定を受け
て、報知手段の作動や工作機械の作動停止を行なう制御
手段とを備えている。
Furthermore, as a state monitoring device for a machining blade of a machine tool according to the present invention, in a device for monitoring a state of a machining blade for a machine tool for machining a workpiece by operating the machining blade, the machining of the workpiece is performed. In one step from the start to the end of processing, active power measuring means for measuring the waveform change of the processing load of the active power used as power by the processing blade as an actual measurement graph, and the peak value upper limit judgment indicating the overload of the processing blade. The value and the peak value lower limit determination value indicating the cutting edge defect of the processing blade, and the lower limit of the peak value lower limit determination value, the blade breakage determination value indicating the breakage of the processing blade is input, and the active power measuring means The actual measurement peak value in the actual measurement graph received from deviates from the normal range of the machining blade between the peak value upper limit determination value and the peak value lower limit determination value, and the peak value upper limit determination value and the peak value lower limit determination value. blade Is a determination unit that it has any of the determination values, receiving a judgment of the judging means, and a control means for deactivation operation and machine tools informing means.

【0012】[0012]

【発明の実施の形態】以下、本発明の一形態を図面に基
づいて説明する。図中、図1は工作機械と加工刃状態監
視装置の説明図、図2及び図3は、それぞれ加工刃が動
力として使用する有効電力の波形変化を示すもので、図
2は絶対値測定の場合の有効電力の波形図、図3は相対
値測定の場合の有効電力の波形図、図4は実測ピーク値
が正常域とピーク値上限判定値以上とピーク値下限判定
値以下に位置した場合の説明図、図5は実測ピーク値が
刃折れ判定値以下に位置した場合の説明図、図6は加工
回数と有効電力の関係図、図7及び図8は、被加工物の
加工工程を示すフローチャートで、図7は絶対値測定に
基づくフローチャート、図8は相対値測定に基づくフロ
ーチャートである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In the figure, FIG. 1 is an explanatory view of a machine tool and a machining blade state monitoring device, and FIGS. 2 and 3 show changes in the waveform of active power used by the machining blade as power, and FIG. 2 shows absolute value measurement. Waveform diagram of active power in the case, Fig. 3 is a waveform diagram of active power in the case of relative value measurement, and Fig. 4 is a case where the measured peak value is in the normal range, above the peak value upper limit judgment value and below the peak value lower limit judgment value. FIG. 5, FIG. 5 is an explanatory view when the measured peak value is located below the blade breakage determination value, FIG. 6 is a relationship diagram between the number of times of processing and active power, and FIGS. 7 is a flowchart based on absolute value measurement, and FIG. 8 is a flowchart based on relative value measurement.

【0013】図1に示す工作機械1には、加工刃の状態
監視装置2と報知手段3が、オペレータの作業位置から
確認し易い適宜箇所に付設されている。工作機械1は、
旋盤やボール盤,フライス盤等であって、内部には電動
モータ4が制御部5の電磁開閉器6と電源部7とに三相
配線8にて接続されており、被加工物の切削や穴開け加
工を行なうバイトやドリル,フライスカッタ等の加工刃
9を、電動モータ4によって駆動するようになってい
る。
The machine tool 1 shown in FIG. 1 is provided with a machining blade state monitoring device 2 and an informing means 3 at appropriate locations that can be easily confirmed from the operator's working position. Machine tool 1
A lathe, a drilling machine, a milling machine, etc., in which an electric motor 4 is connected to an electromagnetic switch 6 of a control unit 5 and a power supply unit 7 by three-phase wiring 8 for cutting or drilling a workpiece. A machining blade 9 such as a cutting tool, a drill or a milling cutter for machining is driven by an electric motor 4.

【0014】加工刃状態監視装置2は、加工刃9の情報
を電動モータ4から取り込んで測定する有効電力測定手
段10と、該有効電力測定手段10からの有効電力情報
を受けて、加工刃9の摩耗レベルを判定する判定手段1
1と、該判定手段11内に一体に組み込まれ、且つ判定
手段11の判定に基づいて、報知手段3の起動または工
作機械1の作動停止を指令する図示しない制御手段とか
らなっており、上記加工刃9の折損や刃先不良,過負
荷,摩耗等の異常や、使用限界による交換時期等の良否
を常時監視している。また報知手段3は、例えばパトラ
イト等の警告灯やアラーム等の警報音であって、加工刃
9の過負荷や刃先異常,刃折れ等が異常内容毎に設定さ
れる。
The working blade state monitoring device 2 receives the active power measuring means 10 for taking in and measuring the information of the working blade 9 from the electric motor 4, and the active power information from the active power measuring means 10 to receive the working blade 9 Determination means 1 for determining the wear level of
1 and a control means (not shown) that is integrally incorporated in the determination means 11 and that issues an instruction to start the notification means 3 or stop the operation of the machine tool 1 based on the determination of the determination means 11. Abnormalities such as breakage of the processing blade 9, defective cutting edge, overload, wear and the like, and quality of replacement time due to usage limit are constantly monitored. Further, the notifying means 3 is, for example, a warning light such as a patrol light or an alarm sound such as an alarm, and an overload of the processing blade 9, a cutting edge abnormality, a blade break, etc. are set for each abnormality content.

【0015】有効電力測定手段10は、三相配線8,1
2を用いて電動モータ4と接続され、また配線13にて
判定手段11と接続されており、電動モータ4が加工刃
9を作動する際の有効電力の変化、即ち加工刃9が被加
工物の加工に動力として使用する有効電力情報を電動モ
ータ4から有効電力測定手段10に取り込んで、常時判
定手段11へ入力するようになっている。判定手段11
は、工作機械1の制御部5と配線14にて接続されてお
り、加工刃9による加工時には、制御部5から配線13
を通してトリガ信号を判定手段11へ取り込み、該判定
手段11で加工刃9の摩耗レベルを判定する。
The active power measuring means 10 comprises three-phase wirings 8 and 1.
2 is connected to the electric motor 4 and is also connected to the determination means 11 by the wiring 13, and changes in effective power when the electric motor 4 operates the machining blade 9, that is, the machining blade 9 is a workpiece. The active power information used as a power for the machining of is processed by the active power measuring means 10 from the electric motor 4 and constantly input to the determining means 11. Determination means 11
Is connected to the control unit 5 of the machine tool 1 by the wiring 14, and when the machining by the machining blade 9 is performed,
The trigger signal is taken into the judging means 11 through the judging means 11, and the judging means 11 judges the wear level of the processing blade 9.

【0016】また判定手段11と一体の制御手段は、工
作機械1の制御部5と報知手段3のそれぞれと配線1
5,16にて接続されており、判定手段11で出された
加工刃9の摩耗レベルに応じて、加工刃9を駆動する電
動モータ4の回転を停止するか、或いは報知手段3を起
動するかのいずれかの指令を行なうようになっている。
この判定手段11には、図2の絶対値測定及び図3の相
対値測定と、図6の加工負荷上昇判断値Hとが入力さ
れ、絶対値測定と相対値測定の判断値A〜Cに基づい
て、加工刃9の折損や刃先不良,過負荷,摩耗等の異常
が判定され、また加工負荷上昇判断値Hに基づいて、加
工刃9の使用限界が判定される。
The control means integrated with the determination means 11 includes the control section 5 of the machine tool 1, the notification means 3, and the wiring 1.
5 and 16 are connected, and the rotation of the electric motor 4 for driving the machining blade 9 is stopped or the notifying means 3 is activated according to the wear level of the machining blade 9 issued by the determination means 11. Either of these commands is issued.
The absolute value measurement of FIG. 2 and the relative value measurement of FIG. 3 and the processing load increase determination value H of FIG. 6 are input to the determination means 11, and the determination values A to C of the absolute value measurement and the relative value measurement are input. Based on this, abnormality such as breakage, cutting edge defect, overload, wear and the like of the working blade 9 is determined, and based on the working load increase determination value H, the working limit of the working blade 9 is determined.

