WO2019144360A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019144360A1
WO2019144360A1 PCT/CN2018/074200 CN2018074200W WO2019144360A1 WO 2019144360 A1 WO2019144360 A1 WO 2019144360A1 CN 2018074200 W CN2018074200 W CN 2018074200W WO 2019144360 A1 WO2019144360 A1 WO 2019144360A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
ofdm symbols
ofdm
duration
communication system
Prior art date
Application number
PCT/CN2018/074200
Other languages
English (en)
French (fr)
Inventor
王轶
黄洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/074200 priority Critical patent/WO2019144360A1/zh
Publication of WO2019144360A1 publication Critical patent/WO2019144360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the transmission of information between the two communication systems may fail.
  • the duration of one OFDM symbol defined by the cellular network ie, the shortest transmission duration of the cellular network
  • the communication cycle period of the industrial Ethernet communication system ie, the industry
  • the shortest transmission duration of Ethernet is not equal, and one OFDM symbol may cross the boundary of the communication cycle, which may cause transmission failure.
  • the present application provides a communication method and apparatus for correctly transmitting information between two communication systems having different shortest transmission durations.
  • the present application provides a communication method, where the method includes: a first device of a first communication system generates consecutive N OFDM symbols carrying information; and a first device transmits the N OFDM symbols to a second communication system The second device sends the information; wherein, the sum of the durations of the N OFDM symbols is equal to the shortest transmission duration of the second communication system, and N is an integer greater than one.
  • the sum of the durations of the N OFDM symbols generated by the first device of the first communication system is equal to the shortest transmission duration of the second communication system, so that the communication time sent by the first communication system and the communication time of the second communication system are aligned. Achieve the correct transmission of information between the two communication systems.
  • the N OFDM symbols satisfy the following conditions:
  • the N OFDM symbols are divided into L groups, the sum of the durations of the OFDM symbols in each group is t, and the shortest transmission duration of the second communication system is L*t, where M ij is included in the jth group.
  • the number of the i-th type of OFDM symbols, a i is the duration of the i-th OFDM symbol, K is a positive integer, L is a positive integer, and t is a positive number.
  • the jth group in the L group satisfies the following condition, and the jth group is any one of the L groups:
  • the OFDM symbols in the jth group are all the first OFDM symbols;
  • the OFDM symbols in the jth group are all second OFDM symbols
  • the OFDM symbols in the jth group include M 1j first OFDM symbols and M 2j second OFDM symbols;
  • the first OFDM symbol includes a useful OFDM symbol and an extended CP
  • the subcarrier spacing corresponding to the useful OFDM symbol in the first OFDM symbol is 120 kHz
  • the duration of the extended CP in the first OFDM symbol is a quarter of a duration of a useful OFDM symbol in the first OFDM symbol
  • the second OFDM symbol including a useful OFDM symbol and an extended CP
  • a subcarrier spacing corresponding to the useful OFDM symbol in the second OFDM symbol is At 240 kHz
  • the jth group in the L group satisfies the following condition, and the jth group is any one of the L groups:
  • the OFDM symbol in the jth group includes 1 third OFDM symbol and 4 fourth OFDM symbols;
  • the third OFDM symbol includes a useful OFDM symbol and a normal CP, and a subcarrier spacing corresponding to the useful OFDM symbol in the third OFDM symbol is 120 kHz, and a duration of the normal CP in the third OFDM symbol is 3.91 microseconds
  • the fourth OFDM symbol includes a useful OFDM symbol and a normal CP, and a subcarrier spacing corresponding to the useful OFDM symbol in the fourth OFDM symbol is 120 kHz
  • the OFDM symbols having the same duration in the N OFDM symbols in any of the foregoing embodiments are consecutive in time; or, any one of the N OFDM symbols in any of the foregoing embodiments is in The position on the timing is arbitrary.
  • OFDM symbols having the same duration may be consecutive in time series or discontinuous (ie, arbitrary).
  • the information in any of the above embodiments includes some or all of control information, data, and reference signals.
  • the present application provides a communication device.
  • the device has the functionality to implement the various embodiments of the first aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a communication device, including: a processor and a memory; the memory is configured to store an instruction, when the device is running, the processor executes the instruction stored in the memory, so that the device performs the foregoing
  • the communication method in one aspect or any of the implementation methods of the first aspect. It should be noted that the memory may be integrated in the processor or may be independent of the processor.
  • the present application provides a communication device, the device comprising a processor, the processor for coupling with a memory, and reading an instruction in the memory and performing the first aspect or the first aspect according to the instruction A communication method in an implementation method.
  • the above communication device may be a base station or a terminal, or a chip or an integrated circuit for communication.
  • the present application further provides a readable storage medium, where the readable storage medium stores a program or an instruction, and when it is run on a computer, the foregoing first aspect or any implementation method of the first aspect The communication method in is executed.
  • the present application further provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the communication method of any of the first aspect or the first aspect.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by the present application
  • FIG. 2 is a schematic diagram of a comparison of the shortest transmission duration of a cellular network communication system and an industrial Ethernet communication system;
  • FIG. 3 is a schematic diagram of a communication method provided by the present application.
  • FIG. 4 is a schematic diagram of a first device of a cellular network communication system provided by the present application transmitting information by using N OFDM symbols;
  • FIG. 5 is a schematic diagram of a configuration scheme of an OFDM symbol of a cellular network communication system provided by the present application.
  • FIG. 6 is a schematic diagram of still another configuration scheme of an OFDM symbol of a cellular network communication system provided by the present application.
  • FIG. 7 is a schematic diagram of still another configuration scheme of an OFDM symbol of a cellular network communication system provided by the present application.
  • FIG. 8 is a schematic diagram of still another configuration scheme of an OFDM symbol of a cellular network communication system provided by the present application.
  • Figure 9 is a schematic diagram of a device provided by the present application.
  • FIG. 10 is a schematic diagram of a communication device provided by the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the network architecture includes a first device of the first communication system and a second device of the second communication system.
  • the information may be transmitted between the first device and the second device, for example, the first device may send information to the second device, or the second device may send information to the first device.
  • the network architecture further includes a proxy device, where the proxy device is configured to implement information transmission between the first device and the second device.
  • the proxy device is configured to implement information transmission between the first device and the second device.
