WO2019142870A1 - Tire system - Google Patents

Tire system Download PDF

Info

Publication number
WO2019142870A1
WO2019142870A1 PCT/JP2019/001311 JP2019001311W WO2019142870A1 WO 2019142870 A1 WO2019142870 A1 WO 2019142870A1 JP 2019001311 W JP2019001311 W JP 2019001311W WO 2019142870 A1 WO2019142870 A1 WO 2019142870A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
data
road surface
vehicle
detection
Prior art date
Application number
PCT/JP2019/001311
Other languages
French (fr)
Japanese (ja)
Inventor
雅士 森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018118776A external-priority patent/JP7091877B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980008514.2A priority Critical patent/CN111615479B/en
Priority to DE112019000466.2T priority patent/DE112019000466T5/en
Publication of WO2019142870A1 publication Critical patent/WO2019142870A1/en
Priority to US16/930,083 priority patent/US11906391B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology

Definitions

  • the present disclosure relates to a tire system having a tire side device and a vehicle body side system.
  • an acceleration sensor is provided on the back surface of the tire tread, and the acceleration sensor detects the vibration applied to the tire, and based on the detection result of the vibration determines the road surface condition on the traveling road surface of the tire.
  • a road surface condition determination method has been proposed. In this road surface condition determination method, a feature vector is extracted from the tire's vibration waveform detected by the acceleration sensor, and the similarity between the extracted feature vector and all the support vectors stored for each type of road surface is calculated. , Determine the road surface condition.
  • the kernel function is used to calculate the degree of similarity between the extracted feature vector and all the support vectors, and the type of road surface having the highest degree of similarity, such as dry road surface, wet road surface, frozen road, snow road etc., is currently running. It is determined that the road surface condition is
  • detection signals corresponding to tire vibration acquired by a vibration sensor unit such as an acceleration sensor provided in the tire side device are various detection targets, specifically various items related to the tire. It can be used to detect state or physical quantity.
  • the detection signal of the vibration sensor unit can also be used when detecting the wear state of a tire or the load applied to each wheel.
  • the detection signal corresponding to the tire vibration acquired by the vibration sensor unit of the tire side device can be used for detection of various detection targets
  • the processing performed by the tire side device according to the detection target is The detection mechanism is different, such as different.
  • the processing method of the detection signal changes, for example, the required frequency band in the detection signal changes, or various calculation methods such as calculation of feature vectors change.
  • the algorithm of the microcomputer (hereinafter referred to as a microcomputer) of the tire-side device is different according to the detection target.
  • the tire side device is provided with a plurality of vibration sensor units and a plurality of microcomputers, or a microcomputer with high processing capability, even if there are a plurality of detection targets, it is possible to separately detect become.
  • the weight and physical size of the tire side device will be increased, and the power consumption in the tire side device will be increased. Since the tire side device is attached to the tire, it is not preferable to increase the weight and physical size, and because it is provided at a position physically separated from the vehicle side system, reduction of power consumption in the power supply unit is required. Power consumption is not desirable. In particular, in the case where a battery is used as the power supply unit, it is not easy to replace the battery, and therefore, it is required to further reduce power consumption.
  • the road surface condition, the wear condition, and the load applied to each wheel have been described as an example.
  • the detection results of a plurality of types of detection targets related to the tire are obtained, the above-described problem may occur even if the detection targets are other types.
  • An object of this indication is to provide a tire system which can aim at reduction of power consumption, controlling increase of weight and physique of a tire side device.
  • a tire system is a tire side device that is disposed in a tire provided in a vehicle and transmits data regarding one of a plurality of detection objects related to the tire, and a vehicle body side in the vehicle And a vehicle-body-side system that receives the data on the detection target and acquires the detection result of the detection target.
  • the tire side device is between a sensing unit that outputs detection signals corresponding to a plurality of types of detection targets, a signal processing unit that processes the detection signals of the sensing units to create data regarding the detection targets, and a vehicle body side system And the first data communication unit for transmitting data on the detection target created by the signal processing unit to the vehicle body system, and the vehicle body system is connected to the tire device.
  • the vehicle body side system outputs a request signal for requesting which one of the plurality of detection targets is necessary to the tire side device through the second data communication unit, and the tire device Based on the request signal, data relating to the detection target indicated by the request signal is created from among a plurality of types of detection targets, and the data is transmitted from the first data communication unit to the vehicle body side system.
  • the vehicle body side system issues a request signal to each tire side device to transmit necessary data. Therefore, when processing the detection signal of the sensing unit, switching the algorithm for processing the detection signal based on the request signal can cope with a plurality of detection targets. Therefore, it is not necessary to provide a plurality of sensing units and a plurality of microcomputers for each tire-side device or a microcomputer with high processing capability, and it is possible to suppress the increase in weight and size of the tire-side device and to consume Power can be reduced.
  • the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
  • FIG. 1 It is a figure showing the block configuration in the vehicles mounting state of the tire device to which the tire side device concerning a 1st embodiment was applied. It is the block diagram which showed the detailed composition of the tire side device and the body side system. It is a cross-sectional schematic diagram of the tire in which the tire side apparatus was attached. It is an output voltage waveform figure of the vibration sensor part at the time of tire rotation. It is a figure which shows a mode that the detection signal of the vibration sensor part was divided for every time window of predetermined time width
  • FIG. It is a flowchart of the tire side process which a tire side apparatus performs. It is a flowchart of the vehicle body side process which the control part of a vehicle body side system performs.
  • a tire system 100 having a road surface state determining function according to the present embodiment will be described with reference to FIGS. 1 to 10.
  • a tire system 100 according to the present embodiment is configured to include a tire side device 1 and a vehicle body side system 2. Then, the tire system 100 detects various states or physical quantities related to the tire 3 as a plurality of types of detection targets related to the tire 3 based on vibrations applied to the contact surface of the tire 3 provided on each wheel of the vehicle.
  • the tire system 100 detects the road surface state on the traveling road surface and the worn state of the tire 3 as various states related to the tire 3, and detects the load applied to the wheel as each physical quantity.
  • the tire system 100 carries out notification of the danger of the vehicle, vehicle motion control, etc. based on detection results of various conditions and physical quantities related to the tire 3, and transmits the road surface condition on the traveling road surface to the communication center 200. ing.
  • the tire system 100 is configured to have a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
  • the vehicle body side system 2 includes a receiver 21, an electronic control unit for navigation control (hereinafter referred to as navigation ECU) 22, an electronic control unit for brake control (hereinafter referred to as brake ECU) 23, an electronic for left and right driving torque control A control device (hereinafter referred to as a torque control ECU) 24, a vehicle communication device 25, a notification device 26, and the like are provided.
  • the tire side device 1 is configured to include a vibration sensor unit 11, an air pressure detection unit 12, a control unit 13, a data communication unit 14 and a power supply unit 15 as shown in FIG. 2, for example, as shown in FIG. , And is provided on the back side of the tread 31 of the tire 3.
  • the vibration sensor unit 11 constitutes a vibration detection unit for detecting the vibration applied to the tire 3.
  • the vibration sensor unit 11 is configured by an acceleration sensor.
  • the vibration sensor unit 11 when the tire 3 rotates, the vibration sensor unit 11 has a direction in which the vibration sensor unit 11 contacts the circular track drawn by the tire-side device 1, that is, the magnitude of the vibration in the tire tangential direction indicated by the arrow X in FIG.
  • An acceleration detection signal is output as a corresponding detection signal.
  • the vibration sensor unit 10 generates, as a detection signal, an output voltage or the like in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
  • the vibration sensor unit 10 performs acceleration detection at a predetermined sampling cycle set to a cycle shorter than one rotation of the tire 3 and outputs it as a detection signal.
  • the detection signal of the vibration sensor unit 10 is represented as an output voltage or an output current, here, a case where it is represented as an output voltage is taken as an example.
  • the air pressure detection unit 12 is configured to include a pressure sensor 12 a and a temperature sensor 12 b.
  • the pressure sensor 12a outputs a detection signal indicating the tire pressure
  • the temperature sensor 12b outputs a detection signal indicating the temperature in the tire.
  • Data of tire pressure and temperature indicated by detection signals of the pressure sensor 12a and the temperature sensor 12b are used as data regarding tire pressure.
  • data of tire air pressure and temperature indicated by detection signals of the pressure sensor 12a and the temperature sensor 12b are input to the control unit 13, and the control unit 13 calculates tire air pressure at a reference temperature.
  • the actual measurement value of the tire air pressure is corrected based on the temperature indicated by the detection signal of the temperature sensor 12b. Tire pressure is calculated.
  • the control unit 13 is a part corresponding to a signal processing unit that creates data on a detection target, and is a program stored in the ROM or the like and configured by a known microcomputer including a CPU, ROM, RAM, I / O, etc. It performs various processing according to. For example, the control unit 13 switches between the activation state and the sleep state of each function provided in the control unit 13 based on the detection signal of the vibration sensor unit 11, and when activated, the power from the power supply unit 15 Activate each function based on the supply.
  • the control unit 13 receives the detection signal of the vibration sensor unit 11, and detects, for example, the rotation of the tire 3, that is, the traveling of the vehicle based on the waveform of the detection signal exceeding a predetermined threshold, thereby detecting the traveling of the vehicle. Then, each function that has been asleep is switched to the activated state. Then, the control unit 13 uses the detection signal of the vibration sensor unit 11 as a detection signal representing the vibration data in the tire tangential direction, and processes this signal to process data on road surface data and load, and further data on wear condition. Then, the process of communicating it to the data communication unit 14 is performed. Further, the control unit 13 also performs processing for obtaining data on tire air pressure based on data transmitted from the air pressure detection unit 12 and transmitting the data to the data communication unit 14.
  • the control unit 13 uses the detection signal of the vibration sensor unit 11 as a detection signal representing the vibration data in the tire tangential direction, and performs the waveform processing of the vibration waveform indicated by the detection signal, whereby the tire vibration is Extract feature quantities.
  • the feature amount of the tire G is extracted by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G).
  • the control unit 13 transmits data including the extracted feature amount to the data communication unit 14 as road surface data which is data related to the road surface state.
  • the feature amount is an amount indicating the feature of the vibration applied to the tire 3 acquired by the vibration sensor unit 11 and is represented as, for example, a feature vector.
  • An output voltage waveform of a detection signal of the vibration sensor unit 11 at the time of tire rotation is, for example, a waveform shown in FIG.
  • the output voltage of the vibration sensor unit 11 reaches its maximum value at the start of grounding when the portion of the tread 31 corresponding to the location of the vibration sensor unit 11 starts to be grounded as the tire 3 rotates.
  • a peak value at the start of grounding where the output voltage of the vibration sensor unit 11 has a maximum value is referred to as a first peak value.
  • Output voltage has a local minimum value.
  • the peak value at the end of grounding where the output voltage of the vibration sensor unit 11 has a minimum value is referred to as a second peak value.
  • the reason why the output voltage of the vibration sensor unit 11 has a peak value at the above timing is as follows. That is, when the portion of the tread 31 corresponding to the location where the vibration sensor unit 11 is in contact with the tread 31 along with the rotation of the tire 3, the portion of the tire 3 having a substantially cylindrical surface in the vicinity of the vibration sensor unit 11 is It is pressed and deformed into a planar shape. By receiving the impact at this time, the output voltage of the vibration sensor unit 11 takes a first peak value. In addition, when a portion of the tread 31 corresponding to the location where the vibration sensor unit 11 is disposed is separated from the ground contact surface as the tire 3 rotates, the tire 3 is released from pressure in the vicinity of the vibration sensor unit 11 and is planar It returns to approximately cylindrical shape from.
  • the output voltage of the vibration sensor unit 11 takes a second peak value.
  • the output voltage of the vibration sensor unit 11 takes the first and second peak values at the start of grounding and at the end of grounding, respectively. Further, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the pressing are opposite, the sign of the output voltage is also the opposite.
  • step-in area includes the timing at which the first peak value is obtained
  • step-out area includes the timing at which the second peak value is obtained.
  • area in front of the stepping area is the area before the stepping area, and the area from the stepping area to the kicking area, that is, the portion of the tire tread 31 corresponding to the location where the vibration sensor unit 11 is in contact "Region after kicking out” is taken as "area after kicking out”.
  • five areas R1 to R5 are “pre-step-in area”, “step-in area”, “kick-out front area”, “kick-out area”, and “post-kick out area” in the detection signal in this order. It is shown as.
  • the vibration generated in the tire 3 fluctuates in each of the divided areas, and the detection signal of the vibration sensor unit 11 changes, so that the frequency analysis of the detection signal of the vibration sensor unit 11 in each area is performed.
  • the band value selected from the 1 kHz to 4 kHz band becomes smaller in the kicking out region R4 and the after kicking out region R5.
  • the control unit 13 generates a plurality of detection signals of the vibration sensor unit 11 corresponding to one rotation of the tire 3 having a continuous time axis waveform, for each time window of a predetermined time width T as shown in FIG.
  • the feature quantity is extracted by dividing into sections and performing frequency analysis in each section. Specifically, the power spectrum value in each frequency band, that is, the vibration level in the specific frequency band is determined by performing frequency analysis in each section, and this power spectrum value is used as the feature amount.
  • the control unit 13 extracts the ground contact section of the vibration sensor unit 11 at the time of rotation of the tire 3 based on the time change of the output voltage of the vibration sensor unit 11.
  • the term “contacting section” as used herein means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the vibration sensor unit 11 is disposed is in contact with the road surface.
  • the location where the vibration sensor unit 11 is disposed is the location where the tire side device 1 is disposed
  • a portion of the tread 31 of the tire 3 corresponding to the location where the tire side device 1 is disposed is the ground contact section. It agrees with the section where the road surface is grounded.
  • the number of rotations of the tire 3 per unit time, that is, the rotational speed can be calculated from the time interval of the ground contact zone.
  • control unit 13 transmits to the data communication unit 14 data on the extracted ground contact section and data on the rotational speed of the tire 3 as data on the load and data on the wear state.
  • control unit 13 converts the tire air pressure under the reference temperature based on the detection signal indicating the tire air pressure transmitted from the air pressure detection unit 12 and the detection signal indicating the temperature in the tire, and performs data communication as data regarding the tire air pressure. It also plays the role of telling the department 14.
  • control unit 13 controls data transmission from the data communication unit 14, and transmits road surface data to the data communication unit 14 at a timing when data transmission is desired to be performed. To be done.
  • control unit 13 extracts the feature amount of the tire G each time the tire 3 makes one rotation, and makes the data communication unit 14 at a rate of once or plural times each time the tire 3 makes one or more rotations.
  • the road surface data is being transmitted.
  • control unit 13 transmits, to the data communication unit 14, road surface data including the feature amount of the tire G extracted during one rotation of the tire 3 when transmitting road surface data to the data communication unit 14. There is.