【0017】図2及び図3の測定図は、加工刃9が被加
工物の加工に用いる有効電力の加工負荷を、有効電力測
定手段10で波形変化として測定したもので、有効電力
の波形変化は、トリガポイントの検出から加工刃9が加
工を開始するまでの待機期間T1と、該加工刃9が被加
工物の加工開始から加工を終えるまでの1工程分の加工
負荷測定期間T2とを持っている。
The measurement diagrams of FIGS. 2 and 3 show the processing load of the active power used by the processing blade 9 for processing the workpiece as the waveform change by the active power measuring means 10. The waveform change of the active power is shown in FIG. Is a waiting period T1 from the detection of the trigger point until the machining blade 9 starts machining, and a machining load measurement period T2 for one process from the machining start to machining of the workpiece by the machining blade 9. have.

【0018】このうち、図2の絶対値測定では、加工負
荷測定期間T2として、1工程終了後の電動モータ4の
アイドリング運転状態である有効電力の空転負荷Eと電
動モータ4の電源OFFまでが含まれている。そして、
まず加工刃9の判定値を決めるための基準ピーク値P1
の測定が、正常な加工刃9を用いて有効電力測定手段1
0によって行なわれる。この測定は、加工負荷測定期間
T2での正常な加工刃9を用いた有効電力の加工負荷を
基準グラフG1として測定し、加工負荷測定期間T2で
の1工程終了後に、基準グラフG1から最大有効電力値
である基準ピーク値P1を取り出す。
Among them, in the absolute value measurement of FIG. 2, during the machining load measuring period T2, the idling load E of the active power, which is the idling operation state of the electric motor 4 after the completion of one step, and the power supply to the electric motor 4 are turned off. include. And
First, the reference peak value P1 for determining the judgment value of the processing blade 9
Is measured by using the normal processing blade 9 to measure the active power 1
Performed by zero. In this measurement, the processing load of active power using the normal processing blade 9 in the processing load measurement period T2 is measured as the reference graph G1, and after the completion of one step in the processing load measurement period T2, the maximum effective from the reference graph G1. A reference peak value P1 which is an electric power value is taken out.

【0019】次に、上述の測定に基づいて、基準ピーク
値P1を挟んだ上下に、加工刃9の過負荷を示すピーク
値上限判定値Aと、加工刃9の刃先不良を示すピーク値
下限判定値Bとを設定して、これらピーク値上限判定値
Aとピーク値下限判定値Bとの間を、加工刃9の使用許
容範囲である正常域Dとなし、更にピーク値下限判定値
Bの下位に、加工刃9の折損を示す刃折れ判定値Cを設
定する。判定値A〜Cのレベルと正常域Dの範囲は、加
工刃9の耐久性能を基に設定され、これらを絶対値測定
プログラムの基本データとして判定手段11に入力す
る。
Next, based on the above measurement, the peak value upper limit judgment value A indicating the overload of the working blade 9 and the peak value lower limit indicating the cutting edge defect of the working blade 9 are located above and below the reference peak value P1. The judgment value B is set so that the area between the peak value upper limit judgment value A and the peak value lower limit judgment value B is not the normal range D which is the allowable range of use of the machining blade 9, and the peak value lower limit judgment value B The blade breakage determination value C indicating the breakage of the processing blade 9 is set in the lower order of the. The levels of the judgment values A to C and the range of the normal range D are set based on the durability performance of the processing blade 9, and these are input to the judgment means 11 as basic data of the absolute value measurement program.

【0020】上述の絶対値プログラムを用いて加工刃9
の状態を監視する場合に、加工負荷測定期間T2におい
て加工刃9が1工程中に使用する有効電力の加工負荷の
波形変化を、実測グラフG2として有効電力測定手段1
0で測定し、この実測グラフG2を判定手段11に入力
する。そして、加工負荷測定期間T2ののち、判定手段
11で実測グラフG2中の実測ピーク値P2が、基本デ
ータの判定値A〜Cと比較され、判定手段11にて加工
刃9の異常が検出された場合には、制御手段を作動して
報知手段3の起動や工作機械1の作動停止を行なう。
Using the above absolute value program, the processing blade 9
When monitoring the state of, the waveform change of the processing load of the active power used by the processing blade 9 during one process during the processing load measurement period T2 is measured as the actual measurement graph G2.
Measurement is performed at 0, and this measured graph G2 is input to the determination means 11. Then, after the machining load measurement period T2, the determination means 11 compares the measured peak value P2 in the measured graph G2 with the determination values A to C of the basic data, and the determination means 11 detects an abnormality in the processing blade 9. In this case, the control means is operated to activate the notification means 3 or stop the operation of the machine tool 1.

【0021】図3に示す相対値測定では、前回の加工負
荷測定期間T2後から次の加工負荷測定期間T2までの
間、即ち加工刃9が、加工負荷測定期間T2で被加工物
の加工開始から加工終了までの1工程を行なう直前に、
加工刃9の判定値を決めるための空転負荷測定期間T3
が設定される。この空転負荷測定期間T3では、電動モ
ータ4のアイドリング運転状態である有効電力の空転負
荷Eを有効電力測定手段10で測定して、判定手段11
で空転負荷平均値Fを算出し、該判定手段11におい
て、予め設定された加工刃9の過負荷を示すピーク値上
限判定値Aと、加工刃9の刃先不良を示すピーク値下限
判定値Bと、該ピーク値下限判定値Bの下位で加工刃9
の折損を示す刃折れ判定値Cの各係数X,Y,Zを空転
負荷平均値Fにそれぞれ乗じて、ピーク値上限判定値A
とピーク値下限判定値Bと刃折れ判定値Cを決定する。
In the relative value measurement shown in FIG. 3, after the last machining load measuring period T2 to the next machining load measuring period T2, that is, the machining blade 9 starts machining the workpiece in the machining load measuring period T2. Immediately before performing one step from to the end of processing,
Idling load measurement period T3 for determining the judgment value of the processing blade 9
Is set. In the idling load measurement period T3, the idling load E of the active power in the idling operation state of the electric motor 4 is measured by the active power measuring means 10, and the determining means 11 is used.
Then, the idling load average value F is calculated, and in the judging means 11, a peak value upper limit judgment value A indicating a preset overload of the machining blade 9 and a peak value lower limit judgment value B indicating a cutting edge defect of the machining blade 9 are set. And the processing blade 9 below the peak value lower limit judgment value B
Peak coefficient upper limit judgment value A by multiplying each coefficient X, Y, Z of the blade breakage judgment value C indicating the breakage of
The peak value lower limit determination value B and the blade breakage determination value C are determined.

【0022】ピーク値上限判定値Aとピーク値下限判定
値Bとの間には、上述の絶対値測定の場合と同様に、加
工刃9の使用許容範囲である正常域Dが決められ、空転
負荷平均値Fと相対して求めた判定値A〜Cと正常域D
の範囲とが、絶対値プログラムとして判定手段11に入
力される。
Between the peak value upper limit judgment value A and the peak value lower limit judgment value B, as in the case of the above-mentioned absolute value measurement, the normal range D which is the allowable range of use of the working blade 9 is determined, and the idling is performed. Judgment values A to C obtained relative to the load average value F and normal range D
Is input to the determination means 11 as an absolute value program.

【0023】上述の相対値プログラムを用いて加工刃9
の状態を監視する場合には、加工刃9が被加工物の1工
程を行なう加工負荷測定期間T2直前の空転負荷測定期
間T3に、有効電力の空転負荷Eを有効電力測定手段1
0で測定し、更に判定手段11でこの空転負荷Eから空
転負荷平均値Fを算出して、空転負荷平均値Fに判定値
A〜Cの係数を乗じて判定値A〜Cと正常域Dの範囲を
決定する。そして、加工負荷測定期間T2で実測グラフ
G2を測定し、加工負荷測定期間T2の後に実測グラフ
G2中の実測ピーク値P2を判定値A〜Cと比較され、
判定手段11にて加工刃9の異常が検出された場合に
は、制御手段を作動して報知手段3の起動や工作機械1
の作動停止を行なう。
Using the relative value program described above, the machining blade 9
In the case of monitoring the above condition, the idle blade load E of active power is set to the active power measuring means 1 in the idle load measurement period T3 immediately before the processing load measurement period T2 in which the processing blade 9 performs one step of the workpiece.
0, and the determination means 11 calculates the idling load average value F from the idling load E, and the idling load average value F is multiplied by the coefficient of the determination values A to C to determine the determination values A to C and the normal range D. Determine the range of. Then, the actual measurement graph G2 is measured during the processing load measurement period T2, and the actual measurement peak value P2 in the actual measurement graph G2 is compared with the determination values A to C after the processing load measurement period T2.
When the determination means 11 detects an abnormality in the processing blade 9, the control means is operated to activate the notification means 3 or the machine tool 1
Stop the operation of.

