WO2019144578A1 - 联合sfft与coa的无线传感器网络部署结构及频谱重建方法 - Google Patents

联合sfft与coa的无线传感器网络部署结构及频谱重建方法 Download PDF

Info

Publication number
WO2019144578A1
WO2019144578A1 PCT/CN2018/095216 CN2018095216W WO2019144578A1 WO 2019144578 A1 WO2019144578 A1 WO 2019144578A1 CN 2018095216 W CN2018095216 W CN 2018095216W WO 2019144578 A1 WO2019144578 A1 WO 2019144578A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
signal
acquisition sensor
processing module
digital signal
Prior art date
Application number
PCT/CN2018/095216
Other languages
English (en)
French (fr)
Inventor
吴方舟
陈力
陈晓辉
王卫东
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to US16/771,195 priority Critical patent/US11317362B2/en
Publication of WO2019144578A1 publication Critical patent/WO2019144578A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to the field of wireless sensor networks and spectrum reconstruction technologies, and in particular, to a wireless sensor network deployment structure and a spectrum reconstruction method combining SFFT and COA.
  • SFFT Small Fast Fourier Transform
  • SFT Small Fourier Transform
  • the core idea is to segment a high-rate sampled signal. By processing a number of low-rate samples, the effects of reconstructing the original signal can be achieved by processing these low-rate signals.
  • ADCs Analog-to-Digital Converters
  • the equivalent sampling frequency is higher, thus avoiding the use of expensive high-speed ADCs, which can save costs.
  • SFFT can be less complex than traditional FFT (Fast Fourier Transform) algorithms, which can improve performance.
  • COA computation over Air
  • the main idea of airborne computing is to superimpose the collected signals at the transmitter, superimpose them through the wireless channel, and finally perform post-processing on the receiver to achieve specific function operations.
  • the main advantage of over-the-air computing is that you don't need to collect all the sensor data in turn to get the results we expect, making data collection easier, reducing the amount of data interaction, and reducing transmission delay and throughput.
  • Spectrum Reconstruction is one of the key technologies in the spectrum sharing system. Its purpose is to collect the target signal source through the sensor, so that the spectrum can be reconstructed, and spectrum occupancy information can be extracted or used for signal solution. Tune.
  • the object of the present invention is to provide a wireless sensor network deployment structure and spectrum reconstruction method combining SFFT and COA, which can conveniently deploy sensor nodes into an existing wireless sensor network without changing the traditional ADC working mode and communication. In this way, smaller delays can be achieved at the same time, and the sampling rate of the reconstructed spectrum is higher and the complexity is lower.
  • a wireless sensor network deployment structure combining SFFT and COA comprising: a spectrum acquisition sensor node dispersed in each area, and a convergence node;
  • Each spectrum acquisition sensor node is used to cooperate with other spectrum acquisition sensor nodes to receive and sample the free-space signals, and perform the sparse fast Fourier transform SFFT and pre-processing on the sampled digital signals to the air. Complete the overlay calculation in the air;
  • the aggregation node is configured to receive signals transmitted by all spectrum acquisition sensor nodes superimposed in the air; the data domain is extracted from the received signal frames by frame synchronization and post-processing, thereby completing spectrum reconstruction.
  • each of the spectrum acquisition sensor nodes includes: a broadband spectrum antenna connected in sequence, a delay, an ADC, a first baseband processing module, a DAC, and a transmitting antenna;
  • the wideband spectrum antenna is configured to receive a free space electromagnetic wave to obtain a first analog signal, and the frequency range of the free space electromagnetic wave is 0 Hz to 6 GHz;
  • the delay device is configured to delay the first analog signal, so that the first analog signal satisfies a sub-Nyquist sampling criterion
  • the ADC is configured to convert the delayed first analog signal into a digital signal
  • the first baseband processing module is configured to process the sampled digital signal
  • the DAC is configured to convert the processed digital signal into a second analog signal
  • the transmit antenna is configured to transmit a second analog signal to free space.
  • the first baseband processing module includes: an FFT module, a preprocessing module, and a pulse shaping filter;
  • the FFT module is configured to perform fast Fourier transform on the digital signal sampled by the ADC;
  • the pre-processing module is configured to process the digital signal of the output of the FFT module, perform channel compensation, power compensation, and twiddle factor compensation on the signal, and package the signal into a signal frame;
  • the pulse shaping filter is used to reduce crosstalk between symbols and is sent to the DAC via the signal of the pulse shaping filter.
  • the aggregation node includes: a receiving antenna, an ADC, and a second baseband processing module that are sequentially connected;
  • the second baseband processing module includes a frame synchronization module, a post-processing module, and a data storage;
  • the receiving antenna is configured to receive signals transmitted by all spectrum acquisition sensor nodes and superposed in the air;
  • the ADC is configured to convert an analog signal from a receiving antenna into a digital signal
  • the frame synchronization module is configured to determine a frame header of the digital signal, simultaneously align the symbols, and then extract the digital signal of the data domain portion into the post-processing module;
  • the post-processing module is configured to adjust a power gain of the digital signal in the data domain portion, so that the output result is the correct frequency spectrum
  • the data memory is used to store the obtained spectrum to complete spectrum reconstruction.
  • a broadband wireless spectrum reconstruction method suitable for the above wireless sensor network deployment structure wherein the total number of spectrum acquisition sensor nodes in the wireless sensor network is L, L is a positive integer; the method comprises the following steps:
  • Each spectrum acquisition sensor node cooperates with other spectrum acquisition sensor nodes to receive and sample the free-space signal, and perform the sparse fast Fourier transform SFFT and pre-processing on the sampled digital signal to the air, and finally in the air. Complete the overlay calculation;
  • the sink node receives signals transmitted by all spectrum acquisition sensor nodes superimposed in the air; the data domain is extracted from the received signal frames by frame synchronization and post-processing, thereby completing spectrum reconstruction.