  • control unit 13 may, for example, calculate the wear state at a rate of once during one run, for example, the data communication unit performs data on the wear state once in a predetermined period after the vehicle starts running. I'm telling you. Further, when there is a request from a torque control ECU 24 described later, the control unit 13 transmits data related to the load to the data communication unit 14. Furthermore, the control unit 13 transmits data on tire air pressure to the data communication unit 14 every predetermined regular transmission cycle. In addition, since tire air pressure can be used for correction of wear condition and load calculation, the control unit 13 may use the tire when transmitting data on the wear condition and data on the load to the data communication unit 14 as necessary. It also sends data on air pressure.
  • control unit 13 creates the road surface data, the data on the load, and the data on the wear state among the data described here, based on the detection signal of the vibration sensor unit 11. However, since the detection targets are different, the control unit 13 performs processing using different algorithms such as performing different waveform processing on the detection signal of the vibration sensor unit 11 in order to create each data.
  • the required data can be grasped by the request signal from the vehicle body side system 2, and the detection target is grasped based on the request signal.
  • the algorithm can be switched according to.
  • the data communication unit 14 corresponds to a first data communication unit that performs bidirectional communication with the vehicle body side system 2.
  • Various forms of bi-directional communication can be applied.
  • Bluetooth communication including BLE (abbreviation of Bluetooth Low Energy) communication, wireless LAN such as wifi (abbreviation of Local Area Network), Sub-GHz communication, ultra wide band Communication, ZigBee, etc. can be applied.
  • BLE abbreviation of Bluetooth Low Energy
  • wireless LAN such as wifi (abbreviation of Local Area Network)
  • Sub-GHz communication ultra wide band Communication
  • ZigBee etc.
  • Bluetooth is a registered trademark.
  • the data communication unit 14 performs data transmission at that timing.
  • the timing of data transmission from the data communication unit 14 is controlled by the control unit 13. For example, in the case of road surface data, data transmission from the data communication unit 14 is performed each time the tire 3 is sent from the control unit 13 each time the tire 3 makes one rotation or a plurality of rotations.
  • the power supply unit 15 is a power supply of the tire-side device 1 and supplies the electric power to the respective components provided in the tire-side device 1 so that the respective components can be operated.
  • the power supply unit 15 is configured of, for example, a battery such as a button battery. Since the tire side device 1 is provided in the tire 3, battery replacement can not be easily performed, and therefore, it is necessary to reduce power consumption.
  • the power supply unit 15 can also be configured by a power generation device, a storage battery, and the like. When the power supply unit 15 is configured to have a power generation device, the problem of battery life is reduced compared to the case where it is a battery, but large power generation is difficult, so the problem of reducing power consumption is the battery The same as in the case of
  • the receiver 21 receives various data such as road surface data transmitted from the tire-side device 1 to detect a road surface state and a wear state, and detects a load applied to each wheel.
  • the receiver 21 also performs processing of outputting road surface data to the vehicle communication device 25.
  • the road surface data transmitted from each tire side device 1 may be used as it is, or as described later, the road surface data showing the detection result of the road surface condition detected by the receiver 21 You may use. Then, based on this, the road surface data is sent from the vehicle communication device 25 to the communication center 200 collecting road information and the like.
  • the receiver 21 also performs processing for acquiring more accurate road surface data from the communication center 200 through the vehicle communication device 25.
  • the receiver 21 is configured to include the data communication unit 21a and the control unit 21b.
  • the data communication unit 21a is a part that constitutes the second data communication unit, and receives various data transmitted from the data communication unit 14 of the tire-side device 1 and transmits the data to the control unit 21b.
  • the data communication unit 21 a also plays a role of transmitting a request signal or the like transmitted from the control unit 21 b to each tire-side device 1.
  • the control unit 21 b is configured by a well-known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various processes in accordance with a program stored in the ROM or the like.
  • the control unit 21b stores and stores the support vector for each type of road surface, and detects the road surface state based on the support vector and the feature amount included in the road surface data.
  • the support vector is a feature that serves as an example, and is obtained, for example, by learning using a support vector machine.
  • a vehicle equipped with the tire side device 1 is run experimentally for each kind of road surface, and at that time, the feature quantity extracted from the detection signal of the vibration sensor unit 11 is learned for a predetermined number of tire rotations, The feature vector extracted as a predetermined number of times is taken as a support vector. For example, feature amounts for one million rotations are learned for each type of road surface, and typical feature amounts for 100 rotations are extracted therefrom as support vectors.
  • the similarity between the support vector and the feature amount included in the road surface data is determined, and the type of the road surface to which the support vector with high similarity belongs belongs to the road surface condition on the traveling road surface of the vehicle.
  • the calculation method of a feature-value, a similarity degree, etc. since it becomes well-known in the above-mentioned patent document 1 grade
  • control unit 21b transmits the detection result of the road surface condition or road surface data to the vehicle communication device 25 to transmit it to the communication center 200, or inputs the accurate road surface data transmitted from the communication center 200 to the vehicle communication device 25. Processing to acquire the road surface condition.
  • control unit 21b controls the load applied to each wheel on which the tire 3 is mounted, the tire air pressure, and the tire 3 based on the data on the load, the data on the tire pressure, and the data on the wear state.
  • the wear condition is detected.
  • the data regarding the road surface data and the tire pressure described above are transmitted at the timing determined from the tire device 1, and the data regarding the load and the data regarding the wear state are based on the request signal from the control unit 21b. I am sending it.
  • the request signal from the brake ECU 23 or the torque control ECU 24 is transmitted to the control unit 21b, the request signal is transmitted from the control unit 21b to the tire-side device 1, as described later. Be done.
  • the data on the wear state is requested by outputting a request signal to the tire side device 1 from the control unit 21b so that the wear state can be detected at least once during one traveling.
  • the control unit 21b relates to the wear state from the control unit 21b to the tire side device 1 once within a predetermined time after an ignition switch (hereinafter referred to as IG) 30 corresponding to a start switch for enabling the vehicle to travel is turned on.
  • IG ignition switch
  • a request signal of data is transmitted.
  • the wear state may be detected at least once during one run, but the processing load on the tire-side device 1 can be further reduced by performing the detection only once. It is also possible to reduce the power required for data transmission.
  • the ground contact area is determined based on the time of the ground contact zone included in the data on the load and the time taken for one rotation of the tire obtained from the data on the rotational speed of the tire 3 can do. Moreover, when the tire size of each wheel is different or the tire air pressure is different, the load applied to each wheel can be more accurately obtained by performing correction according to these.
  • tire air pressure data on tire air pressure can be transmitted from the tire side device 1 to obtain tire air pressure under a reference temperature.
  • the result of calculating the tire air pressure under the reference temperature in the tire side device 1 is transmitted as data related to the tire air pressure, it is possible to transmit the measured value of the tire air pressure and the data of the temperature inside the tire. You can also In that case, based on the data, the control unit 21b converts the tire pressure into the tire pressure under the reference temperature.
  • the wear state can be calculated based on data on the rotational speed of the tire 3 included in the data on the movement distance information of the vehicle transmitted from the navigation ECU 22 and the wear state as described later.
  • the depth of the groove formed in the tread 31 of the tire 3 changes, the circumference of the tire 3 decreases, so even after traveling the same distance, the after-wear direction is better than before the tire 3 wear.
  • the rotation speed of the tire 3 is increased. Therefore, based on the difference between the travel distance of the vehicle obtained by the information from the navigation ECU 22 and the travel distance of the vehicle estimated from the tire speed and the tire diameter included in the data on the wear state, Wear condition can be calculated.
  • the load applied to each wheel deforms the tire 3, and the tire 3 also deforms according to the tire pressure. For this reason, if the rotational speed of each tire 3 or the moving distance of the vehicle estimated based on the rotational speed of each tire 3 is corrected based on the load applied to each wheel calculated as described above or the tire air pressure, the wear state is more accurately Can also be calculated.
  • control unit 21b transmits the detection result of the road surface condition or the road surface condition transmitted from the communication center 200 to the notification device 26, and notifies the driver of the road surface condition from the notification device 26, as necessary.
  • the driver can keep in mind the driving corresponding to the road surface condition, and the danger of the vehicle can be avoided.
  • the road surface state may be always displayed through the notification device 26, or the road surface state may be displayed only when the road surface state requires more careful operation such as a wet road, a frozen road or a low ⁇ road. It may be displayed to warn the driver.
  • the control unit 21b transmits the detection result of the worn state and the detection result of the tire air pressure to the notification device 26, and transmits each detection result to the driver through the notification device 26.
  • the driver can know that it is time to change the tire or to adjust the tire pressure.
  • control unit 21b transmits the road surface state and the load of each wheel to the ECU for executing the vehicle motion control such as the brake ECU 23 and the torque control ECU 24, and based on the transmitted road surface state and the load of each wheel Vehicle motion control is performed.
  • the navigation ECU 22 is provided in the navigation system, acquires information from a non-transitional tangible storage medium such as a memory storing road information and the like, and measures the current position of the vehicle based on position information of GPS (abbreviation of Global Positioning System) satellites. Etc. In other words, the navigation ECU 22 performs various processes related to road guidance and the like.
  • the tire system 100 uses road information handled by the navigation ECU 22, current position information, and travel distance information of the vehicle, and the navigation ECU 22 constitutes a position information acquisition unit.
  • road information and current position information are used to indicate the relationship between the road on which the vehicle is currently traveling and the current position and road surface data, and the like, and are transmitted from the navigation ECU 22 to the receiver 21. Further, these pieces of information are transmitted to the vehicle communication device 25 from the navigation ECU 22 directly or via the control unit 21b, and when the road surface data is transmitted from the vehicle communication device 25 to the communication center 200, they are associated with the road surface data. Sent. As a result, in the communication center 200, it is possible to grasp which place the road surface state indicated by the road surface data is. Further, the travel distance information of the vehicle is transmitted to the control unit 21b. And the control part 21b is detecting the wear condition of the tire 3 based on the movement distance information of a vehicle.
  • the brake ECU 23 constitutes a braking control device that performs various brake control, and automatically generates a brake fluid pressure by driving an actuator for controlling the brake fluid pressure to pressurize the wheel cylinder for braking force. Generate The brake ECU 23 can also control the braking force of each wheel independently.
  • the control unit 21b transmits the detection result of the road surface state and the load to the brake ECU 23. Based on this, the brake ECU 23 adjusts the braking force according to the road surface condition, or controls the braking force of each wheel according to the load of each wheel, thereby controlling the brake according to the road surface condition and the load. It is carried out.
  • brake ECU23 when performing brake control according to a load, in order to require the data regarding a load, brake ECU23 outputs the request signal of the data regarding a load with respect to the control part 21b. Based on this, the control unit 21b transmits the request signal of the data related to the load to the tire side device 1 through the data communication unit 21a. Further, the brake ECU 23 performs vehicle speed calculation and the like based on a detection signal of a wheel speed sensor (not shown) and the like, and transmits the calculation result to the receiver 21 as vehicle speed information.
  • the torque control ECU 24 performs control of the drive torque, and performs control of actively moving the drive force of the left and right wheels, for example, torque vector differential control.
  • the torque control ECU 24 achieves torque distribution corresponding to the load of each wheel by moving the driving force of the left and right wheels according to the load based on the detection result of the load transmitted from the control unit 21b.
  • the torque control ECU 24 outputs a request signal of data relating to the load to the control unit 21 b because it requires data relating to the load. Based on this, the control unit 21b transmits the request signal of the data related to the load to the tire side device 1 through the data communication unit 21a.
  • the vehicle communication device 25 can perform road-to-vehicle communication, and exchanges information with the communication center 200 via a communication system (not shown) installed on, for example, a road.
  • the vehicle communication device 25 plays a role of transmitting the road surface data transmitted from the receiver 21 to the communication center 200 or receiving more accurate road surface data from the communication center 200.
  • the notification device 26 is formed of, for example, a meter indicator, and is used to notify the driver of a road surface condition that requires more careful driving, a decrease in tire air pressure, and a notification of wear of the tire 3.
  • the notification device 26 is configured by a meter indicator, the driver is disposed at a visible position during driving of the vehicle, for example, installed in an instrument panel of the vehicle.
  • the meter display receives data indicating the road surface condition, tire pressure or wear condition from the receiver 21, it can visually notify the driver by performing display in such a manner that the contents can be grasped .
  • the notification device 26 can also be configured by a buzzer, a voice guidance device, or the like. In that case, the notification device 26 can aurally notify the driver of the road surface condition, the tire pressure or the wear condition by means of a buzzer sound or voice guidance.
  • the meter display was mentioned as the example as the alerting
  • each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local AreaNetwork) by CAN (abbreviation of Controller AreaNetwork) communication etc., for example. Therefore, each part can communicate information with each other through the in-vehicle LAN.
  • in-vehicle LAN abbreviation of Local AreaNetwork
  • CAN abbreviation of Controller AreaNetwork
  • the communication system 200 that exchanges information regarding the road surface data with the tire system 100 performs a project of collecting road information and providing road information to vehicles and the like.
  • the communication center 200 and the vehicle communication device 25 may be capable of direct communication, the communication center 200 can communicate with the vehicle communication device 25 through communication systems installed at various places such as roads. There is.
  • the communication center 200 manages, as a database, information on road surface conditions for each road location in the map data, and based on the received road surface data, mapping of the road surface conditions changing momentarily Is going. That is, the communication center 200 updates the road surface condition information for each road location in the map data based on the received road surface data.
  • the communication center 200 provides road surface data to the vehicle from the database.
  • the communication center 200 collects road surface data of the road traveled by the vehicle sent from the vehicle, and updates the road surface data of each road in the map data based on the road surface data.
  • the communication center 200 also collects weather information and the like, corrects each road surface data based on the weather information and the like, and updates it as more reliable road surface data.
  • the communication center 200 acquires the snow amount and information on the frozen road surface as weather information, and for the snow road surface and the frozen road surface, more accurate road surface data is sequentially stored by updating the road surface data corresponding thereto. I am trying to Then, the communication center 200 transmits the road surface data stored in the database to the vehicle to thereby transmit more accurate road surface data to the vehicle.
  • the communication center 200 collects road surface data from a large number of vehicles and updates the road surface data of each road in the map data stored in the database. Not only can it acquire about the road surface data of the road which is going to travel.
  • the tire side process which each tire side apparatus 1 performs is demonstrated. This process is executed when the waveform of the detection signal of the vibration sensor unit 11 exceeds the predetermined threshold and the control unit 13 is activated, and is executed by the control unit 13 every predetermined control cycle. Ru.