【0024】次に、図2及び図3の測定図による判定
を、図4と図5に基づいて説明する。先ず図4では、加
工負荷測定期間T2での1加工で、加工刃9が実際に被
加工物を加工した時の有効電力の加工負荷を、3種類の
実測グラフG2−1,G2−2,P2−3で示してお
り、加工負荷測定期間T2での1加工終了後に、それぞ
れの実測グラフG2−1〜3からピーク値P2−1,P
2−2,P2−3が測定される。
Next, the determination based on the measurement diagrams of FIGS. 2 and 3 will be described with reference to FIGS. 4 and 5. First, in FIG. 4, the processing load of the active power when the processing blade 9 actually processes the workpiece in one processing in the processing load measurement period T2 shows three types of measured graphs G2-1, G2-2. P2-3 indicates the peak values P2-1 and P from the respective measured graphs G2-1 to G2-1 after the end of one machining in the machining load measurement period T2.
2-2 and P2-3 are measured.

【0025】このうち、実線で示す実測グラフG2−1
では、ピーク値P2−1がピーク値上限判定値Aとピー
ク値下限判定値Bとの間の正常域Dに位置しており、判
定手段11が加工刃9が正常であると判断する。またピ
ーク値P2−2が、ピーク値上限判定値Aよりも上位に
位置する破線の実測グラフG2−2では、判定手段11
が加工刃9に切粉の巻き込きみや切削油の濃度異常等に
よる過負荷を検出する。更に、ピーク値P2−3がピー
ク値下限判定値Bよりも下位に位置する一点鎖線の実測
グラフG2−3では、判定手段11が加工刃9に刃こぼ
れや刃先傷,構成刃先等を起因とする刃先不良の発生を
検出する。
Of these, the actual measurement graph G2-1 indicated by the solid line
Then, the peak value P2-1 is located in the normal region D between the peak value upper limit determination value A and the peak value lower limit determination value B, and the determination means 11 determines that the processing blade 9 is normal. Further, in the actual measurement graph G2-2 of the broken line in which the peak value P2-2 is located higher than the peak value upper limit judgment value A, the judgment means 11
Detects an overload caused by the inclusion of chips in the processing blade 9 or abnormal concentration of cutting oil. Further, in the actual measurement graph G2-3 of the alternate long and short dash line in which the peak value P2-3 is located lower than the peak value lower limit judgment value B, the judgment means 11 is attributed to the processing blade 9 such as blade spill, cutting edge damage, and constituent cutting edge. The occurrence of defective cutting edge is detected.

【0026】図5では、先の1工程で加工刃9が過負荷
によって折損した場合を(A)の実測グラフG2−4
に、また次の工程でこの折損を測定する場合を(B)の
実測グラフG2−4にそれぞれ示している。図5(A)
の先の1工程では、加工刃9が過負荷によってピーク値
P2−4で折損すると、有効電力は加工負荷を失って刃
折れ判定値C以下の空転負荷Eのままとなり、1工程を
終える。次に、図5(B)の次工程に入ると、加工刃9
が折損状態であるため、有効電力は空転負荷Eのまま刃
折れ判定値Cへ到達しないから、次工程終了後に判定手
段11が加工刃9に折損を生じたと判定する。
In FIG. 5, the actual measurement graph G2-4 in (A) shows the case where the machining blade 9 is broken due to overload in the previous one step.
In addition, the case of measuring this breakage in the next step is shown in the measured graph G2-4 of (B). FIG. 5 (A)
In the previous one step, when the processing blade 9 breaks at the peak value P2-4 due to overload, the active power loses the processing load and remains as the idling load E equal to or less than the blade breakage determination value C, completing one step. Next, in the next step of FIG. 5B, the processing blade 9
Is a broken state, the active power does not reach the blade breakage determination value C with the idling load E. Therefore, the determination means 11 determines that the machining blade 9 has been broken after the end of the next step.

【0027】また、加工刃9の使用限界の判定には、前
述の如く図6に示す加工負荷上昇判断値Hが用いられ
る。この加工負荷上昇判断値Hは、加工刃9の性能や加
工内容を基に、加工刃9の耐久性を、有効電力の加工負
荷の値に置き換えて判定手段11に入力しておく。そし
て、有効電力測定手段10から送られる加工毎の実測ピ
ーク値P2を判定手段11に記録して、所定数nの実測
ピーク値P2から実測ピーク平均値P3を算出し、該実
測ピーク平均値P3を加工負荷上昇判断値Hと比較す
る。
Further, as described above, the processing load increase determination value H shown in FIG. 6 is used to determine the use limit of the processing blade 9. This processing load increase determination value H is input to the determination means 11 by replacing the durability of the processing blade 9 with the value of the processing load of active power based on the performance and processing content of the processing blade 9. Then, the measured peak value P2 for each machining sent from the active power measuring means 10 is recorded in the judging means 11, the measured peak average value P3 is calculated from the predetermined number n of measured peak values P2, and the measured peak average value P3. Is compared with the processing load increase determination value H.

【0028】実測ピーク平均値P3に用いる各実測ピー
ク値P2は、上述の絶対値測定や相対値測定プログラム
の正常域Dにあり、実測ピーク値P2が正常域Dを上下
に外れた場合には、上述の如く判定手段11と制御手段
とによって異常が報知される。また実測ピーク平均値P
3は、加工数を増す毎に、所定数の実測ピーク値P2の
中から最も古い値を捨てながら、常に新しい値を取り込
んで算出される。従って、新品交換時の加工刃9も、加
工数を重ねるに従って次第に摩耗して行くから、常に新
しい実測ピーク値P2を取り込んで算出される実測ピー
ク平均値P3は、徐々に加工負荷上昇判断値Hへ近づい
て行く。そして、実測ピーク平均値P3が加工負荷上昇
判断値Hを越えたことを判定手段11が判定した場合に
は、制御手段を作動して報知手段3を起動したり、或い
は工作機械1の作動を停止して、加工刃9が使用限界に
到達したことを報知する。
Each measured peak value P2 used for the measured peak average value P3 is in the normal range D of the above absolute value measurement and relative value measurement programs, and when the measured peak value P2 deviates above and below the normal range D, As described above, the abnormality is notified by the determination means 11 and the control means. Also, the measured peak average value P
3 is calculated by always taking in a new value while discarding the oldest value from the predetermined number of actually measured peak values P2 each time the number of machining is increased. Therefore, the machining blade 9 at the time of replacement with a new one also gradually wears as the number of machining increases, and therefore the actually measured peak average value P3 calculated by always incorporating the new actually measured peak value P2 gradually increases the machining load judgment value H. Approach to. When the determination means 11 determines that the measured peak average value P3 exceeds the processing load increase determination value H, the control means is operated to activate the notification means 3 or the operation of the machine tool 1 is started. It stops and notifies that the processing blade 9 has reached the use limit.