  • the information may be sent to the proxy device and sent by the proxy device to the second device.
  • the second device can send the information to the proxy device, and the proxy device sends the information to the first device.
  • the present application is not limited to the first communication system, the second communication system, and the first device of the first communication system and the second device of the second communication system.
  • the first communication system may be a cellular network
  • the first device may be a base station in a cellular network
  • the second communication system may be an industrial Ethernet
  • the second device is a communication device within an industrial Ethernet, wherein the industrial Ethernet
  • it may be a Sercos III communication system, a Profinet communication system, or a Powerlink communication system.
  • the first communication system may be a cellular network
  • the first device may be a base station in a cellular network
  • the second communication system may be an Institute of Electrical and Electronics Engineer (IEEE) 802.15.4 protocol.
  • IEEE Institute of Electrical and Electronics Engineer
  • the local area network, the second device is a communication device in the local area network.
  • the first communication system and the second communication system have defined shortest transmission durations, and the shortest transmission durations may be, for example, system frames, subframes, time slots, communication cycle periods, and the like.
  • the first communication system is a cellular network communication system
  • the second communication system is an industrial Ethernet communication system as an example.
  • the shortest transmission duration defined may be the duration of an orthogonal frequency division multiplexing (OFDM) symbol.
  • the OFDM symbol may further include a cyclic prefix (CP) and a useful OFDM symbol, wherein the CP may also be divided into a normal CP and an extended CP, which have different durations.
  • CP cyclic prefix
  • the durations of the OFDM symbols are different, and the durations of the CPs included in different OFDM symbols are different, and the duration of the useful OFDM symbols is also different. As shown in Table 1, the duration of several OFDM symbols defined in 5G.
  • Table 1 is only used as an example. In practical applications, more types of OFDM symbols can be defined. For example, the duration and CP of the useful OFDM symbols corresponding to the subcarrier spacing of 15kHZ, 30kHZ, 480kHZ, and 960kHZ can be defined. The length of time. This application does not limit this.
  • the shortest transmission duration can also be referred to as a communication cycle.
  • the communication cycle of the Sercos III system is 31.25*2 N ⁇ s or 250*T ⁇ s, where T is a positive integer and N is 0, 1, 2 or 3.
  • the Profinet system has a communication cycle of 250 ⁇ s or 31.25 ⁇ s.
  • the shortest transmission duration defined by the above cellular communication system and the industrial Ethernet communication system in general, the shortest transmission durations defined by the two different communication systems are different.
  • FIG. 2 a schematic diagram of the comparison of the shortest transmission duration of the cellular communication system and the industrial Ethernet communication system.
  • the shortest transmission duration of the cellular communication system ie, the duration of one OFDM symbol
  • the shortest transmission duration of the industrial Ethernet communication system ie, one communication cycle. Therefore, when a device of a cellular network communication system transmits information to a device of an industrial Ethernet communication system through an OFDM symbol, a situation occurs in which an OFDM symbol crosses a communication cycle period boundary of the second communication system.
  • the second OFDM symbol of the cellular communication system of FIG. 2 spans the boundary of the first communication cycle and the second communication cycle of the industrial Ethernet communication system, and thus the second OFDM symbol may appear.
  • the situation in which the carried information failed to be sent.
  • a possible implementation manner is that no information is carried on the second OFDM symbol, but this is a waste of resources and increases scheduling complexity.
  • the present application provides a communication method, which can solve the above problems without wasting resources and increasing scheduling complexity.
  • a schematic diagram of a communication method includes the following steps:
  • Step 301 The first device of the first communications system generates consecutive N OFDM symbols carrying information.
  • Step 302 The first device sends the information to the second device of the second communication system by using the N OFDM symbols.
  • the sum of the durations of the N OFDM symbols is equal to the shortest transmission duration of the second communication system, and N is an integer greater than 1.
  • the sum of the durations of consecutive N OFDM symbols generated by the first device of the first communication system is equal to the shortest transmission duration of the second communication system, so that the communication time sent by the first communication system and the second communication system Alignment, in turn, enables the correct transmission of information between the two communication systems.
  • the first communication system is still a cellular network communication system
  • the second communication system is an industrial Ethernet communication system.
  • FIG. 4 a schematic diagram of a first device of a cellular network communication system transmitting information through N OFDM symbols.
  • the N OFDM symbols in the cellular communication system are selected such that the sum of the durations of the N OFDM symbols is equal to one communication cycle of the industrial Ethernet communication system.
  • the cellular network communication system can be aligned with the communication cycle period of the industrial Ethernet communication system when transmitting information through the OFDM symbol, and does not appear to cross the communication cycle period, thereby helping to reduce the occurrence of transmission failure.
  • the communication cycle period of Industrial Ethernet is 31.25 ⁇ s
  • the above N OFDM symbols include two types of OFDM symbols, which are respectively referred to as a first OFDM symbol and a second OFDM symbol.
  • the first OFDM symbol includes a useful OFDM symbol and an extended CP.
  • the subcarrier spacing corresponding to the useful OFDM symbol in the first OFDM symbol is 120 kHz, and the duration of the extended CP in the first OFDM symbol is in the first OFDM symbol. A quarter of the duration of the useful OFDM symbol.
  • Table 2 For the configuration scheme of the first OFDM symbol, refer to Table 2.
  • Subcarrier spacing 120 Useful OFDM symbol duration (seconds/s) 1/120000 Extended CP duration (seconds/s) 1/480000
  • the second OFDM symbol includes a useful OFDM symbol and an extended CP
  • the subcarrier spacing corresponding to the useful OFDM symbol in the second OFDM symbol is 240 kHz
  • the duration of the extended CP in the second OFDM symbol is the useful OFDM in the second OFDM symbol A quarter of the duration of the symbol.
  • the configuration scheme of the second OFDM symbol can be referred to Table 3.
  • Subcarrier spacing (kHz/kHZ) 240 Useful OFDM symbol duration (seconds/s) 1/240000 Extended CP duration (seconds/s) 1/960000
  • Method 1 selecting 2 first OFDM symbols and 2 second OFDM symbols
  • the first device continuously transmits N OFDM symbols in 31.25 ⁇ s, where the N OFDM symbols carry information to be sent to the second device, and the information includes, but is not limited to, : Part or all of control information, data information, reference signals, synchronization signals, and discovery signals, thereby achieving alignment of communication times of the two communication systems.
