WO2019144813A1 - 激光发射器、光电设备、深度相机和电子装置 - Google Patents

激光发射器、光电设备、深度相机和电子装置 Download PDF

Info

Publication number
WO2019144813A1
WO2019144813A1 PCT/CN2019/071285 CN2019071285W WO2019144813A1 WO 2019144813 A1 WO2019144813 A1 WO 2019144813A1 CN 2019071285 W CN2019071285 W CN 2019071285W WO 2019144813 A1 WO2019144813 A1 WO 2019144813A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting elements
group
elements
laser emitter
Prior art date
Application number
PCT/CN2019/071285
Other languages
English (en)
French (fr)
Inventor
白剑
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810064161.5A external-priority patent/CN108107663A/zh
Priority claimed from CN201810064332.4A external-priority patent/CN108333858A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019144813A1 publication Critical patent/WO2019144813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present application relates to the field of optics, and in particular to a laser transmitter, an optoelectronic device, a depth camera, and an electronic device.
  • the photoelectric device generally comprises a light source, a collimating element and a diffractive optical element, wherein the light source may be a single edge emitting laser light source, or an area array laser light source composed of a plurality of vertical cavity surface emitting lasers.
  • Embodiments of the present application provide a laser emitter, an optoelectronic device, a depth camera, and an electronic device.
  • the laser emitter of the embodiment of the present application includes an array of light-emitting elements, the array of light-emitting elements includes a plurality of light-emitting elements that are regularly distributed, and the plurality of light-emitting elements are divided into groups, each of which is driven by a separate control signal To emit a beam of light.
  • the photovoltaic device of the embodiment of the present application includes a substrate and the laser emitter described in the above embodiment, and the laser emitter is disposed on the substrate.
  • the depth camera of the embodiment of the present application includes the optoelectronic device, the image collector, and the processor according to the above embodiments; the image collector is configured to collect a laser pattern projected by the optoelectronic device into the target space; Connected to the optoelectronic device and the image collector, the processor for processing the laser pattern to obtain a depth image.
  • the electronic device of the embodiment of the present application includes a housing and the depth camera described in the above embodiment, the depth camera being disposed in the housing and exposed from the housing to acquire a depth image.
  • FIG. 1 is a schematic structural view of a laser emitter according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of a partial laser pattern generated by an optoelectronic device of some embodiments of the present application
  • 3 and 4 are schematic structural views of a laser emitter according to some embodiments of the present application.
  • FIG. 5 is a partial structural schematic view of a laser emitter according to some embodiments of the present application.
  • FIG. 6 is a schematic structural view of a laser emitter according to some embodiments of the present application.
  • FIG. 7 to 11 are schematic diagrams of modulation signals of light emitting elements of a laser emitter according to some embodiments of the present application.
  • FIG. 12 is a schematic structural view of a laser emitter according to some embodiments of the present application.
  • FIG. 13 is a schematic diagram of pulse durations in which multiple sets of light emitting elements of a laser emitter are driven according to certain embodiments of the present application;
  • FIG. 20 and FIG. 21 are schematic structural diagrams of an optoelectronic device according to some embodiments of the present application.
  • FIG. 22 is a schematic structural diagram of a depth camera according to some embodiments of the present application.
  • FIG. 23 is a schematic structural diagram of an electronic device according to some embodiments of the present application.
  • a laser emitter 10 of an embodiment of the present application includes a semiconductor substrate 11 and a light emitting element array 12 disposed on the substrate 11.
  • the light-emitting element array 12 includes a plurality of light-emitting elements 122 that are regularly distributed, and the plurality of light-emitting elements 122 are divided into groups, each of which is driven by a separate control signal to emit a light beam.
  • the photoelectric device generally comprises a light source, a collimating element and a diffractive optical element, wherein the light source may be a single edge emitting laser light source, or an area array laser light source composed of a plurality of vertical cavity surface emitting lasers.
  • An optoelectronic device based on a single edge emitting laser source can emit a laser pattern with higher correlation, but its volume will increase significantly as the output power increases, and the uniformity of the laser pattern is poor;
  • Two optoelectronic devices that emit a laser source with a vertical cavity surface can emit a laser pattern of the same power and higher uniformity in a smaller volume, but the laser pattern is less correlated, and the laser pattern is uncorrelated.
  • the height directly affects the depth of the depth image and the speed of the depth image.
  • control signals for each set of light emitting elements 122 are different modulated signals.
  • the plurality of light-emitting elements 122 are regularly distributed to form a highly uniform laser pattern, and each group of the light-emitting elements 122 is driven by a different modulation signal to emit a light beam, which can improve the irrelevance of the laser pattern. Thereby, the speed and accuracy of acquiring the depth image of the laser pattern are improved.
  • the plurality of light emitting elements 122 are at least two light emitting elements 122, and the plurality of sets of light emitting elements 122 are at least two sets of light emitting elements 122.
  • a light source comprising at least two light-emitting elements 122 can increase the output power of the photovoltaic device 100 and meet the volume requirements of the photovoltaic device 100; at the same time, the irrelevance of the laser pattern produced by the photovoltaic device 100 based on the at least two sets of light-emitting elements 122 is more high.
  • the irrelevance of the laser pattern refers to the uniqueness of the laser pattern generated by the light beam emitted by each of the light-emitting elements 122, and the uniqueness includes the uniqueness of the shape, size, arrangement position, and the like of the laser pattern.
  • the irrelevance of the laser pattern a and the laser pattern b in FIG. 2 is smaller than the irrelevance of the laser pattern a and the laser pattern c.
  • the plurality of light-emitting elements 122 are regularly distributed as a whole, and the regular distribution may be in a matrix distribution as shown in FIG. 1 (the rows and columns are criss-crossed, and the rows and columns are perpendicular to each other), or are arranged in an annular shape as shown in FIG. Or, as shown in FIG. 4, it is distributed in a parallelogram shape (the rows and columns are criss-crossed, and the angle between the rows and columns is not 90 degrees), or is equally spaced along a predetermined direction; or any distribution having a certain regularity. No restrictions. It can be understood that manufacturing a plurality of regularly arranged light-emitting elements 122 on the same semiconductor substrate 11 can greatly improve manufacturing efficiency.
  • the plurality of light-emitting elements 122 are m*n lattices, wherein m and n are integers greater than or equal to one.
  • the plurality of light emitting elements 122 are divided into a plurality of groups, and each of the light emitting elements 122 may be regularly distributed or irregularly distributed.
  • a plurality of light-emitting elements 122 are divided into two groups.
  • the first set of light emitting elements 122 and the second set of light emitting elements 122 are each randomly distributed.
  • first group of light-emitting elements 122 and the second group of light-emitting elements 122 may each be regularly distributed; or the first group of light-emitting elements 122 are regularly distributed, and the second group of light-emitting elements 122 are irregularly distributed; The first group of light-emitting elements 122 are irregularly distributed, and the second group of light-emitting elements 122 are regularly distributed or the like.
  • the first group of light-emitting elements 122 and the second group of light-emitting elements 122 may be the same or different light-emitting elements 122, for example, the first group of the plurality of light-emitting elements 122 are the same, the second group of the plurality of light-emitting elements 122 are the same, the first group The light-emitting element 122 and the second group of light-emitting elements 122 are different light-emitting elements 122 (as shown in FIG. 1); or the plurality of light-emitting elements 122 of the first group are identical to the plurality of light-emitting elements 122 of the second group (see FIG. 3).
  • a plurality of light-emitting elements 122 of the first group are not identical, the plurality of light-emitting elements 122 of the second group are not identical, and the plurality of light-emitting elements 122 of the first group and the plurality of light-emitting elements 122 of the second group Corresponding to the same (as shown in FIG. 4); or the plurality of light-emitting elements 122 of the first group are completely different, the plurality of light-emitting elements 122 of the second group are completely different, and the plurality of light-emitting elements 122 of the first group are more than the second group
  • the light-emitting elements 122 correspond to the same (as shown in FIG. 5) and the like, and are not limited herein.
  • each group of light-emitting elements 122 may be identical, partially identical, or completely different.
  • the plurality of light-emitting elements 122 are divided into four groups, and the number of the first group of light-emitting elements 122, the second group of light-emitting elements 122, the third group of light-emitting elements 122, and the fourth group of light-emitting elements 122 are both N1 (see FIG. 6).
  • N1 24); or the number of the first group of light-emitting elements 122 is N1, the number of the second group of light-emitting elements 122 and the third group of light-emitting elements 122 are N2, the number of the fourth group of light-emitting elements 122 is N3; Or the number of the first group of light-emitting elements 122 is N1, the number of the second group of light-emitting elements 122 is N2, the number of the third group of light-emitting elements 122 is N3, and the number of the fourth group of light-emitting elements 122 is N4, where N1 ⁇ N2 ⁇ N3 ⁇ N4.
  • the spacing between the plurality of light emitting elements 122 can be determined according to the density of the laser pattern to be formed.
  • the spacing between the plurality of light emitting elements 122 may be configured such that the gaps between the formed laser patterns are small and do not overlap.
  • the illuminating element 122 comprises a point source illuminating device
  • the point source illuminating device can be a Vertical-Cavity Surface-Emitting Laser (VCSEL) or other type of point source illuminating device.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • the VCSEL is a novel laser that emits light on a vertical surface.
  • a conventional edge-emitting laser such as a Distributed Feedback Laser (DFB)
  • the VCSEL has a light-emitting direction perpendicular to the substrate 11, which is relatively easy.
  • DFB Distributed Feedback Laser
  • the coupling efficiency is high, so that a complicated and expensive beam shaping system is not required, and the manufacturing process is compatible with the light emitting diode, which greatly reduces the production cost.
  • the plurality of groups of light-emitting elements 122 can be respectively controlled by the same controller, or the plurality of groups of light-emitting elements 122 are respectively controlled by a plurality of controllers, that is, each group of light-emitting elements 122 is correspondingly controlled by one controller.
  • the controller is for directly driving the light emitting element 122 to emit a light beam, or driving the light emitting element 122 by a plurality of conductors respectively connected to the plurality of sets of the light emitting elements 122 to emit a light beam.
  • the controller drives the light emitting element 122 through the conductor, a plurality of conductors are formed on the substrate 11 and connected to the light emitting element 122.