【0029】加工刃9の判定には、判定手段11に入力
した上述の2つのプログラムのうちのいずれか一方が選
択される。例えば、図2の絶対値測定は、有効電力の空
転負荷Eと、有効電力の加工負荷を実測した実測グラフ
G2の実測ピーク値P2との開きが、空転負荷Eのバラ
付きを無視できるほど大きい場合に用いられ、また図3
の相対値測定は、有効電力の空転負荷Eと実測ピーク値
P2との開きがさほどなく、有効電力の空転負荷Eにバ
ラ付きがあったり、或いは空転負荷Eの変動に伴って加
工負荷が上下へ変動するなどの原因で、実測ピーク値P
2が測定しにくい場合に用いられる。従って、図3の相
対値測定では、有効電力の空転負荷Eから空転負荷平均
値Fを求めて、この空転負荷平均値Fに基づく判定値A
〜Cと正常域Dの範囲の設定が、加工負荷測定期間T2
で被加工物の1工程を行なう直前毎に行なわれる。
To judge the machining blade 9, one of the above-mentioned two programs inputted to the judging means 11 is selected. For example, in the absolute value measurement of FIG. 2, the difference between the idling load E of the active power and the measured peak value P2 of the actual measurement graph G2 that actually measures the processing load of the active power is so large that the variation of the idling load E can be ignored. Used in some cases and also in FIG.
In the relative value measurement of, the idle load E of the active power and the actually measured peak value P2 are not so different from each other, and the idle load E of the active power varies, or the processing load rises and falls with the fluctuation of the idle load E. To the actual peak value P
Used when 2 is difficult to measure. Therefore, in the relative value measurement of FIG. 3, the idling load average value F is obtained from the idling load E of active power, and the determination value A based on the idling load average value F is obtained.
~ C and the range of normal range D is the processing load measurement period T2
At every time immediately before performing one step of the workpiece.

【0030】次に、上述のように構成される加工刃状態
監視装置2の更に具体的な2つの作動例を、図7及び図
8のフローチャートを用いて説明する。図7のフローチ
ャートには、図2の絶対値測定による基本データと、図
6で設定した加工負荷上昇判断値Hとを組合わせた絶対
値測定プログラムが入力され、また図8のフローチャー
トには、図3の相対値測定による基本データと、図6で
設定した加工負荷上昇判断値Hとを組合わせた相対値測
定プログラムが入力されている。前述の如く加工刃9の
判定には、判定手段11に入力した上述の2つのプログ
ラムのうちのいずれか一方が選択される。尚、これらの
フローチャートを説明するに当たり、図1〜図6を適宜
参酌するものとする。
Next, two more specific operation examples of the machining blade state monitoring device 2 configured as described above will be described with reference to the flowcharts of FIGS. 7 and 8. The absolute value measurement program in which the basic data by the absolute value measurement of FIG. 2 and the processing load increase determination value H set in FIG. 6 are combined is input to the flowchart of FIG. 7, and the flowchart of FIG. A relative value measurement program in which the basic data obtained by the relative value measurement of FIG. 3 and the processing load increase determination value H set in FIG. 6 are combined is input. As described above, for the determination of the machining blade 9, one of the above-mentioned two programs input to the determination means 11 is selected. In describing these flowcharts, FIGS. 1 to 6 will be referred to as appropriate.

【0031】絶対値測定プログラムを用いた図7のフロ
ーチャートは、ステップS1でプログラムがスタートす
ると電動モータ4が立ち上がり、ステップS2でトリガ
ポイントを検出してステップS3で待機期間T1を待機
したのちステップS4に入り、加工刃9が被加工物の1
加工で使用する有効電力の加工負荷を、有効電力測定手
段10が実測グラフG2として測定を開始する。そし
て、ステップS5で加工負荷測定期間T2の間実測グラ
フG2を測定し、ステップS6に入って測定を終了した
のち、ステップS7で実測グラフG2から最大有効電力
である実測ピーク値P2が取り出される。
In the flow chart of FIG. 7 using the absolute value measuring program, when the program starts in step S1, the electric motor 4 starts up, the trigger point is detected in step S2, and the waiting period T1 is waited in step S3, and then step S4. And the processing blade 9 is 1
The active power measuring means 10 starts measuring the processing load of active power used in processing as the actual measurement graph G2. Then, in step S5, the actually measured graph G2 is measured during the processing load measurement period T2, and after entering the step S6 and ending the measurement, in step S7, the actually measured peak value P2 that is the maximum active power is extracted from the actually measured graph G2.

【0032】ステップS8の刃物折れ判定では、判定手
段11で実測ピーク値P2と刃折れ判定値Cとを比較
し、実測ピーク値P2が刃折れ判定値Cと同じか小さい
場合、即ちP2≦Cの場合には、ステップS9に入って
報知手段11である刃折れランプを点灯する。また、実
測ピーク値P2が刃折れ判定値Cよりも大きい場合、即
ちP2>Cの場合には、ステップS10の刃先異常判定
に入って、判定手段11で実測ピーク値P2とピーク値
下限判定値Bとを比較し、実測ピーク値P2がピーク値
下限判定値Bと同じか小さい場合、即ちP2≦Bの場合
には、ステップS11に入って報知手段11である刃先
異常ランプを点灯する。
In the blade breakage determination in step S8, the determination means 11 compares the measured peak value P2 with the blade breakage determination value C, and when the measured peak value P2 is equal to or smaller than the blade breakage determination value C, that is, P2≤C. In the case of, the process goes to step S9 and the blade breakage lamp which is the notification means 11 is turned on. If the actually measured peak value P2 is larger than the blade breakage determination value C, that is, if P2> C, the blade edge abnormality determination at step S10 is entered, and the actually measured peak value P2 and the peak value lower limit determination value are determined by the determination means 11. If the measured peak value P2 is equal to or smaller than the peak value lower limit determination value B, that is, if P2 ≦ B, the process goes to step S11 to turn on the cutting edge abnormality lamp that is the notification means 11.

【0033】また、実測ピーク値P2がピーク値下限判
定値Bよりも大きい場合、即ちP2>Bの場合には、ス
テップS12の過負荷判定に入って、判定手段11で実
測ピーク値P2とピーク値上限判定値Aとを比較する。
そして、実測ピーク値P2がピーク値上限判定値Aと同
じか大きい場合、即ちP2≧Aの場合には、ステップS
13に入って報知手段11である過負荷ランプを点灯
し、また実測ピーク値P2がピーク値上限判定値Aより
も小さい場合、即ちP2<Aの場合には、そのままステ
ップS16の加算処理へ移行する。また、上述のステッ
プS9,S11,S13で各ランプが点灯すると、次に
ステップS14に入って報知手段11であるアラーム1
を出力作動し、更にステップS15に入って工作機械1
の作動を停止する。
When the measured peak value P2 is larger than the peak value lower limit judgment value B, that is, when P2> B, the overload judgment in step S12 is entered, and the judgment means 11 determines the measured peak value P2 and the peak value. The upper limit judgment value A is compared.
If the measured peak value P2 is equal to or larger than the peak value upper limit determination value A, that is, if P2 ≧ A, then step S
If the measured value P2 is smaller than the peak value upper limit judgment value A, that is, if the actually measured peak value P2 is smaller than the peak value upper limit judgment value A, that is, if P2 <A, the process directly proceeds to the addition processing of step S16. To do. When each lamp is turned on in the above steps S9, S11 and S13, the process goes to step S14 and the alarm 1 which is the notification means 11 is entered.
Is output, and then step S15 is entered and the machine tool 1
Stop the operation of.

【0034】ステップS16の加算処理では、加工刃9
の摩耗度を測定して平均値を出すための実測ピーク値P
2が加算され、ステップS17の加算回数で実測ピーク
値P2の加算回数が所定数nに満たない場合には、その
まま1加工分のプログラムを終了する。また、ステップ
S17での加算回数が所定数nに足りている場合には、
前述のように実測ピーク値P2の中から最も古い値を捨
てながら新しい値を取り込んで、所定数nの実測ピーク
値P2から実測ピーク平均値P3算出し、この実測ピー
ク平均値P3をステップS18の加工負荷判定で加工負
荷上昇判断値Hと比較して、加工刃9の摩耗レベルの判
定が行なわれる。
In the addition processing of step S16, the processing blade 9
Measured peak value P to measure the degree of wear of the
2 is added, and if the number of times the actually measured peak value P2 is added is less than the predetermined number n in the number of times of addition in step S17, the program for one machining is ended as it is. If the number of additions in step S17 is sufficient for the predetermined number n,
As described above, the oldest value is discarded from the measured peak values P2, a new value is taken in, the measured peak average value P3 is calculated from the measured number of peak values P2 of a predetermined number n, and this measured peak average value P3 is calculated in step S18. By comparing the processing load increase determination value H in the processing load determination, the wear level of the processing blade 9 is determined.