  • Step S100 the control unit 13 determines whether the vehicle is traveling, that is, is traveling or being stopped. This process is executed based on, for example, a detection signal of the vibration sensor unit 11. That is, if the output voltage waveform of the detection signal of the vibration sensor unit 11 indicates the waveform for one rotation of the tire, it is determined that the vehicle is traveling.
  • the fact that the tire 3 has made one rotation is determined based on the time axis waveform of the detection signal of the vibration sensor unit 11. That is, since the detection signal draws the time axis waveform shown in FIG. 4, one rotation of the tire 3 can be grasped by confirming the first peak value and the second peak value of the detection signal.
  • the rotation of the tire 3 since the rotation of the tire 3 is in agreement with the traveling of the vehicle, it can be detected based on the rotation of the tire 3 whether the vehicle is traveling or being stopped.
  • step S110 the control unit 13 determines whether a request signal is received from the vehicle body side system 2. As described above, when the control unit 21 b receives a request signal of data related to the load from the brake ECU 23 or the torque control ECU 24, the control unit 21 b transmits it to the tire side device 1. In addition, the control unit 21b transmits a request signal of data relating to the wear state to the tire side device 1 once in a predetermined period after the IG is turned on. When these request signals are received by the tire device 1, an affirmative determination is made in step S110.
  • step S110 the process proceeds to step S120, and the control unit 13 performs measurement according to the instruction of the request signal. That is, if the received request signal is a request signal of data related to load, the control unit 13 measures the rotational speed of the ground section or the tire 3 based on the detection signal of the vibration sensor unit 11, and the load including those data Create data about Further, if the received request signal is a request signal of data regarding the wear state, the control unit 13 calculates the rotational speed of the tire 3 and creates data regarding the wear state including the data. Further, as the data regarding the wear state, data regarding the tire pressure and data regarding the load may be created as necessary.
  • step S130 the control unit 13 executes a data transmission process of transmitting the data created in step S120 to the tire-side device 1, and repeats the process from step S100.
  • Step S110 when a negative judging is carried out at Step S110, it progresses to Step S140 and control part 13 measures in normal mode.
  • the characteristic amount of the tire G is extracted by performing waveform processing of the vibration waveform indicated by the detection signal of the vibration sensor unit 11, and road surface data including the extracted characteristic amount is created. This process may be performed every one rotation of the tire 3 or may be performed every plural rotations.
  • the tire air pressure under the reference temperature is calculated based on the detection signals of the pressure sensor 12a and the temperature sensor 12b in the air pressure detection unit 12 for each predetermined periodic transmission cycle, and data on the tire air pressure including it is created.
  • step S130 the control unit 13 executes data transmission for transmitting road surface data or data related to tire air pressure, and repeats the process from step S100.
  • step S100 determines whether the duration after stopping is within a predetermined time, for example, 5 minutes. For example, the control unit 13 counts an elapsed time when the negative determination is made for the first time in step S100 and the negative determination is continuously continued in step S100, and determines whether the elapsed time is within a predetermined time. ing. That is, in the tire side device 1, since the on / off state of the IG can not be grasped, the control unit 13 determines that the case where the continuation time after stopping has reached the predetermined time is the situation where the IG is turned off. ing.
  • step S150 the control unit 13 switches to the sleep state and ends the process.
  • the control unit 13 maintains the sleep state until the vehicle starts traveling again and is switched to the activation state based on the detection signal of the vibration sensor unit 11. In this way, the tire side process ends.
  • step S200 the control unit 21b determines whether the vehicle is traveling. This process is executed based on, for example, the vehicle speed information transmitted from the brake ECU 23. The control unit 21b determines that the vehicle is traveling when the vehicle speed is not zero. If an affirmative determination is made here, the process proceeds to step S210, and if a negative determination is made, the process ends.
  • step S210 the control unit 21b determines whether there is a request from another ECU. As described above, the brake ECU 23 and the torque control ECU 24 output a request signal of data related to the load when performing the brake control and the torque control according to the load. If the control part 21b receives the request
  • step S230 the control unit 21b determines whether the cumulative traveling time after the IG switch 30 is turned on is 10 minutes or less. If an affirmative determination is made here, the process proceeds to step S240, and the control unit 21b determines whether detection of a wear state has been instructed, that is, whether a request signal for data regarding the wear state has been transmitted. Since the wear of the tire 3 does not rapidly progress, it is considered to be preferable if the wear state can be detected at least once during one running. For this reason, from the time the IG switch 30 is turned on to the time it is turned off, that is, once during one travel, data on the wear state is requested to the tire side device 1.
  • step S230 if the affirmative determination is made in step S230 and the negative determination is made in step S240, the process proceeds to step S250 so that the cumulative running time after the IG switch 30 is turned on is worn out within a predetermined time, for example 10 minutes. Send a request signal for data on a predetermined time, for example 10 minutes.
  • step S260 Go to Then, in step S260, a data waiting process is performed. This data waiting process will be described with reference to FIG.
  • the data waiting process is executed by the control unit 21b at predetermined control intervals.
  • step S300 data reception processing for receiving data sent from each tire-side device 1 is executed. And if data reception is performed, it will progress to Step S310, and control part 21b will judge whether received data are data about a load. If an affirmative determination is made here, the process proceeds to step S320, calculates the load of each wheel by the method described above based on the data on the load from each tire-side device 1, and transmits the result to torque control ECU 24 or brake ECU 23. . Thereafter, the process ends.
  • step S310 the process proceeds to step S330, and it is determined whether the received data is data regarding a wear state or data regarding tire air pressure. If an affirmative determination is made here, the process proceeds to step S340. Then, if the received data is data relating to the wear state, the wear state of each tire 3 is calculated by the method described above based on this data and the travel distance information of the vehicle transmitted from the navigation ECU 22, and the result is reported Transmit to 26. If the received data is data relating to tire air pressure, the tire air pressure is acquired from this data, and the result is transmitted to the notification device 26. Thereafter, the process ends.
  • step S330 when a negative determination is made also in step S330, the process proceeds to step S350.
  • the received data is road surface data
  • the feature amount included in the data is compared with all the support vectors to determine the similarity, and the road surface condition of the traveling road of the vehicle is determined based on the similarity. .
  • the determination result of the road surface state is transmitted to the brake ECU 23, and the process is ended.
  • the data transmitted from each tire-side device 1 is received, and the road surface state and the wear state are detected according to the type of the received data, or the load applied to each wheel is detected. And the result can be transmitted to each part of the vehicle body side system 2.
  • the vehicle body side system 2 and the communication center 200 communicate with each other.
  • mapping of the road surface state by the communication center 200 is performed, and provision of road surface data indicating the road surface state and the like collected in the database of the communication center 200 to the vehicle body side system 2 is performed.
  • FIG. 9 shows the details of the mapping data transmission process executed by the control unit 21b for the mapping of the communication center 200, and is executed every predetermined control cycle.
  • FIG. 10 shows the mapping process performed by the communication center 200, which is executed at predetermined control cycles by a control unit such as a microcomputer (not shown) provided in the communication center 200.
  • step S400 the control unit 21b performs current position detection. This process is performed by obtaining current position information from the navigation ECU 22. Then, in step S410, the control unit 21b transmits current position information to the communication center 200. At this time, ID information individually determined for each vehicle is added to the current position information and transmitted to the communication center 200 so that the vehicle can be specified on the communication center 200 side.
  • the communication center 200 performs data reception processing in step S500, and receives data from the vehicle body side system 2 of each vehicle. Then, when the communication center 200 receives data, the process proceeds to step S510, and based on the current position information included in the data, it is determined whether the current position of the vehicle that has sent the data is a position required for mapping. judge. If a negative determination is made here, the processing is ended as it is, but if a positive determination is made, the processing proceeds to step S520, where a request signal for requesting road surface data is sent to the vehicle that has sent data. Then, in step S530, road surface data reception processing is performed.
  • step S410 the control section 21b proceeds to step S420, and determines whether or not the request signal of the road surface data has been received.
  • the request signal of the road surface data is transmitted from the communication center 200
  • an affirmative determination is made in step S420.
  • the process proceeds to step S430, the road surface data is transmitted, and the process ends.
  • the road surface data including the feature amount transmitted from each tire side device 1 may be transmitted as it is, or may be road surface data indicating the detection result of the road surface condition in the control unit 21b.
  • the road surface data may include both the feature amount and the detection result of the road surface state.
  • the request signal of the road surface data is sent from the communication center 200
  • the request signal for requesting the road surface data is outputted to the tire side device 1, and the road surface data is created even if it is not in the normal measurement mode. It can also be made to transmit. That is, when the vehicle tries to travel to a point required by the communication center 200, the communication center 200 instructs the vehicle side to transmit road surface data, and in response to the instruction, the vehicle side system 2 receives the tire side It is also possible to request the device 1 to transmit road surface data. In this case, the tire side device 1 creates road surface data based on the detection signal of the vibration sensor unit 11 and transmits the road surface data to the vehicle body side system 2 even if it is not the normal mode measurement.
  • the communication center 200 can estimate the point at which the vehicle will travel from the current position information transmitted from the tire-side device 1, the position information of the point before the vehicle travels the point Can be transmitted to the vehicle body side system 2.
  • the receiver 21 can issue a request signal to the tire-side device 1 to obtain the road surface data of the point.
  • step S540 the communication center 200 performs mapping based on the received road surface data. That is, based on the received road surface data, the communication center 200 updates the road surface state information for each road location in the map data stored in the database. Thereby, mapping of the road surface condition which changes every moment is performed.
  • the vehicle Since the communication center 200 manages a database storing road surface state information for each road location, the vehicle transmits the road surface data from the communication center 200 to the vehicle communication device 25 of each vehicle. It is possible to provide road surface data of the road which is about to travel.
  • the vehicle body side system 2 outputs a request signal to each tire side device 1 to transmit necessary data. Specifically, when data on the wear state and data on the load are required, a request signal indicating that the data is necessary is issued.
  • the control unit 13 of each tire side device 1 grasps the state of the vehicle based on the request signal, and transmits the required data to the vehicle body side system 2 at an appropriate timing according to the state of the vehicle. Can. Further, when processing the detection signal of the vibration sensor unit 11, the control unit 13 can cope with a plurality of detection targets by switching an algorithm for processing the detection signal based on the request signal. Thereby, based on the detection signal of one vibration sensor unit 11, the detection result is obtained by one control unit 13.
  • the road surface data can be transmitted without the request signal from the vehicle body side system 2.
  • road surface data may also be transmitted based on a request signal from the vehicle body side system 2.
  • the road surface condition, the worn condition of the tire 3, the load applied to each wheel, and the tire air pressure are exemplified as the plurality of types of detection targets related to the tire 3.
  • these are just one example. That is, based on detection signals corresponding to a plurality of types of detection targets outputted by the sensing unit such as the vibration sensor unit 11 or the air pressure detection unit 12, data concerning the detection target is created
  • the present disclosure can be applied to the case of communicating to (2).
  • One may be the detection target.
  • the vibration sensor unit 11 and the air pressure detection unit 12 are exemplified as the sensing unit, a detection signal for detecting another detection target may be output.
  • various values acquired for detection of a plurality of types of detection targets related to the tire 3, such as the road surface state, the worn state of the tire 3, the load applied to each wheel, and the like may also be detection targets.
  • the characteristic amount of the tire G, the contact zone and the rotational speed of the tire 3 are determined from the detection signal of the vibration sensor unit 11, and based on these, plural types of detection targets related to the tire 3 described above Detected
  • the feature quantities of the tire G, the contact zone, the rotational speed of the tire 3 and the like can be objects to be detected from the detection signal of the vibration sensor unit 11 as well.
  • the tire side device 1 can detect the target based on the request signal from the vehicle body side system 2. Then, the detection result can be transmitted from the tire side device 1 at an appropriate timing.
  • the feature amount of the tire G can be grasped as a plurality of detection targets.
  • there are various waveform processing methods for the feature amount of the tire G and each feature amount of the tire G obtained by each waveform processing can be grasped as a detection target.
  • the feature quantities of the tire G are grasped as a plurality of detection targets. For example, if you want to make a more detailed determination of the road surface condition, for example, if you want to request a feature amount related to the dry road surface as a road surface condition, or if you want to request a feature amount on a wet road surface, frozen road or snow road.
  • the algorithm of the waveform processing of the detection signal of the vibration sensor unit 11 may be different. In such a case, even if the feature amount of the tire G is to be detected in the same manner, the feature amounts to be obtained are different, so a plurality of detection targets are obtained.
  • the vibration sensor unit 11 constituting the vibration detection unit is constituted by an acceleration sensor
  • it may be constituted by another element capable of detecting vibration, such as a piezoelectric element.
  • data including a feature amount is used as road surface data indicating a road surface condition appearing in a detection signal of the vibration sensor unit 11.
  • road surface data indicating a road surface condition appearing in a detection signal of the vibration sensor unit 11.
  • integrated value data of vibration waveforms of each of the five regions R1 to R5 included in vibration data during one rotation of the tire 3 may be road surface data, or raw data of the detection signal itself may be road surface data.
  • a control unit in addition to the determination of the danger of the vehicle based on the road information and the information on the current position and the vehicle speed and the road surface data transmitted from the communication center 200 by the receiver 21 Plays a role as a control unit that gives an instruction of notification of the danger of
  • a control unit may be provided separately from the receiver 21, or another ECU such as the navigation ECU 22 or the brake ECU 23 may function as the control unit.
  • the support vector is stored in the tire side device 1 so that the road surface state can be determined by the tire side device 1, and data indicating the determination result of the road surface state is sent to the vehicle body side system 2 as road surface data.
  • tire side apparatus 1 was provided with respect to each of the some tire 3 in said each embodiment, what is necessary is just to be provided in at least one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Atmospheric Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Tires In General (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Provided is a tire system in which a vehicle body side system (2) sends a request signal to a tire side device (1) to notify the tire side device (1) of required data. On the basis of the request signal, the tire side device (1) creates, on the basis of the request signal, data about an object included in a plurality of types of objects to be detected. The tire device (1) sends the data from a first data communication unit (14) to the vehicle body side system (2). In processing a detection signal from sensing units (11, 12), a signal processing unit (13) of the tire side device (1) can deal with a plurality of objects to be detected by switching an algorithm for processing of the detection signal on the basis of the request signal.

Description

タイヤシステムTire system 関連出願への相互参照Cross-reference to related applications
 本出願は、2018年1月19日に出願された日本特許出願番号2018-7423号と、2018年6月22日に出願された日本特許出願番号2018-118776号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-7423 filed on January 19, 2018 and Japanese Patent Application No. 2018-118776 filed on June 22, 2018, which are incorporated herein by reference. The contents of the description are incorporated by reference.
 本開示は、タイヤ側装置および車体側システムを有するタイヤシステムに関する。 The present disclosure relates to a tire system having a tire side device and a vehicle body side system.