  • each of the spectrum acquisition sensor nodes includes: a broadband spectrum antenna connected in sequence, a delay, an ADC, a first baseband processing module, a DAC, and a transmitting antenna;
  • Each of the spectrum acquisition sensor nodes cooperates with other spectrum acquisition sensor nodes to receive and sample the free-space signals, and perform the sparse fast Fourier transform SFFT and pre-processing on the sampled digital signals to the air, and finally Complete the overlay calculation in the air, including:
  • the wideband spectrum antenna receives a free space electromagnetic wave to obtain a first analog signal, and the frequency range of the free space electromagnetic wave is 0 Hz to 6 GHz;
  • the delayer delays the first analog signal such that the first analog signal satisfies a sub-Nyquist sampling criterion
  • the ADC converts the delayed first analog signal into a digital signal
  • the first baseband processing module processes the sampled digital signal
  • the DAC converts the processed digital signal into a second analog signal
  • the transmit antenna transmits a second analog signal to free space.
  • the first baseband processing module includes: an FFT module, a preprocessing module, and a pulse shaping filter;
  • the first baseband processing module processes the sampled digital signal, and specifically includes:
  • the FFT module performs a fast Fourier transform on the digital signal sampled by the ADC
  • the preprocessing module processes the digital signal of the output of the FFT module, performs channel compensation, power compensation, and twiddle factor compensation on the signal, and encapsulates the signal into a signal frame;
  • the pulse shaping filter reduces inter-symbol crosstalk and is sent to the DAC via a pulse shaped filter signal.
  • the aggregation node includes: a receiving antenna, an ADC, and a second baseband processing module that are sequentially connected;
  • the second baseband processing module includes a frame synchronization module, a post-processing module, and a data storage;
  • the aggregation node receives the signals transmitted by all the spectrum acquisition sensor nodes that are superimposed in the air; and the data domain is extracted from the received signal frames by frame synchronization and post-processing, thereby completing the spectrum reconstruction, including:
  • the receiving antenna receives signals transmitted by all spectrum acquisition sensor nodes and superposed in the air;
  • the ADC converts an analog signal from a receiving antenna into a digital signal
  • the frame synchronization module determines a frame header of the digital signal, simultaneously aligns the symbols, and then extracts a digital signal of the data domain portion into the post-processing module;
  • the post-processing module adjusts the power gain of the digital signal in the data domain portion, so that the output result is the correct spectrum
  • the data memory stores the resulting spectrum to complete spectrum reconstruction.
  • a broadband wireless spectrum reconstruction method suitable for the above wireless sensor network deployment structure wherein the total number of spectrum acquisition sensor nodes in the wireless sensor network is L, L is a positive integer; the method comprises the following steps:
  • L spectrum acquisition sensor nodes respectively sample the free space signal s(t), the sampling frequency is f s /L, the sampling time is T s , and the first spectrum acquisition sensor node collects the sequence of length M s l (m), L is a positive integer;
  • Each spectrum acquisition sensor node obtains a sparse spectrum sequence by performing an M point FFT on the acquired sequence s l (m) through the FFT module in the first baseband processing module;
  • This step is formulated as:
  • This step is formulated as:
  • the signals transmitted by the L spectrum acquisition sensor nodes are superimposed in the air, and are received by the aggregation node after passing through the wireless channel.
  • the received signal is expressed by the formula as:
  • n(k) is noise
  • the aggregation node performs the post-processing module to obtain the reconstructed broadband wireless spectrum
  • the reconstructed broadband wireless spectrum is expressed by the formula:
  • L wireless sensor nodes spectral acquisition sensor nodes
  • the sampling frequency is f s /L
  • a high rate sampling can be reconstructed at the aggregation node and A broadband wireless spectrum with a sampling frequency of f s .
  • the solution is compatible with existing wireless sensor modules and can be easily deployed into current wireless sensor networks.
  • the COA integrates the computing network with the communication network, so that the spectrum reconstruction method of the present invention can effectively reduce the amount of data transmitted, reduce the delay, reduce the cost of the wireless sensor node, and reduce the amount of computation.
  • FIG. 1 is a schematic diagram of a wireless sensor network deployment structure combining SFFT and COA according to an embodiment of the present invention
  • 2(a) to 2(b) are schematic diagrams showing a spectrum acquisition sensor node and a convergence node according to an embodiment of the present invention
  • 3 is a schematic diagram showing the relationship between the average transmit power of the spectrum acquisition sensor node and the spectral distortion degree
  • Figure 5 is a comparison diagram of the reconstructed spectrum and the acquired spectrum (real spectrum) in the spectrum range of 2.42 GHz to 2.45 GHz;
  • Figure 6 is a statistical histogram of the distortion between the reconstructed spectrum and the acquired spectrum (real spectrum).
  • the embodiment of the present invention provides a wireless sensor network deployment structure combining SFFT and COA, as shown in FIG. 1 , which mainly includes: L spectrum acquisition sensor nodes dispersed in each area, and a convergence node; wherein, L is Positive integer
  • Each spectrum acquisition sensor node is used to cooperate with other spectrum acquisition sensor nodes to receive and sample the free-space signals, and perform the sparse fast Fourier transform SFFT and pre-processing on the sampled digital signals to the air. Complete the overlay calculation in the air;
  • the aggregation node is configured to receive signals transmitted by all spectrum acquisition sensor nodes superimposed in the air; the data domain is extracted from the received signal frames by frame synchronization and post-processing, thereby completing spectrum reconstruction.
  • each spectrum acquisition sensor node includes: a broadband spectrum antenna connected in turn, a delay, an ADC, a first baseband processing module, and a DAC. And a transmitting antenna.
  • the wideband spectrum antenna is configured to receive a free space electromagnetic wave to obtain a first analog signal, and the frequency range of the free space electromagnetic wave is 0 Hz to 6 GHz;
  • the delay device is configured to delay the first analog signal, so that the first analog signal satisfies a sub-Nyquist sampling criterion
  • the ADC is configured to convert the delayed first analog signal into a digital signal
  • the first baseband processing module is configured to process the sampled digital signal
  • the DAC is configured to convert the processed digital signal into a second analog signal
  • the transmit antenna is configured to transmit a second analog signal to free space.
  • the first baseband processing module mainly includes: an FFT module, a preprocessing module, and a pulse shaping filter;
  • the FFT module is configured to perform fast Fourier transform on the digital signal sampled by the ADC;
  • the pre-processing module is configured to process the digital signal of the output of the FFT module, perform channel compensation, power compensation, and twiddle factor compensation on the signal, and package the signal into a signal frame;
  • the pulse shaping filter is used to reduce crosstalk between symbols and is sent to the DAC via the signal of the pulse shaping filter.