  • the laser emitter 10 includes six sets of light-emitting elements 122, and the number of conductors is six, each conductor is connected to a group of light-emitting elements 122, and the controller is configured to apply a control signal on the conductors to drive a group of light-emitting lights corresponding to the conductors.
  • Element 122 emits a beam of light.
  • the controller applies a control signal to each conductor, but the control signals (or modulation signals) applied to the respective conductors may be different, so that the irrelevance of the laser pattern can be improved.
  • the modulated signal can be a waveform signal.
  • Different modulated signals include signals of different types of waveforms or signals of the same type with different waveform parameters.
  • Different types of waveforms include sine waves, square waves, triangle waves, sawtooth waves, step waves, etc.
  • Different waveform parameters include amplitude, phase (or frequency), etc., and are not limited herein.
  • the modulated signals of each set of light-emitting elements 122 have different amplitudes, wherein the amplitude is the light intensity of the light beam emitted by the light-emitting elements 122.
  • the modulation signals of each group of the light-emitting elements 122 may be signals of the same type of waveform or signals of different types of waveforms, and the amplitude of the modulation signal of each group of the light-emitting elements 122 can be freely controlled.
  • a plurality of light-emitting elements 122 are divided into four groups, the modulation signal of the first group of light-emitting elements 122 is a sine wave signal, and the amplitude is A1; the modulation signal of the second group of light-emitting elements 122 is sinusoidal.
  • the wave signal has an amplitude of A2; the modulated signal of the third group of light-emitting elements 122 is a sine wave signal having an amplitude of A3; and the modulated signal of the fourth group of light-emitting elements 122 is a sine wave signal having an amplitude of A4, wherein A1 ⁇ A2 ⁇ A3 ⁇ A4.
  • the plurality of light-emitting elements 122 are divided into four groups, the modulation signal of the first group of light-emitting elements 122 is a sine wave signal, and the amplitude is A1; the modulation signal of the second group of light-emitting elements 122 is The square wave signal has an amplitude of A2; the modulated signal of the third group of light-emitting elements 122 is a triangular wave signal having an amplitude of A3; and the modulated signal of the fourth group of light-emitting elements 122 is a sawtooth wave signal having an amplitude of A4.
  • the amplitude of the modulation signal of the first group of light-emitting elements 122 may be A1
  • the amplitude of the modulation signal of the second group of light-emitting elements 122 and the third group of light-emitting elements 122 may be A2
  • the fourth group of light-emitting elements The amplitude of the modulated signal of 122 can be A3. That is, the modulated signals of at least one of the plurality of light-emitting elements 122 have different amplitudes.
  • the amplitudes of the modulation signals of the plurality of groups of the light-emitting elements 122 may be sequentially increased in equal intervals; or the amplitudes of the modulation signals of the plurality of light-emitting elements 122 are larger, The amplitude of the modulation signal of the other group of light-emitting elements 122 is small or almost zero.
  • the modulation signals of one of the light-emitting elements 122 are waveform signals, such as the sine wave signals of the first group of light-emitting elements 122 shown in FIG. 7, the modulation signals of the other group of light-emitting elements 122 are pulse signals ( When the light-emitting element 122 emits a light beam, the amplitude is fixed to A0 and remains unchanged, A1 exists in a change period greater than A0, less than A0, or equal to A0. At this time, it also belongs to the two sets of light-emitting elements 122. The modulated signals have different amplitudes.
  • the modulated signals of each set of light emitting elements 122 have different phases.
  • the modulation signals of each group of the light-emitting elements 122 may be signals of the same type of waveform or signals of different types of waveforms, and the phase of the modulation signal of each group of the light-emitting elements 122 can be freely controlled.
  • a plurality of light-emitting elements 122 are divided into four groups, the modulation signal of the first group of light-emitting elements 122 is a sine wave signal, and the phase is ⁇ 1; the modulation signal of the second group of light-emitting elements 122 is sinusoidal.
  • the wave signal has a phase of ⁇ 2; the modulated signal of the third group of light-emitting elements 122 is a sine wave signal, and the phase is ⁇ 3; the modulated signal of the fourth group of light-emitting elements 122 is a sine wave signal, and the phase is ⁇ 4, wherein ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4.
  • the plurality of light-emitting elements 122 are divided into four groups, the modulation signal of the first group of light-emitting elements 122 is a sine wave signal, and the phase is ⁇ 1; the modulation signal of the second group of light-emitting elements 122 is The square wave signal has a phase of ⁇ 2; the modulated signal of the third group of light-emitting elements 122 is a triangular wave signal, and the phase is ⁇ 3; and the modulated signal of the fourth group of light-emitting elements 122 is a sawtooth wave signal, and the phase is ⁇ 4.
  • the phase of the modulation signal of the first group of light-emitting elements 122 may be ⁇ 1
  • the phase of the modulation signals of the second group of light-emitting elements 122 and the third group of light-emitting elements 122 may be ⁇ 2
  • the fourth group of light-emitting elements The phase of the modulated signal of 122 can be ⁇ 3. That is, the modulated signals of at least one of the plurality of light-emitting elements 122 have different phases.
  • the phase difference between the modulation signals of the adjacent two groups of light-emitting elements 122 may be the same (for example, the first group of light-emitting elements 122 and the second group of light-emitting elements)
  • the phase difference between the modulated signals of 122 is the same as the phase difference between the modulated signals of the second group of light emitting elements 122 and the third group of light emitting elements 122).
  • the modulation signals of each group of light-emitting elements 122 have different amplitudes, and the modulation signals of each group of light-emitting elements 122 have different phases, wherein the amplitude is the beam of light emitted by the light-emitting elements 122. Light intensity.
  • the plurality of sets of light emitting elements 122 includes a first set of light emitting elements 122 and a second set of light emitting elements 122.
  • the modulated signals of the first set of light-emitting elements 122 and the second set of light-emitting elements 122 have different amplitudes, and the modulated signals of the first set of light-emitting elements 122 and the second set of light-emitting elements 122 have different phases.
  • the amplitude is the light intensity of the light beam emitted by the light-emitting element 122.
  • the plurality of sets of light emitting elements 122 includes a first set of light emitting elements 122 and a second set of light emitting elements 122.
  • the modulated signals of the first set of light-emitting elements 122 and the second set of light-emitting elements 122 have the same amplitude, and the modulated signals of the first set of light-emitting elements 122 and the second set of light-emitting elements 122 have different phases.
  • the amplitude is the light intensity of the light beam emitted by the light-emitting element 122.
  • the plurality of sets of light emitting elements 122 includes a first set of light emitting elements 122 and a second set of light emitting elements 122.
  • the modulated signals of the first set of light-emitting elements 122 and the second set of light-emitting elements 122 have different amplitudes, and the modulated signals of the first set of light-emitting elements 122 and the second set of light-emitting elements 122 have the same phase.
  • the amplitude is the light intensity of the light beam emitted by the light-emitting element 122.
  • each set of light emitting elements 122 is used to be driven to emit light beams of different wavelengths.
  • the wavelength of the light beam emitted by each group of the light-emitting elements 122 can be freely controlled.
  • a plurality of light-emitting elements 122 are divided into four groups, a first group of light-emitting elements 122 for emitting a light beam of wavelength ⁇ 1, a second group of light-emitting elements 122 for emitting a light beam of wavelength ⁇ 2, and a third
  • the group of light-emitting elements 122 are for emitting light beams of wavelength ⁇ 3
  • the fourth group of light-emitting elements 122 are for emitting light beams of wavelength ⁇ 4, where ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 4.
  • the light beams can sequentially obtain different light spots after passing through the collimating elements 30 and the diffractive optical elements 40, thereby generating a laser pattern having high correlation.
  • the first set of light-emitting elements 122 can be used to emit light beams of wavelength ⁇ 1
  • the second set of light-emitting elements 122 and the third set of light-emitting elements 122 are used to emit light beams of wavelength ⁇ 2
  • the fourth set of light-emitting elements 122 is for emitting a light beam having a wavelength of ⁇ 3. That is, at least one set of light emitting elements 122 is used to be driven to emit light beams of different wavelengths.
  • the light-emitting element 122 can emit light beams of different wavelengths by changing the temperature of the light-emitting element 122.
  • the higher the temperature of the light-emitting element 122 the higher the wavelength of the emitted light beam.
  • the plurality of groups of the light-emitting elements 122 are configured to emit light beams of different wavelengths.
  • the control signals applied by the controller to the respective conductors can be the same, and the control logic of the light-emitting elements 122 is relatively simple. .
  • each set of light emitting elements 122 has a different light emitting area.
  • the plurality of light-emitting elements 122 are divided into four groups, the light-emitting area of the first group of light-emitting elements 122 is S1, the light-emitting area of the second group of light-emitting elements 122 is S2, and the light of the third group of light-emitting elements 122 is emitted.
  • the area is S3, and the light-emitting area of the fourth group of light-emitting elements 122 is S4, where S1 ⁇ S2 ⁇ S3 ⁇ S4.
  • the light beams can pass through the collimating elements 30 and the diffractive optical elements 40 in sequence, and different spots can be obtained, and a laser pattern having high correlation can be generated.
  • the light emitting area of the first group of light emitting elements 122 is S1
  • the light emitting area of the second group of light emitting elements 122 and the third group of light emitting elements 122 is S2
  • the light emitting area of the fourth group of light emitting elements 122 is S3. . That is, at least one set of light emitting elements 122 has different light emitting areas.
  • the modulation signals of each of the above groups of light-emitting elements 122 have different amplitudes, the modulation signals of each group of light-emitting elements 122 have different phases, and each group of light-emitting elements 122 is driven to emit light beams of different wavelengths, and each The group of light-emitting elements 122 have different light-emitting areas and can be used in conjunction with each other to obtain different spots of light, resulting in a highly uncorrelated laser pattern.
  • a plurality of sets of light-emitting elements 122 are mixedly distributed and each set of light-emitting elements 122 is time-divisionally driven to emit a light beam; or each set of light-emitting elements 122 is separately and simultaneously driven to emit light beams, each set Light-emitting elements 122 are driven for different pulse durations.
  • the plurality of light-emitting elements 122 are regularly distributed to form a laser pattern of high uniformity, each group of light-emitting elements 122 is driven by time division or each group of light-emitting elements 122 is simultaneously driven and driven differently.