 従来、特許文献1において、タイヤトレッドの裏面に加速度センサを備え、加速度センサにてタイヤに加えられる振動を検出すると共に、その振動の検出結果に基づいてタイヤの走行路面における路面状態の判別を行う路面状態判別方法が提案されている。この路面状態判別方法では、加速度センサが検出したタイヤの振動波形から特徴ベクトルを抽出し、抽出した特徴ベクトルと路面の種類ごとに記憶しておいた全サポートベクタとの類似度を計算することで、路面状態を判別する。例えば、カーネル関数を用いて、抽出した特徴ベクトルと全サポートベクタとの類似度が計算され、最も類似度が高い路面の種類、例えばドライ路面、ウェット路面、凍結路、積雪路などが現在走行中の路面状態であると判別される。 Conventionally, in Patent Document 1, an acceleration sensor is provided on the back surface of the tire tread, and the acceleration sensor detects the vibration applied to the tire, and based on the detection result of the vibration determines the road surface condition on the traveling road surface of the tire. A road surface condition determination method has been proposed. In this road surface condition determination method, a feature vector is extracted from the tire's vibration waveform detected by the acceleration sensor, and the similarity between the extracted feature vector and all the support vectors stored for each type of road surface is calculated. , Determine the road surface condition. For example, the kernel function is used to calculate the degree of similarity between the extracted feature vector and all the support vectors, and the type of road surface having the highest degree of similarity, such as dry road surface, wet road surface, frozen road, snow road etc., is currently running. It is determined that the road surface condition is
 また、タイヤ側装置に備えられる加速度センサなどの振動センサ部で取得するタイヤ振動に応じた検出信号は、上記したような路面状態に加えて、様々な検出対象、具体的にはタイヤに関わる各種状態もしくは物理量の検出に使用可能である。例えば、振動センサ部の検出信号をタイヤの摩耗状態や各車輪に印加される荷重を検出する際にも使用できる。 Further, in addition to the road surface state as described above, detection signals corresponding to tire vibration acquired by a vibration sensor unit such as an acceleration sensor provided in the tire side device are various detection targets, specifically various items related to the tire. It can be used to detect state or physical quantity. For example, the detection signal of the vibration sensor unit can also be used when detecting the wear state of a tire or the load applied to each wheel.
特開2016-107833号公報JP, 2016-107833, A
 上記したように、タイヤ側装置の振動センサ部で取得するタイヤ振動に応じた検出信号は、様々な検出対象の検出のために使用できるが、検出対象に応じて、タイヤ側装置で行う処理が異なるなど、検出の仕組みが異なったものとなる。例えば、検出対象に応じて、検出信号中の必要とされる周波数帯が変わったり、特徴ベクトルの演算などの各種演算方法が変わったりするなど、検出信号の処理方法が変わる。このため、検出対象に応じて、タイヤ側装置のマイクロコンピュータ(以下、マイコンという)のアルゴリズムが異なったものとなる。 As described above, although the detection signal corresponding to the tire vibration acquired by the vibration sensor unit of the tire side device can be used for detection of various detection targets, the processing performed by the tire side device according to the detection target is The detection mechanism is different, such as different. For example, depending on the detection target, the processing method of the detection signal changes, for example, the required frequency band in the detection signal changes, or various calculation methods such as calculation of feature vectors change. For this reason, the algorithm of the microcomputer (hereinafter referred to as a microcomputer) of the tire-side device is different according to the detection target.
 これに対して、タイヤ側装置に、複数の振動センサ部および複数のマイコンを備えたり、処理能力の高いマイコンを備えたりすれば、複数の検出対象があっても、別々に検出することが可能になる。 On the other hand, if the tire side device is provided with a plurality of vibration sensor units and a plurality of microcomputers, or a microcomputer with high processing capability, even if there are a plurality of detection targets, it is possible to separately detect become.
 しかしながら、振動センサ部やマイコンを複数にしたり大きなマイコンを搭載したりすると、タイヤ側装置の重量・体格を増加させることになるし、タイヤ側装置での消費電力の増大を招くことになる。タイヤ側装置はタイヤに取り付けられるものであるため、重量・体格の増加は好ましくないし、車体側システムから物理的に離れた位置に備えられるものであることから電源部での消費電力の低減が求められ、消費電力の増大は好ましくない。特に、電源部として電池が用いられる場合には、電池交換が容易ではないため、より消費電力の低減が求められる。 However, if a plurality of vibration sensors and microcomputers are mounted or a large microcomputer is mounted, the weight and physical size of the tire side device will be increased, and the power consumption in the tire side device will be increased. Since the tire side device is attached to the tire, it is not preferable to increase the weight and physical size, and because it is provided at a position physically separated from the vehicle side system, reduction of power consumption in the power supply unit is required. Power consumption is not desirable. In particular, in the case where a battery is used as the power supply unit, it is not easy to replace the battery, and therefore, it is required to further reduce power consumption.
 なお、ここではタイヤシステムで用いられる複数種類の検出対象として、路面状態や摩耗状態、各車輪に印加される荷重を例に挙げて説明した。しかしながら、タイヤに関わる複数種類の検出対象の検出結果を得る場合であれば、他の検出対象であっても、上記課題が発生し得る。 Here, as a plurality of types of detection targets used in the tire system, the road surface condition, the wear condition, and the load applied to each wheel have been described as an example. However, if the detection results of a plurality of types of detection targets related to the tire are obtained, the above-described problem may occur even if the detection targets are other types.
 本開示は、タイヤ側装置の重量・体格の増加を抑制しつつ、消費電力の低減を図ることができるタイヤシステムを提供することを目的とする。 An object of this indication is to provide a tire system which can aim at reduction of power consumption, controlling increase of weight and physique of a tire side device.
 本開示の1つの観点におけるタイヤシステムは、車両に備えられるタイヤに配置され、タイヤに関わる複数種類の検出対象のうちのいずれかの検出対象に関するデータを送信するタイヤ側装置と、車両における車体側に配置され、検出対象に関するデータを受信し、該検出対象の検出結果を取得する車体側システムと、を備えている。タイヤ側装置は、複数種類の検出対象に対応する検出信号を出力するセンシング部と、センシング部の検出信号を信号処理し、検出対象に関するデータを作成する信号処理部と、車体側システムとの間において双方向通信を行い、信号処理部の作成した検出対象に関するデータを車体側システムに送信する第1データ通信部と、を有した構成とされ、車体側システムは、タイヤ側装置との間において双方向通信を行い、検出対象に関するデータを受信する第2データ通信部と、検出対象に関するデータに基づいて、該検出対象に関するデータが示す該検出対象の検出結果を取得する制御部と、を有した構成とされている。このような構成において、車体側システムは、第2データ通信部を通じてタイヤ側装置に対して複数の検出対象のうちいずれの検出対象が必要であるかを要求する要求信号を出力し、タイヤ装置は、要求信号に基づいて、複数種類の検出対象の中から該要求信号が示す検出対象に関するデータを作成し、該データを第1データ通信部から車体側システムに送信する。 A tire system according to one aspect of the present disclosure is a tire side device that is disposed in a tire provided in a vehicle and transmits data regarding one of a plurality of detection objects related to the tire, and a vehicle body side in the vehicle And a vehicle-body-side system that receives the data on the detection target and acquires the detection result of the detection target. The tire side device is between a sensing unit that outputs detection signals corresponding to a plurality of types of detection targets, a signal processing unit that processes the detection signals of the sensing units to create data regarding the detection targets, and a vehicle body side system And the first data communication unit for transmitting data on the detection target created by the signal processing unit to the vehicle body system, and the vehicle body system is connected to the tire device. There is a second data communication unit that performs bi-directional communication and receives data related to a detection target, and a control unit that acquires a detection result of the detection target indicated by data related to the detection target based on data related to the detection target. It is assumed that In such a configuration, the vehicle body side system outputs a request signal for requesting which one of the plurality of detection targets is necessary to the tire side device through the second data communication unit, and the tire device Based on the request signal, data relating to the detection target indicated by the request signal is created from among a plurality of types of detection targets, and the data is transmitted from the first data communication unit to the vehicle body side system.
 このように、車体側システムから各タイヤ側装置に対して要求信号を出し、必要なデータを伝えるようにしている。このため、センシング部の検出信号を処理する際に、要求信号に基づいて検出信号の処理用のアルゴリズムを切り替えれば、複数の検出対象にも対応できる。したがって、各タイヤ側装置に対して複数のセンシング部および複数のマイコンを備えたり、処理能力の高いマイコンを備えたりしなくても済み、タイヤ側装置の重量・体格の増加を抑制できると共に、消費電力の低減を図ることが可能となる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
As described above, the vehicle body side system issues a request signal to each tire side device to transmit necessary data. Therefore, when processing the detection signal of the sensing unit, switching the algorithm for processing the detection signal based on the request signal can cope with a plurality of detection targets. Therefore, it is not necessary to provide a plurality of sensing units and a plurality of microcomputers for each tire-side device or a microcomputer with high processing capability, and it is possible to suppress the increase in weight and size of the tire-side device and to consume Power can be reduced.
In addition, the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
第1実施形態にかかるタイヤ側装置が適用されたタイヤ装置の車両搭載状態でのブロック構成を示した図である。It is a figure showing the block configuration in the vehicles mounting state of the tire device to which the tire side device concerning a 1st embodiment was applied. タイヤ側装置および車体側システムの詳細構成を示したブロック図である。It is the block diagram which showed the detailed composition of the tire side device and the body side system. タイヤ側装置が取り付けられたタイヤの断面模式図である。It is a cross-sectional schematic diagram of the tire in which the tire side apparatus was attached. タイヤ回転時における振動センサ部の出力電圧波形図である。It is an output voltage waveform figure of the vibration sensor part at the time of tire rotation. 振動センサ部の検出信号を所定の時間幅Tの時間窓毎に区画した様子を示す図である。It is a figure which shows a mode that the detection signal of the vibration sensor part was divided for every time window of predetermined time width | variety T. FIG. タイヤ側装置が実行するタイヤ側処理のフローチャートである。It is a flowchart of the tire side process which a tire side apparatus performs. 車体側システムの制御部が実行する車体側処理のフローチャートである。It is a flowchart of the vehicle body side process which the control part of a vehicle body side system performs. 車体側処理におけるデータ待ち受け処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the data waiting process in the vehicle body side process. 受信機の制御部が実行するマッピングデータ送信処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the mapping data transmission process which the control part of a receiver performs. 通信センターが実行するマッピング処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the mapping process which a communication center performs.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 図1~図10を参照して、本実施形態にかかる路面状態判別機能を有するタイヤシステム100について説明する。本実施形態にかかるタイヤシステム100は、タイヤ側装置1と車体側システム2とを有して構成されている。そして、タイヤシステム100は、車両の各車輪に備えられるタイヤ3の接地面に加わる振動などに基づき、タイヤ3に関わる複数種類の検出対象として、タイヤ3に関わる各種状態もしくは物理量の検出を行う。ここでは、タイヤシステム100は、タイヤ3に関わる各種状態として走行路面における路面状態やタイヤ3の摩耗状態を検出し、各物理量として車輪にかかる荷重を検出している。また、タイヤシステム100は、タイヤ3に関わる各種状態や物理量の検出結果に基づいて、車両の危険性の報知や車両運動制御などを行ったり、走行路面における路面状態を通信センター200に伝えたりしている。
First Embodiment
A tire system 100 having a road surface state determining function according to the present embodiment will be described with reference to FIGS. 1 to 10. A tire system 100 according to the present embodiment is configured to include a tire side device 1 and a vehicle body side system 2. Then, the tire system 100 detects various states or physical quantities related to the tire 3 as a plurality of types of detection targets related to the tire 3 based on vibrations applied to the contact surface of the tire 3 provided on each wheel of the vehicle. Here, the tire system 100 detects the road surface state on the traveling road surface and the worn state of the tire 3 as various states related to the tire 3, and detects the load applied to the wheel as each physical quantity. In addition, the tire system 100 carries out notification of the danger of the vehicle, vehicle motion control, etc. based on detection results of various conditions and physical quantities related to the tire 3, and transmits the road surface condition on the traveling road surface to the communication center 200. ing.
 図1および図2に示すようにタイヤシステム100は、車輪側に設けられたタイヤ側装置1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2には、受信機21、ナビゲーション制御用の電子制御装置(以下、ナビゲーションECUという)22、ブレーキ制御用の電子制御装置(以下、ブレーキECUという)23、左右駆動トルク制御用の電子制御装置(以下、トルク制御ECUという)24、車両通信装置25、報知装置26などが備えられている。以下、タイヤ側装置1および車体側システム2を構成する各部の詳細について説明する。 As shown in FIG. 1 and FIG. 2, the tire system 100 is configured to have a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side. The vehicle body side system 2 includes a receiver 21, an electronic control unit for navigation control (hereinafter referred to as navigation ECU) 22, an electronic control unit for brake control (hereinafter referred to as brake ECU) 23, an electronic for left and right driving torque control A control device (hereinafter referred to as a torque control ECU) 24, a vehicle communication device 25, a notification device 26, and the like are provided. Hereinafter, the details of each part constituting the tire side device 1 and the vehicle body side system 2 will be described.
 タイヤ側装置1は、図2に示すように、振動センサ部11、空気圧検出部12、制御部13、データ通信部14および電源部15を備えた構成とされ、例えば、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。 The tire side device 1 is configured to include a vibration sensor unit 11, an air pressure detection unit 12, a control unit 13, a data communication unit 14 and a power supply unit 15 as shown in FIG. 2, for example, as shown in FIG. , And is provided on the back side of the tread 31 of the tire 3.
 振動センサ部11は、タイヤ3に加わる振動を検出するための振動検出部を構成するものである。例えば、振動センサ部11は、加速度センサによって構成される。この場合、振動センサ部11は、例えば、タイヤ3が回転する際にタイヤ側装置1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動の大きさに応じた検出信号として、加速度の検出信号を出力する。より詳しくは、振動センサ部10は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧などを検出信号として発生させる。例えば、振動センサ部10は、タイヤ3が1回転するよりも短い周期に設定される所定のサンプリング周期ごとに加速度検出を行い、それを検出信号として出力している。なお、振動センサ部10の検出信号は、出力電圧もしくは出力電流として表されるが、ここでは出力電圧として表される場合を例に挙げる。 The vibration sensor unit 11 constitutes a vibration detection unit for detecting the vibration applied to the tire 3. For example, the vibration sensor unit 11 is configured by an acceleration sensor. In this case, for example, when the tire 3 rotates, the vibration sensor unit 11 has a direction in which the vibration sensor unit 11 contacts the circular track drawn by the tire-side device 1, that is, the magnitude of the vibration in the tire tangential direction indicated by the arrow X in FIG. An acceleration detection signal is output as a corresponding detection signal. More specifically, the vibration sensor unit 10 generates, as a detection signal, an output voltage or the like in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative. For example, the vibration sensor unit 10 performs acceleration detection at a predetermined sampling cycle set to a cycle shorter than one rotation of the tire 3 and outputs it as a detection signal. Although the detection signal of the vibration sensor unit 10 is represented as an output voltage or an output current, here, a case where it is represented as an output voltage is taken as an example.