  • the OFDM symbol may be generated in the following manner:
  • the OFDM symbols having the same duration in the N OFDM symbols are consecutive in time series.
  • two first OFDM symbols may be generated, and two second OFDM symbols may be generated; or two second OFDM symbols may be generated, and two first OFDM symbols are generated.
  • one first OFDM symbol may be formed, and four second OFDM symbols may be generated; or, for example, four second OFDM symbols are generated, and one first OFDM symbol is generated.
  • Manner 2 The positions of the plurality of first OFDM symbols and the second OFDM symbols included in the N OFDM symbols are arbitrary in time sequence.
  • the first device may generate and transmit an OFDM symbol according to the network physical layer or the upper layer scheduling information, and the positions of the multiple first OFDM symbols and the second OFDM symbols included in the generated N OFDM symbols are arbitrary. .
  • the OFDM symbol carrying the control information may be generated and sent first.
  • one first OFDM symbol can be formed, one second OFDM symbol is generated, one first OFDM symbol is generated, and one second OFDM symbol is generated.
  • one first OFDM symbol can be formed, one second OFDM symbol is generated, and one second OFDM symbol is generated, and one first OFDM symbol is generated.
  • one second OFDM symbol may be formed, one first OFDM symbol is generated, and one second OFDM symbol is generated, and one first OFDM symbol is generated.
  • one second OFDM symbol may be formed, one first OFDM symbol is generated, one first OFDM symbol is generated, and one second OFDM symbol is generated.
  • one second OFDM symbol can be formed, one first OFDM symbol is generated, and three second OFDM symbols are generated.
  • an OFDM symbol corresponding to a certain subcarrier spacing is defined in a cellular network communication system and can only be used to transmit certain types of information, or the definition cannot be used to transmit certain types of information, then This rule can also be followed in actual use. For example, if the OFDM symbol corresponding to the sub-carrier spacing of the cellular network communication system is 240kHZ is not used for transmitting data information, in the above various designs, if the N OFDM symbols include the second OFDM symbol, the second OFDM symbol Not used to transfer data information.
  • the configuration schemes of the above method one to method four can be used to combine and obtain a configuration scheme in which the total OFDM duration is 31.25*K ⁇ s.
  • 62.5 ⁇ s can be divided into two groups, each group is 31.25 ⁇ s, wherein each group has 4 configurations of 31.25 ⁇ s, so there are 16 kinds. Configuration.
  • the communication cycle period of the industrial Ethernet communication system is 31.25*L ⁇ s and L is an integer greater than 1, there are 4 L configuration schemes to obtain a combination of N OFDM symbols and a duration of 31.25*L ⁇ s.
  • the N OFDM symbols are divided into L groups, the sum of the durations of the OFDM symbols in each group is t, and the shortest transmission duration of the second communication system is L*t, where M ij is included in the jth group.
  • the number of the i-th type of OFDM symbols, a i is the duration of the i-th OFDM symbol, K is a positive integer, L is a positive integer, and t is a positive number.
  • the above formula conditions are not limited to use in the above scenario, and may be applied to other scenarios.
  • the N OFDM symbols are not limited to include only the foregoing first OFDM symbol and/or the second OFDM symbol, and may also include other types of various types of OFDM symbols.
  • the first communication system is a cellular network
  • the first device may be a base station in a cellular network
  • the second communication system may be a local area network adopting the IEEE 802.15.4 protocol
  • the second device is a communication device in the local area network.
  • the shortest transmission duration of the local area network (that is, the duration of one symbol) is 50 ⁇ s.
  • the above N OFDM symbols may include two types of OFDM symbols, which are respectively referred to as a third OFDM symbol and a fourth OFDM symbol.
  • the third OFDM symbol includes a useful OFDM symbol and a normal CP, the subcarrier spacing corresponding to the useful OFDM symbol in the third OFDM symbol is 120 kHz, and the duration of the normal CP in the third OFDM symbol is 3.91 ⁇ s.
  • the configuration scheme of the third OFDM symbol can be referred to Table 4.
  • Subcarrier spacing 120 Useful OFDM symbol duration (seconds/s) 1/120000 Normal CP duration (seconds/s) 3.91*10 -6
  • the fourth OFDM symbol includes a useful OFDM symbol and a normal CP, the subcarrier spacing corresponding to the useful OFDM symbol in the fourth OFDM symbol is 120 kHz, and the duration of the normal CP in the fourth OFDM symbol is 1.11 ⁇ s.
  • Table 5 For the configuration scheme of the fourth OFDM symbol, refer to Table 5.
  • Subcarrier spacing 120 Useful OFDM symbol duration (seconds/s) 1/120000 Extended CP duration (seconds/s) 1.11*10 -6
  • the foregoing third OFDM symbol may be a first OFDM symbol in time series
  • the fourth OFDM symbol may be an OFDM symbol subsequent to the first OFDM symbol.
  • the third OFDM symbol may not be the first OFDM symbol, for example, the second OFDM symbol in time series, or the third OFDM symbol in time series.
  • the 50*L may be divided into L groups, and each group of 50 ⁇ s may adopt the above 1 A configuration scheme of the third OFDM symbol and the 4 fourth OFDM symbols.
  • the sum of the durations of the N OFDM symbols generated by the first device of the first communication system is equal to the shortest transmission duration of the second communication system, so that the communication time sent by the first communication system and the communication time of the second communication system are aligned. In turn, the correct transmission of information between the two communication systems is achieved.
  • each of the foregoing network elements includes a hardware structure and/or a software module corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may perform the division of the functional unit by using the first device or the like of the first communication system according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 shows a possible exemplary block diagram of a device involved in the embodiment of the present invention, which may be in the form of software or may be the first communication system.
  • a device such as a base station, or a terminal, or the like, or may be a chip or an integrated circuit.
  • the apparatus 900 includes a processing unit 902 and a communication unit 903.
  • the processing unit 902 is configured to control and manage the actions of the device 900.
  • Communication unit 903 is used to support communication of device 900 with other network entities, such as a second device or proxy device of the second communication system.
  • the apparatus 900 can also include a storage unit 901 for storing program codes and data of the apparatus 900.