【0035】そして、実測ピーク平均値P3が加工負荷
上昇判断値Hと同じか大きい場合、即ちP3≧Hの場合
には、ステップS19に入って報知手段3である摩耗ラ
ンプを点灯すると共に、ステップS20で報知手段3の
アラーム2を作動し、実測ピーク平均値P3が加工負荷
上昇判断値Hよりも小さい場合、即ちP3<Hの場合に
は、そのまま1加工分のプログラムを終了する。
When the measured peak average value P3 is equal to or larger than the processing load increase determination value H, that is, when P3 ≧ H, the process goes to step S19 and the wear lamp which is the notification means 3 is turned on and the step is performed. In S20, the alarm 2 of the notifying means 3 is activated, and when the measured peak average value P3 is smaller than the machining load increase determination value H, that is, when P3 <H, the program for one machining is ended as it is.

【0036】相対値測定プログラムを用いた図8のフロ
ーチャートは、ステップS1でプログラムがスタートす
ると電動モータ4が立ち上がり、トリガポイントの検出
が外部信号の場合に、ステップS2で外部信号を検出し
て、ステップS3で待機期間T1と加工負荷測定期間T
2を待機する。そして、ステップS4から空転負荷Eの
測定を開始し、ステップS5でトリガポイントを検出し
て、ステップS6に入って待機期間T1を待機したの
ち、ステップS7で空転負荷Eの測定を終了し、ステッ
プS8で空転負荷Eに基づく空転負荷平均値Fが算出さ
れる。
In the flow chart of FIG. 8 using the relative value measuring program, when the program starts in step S1, the electric motor 4 starts up, and when the trigger point is detected as an external signal, the external signal is detected in step S2, In step S3, the waiting period T1 and the processing load measurement period T
Wait for two. Then, the measurement of the idling load E is started from step S4, the trigger point is detected in step S5, the waiting period T1 is waited for in step S6, and the measurement of the idling load E is ended in step S7. In S8, the idling load average value F based on the idling load E is calculated.

【0037】ステップS9では、電動モータ4やベアリ
ング,駆動伝達部等の異常が空転負荷Eの異常として判
定され、空転負荷異常と判定された場合には、ステップ
S10で報知手段3である空転負荷異常ランプが点灯
し、更にステップS11で、同じく報知手段3であるア
ラーム2を出力作動する。
In step S9, an abnormality of the electric motor 4, the bearing, the drive transmission portion, etc. is determined as an abnormality of the idling load E. When it is determined that the idling load is abnormal, the idling load of the notification means 3 is determined in step S10. The abnormality lamp is turned on, and in step S11, the alarm 2 which is also the notification means 3 is activated.

【0038】また、ステップS9で空転負荷Eの異常判
定がない場合には、そのままステップS12に進み、加
工刃9が被加工物の1加工で使用する有効電力の加工負
荷を、有効電力測定手段10が実測グラフG2として測
定を開始する。ステップS13では加工負荷測定期間T
2の間、有効電力測定手段10による実測グラフG2の
測定を継続し、ステップS14に入って測定を終了した
のち、ステップS15で実測グラフG2から最大有効電
力である実測ピーク値P2が取り出される。
If there is no abnormality determination of the idling load E in step S9, the process proceeds to step S12 as it is, and the processing load of the active power used by the processing blade 9 for one processing of the workpiece is measured by the active power measuring means. 10 starts measurement as a measured graph G2. In step S13, the processing load measurement period T
During 2, the measurement of the actual measurement graph G2 by the active power measuring means 10 is continued, and after entering the step S14 and ending the measurement, the actual measurement peak value P2 which is the maximum active power is taken out from the actual measurement graph G2 in step S15.

【0039】ステップS16の刃物折れ判定では、実測
ピーク値P2と空転負荷平均値F×刃折れ判定値Cの係
数X=刃折れ判定値Cとを比較し、実測ピーク値P2が
刃折れ判定値Cと同じか小さい場合、即ちP2≦F×X
=Cの場合には、ステップS17に入って報知手段3で
ある刃折れランプを点灯し、また実測ピーク値P2が刃
折れ判定値Cよりも大きい場合、即ちP2>F×X=C
には、そのままステップS18の刃先異常判定へ進行す
る。
In the blade breakage determination in step S16, the actually measured peak value P2 is compared with the coefficient X of the idling load average value F × the blade breakage determination value C = the blade breakage determination value C, and the actually measured peak value P2 is determined as the blade breakage determination value. When it is the same as or smaller than C, that is, P2 ≦ F × X
In case of = C, step S17 is entered to turn on the blade breakage lamp which is the notification means 3, and when the actually measured peak value P2 is larger than the blade breakage determination value C, that is, P2> FxX = C.
In this case, the process proceeds directly to the blade edge abnormality determination in step S18.

【0040】ステップS18の刃先異常判定では、判定
手段11で実測ピーク値P2と空転負荷平均値F×ピー
ク値下限判定値Bの係数Y=ピーク値下限判定値Bとを
比較し、実測ピーク値P2がピーク値下限判定値Bと同
じか小さい場合、即ちP2≦F×Y=Bの場合には、ス
テップS19に入って報知手段3である刃先異常ランプ
を点灯し、また実測ピーク値P2がピーク値下限判定値
Bよりも大きい場合、即ちP2>F×Y=Bの場合に
は、そのままステップS20の過負荷判定へ進行する。
In the blade edge abnormality determination in step S18, the actually measured peak value P2 is compared by the determination means 11 with the coefficient Y of the idling load average value F × the peak value lower limit determination value B = the peak value lower limit determination value B to obtain the actually measured peak value. If P2 is equal to or smaller than the peak value lower limit determination value B, that is, if P2 ≦ F × Y = B, the process goes to step S19, the blade abnormality lamp that is the notification means 3 is turned on, and the actually measured peak value P2 is When it is larger than the peak value lower limit determination value B, that is, when P2> F × Y = B, the process directly proceeds to the overload determination of step S20.

【0041】ステップS20の過負荷判定では、判定手
段11で実測ピーク値P2と空転負荷平均値F×ピーク
値上限判定値Aの係数Y=ピーク値下限判定値Aとを比
較し、実測ピーク値P2がピーク値上限判定値Aと同じ
か大きい場合、即ちP2≧F×Y=Aの場合には、ステ
ップS21に入って報知手段3である過負荷ランプを点
灯し、また実測ピーク値P2がピーク値下限判定値Bよ
りも小さい場合、即ちP2<F×Y=Aの場合には、そ
のままステップS24の加算処理へ進行する。また、上
述のステップS17,S19,S21で各ランプが点灯
すると、次にステップS22に入って報知手段3である
アラーム1を出力作動し、更にステップS23に入って
工作機械1の作動を停止する。
In the overload determination of step S20, the determination means 11 compares the actually measured peak value P2 with the idling load average value F × the coefficient Y of the peak value upper limit determination value A = the peak value lower limit determination value A to obtain the actually measured peak value. When P2 is equal to or larger than the peak value upper limit judgment value A, that is, when P2 ≧ F × Y = A, the procedure goes to step S21, the overload lamp which is the notification means 3 is turned on, and the actually measured peak value P2 is When it is smaller than the peak value lower limit determination value B, that is, when P2 <F × Y = A, the process directly proceeds to the addition process of step S24. When each lamp is turned on in steps S17, S19, and S21 described above, next, step S22 is entered to output the alarm 1 which is the notification means 3, and then step S23 is entered to stop the operation of the machine tool 1. .

【0042】次に、ステップS24の加算処理で実測ピ
ーク値P2が加算され、ステップS25の加算回数で実
測ピーク値P2の加算回数が所定数nに満たない場合に
は、そのまま1加工分のプログラムを終了する。また、
ステップS25での加算回数が所定数nに足りている場
合には、実測ピーク値P2の中から最も古い値を捨てな
がら新しい値を取り込んで、所定数nの実測ピーク値P
2から実測ピーク平均値P3算出し、この実測ピーク平
均値P3をステップS26の加工負荷判定で加工負荷上
昇判断値Hと比較して、加工刃9の摩耗レベルの判定が
行なわれる。
Next, when the actually measured peak value P2 is added in the addition processing of step S24 and the number of times of addition of the actually measured peak value P2 is less than the predetermined number n in the number of times of addition in step S25, the program for one machining is directly performed. To finish. Also,
If the number of times of addition in step S25 is sufficient for the predetermined number n, the oldest value is discarded from the measured peak values P2, and a new value is fetched to obtain the measured peak value P for the predetermined number n.
The actual measurement peak average value P3 is calculated from 2, and the actual measurement peak average value P3 is compared with the processing load increase determination value H in the processing load determination in step S26 to determine the wear level of the processing blade 9.