 空気圧検出部12は、圧力センサ12aおよび温度センサ12bを備えた構成とされている。圧力センサ12aは、タイヤ空気圧を示す検出信号を出力し、温度センサ12bはタイヤ内温度を示す検出信号を出力する。これら圧力センサ12aおよび温度センサ12bの検出信号が示すタイヤ空気圧や温度のデータは、タイヤ空気圧に関するデータとして用いられる。本実施形態では、圧力センサ12aおよび温度センサ12bの検出信号が示すタイヤ空気圧や温度のデータが制御部13に入力され、制御部13において、基準温度におけるタイヤ空気圧が算出されるようにしている。すなわち、圧力センサ12aの検出信号が示すタイヤ空気圧はタイヤ空気圧の実測値に相当するため、タイヤ空気圧の実測値が温度センサ12bの検出信号が示す温度に基づいて補正されることで、基準温度におけるタイヤ空気圧が算出される。 The air pressure detection unit 12 is configured to include a pressure sensor 12 a and a temperature sensor 12 b. The pressure sensor 12a outputs a detection signal indicating the tire pressure, and the temperature sensor 12b outputs a detection signal indicating the temperature in the tire. Data of tire pressure and temperature indicated by detection signals of the pressure sensor 12a and the temperature sensor 12b are used as data regarding tire pressure. In the present embodiment, data of tire air pressure and temperature indicated by detection signals of the pressure sensor 12a and the temperature sensor 12b are input to the control unit 13, and the control unit 13 calculates tire air pressure at a reference temperature. That is, since the tire air pressure indicated by the detection signal of the pressure sensor 12a corresponds to the actual measurement value of the tire air pressure, the actual measurement value of the tire air pressure is corrected based on the temperature indicated by the detection signal of the temperature sensor 12b. Tire pressure is calculated.
 制御部13は、検出対象に関するデータを作成する信号処理部に相当する部分であり、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種処理を行っている。例えば、制御部13は、振動センサ部11の検出信号に基づいて制御部13に備えられる各機能の起動状態とスリープ状態との切り替えを行っており、起動状態になると、電源部15からの電力供給に基づいて各機能を起動させる。制御部13は、振動センサ部11の検出信号を入力し、例えば、検出信号の波形が所定の閾値を超えることに基づいてタイヤ3の回転、つまり車両の走行を検知し、車両の走行を検知すると、スリープされていた各機能を起動状態に切り替える。そして、制御部13は、振動センサ部11の検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この信号を処理することで路面データや荷重に関するデータ、さらには摩耗状態に関するデータを得て、それをデータ通信部14に伝える処理を行う。また、制御部13は、空気圧検出部12から伝えられるデータに基づいてタイヤ空気圧に関するデータを得て、それをデータ通信部14に伝える処理も行っている。 The control unit 13 is a part corresponding to a signal processing unit that creates data on a detection target, and is a program stored in the ROM or the like and configured by a known microcomputer including a CPU, ROM, RAM, I / O, etc. It performs various processing according to. For example, the control unit 13 switches between the activation state and the sleep state of each function provided in the control unit 13 based on the detection signal of the vibration sensor unit 11, and when activated, the power from the power supply unit 15 Activate each function based on the supply. The control unit 13 receives the detection signal of the vibration sensor unit 11, and detects, for example, the rotation of the tire 3, that is, the traveling of the vehicle based on the waveform of the detection signal exceeding a predetermined threshold, thereby detecting the traveling of the vehicle. Then, each function that has been asleep is switched to the activated state. Then, the control unit 13 uses the detection signal of the vibration sensor unit 11 as a detection signal representing the vibration data in the tire tangential direction, and processes this signal to process data on road surface data and load, and further data on wear condition. Then, the process of communicating it to the data communication unit 14 is performed. Further, the control unit 13 also performs processing for obtaining data on tire air pressure based on data transmitted from the air pressure detection unit 12 and transmitting the data to the data communication unit 14.
 具体的には、制御部13は、振動センサ部11の検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号が示す振動波形の波形処理を行うことで、タイヤ振動の特徴量を抽出する。本実施形態の場合、タイヤ3の加速度(以下、タイヤGという)の検出信号を信号処理することで、タイヤGの特徴量を抽出する。また、制御部13は、抽出した特徴量を含むデータを路面状態に関するデータである路面データとしてデータ通信部14に伝える。 Specifically, the control unit 13 uses the detection signal of the vibration sensor unit 11 as a detection signal representing the vibration data in the tire tangential direction, and performs the waveform processing of the vibration waveform indicated by the detection signal, whereby the tire vibration is Extract feature quantities. In the case of the present embodiment, the feature amount of the tire G is extracted by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G). Further, the control unit 13 transmits data including the extracted feature amount to the data communication unit 14 as road surface data which is data related to the road surface state.
 特徴量とは、振動センサ部11が取得したタイヤ3に加わる振動の特徴を示す量であり、例えば特徴ベクトルとして表される。 The feature amount is an amount indicating the feature of the vibration applied to the tire 3 acquired by the vibration sensor unit 11 and is represented as, for example, a feature vector.
 タイヤ回転時における振動センサ部11の検出信号の出力電圧波形は、例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴ってトレッド31のうち振動センサ部11の配置箇所と対応する部分が接地し始めた接地開始時に、振動センサ部11の出力電圧が極大値をとる。以下、この振動センサ部11の出力電圧が極大値をとる接地開始時のピーク値を第1ピーク値という。さらに、図4に示されるように、タイヤ3の回転に伴ってトレッド31のうち振動センサ部11の配置箇所と対応する部分が接地していた状態から接地しなくなる接地終了時に、振動センサ部11の出力電圧が極小値をとる。以下、この振動センサ部11の出力電圧が極小値をとる接地終了時のピーク値を第2ピーク値という。 An output voltage waveform of a detection signal of the vibration sensor unit 11 at the time of tire rotation is, for example, a waveform shown in FIG. As shown in this figure, the output voltage of the vibration sensor unit 11 reaches its maximum value at the start of grounding when the portion of the tread 31 corresponding to the location of the vibration sensor unit 11 starts to be grounded as the tire 3 rotates. Take. Hereinafter, a peak value at the start of grounding where the output voltage of the vibration sensor unit 11 has a maximum value is referred to as a first peak value. Furthermore, as shown in FIG. 4, when the tire 3 is in contact with the ground, a portion of the tread 31 corresponding to the location where the vibration sensor unit 11 is in contact with the ground. Output voltage has a local minimum value. Hereinafter, the peak value at the end of grounding where the output voltage of the vibration sensor unit 11 has a minimum value is referred to as a second peak value.
 振動センサ部11の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴ってトレッド31のうち振動センサ部11の配置箇所と対応する部分が接地する際、振動センサ部11の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、振動センサ部11の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴ってトレッド31のうち振動センサ部11の配置箇所と対応する部分が接地面から離れる際には、振動センサ部11の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、振動センサ部11の出力電圧が第2ピーク値をとる。このようにして、振動センサ部11の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。 The reason why the output voltage of the vibration sensor unit 11 has a peak value at the above timing is as follows. That is, when the portion of the tread 31 corresponding to the location where the vibration sensor unit 11 is in contact with the tread 31 along with the rotation of the tire 3, the portion of the tire 3 having a substantially cylindrical surface in the vicinity of the vibration sensor unit 11 is It is pressed and deformed into a planar shape. By receiving the impact at this time, the output voltage of the vibration sensor unit 11 takes a first peak value. In addition, when a portion of the tread 31 corresponding to the location where the vibration sensor unit 11 is disposed is separated from the ground contact surface as the tire 3 rotates, the tire 3 is released from pressure in the vicinity of the vibration sensor unit 11 and is planar It returns to approximately cylindrical shape from. By receiving an impact when the shape of the tire 3 returns to its original shape, the output voltage of the vibration sensor unit 11 takes a second peak value. In this way, the output voltage of the vibration sensor unit 11 takes the first and second peak values at the start of grounding and at the end of grounding, respectively. Further, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the pressing are opposite, the sign of the output voltage is also the opposite.
 ここで、タイヤトレッド31のうち振動センサ部11の配置箇所と対応する部分が路面に接地した瞬間を「踏み込み領域」、路面から離れる瞬間を「蹴り出し領域」とする。「踏み込み領域」には、第1ピーク値となるタイミングが含まれ、「蹴り出し領域」には、第2ピーク値となるタイミングが含まれる。また、踏み込み領域の前を「踏み込み前領域」、踏み込み領域から蹴り出し領域までの領域、つまりタイヤトレッド31のうち振動センサ部11の配置箇所と対応する部分が接地中の領域を「蹴り出し前領域」、蹴り出し領域後を「蹴り出し後領域」とする。このように、タイヤトレッド31のうち振動センサ部11の配置箇所と対応する部分が接地する期間およびその前後を5つの領域に区画することができる。なお、図4中では、検出信号のうちの「踏み込み前領域」、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」、「蹴り出し後領域」を順に5つの領域R1~R5として示してある。 Here, the moment when a portion of the tire tread 31 corresponding to the location where the vibration sensor unit 11 is placed contacts the road surface is referred to as a "step-in area", and the moment leaving the road surface is referred to as a "kick-out area". The “step-in area” includes the timing at which the first peak value is obtained, and the “kick-out area” includes the timing at which the second peak value is obtained. In addition, the area in front of the stepping area is the area before the stepping area, and the area from the stepping area to the kicking area, that is, the portion of the tire tread 31 corresponding to the location where the vibration sensor unit 11 is in contact "Region after kicking out" is taken as "area after kicking out". As described above, it is possible to divide the period in which the portion of the tire tread 31 corresponding to the location where the vibration sensor unit 11 is in contact with the ground and the region before and after that period. In FIG. 4, five areas R1 to R5 are “pre-step-in area”, “step-in area”, “kick-out front area”, “kick-out area”, and “post-kick out area” in the detection signal in this order. It is shown as.
 路面状態に応じて、区画した各領域でタイヤ3に生じる振動が変動し、振動センサ部11の検出信号が変化することから、各領域での振動センサ部11の検出信号を周波数解析することで、車両の走行路面における路面状態を検出する。例えば、圧雪路のような滑り易い路面状態では蹴り出し時の剪断力が低下するため、蹴り出し領域R4や蹴り出し後領域R5において、1kHz~4kHz帯域から選択される帯域値が小さくなる。このように、路面状態に応じて振動センサ部11の検出信号の各周波数成分が変化することから、検出信号の周波数解析に基づいて路面状態を判定することが可能になる。 According to the road surface condition, the vibration generated in the tire 3 fluctuates in each of the divided areas, and the detection signal of the vibration sensor unit 11 changes, so that the frequency analysis of the detection signal of the vibration sensor unit 11 in each area is performed. , Detects the road surface condition on the traveling road surface of the vehicle. For example, in a slippery road surface condition such as a snowy road, the shearing force at the time of kicking is reduced, so the band value selected from the 1 kHz to 4 kHz band becomes smaller in the kicking out region R4 and the after kicking out region R5. As described above, since each frequency component of the detection signal of the vibration sensor unit 11 changes according to the road surface state, it is possible to determine the road surface state based on the frequency analysis of the detection signal.
 このため、制御部13は、連続した時間軸波形となっているタイヤ3の1回転分の振動センサ部11の検出信号を、図5に示すように所定の時間幅Tの時間窓毎に複数の区画に分割し、各区画で周波数解析を行うことで特徴量を抽出している。具体的には、各区画で周波数解析を行うことで、各周波数帯域でのパワースペクトル値、つまり特定周波数帯域の振動レベルを求め、このパワースペクトル値を特徴量としている。 For this reason, the control unit 13 generates a plurality of detection signals of the vibration sensor unit 11 corresponding to one rotation of the tire 3 having a continuous time axis waveform, for each time window of a predetermined time width T as shown in FIG. The feature quantity is extracted by dividing into sections and performing frequency analysis in each section. Specifically, the power spectrum value in each frequency band, that is, the vibration level in the specific frequency band is determined by performing frequency analysis in each section, and this power spectrum value is used as the feature amount.
 また、制御部13は、振動センサ部11の出力電圧の時間変化に基づいて、タイヤ3の回転時における振動センサ部11の接地区間を抽出している。ここでいう接地区間とは、タイヤ3のトレッド31のうち振動センサ部11の配置箇所と対応する部分が路面接地している区間のことを意味している。本実施形態の場合、振動センサ部11の配置箇所がタイヤ側装置1の配置箇所とされているため、接地区間とはタイヤ3のトレッド31のうちタイヤ側装置1の配置箇所と対応する部分が路面接地している区間と同意である。また、タイヤ3が1回転する毎に1回ずつ接地区間になるため、接地区間の時間間隔などから単位時間当たりのタイヤ3の回転数、つまり回転速度を算出できる。 Further, the control unit 13 extracts the ground contact section of the vibration sensor unit 11 at the time of rotation of the tire 3 based on the time change of the output voltage of the vibration sensor unit 11. The term “contacting section” as used herein means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the vibration sensor unit 11 is disposed is in contact with the road surface. In the case of the present embodiment, since the location where the vibration sensor unit 11 is disposed is the location where the tire side device 1 is disposed, a portion of the tread 31 of the tire 3 corresponding to the location where the tire side device 1 is disposed is the ground contact section. It agrees with the section where the road surface is grounded. In addition, since the tire 3 is in the ground contact zone once every one rotation, the number of rotations of the tire 3 per unit time, that is, the rotational speed can be calculated from the time interval of the ground contact zone.
 これらに基づき、制御部13は、抽出した接地区間に関するデータやタイヤ3の回転速度に関するデータを荷重に関するデータや摩耗状態に関するデータとして、データ通信部14に伝えている。 Based on these, the control unit 13 transmits to the data communication unit 14 data on the extracted ground contact section and data on the rotational speed of the tire 3 as data on the load and data on the wear state.
 さらに、制御部13は、空気圧検出部12から伝えられるタイヤ空気圧を示す検出信号やタイヤ内温度を示す検出信号に基づいて、基準温度下でのタイヤ空気圧を換算し、タイヤ空気圧に関するデータとしてデータ通信部14に伝える役割も果たす。 Furthermore, the control unit 13 converts the tire air pressure under the reference temperature based on the detection signal indicating the tire air pressure transmitted from the air pressure detection unit 12 and the detection signal indicating the temperature in the tire, and performs data communication as data regarding the tire air pressure. It also plays the role of telling the department 14.