  • the aggregation node mainly includes: a receiving antenna, an ADC and a second baseband processing module that are sequentially connected; the second baseband processing module includes a frame synchronization module, a post-processing module, and a data storage. ;
  • the receiving antenna is configured to receive signals transmitted by all spectrum acquisition sensor nodes and superposed in the air;
  • the ADC is configured to convert an analog signal from a receiving antenna into a digital signal
  • the frame synchronization module is configured to determine a frame header of the digital signal, simultaneously align the symbols, and then extract the digital signal of the data domain portion into the post-processing module;
  • the post-processing module is configured to adjust a power gain of the digital signal in the data domain portion, so that the output result is the correct frequency spectrum
  • the data memory is used to store the obtained spectrum to complete spectrum reconstruction.
  • the method for implementing the broadband wireless spectrum reconstruction by combining the SFFT and the COA includes the following steps:
  • L spectrum acquisition sensor nodes respectively sample the free space signal s(t), the sampling frequency is f s /L, the sampling time is T s , and the first spectrum acquisition sensor node collects the sequence of length M s l (m), L is a positive integer;
  • Each spectrum acquisition sensor node obtains a sparse spectrum sequence by performing an M point FFT on the acquired sequence s l (m) through the FFT module in the first baseband processing module;
  • This step is formulated as:
  • This step is formulated as:
  • the signals transmitted by the L spectrum acquisition sensor nodes are superimposed in the air, and are received by the aggregation node after passing through the wireless channel.
  • the received signal is expressed by the formula as:
  • n(k) is noise
  • the aggregation node performs the post-processing module to obtain the reconstructed broadband wireless spectrum
  • the reconstructed broadband wireless spectrum is expressed by the formula:
  • the sink node broadcasts a set of known training sequences and reception levels ⁇ , and the first spectrum acquisition sensor calculates its own channel response h l through the training sequence and records the reception level ⁇ .
  • the signal to be observed passes through the delay device, is acquired by the broad spectrum antenna of the first spectrum acquisition sensor, and then is sampled by the low rate ADC to obtain a discrete sequence of M points.
  • the discrete sequence is output by the FFT module, and the output result is preprocessed by using the pre-processing coefficients calculated by ⁇ and h l , and then the data is encapsulated into a frame, and after being pulse-shaped filter, sent to the DAC for digital-to-analog conversion. Finally, it is sent by the transmitting antenna.
  • the aggregation node uses the training sequence in the signal frame to perform frame synchronization, and then intercepts the data segment in the frame to obtain the reconstructed spectrum.
  • the signals transmitted by the L spectrum acquisition sensor nodes need to use L times channels, and in the wireless sensor network deployment structure, only 2 channels are needed to complete the final spectrum reconstruction, which greatly reduces The amount of data transferred and the delay.
  • Test parameters the number of spectrum acquisition sensor nodes is 2, the number of aggregation nodes is 1, the sampling frequency of each spectrum acquisition sensor node is 50MB/s, the working frequency band of wide spectrum antenna is 1GHz to 6GHz, signal transmitting antenna and receiving The antenna operates from 2.4 GHz to 2.5 GHz.
  • the abscissa is the average transmit power of the spectrum acquisition sensor node, and the ordinate is the distortion.
  • the present invention can achieve the purpose of reconstructing the spectrum, and the spectral distortion is still less than 0.1 when the transmission power is as low as -15 dBm, and the distortion can be negligible as the transmission power increases.
  • the test was carried out in the case of LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight). The test results show that in the case of NLOS, the signal is transmitted.
  • the energy drop causes the distortion to increase, which is in line with expectations, but even if the distortion increases, the magnitude of the rise is within an acceptable range.
  • the abscissa is the range of the intercepted spectrum
  • the ordinate is the amplitude of the reconstructed spectrum and the real spectrum.
  • This is a piece of spectrum intercepted from the wideband spectrum.
  • the spectrum ranges from 2.42 GHz to 2.45 GHz.
  • the reconstructed spectrum and the acquired spectrum (real spectrum) There is no significant difference between them.
  • the statistical histogram shown in FIG. 6 is used for explanation.
  • Figure 6 is a statistical histogram of the distortion between the reconstructed spectrum and the real spectrum.
  • the abscissa is the numerical interval of the distortion, and the ordinate is the number of samples falling into the interval. It can be found that the degree of distortion is generally lower than 3 ⁇ 10 -3 , indicating that the present invention can achieve the purpose of reconstructing the spectrum.
  • the present invention realizes the function of reconstructing a high-rate sampled broadband wireless spectrum at the sink node by using the sensor node for low-rate sampling, and is compatible with the existing wireless sensor module, and can be conveniently deployed into the current wireless sensor.