  • the pulse duration is convenient for distinguishing the light beams emitted by the different groups of light-emitting elements 122, thereby improving the speed and accuracy of acquiring the depth image of the laser pattern.
  • the plurality of light emitting elements 122 are at least two light emitting elements 122, and the plurality of light emitting elements 122 are regularly distributed as a whole.
  • the plurality of light-emitting elements 122 are divided into a plurality of groups, and the plurality of sets of light-emitting elements 122 are at least two sets of light-emitting elements 122, and each of the light-emitting elements 122 may be regularly distributed or irregularly distributed.
  • each set of light-emitting elements 122 is time-divisionally driven to emit a light beam
  • the laser emitter 10 when the laser emitter 10 operates, one set of light-emitting elements is driven to emit a light beam at a time to form a frame pattern, continuous A plurality of time points can form a continuous multi-frame pattern to combine to form a laser pattern.
  • the regularly distributed plurality of light-emitting elements 122 are divided into four groups, namely, a first group of light-emitting elements 122, a second group of light-emitting elements 122, a third group of light-emitting elements 122, and a fourth group of light-emitting elements 122 (as shown in FIG. 12).
  • the first group of light-emitting elements 122 are driven to emit a light beam to form a first frame pattern
  • the second group of light-emitting elements 122 are driven to emit a light beam to form a second frame pattern.
  • the third set of light emitting elements 122 are driven to emit a light beam to form a third frame pattern; at a fourth time, the fourth set of light emitting elements 122 are driven to emit a light beam to form a fourth frame pattern.
  • the first frame pattern, the second frame pattern, the third frame pattern, and the fourth frame pattern are used to merge to form a laser pattern.
  • each set of light-emitting elements 122 When each set of light-emitting elements 122 is individually and simultaneously driven to emit a light beam, each set of light-emitting elements 122 is driven for a different pulse duration.
  • the regularly distributed plurality of light-emitting elements 122 are divided into four groups, namely, a first group of light-emitting elements 122, a second group of light-emitting elements 122, a third group of light-emitting elements 122, and a fourth group of light-emitting elements 122 (as shown in FIG. 12). .
  • the first group of light-emitting elements 122, the second group of light-emitting elements 122, the third group of light-emitting elements 122, and the fourth group of light-emitting elements 122 are separately and simultaneously driven to emit light beams, and the first group of light-emitting elements 122 are
  • the pulse duration of the driving is T1
  • the pulse duration of the second group of light-emitting elements 122 is T2
  • the pulse duration of the third group of light-emitting elements 122 is T3
  • the pulse duration of the fourth group of light-emitting elements 122 is T4, wherein , T1 ⁇ T2 ⁇ T3 ⁇ T4 (as shown in Figure 13).
  • the plurality of light emitting elements 122 are regularly distributed according to a predetermined pattern shape, the number of pattern shapes being at least one, and the at least one pattern shape including at least two sets of light emitting elements 122.
  • the number of pattern shapes is three, that is, a first pattern shape, a second pattern shape, and a third pattern shape.
  • the first pattern shape, the second pattern shape, and the third pattern shape may be identical, partially identical, or completely different pattern shapes.
  • the plurality of light emitting elements 122 are divided into four groups, namely, a first group of light emitting elements 122, a second group of light emitting elements 122, a third group of light emitting elements 122, and a fourth group of light emitting elements 122.
  • the first pattern shape includes a first set of light emitting elements 122 and a third set of light emitting elements 122.
  • the second pattern shape includes a first set of light emitting elements 122, a second set of light emitting elements 122, a third set of light emitting elements 122, and a fourth set of light emitting elements 122.
  • the number of pattern shapes is three, that is, a first pattern shape, a second pattern shape, and a third pattern shape.
  • the first pattern shape, the second pattern shape, and the third pattern shape may be identical, partially identical, or completely different pattern shapes.
  • the plurality of light emitting elements 122 are divided into four groups, namely, a first group of light emitting elements 122, a second group of light emitting elements 122, a third group of light emitting elements 122, and a fourth group of light emitting elements 122.
  • the first pattern shape, the second pattern shape, and the third pattern shape each include a first group of light emitting elements 122, a second group of light emitting elements 122, a third group of light emitting elements 122, and a fourth group of light emitting elements 122.
  • the regular distribution according to a predetermined pattern shape comprises a matrix distribution, at least one row of light-emitting elements 122 comprising at least two sets of light-emitting elements 122; and/or at least one column of light-emitting elements 122 comprising at least two sets of light-emitting elements 122.
  • At least one row of light-emitting elements 122 can include at least two sets of light-emitting elements 122; or at least one column of light-emitting elements 122 can include at least two sets of light-emitting elements 122; or at least one row of light-emitting elements 122 can include at least two sets of light-emitting elements 122 And at least one column of light emitting elements 122 includes at least two sets of light emitting elements 122.
  • each row of light-emitting elements 122 includes at least two sets of light-emitting elements 122.
  • each column of light-emitting elements 122 includes at least two sets of light-emitting elements 122.
  • each row of light-emitting elements 122 includes at least two sets of light-emitting elements 122, and each column of light-emitting elements 122 can include at least two sets of light-emitting elements 122.
  • the rows and columns may be perpendicular to each other (as shown in FIG. 16); or the rows and columns may form a predetermined inclination angle (as shown in FIG. 17), the predetermined inclination angle is not 90 degrees, for example, may be 60 degrees, 70 degrees, 80 degrees, 100 degrees, 110 degrees, 120 degrees, and the like.
  • the regular distribution according to a predetermined pattern shape includes a circular distribution, and at least one of the ring-shaped light-emitting elements 122 includes at least two sets of light-emitting elements 122.
  • a ring of light emitting elements 122 includes three sets of light emitting elements 122, wherein one ring of light emitting elements 122 includes two sets of light emitting elements 122.
  • each ring of light emitting elements 122 includes a first set of light emitting elements 122, a second set of light emitting elements 122, a third set of light emitting elements 122, and a fourth set of light emitting elements 122.
  • the plurality of light-emitting elements 122 are regularly distributed as a whole, and the regular distribution may be regularly distributed according to a predetermined pattern shape in the above embodiment, or may be equally spaced along a predetermined direction, or may be arbitrarily determined.
  • the regular distribution is not limited here. It can be understood that manufacturing a plurality of regularly arranged light-emitting elements 122 on the same semiconductor substrate 11 can greatly improve manufacturing efficiency.
  • the plurality of sets of light emitting elements 122 includes a first set of light emitting elements 122, a second set of light emitting elements 122, and a third set of light emitting elements 122, at least one first set of light emitting elements 122 and at least one second set
  • the light-emitting element 122 and the at least one third group of light-emitting elements 122 are adjacent.
  • each of the first set of light emitting elements 122 is adjacent to at least one second set of light emitting elements 122, and at least one third set of light emitting elements 122.
  • the plurality of sets of light-emitting elements 122 includes a first set of light-emitting elements 122 and a second set of light-emitting elements 122, the first set of light-emitting elements 122 being regularly or irregularly distributed, and the second set of light-emitting elements 122 being regularly distributed Or irregularly distributed.
  • the first set of light-emitting elements 122 and the second set of light-emitting elements 122 are each randomly distributed (as shown in FIG. 1).
  • the first group of light-emitting elements 122 and the second group of light-emitting elements 122 may each be regularly distributed; or the first group of light-emitting elements 122 are regularly distributed, and the second group of light-emitting elements 122 are irregularly distributed;
  • the first group of light-emitting elements 122 are irregularly distributed, and the second group of light-emitting elements 122 are regularly distributed or the like.
  • first group of light-emitting elements 122 and the second group of light-emitting elements 122 may be the same or different light-emitting elements 122.
  • the plurality of light-emitting elements 122 of the first group are the same, and the plurality of light-emitting elements 122 of the second group are the same.
  • the first group of light-emitting elements 122 and the second group of light-emitting elements 122 are different light-emitting elements 122 (as shown in FIG. 1); or the plurality of light-emitting elements 122 of the first group are identical to the plurality of light-emitting elements 122 of the second group ( As shown in FIG.
  • the plurality of light-emitting elements 122 of the first group are not identical, the plurality of light-emitting elements 122 of the second group are not identical, and the plurality of light-emitting elements 122 of the first group and the plurality of second groups
  • the light-emitting elements 122 are correspondingly the same (as shown in FIG. 4); or the plurality of light-emitting elements 122 of the first group are completely different, the plurality of light-emitting elements 122 of the second group are completely different, and the plurality of light-emitting elements 122 and 122 of the first group
  • the plurality of light-emitting elements 122 of the group correspond to the same (as shown in FIG. 5) and the like, and are not limited herein.
  • each group of light-emitting elements 122 may be identical, partially identical, or completely different.
  • the plurality of light-emitting elements 122 are divided into four groups, and the number of the first group of light-emitting elements 122, the second group of light-emitting elements 122, the third group of light-emitting elements 122, and the fourth group of light-emitting elements 122 are all N1 (see FIG. 12).
  • N1 24); or the number of the first group of light-emitting elements 122 is N1, the number of the second group of light-emitting elements 122 and the third group of light-emitting elements 122 are N2, the number of the fourth group of light-emitting elements 122 is N3; Or the number of the first group of light-emitting elements 122 is N1, the number of the second group of light-emitting elements 122 is N2, the number of the third group of light-emitting elements 122 is N3, and the number of the fourth group of light-emitting elements 122 is N4, where N1 ⁇ N2 ⁇ N3 ⁇ N4.
  • the spacing between the plurality of light emitting elements 122 can be determined according to the density of the laser pattern to be formed.
  • the spacing between the plurality of light emitting elements 122 may be configured such that the gaps between the formed laser patterns are small and do not overlap.
  • the illuminating element 122 comprises a point source illuminating device
  • the point source illuminating device can be a Vertical-Cavity Surface-Emitting Laser (VCSEL) or other type of point source illuminating device.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • the VCSEL is a novel laser that emits light on a vertical surface.
  • a conventional edge-emitting laser such as a Distributed Feedback Laser (DFB)
  • the VCSEL has a light-emitting direction perpendicular to the substrate 11, which is relatively easy.
  • DFB Distributed Feedback Laser
  • the coupling efficiency is high, so that a complicated and expensive beam shaping system is not required, and the manufacturing process is compatible with the light emitting diode, which greatly reduces the production cost.