 また、制御部13は、データ通信部14からのデータ送信を制御しており、データ送信を行わせたいタイミングでデータ通信部14に対して路面データを伝えることで、データ通信部14からデータ通信が行われるようにする。 In addition, the control unit 13 controls data transmission from the data communication unit 14, and transmits road surface data to the data communication unit 14 at a timing when data transmission is desired to be performed. To be done.
 例えば、制御部13は、タイヤ3が1回転するごとにタイヤGの特徴量の抽出を行い、タイヤ3が1回転もしくは複数回転する毎に1回もしくは複数回の割合で、データ通信部14に対して路面データを伝えている。例えば、制御部13は、データ通信部14に対して路面データを伝えるときのタイヤ3の1回転中に抽出されたタイヤGの特徴量を含んだ路面データをデータ通信部14に対して伝えている。 For example, the control unit 13 extracts the feature amount of the tire G each time the tire 3 makes one rotation, and makes the data communication unit 14 at a rate of once or plural times each time the tire 3 makes one or more rotations. The road surface data is being transmitted. For example, the control unit 13 transmits, to the data communication unit 14, road surface data including the feature amount of the tire G extracted during one rotation of the tire 3 when transmitting road surface data to the data communication unit 14. There is.
 また、制御部13は、例えば1回の走行中に1回の割合で摩耗状態の算出が行えるように、例えば車両が走行開始して所定期間中に1回、摩耗状態に関するデータをデータ通信部14に伝えている。また、後述するトルク制御ECU24からの要求があると、制御部13は、荷重に関するデータをデータ通信部14に伝えている。さらに、制御部13は、所定の定期送信周期毎にタイヤ空気圧に関するデータをデータ通信部14に伝えている。また、摩耗状態や荷重の算出の補正用にタイヤ空気圧を用いることができるため、必要に応じて、制御部13は、摩耗状態に関するデータや荷重に関するデータをデータ通信部14に伝える際に、タイヤ空気圧に関するデータも伝えるようにしている。 Further, the control unit 13 may, for example, calculate the wear state at a rate of once during one run, for example, the data communication unit performs data on the wear state once in a predetermined period after the vehicle starts running. I'm telling you. Further, when there is a request from a torque control ECU 24 described later, the control unit 13 transmits data related to the load to the data communication unit 14. Furthermore, the control unit 13 transmits data on tire air pressure to the data communication unit 14 every predetermined regular transmission cycle. In addition, since tire air pressure can be used for correction of wear condition and load calculation, the control unit 13 may use the tire when transmitting data on the wear condition and data on the load to the data communication unit 14 as necessary. It also sends data on air pressure.
 ここで、制御部13は、ここで説明したデータのうちの路面データ、荷重に関するデータ、摩耗状態に関するデータについては、振動センサ部11の検出信号に基づいて作成している。しかしながら、検出対象が異なっているため、制御部13は、各データを作成するために、振動センサ部11の検出信号について異なる波形処理を行うなど、異なるアルゴリズムによる処理を行うことになる。 Here, the control unit 13 creates the road surface data, the data on the load, and the data on the wear state among the data described here, based on the detection signal of the vibration sensor unit 11. However, since the detection targets are different, the control unit 13 performs processing using different algorithms such as performing different waveform processing on the detection signal of the vibration sensor unit 11 in order to create each data.
 すなわち、路面データについてはタイヤGの特徴量を得るために、荷重に関するデータについては接地区間やタイヤ3の回転速度を得るために、摩耗状態に関するデータについてはタイヤ3の回転速度を得るために、異なる処理を行う。例えば、タイヤGの特徴量を得るためには、例えば、1kHzの帯域毎の5つの帯域のフィルタを用いて、振動センサ部11の検出信号のうちの0kHz~5kHzの周波数成分を抽出し、各周波数帯域のパワースペクトル値を得る。また、接地区間やタイヤ3の回転速度を得るためには、振動センサ部11の検出信号の極大値や極小値を認識できる程度の波形処理が行えれば良く、特定の周波数帯域のパワースペクトル値は必要ない。したがって、必要とするデータによって、異なるアルゴリズムによる処理が行わることになる。 That is, in order to obtain the feature value of the tire G for road surface data, in order to obtain the contact speed and the rotational speed of the tire 3 for data on the load, and for obtaining the rotational speed of the tire 3 for data on the wear state, Do different processing. For example, in order to obtain the feature amount of the tire G, for example, a frequency component of 0 kHz to 5 kHz is extracted from detection signals of the vibration sensor unit 11 using filters of five bands for each 1 kHz band, Obtain the power spectrum value of the frequency band. In addition, in order to obtain the contact speed and the rotational speed of the tire 3, it is sufficient to perform waveform processing to the extent that the maximum value and the minimum value of the detection signal of the vibration sensor unit 11 can be recognized. Is not necessary. Therefore, processing by different algorithms will be performed depending on the required data.
 このため、後述するように、本実施形態のタイヤシステム100では、車体側システム2からの要求信号によって必要なデータが把握できるようにしており、要求信号に基づいて検出対象を把握し、検出対象に応じてアルゴリズムが切り替えられるようにしている。 Therefore, as described later, in the tire system 100 according to the present embodiment, the required data can be grasped by the request signal from the vehicle body side system 2, and the detection target is grasped based on the request signal. The algorithm can be switched according to.
 データ通信部14は、車体側システム2との間において双方向通信を行う第1データ通信部に相当する部分である。双方向通信の形態については様々なものを適用することができ、BLE(Bluetooth LowEnergyの略)通信を含むブルートゥース通信、wifiなどの無線LAN(Local AreaNetworkの略)、Sub-GHz通信、ウルトラワイドバンド通信、ZigBeeなどを適用できる。なお、「ブルートゥース」は登録商標である。 The data communication unit 14 corresponds to a first data communication unit that performs bidirectional communication with the vehicle body side system 2. Various forms of bi-directional communication can be applied. Bluetooth communication including BLE (abbreviation of Bluetooth Low Energy) communication, wireless LAN such as wifi (abbreviation of Local Area Network), Sub-GHz communication, ultra wide band Communication, ZigBee, etc. can be applied. "Bluetooth" is a registered trademark.
 データ通信部14は、例えば、制御部13から路面データなどの各種データが伝えられると、そのタイミングでデータ送信を行う。データ通信部14からのデータ送信のタイミングについては、制御部13によって制御される。例えば路面データの場合、制御部13からタイヤ3が1回転もしくは複数回転する毎に送られてくるたびに、データ通信部14からのデータ送信が行われるようになっている。 For example, when various data such as road surface data are transmitted from the control unit 13, the data communication unit 14 performs data transmission at that timing. The timing of data transmission from the data communication unit 14 is controlled by the control unit 13. For example, in the case of road surface data, data transmission from the data communication unit 14 is performed each time the tire 3 is sent from the control unit 13 each time the tire 3 makes one rotation or a plurality of rotations.
 電源部15は、タイヤ側装置1の電源となるものであり、タイヤ側装置1に備えられる各部への電力供給を行うことで、各部が作動させられるようにしている。電源部15は、例えばボタン電池等の電池で構成される。タイヤ側装置1がタイヤ3内に備えられることから、容易に電池交換を行うことができないため、消費電力の軽減を図ることが必要となっている。また、電池の他にも、発電装置および蓄電池等によって電源部15を構成することもできる。電源部15が発電装置を有した構成とされる場合、電池とされる場合と比較すると電池寿命の問題は少なくなるが、大きな電力の発電は難しいため、消費電力の低減を図るという課題は電池とされる場合と同様である。 The power supply unit 15 is a power supply of the tire-side device 1 and supplies the electric power to the respective components provided in the tire-side device 1 so that the respective components can be operated. The power supply unit 15 is configured of, for example, a battery such as a button battery. Since the tire side device 1 is provided in the tire 3, battery replacement can not be easily performed, and therefore, it is necessary to reduce power consumption. In addition to the battery, the power supply unit 15 can also be configured by a power generation device, a storage battery, and the like. When the power supply unit 15 is configured to have a power generation device, the problem of battery life is reduced compared to the case where it is a battery, but large power generation is difficult, so the problem of reducing power consumption is the battery The same as in the case of
 一方、受信機21は、タイヤ側装置1より送信された路面データなどの各種データを受信し、路面状態や摩耗状態の検出を行ったり、各車輪にかかる荷重の検出を行ったりしている。また、受信機21は、路面データを車両通信装置25に出力する処理も行っている。このときの路面データには、各タイヤ側装置1から送信されてきた路面データをそのまま用いても良いし、後述するように受信機21で検出される路面状態の検出結果を示した路面データを用いても良い。そして、これに基づき、車両通信装置25から道路情報などを収集している通信センター200に路面データが送られるようになっている。また、受信機21は、車両通信装置25を通じて通信センター200からより正確な路面データを取得する処理も行っている。 On the other hand, the receiver 21 receives various data such as road surface data transmitted from the tire-side device 1 to detect a road surface state and a wear state, and detects a load applied to each wheel. The receiver 21 also performs processing of outputting road surface data to the vehicle communication device 25. As the road surface data at this time, the road surface data transmitted from each tire side device 1 may be used as it is, or as described later, the road surface data showing the detection result of the road surface condition detected by the receiver 21 You may use. Then, based on this, the road surface data is sent from the vehicle communication device 25 to the communication center 200 collecting road information and the like. The receiver 21 also performs processing for acquiring more accurate road surface data from the communication center 200 through the vehicle communication device 25.
 具体的には、受信機21は、データ通信部21aと制御部21bとを有した構成とされている。 Specifically, the receiver 21 is configured to include the data communication unit 21a and the control unit 21b.
 データ通信部21aは、第2データ通信部を構成する部分であり、タイヤ側装置1のデータ通信部14より送信された各種データを受信し、制御部21bに伝える役割を果たす。また、データ通信部21aは、制御部21bから伝えられる要求信号などを各タイヤ側装置1に送信する役割も果たす。 The data communication unit 21a is a part that constitutes the second data communication unit, and receives various data transmitted from the data communication unit 14 of the tire-side device 1 and transmits the data to the control unit 21b. The data communication unit 21 a also plays a role of transmitting a request signal or the like transmitted from the control unit 21 b to each tire-side device 1.
 制御部21bは、CPU、ROM、RAM、I/Oなどを備えた周知のマイコンによって構成され、ROMなどに記憶されたプログラムに従って各種処理を行っている。 The control unit 21 b is configured by a well-known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various processes in accordance with a program stored in the ROM or the like.
 具体的には、制御部21bは、路面の種類ごとにサポートベクタを記憶して保存しており、サポートベクタと路面データに含まれる特徴量に基づいて、路面状態を検出している。サポートベクタは、手本となる特徴量のことであり、例えばサポートベクタマシンを用いた学習によって得ている。タイヤ側装置1を備えた車両を実験的に路面の種類別に走行させ、そのときに振動センサ部11の検出信号から抽出した特徴量を所定のタイヤ回転数分学習し、その中から典型的な特徴量を所定数分抽出したものがサポートベクタとされる。例えば、路面の種類別に、100万回転分の特徴量を学習し、その中から100回転分の典型的な特徴量を抽出したものをサポートベクタとしている。このサポートベクタと路面データに含まれる特徴量との類似度を判定し、類似度が高いサポートベクタの属する路面の種類を車両の走行路面における路面状態としている。なお、特徴量や類似度の算出方法などについては、上記した特許文献1等において公知となっているため、ここでは説明を省略するが、公知となっている様々な手法を適用できる。 Specifically, the control unit 21b stores and stores the support vector for each type of road surface, and detects the road surface state based on the support vector and the feature amount included in the road surface data. The support vector is a feature that serves as an example, and is obtained, for example, by learning using a support vector machine. A vehicle equipped with the tire side device 1 is run experimentally for each kind of road surface, and at that time, the feature quantity extracted from the detection signal of the vibration sensor unit 11 is learned for a predetermined number of tire rotations, The feature vector extracted as a predetermined number of times is taken as a support vector. For example, feature amounts for one million rotations are learned for each type of road surface, and typical feature amounts for 100 rotations are extracted therefrom as support vectors. The similarity between the support vector and the feature amount included in the road surface data is determined, and the type of the road surface to which the support vector with high similarity belongs belongs to the road surface condition on the traveling road surface of the vehicle. In addition, about the calculation method of a feature-value, a similarity degree, etc., since it becomes well-known in the above-mentioned patent document 1 grade | etc., It abbreviate | omits description here, but can apply various known methods.
 さらに、制御部21bは、車両通信装置25に路面状態の検出結果もしくは路面データを送ることで通信センター200に伝えたり、通信センター200から車両通信装置25に伝えられた正確な路面データを入力して路面状態を取得したりする処理を行っている。 Furthermore, the control unit 21b transmits the detection result of the road surface condition or road surface data to the vehicle communication device 25 to transmit it to the communication center 200, or inputs the accurate road surface data transmitted from the communication center 200 to the vehicle communication device 25. Processing to acquire the road surface condition.
 また、制御部21bは、各タイヤ側装置1に対して荷重に関するデータやタイヤ空気圧に関するデータおよび摩耗状態に関するデータに基づいて、タイヤ3が装着された各車輪に加わる荷重やタイヤ空気圧およびタイヤ3の摩耗状態を検出している。本実施形態の場合、上記した路面データやタイヤ空気圧に関するデータについてはタイヤ側装置1から決められたタイミングで送信され、荷重に関するデータや摩耗状態に関するデータについては制御部21bからの要求信号に基づいて送信されるようにしている。荷重に関するデータについては、後述するように、制御部21bにブレーキECU23やトルク制御ECU24からの要求信号が伝えられたときに、制御部21bからタイヤ側装置1に要求信号が送信されることで要求される。また、摩耗状態に関するデータについては、1回の走行中に少なくとも1回は摩耗状態の検出が行えるように制御部21bよりタイヤ側装置1に要求信号が出されることで要求される。ここでは、例えば車両を走行可能にするための起動スイッチに相当するイグニッションスイッチ(以下、IGという)30がオンされてから所定時間内に1回、制御部21bからタイヤ側装置1へ摩耗状態に関するデータの要求信号が送信されるようにしている。なお、1回の走行中に少なくとも1回、摩耗状態の検出を行うようにすれば良いが、1回のみとすることで、よりタイヤ側装置1での処理負担の軽減が図れると共に、処理およびデータ送信に必要な電力の軽減を図ることも可能となる。 In addition, the control unit 21b controls the load applied to each wheel on which the tire 3 is mounted, the tire air pressure, and the tire 3 based on the data on the load, the data on the tire pressure, and the data on the wear state. The wear condition is detected. In the case of the present embodiment, the data regarding the road surface data and the tire pressure described above are transmitted at the timing determined from the tire device 1, and the data regarding the load and the data regarding the wear state are based on the request signal from the control unit 21b. I am sending it. As described later, when the request signal from the brake ECU 23 or the torque control ECU 24 is transmitted to the control unit 21b, the request signal is transmitted from the control unit 21b to the tire-side device 1, as described later. Be done. Further, the data on the wear state is requested by outputting a request signal to the tire side device 1 from the control unit 21b so that the wear state can be detected at least once during one traveling. Here, for example, the control unit 21b relates to the wear state from the control unit 21b to the tire side device 1 once within a predetermined time after an ignition switch (hereinafter referred to as IG) 30 corresponding to a start switch for enabling the vehicle to travel is turned on. A request signal of data is transmitted. The wear state may be detected at least once during one run, but the processing load on the tire-side device 1 can be further reduced by performing the detection only once. It is also possible to reduce the power required for data transmission.