  • the spectrum reconstruction method of the present invention has the characteristics of simple implementation, small delay, low computational complexity, and low equipment configuration requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本发明公开了一种联合SFFT与COA的无线传感器网络部署结构及频谱重建方法,无线传感器网络部署结构包括:分散在各区域内的频谱采集传感器节点,与一个汇聚节点;所有频谱采集传感器节点具有相同的结构,均包括:依次连接的宽带频谱天线、延时器、ADC、第一基带处理模块、DAC与发射天线;所有频谱采集传感器节点配合实现信号的SFFT与COA;所有频谱采集传感器节点发射的信号在空中叠加,由汇聚节点接收;汇聚节点通过后处理从接收的信号帧提取出数据域,以此完成频谱的重建。该方案可以很方便的部署进现存的无线传感器网络中,而且不需要改变传统的ADC工作方式与通信方式,同时可以达到更小的延时,重建频谱的采样速率更高以及更低的复杂度。

Description

联合SFFT与COA的无线传感器网络部署结构及频谱重建方法
本申请要求于2018年01月29日提交中国专利局、申请号为201810083847.9、发明名称为“联合SFFT与COA的无线传感器网络部署结构及频谱重建方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线传感器网络与频谱重建技术领域,尤其涉及一种联合SFFT与COA的无线传感器网络部署结构及频谱重建方法。
背景技术
SFFT(Sparse Fast Fourier Transform,稀疏快速傅里叶变换)技术是SFT(Sparse Fourier Transform,稀疏傅里叶变换)的快速算法,其核心思想是将一个高速率采样得到的信号进行分段,等效为若干组低速率采样得到的信号,通过对这几组低速率的信号进行处理,能够达到重建原始信号的效果。理论上来说,只要参与采样的低速ADC(Analog-to-Digital Converter,模数转换器)越多,那么等效的采样频率越高,这样就避免了使用价格昂贵的高速率ADC,能节约成本。除此之外,SFFT可以比传统的FFT(Fast Fourier Transform,快速傅里叶变换)算法的复杂度更低,从而能提升性能。
COA(Computation over Air,空中计算)是一项运用在无线传感器网络中的数据传输方法,由于无线传感器网络中,所有传感器传输数据的最终目的都是为了实现一个特定的函数(如求和、平均、最大值与最小值)而不是很在意传输过程中的数据,那么与其将每个传感器的数据逐一收集,不如通过特殊的手段直接收集我们最感兴趣的结果。因此,空中计算应运而生,空中计算的主要思想是通过在发射机对采集的信号进行预处理,通过无线信道实现叠加,最终在接收机进行信号的后处理,从而实现特定的函数运算。空中计算的主要优势就是不需要依次收集所有传感器的数据就能得到我们期望的结果,使得数据 的收集变得容易,减小了数据交互量,降低了传输时延与处理量。
频谱重建(Spectrum Reconstruction)是频谱共享系统中的关键技术之一,其目的在于通过传感器对目标信号源进行采集,从而能对其频谱进行重建,可以从中提取出频谱占用信息或者用来进行信号解调等。
随着5G的兴起与物联网的高速发展,越来越多的传感器接入网络,使得可以利用的传感器节点非常丰富,除此之外,可用的频谱资源也变得更加紧张,对频谱进行实时分析就显得更加重要。因此,如何部署无线传感器网络并完成频谱重建尤为重要,但是,目前还没有较为有效的方案。
发明内容
本发明的目的是提供一种联合SFFT与COA的无线传感器网络部署结构及频谱重建方法,可以将传感器节点很方便的部署进现存的无线传感器网络中,而且不需要改变传统的ADC工作方式与通信方式,同时可以达到更小的延时,重建频谱的采样率更高以及更低的复杂度。
本发明的目的是通过以下技术方案实现的:
一种联合SFFT与COA的无线传感器网络部署结构,包括:分散在各区域内的频谱采集传感器节点,以及一个汇聚节点;
每个频谱采集传感器节点用于与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算;
汇聚节点用于接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建。
可选地,每个所述频谱采集传感器节点均包括:依次连接的宽带频谱天线、延时器、ADC、第一基带处理模块、DAC以及发射天线;
所述宽带频谱天线用于接收自由空间电磁波,得到第一模拟信号,所述自由空间电磁波的频率范围是0Hz至6GHz;
所述延时器用于延时所述第一模拟信号,使第一模拟信号满足次奈奎斯特采样准则;
所述ADC用于将延时后的第一模拟信号转化为数字信号;
所述第一基带处理模块用于处理采样得到的数字信号;
所述DAC用于将处理后的数字信号转变成第二模拟信号;
所述发射天线用于发射第二模拟信号至自由空间。
可选地,所述第一基带处理模块包括:FFT模块、预处理模块以及脉冲成型滤波器;
其中,FFT模块用于对ADC采样所得的数字信号进行快速傅里叶变换;
预处理模块用于处理FFT模块的输出的数字信号,对信号进行信道补偿、功率补偿以及旋转因子补偿,并封装成信号帧;
脉冲成型滤波器用于减小符号间串扰,经过脉冲成型滤波器的信号,发送至DAC。
可选地,所述汇聚节点包括:依次连接的接收天线、ADC以及第二基带处理模块;所述第二基带处理模块包括帧同步模块、后处理模块以及数据存储器;
其中,所述接收天线用于接收所有频谱采集传感器节点发射、空中叠加后的信号;
所述ADC用于对来自接收天线的模拟信号转换成数字信号;
所述帧同步模块用于确定数字信号的帧头,同时对齐符号,然后提取出数据域部分的数字信号送入后处理模块;
所述后处理模块用于调整数据域部分的数字信号的功率增益,使其输出的结果为所正确的频谱;
所述数据存储器用于存储所得频谱,完成频谱重建。
一种适用于上述无线传感器网络部署结构的宽带无线频谱重建方法,无线传感器网络中的频谱采集传感器节点的总数为L,L为正整数;所述方法包括以下步骤:
每个频谱采集传感器节点与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算;
汇聚节点接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建。
可选地,每个所述频谱采集传感器节点均包括:依次连接的宽带频谱天线、延时器、ADC、第一基带处理模块、DAC以及发射天线;
所述每个频谱采集传感器节点与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算,具体包括:
所述宽带频谱天线接收自由空间电磁波,得到第一模拟信号,所述自由空间电磁波的频率范围是0Hz至6GHz;
所述延时器延时所述第一模拟信号,使第一模拟信号满足次奈奎斯特采样准则;
所述ADC将延时后的第一模拟信号转化为数字信号;
所述第一基带处理模块处理采样得到的数字信号;
所述DAC将处理后的数字信号转变成第二模拟信号;
所述发射天线发射第二模拟信号至自由空间。
可选地,所述第一基带处理模块包括:FFT模块、预处理模块以及脉冲成型滤波器;
所述第一基带处理模块处理采样得到的数字信号,具体包括:
FFT模块对ADC采样所得的数字信号进行快速傅里叶变换;
预处理模块用处理FFT模块的输出的数字信号,对信号进行信道补偿、功率补偿以及旋转因子补偿,并封装成信号帧;
脉冲成型滤波器减小符号间串扰,经过脉冲成型滤波器的信号,发送至DAC。
可选地,所述汇聚节点包括:依次连接的接收天线、ADC以及第二基带处理模块;所述第二基带处理模块包括帧同步模块、后处理模块以及数据存储器;
所述汇聚节点接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建,具体包括:
所述接收天线接收所有频谱采集传感器节点发射、空中叠加后的信号;
所述ADC对来自接收天线的模拟信号转换成数字信号;
所述帧同步模块确定数字信号的帧头,同时对齐符号,然后提取出数据域部分的数字信号送入后处理模块;
所述后处理模块调整数据域部分的数字信号的功率增益,使其输出的结果为所正确的频谱;
所述数据存储器存储所得频谱,完成频谱重建。
一种适用于上述无线传感器网络部署结构的宽带无线频谱重建方法,无线传感器网络中的频谱采集传感器节点的总数为L,L为正整数;所述方法包括以下步骤:
1)L个频谱采集传感器节点分别对自由空间信号s(t)进行采样,采样频率为f s/L,采样时间为T s,第l个频谱采集传感器节点采集到长度为M的序列s l(m),L为正整数;
2)每个频谱采集传感器节点通过第一基带处理模块中的FFT模块对采集的序列s l(m)进行M点的FFT得到稀疏频谱序列;
本步骤用公式表示为:
Figure PCTCN2018095216-appb-000001
其中k=0…M-1,
Figure PCTCN2018095216-appb-000002
为傅里叶变换中的旋转因子;
3)稀疏频谱序列X l(k)经过预处理模块之后,得到待发送的符号序列,
本步骤用公式表示为:
Figure PCTCN2018095216-appb-000003
其中k=0…N-1,
Figure PCTCN2018095216-appb-000004
为傅里叶变换中的旋转因子,mod是求余运算,h l是第l个频谱采集传感器节点的信道响应,η为接收电平,
Figure PCTCN2018095216-appb-000005
是第l个频谱采集传感器节点的预处理系数,且满足
Figure PCTCN2018095216-appb-000006
4)待发送的符号序列x l(k)经过脉冲成型滤波器后发射到空中;
5)L个频谱采集传感器节点发射的信号在空中叠加,经过无线信道后由汇聚节点接收,接收到的信号用公式表示为:
Figure PCTCN2018095216-appb-000007
其中,k=0…N-1,n(k)为噪声;
6)汇聚节点进行后处理模块得到重建后宽带无线频谱,
重建后宽带无线频谱用公式表示为:
Figure PCTCN2018095216-appb-000008
其中
Figure PCTCN2018095216-appb-000009
是理想无噪的信号s(n)的频谱且观测带宽为f s,k=0…N-1,n(k)为噪声。
由上述本发明提供的技术方案可以看出,当使用L个无线传感器节点(频谱采集传感器节点)进行低速率采样且采样频率为f s/L时,在汇聚节点处可以重建一个高速率采样且采样频率为f s的宽带无线频谱。该方案可以兼容现有的无线传感器模块,可以很方便的部署进当前的无线传感器网络中。通过COA使得计算网络与通信网络融合,使得本发明的频谱重建的方法可以有效地减少传输的数据量、减少时延、降低无线传感器节点的成本和降低运算量等特点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种联合SFFT与COA的无线传感器网络部署结构的示意图;
图2(a)至图2(b)为本发明实施例提供的频谱采集传感器节点与汇聚节点的示意图;
图3为频谱采集传感器节点的平均发射功率与频谱失真度的关系示意图;
图4为频谱采集传感器节点与汇聚节点之间的通信与工作流程图;
图5为频谱范围2.42GHz到2.45GHz的重建频谱与采集频谱(真实频谱)对照图;
图6为重建频谱与采集频谱(真实频谱)之间失真度的统计直方图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明实施例提供一种联合SFFT与COA的无线传感器网络部署结构,如图1所示,其主要包括:分散在各区域内的L个频谱采集传感器节点,以及一个汇聚节点;其中,L为正整数;
每个频谱采集传感器节点用于与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算;
汇聚节点用于接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建。
所有频谱采集传感器节点具有相同的结构,如图1和图2(a)所示,每个频谱采集传感器节点包括:依次连接的宽带频谱天线、延时器、ADC、第一基带处理模块、DAC以及发射天线。
所述宽带频谱天线用于接收自由空间电磁波,得到第一模拟信号,所述自由空间电磁波的频率范围是0Hz至6GHz;
所述延时器用于延时所述第一模拟信号,使第一模拟信号满足次奈奎斯特采样准则;
所述ADC用于将延时后的第一模拟信号转化为数字信号;
所述第一基带处理模块用于处理采样得到的数字信号;
所述DAC用于将处理后的数字信号转变成第二模拟信号;
所述发射天线用于发射第二模拟信号至自由空间。
本发明实施例中,所述第一基带处理模块主要包括:FFT模块、预处理模块以及脉冲成型滤波器;
其中,FFT模块用于对ADC采样所得的数字信号进行快速傅里叶变换;
预处理模块用于处理FFT模块的输出的数字信号,对信号进行信道补偿、功率补偿以及旋转因子补偿,并封装成信号帧;
脉冲成型滤波器用于减小符号间串扰,经过脉冲成型滤波器的信号,发送至DAC。
本发明实施例中,如图2(b)所示,汇聚节点主要包括:依次连接的接收天线、ADC以及第二基带处理模块;第二基带处理模块包括帧同步模块、后处理模块以及数据存储器;
其中,所述接收天线用于接收所有频谱采集传感器节点发射、空中叠加后的信号;
所述ADC用于对来自接收天线的模拟信号转换成数字信号;
所述帧同步模块用于确定数字信号的帧头,同时对齐符号,然后提取出数据域部分的数字信号送入后处理模块;
所述后处理模块用于调整数据域部分的数字信号的功率增益,使其输出的结果为所正确的频谱;
所述数据存储器用于存储所得频谱,完成频谱重建。
本发明实施例中,为了在汇聚中心重建一个采样频率f s的频谱,联合SFFT与COA实现宽带无线频谱重建方法包括以下步骤:
1)L个频谱采集传感器节点分别对自由空间信号s(t)进行采样,采样频率为f s/L,采样时间为T s,第l个频谱采集传感器节点采集到长度为M的序列s l(m),L为正整数;
2)每个频谱采集传感器节点通过第一基带处理模块中的FFT模块对采集的序列s l(m)进行M点的FFT得到稀疏频谱序列;
本步骤用公式表示为:
Figure PCTCN2018095216-appb-000010
其中k=0…M-1,
Figure PCTCN2018095216-appb-000011
为傅里叶变换中的旋转因子。
3)稀疏频谱序列X l(k)经过预处理模块之后,得到待发送的符号序列,
本步骤用公式表示为:
Figure PCTCN2018095216-appb-000012
其中,k=0…N-1,
Figure PCTCN2018095216-appb-000013
为傅里叶变换中的旋转因子,mod是求余运算,h l是第l个频谱采集传感器节点的信道响应,η为接收电平,
Figure PCTCN2018095216-appb-000014
是第l个频谱采集传感器节点的预处理系数,且满足
Figure PCTCN2018095216-appb-000015
4)待发送的符号序列x l(k)经过脉冲成型滤波器后发射到空中;
5)L个频谱采集传感器节点发射的信号在空中叠加,经过无线信道后由汇聚节点接收,接收到的信号用公式表示为:
Figure PCTCN2018095216-appb-000016
其中,k=0…N-1,n(k)为噪声;
6)汇聚节点进行后处理模块得到重建后宽带无线频谱,
重建后宽带无线频谱用公式表示为:
Figure PCTCN2018095216-appb-000017
其中
Figure PCTCN2018095216-appb-000018
是理想无噪的信号s(n)的频谱且观测带宽为f s,k=0…N-1,n(k)为噪声。
为了便于理解,下面结合附图4对附图1所示的无线传感器网络部署结构中节点之间的通信过程进行介绍:
1)汇聚节点进行广播一组已知的训练序列和接收电平η,第l个频谱采集传感器通过训练序列计算出自身的信道响应h l,并记录接收电平η。
2)待观测信号通过延时器,被第l个频谱采集传感器的宽谱天线采集,然后通过低速率ADC采样,得到一个M点的离散序列。
3)离散序列经过FFT模块输出,并使用通过η和h l计算出的预处理系数对输出结果进行预处理,然后将数据封装成帧,经过脉冲成型滤波器后,送往DAC进行数模转换,最后由发射天线发出。
4)L个频谱采集传感器节点发射的信号在空中叠加,由汇聚节点的接收。
5)汇聚节点使用信号帧中的训练序列进行帧同步,再将帧中数据段部分截取下来,获得重建后的频谱。
在传统的无线传感器网络中,传输这L个频谱采集传感器节点发射的信号需要使用L次信道,而在本无线传感器网络部署结构中,完成最终的频谱重建只需要使用2次信道,极大减少了传输的数据量以及时延。
为了说明本发明实施例所提供方案的有益效果,下面结合附图3、附图5以及附图6所示的性能测试图来进行说明。
测试参数:频谱采集传感器节点个数为2,汇聚节点的个数为1,每个频谱采集传感器节点的采样频率为50MB/s,宽谱天线的工作频段是1GHz至6GHz,信号发射天线与接收天线的工作范围为2.4GHz至2.5GHz。
图3中横坐标为频谱采集传感器节点的平均发射功率,纵坐标为失真度,失真度越小表明频谱重建的效果越好。从图中可以发现,本发明可以达到重建频谱的目的,而且在发射功率低到-15dBm时,频谱失真度依然小于0.1,而且随着发射功率增大,失真度可以低到忽略不计。实验在LOS(Line-of-Sight,直视径)与NLOS(Non-Line-of-Sight,无直视径)的情况下分别进行了测试,测试结果表明在NLOS的情况下,由于发射信号的能量下降,使得失真度上升,这和预期相符,但是即便失真度有所上升,上升的幅度也在可接受的范围内。
图5中横坐标为截取的频谱的范围,纵坐标为重建频谱与真实频谱的幅度。这是从宽带频谱上截取的一段频谱,频谱范围是从2.42GHz到2.45GHz,在该范围内存在一个带宽为20MHz左右的OFDM符号,从图中可以看出,重建频谱与采集频谱(真实频谱)之间没有明显差别。为了进一步说明本发明可以达到重建频谱的目的,而且重建频谱的精度足够高,采用图6所示的统计直方图进行说明。图6是重建频谱与真实频谱之间失真度的统计直方图,横坐标为失真度的数值区间,纵坐标为落入区间的样本数量。可以发现,失真度总体上低于3×10 -3,说明本发明可以达到重建频谱的目的。
因此,本发明实现了使用传感器节点进行低速率采样而在汇聚节点处重建一个高速率采样的宽带无线频谱的功能,并能兼容现有的无线传感器模块,可以很方便的部署进当前的无线传感器网络中,除此之外,本发明的频谱重建的方法具有实现简单、时延小、运算量低以及设备配置要求不高等特点。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

  1. 一种联合SFFT与COA的无线传感器网络部署结构,其特征在于,包括:分散在各区域内的频谱采集传感器节点,以及一个汇聚节点;
    每个频谱采集传感器节点用于与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算;
    汇聚节点用于接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建。
  2. 根据权利要求1所述的一种联合SFFT与COA的无线传感器网络部署结构,其特征在于,每个所述频谱采集传感器节点均包括:依次连接的宽带频谱天线、延时器、ADC、第一基带处理模块、DAC以及发射天线;
    所述宽带频谱天线用于接收自由空间电磁波,得到第一模拟信号,所述自由空间电磁波的频率范围是0Hz至6GHz;
    所述延时器用于延时第一模拟信号,使第一模拟信号满足次奈奎斯特采样准则;
    所述ADC用于将延时后的第一模拟信号转化为数字信号;
    所述第一基带处理模块用于处理采样得到的数字信号;
    所述DAC用于将处理后的数字信号转变成第二模拟信号;
    所述发射天线用于发射第二模拟信号至自由空间。
  3. 根据权利要求2所述的一种联合SFFT与COA的无线传感器网络部署结构,其特征在于,所述第一基带处理模块包括:FFT模块、预处理模块以及脉冲成型滤波器;
    其中,FFT模块用于对ADC采样所得的数字信号进行快速傅里叶变换;
    预处理模块用于处理FFT模块的输出的数字信号,对信号进行信道补偿、功率补偿以及旋转因子补偿,并封装成信号帧;
    脉冲成型滤波器用于减小符号间串扰,经过脉冲成型滤波器的信号,发送至DAC。
  4. 根据权利要求1所述的一种联合SFFT与COA的无线传感器网络部署结构,其特征在于,所述汇聚节点包括:依次连接的接收天线、ADC以及第二基带处理模块;所述第二基带处理模块包括帧同步模块、后处理模块以及数据存储器;
    其中,所述接收天线用于接收所有频谱采集传感器节点发射、空中叠加后的信号;
    所述ADC用于对来自接收天线的模拟信号转换成数字信号;
    所述帧同步模块用于确定数字信号的帧头,同时对齐符号,然后提取出数据域部分的数字信号送入后处理模块;
    所述后处理模块用于调整数据域部分的数字信号的功率增益,使其输出的结果为所正确的频谱;
    所述数据存储器用于存储所得频谱,完成频谱重建。
  5. 一种适用于权利要求1-4任一项所述无线传感器网络部署结构的宽带无线频谱重建方法,其特征在于,无线传感器网络中的频谱采集传感器节点的总数为L,L为正整数;所述方法包括以下步骤:
    每个频谱采集传感器节点与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算;
    汇聚节点接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建。
  6. 根据权利要求5所述的方法,其特征在于,每个所述频谱采集传感器节点均包括:依次连接的宽带频谱天线、延时器、ADC、第一基带处理模块、DAC以及发射天线;
    所述每个频谱采集传感器节点与其它频谱采集传感器节点进行配合,对自由空间的信号进行接收与ADC采样,对采样后的数字信号进行稀疏快速傅里叶变换SFFT与预处理发射至空中,最终在空中完成叠加计算,具体包括:
    所述宽带频谱天线接收自由空间电磁波,得到第一模拟信号,所述自由空间电磁波的频率范围是0Hz至6GHz;
    所述延时器延时所述第一模拟信号,使第一模拟信号满足次奈奎斯特采样准则;
    所述ADC将延时后的第一模拟信号转化为数字信号;
    所述第一基带处理模块处理采样得到的数字信号;
    所述DAC将处理后的数字信号转变成第二模拟信号;
    所述发射天线发射第二模拟信号至自由空间。
  7. 根据权利要求5所述的方法,其特征在于,所述第一基带处理模块包括:FFT模块、预处理模块以及脉冲成型滤波器;
    所述第一基带处理模块处理采样得到的数字信号,具体包括:
    FFT模块对ADC采样所得的数字信号进行快速傅里叶变换;
    预处理模块用处理FFT模块的输出的数字信号,对信号进行信道补偿、功率补偿以及旋转因子补偿,并封装成信号帧;
    脉冲成型滤波器减小符号间串扰,经过脉冲成型滤波器的信号,发送至DAC。
  8. 根据权利要求5所述的方法,其特征在于,所述汇聚节点包括:依次连接的接收天线、ADC以及第二基带处理模块;所述第二基带处理模块包括帧同步模块、后处理模块以及数据存储器;
    所述汇聚节点接收在空中叠加后的所有频谱采集传感器节点发射的信号;通过帧同步和后处理从接收的信号帧中提取出数据域,以此完成频谱的重建,具体包括:
    所述接收天线接收所有频谱采集传感器节点发射、空中叠加后的信号;
    所述ADC对来自接收天线的模拟信号转换成数字信号;
    所述帧同步模块确定数字信号的帧头,同时对齐符号,然后提取出数据域部分的数字信号送入后处理模块;
    所述后处理模块调整数据域部分的数字信号的功率增益,使其输出的结果为所正确的频谱;