  • the processing unit 902 can be a processor or a controller, for example, a general central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), and an application specific integrated circuit. Circuits, ASICs, field programmable gate arrays (FPGAs) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 903 can be a communication interface, a transceiver, a transceiver circuit, or the like.
  • the storage unit 901 can be a memory.
  • the device 900 shown in FIG. 9 above may be the first device involved in the present application.
  • the processing unit 902 can support the device 900 to perform the actions of the first device in each of the method examples above.
  • the processing unit 902 can support the device 900 to perform step 301 in FIG.
  • Communication unit 903 can support communication between device 900 and a second device or proxy device.
  • communication unit 903 can support device 900 to perform step 302 in FIG.
  • the apparatus 900 involved in the embodiment of the present invention may be the communication device 1000 shown in FIG.
  • the mobility management network element 1000 includes a processor 1002, a communication interface 1003, and a memory 1001.
  • the mobility management network element 1000 may further include a bus 1004.
  • the communication interface 1003, the processor 1002, and the memory 1001 may be connected to each other through a bus 1004.
  • the bus 1004 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (abbreviated industry standard architecture). EISA) bus and so on.
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in the ASIC, and the ASIC may be disposed in the terminal device. Alternatively, the processor and the storage medium may also be disposed in different components in the terminal device.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请提供一种通信方法及装置。该方法包括:第一通信系统的第一设备生成携带信息的连续的N个OFDM符号;第一设备通过所述N个OFDM符号向第二通信系统的第二设备发送所述信息;其中,所述N个OFDM符号的时长之和,等于所述第二通信系统的最短传输时长,N为大于1的整数。第一通信系统的第一设备生成的N个OFDM符号的时长总和,等于第二通信系统的最短传输时长,从而使得第一通信系统发送的和第二通信系统的通信时间对齐,进而实现这两种通信系统之间的信息的正确传输。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着技术的发展,现在越来越多的应用中,需要两种不同的通信系统之间的信息交互。例如,蜂窝网与工业以太网之间的信息交互等。
由于不同的通信系统之间的最短传输时长不同,将导致两种通信系统之间的信息传输可能会传输失败。例如,以蜂窝网和工业以太网之间的信息传输为例,由于蜂窝网所定义的一个OFDM符号的时长(即蜂窝网的最短传输时长)与工业以太网通信系统的通信循环周期(即工业以太网的最短传输时长)不相等,一个OFDM符号可能会跨越通信循环周期的边界,这将可能会导致传输失败。
发明内容
本申请提供一种通信方法及装置,用以实现具有不同最短传输时长的两种通信系统之间正确传输信息。
第一方面,本申请提供一种通信方法,该方法包括:第一通信系统的第一设备生成携带信息的连续的N个OFDM符号;第一设备通过所述N个OFDM符号向第二通信系统的第二设备发送所述信息;其中,所述N个OFDM符号的时长之和,等于所述第二通信系统的最短传输时长,N为大于1的整数。
上述方法,第一通信系统的第一设备生成的N个OFDM符号的时长总和,等于第二通信系统的最短传输时长,从而使得第一通信系统发送的和第二通信系统的通信时间对齐,进而实现这两种通信系统之间的信息的正确传输。
在一种可能的实现方法中,所述N个OFDM符号满足以下条件:
Figure PCTCN2018074200-appb-000001
Figure PCTCN2018074200-appb-000002
其中,所述N个OFDM符号分为L组,每组中的OFDM符号的时长之和为t,所述第二通信系统的最短传输时长为L*t,M ij为第j组所包含的第i种类型的OFDM符号的个数,a i为第i种OFDM符号的时长,K为正整数,L为正整数,t为正数。
在一种可能的实现方法中,所述L组中的第j组满足以下条件,所述第j组为所述L组中的任一组:
K=1,所述第j组中的OFDM符号均为第一OFDM符号;或者,
K=1,所述第j组中的OFDM符号均为第二OFDM符号;或者,
K=2,所述第j组中的OFDM符号包括M 1j个第一OFDM符号和M 2j个第二OFDM符号;
其中,所述第一OFDM符号包括有用OFDM符号和扩展CP,所述第一OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,所述第一OFDM符号中的扩展CP的时长为所述第一OFDM符号中的有用OFDM符号的时长的四分之一,所述第二OFDM符号包括有用OFDM符号和扩展CP,所述第二OFDM符号中的有用OFDM符号对应的子载波间隔为240千赫兹,所述第二OFDM符号中的扩展CP的时长为所述第二OFDM符号中的有用OFDM符号的时长的四分之一,t=31.25微秒。
可选地,M 1j=2,M 2j=2;或者,M 1j=1,M 2j=4。
在又一种可能的实现方法中,所述L组中的第j组满足以下条件,所述第j组为所述L组中的任一组:
K=2,所述第j组中的OFDM符号包括1个第三OFDM符号和4个第四OFDM符号;