  • the plurality of groups of light-emitting elements 122 can be respectively controlled by the same controller, or the plurality of groups of light-emitting elements 122 are respectively controlled by a plurality of controllers, that is, each group of light-emitting elements 122 is correspondingly controlled by one controller.
  • the controller is for directly driving the light emitting element 122 to emit a light beam, or driving the light emitting element 122 by a plurality of conductors respectively connected to the plurality of sets of the light emitting elements 122 to emit a light beam.
  • the controller drives the light emitting element 122 through the conductor, a plurality of conductors are formed on the substrate 11 and connected to the light emitting element 122.
  • the laser emitter 10 includes six sets of light-emitting elements 122, and the number of conductors is six, each conductor is connected to a group of light-emitting elements 122, and the controller is configured to apply a control signal on the conductors to drive a group of light-emitting lights corresponding to the conductors.
  • Element 122 emits a beam of light.
  • the controller simultaneously applies a control signal on each conductor, but the control signals applied to the respective conductors may be different, thereby improving the irrelevance of the laser pattern and further improving the depth image of acquiring the laser pattern. Speed and accuracy.
  • the irrelevance of the laser pattern refers to the uniqueness of the laser pattern generated by the light beam emitted by each of the light-emitting elements 122, and the uniqueness includes the uniqueness of the shape, size, arrangement position, and the like of the laser pattern.
  • the irrelevance of the laser pattern a and the laser pattern b in FIG. 2 is smaller than the irrelevance of the laser pattern a and the laser pattern c.
  • each set of light emitting elements 122 is used to be driven to emit light beams of different light intensities.
  • the plurality of sets of the light-emitting elements 122 emit light at the same time, and the intensity of the light beam emitted by each set of the light-emitting elements 122 can be freely controlled.
  • a plurality of light-emitting elements 122 are divided into four groups, a first group of light-emitting elements 122 for emitting a light beam having a light intensity of L1, and a second group of light-emitting elements 122 for emitting a light beam having a light intensity of L2.
  • the third group of light-emitting elements 122 is for emitting a light beam having a light intensity of L3, and the fourth group of light-emitting elements 122 is for emitting a light beam having a light intensity of L4, wherein L1 ⁇ L2 ⁇ L3 ⁇ L4.
  • the light beams can sequentially obtain the spots of different shapes after passing through the collimating elements 30 and the diffractive optical elements 40, thereby generating a laser pattern having a high degree of correlation.
  • the first group of light-emitting elements 122 can be used to emit a light beam having a light intensity of L1
  • the second group of light-emitting elements 122 and the third group of light-emitting elements 122 are used to emit a light beam having a light intensity of L2
  • the fourth group The light-emitting element 122 is for emitting a light beam having a light intensity of L3. That is, at least one set of light-emitting elements 122 is used to be driven to emit light beams of different light intensities.
  • each set of light emitting elements 122 is used to be driven to emit light beams of different wavelengths.
  • the plurality of sets of the light-emitting elements 122 emit light at the same time, and the wavelength of the light beam emitted by each set of the light-emitting elements 122 can be freely controlled. For example, referring to FIG.
  • a plurality of light-emitting elements 122 are divided into four groups, a first group of light-emitting elements 122 for emitting a light beam of wavelength ⁇ 1, a second group of light-emitting elements 122 for emitting a light beam of wavelength ⁇ 2, and a third
  • the group of light-emitting elements 122 are for emitting light beams of wavelength ⁇ 3
  • the fourth group of light-emitting elements 122 are for emitting light beams of wavelength ⁇ 4, where ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 4.
  • the first set of light-emitting elements 122 can be used to emit light beams of wavelength ⁇ 1
  • the second set of light-emitting elements 122 and the third set of light-emitting elements 122 are used to emit light beams of wavelength ⁇ 2
  • the fourth set of light-emitting elements 122 is for emitting a light beam having a wavelength of ⁇ 3. That is, at least one set of light emitting elements 122 is used to be driven to emit light beams of different wavelengths.
  • the light-emitting element 122 can emit light beams of different wavelengths by changing the temperature of the light-emitting element 122.
  • the higher the temperature of the light-emitting element 122 the higher the wavelength of the emitted light beam.
  • the plurality of groups of the light-emitting elements 122 are configured to emit light beams of different wavelengths.
  • the control signals applied by the controller to the respective conductors can be the same, and the control logic of the light-emitting elements 122 is relatively simple. .
  • each set of light emitting elements 122 has a different light emitting area.
  • the plurality of sets of the light-emitting elements 122 emit light at the same time, and each set of the light-emitting elements 122 has a different light-emitting area.
  • the plurality of light-emitting elements 122 are divided into four groups, the light-emitting area of the first group of light-emitting elements 122 is S1, the light-emitting area of the second group of light-emitting elements 122 is S2, and the light of the third group of light-emitting elements 122 is emitted.
  • the area is S3, and the light-emitting area of the fourth group of light-emitting elements 122 is S4, where S1 ⁇ S2 ⁇ S3 ⁇ S4.
  • the light beams are sequentially passed through the collimating elements 30 and the diffractive optical elements 40, and light spots of different shapes can be obtained, and a laser pattern having high correlation is generated.
  • the light emitting area of the first group of light emitting elements 122 is S1
  • the light emitting area of the second group of light emitting elements 122 and the third group of light emitting elements 122 is S2
  • the light emitting area of the fourth group of light emitting elements 122 is S3. . That is, at least one set of light emitting elements 122 has different light emitting areas.
  • each set of light-emitting elements 122 is used to be driven to emit light beams of different light intensities, different wavelengths, and have different light-emitting areas; or each set of light-emitting elements 122 is used to be driven to emit different light intensities, Light beams of different wavelengths and having the same light-emitting area; or each set of light-emitting elements 122 for being driven to emit light beams of different light intensities, of the same wavelength, and having different light-emitting areas; or each set of light-emitting elements 122 for being driven To emit light beams of the same light intensity and different wavelengths, and have different light-emitting areas.
  • the laser emitter 10 of the embodiment of the present application can be used for the optoelectronic device 100.
  • the optoelectronic device 100 includes a substrate 20, a laser emitter 10 of any of the above embodiments, a collimating element 30, and a diffractive optical element 40.
  • the laser emitter 10 is disposed on the substrate 20, the collimating element 30 is disposed on a side of the substrate 20 adjacent to the laser emitter 10, the collimating element 30 is located between the laser emitter 10 and the diffractive optical element 40, and the diffractive optical element 40 is used
  • the light beam emitted by the light emitting element 122 is projected to generate a laser pattern.
  • the laser emitter 10 of the embodiment of the present application can be applied to the optoelectronic device 100 including the collimating element 30 and the diffractive optical element 40 to emit a light beam to generate a laser pattern; the laser emitter 10 of the embodiment of the present application also It can be applied to any photovoltaic device 100 that uses a laser emitter 10 to emit a light beam.
  • the photovoltaic device 100 includes a substrate 20 and a laser emitter 10, and the laser emitter 10 is disposed on the substrate 20.
  • the number of collimating elements 30 is one, and one collimating element 30 corresponds to the array of light emitting elements 12.
  • the manufacturing process is relatively simple.
  • the light beams emitted by the plurality of light-emitting elements 122 pass through the collimating element 30 and are then projected by the diffractive optical element 40 to the target space to generate a laser pattern.
  • the number of collimating elements 30 is plural, and the plurality of collimating elements 30 are divided into a plurality of groups, and each set of collimating elements 30 corresponds to each set of light emitting elements 122.
  • the light beams emitted by each set of light-emitting elements 122 first pass through collimating elements 30 corresponding to the set of light-emitting elements 122, and are then projected by the diffractive optical elements 40 to the target space to generate a laser pattern.
  • each of the collimating elements 30 may have a different focal length.
  • different focal lengths include the positive and negative and/or the size of the focal length. That is, each set of collimating elements 30 is capable of producing different diverging or converging beams. In this way, it is further convenient to distinguish the light beams emitted by the different groups of light-emitting elements.
  • the collimating element 30 may be a lens, which is a convex lens or a concave lens, and the surface of the lens may be an aspherical surface, a spherical surface, a Fresnel surface, or a binary optical surface; or the collimating element 30
  • the plurality of lenses may be convex lenses or concave lenses, or partially convex lenses, and partially concave lenses, and the surface shape of each lens may be aspherical, Any of a spherical surface, a Fresnel surface, and a binary optical surface.
  • the collimating elements 30 when the number of the collimating elements 30 is one, the collimating elements 30 are spaced apart from the light emitting element array 12 (as shown in FIG. 20); when the number of the collimating elements 30 is plural, a plurality of The collimating elements 30 are integrated with the plurality of light emitting elements 122 on the substrate 11, respectively (as shown in FIG. 21). As such, a plurality of collimating elements 30 and a plurality of light emitting elements 122 are integrated on the substrate 11 to facilitate reducing the volume of the optoelectronic device 100.
  • a depth camera 1000 of an embodiment of the present application includes an optoelectronic device 100, an image collector 200, and a processor 300.
  • the image collector 200 is used to capture a laser pattern projected by the optoelectronic device 100 into the target space.
  • the processor 300 is connected to the optoelectronic device 100 and the image collector 200, respectively, and the processor 300 is configured to process the laser pattern to obtain a depth image.
  • the optoelectronic device 100 projects the laser pattern projected into the target space through the projection window 400, and the image collector 200 collects the laser pattern modulated by the target object through the acquisition window 500.
  • the image collector 200 may be an infrared camera.
  • the processor 300 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains the depth of the laser pattern according to the deviation value.
  • image may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
  • DIC Digital Image Correlation
  • an electronic device 2000 includes a housing 2001 and a depth camera 1000 of the above embodiment.