    所述数据存储器存储所得频谱,完成频谱重建。
  9. 一种适用于权利要求1-4任一项所述无线传感器网络部署结构的宽带无线频谱重建方法,其特征在于,无线传感器网络中的频谱采集传感器节点的 总数为L,L为正整数;所述方法包括以下步骤:
    1)L个频谱采集传感器节点分别对自由空间信号s(t)进行采样,采样频率为f s/L,采样时间为T s,第l个频谱采集传感器节点采集到长度为M的序列s l(m),L为正整数;
    2)每个频谱采集传感器节点通过第一基带处理模块中的FFT模块对采集的序列s l(m)进行M点的FFT得到稀疏频谱序列;
    本步骤用公式表示为:
    Figure PCTCN2018095216-appb-100001
    其中k=0…M-1,
    Figure PCTCN2018095216-appb-100002
    为傅里叶变换中的旋转因子;
    3)稀疏频谱序列X l(k)经过预处理模块之后,得到待发送的符号序列,
    本步骤用公式表示为:
    Figure PCTCN2018095216-appb-100003
    其中,k=0…N-1,
    Figure PCTCN2018095216-appb-100004
    为傅里叶变换中的旋转因子,mod是求余运算,h l是第l个频谱采集传感器节点的信道响应,η为接收电平,
    Figure PCTCN2018095216-appb-100005
    是第l个频谱采集传感器节点的预处理系数,且满足
    Figure PCTCN2018095216-appb-100006
    4)待发送的符号序列x l(k)经过脉冲成型滤波器后发射到空中;
    5)L个频谱采集传感器节点发射的信号在空中叠加,经过无线信道后由汇聚节点接收,接收到的信号用公式表示为:
    Figure PCTCN2018095216-appb-100007
    其中,k=0…N-1,n(k)为噪声。
    6)汇聚节点进行后处理模块得到重建后宽带无线频谱,
    重建后宽带无线频谱用公式表示为:
    Figure PCTCN2018095216-appb-100008
    其中
    Figure PCTCN2018095216-appb-100009
    是理想无噪的信号s(n)的频谱且观测带宽为f s,k=0…N-1,n(k)为噪声。
PCT/CN2018/095216 2018-01-29 2018-07-11 联合sfft与coa的无线传感器网络部署结构及频谱重建方法 WO2019144578A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/771,195 US11317362B2 (en) 2018-01-29 2018-07-11 Wireless sensor network deployment structure combined with SFFT and COA and frequency spectrum reconstruction method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810083847.9A CN108259095B (zh) 2018-01-29 2018-01-29 联合sfft与coa的无线传感器网络部署结构及频谱重建方法
CN201810083847.9 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019144578A1 true WO2019144578A1 (zh) 2019-08-01

Family

ID=62743308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095216 WO2019144578A1 (zh) 2018-01-29 2018-07-11 联合sfft与coa的无线传感器网络部署结构及频谱重建方法

Country Status (3)

Country Link
US (1) US11317362B2 (zh)
CN (1) CN108259095B (zh)
WO (1) WO2019144578A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259095B (zh) * 2018-01-29 2020-10-27 中国科学技术大学 联合sfft与coa的无线传感器网络部署结构及频谱重建方法
CN109274616B (zh) * 2018-08-27 2020-05-22 中国科学技术大学 一种收发机设计方法、汇集节点及感知节点
CN113708863B (zh) * 2021-09-10 2023-08-01 中国人民解放军63891部队 频谱感知训练数据集的构建方法及装置
CN114430563B (zh) * 2022-04-06 2022-07-08 深圳国人无线通信有限公司 一种消除重叠覆盖区域信号干扰的方法、装置和系统
CN116260734B (zh) * 2023-03-23 2023-10-13 南京航空航天大学 面向频谱侦察的无人机集群自适应数据采集方法和系统
CN116539333B (zh) * 2023-06-16 2024-07-16 中国汽车工程研究院股份有限公司 基于车用冲击传感器的碰撞测量信号预处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122146A2 (en) * 2005-05-10 2006-11-16 William Marsh Rice University Method and apparatus for distributed compressed sensing
CN102594515A (zh) * 2012-03-30 2012-07-18 清华大学 传感器网络节点数据发送方法及装置、重构方法及装置
CN105572649A (zh) * 2015-12-11 2016-05-11 中北大学 基于稀疏傅里叶变换的雷达目标检测方法
CN106304191A (zh) * 2016-08-23 2017-01-04 北京邮电大学 一种基于分簇结构无线传感器网络的数据接收方法及装置
CN108259095A (zh) * 2018-01-29 2018-07-06 中国科学技术大学 联合sfft与coa的无线传感器网络部署结构及频谱重建方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101565608B1 (ko) * 2008-09-04 2015-11-03 코닌클리케 필립스 엔.브이. 분산 스펙트럼 감지
US10213164B2 (en) * 2008-09-26 2019-02-26 Qualcomm Incorporated Method and apparatus for under-sampled acquisition and transmission of photoplethysmograph (PPG) data and reconstruction of full band PPG data at the receiver
US8693597B2 (en) * 2008-12-12 2014-04-08 Blackberry Limited Sensor-based wireless communication systems using compressive sampling
US8917798B2 (en) * 2009-12-03 2014-12-23 Qualcomm Incorporated Method and apparatus for distributed processing for wireless sensors