【0043】そして、実測ピーク平均値P3が加工負荷
上昇判断値Hと同じか大きい場合、即ちP3≧Hの場合
には、ステップS27に入って報知手段3である摩耗ラ
ンプを点灯し、ステップS28で報知手段3のアラーム
2を作動し、実測ピーク平均値P3が加工負荷上昇判断
値Hよりも小さい場合、即ちP3<Hの場合には、その
まま1加工分のプログラムを終了する。
When the measured peak average value P3 is equal to or larger than the processing load increase determination value H, that is, when P3 ≧ H, the process goes to step S27, the wear lamp as the notification means 3 is turned on, and step S28. Then, the alarm 2 of the notifying means 3 is activated, and when the measured peak average value P3 is smaller than the machining load increase determination value H, that is, when P3 <H, the program for one machining is ended as it is.

【0044】[0044]

【発明の効果】以上説明したように、本発明に係る工作
機械用加工刃の状態監視方法とその装置によれば、a.
センサバーを加工刃へタッチ動作させる必要がないの
で、加工への時間的影響が殆どなく、加工サイクルの短
縮が図れる。b.タッチ動作を行なわないので摩耗する
部品がなく、作動不良にならない。c.動作タイミング
をとる必要がない。d.水溶性の切削油との併用が可能
となる。e.加工中の微震動の影響を受けない。f.測
定回数に限度がなく、繰返しの測定が可能である。等の
効果がある。
As described above, according to the method and apparatus for monitoring the state of the machining blade for machine tools according to the present invention, a.
Since it is not necessary to make the sensor bar touch the machining blade, there is almost no time effect on the machining and the machining cycle can be shortened. b. Since no touch operation is performed, there are no parts to wear and malfunction does not occur. c. There is no need to set operation timing. d. It can be used in combination with water-soluble cutting oil. e. Not affected by microtremors during processing. f. There is no limit to the number of measurements and repeated measurements are possible. And so on.

【0045】更に、加工刃の折損はもとより、折損前の
構成刃先や刃こぼれ,傷、切粉等の異物の巻き込みや切
削油の濃度低下による過負荷等の異常や、使用限界を精
度よく検出することができるので、高価な加工刃を長期
間有効に使用することができる。また、不良品の大量発
生を未然に回避できるので、低コスト化を図りながら高
い製品化率が得られる。
Further, not only the breakage of the working blade, but also the abnormality such as the overload due to the inclusion of foreign material such as the cutting edge, blade spill, scratches, chips, etc. before the breakage and the concentration of cutting oil, and the usage limit are accurately detected. Therefore, the expensive machining blade can be effectively used for a long period of time. Moreover, since a large number of defective products can be avoided in advance, a high productization rate can be obtained while achieving cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一形態例を示す工作機械と加工刃状態
監視装置の説明図
FIG. 1 is an explanatory view of a machine tool and a machining blade state monitoring device showing an embodiment of the present invention.

【図2】本発明の一形態例を示す絶対値測定の場合の有
効電力の波形図
FIG. 2 is a waveform diagram of active power in the case of absolute value measurement showing one embodiment of the present invention.

【図3】本発明の一形態例を示す相対値測定の場合の有
効電力の波形図
FIG. 3 is a waveform diagram of active power in the case of relative value measurement showing one embodiment of the present invention.

【図4】本発明の一形態例を示す実測ピーク値が正常域
とピーク値上限判定値以上とピーク値下限判定値以下に
位置した場合の説明図
FIG. 4 is an explanatory view showing a case where an actually measured peak value is located in a normal range, above a peak value upper limit judgment value and below a peak value lower limit judgment value, showing one embodiment of the present invention.

【図5】本発明の一形態例を示す実測ピーク値が刃折れ
判定値以下に位置した場合の本発明の一形態例説明図
FIG. 5 is an explanatory diagram of an example of an embodiment of the present invention in which an actually measured peak value indicating an example of the embodiment of the present invention is positioned below a blade breakage determination value

【図6】本発明の一形態例を示す空転負荷平均値と加工
負荷上昇判断値との関係図
FIG. 6 is a diagram showing the relationship between the idling load average value and the machining load increase determination value showing one embodiment of the present invention.

【図7】本発明の一形態例を示す絶対値測定に基づくフ
ローチャート
FIG. 7 is a flowchart based on an absolute value measurement showing an embodiment of the present invention.

【図8】本発明の一形態例を示す相対値測定に基づくフ
ローチャート
FIG. 8 is a flowchart based on relative value measurement showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…旋盤やボール盤等の工作機械 2…加工刃の状態監視装置 3…パトライト等の警告灯やアラーム等の警報音による
報知手段 4…電動モータ 5…制御部 6…電磁開閉器 7…電源部 9…バイトやドリル,フライスカッタ等の加工刃 10…有効電力測定手段 11…判定手段 A…ピーク値上限判定値 B…ピーク値下限判定値 C…刃折れ判定値 D…ピーク値上限判定値Aとピーク値下限判定値Bとの
間の正常域 E…有効電力の空転負荷 F…空転負荷平均値 G1…基準グラフ G2,G2−1,G2−2,P2−3…実測グラフ H…加工負荷上昇判断値 T1…待機期間 T2…加工負荷測定期間 T3…空転負荷測定期間 P1…基準ピーク値 P2,P2−1,P2−2,P2−3…実測ピーク値 P3…実測ピーク平均値
1 ... Machine tools such as lathes and drilling machines 2 ... Condition monitoring device for machining blades 3 ... Warning lamps such as patrol lights and notification means by alarm sounds such as alarms 4 ... Electric motors 5 ... Control unit 6 ... Electromagnetic switch 7 ... Power supply unit 9 ... Machining blade such as bite, drill, milling cutter, etc. 10 ... Active power measuring means 11 ... Judgment means A ... Peak value upper limit judgment value B ... Peak value lower limit judgment value C ... Blade breakage judgment value D ... Peak value upper limit judgment value A Normal range between the peak value lower limit judgment value B and the peak value E ... Idle load of active power F ... Idle load average value G1 ... Reference graph G2, G2-1, G2-2, P2-3 ... Actual measurement graph H ... Machining load Increase determination value T1 ... Standby period T2 ... Machining load measurement period T3 ... Idling load measurement period P1 ... Reference peak value P2, P2-1, P2-2, P2-3 ... Measured peak value P3 ... Measured peak average value