  • the depth camera 1000 is disposed within the housing 2001 and exposed from the housing 2001 to acquire a depth image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光发射器(10)、光电设备(100)、深度相机(1000)和电子装置(2000)。激光发射器(10)包括发光元件阵列(12)。发光元件阵列(12)包括规则分布的多个发光元件(122),多个发光元件(122)划分为多组,每组发光元件(122)被单独的控制信号驱动以发射光束。

Description

激光发射器、光电设备、深度相机和电子装置
优先权信息
本申请请求2018年1月23日向中国国家知识产权局提交的、专利申请号为201810064332.4和201810064161.5的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及光学领域,特别涉及一种激光发射器、光电设备、深度相机和电子装置。
背景技术
诸如激光投影仪等光电设备被用来向目标空间发射设定的光学图案,在基于光学的三维测量领域,光电设备得到了广泛应用。光电设备一般由光源、准直元件以及衍射光学元件组成,其中光源可以是单个边发射激光光源,也可以是由多个垂直腔面发射激光组成的面阵激光光源等。
发明内容
本申请实施方式提供一种激光发射器、光电设备、深度相机和电子装置。
本申请实施方式的激光发射器包括发光元件阵列,所述发光元件阵列包括规则分布的多个发光元件,多个所述发光元件划分为多组,每组所述发光元件被单独的控制信号驱动以发射光束。
本申请实施方式的光电设备包括基板和上述实施方式所述的激光发射器,所述激光发射器设置在所述基板上。
本申请实施方式的深度相机包括上述实施方式所述的光电设备、图像采集器和处理器;所述图像采集器用于采集由所述光电设备向目标空间中投射的激光图案;所述处理器分别与所述光电设备、及所述图像采集器连接,所述处理器用于处理所述激光图案以获得深度图像。
本申请实施方式的电子装置包括壳体和上述实施方式所述的深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的激光发射器的结构示意图;
图2是本申请某些实施方式的光电设备生成的部分激光图案的示意图;
图3和图4是本申请某些实施方式的激光发射器的结构示意图;
图5是本申请某些实施方式的激光发射器的部分结构示意图;
图6是本申请某些实施方式的激光发射器的结构示意图;
图7至图11是本申请某些实施方式的激光发射器的发光元件的调制信号的示意图;
图12是本申请某些实施方式的激光发射器的结构示意图;
图13是本申请某些实施方式的激光发射器的多组发光元件被驱动的脉冲时长的示意图;
图14至图19是本申请某些实施方式的激光发射器的结构示意图;
图20和图21是本申请某些实施方式的光电设备的结构示意图;
图22是本申请某些实施方式的深度相机的结构示意图;
图23是本申请某些实施方式的电子装置的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实 施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
请参阅图1,本申请实施方式的激光发射器10包括半导体衬底11和设置在衬底11上的发光元件阵列12。发光元件阵列12包括规则分布的多个发光元件122,多个发光元件122划分为多组,每组发光元件122被单独的控制信号驱动以发射光束。
可以理解,诸如激光投影仪等光电设备被用来向目标空间发射设定的光学图案,在基于光学的三维测量领域,光电设备得到了广泛应用。光电设备一般由光源、准直元件以及衍射光学元件组成,其中光源可以是单个边发射激光光源,也可以是由多个垂直腔面发射激光组成的面阵激光光源等。基于单个边发射激光光源的光电设备能够发射不相关性较高的激光图案,但其体积会随着输出功率的增大而明显增大,且该激光图案的均匀性较差;而基于由至少两个垂直腔面发射激光光源的光电设备可以以更小的体积发射出相同功率且具有更高均匀性的激光图案,但该激光图案的不相关性较低,而激光图案的不相关性的高低直接影响着其深度图像精度的高低及获取深度图像速度的快慢。
在一个实施方式中,每组发光元件122的控制信号为不同的调制信号。本申请实施方式的激光发射器10中,多个发光元件122规则分布能够形成高均匀性的激光图案,每组发光元件122被不同的调制信号驱动以发射光束能够提高激光图案的不相关性,从而提高获取该激光图案的深度图像的速度及精度。
具体地,多个发光元件122为至少两个发光元件122,多组发光元件122为至少两组发光元件122。采用至少两个发光元件122组成的光源能够增加光电设备100的输出功率,且满足光电设备100的体积要求;同时,基于至少两组发光元件122的光电设备100产生的激光图案的不相关性更高。
需要指出的是,激光图案的不相关性指的是各发光元件122发射的光束生成的激光图案具有较高的唯一性,该唯一性包括激光图案的形状、大小、排列位置等的唯一性。例如,图2中激光图案a与激光图案b的不相关性小于激光图案a与激光图案c的不相关性。
多个发光元件122在整体上为规则分布,规则分布可以是如图1所示的呈矩阵分布(行列纵横交错,且行列互相垂直),或者是如图3所示的呈圆环状分布,或者是如图4所示的呈平行四边形分布(行列纵横交错,且行列之间夹角不为90度),或者是沿着预定方向等间距分布;或者是任意具有一定规律的分布,在此不作限制。可以理解,在同一个半导体衬底11上制造规则分布的多个发光元件122可以大幅提高制造效率。例如,多个发光元件122为m*n点阵,其中,m、n均为大于或等于1的整数。多个发光元件122划分为多组,每组发光元件122可以各自为规则分布或不规则分布。在如图1所示的激光发射器10中,m=8,n=12,多个发光元件122划分为两组。第一组发光元件122和第二组发光元件122各自为不规则分布。当然,在其他示例中,第一组发光元件122和第二组发光元件122也可以各自为规则分布;或者第一组发光元件122为规则分布,第二组发光元件122为不规则分布;或者第一组发光元件122为不规则分布,第二组发光元件122为规则分布等。第一组发光元件122和第二组发光元件122可以为相同或不同的发光元件122,例如,第一组的多个发光元件122相同,第二组的多个发光元件122相同,第一组发光元件122与第二组发光元件122为不同的发光元件122(如图1所示);或者第一组的多个发光元件122与第二组的多个发光元件122完全相同(如图3所示);或者第一组的多个发光元件122不完全相同,第二组的多个发光元件122不完全相同,第一组的多个发光元件122与第二组的多个发光元件122对应相同(如图4所示);或者第一组的多个发光元件122完全不同,第二组的多个发光元件122完全不同,第一组的多个发光元件122与第二组的多个发光元件122对应相同(如图5所示)等等,在此不作限制。
每组发光元件122的数量可以完全相同、部分相同、或完全不同。例如,多个发光元件122被划分为4组,第一组发光元件122、第二组发光元件122、第三组发光元件122、和第四组发光元件122的数量均为N1(如图6所示,N1=24);或者第一组发光元件122的数量为N1,第二组发光元件122和第三组发光元件122的数量均为N2,第四组发光元件122的数量为N3;或者第一组发光元件122的数量为N1,第二组发光元件122的数量为N2,第三组发光元件122的数量为N3,第四组发光元件122的数量为N4,其中,N1≠N2≠N3≠N4。
多个发光元件122之间的间距可以根据需要形成的激光图案的密度确定。例如,多个发光元件122之间的间距可被配置为使得形成的各激光图案之间间隙较小且不重叠。
在某些实施方式中,发光元件122包括点光源发光器件,点光源发光器件可以是垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)或者其他类型的点光源发光器件。
具体地,VCSEL是一种垂直表面出光的新型激光器,与传统的边发射型激光器,例如分布式反馈激光器(Distributed Feedback Laser,DFB)相比,VCSEL的发光方向与衬底11垂直,可以较容易地实现高密度二维面阵的集成,实现更高功率输出,且由于其较之于边发射型激光器拥有更小的体积,从而更加便于被集成到小型电子元器件中;同时VCSEL与光纤的耦合效率高,从而不需要复杂昂贵的光束整形系统,且制造工艺与发光二极管兼容,大大降低了生产成本。
多组发光元件122可由同一个控制器分别控制,或者多组发光元件122分别由多个控制器控制,即每组发光元件122由一个控制器对应控制。控制器用于直接驱动发光元件122发射光束,或通过分别与多组发光元件122连接的多个导体驱动发光元件122以发射光束。当控制器通过导体驱动发光元件122时,多个导体形成在衬底11上并与发光元件122连接。例如,激光发射器10包括6组发光元件122,则导体的数量为6个,每个导体连接一组发光元件122,控制器用于在导体上施加控制信号以驱动与该导体对应的一组发光元件122发射光束。在本申请实施方式中,控制器在各导体上施加控制信号,但施加在各导体上的控制信号(或调制信号)可以是不同的,从而能够提高激光图案的不相关性。
在某些实施方式中,调制信号可以为波形信号。不同的调制信号包括不同类型的波形的信号或者同一类型的波形而具有不同的波形参数的信号。不同类型的波形包括正弦波、方波、三角波、锯齿波、阶梯波等,不同的波形参数包括幅度、相位(或频率)等,这里不作限制。
在某些实施方式中,每组发光元件122的调制信号具有不同的幅度,其中,幅度为发光元件122发射的光束的光强。
具体地,在本申请实施方式中,每组发光元件122的调制信号可以为同一类型的波形的信号或不同类型的波形的信号,每组发光元件122的调制信号的幅度可以自由控制。例如,请参阅图6和图7,多个发光元件122被划分为4组,第一组发光元件122的调制信号为正弦波信号,幅度为A1;第二组发光元件122的调制信号为正弦波信号,幅度为A2;第三组发光元件122的调制信号为正弦波信号,幅度为A3;第四组发光元件122的调制信号为正弦波信号,幅度为A4,其中,A1≠A2≠A3≠A4。又例如,请参阅图6和图8,多个发光元件122被划分为4组,第一组发光元件122的调制信号为正弦波信号,幅度为A1;第二组发光元件122的调制信号为方波信号,幅度为A2;第三组发光元件122的调制信号为三角波信号,幅度为A3;第四组发光元件122的调制信号为锯齿波信号,幅度为A4。如此,通过控制不同组的发光元件122的调制信号的幅度,光束在依次经过准直元件30、衍射光学元件40后,可获得不同的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122的调制信号的幅度可为A1,第二组发光元件122和第三组发光元件122的调制信号的幅度可为A2,第四组发光元件122的调制信号的幅度可为A3。也即是说,至少一组发光元件122的调制信号具有不同的幅度。
进一步地,当每组发光元件122的调制信号具有不同的幅度时,多组发光元件122的调制信号的幅度可等间距地依次递增;或者其中一组发光元件122的调制信号的幅度较大,另外组的发光元件122的调制信号的幅度较小或几乎为零。
需要指出的是,当其中一组发光元件122的调制信号为波形信号,例如图7所示的第一组发光元件122的正弦波信号,而另外一组发光元件122的调制信号为脉冲信号(当发光元件122发射光束时,幅度固定为A0并保持不变)时,在一个变化周期内,A1存在大于A0、小于A0、或者等于A0的情况,此时,也属于该两组发光元件122的调制信号具有不同的幅度。