 荷重に関しては、荷重に関するデータに含まれる接地区間の時間とタイヤ3の回転速度に関するデータから得られるタイヤ1回転に掛かる時間に基づいて接地面積を求め、4輪それぞれの接地面積の面積比から算出することができる。また、各車輪のタイヤサイズが異なっていたり、タイヤ空気圧が異なっている場合には、これらに応じた補正を行うことで、各車輪に加えられる荷重をより正確に得ることができる。 With regard to the load, the ground contact area is determined based on the time of the ground contact zone included in the data on the load and the time taken for one rotation of the tire obtained from the data on the rotational speed of the tire 3 can do. Moreover, when the tire size of each wheel is different or the tire air pressure is different, the load applied to each wheel can be more accurately obtained by performing correction according to these.
 タイヤ空気圧に関しては、タイヤ側装置1からタイヤ空気圧に関するデータが伝えられることで、基準温度下でのタイヤ空気圧として得ることができる。なお、ここではタイヤ側装置1において基準温度下でのタイヤ空気圧を算出した結果がタイヤ空気圧に関するデータとして伝えられるようにしているが、タイヤ空気圧の実測値およびタイヤ内温度のデータが伝えられるようにすることもできる。その場合は、それらのデータに基づいて、制御部21bで基準温度下でのタイヤ空気圧に換算することになる。 With regard to tire air pressure, data on tire air pressure can be transmitted from the tire side device 1 to obtain tire air pressure under a reference temperature. Here, although the result of calculating the tire air pressure under the reference temperature in the tire side device 1 is transmitted as data related to the tire air pressure, it is possible to transmit the measured value of the tire air pressure and the data of the temperature inside the tire. You can also In that case, based on the data, the control unit 21b converts the tire pressure into the tire pressure under the reference temperature.
 摩耗状態に関しては、後述するようにナビゲーションECU22から伝えられる車両の移動距離情報と摩耗状態に関するデータに含まれるタイヤ3の回転速度に関するデータに基づいて算出できる。つまり、タイヤ3のトレッド31に形成された溝の深さが変化すると、タイヤ3の円周が小さくなるため、同じ距離を走行したとしてもタイヤ3の摩耗前と比較して摩耗後の方がタイヤ3の回転数が増える。このため、ナビゲーションECU22からの情報により得られる車両の移動距離と、摩耗状態に関するデータに含まれるタイヤ3の回転速度およびタイヤ径から推定される車両の移動距離との差に基づいて、タイヤ3の摩耗状態を算出できる。さらに、走行すると各車輪に加わる荷重によってタイヤ3が変形するし、タイヤ空気圧に応じてもタイヤ3が変形する。このため、上記のようにして算出した各車輪に加えられる荷重やタイヤ空気圧に基づいて、各タイヤ3の回転速度もしくはそれに基づいて推定される車両の移動距離を補正すれば、より正確に摩耗状態を算出することもできる。 The wear state can be calculated based on data on the rotational speed of the tire 3 included in the data on the movement distance information of the vehicle transmitted from the navigation ECU 22 and the wear state as described later. In other words, if the depth of the groove formed in the tread 31 of the tire 3 changes, the circumference of the tire 3 decreases, so even after traveling the same distance, the after-wear direction is better than before the tire 3 wear. The rotation speed of the tire 3 is increased. Therefore, based on the difference between the travel distance of the vehicle obtained by the information from the navigation ECU 22 and the travel distance of the vehicle estimated from the tire speed and the tire diameter included in the data on the wear state, Wear condition can be calculated. Furthermore, when traveling, the load applied to each wheel deforms the tire 3, and the tire 3 also deforms according to the tire pressure. For this reason, if the rotational speed of each tire 3 or the moving distance of the vehicle estimated based on the rotational speed of each tire 3 is corrected based on the load applied to each wheel calculated as described above or the tire air pressure, the wear state is more accurately Can also be calculated.
 なお、各車輪に加わる荷重やタイヤ空気圧およびタイヤ3の摩耗状態の詳細な算出方法については、既に公知となっているため、ここでは説明を省略するが、公知となっている様々な手法を適用できる。 In addition, about the calculation method of the load added to each wheel, tire air pressure, and the wear condition of the tire 3, since it is already known, although description is abbreviate | omitted here, various techniques which are publicly known are applied. it can.
 また、制御部21bは、必要に応じて、路面状態の検出結果もしくは通信センター200から伝えられた路面状態を報知装置26に伝え、報知装置26より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置26を通じて路面状態を常に表示するようにしても良いし、路面状態がウェット路や凍結路や低μ路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。同様に、制御部21bは、摩耗状態の検出結果やタイヤ空気圧の検出結果を報知装置26に伝え、報知装置26を通じて各検出結果をドライバに伝えている。これにより、ドライバはタイヤ交換時期やタイヤ空気圧の調整時期であることを知ることができる。 In addition, the control unit 21b transmits the detection result of the road surface condition or the road surface condition transmitted from the communication center 200 to the notification device 26, and notifies the driver of the road surface condition from the notification device 26, as necessary. As a result, the driver can keep in mind the driving corresponding to the road surface condition, and the danger of the vehicle can be avoided. For example, the road surface state may be always displayed through the notification device 26, or the road surface state may be displayed only when the road surface state requires more careful operation such as a wet road, a frozen road or a low μ road. It may be displayed to warn the driver. Similarly, the control unit 21b transmits the detection result of the worn state and the detection result of the tire air pressure to the notification device 26, and transmits each detection result to the driver through the notification device 26. Thus, the driver can know that it is time to change the tire or to adjust the tire pressure.
 また、制御部21bからブレーキECU23やトルク制御ECU24などの車両運動制御を実行するためのECUに対して路面状態や各車輪の荷重を伝えており、伝えられた路面状態や各車輪の荷重に基づいて車両運動制御が実行されるようにしている。 Further, the control unit 21b transmits the road surface state and the load of each wheel to the ECU for executing the vehicle motion control such as the brake ECU 23 and the torque control ECU 24, and based on the transmitted road surface state and the load of each wheel Vehicle motion control is performed.
 ナビゲーションECU22は、ナビゲーションシステムに備えられ、道路情報などを記憶したメモリなどの非遷移的実体的記憶媒体からの情報取得やGPS(Global PositioningSystemの略)衛星の位置情報に基づく車両の現在位置の計測などを行う。換言すれば、ナビゲーションECU22は、道路案内等に関する各種処理を行う。本実施形態のタイヤシステム100は、ナビゲーションECU22が取り扱っている道路情報や現在位置情報および車両の移動距離情報を使用しており、このナビゲーションECU22が位置情報取得部を構成している。 The navigation ECU 22 is provided in the navigation system, acquires information from a non-transitional tangible storage medium such as a memory storing road information and the like, and measures the current position of the vehicle based on position information of GPS (abbreviation of Global Positioning System) satellites. Etc. In other words, the navigation ECU 22 performs various processes related to road guidance and the like. The tire system 100 according to the present embodiment uses road information handled by the navigation ECU 22, current position information, and travel distance information of the vehicle, and the navigation ECU 22 constitutes a position information acquisition unit.
 具体的には、道路情報や現在位置情報については、車両が現在走行中の道路および現在位置と路面データとの関係を示すため等に用いられ、ナビゲーションECU22から受信機21に伝えられる。また、これらの情報については、制御部21bを介して、もしくは直接ナビゲーションECU22から車両通信装置25に伝えられ、車両通信装置25から通信センター200に路面データを送る際に、路面データと対応付けて送られる。これにより、通信センター200において、路面データが示す路面状態がどの場所のものなのかが把握できるようになっている。また、車両の移動距離情報は制御部21bに伝えられる。そして、制御部21bは、車両の移動距離情報に基づいて、タイヤ3の摩耗状態の検出を行っている。 Specifically, road information and current position information are used to indicate the relationship between the road on which the vehicle is currently traveling and the current position and road surface data, and the like, and are transmitted from the navigation ECU 22 to the receiver 21. Further, these pieces of information are transmitted to the vehicle communication device 25 from the navigation ECU 22 directly or via the control unit 21b, and when the road surface data is transmitted from the vehicle communication device 25 to the communication center 200, they are associated with the road surface data. Sent. As a result, in the communication center 200, it is possible to grasp which place the road surface state indicated by the road surface data is. Further, the travel distance information of the vehicle is transmitted to the control unit 21b. And the control part 21b is detecting the wear condition of the tire 3 based on the movement distance information of a vehicle.
 ブレーキECU23は、様々なブレーキ制御を行う制動制御装置を構成するものであり、ブレーキ液圧制御用のアクチュエータを駆動することで自動的にブレーキ液圧を発生させ、ホイールシリンダを加圧して制動力を発生させる。また、ブレーキECU23は、各車輪の制動力を独立して制御することもできる。 The brake ECU 23 constitutes a braking control device that performs various brake control, and automatically generates a brake fluid pressure by driving an actuator for controlling the brake fluid pressure to pressurize the wheel cylinder for braking force. Generate The brake ECU 23 can also control the braking force of each wheel independently.
 上記したように、ブレーキECU23には、制御部21bから路面状態や荷重の検出結果が伝えられる。これに基づき、ブレーキECU23は、路面状態に応じた制動力に調整したり、各車輪の荷重に対応させて各車輪の制動力を制御したりすることで、路面状態および荷重に応じたブレーキ制御を行っている。なお、ブレーキECU23は、荷重に応じたブレーキ制御を行う際には、荷重に関するデータを必要とするため、制御部21bに対して荷重に関するデータの要求信号を出力する。これに基づき、制御部21bがデータ通信部21aを通じて荷重に関するデータの要求信号をタイヤ側装置1に伝えるようになっている。また、ブレーキECU23では、図示しない車輪速度センサの検出信号などに基づいて車速演算などを行っており、その演算結果を車速情報として受信機21に伝えている。 As described above, the control unit 21b transmits the detection result of the road surface state and the load to the brake ECU 23. Based on this, the brake ECU 23 adjusts the braking force according to the road surface condition, or controls the braking force of each wheel according to the load of each wheel, thereby controlling the brake according to the road surface condition and the load. It is carried out. In addition, when performing brake control according to a load, in order to require the data regarding a load, brake ECU23 outputs the request signal of the data regarding a load with respect to the control part 21b. Based on this, the control unit 21b transmits the request signal of the data related to the load to the tire side device 1 through the data communication unit 21a. Further, the brake ECU 23 performs vehicle speed calculation and the like based on a detection signal of a wheel speed sensor (not shown) and the like, and transmits the calculation result to the receiver 21 as vehicle speed information.
 トルク制御ECU24は、駆動トルクの制御を行うものであり、例えばトルクベクトリングデファレンシャル制御などのように、左右輪の駆動力をアクティブに移動させる制御を行う。トルク制御ECU24は、制御部21bから伝えられる荷重の検出結果に基づいて、左右輪の駆動力を荷重に応じて移動させることで、各車輪の荷重に対応するトルク配分を実現する。なお、トルク制御ECU24は、荷重に応じたトルク制御を行う際には、荷重に関するデータを必要とするため、制御部21bに対して荷重に関するデータの要求信号を出力する。これに基づき、制御部21bがデータ通信部21aを通じて荷重に関するデータの要求信号をタイヤ側装置1に伝えるようになっている。 The torque control ECU 24 performs control of the drive torque, and performs control of actively moving the drive force of the left and right wheels, for example, torque vector differential control. The torque control ECU 24 achieves torque distribution corresponding to the load of each wheel by moving the driving force of the left and right wheels according to the load based on the detection result of the load transmitted from the control unit 21b. In addition, when performing torque control according to a load, the torque control ECU 24 outputs a request signal of data relating to the load to the control unit 21 b because it requires data relating to the load. Based on this, the control unit 21b transmits the request signal of the data related to the load to the tire side device 1 through the data communication unit 21a.
 車両通信装置25は、路車間通信を行うことができるものであり、例えば道路などに設置されている図示しない通信システムを介して、通信センター200との情報交換を行う。本実施形態の場合、車両通信装置25は、受信機21から伝えられた路面データを通信センター200に送信したり、通信センター200からより正確な路面データを受信する役割を果たしている。 The vehicle communication device 25 can perform road-to-vehicle communication, and exchanges information with the communication center 200 via a communication system (not shown) installed on, for example, a road. In the case of this embodiment, the vehicle communication device 25 plays a role of transmitting the road surface data transmitted from the receiver 21 to the communication center 200 or receiving more accurate road surface data from the communication center 200.
 報知装置26は、例えばメータ表示器などで構成され、ドライバに対して運転をより慎重に行う必要がある路面状態であることや、タイヤ空気圧の低下、タイヤ3の摩耗状態の報知に用いられる。報知装置26をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態やタイヤ空気圧もしくは摩耗状態を示すデータが伝えられると、その内容が把握できる態様で表示を行うことで、視覚的にドライバに対して報知することができる。 The notification device 26 is formed of, for example, a meter indicator, and is used to notify the driver of a road surface condition that requires more careful driving, a decrease in tire air pressure, and a notification of wear of the tire 3. When the notification device 26 is configured by a meter indicator, the driver is disposed at a visible position during driving of the vehicle, for example, installed in an instrument panel of the vehicle. When the meter display receives data indicating the road surface condition, tire pressure or wear condition from the receiver 21, it can visually notify the driver by performing display in such a manner that the contents can be grasped .
 なお、報知装置26をブザーや音声案内装置などで構成することもできる。その場合、報知装置26は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態やタイヤ空気圧もしくは摩耗状態を報知することができる。また、視覚的な報知を行う報知装置26としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置26を構成しても良い。 The notification device 26 can also be configured by a buzzer, a voice guidance device, or the like. In that case, the notification device 26 can aurally notify the driver of the road surface condition, the tire pressure or the wear condition by means of a buzzer sound or voice guidance. Moreover, although the meter display was mentioned as the example as the alerting | reporting apparatus 26 which alert | reports visual, you may comprise the alerting | reporting apparatus 26 by the indicator which displays information, such as a head-up display.