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被加工物の加工を行なう工作機械用加工
刃の状態を監視する方法において、前記被加工物の加工
開始から加工終了までの1工程に、正常な加工刃(9)
が動力として使用する有効電力の加工負荷の波形変化を
基準グラフ(G1)として測定し、該基準グラフ(G
1)の基準ピーク値(P1)を挟んだ上下に、前記加工
刃(9)の過負荷を示すピーク値上限判定値(A)と、
加工刃(9)の刃先不良を示すピーク値下限判定値
(B)とを設定して、これらピーク値上限判定値(A)
とピーク値下限判定値(B)との間を前記加工刃(9)
の正常域(D)となすと共に、前記ピーク値下限判定値
(B)の下位に、前記加工刃(9)の折損を示す刃折れ
判定値(C)を設定して、該刃折れ判定値(C)と前記
ピーク値上限判定値(A)及びピーク値下限判定値
(B)とを判定手段(11)に入力し、前記加工刃
(9)が1工程中に使用する有効電力の加工負荷の波形
変化を実測グラフ(G2)として測定し、該実測グラフ
(G2)を前記判定手段(11)に入力して、実測グラ
フ(G2)中の実測ピーク値(P2)が前記加工刃
(9)の正常域(D)を外れて、前記ピーク値上限判定
値(A)とピーク値下限判定値(B)と刃折れ判定値
(C)のいずれかに該当したことを判定手段(11)が
判定した場合に、警報音や警告灯等の報知手段の起動や
工作機械の作動停止を行なうことを特徴とする工作機械
用加工刃の状態監視方法。
1. A method for monitoring the state of a machining blade for a machine tool for machining a workpiece, wherein a normal machining blade (9) is provided in one step from the start to the end of machining of the workpiece.
Measure the waveform change of the processing load of the active power used as power by the standard graph (G1).
Above and below the reference peak value (P1) of 1), a peak value upper limit judgment value (A) indicating an overload of the machining blade (9),
The peak value lower limit judgment value (B) indicating the cutting edge defect of the processing blade (9) is set, and these peak value upper limit judgment values (A) are set.
Between the peak value lower limit judgment value (B) and the machining blade (9)
And the normal range (D) of the above, and a lower limit of the peak value lower limit determination value (B), a blade breakage determination value (C) indicating a breakage of the processing blade (9) is set, and the blade breakage determination value is set. (C) and the peak value upper limit determination value (A) and the peak value lower limit determination value (B) are input to the determination means (11), and the processing blade (9) processes active power used in one step. The waveform change of the load is measured as a measured graph (G2), the measured graph (G2) is input to the determination means (11), and the measured peak value (P2) in the measured graph (G2) is the machining blade (G2). The determination means (11) is determined to be outside the normal range (D) of 9) and to correspond to any of the peak value upper limit determination value (A), the peak value lower limit determination value (B), and the blade breakage determination value (C). If) is determined, the alarm sound, warning light, or other notification means is started or the machine tool is stopped. State monitoring method of a machine tool for machining blade characterized.
【請求項2】 被加工物の加工を行なう工作機械用加工
刃の状態を監視する方法において、前記加工刃(9)が
前記被加工物の加工開始から加工終了までの1工程を行
なう前に、前記加工刃(9)が動力として使用する有効
電力の空転負荷(E)を一定時間測定して空転負荷平均
値(F)を算出し、該空転負荷平均値(F)に、予め設
定された前記加工刃(9)の過負荷を示すピーク値上限
判定値(A)と、加工刃(9)の刃先不良を示すピーク
値下限判定値(B)と、該ピーク値下限判定値(B)の
下位で加工刃(9)の折損を示す刃折れ判定値(C)の
各定数をそれぞれ乗じて、ピーク値上限判定値(A)と
ピーク値下限判定値(B)と刃折れ判定値(C)とを決
定すると共に、これらピーク値上限判定値(A)とピー
ク値下限判定値(B)と刃折れ判定値(C)とを判定手
段(11)に入力し、前記加工刃(9)が前記被加工物
の加工開始から加工終了までの1工程に使用する有効電
力の加工負荷の波形変化を実測グラフ(G2)として測
定し、該実測グラフ(G2)を前記判定手段(11)に
入力して、実測グラフ(G2)中の実測ピーク値(P
2)が、前記ピーク値上限判定値(A)とピーク値下限
判定値(B)との間の加工刃(9)の正常域(D)を外
れて、ピーク値上限判定値(A)とピーク値下限判定値
(B)と刃折れ判定値(C)のいずれかに該当したこと
を判定手段(11)が判定した場合に、警報音や警告灯
等の報知手段の起動や工作機械の作動停止を行なうこと
を特徴とする工作機械用加工刃の状態監視方法。
2. A method for monitoring the state of a machining blade for a machine tool for machining a workpiece, wherein the machining blade (9) performs one step from the start to the end of machining of the workpiece. , The idle load (E) of active power used by the machining blade (9) as power is measured for a certain period of time to calculate the idle load average value (F), which is preset to the idle load average value (F). The peak value upper limit judgment value (A) indicating the overload of the machining blade (9), the peak value lower limit judgment value (B) indicating the cutting edge defect of the machining blade (9), and the peak value lower limit judgment value (B ) Is multiplied by each constant of the blade breakage determination value (C) indicating the breakage of the processing blade (9), and the peak value upper limit determination value (A), the peak value lower limit determination value (B), and the blade breakage determination value are multiplied. (C), the peak value upper limit judgment value (A) and the peak value lower limit judgment value (B ) And the blade breakage determination value (C) are input to the determination means (11), and the processing load (9) of the processing load of the active power used for one step from the processing start to the processing end of the workpiece. The waveform change is measured as an actual measurement graph (G2), the actual measurement graph (G2) is input to the determination means (11), and the actual measurement peak value (P) in the actual measurement graph (G2) is measured.
2) deviates from the normal range (D) of the machining blade (9) between the peak value upper limit determination value (A) and the peak value lower limit determination value (B), and the peak value upper limit determination value (A) When the determination means (11) determines that either the peak value lower limit determination value (B) or the blade breakage determination value (C) is met, the alarm means such as an alarm sound or a warning light is activated, or the machine tool A method for monitoring the state of a machining blade for a machine tool, characterized by stopping the operation.
【請求項3】 前記判定手段(11)に、前記加工刃
(9)の加工負荷上昇判断値(J)を入力しておき、前
記1工程毎の実測グラフ(G2)中の実測ピーク値(P
2)を加算して、所定数の実測ピーク値(P2)から実
測ピーク平均値(P3)を算出し、該実測ピーク平均値
(P3)を前記判定手段(11)の加工負荷上昇判断値
(H)と比較して、該判定手段(11)が実測ピーク平
均値(P3)を前記判定手段(11)の加工負荷上昇判
断値(H)を越えたことを判定した場合に、前記警報音
や警告灯等の報知手段の起動や工作機械の作動停止を行
なうことを特徴とする請求項1または2に記載の工作機
械用加工刃の状態監視方法。
3. A processing load increase determination value (J) of the processing blade (9) is input to the determination means (11), and an actually measured peak value (in the actually measured graph (G2) for each step ( P
2) is added to calculate a measured peak average value (P3) from a predetermined number of measured peak values (P2), and the measured peak average value (P3) is used as the processing load increase judgment value ( H), when the determination means (11) determines that the measured peak average value (P3) exceeds the processing load increase determination value (H) of the determination means (11), the alarm sound is generated. 3. The method for monitoring the state of a machining blade for a machine tool according to claim 1 or 2, wherein a notification means such as a warning light or a warning light is activated or the operation of the machine tool is stopped.
【請求項4】 加工刃(9)の作動によって被加工物の
加工を行なう工作機械用加工刃の状態を監視する装置に
おいて、前記被加工物の加工開始から加工終了までの1
工程に、前記加工刃(9)が動力として使用する有効電
力の加工負荷の波形変化を実測グラフ(G2)として測
定する有効電力測定手段(10)と、前記加工刃(9)
の過負荷を示すピーク値上限判定値(A)及び、加工刃
(9)の刃先不良を示すピーク値下限判定値(B)及
び、該ピーク値下限判定値(B)の下位で、前記加工刃
(9)の折損を示す刃折れ判定値(C)とが入力されて
いて、前記有効電力測定手段(10)から受けた実測グ
ラフ(G2)中の実測ピーク値(P2)が、前記ピーク
値上限判定値(A)とピーク値下限判定値(B)との間
の加工刃(9)の正常域(D)から外れて、前記ピーク
値上限判定値(A)とピーク値下限判定値(B)と刃折
れ判定値(C)のいずれかに該当したことを判定する判
定手段(11)と、該判定手段(11)の判定を受け
て、報知手段の作動や工作機械の作動停止を行なう制御
手段とを備えたことを特徴とする工作機械用加工刃の状
態監視装置。
4. An apparatus for monitoring the state of a machining blade for a machine tool, which performs machining of a workpiece by operating a machining blade (9), wherein 1 from the start to the end of machining of the workpiece.
In the process, active power measuring means (10) for measuring the waveform change of the processing load of active power used by the processing blade (9) as power, as an actual measurement graph (G2), and the processing blade (9).
Peak value upper limit determination value (A) indicating the overload of No. 1, peak value lower limit determination value (B) indicating the cutting edge defect of the processing blade (9), and lower than the peak value lower limit determination value (B) The blade breakage determination value (C) indicating the breakage of the blade (9) is input, and the measured peak value (P2) in the measured graph (G2) received from the active power measuring means (10) is the peak. The peak value upper limit determination value (A) and the peak value lower limit determination value deviate from the normal range (D) of the machining blade (9) between the value upper limit determination value (A) and the peak value lower limit determination value (B). (B) and the blade breakage determination value (C), a determination unit (11) for determining whether the determination unit (11) determines whether or not the determination unit (11) determines that the notification unit is activated or the machine tool is stopped. A state monitoring device for a machining blade for machine tools, comprising:
JP24271695A 1995-09-21 1995-09-21 Method and apparatus for monitoring condition of machining blade for machine tool Expired - Fee Related JP3291677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24271695A JP3291677B2 (en) 1995-09-21 1995-09-21 Method and apparatus for monitoring condition of machining blade for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24271695A JP3291677B2 (en) 1995-09-21 1995-09-21 Method and apparatus for monitoring condition of machining blade for machine tool