其中,所述第三OFDM符号包括有用OFDM符号和普通CP,所述第三OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,所述第三OFDM符号中的普通CP的时长为3.91微秒,所述第四OFDM符号包括有用OFDM符号和普通CP,所述第四OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,所述第四OFDM符号中的普通CP的时长为1.11微秒,t=50微秒。
在一种实现方法中,上述任一实施例中的N个OFDM符号中具有相同时长的OFDM符号在时序上连续;或者,上述任一实施例中的N个OFDM符号中的任一OFDM符号在时序上的位置是任意的。
上述方法,给出了生成OFDM符号的不同方法,可以是具有相同时长的OFDM符号在时序上连续,也可以是不连续(即任意的)。
在一种实现方法中,上述任一实施例中的信息包括控制信息,数据和参考信号中的部分或全部。
第二方面,本申请提供一种通信装置。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储指令,当该装置运行时,该处理器执行该存储器存储的该指令,以使该装置执行上述第一方面或第一方面的任一实现方法中的通信方法。需要说明的是,该存储器可以集成于处理器中,也可以是独立于处理器之外。
第四方面,本申请提供一种通信装置,该装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面或第一方面的任一实现方法中的通信方法。
上述通信装置可以是基站或者终端,或者是一种用于通信的芯片或者集成电路等。
第五方面,本申请还提供一种可读存储介质,所述可读存储介质中存储有程序或指令,当其在计算机上运行时,使得上述第一方面或第一方面的任一实现方法中的通信方法被执行。
第六方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一实现方法中的通信方法。
另外,第二方面至第六方面中任一种设计方式所带来的技术效果可参见第一方面中不同实现方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为蜂窝网通信系统和工业以太网通信系统的最短传输时长的对照示意图;
图3为本申请提供的通信方法示意图;
图4为本申请提供的蜂窝网通信系统的第一设备通过N个OFDM符号发送信息的示意图;
图5为本申请提供的蜂窝网通信系统的OFDM符号的一种配置方案示意图;
图6为本申请提供的蜂窝网通信系统的OFDM符号的又一种配置方案示意图;
图7为本申请提供的蜂窝网通信系统的OFDM符号的又一种配置方案示意图;
图8为本申请提供的蜂窝网通信系统的OFDM符号的又一种配置方案示意图;
图9为本申请提供的一种装置示意图;
图10为本申请提供的一种通信设备示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请适用的一种可能的网络架构示意图。该网络架构包括第一通信系统的第一设备和第二通信系统的第二设备。第一设备与第二设备之间可以传输信息,例如可以是第一设备向第二设备发送信息,也可以是第二设备向第一设备发送信息。
可选地,所述网络架构中还包括代理设备,该代理设备用于实现第一设备与第二设备之间的信息传输。例如,第一设备在需要向第二设备发送信息时,可以将信息发送至代理设备,由代理设备发送至第二设备。同样地,第二设备在需要向第一设备发送信息时,可以将信息发送至代理设备,由代理设备将信息发送至第一设备。
本申请对于第一通信系统、第二通信系统,以及第一通信系统的第一设备、第二通信系统的第二设备的不做限定。
例如,第一通信系统可以是蜂窝网,第一设备可以是蜂窝网中的基站,第二通信系统可以是工业以太网,第二设备为工业以太网内的某通信设备,其中,工业以太网例如可以是Sercos III通信系统、Profinet通信系统或Powerlink通信系统等。
再比如,第一通信系统可以是蜂窝网,第一设备可以是蜂窝网中的基站,第二通信系统可以是采用电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.15.4协议的局域网,第二设备为局域网内的某通信设备。
第一通信系统和第二通信系统均有定义的最短传输时长,最短传输时长例如可以是系统帧、子帧、时隙、通信循环周期等。
下面以第一通信系统为蜂窝网通信系统,第二通信系统为工业以太网通信系统为 例进行说明。
以5G蜂窝网为例,其定义的最短传输时长可以是一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的时长。进一步地,OFDM符号还可以包括循环前缀(cyclic prefix,CP)和有用OFDM符号,其中CP还可以分为普通CP和扩展CP,二者具有不同的时长。在不同的实现方式中,OFDM符号的时长不同,以及,不同的OFDM符号中包括的CP的时长不同,有用OFDM符号的时长也不同。如表1所示,为5G中定义的几种OFDM符号的时长。
Figure PCTCN2018074200-appb-000003
表1 5G中定义的几种OFDM符号的时长
当然,表1只是作为示例说明,实际应用中,还可以定义更多类型的OFDM符号,例如,可以定义子载波间隔为15kHZ、30kHZ、480kHZ、960kHZ等所分别对应的有用OFDM符号的时长及CP的时长。本申请对此不作限定。
针对工业以太网通信系统,其最短传输时长也可以称为通信循环周期。以其中的Sercos III系统为例,Sercos III系统的通信循环周期为31.25*2 Nμs或250*Tμs,其中,T为正整数,N为0、1、2或3。再比如,Profinet系统的通信循环周期为250μs或31.25μs。
从以上蜂窝网通信系统和工业以太网通信系统分别所定义的最短传输时长可看出,一般情况下,两种不同的通信系统所定义的最短传输时长是不同的。
参考图2,为蜂窝网通信系统和工业以太网通信系统的最短传输时长的对照示意图。其中,蜂窝网通信系统的最短传输时长(即一个OFDM符号的时长)小于工业以太网通信系统的最短传输时长(即一个通信循环周期)。因此,当蜂窝网通信系统的设备通过OFDM符号向工业以太网通信系统的设备发送信息时,会出现OFDM符号跨越第二通信系统的通信循环周期边界的情形。例如,图2中蜂窝网通信系统的第二个OFDM符号跨越了工业以太网通信系统的第一个通信循环周期和第二个通信循环周期的边界,因此,可能会出现该第二个OFDM符号所携带的信息发送失败的情况。为解决上述问题,一种可能的实现方式是在该第二个OFDM符号上不携带信息,但这比较浪费资源,且增加了调度的复杂度。
本申请提供一种通信方法,可以在不浪费资源和不增加调度复杂度的前提下,解决存在的上述问题。
如图3所示,为本申请提供的通信方法示意图,包括以下步骤:
步骤301,第一通信系统的第一设备生成携带信息的连续的N个OFDM符号。
步骤302,第一设备通过所述N个OFDM符号向第二通信系统的第二设备发送所述信息。
其中,上述N个OFDM符号的时长之和,等于第二通信系统的最短传输时长,N为大于1的整数。
通过上述方法,第一通信系统的第一设备生成的连续的N个OFDM符号的时长总和,等于第二通信系统的最短传输时长,从而使得第一通信系统发送的和第二通信系统的通信时间对齐,进而实现这两种通信系统之间的信息的正确传输。
仍然以第一通信系统为蜂窝网通信系统,第二通信系统为工业以太网通信系统为例。例如,参考图4,为蜂窝网通信系统的第一设备通过N个OFDM符号发送信息的示意图。通过预先设计,选取蜂窝网通信系统中的N个OFDM符号,使得这N个OFDM符号的时长之和等于工业以太网通信系统的一个通信循环周期。使得蜂窝网通信系统在通过OFDM符号传输信息时,可以与工业以太网通信系统的通信循环周期对齐,不出现跨越通信循环周期,从而有助于减少传输失败的情形出现。
下面结合具体示例,介绍几种上述N个OFDM符号的实现方法。
例如,工业以太网的通信循环周期为31.25μs,上述N个OFDM符号中包括两种类型的OFDM符号,分别称为第一OFDM符号和第二OFDM符号。