US20130070624A1 (en) * 2010-01-11 2013-03-21 Research In Motion Limited Sensor-based wireless communication systems using compressed sensing with sparse data
CN102237976A (zh) * 2011-07-04 2011-11-09 南京邮电大学 基于多入多出的无线传感器网络随机选择簇头交互方法
CN103117818B (zh) * 2013-01-16 2015-02-25 南京邮电大学 基于空频联合压缩感知的宽带频谱检测方法
US9313072B2 (en) * 2013-11-19 2016-04-12 Massachussetts Institute Of Technology Integrated circuit implementation of methods and apparatuses for monitoring occupancy of wideband GHz spectrum, and sensing respective frequency components of time-varying signals using sub-nyquist criterion signal sampling
WO2016186998A1 (en) * 2015-05-15 2016-11-24 Massachusetts Institute Of Technology Methods and apparatus for array-based compressed sensing
US10097280B2 (en) * 2015-10-02 2018-10-09 Significs & Elements, LLC Systems and methods for communication using sparsity based pre-compensation
EP3563595B1 (en) * 2016-12-30 2023-09-13 Intel Corporation Methods and devices for radio communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122146A2 (en) * 2005-05-10 2006-11-16 William Marsh Rice University Method and apparatus for distributed compressed sensing
CN102594515A (zh) * 2012-03-30 2012-07-18 清华大学 传感器网络节点数据发送方法及装置、重构方法及装置
CN105572649A (zh) * 2015-12-11 2016-05-11 中北大学 基于稀疏傅里叶变换的雷达目标检测方法
CN106304191A (zh) * 2016-08-23 2017-01-04 北京邮电大学 一种基于分簇结构无线传感器网络的数据接收方法及装置
CN108259095A (zh) * 2018-01-29 2018-07-06 中国科学技术大学 联合sfft与coa的无线传感器网络部署结构及频谱重建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONG, SHUNAN ET AL.: "Recent Advances in the Sparse Fourier Transform", TRANSACTIONS OF BEIJING INSTITUTE OF TECHNOLOGY, vol. 37, no. 2, 28 February 2017 (2017-02-28), pages 111 - 118 *

Also Published As

Publication number Publication date
CN108259095A (zh) 2018-07-06
US20200374819A1 (en) 2020-11-26
CN108259095B (zh) 2020-10-27
US11317362B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2019144578A1 (zh) 联合sfft与coa的无线传感器网络部署结构及频谱重建方法
KR101565608B1 (ko) 분산 스펙트럼 감지
CN109981186B (zh) 超短波全频段信号分选方法
JP7056665B2 (ja) Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法
CN106575971A (zh) 同轴电缆连接的电缆数据服务接口规范(docsis)系统或电缆网络中的干扰消除
Cohen et al. Channel estimation in UWB channels using compressed sensing
EP3430740A1 (en) Systems and methods for remotely analyzing the rf environment of a remote radio head
CN106842144A (zh) 并行多相结构数字脉压方法
Liang et al. Joint compressive sensing in wideband cognitive networks
CN103560991A (zh) 适用于正交频分复用接收机抑制测距仪脉冲干扰的方法
CN109738868B (zh) 一种基于信道识别的外辐射源雷达非平稳杂波抑制方法
US9191043B1 (en) Direct digital RF conversion
CN111901058B (zh) 基于亚奈奎斯特采样的多天线辅助宽带频谱感知方法
CN106850033A (zh) Lte分布式中继系统中的上行噪声抑制方法
CN105515711A (zh) 联合压缩感知与接收分集的测距仪干扰抑制系统
CN109286429B (zh) 基站及其基于π相位的多输入多输出接收端
CN113472392B (zh) 一种针对宽带电力线载波通信的频段检测方法
Li et al. Satellite-based multi-resolution compressive spectrum detection in cognitive radio networks
Alam et al. Improved throughput performance in wideband cognitive radios via compressive sensing
Gao et al. Implementation of compressive sensing with real-time signals over TV white space spectrum in cognitive radio
CN106375040A (zh) 一种基于fpga频谱监测带宽内任意频率点实时解调实现方法
Chen et al. A novel matrix optimization for compressive sampling-based sub-Nyquist OFDM receiver in cognitive radio
Yu et al. Compressive spectrum sensing front-ends for cognitive radios
CN114062782B (zh) 适用于宽带射频信号谱估计的2比特采样量化系统及方法
KR102100344B1 (ko) 레이더 전자 감시 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902237

Country of ref document: EP

Kind code of ref document: A1