Publications (2)

Publication Number Publication Date
JPH0985585A true JPH0985585A (en) 1997-03-31
JP3291677B2 JP3291677B2 (en) 2002-06-10

Family

ID=17093183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24271695A Expired - Fee Related JP3291677B2 (en) 1995-09-21 1995-09-21 Method and apparatus for monitoring condition of machining blade for machine tool

Country Status (1)

Country Link
JP (1) JP3291677B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130407A (en) * 2002-10-08 2004-04-30 Fanuc Ltd Apparatus for detecting or predicting tool breakage
JP2005500915A (en) * 2001-08-07 2005-01-13 ディジタル・ウェイ Tool wear and / or breakage monitoring device for machine tools
WO2006025463A1 (en) * 2004-08-31 2006-03-09 Nidek Co., Ltd. Spectacle lens machining device
JP2006116623A (en) * 2004-10-19 2006-05-11 Fuji Electric Systems Co Ltd Cutting tool life diagnosis system
JP2011020221A (en) * 2009-07-16 2011-02-03 Honda Motor Co Ltd Method for predicting life of rotary blade device
JP2016040071A (en) * 2014-08-11 2016-03-24 日立金属株式会社 Tool failure detection method
JP2016040072A (en) * 2014-08-11 2016-03-24 日立金属株式会社 Tool failure detection method
CN107738140A (en) * 2017-09-30 2018-02-27 深圳吉兰丁智能科技有限公司 A kind of method, system and processing equipment for monitoring cutting tool state
JP2018099737A (en) * 2016-12-19 2018-06-28 ビアメカニクス株式会社 Drill processing device and drill processing method
DE102018002396A1 (en) 2017-03-29 2018-10-04 Fanuc Corporation MANAGEMENT SYSTEM
JP2019030954A (en) * 2017-08-07 2019-02-28 Dmg森精機株式会社 Machine tool and method for calculating degree of abrasion of tool
CN112230076A (en) * 2020-03-02 2021-01-15 朱晓丽 Motion state monitoring method and system of orthopedic power system
WO2021054153A1 (en) * 2019-09-17 2021-03-25 住友電工焼結合金株式会社 Metal member, processing system, and method for manufacturing metal member
WO2022019249A1 (en) * 2020-07-21 2022-01-27 ファナック株式会社 Abnormality detection device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500915A (en) * 2001-08-07 2005-01-13 ディジタル・ウェイ Tool wear and / or breakage monitoring device for machine tools
JP2004130407A (en) * 2002-10-08 2004-04-30 Fanuc Ltd Apparatus for detecting or predicting tool breakage
US7403868B2 (en) 2002-10-08 2008-07-22 Fanuc Ltd Apparatus for detecting or predicting tool breakage
WO2006025463A1 (en) * 2004-08-31 2006-03-09 Nidek Co., Ltd. Spectacle lens machining device
JP2006068841A (en) * 2004-08-31 2006-03-16 Nidek Co Ltd Spectacle lens machining device
US7424773B2 (en) 2004-08-31 2008-09-16 Nidek Co., Ltd. Eyeglass lens processing apparatus
JP4551162B2 (en) * 2004-08-31 2010-09-22 株式会社ニデック Eyeglass lens processing equipment
JP2006116623A (en) * 2004-10-19 2006-05-11 Fuji Electric Systems Co Ltd Cutting tool life diagnosis system
JP4581622B2 (en) * 2004-10-19 2010-11-17 富士電機システムズ株式会社 Cutting tool life diagnosis system
JP2011020221A (en) * 2009-07-16 2011-02-03 Honda Motor Co Ltd Method for predicting life of rotary blade device
JP2016040071A (en) * 2014-08-11 2016-03-24 日立金属株式会社 Tool failure detection method
JP2016040072A (en) * 2014-08-11 2016-03-24 日立金属株式会社 Tool failure detection method
JP2018099737A (en) * 2016-12-19 2018-06-28 ビアメカニクス株式会社 Drill processing device and drill processing method
DE102018002396A1 (en) 2017-03-29 2018-10-04 Fanuc Corporation MANAGEMENT SYSTEM
US10671057B2 (en) 2017-03-29 2020-06-02 Fanuc Corporation Management system
JP2019030954A (en) * 2017-08-07 2019-02-28 Dmg森精機株式会社 Machine tool and method for calculating degree of abrasion of tool
CN107738140A (en) * 2017-09-30 2018-02-27 深圳吉兰丁智能科技有限公司 A kind of method, system and processing equipment for monitoring cutting tool state
WO2021054153A1 (en) * 2019-09-17 2021-03-25 住友電工焼結合金株式会社 Metal member, processing system, and method for manufacturing metal member
CN114364490A (en) * 2019-09-17 2022-04-15 住友电工烧结合金株式会社 Metal member, machining system, and method for manufacturing metal member
CN112230076A (en) * 2020-03-02 2021-01-15 朱晓丽 Motion state monitoring method and system of orthopedic power system
CN112230076B (en) * 2020-03-02 2022-12-09 朱晓丽 Motion state monitoring method and system of orthopedic power system
WO2022019249A1 (en) * 2020-07-21 2022-01-27 ファナック株式会社 Abnormality detection device
JPWO2022019249A1 (en) * 2020-07-21 2022-01-27

Also Published As

Publication number Publication date
JP3291677B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JPH0985585A (en) Monitoring method and device for state of machining cutter for machine tool
JP4860444B2 (en) Abnormality detection method in cutting
EP1407853B1 (en) Apparatus for detecting or predicting tool breakage
JPS5890445A (en) Method and apparatus for monitoring abrassion loss of tool
KR101626458B1 (en) Apparatus for detecting malfunction of tool for machine tool
KR101462312B1 (en) Tool monitoring system of machine tools and method thereof
JP3095881B2 (en) Tool life prediction device
JPH09300176A (en) Grinding system, and method of detecting abnormal conditions of the same
KR101611299B1 (en) Trouble detecting method for automatic machine
KR20190043710A (en) Apparatus For Detecting Of Abnormal State In Numerically Controlled Machine Tool
JPH10286743A (en) Tool abnormality detection device for machine tool, and recording medium in which tool abnormality detecting program for machine tool is recorded
JPH09174383A (en) Abnormality detection method and device for rotating tool
KR20050030925A (en) Ae signal monitoring system for surface defects and tool conditions on manufacturing process
KR20090056706A (en) The method of in process chucking miss, tool wear and breakage machine tools
JP2017064860A (en) Working abnormality monitoring method and nc machine tool with working abnormality monitoring function
JPH106170A (en) Tool managing method and device
JP2003251545A (en) Cutting tool life diagnosis system
KR20040083912A (en) Tool measuring method of the machine tools
KR20160079372A (en) Monitoring device of tool install condition for machine tool
JPH06320396A (en) Life deciding method and automatic exchanging method for blade tool
JP3294414B2 (en) Tool life detection method for machine tools
KR100600015B1 (en) A Tool Matter Searching Method of Numerical Control Machine Tool
JP2003245846A (en) Cutting tool life diagnostic apparatus
JPS6056853A (en) Abnormality monitor for tool
JPS59102559A (en) Abnormal working detector and method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080329

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100329

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110329

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120329

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130329

LAPS Cancellation because of no payment of annual fees