其中,第一OFDM符号包括有用OFDM符号和扩展CP,第一OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,第一OFDM符号中的扩展CP的时长为第一OFDM符号中的有用OFDM符号的时长的四分之一。第一OFDM符号的配置方案可以参考表2。
子载波间隔(千赫兹/kHZ) 120
有用OFDM符号时长(秒/s) 1/120000
扩展CP时长(秒/s) 1/480000
表2 第一OFDM符号的配置方案
即,一个第一OFDM符号的时长为1/120000+1/480000=125/12μs。
第二OFDM符号包括有用OFDM符号和扩展CP,第二OFDM符号中的有用OFDM符号对应的子载波间隔为240千赫兹,第二OFDM符号中的扩展CP的时长为第二OFDM符号中的有用OFDM符号的时长的四分之一。第二OFDM符号的配置方案可以参考表3。
子载波间隔(千赫兹/kHZ) 240
有用OFDM符号时长(秒/s) 1/240000
扩展CP时长(秒/s) 1/960000
表3 第二OFDM符号的配置方案
即,一个第二OFDM符号的时长为1/240000+1/960000=125/24μs。
为了得到31.25μs的时长,有以下几种方法可以实现。
方法一,选择2个第一OFDM符号和2个第二OFDM符号
参考图5,为蜂窝网通信系统的OFDM符号的一种配置方案示意图。由于第一OFDM符号的时长为125/12μs,第二OFDM符号的时长为125/24μs。因此,2个第一OFDM符号和2个第二OFDM符号的时长之和为:125/12*2+125/24*2=31.25μs。即2个第一OFDM符号和2个第二OFDM符号的时长之和,等于工业以太网通信系统的通信循环周期。
方法二,选择3个第一OFDM符号
参考图6,为蜂窝网通信系统的OFDM符号的又一种配置方案示意图。由于第一OFDM符号的时长为125/12μs。因此,3个第一OFDM符号的时长之和为:125/12*3=31.25μs。即3个第一OFDM符号的时长之和,等于工业以太网通信系统的通信循环周期。
方法三,选择1个第一OFDM符号和4个第二OFDM符号
参考图7,为蜂窝网通信系统的OFDM符号的又一种配置方案示意图。由于第一OFDM符号的时长为125/12μs,第二OFDM符号的时长为125/24μs。因此,1个第一OFDM符号和4个第二OFDM符号的时长之和为:125/12+125/24*4=31.25μs。即1个第一OFDM符号和4个第二OFDM符号的时长之和,等于工业以太网通信系统的通信循环周期。
方法四,选择6个第二OFDM符号
参考图8,为蜂窝网通信系统的OFDM符号的又一种配置方案示意图。由于第二OFDM符号的时长为125/24μs。因此,6个第二OFDM符号的时长之和为:125/24*6=31.25μs。即6个第二OFDM符号的时长之和,等于工业以太网通信系统的通信循环周期。
通过上述方法一至方法四中的任一种方法,第一设备在31.25μs内连续发送N个OFDM符号,该N个OFDM符号中携带需要发送给第二设备的信息,这些信息例如包括但不限于:控制信息、数据信息、参考信号、同步信号、发现信号(discovery signal)中的部分或全部,从而实现了两种通信系统的通信时间的对齐。
在一种实现方式中,若上述N个OFDM符号中包括不止一种类型的OFDM符号,即包括第一OFDM符号和第二OFDM符号,则在生成OFDM符号时,可以按照以下方式生成:
方式一,所述N个OFDM符号中具有相同时长的OFDM符号在时序上连续。
例如,针对图5所示的示例,可以先生成2个第一OFDM符号,再生成2个第二OFDM符号;或者,先生成2个第二OFDM符号,再生成2个第一OFDM符号。
再比如,针对图7所示的示例,可以先生成1个第一OFDM符号,再生成4个第二OFDM符号;或者,先生成4个第二OFDM符号,再生成1个第一OFDM符号。
方式二,所述N个OFDM符号所包含的多个第一OFDM符号和第二OFDM符号在时序上的位置是任意的。
例如,第一设备可依据网络物理层或高层调度信息,产生和发送OFDM符号,并且产生的N个OFDM符号所包含的多个第一OFDM符号和第二OFDM符号在时序上的位置是任意的。
在一种实现方式中,当一个子帧包含数据信息和控制信息时,若所述数据信息的正确译码依赖于所述控制信息,则可以先产生并发送携带控制信息的OFDM符号。
例如,针对图5所示的示例,可以先生成1个第一OFDM符号,再生成1个第二OFDM符号,再生成1个第一OFDM符号,再生成1个第二OFDM符号。
或者,可以先生成1个第一OFDM符号,再生成1个第二OFDM符号,再生成1 个第二OFDM符号,再生成1个第一OFDM符号。
或者,可以先生成1个第二OFDM符号,再生成1个第一OFDM符号,再生成1个第二OFDM符号,再生成1个第一OFDM符号。
或者,可以先生成1个第二OFDM符号,再生成1个第一OFDM符号,再生成1个第一OFDM符号,再生成1个第二OFDM符号。
再比如,针对图7所示的示例,可以先生成1个第二OFDM符号,再生成1个第一OFDM符号,再生成3个第二OFDM符号。
或者,可以先生成2个第二OFDM符号,再生成1个第一OFDM符号,再生成2个第二OFDM符号。
为了描述的方便和简洁,以上针对图7所示的示例中OFDM符号在时序上的位置的枚举仅为图7所示所有可能的OFDM符号时序中的两例。其余OFDM符号时序可以参考以上示例列举,在此不再赘述。
另外,需要说明的是,如果在蜂窝网通信系统中定义了某种子载波间隔所对应的OFDM符号只能用于传输某种类型的信息,或者定义不能用于传输某种类型的信息,则在实际使用中也可以遵循该规则。例如,若蜂窝网通信系统定义子载波间隔为240kHZ所对应的OFDM符号不用于传输数据信息,则上述各设计方案中,若N个OFDM符号中包含有第二OFDM符号,则该第二OFDM符号不用于传输数据信息。
上述以工业以太网通信系统的通信循环周期为31.25μs为例进行说明。若工业以太网通信系统的通信循环周期为31.25*2 Nμs,N为1、2、3,或者通信循环周期为为250*Tμs,T为正整数。由于250=31.25*8,因而上述通信循环周期可以总体表述为31.25*Kμs,K等于1,2,4,8,16,24,32,……。即通信循环周期是31.25μs的正整数倍。
因此,若工业以太网通信系统的通信循环周期是31.25*Kμs,则可以使用上述方法一至方法四的配置方案,组合得到总的OFDM时长为31.25*Kμs的配置方案。例如,以K=2为例,即通信循环周期为62.5μs,则可以将62.5μs分成两组,每组均为31.25μs,其中,每组31.25μs有4种配置,因此一种有16种配置方案。
因此,若工业以太网通信系统的通信循环周期是31.25*Lμs,L为大于1的整数,则有4 L种配置方案可以得到由N个OFDM符号构成的时长为31.25*Lμs的组合。
因此,针对上述各种配置方案,可以使用以下公式进行概括,即第一设备携带信息的N个OFDM符号满足以下条件:
Figure PCTCN2018074200-appb-000004
Figure PCTCN2018074200-appb-000005
其中,所述N个OFDM符号分为L组,每组中的OFDM符号的时长之和为t,所述第二通信系统的最短传输时长为L*t,M ij为第j组所包含的第i种类型的OFDM符号的个数,a i为第i种OFDM符号的时长,K为正整数,L为正整数,t为正数。
针对图5和图7所示的示例,则上述公式中的t=31.25μs,L=1,K=2。
针对图6和图8所示的示例,则上述公式中的t=31.25μs,L=1,K=1。
需要说明的是,上述公式条件并不限定于使用在上述场景,也可以应用于其它场景。例如,所述N个OFDM符号中不限定于只包括上述第一OFDM符号和/或第二OFDM符号,也可以是包括其它类型的各种数量的OFDM符号。