在某些实施方式中,每组发光元件122的调制信号具有不同的相位。
具体地,在本申请实施方式中,每组发光元件122的调制信号可以为同一类型的波形的信号或不同类型的波形的信号,每组发光元件122的调制信号的相位可以自由控制。例如,请参阅图6和图9,多个发光元件122被划分为4组,第一组发光元件122的调制信号为正弦波信号,相位为φ1;第二组发光元件122的调制信号为正弦波信号,相位为φ2;第三组发光元件122的调 制信号为正弦波信号,相位为φ3;第四组发光元件122的调制信号为正弦波信号,相位为φ4,其中,φ1≠φ2≠φ3≠φ4。又例如,请参阅图6和图10,多个发光元件122被划分为4组,第一组发光元件122的调制信号为正弦波信号,相位为φ1;第二组发光元件122的调制信号为方波信号,相位为φ2;第三组发光元件122的调制信号为三角波信号,相位为φ3;第四组发光元件122的调制信号为锯齿波信号,相位为φ4。如此,通过控制不同组的发光元件122的调制信号的相位,光束在依次经过准直元件30、衍射光学元件40后,可获得不同的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122的调制信号的相位可为φ1,第二组发光元件122和第三组发光元件122的调制信号的相位可为φ2,第四组发光元件122的调制信号的相位可为φ3。也即是说,至少一组发光元件122的调制信号具有不同的相位。
进一步地,当每组发光元件122的调制信号具有不同的相位时,相邻两组发光元件122的调制信号之间的相位差可以相同(例如,第一组发光元件122和第二组发光元件122的调制信号之间的相位差,与第二组发光元件122和第三组发光元件122的调制信号之间的相位差相同)。
请参阅图11,在某些实施方式中,每组发光元件122的调制信号具有不同的幅度,且每组发光元件122的调制信号具有不同的相位,其中,幅度为发光元件122发射的光束的光强。
进一步地,在某些实施方式中,多组发光元件122包括第一组发光元件122和第二组发光元件122。第一组发光元件122和第二组发光元件122的调制信号具有不同的幅度,第一组发光元件122和第二组发光元件122的调制信号具有不同的相位。其中,幅度为发光元件122发射的光束的光强。
请再次参阅图9,在某些实施方式中,多组发光元件122包括第一组发光元件122和第二组发光元件122。第一组发光元件122和第二组发光元件122的调制信号具有相同的幅度,第一组发光元件122和第二组发光元件122的调制信号具有不同的相位。其中,幅度为发光元件122发射的光束的光强。
请再次参阅图7,在某些实施方式中,多组发光元件122包括第一组发光元件122和第二组发光元件122。第一组发光元件122和第二组发光元件122的调制信号具有不同的幅度,第一组发光元件122和第二组发光元件122的调制信号具有相同的相位。其中,幅度为发光元件122发射的光束的光强。
在某些实施方式中,每组发光元件122用于被驱动以发射不同波长的光束。
具体地,在本申请实施方式中,每组发光元件122发射的光束的波长可以自由控制。例如,请参阅图6,多个发光元件122被划分为4组,第一组发光元件122用于发射波长为λ1的光束,第二组发光元件122用于发射波长为λ2的光束,第三组发光元件122用于发射波长为λ3的光束,第四组发光元件122用于发射波长为λ4的光束,其中,λ1≠λ2≠λ3≠λ4。如此,通过控制不同组的发光元件122的光束的波长配比,光束在依次经过准直元件30、衍射光学元件40后,可获得不同的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122可用于发射波长为λ1的光束,第二组发光元件122和第三组发光元件122用于发射波长为λ2的光束,第四组发光元件122用于发射波长为λ3的光束。也即是说,至少一组发光元件122用于被驱动以发射不同波长的光束。
其中,可在使用激光发射器10的过程中,通过改变发光元件122的温度来使发光元件122能够发射不同波长的光束,一般情况下,发光元件122的温度越高,发射的光束的波长越长;也可在制造激光发射器10时,将多组发光元件122配置为发射不同波长的光束,如此,控制器施加在各导体上的控制信号可以相同的,发光元件122的控制逻辑较为简单。
在某些实施方式中,每组发光元件122具有不同的发光面积。
例如,请参阅图6,多个发光元件122被划分为4组,第一组发光元件122的发光面积为S1,第二组发光元件122的发光面积为S2,第三组发光元件122的发光面积为S3,第四组发光元件122的发光面积为S4,其中,S1≠S2≠S3≠S4。如此,通过将不同组的发光元件122配置为不同的发光面积,光束在依次经过准直元件30、衍射光学元件40后,可获得不同的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122的发光面积为S1,第二组发光元件122和第三组发光元件122的发光面积为S2,第四组发光元件122的发光面积为S3。 也即是说,至少一组发光元件122具有不同的发光面积。
需要指出的是,上述每组发光元件122的调制信号具有不同的幅度、每组发光元件122的调制信号具有不同的相位、每组发光元件122用于被驱动以发射不同波长的光束、以及每组发光元件122具有不同的发光面积,可以相互配合使用,以获得不同的光斑,生成不相关性较高的激光图案。
请参阅图1,在另一个实施方式中,多组发光元件122混合分布且每组发光元件122被分时驱动以发射光束;或者每组发光元件122被单独且同时驱动以发射光束,每组发光元件122被驱动不同的脉冲时长。本申请实施方式的激光发射器10中,多个发光元件122规则分布能够形成高均匀性的激光图案,每组发光元件122被分时驱动或者每组发光元件122被同时驱动且被驱动不同的脉冲时长,便于区分不同组发光元件122发射的光束,从而提高获取激光图案的深度图像的速度及精度。
具体地,多个发光元件122为至少两个发光元件122,多个发光元件122在整体上为规则分布。多个发光元件122划分为多组,多组发光元件122为至少两组发光元件122,每组发光元件122可以各自可以为规则分布或不规则分布。
当多组发光元件122混合分布且每组发光元件122被分时驱动以发射光束时,激光发射器10工作时,每一时刻其中一组发光元件被驱动发射光束以形成一帧图案,连续的多个时刻能够形成连续的多帧图案,从而合并形成激光图案。例如,规则分布的多个发光元件122划分为4组,即第一组发光元件122、第二组发光元件122、第三组发光元件122和第四组发光元件122(如图12所示)。激光发射器10工作时,在第一时刻,第一组发光元件122被驱动发射光束以形成第一帧图案;在第二时刻,第二组发光元件122被驱动发射光束以形成第二帧图案;在第三时刻,第三组发光元件122被驱动发射光束以形成第三帧图案;在第四时刻,第四组发光元件122被驱动发射光束以形成第四帧图案。第一帧图案、第二帧图案、第三帧图案和第四帧图案用于合并形成激光图案。
当每组发光元件122被单独且同时驱动以发射光束时,每组发光元件122被驱动不同的脉冲时长。例如,规则分布的多个发光元件122划分为4组,即第一组发光元件122、第二组发光元件122、第三组发光元件122和第四组发光元件122(如图12所示)。激光发射器10工作时,第一组发光元件122、第二组发光元件122、第三组发光元件122和第四组发光元件122被单独且同时驱动以发射光束,第一组发光元件122被驱动的脉冲时长为T1,第二组发光元件122被驱动的脉冲时长为T2,第三组发光元件122被驱动的脉冲时长为T3,第四组发光元件122被驱动的脉冲时长为T4,其中,T1≠T2≠T3≠T4(如图13所示)。
在某些实施方式中,多个发光元件122按照预定的图案形状规则分布,图案形状的数量为至少一个,至少一个图案形状包括至少两组的发光元件122。
例如,请参阅图14,图案形状的数量为三个,即第一图案形状、第二图案形状和第三图案形状。第一图案形状、第二图案形状和第三图案形状可以为完全相同、部分相同、或完全不同的图案形状。多个发光元件122划分为4组,即第一组发光元件122、第二组发光元件122、第三组发光元件122和第四组发光元件122。第一图案形状包括第一组的发光元件122和第三组的发光元件122。第二图案形状包括第一组的发光元件122、第二组的发光元件122、第三组的发光元件122和第四组的发光元件122。
又例如,请再次参阅图12,图案形状的数量为三个,即第一图案形状、第二图案形状和第三图案形状。第一图案形状、第二图案形状和第三图案形状可以为完全相同、部分相同、或完全不同的图案形状。多个发光元件122划分为4组,即第一组发光元件122、第二组发光元件122、第三组发光元件122和第四组发光元件122。第一图案形状、第二图案形状和第三图案形状均包括第一组的发光元件122、第二组的发光元件122、第三组的发光元件122和第四组的发光元件122。
在某些实施方式中,按照预定的图案形状规则分布包括呈矩阵分布,至少一行发光元件122包括至少两组的发光元件122;和/或至少一列发光元件122包括至少两组的发光元件122。
也即是说,至少一行发光元件122可包括至少两组的发光元件122;或者至少一列发光元件 122包括至少两组的发光元件122;或者至少一行发光元件122可包括至少两组的发光元件122且至少一列发光元件122包括至少两组的发光元件122。
例如,请参阅图15,每行发光元件122均包括至少两组的发光元件122。请参阅图16,每列发光元件122均包括至少两组的发光元件122。请参阅图17,每行发光元件122均包括至少两组的发光元件122,且每列发光元件122可包括至少两组的发光元件122。
进一步地,上述行与列可相互垂直(如图16所示);或者行与列形成预定倾角(如图17所示),该预定倾角不为90度,例如可以是60度、70度、80度、100度、110度、120度等。
在某些实施方式中,按照预定的图案形状规则分布包括呈圆环分布,至少一环发光元件122包括至少两组的发光元件122。
例如,请参阅图18,其中一环发光元件122包括三组的发光元件122,其中一环发光元件122包括两组的发光元件122。当然,在其他实施方式中,每环发光元件122包括第一组的发光元件122、第二组的发光元件122、第三组的发光元件122和第四组的发光元件122。
需要指出的是,多个发光元件122在整体上为规则分布,规则分布可以是上述实施方式中的按照预定的图案形状规则分布,也可以是沿着预定方向等间距分布,或者是任意具有一定规律的分布,在此不作限制。可以理解,在同一个半导体衬底11上制造规则分布的多个发光元件122可以大幅提高制造效率。
在某些实施方式中,多组发光元件122包括第一组发光元件122、第二组发光元件122和第三组发光元件122,至少一个第一组的发光元件122与至少一个第二组的发光元件122、及至少一个第三组的发光元件122相邻。例如,请参阅图19,每个第一组的发光元件122均与至少一个第二组的发光元件122、及至少一个第三组的发光元件122相邻。
在某些实施方式中,多组发光元件122包括第一组发光元件122和第二组发光元件122,第一组发光元件122为规则分布或不规则分布,第二组发光元件122为规则分布或不规则分布。
例如,第一组发光元件122和第二组发光元件122各自为不规则分布(如图1所示)。当然,在其他示例中,第一组发光元件122和第二组发光元件122也可以各自为规则分布;或者第一组发光元件122为规则分布,第二组发光元件122为不规则分布;或者第一组发光元件122为不规则分布,第二组发光元件122为规则分布等。进一步地,第一组发光元件122和第二组发光元件122可以为相同或不同的发光元件122,例如,第一组的多个发光元件122相同,第二组的多个发光元件122相同,第一组发光元件122与第二组发光元件122为不同的发光元件122(如图1所示);或者第一组的多个发光元件122与第二组的多个发光元件122完全相同(如图3所示);或者第一组的多个发光元件122不完全相同,第二组的多个发光元件122不完全相同,第一组的多个发光元件122与第二组的多个发光元件122对应相同(如图4所示);或者第一组的多个发光元件122完全不同,第二组的多个发光元件122完全不同,第一组的多个发光元件122与第二组的多个发光元件122对应相同(如图5所示)等等,在此不作限制。