例如,下面再给出一个具体示例。第一通信系统是蜂窝网,第一设备可以是蜂窝网中的基站,第二通信系统可以是采用IEEE 802.15.4协议的局域网,第二设备为局域网内的某通信设备。
以该局域网的最短传输时长(也即一个符号的时长)为50μs为例,上述N个OFDM符号中可以包括两种类型的OFDM符号,分别称为第三OFDM符号和第四OFDM符号。
其中,第三OFDM符号包括有用OFDM符号和普通CP,第三OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,第三OFDM符号中的普通CP的时长为3.91μs。第三OFDM符号的配置方案可以参考表4。
子载波间隔(千赫兹/kHZ) 120
有用OFDM符号时长(秒/s) 1/120000
普通CP时长(秒/s) 3.91*10 -6
表4 第三OFDM符号的配置方案
即,一个第三OFDM符号的时长为1/120000*10 6+3.91=8.33+3.91=12.24μs。
第四OFDM符号包括有用OFDM符号和普通CP,第四OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,第四OFDM符号中的普通CP的时长为1.11μs。第四OFDM符号的配置方案可以参考表5。
子载波间隔(千赫兹/kHZ) 120
有用OFDM符号时长(秒/s) 1/120000
扩展CP时长(秒/s) 1.11*10 -6
表5 第四OFDM符号的配置方案
即,一个第四OFDM符号的时长为1/120000*10 6+1.11=8.33+1.11=9.44μs。
为了得到50μs的时长,可以通过以下方法实现:
选择1个第三OFDM符号和4个第四OFDM符号,即12.24+9.44*4=50μs。
作为一种实现方法,上述第三OFDM符号可以是时序上的第一个OFDM符号,上述第四OFDM符号可以是第一个OFDM符号之后的OFDM符号。当然,上述第三OFDM符号也可以不是第一个OFDM符号,例如是时序上的第二个OFDM符号,或时序上的第三个OFDM符号等。
在一种实现方式中,若IEEE 802.15.4协议的局域网的最短传输时长等于50*Lμs,T为大于1的整数,则可以将50*L分为L组,每组50μs均可以采取上述1个第三OFDM符号和4个第四OFDM符号的配置方案。
上述各实施例,第一通信系统的第一设备生成的N个OFDM符号的时长总和,等 于第二通信系统的最短传输时长,从而使得第一通信系统发送的和第二通信系统的通信时间对齐,进而实现这两种通信系统之间的信息的正确传输。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例第一通信系统的第一设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图9示出了本发明实施例中所涉及的一种装置的可能的示例性框图,该装置900可以以软件的形式存在,也可以为第一通信系统的设备,如基站,或者终端等,或者还可以为一种芯片或者集成电路。装置900包括:处理单元902和通信单元903。处理单元902用于对装置900的动作进行控制管理。通信单元903用于支持装置900与其他网络实体(例如第二通信系统的第二设备或代理设备等)的通信。装置900还可以包括存储单元901,用于存储装置900的程序代码和数据。
其中,处理单元902可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元903可以是通信接口、收发器或收发电路等。存储单元901可以是存储器。
上述图9所示的装置900可以是本申请所涉及的第一设备。
当装置900为上述第一设备时,处理单元902可以支持装置900执行上文中各方法示例中第一设备的动作,例如处理单元902可以支持装置900执行图3中的步骤301。通信单元903可以支持装置900与第二设备或代理设备之间的通信。例如,通信单元903可以支持装置900执行图3中的步骤302。
当处理单元902为处理器,通信单元903为通信接口,存储单元901为存储器时,本发明实施例所涉及的装置900可以为图10所示的通信设备1000。
参阅图10所示,该移动性管理网元1000包括:处理器1002、通信接口1003、存储器1001。可选的,移动性管理网元1000还可以包括总线1004。其中,通信接口1003、处理器1002以及存储器1001可以通过总线1004相互连接;总线1004可以是外设部 件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于 本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种通信方法,其特征在于,包括:
    第一通信系统的第一设备生成携带信息的连续的N个正交频分复用OFDM符号;
    所述第一设备通过所述N个OFDM符号向第二通信系统的第二设备发送所述信息;
    其中,所述N个OFDM符号的时长之和,等于所述第二通信系统的最短传输时长,N为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N个OFDM符号满足以下条件:
    Figure PCTCN2018074200-appb-100001
    Figure PCTCN2018074200-appb-100002
    其中,所述N个OFDM符号分为L组,每组中的OFDM符号的时长之和为t,所述第二通信系统的最短传输时长为L*t,M ij为第j组所包含的第i种类型的OFDM符号的个数,a i为第i种OFDM符号的时长,K为正整数,L为正整数,t为正数。
  3. 根据权利要求2所述的方法,其特征在于,所述L组中的第j组满足以下条件,所述第j组为所述L组中的任一组:
    K=1,所述第j组中的OFDM符号均为第一OFDM符号;或者,
    K=1,所述第j组中的OFDM符号均为第二OFDM符号;或者,
    K=2,所述第j组中的OFDM符号包括M 1j个第一OFDM符号和M 2j个第二OFDM符号;
    其中,所述第一OFDM符号包括有用OFDM符号和扩展CP,所述第一OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,所述第一OFDM符号中的扩展CP的时长为所述第一OFDM符号中的有用OFDM符号的时长的四分之一,所述第二OFDM符号包括有用OFDM符号和扩展CP,所述第二OFDM符号中的有用OFDM符号对应的子载波间隔为240千赫兹,所述第二OFDM符号中的扩展CP的时长为所述第二OFDM符号中的有用OFDM符号的时长的四分之一,t=31.25微秒。
  4. 根据权利要求3所述的方法,其特征在于,M 1j=2,M 2j=2;或者,
    M 1j=1,M 2j=4。
  5. 根据权利要求2所述的方法,其特征在于,所述L组中的第j组满足以下条件,所述第j组为所述L组中的任一组:
    K=2,所述第j组中的OFDM符号包括1个第三OFDM符号和4个第四OFDM符号;
    其中,所述第三OFDM符号包括有用OFDM符号和普通CP,所述第三OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,所述第三OFDM符号中的普通CP的时长为3.91微秒,所述第四OFDM符号包括有用OFDM符号和普通CP,所述第四OFDM符号中的有用OFDM符号对应的子载波间隔为120千赫兹,所述第四OFDM符号中的普通CP的时长为1.11微秒,t=50微秒。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述N个OFDM符 号中具有相同时长的OFDM符号在时序上连续;或者,
    所述N个OFDM符号中的任一OFDM符号在时序上的位置是任意的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述信息包括控制信息,数据和参考信号中的部分或全部。
  8. 一种通信装置,其特征在于,用于执行如权利要求1至7中任一项所述的方法。
  9. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述处理器,用于读取所述存储器中的指令并根据所述指令执行如权利要求1至7中任一项所述的方法。
  10. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器与所述存储器耦合;
    所述存储器,用于存储指令;
    所述处理器,用于读取所述存储器中的指令并根据所述指令执行如权利要求1至7中任一项所述的方法。
  11. 一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至7中任意一项所述的方法被执行。
PCT/CN2018/074200 2018-01-25 2018-01-25 一种通信方法及装置 WO2019144360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074200 WO2019144360A1 (zh) 2018-01-25 2018-01-25 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074200 WO2019144360A1 (zh) 2018-01-25 2018-01-25 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2019144360A1 true WO2019144360A1 (zh) 2019-08-01

Family

ID=67395169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074200 WO2019144360A1 (zh) 2018-01-25 2018-01-25 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2019144360A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263720A (zh) * 2010-05-25 2011-11-30 中兴通讯股份有限公司 传输消息的方法、基站、终端及多通信制式系统
US20120230270A1 (en) * 2011-03-10 2012-09-13 Samsung Electronics Co. Ltd. Downlink transmission/reception method and apparatus for mobile communication system
CN105359448A (zh) * 2013-02-19 2016-02-24 华为技术有限公司 一种用于滤波器组多载波(fbmc)波形的帧结构
CN105991274A (zh) * 2015-03-03 2016-10-05 电信科学技术研究院 数据传输的方法、反馈信息传输方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263720A (zh) * 2010-05-25 2011-11-30 中兴通讯股份有限公司 传输消息的方法、基站、终端及多通信制式系统
US20120230270A1 (en) * 2011-03-10 2012-09-13 Samsung Electronics Co. Ltd. Downlink transmission/reception method and apparatus for mobile communication system
CN105359448A (zh) * 2013-02-19 2016-02-24 华为技术有限公司 一种用于滤波器组多载波(fbmc)波形的帧结构
CN105991274A (zh) * 2015-03-03 2016-10-05 电信科学技术研究院 数据传输的方法、反馈信息传输方法及相关设备

Similar Documents

Publication Publication Date Title
US6157972A (en) Apparatus and method for processing packetized information over a serial bus
JP4571671B2 (ja) 通信モジュールのメッセージメモリのデータへアクセスする方法および装置
EP2948858B1 (en) Method and apparatus for multi-drop digital bus
WO2020083240A1 (zh) 同步信号块的传输方法及通信装置
Cummings et al. Exploring use of Ethernet for in-vehicle control applications: AFDX, TTEthernet, EtherCAT, and AVB
US11075834B2 (en) Network interface cards, fabric cards, and line cards for loop avoidance in a chassis switch
CN112527709B (zh) 一种PCIe扩展交换系统、方法及电子设备和存储介质
WO2021244065A1 (zh) 一种均衡训练方法、装置及系统
WO2020035060A1 (zh) 数据传输方法、装置、基站、终端及计算机可读存储介质
US20210058177A1 (en) Ethernet interface and related systems methods and devices
JP2008509463A (ja) メッセージをメッセージメモリに記憶する方法およびメッセージメモリ
US11715337B2 (en) Controller diagnostic device and method thereof
CN109391548A (zh) 表项迁移方法、装置及网络通信系统
JP2009524952A (ja) 時間制御型のセキュアな通信
WO2019144360A1 (zh) 一种通信方法及装置
US6463489B1 (en) System and method for effectively performing isochronous data transfers
CN106549848A (zh) 改进的动态可预测p—坚持csma/cd介质访问控制设计
Xie et al. Comparison between can and can fd: A quantified approach
US20140089529A1 (en) Management Data Input/Output Protocol With Page Write Extension
US11625353B1 (en) Prioritized parallel to serial interface
WO2023093065A1 (zh) 数据传输方法、计算设备及计算系统
WO2022062849A1 (zh) 一种资源请求方法、资源配置方法及相关装置
CN114356830B (zh) 总线终端控制方法、装置、计算机设备和存储介质
Hu et al. An analytical performance model of the internet-working device in embedded CAN-based networks
WO2021008517A1 (zh) 下行控制信道的检测方法、传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902257

Country of ref document: EP

Kind code of ref document: A1