每组发光元件122的数量可以完全相同、部分相同、或完全不同。例如,多个发光元件122被划分为4组,第一组发光元件122、第二组发光元件122、第三组发光元件122、和第四组发光元件122的数量均为N1(如图12所示,N1=24);或者第一组发光元件122的数量为N1,第二组发光元件122和第三组发光元件122的数量均为N2,第四组发光元件122的数量为N3;或者第一组发光元件122的数量为N1,第二组发光元件122的数量为N2,第三组发光元件122的数量为N3,第四组发光元件122的数量为N4,其中,N1≠N2≠N3≠N4。
多个发光元件122之间的间距可以根据需要形成的激光图案的密度确定。例如,多个发光元件122之间的间距可被配置为使得形成的各激光图案之间间隙较小且不重叠。
在某些实施方式中,发光元件122包括点光源发光器件,点光源发光器件可以是垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)或者其他类型的点光源发光器件。
具体地,VCSEL是一种垂直表面出光的新型激光器,与传统的边发射型激光器,例如分布式反馈激光器(Distributed Feedback Laser,DFB)相比,VCSEL的发光方向与衬底11垂直,可以较容易地实现高密度二维面阵的集成,实现更高功率输出,且由于其较之于边发射型激光器拥有更小的体积,从而更加便于被集成到小型电子元器件中;同时VCSEL与光纤的耦合效率高,从 而不需要复杂昂贵的光束整形系统,且制造工艺与发光二极管兼容,大大降低了生产成本。
多组发光元件122可由同一个控制器分别控制,或者多组发光元件122分别由多个控制器控制,即每组发光元件122由一个控制器对应控制。控制器用于直接驱动发光元件122发射光束,或通过分别与多组发光元件122连接的多个导体驱动发光元件122以发射光束。当控制器通过导体驱动发光元件122时,多个导体形成在衬底11上并与发光元件122连接。例如,激光发射器10包括6组发光元件122,则导体的数量为6个,每个导体连接一组发光元件122,控制器用于在导体上施加控制信号以驱动与该导体对应的一组发光元件122发射光束。在本申请实施方式中,控制器同时在各导体上施加控制信号,但施加在各导体上的控制信号可以是不同的,从而能够提高激光图案的不相关性,进一步提高获取激光图案的深度图像的速度及精度。
需要指出的是,激光图案的不相关性指的是各发光元件122发射的光束生成的激光图案具有较高的唯一性,该唯一性包括激光图案的形状、大小、排列位置等的唯一性。例如,图2中激光图案a与激光图案b的不相关性小于激光图案a与激光图案c的不相关性。
在某些实施方式中,每组发光元件122用于被驱动以发射不同光强的光束。
具体地,在本申请实施方式中,多组发光元件122同时发光,每组发光元件122发射的光束的强度可以自由控制。例如,请参阅图12,多个发光元件122被划分为4组,第一组发光元件122用于发射光强为L1的光束,第二组发光元件122用于发射光强为L2的光束,第三组发光元件122用于发射光强为L3的光束,第四组发光元件122用于发射光强为L4的光束,其中,L1≠L2≠L3≠L4。如此,通过控制不同组的发光元件122的光束的强度配比,光束在依次经过准直元件30、衍射光学元件40后,可获得不同形状的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122可用于发射光强为L1的光束,第二组发光元件122和第三组发光元件122用于发射光强为L2的光束,第四组发光元件122用于发射光强为L3的光束。也即是说,至少一组发光元件122用于被驱动以发射不同光强的光束。
在某些实施方式中,每组发光元件122用于被驱动以发射不同波长的光束。具体地,在本申请实施方式中,多组发光元件122同时发光,每组发光元件122发射的光束的波长可以自由控制。例如,请参阅图12,多个发光元件122被划分为4组,第一组发光元件122用于发射波长为λ1的光束,第二组发光元件122用于发射波长为λ2的光束,第三组发光元件122用于发射波长为λ3的光束,第四组发光元件122用于发射波长为λ4的光束,其中,λ1≠λ2≠λ3≠λ4。如此,通过控制不同组的发光元件122的光束的波长配比,光束在依次经过准直元件30、衍射光学元件40后,可获得不同形状的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122可用于发射波长为λ1的光束,第二组发光元件122和第三组发光元件122用于发射波长为λ2的光束,第四组发光元件122用于发射波长为λ3的光束。也即是说,至少一组发光元件122用于被驱动以发射不同波长的光束。
其中,可在使用激光发射器10的过程中,通过改变发光元件122的温度来使发光元件122能够发射不同波长的光束,一般情况下,发光元件122的温度越高,发射的光束的波长越长;也可在制造激光发射器10时,将多组发光元件122配置为发射不同波长的光束,如此,控制器施加在各导体上的控制信号可以相同的,发光元件122的控制逻辑较为简单。
在某些实施方式中,每组发光元件122具有不同的发光面积。
具体地,在本申请实施方式中,多组发光元件122同时发光,每组发光元件122具有不同的发光面积。例如,请参阅图12,多个发光元件122被划分为4组,第一组发光元件122的发光面积为S1,第二组发光元件122的发光面积为S2,第三组发光元件122的发光面积为S3,第四组发光元件122的发光面积为S4,其中,S1≠S2≠S3≠S4。如此,通过将不同组的发光元件122配置为不同的发光面积,光束在依次经过准直元件30、衍射光学元件40后,可获得不同形状的光斑,生成不相关性较高的激光图案。当然,在其他实施方式中,第一组发光元件122的发光面积为S1,第二组发光元件122和第三组发光元件122的发光面积为S2,第四组发光元件122的发光面积为S3。也即是说,至少一组发光元件122具有不同的发光面积。
在某些实施方式中,每组发光元件122用于被驱动以发射不同光强、不同波长的光束,并具有不同的发光面积;或者每组发光元件122用于被驱动以发射不同光强、不同波长的光束,并具 有相同的发光面积;或者每组发光元件122用于被驱动以发射不同光强、相同波长的光束,并具有不同的发光面积;或者每组发光元件122用于被驱动以发射相同光强、不同波长的光束,并具有不同的发光面积。
请一并参阅图20和图21,本申请实施方式的激光发射器10可用于光电设备100。光电设备100包括基板20、上述任一实施方式的激光发射器10、准直元件30和衍射光学元件40。激光发射器10设置在基板20上,准直元件30设置在基板20的靠近激光发射器10的一侧,准直元件30位于激光发射器10与衍射光学元件40之间,衍射光学元件40用于投射由发光元件122发射的光束以生成激光图案。也即是说,本申请实施方式的激光发射器10可应用于包括有准直元件30和衍射光学元件40的光电设备100,以发射光束生成激光图案;本申请实施方式的激光发射器10也可应用于任意采用激光发射器10来发射光束的光电设备100,此时,光电设备100包括基板20和激光发射器10,激光发射器10设置在基板20上。
请参阅图20,在某些实施方式中,准直元件30的数量为一个,一个准直元件30与发光元件阵列12对应。如此,制造工艺较为简单。多个发光元件122发射的光束均先经过该准直元件30,再由衍射光学元件40投射至目标空间以生成激光图案。
请参阅图21,在某些实施方式中,准直元件30的数量为多个,多个准直元件30划分为多组,每组准直元件30与每组发光元件122对应。每组发光元件122发射的光束先经过与该组发光元件122对应的准直元件30,再由衍射光学元件40投射至目标空间以生成激光图案。进一步地,当准直元件30的数量为多个时,每组准直元件30可具有不同的焦距。其中,不同的焦距包括焦距的正负和/或大小。也即是说,每组准直元件30能够产生不同的发散或汇聚光束的效果。如此,进一步便于区分不同组发光元件发射的光束。
在上述实施方式中,准直元件30可为一个透镜,该透镜为凸透镜或凹透镜,该透镜的面型可以为非球面、球面、菲涅尔面、或二元光学面;或者准直元件30为由多个沿发光元件122的发光方向依次设置的透镜组成的透镜组,多个透镜可均为凸透镜或凹透镜,或部分为凸透镜,部分为凹透镜,每个透镜的面型可以为非球面、球面、菲涅尔面、二元光学面中的任意一种。
在某些实施方式中,当准直元件30的数量为一个时,准直元件30与发光元件阵列12间隔(如图20所示);当准直元件30的数量为多个时,多个准直元件30分别与多个发光元件122集成在衬底11上(如图21所示)。如此,多个准直元件30与多个发光元件122集成在衬底11上,有利于减小光电设备100的体积。
请参阅图22,本申请实施实施方式的深度相机1000包括光电设备100、图像采集器200和处理器300。图像采集器200用于采集由光电设备100向目标空间中投射的激光图案。处理器300分别与光电设备100、及图像采集器200连接,处理器300用于处理激光图案以获得深度图像。
具体地,光电设备100通过投射窗口400向外投射向目标空间中投射的激光图案,图像采集器200通过采集窗口500采集被目标物体调制后的激光图案。图像采集器200可为红外相机,处理器300采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据该偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
请参阅图23,本申请实施方式的电子装置2000包括壳体2001及上述实施方式的深度相机1000。深度相机1000设置在壳体2001内并从壳体2001暴露以获取深度图像。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (25)

  1. 一种激光发射器,其特征在于,包括:
    发光元件阵列,所述发光元件阵列包括规则分布的多个发光元件,多个所述发光元件划分为多组,每组所述发光元件被单独的控制信号驱动以发射光束。
  2. 根据权利要求1所述的激光发射器,其特征在于,所述激光发射器还包括衬底,所述发光元件阵列设置在所述衬底上。
  3. 根据权利要求1所述的激光发射器,其特征在于,每组所述发光元件的控制信号为不同的调制信号。
  4. 根据权利要求1所述的激光发射器,其特征在于,多组所述发光元件混合分布且每组所述发光元件被分时驱动以发射光束;或者每组所述发光元件被单独且同时驱动以发射光束,每组所述发光元件被驱动不同的脉冲时长。
  5. 根据权利要求3所述的激光发射器,其特征在于,每组所述发光元件的调制信号具有不同的幅度,其中,所述幅度为所述发光元件发射的光束的光强。
  6. 根据权利要求3所述的激光发射器,其特征在于,每组所述发光元件的调制信号具有不同的相位。
  7. 根据权利要求3所述的激光发射器,其特征在于,每组所述发光元件的调制信号具有不同的幅度,且每组所述发光元件的调制信号具有不同的相位,其中,所述幅度为所述发光元件发射的光束的光强。
  8. 根据权利要求3所述的激光发射器,其特征在于,多组所述发光元件包括第一组发光元件和第二组发光元件;
    所述第一组发光元件和所述第二组发光元件的调制信号具有不同的幅度,所述第一组发光元件和所述第二组发光元件的调制信号具有不同的相位;或者
    所述第一组发光元件和所述第二组发光元件的调制信号具有相同的幅度,所述第一组发光元件和所述第二组发光元件的调制信号具有不同的相位;或者
    所述第一组发光元件和所述第二组发光元件的调制信号具有不同的幅度,所述第一组发光元件和所述第二组发光元件的调制信号具有相同的相位;
    其中,所述幅度为所述发光元件发射的光束的光强。
  9. 根据权利要求3或4所述的激光发射器,其特征在于,多组所述发光元件包括第一组发光元件和第二组发光元件,所述第一组发光元件为规则分布或不规则分布,所述第二组发光元件为规则分布或不规则分布。
  10. 根据权利要求3或4所述的激光发射器,其特征在于,所述发光元件包括点光源发光器件。
  11. 根据权利要求3或4所述的激光发射器,其特征在于,每组所述发光元件用于被驱动以发射不同波长的光束。
  12. 根据权利要求3或4所述的激光发射器,其特征在于,每组所述发光元件具有不同的发光面积。
  13. 根据权利要求4所述的激光发射器,其特征在于,多个所述发光元件按照预定的图案形状规则分布,所述图案形状的数量为至少一个,至少一个所述图案形状包括至少两组的所述发光元件。
  14. 根据权利要求13所述的激光发射器,其特征在于,所述按照预定的图案形状规则分布包括呈矩阵分布;
    至少一行所述发光元件包括至少两组的所述发光元件;和/或
    至少一列所述发光元件包括至少两组的所述发光元件。
  15. 根据权利要求14所述的激光发射器,其特征在于,所述行与所述列相互垂直;或者所述行与所述列形成预定倾角。
  16. 根据权利要求13所述的激光发射器,其特征在于,所述按照预定的图案形状规则分布包 括呈圆环分布;
    至少一环所述发光元件包括至少两组的所述发光元件。
  17. 根据权利要求4所述的激光发射器,其特征在于,多组所述发光元件包括第一组发光元件、第二组发光元件和第三组发光元件,至少一个第一组的所述发光元件与至少一个第二组的所述发光元件、及至少一个第三组的所述发光元件相邻。
  18. 根据权利要求4所述的激光发射器,其特征在于,每组所述发光元件用于被驱动以发射不同光强的光束。
  19. 一种光电设备,其特征在于,包括:
    基板;和
    权利要求1-18任意一项所述的激光发射器,所述激光发射器设置在所述基板上。
  20. 根据权利要求19所述的光电设备,其特征在于,所述光电设备还包括:
    准直元件,所述准直元件设置在所述基板的靠近所述激光发射器的一侧;和
    衍射光学元件,所述准直元件位于所述激光发射器与所述衍射光学元件之间,所述衍射光学元件用于投射由所述发光元件发射的光束以生成激光图案。
  21. 根据权利要求20所述的光电设备,其特征在于,所述准直元件的数量为一个,一个所述准直元件与所述发光元件阵列对应;或
    所述准直元件的数量为多个,多个所述准直元件划分为多组,每组所述准直元件与每组所述发光元件对应。
  22. 根据权利要求20所述的光电设备,其特征在于,所述准直元件的数量为一个,一个所述准直元件与所述发光元件阵列对应,所述准直元件与对应的所述发光元件阵列间隔;或
    所述准直元件的数量为多个,多个所述准直元件划分为多组,每组所述准直元件与每组所述发光元件对应,所述准直元件分别与对应的所述发光元件集成在衬底上。
  23. 根据权利要求21或22所述的光电设备,其特征在于,当所述准直元件的数量为多个时,每组所述准直元件具有不同的焦距。
  24. 一种深度相机,其特征在于,包括:
    权利要求20-23任意一项所述的光电设备;
    图像采集器,所述图像采集器用于采集由所述光电设备向目标空间中投射的激光图案;和
    分别与所述光电设备、及所述图像采集器连接的处理器,所述处理器用于处理所述激光图案以获得深度图像。
  25. 一种电子装置,其特征在于,包括:
    壳体;和
    权利要求24所述的深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。
PCT/CN2019/071285 2018-01-23 2019-01-11 激光发射器、光电设备、深度相机和电子装置 WO2019144813A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810064161.5A CN108107663A (zh) 2018-01-23 2018-01-23 激光发射器、光电设备、深度相机和电子装置
CN201810064332.4A CN108333858A (zh) 2018-01-23 2018-01-23 激光发射器、光电设备、深度相机和电子装置
CN201810064332.4 2018-01-23
CN201810064161.5 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019144813A1 true WO2019144813A1 (zh) 2019-08-01

Family

ID=67395207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071285 WO2019144813A1 (zh) 2018-01-23 2019-01-11 激光发射器、光电设备、深度相机和电子装置

Country Status (1)

Country Link
WO (1) WO2019144813A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110516A1 (en) * 2005-09-13 2010-05-06 Texas Instruments Incorporated Projection System and Method Including Spatial Light Modulator and Compact Diffractive Optics
CN106501959A (zh) * 2016-10-26 2017-03-15 深圳奥比中光科技有限公司 一种面阵激光投影仪及其深度相机
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机
CN107424188A (zh) * 2017-05-19 2017-12-01 深圳奥比中光科技有限公司 基于vcsel阵列光源的结构光投影模组
CN108107662A (zh) * 2018-01-06 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备和深度相机
CN108107663A (zh) * 2018-01-23 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置
CN108107661A (zh) * 2018-01-06 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备和深度相机
CN108333858A (zh) * 2018-01-23 2018-07-27 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110516A1 (en) * 2005-09-13 2010-05-06 Texas Instruments Incorporated Projection System and Method Including Spatial Light Modulator and Compact Diffractive Optics
CN106501959A (zh) * 2016-10-26 2017-03-15 深圳奥比中光科技有限公司 一种面阵激光投影仪及其深度相机
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机
CN107424188A (zh) * 2017-05-19 2017-12-01 深圳奥比中光科技有限公司 基于vcsel阵列光源的结构光投影模组
CN108107662A (zh) * 2018-01-06 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备和深度相机
CN108107661A (zh) * 2018-01-06 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备和深度相机
CN108107663A (zh) * 2018-01-23 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置
CN108333858A (zh) * 2018-01-23 2018-07-27 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置

Similar Documents

Publication Publication Date Title
US10097741B2 (en) Camera for measuring depth image and method of measuring depth image using the same
KR102231081B1 (ko) 구조형 광의 프로젝터
CN109798838B (zh) 一种基于激光散斑投射的ToF深度传感器及其测距方法
US11095365B2 (en) Wide-angle illuminator module
CN106569382B (zh) 激光投影仪及其深度相机
CN107424188B (zh) 基于vcsel阵列光源的结构光投影模组
CN106997603B (zh) 基于vcsel阵列光源的深度相机
WO2021212915A1 (zh) 一种激光测距装置及方法
CN106568396A (zh) 一种激光投影仪及其深度相机
JP2020532126A (ja) 共通のウェーハレベル集積光学デバイスを有するvcselアレイ
WO2019192240A1 (zh) 激光发射器、光电设备、深度相机和电子装置
JP2011160420A (ja) 投影照明の画像センサの回転シャッタとの同期
CN108107662A (zh) 激光发射器、光电设备和深度相机
CN108107663A (zh) 激光发射器、光电设备、深度相机和电子装置
CN106501959A (zh) 一种面阵激光投影仪及其深度相机
WO2020089057A1 (en) Electronic device, method and computer program
CN216308923U (zh) 点泛光切换投射模组及摄像模组
WO2019144813A1 (zh) 激光发射器、光电设备、深度相机和电子装置
CN108333858A (zh) 激光发射器、光电设备、深度相机和电子装置
WO2019134672A1 (zh) 激光发射器、光电设备和深度相机
WO2019134671A1 (zh) 激光发射器、光电设备和深度相机
CN217085782U (zh) 一种结构光三维成像模块及深度相机
CN108107661A (zh) 激光发射器、光电设备和深度相机
US20240056669A1 (en) Camera module
CN207780462U (zh) 激光发射器、光电设备和深度相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743380

Country of ref document: EP

Kind code of ref document: A1