 以上のようにして、本実施形態にかかるタイヤシステム100が構成されている。なお、車体側システム2を構成する各部は、例えばCAN(Controller AreaNetworkの略)通信などによる車内LAN(Local AreaNetworkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。 The tire system 100 according to the present embodiment is configured as described above. In addition, each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local AreaNetwork) by CAN (abbreviation of Controller AreaNetwork) communication etc., for example. Therefore, each part can communicate information with each other through the in-vehicle LAN.
 一方、タイヤシステム100と路面データに関する情報交換を行う通信センター200は、道路情報の収集を行うと共に道路情報を車両などに提供する事業を行っている。通信センター200と車両通信装置25とが直接通信を行える形態とされていても良いが、通信センター200は道路などの各所に設置された通信システムを通じて車両通信装置25との通信が可能となっている。 On the other hand, the communication system 200 that exchanges information regarding the road surface data with the tire system 100 performs a project of collecting road information and providing road information to vehicles and the like. Although the communication center 200 and the vehicle communication device 25 may be capable of direct communication, the communication center 200 can communicate with the vehicle communication device 25 through communication systems installed at various places such as roads. There is.
 本実施形態の場合、通信センター200は、地図データ中の各道路の場所ごとの路面状態の情報をデータベースとして管理しており、受信した路面データに基づいて時々刻々と変化する路面状態のマッピングを行っている。つまり、通信センター200は、受信した路面データに基づいて地図データ中の各道路の場所ごとの路面状態の情報を更新している。そして、通信センター200は、そのデータベースから車両に対して路面データを提供している。 In the case of the present embodiment, the communication center 200 manages, as a database, information on road surface conditions for each road location in the map data, and based on the received road surface data, mapping of the road surface conditions changing momentarily Is going. That is, the communication center 200 updates the road surface condition information for each road location in the map data based on the received road surface data. The communication center 200 provides road surface data to the vehicle from the database.
 具体的には、通信センター200は、車両から送られてくる車両が走行した道路の路面データを収集し、その路面データに基づいて地図データ中の各道路の路面データを更新している。また、通信センター200は、天気情報等も収集しており、天気情報等に基づいて各路面データを補正し、より確かな路面データとして更新している。例えば、通信センター200は、天気情報として積雪量や凍結路面に関する情報を取得しており、積雪路面や凍結路面については、それに対応する路面データに更新することでより正確な路面データが逐次記憶されるようにしている。そして、通信センター200は、データベースに記憶してある路面データを車両に提供することで、より正確な路面データを車両に伝えるようにしている。このとき、通信センター200では、多数の車両から路面データを収集してデータベースに記憶している地図データ中の各道路の路面データを更新していることから、各車両は、現在位置の路面データだけでなく、走行予定の道路の路面データについても取得できる。 Specifically, the communication center 200 collects road surface data of the road traveled by the vehicle sent from the vehicle, and updates the road surface data of each road in the map data based on the road surface data. The communication center 200 also collects weather information and the like, corrects each road surface data based on the weather information and the like, and updates it as more reliable road surface data. For example, the communication center 200 acquires the snow amount and information on the frozen road surface as weather information, and for the snow road surface and the frozen road surface, more accurate road surface data is sequentially stored by updating the road surface data corresponding thereto. I am trying to Then, the communication center 200 transmits the road surface data stored in the database to the vehicle to thereby transmit more accurate road surface data to the vehicle. At this time, the communication center 200 collects road surface data from a large number of vehicles and updates the road surface data of each road in the map data stored in the database. Not only can it acquire about the road surface data of the road which is going to travel.
 続いて、本実施形態にかかるタイヤシステム100の作動について、図6~図10に示すフローチャートを参照して説明する。 Subsequently, the operation of the tire system 100 according to the present embodiment will be described with reference to the flowcharts shown in FIG. 6 to FIG.
 最初に、図6を参照して、各タイヤ側装置1が実行するタイヤ側処理について説明する。この処理は、振動センサ部11の検出信号の波形が所定の閾値を超えて制御部13が起動状態になったときに実行されるもので、制御部13にて所定の制御周期毎に実行される。 Initially, with reference to FIG. 6, the tire side process which each tire side apparatus 1 performs is demonstrated. This process is executed when the waveform of the detection signal of the vibration sensor unit 11 exceeds the predetermined threshold and the control unit 13 is activated, and is executed by the control unit 13 every predetermined control cycle. Ru.
 まず、制御部13は、起動状態に切り替わると、ステップS100として、車両が走行中であるか否か、つまり走行中であるか停車中であるかを判定する。この処理は、例えば振動センサ部11の検出信号に基づいて実行される。すなわち、振動センサ部11の検出信号の出力電圧波形がタイヤ1回転分の波形を示すと走行中であると判定している。なお、タイヤ3が1回転したことについては、振動センサ部11の検出信号の時間軸波形に基づいて判定している。すなわち、検出信号は図4に示した時間軸波形を描くことから、検出信号の第1ピーク値や第2ピーク値を確認することでタイヤ3の1回転を把握することができる。また、タイヤ3が回転したことは、車両が走行していることと同意であることから、タイヤ3の回転に基づいて車両走行中であるか停車中であるかを検知できる。 First, when the control unit 13 is switched to the activated state, at Step S100, the control unit 13 determines whether the vehicle is traveling, that is, is traveling or being stopped. This process is executed based on, for example, a detection signal of the vibration sensor unit 11. That is, if the output voltage waveform of the detection signal of the vibration sensor unit 11 indicates the waveform for one rotation of the tire, it is determined that the vehicle is traveling. The fact that the tire 3 has made one rotation is determined based on the time axis waveform of the detection signal of the vibration sensor unit 11. That is, since the detection signal draws the time axis waveform shown in FIG. 4, one rotation of the tire 3 can be grasped by confirming the first peak value and the second peak value of the detection signal. In addition, since the rotation of the tire 3 is in agreement with the traveling of the vehicle, it can be detected based on the rotation of the tire 3 whether the vehicle is traveling or being stopped.
 ここで肯定判定されるとステップS110に進み、制御部13は、車体側システム2から要求信号を受信しているか否かを判定する。上記したように、制御部21bは、ブレーキECU23やトルク制御ECU24からの荷重に関するデータの要求信号を受け取ると、それをタイヤ側装置1に向けて送信する。また、制御部21bは、IGオン後の所定期間内に1回、摩耗状態に関するデータの要求信号をタイヤ側装置1に向けて送信する。これらの要求信号がタイヤ側装置1にて受信されると、ステップS110で肯定判定される。 If an affirmative determination is made here, the process proceeds to step S110, and the control unit 13 determines whether a request signal is received from the vehicle body side system 2. As described above, when the control unit 21 b receives a request signal of data related to the load from the brake ECU 23 or the torque control ECU 24, the control unit 21 b transmits it to the tire side device 1. In addition, the control unit 21b transmits a request signal of data relating to the wear state to the tire side device 1 once in a predetermined period after the IG is turned on. When these request signals are received by the tire device 1, an affirmative determination is made in step S110.
 そして、ステップS110で肯定判定された場合には、ステップS120に進み、制御部13は、要求信号の指示に従った計測を行う。すなわち、受け取った要求信号が荷重に関するデータの要求信号であれば、制御部13は、振動センサ部11の検出信号に基づいて接地区間やタイヤ3の回転速度を計測し、それらのデータを含む荷重に関するデータを作成する。また、受け取った要求信号が摩耗状態に関するデータの要求信号であれば、制御部13は、タイヤ3の回転速度を算出し、そのデータを含む摩耗状態に関するデータを作成する。また、摩耗状態に関するデータとして、必要に応じてタイヤ空気圧に関するデータや荷重に関するデータも作成されるようにしても良い。 Then, if an affirmative determination is made in step S110, the process proceeds to step S120, and the control unit 13 performs measurement according to the instruction of the request signal. That is, if the received request signal is a request signal of data related to load, the control unit 13 measures the rotational speed of the ground section or the tire 3 based on the detection signal of the vibration sensor unit 11, and the load including those data Create data about Further, if the received request signal is a request signal of data regarding the wear state, the control unit 13 calculates the rotational speed of the tire 3 and creates data regarding the wear state including the data. Further, as the data regarding the wear state, data regarding the tire pressure and data regarding the load may be created as necessary.
 その後、ステップS130に進み、制御部13は、ステップS120で作成したデータをタイヤ側装置1に送信するデータ送信処理を実行して、ステップS100からの処理を繰り返す。 Thereafter, the process proceeds to step S130, the control unit 13 executes a data transmission process of transmitting the data created in step S120 to the tire-side device 1, and repeats the process from step S100.
 一方、ステップS110で否定判定された場合には、ステップS140に進み、制御部13は、通常モードでの計測を行う。具体的には、振動センサ部11の検出信号が示す振動波形の波形処理を行うことで、タイヤGの特徴量を抽出し、抽出した特徴量を含む路面データを作成する。この処理は、タイヤ3の1回転毎に行われるようにしても良いし、複数回転毎に行われるようにしても良い。また、所定の定期送信周期毎に、空気圧検出部12における圧力センサ12aや温度センサ12bの検出信号に基づいて基準温度下におけるタイヤ空気圧を算出し、それを含むタイヤ空気圧に関するデータを作成する。 On the other hand, when a negative judging is carried out at Step S110, it progresses to Step S140 and control part 13 measures in normal mode. Specifically, the characteristic amount of the tire G is extracted by performing waveform processing of the vibration waveform indicated by the detection signal of the vibration sensor unit 11, and road surface data including the extracted characteristic amount is created. This process may be performed every one rotation of the tire 3 or may be performed every plural rotations. In addition, the tire air pressure under the reference temperature is calculated based on the detection signals of the pressure sensor 12a and the temperature sensor 12b in the air pressure detection unit 12 for each predetermined periodic transmission cycle, and data on the tire air pressure including it is created.
 その後、ステップS130に進み、制御部13は、路面データもしくはタイヤ空気圧に関するデータを送信するデータ送信を実行して、ステップS100からの処理を繰り返す。 Thereafter, the process proceeds to step S130, the control unit 13 executes data transmission for transmitting road surface data or data related to tire air pressure, and repeats the process from step S100.
 さらに、車両が停止すると、ステップS100で否定判定されるため、制御部13は、ステップS150に進んで停車してからの継続時間が所定時間、例えば5分以内であるか否かを判定する。例えば、制御部13は、ステップS100で初めて否定判定されてからステップS100で継続的に否定判定され続けているときの経過時間をカウントし、その経過時間が所定時間以内である否かを判定している。すなわち、タイヤ側装置1では、IGのオンオフ状態を把握できないことから、制御部13にて、停車してからの継続時間が所定時間に至った場合をIGがオフされた状況と判定するようにしている。 Furthermore, when the vehicle stops, a negative determination is made in step S100, so the control unit 13 proceeds to step S150 and determines whether the duration after stopping is within a predetermined time, for example, 5 minutes. For example, the control unit 13 counts an elapsed time when the negative determination is made for the first time in step S100 and the negative determination is continuously continued in step S100, and determines whether the elapsed time is within a predetermined time. ing. That is, in the tire side device 1, since the on / off state of the IG can not be grasped, the control unit 13 determines that the case where the continuation time after stopping has reached the predetermined time is the situation where the IG is turned off. ing.
 そして、停車してから所定時間が経過すると、ステップS150で否定判定されるため、制御部13はスリープ状態に切り替わって処理を終了する。この後は、制御部13は、例えば、再び車両が走行を開始して、振動センサ部11の検出信号に基づいて起動状態に切り替わるまで、スリープ状態を維持する。このようにして、タイヤ側処理が終了する。 Then, when a predetermined time has elapsed since the vehicle was stopped, a negative determination is made in step S150, so the control unit 13 switches to the sleep state and ends the process. After this, for example, the control unit 13 maintains the sleep state until the vehicle starts traveling again and is switched to the activation state based on the detection signal of the vibration sensor unit 11. In this way, the tire side process ends.
 次に、図7を参照して、車体側システム2において、受信機21の制御部21bが実行する車体側処理について説明する。この処理は、IGスイッチ30がオンされて制御部21bへの電源投入が行われると、所定の制御周期毎に実行される。 Next, with reference to FIG. 7, in the vehicle body side system 2, the vehicle body side processing performed by the control unit 21 b of the receiver 21 will be described. This process is executed every predetermined control cycle when the IG switch 30 is turned on and the control unit 21b is powered on.
 まず、ステップS200では、制御部21bは、車両が走行中であるか否かを判定する。この処理は、例えば、ブレーキECU23から伝えられる車速情報に基づいて実行され、制御部21bは、車速が0でなくなったときに車両が走行中であると判定している。ここで肯定判定されるとステップS210に進み、否定判定されるとそのまま処理を終了する。 First, in step S200, the control unit 21b determines whether the vehicle is traveling. This process is executed based on, for example, the vehicle speed information transmitted from the brake ECU 23. The control unit 21b determines that the vehicle is traveling when the vehicle speed is not zero. If an affirmative determination is made here, the process proceeds to step S210, and if a negative determination is made, the process ends.
 続くステップS210では、制御部21bは、他のECUからの要求があるか否かを判定する。上記したように、ブレーキECU23やトルク制御ECU24は、荷重に応じたブレーキ制御やトルク制御を行う際に、荷重に関するデータの要求信号を出力する。制御部21bは、この荷重に関するデータの要求信号を受け取ると、ステップS210で肯定判定する。ここで肯定判定されるとステップS220に進み、制御部21bは、タイヤ側装置1に対して荷重に関するデータの要求信号を送信する。また、ここで否定判定されるとステップS230に進む。 In the following step S210, the control unit 21b determines whether there is a request from another ECU. As described above, the brake ECU 23 and the torque control ECU 24 output a request signal of data related to the load when performing the brake control and the torque control according to the load. If the control part 21b receives the request | requirement signal of the data regarding this load, it will affirmation determination by step S210. If an affirmative determination is made here, the process proceeds to step S220, and the control unit 21b transmits a request signal of data related to load to the tire-side device 1. If a negative determination is made here, the process proceeds to step S230.
 ステップS230では、制御部21bは、IGスイッチ30のオン後の走行累積時間が10分間以下であるか否かを判定する。ここで肯定判定されると、ステップS240に進み、制御部21bは、摩耗状態の検出を指示したか、つまり摩耗状態に関するデータの要求信号を送信したか否かを判定する。タイヤ3の摩耗は急激には進まないため、摩耗状態を1回の走行中に少なくとも1回検出できれば良いと考えられる。このため、IGスイッチ30がオンしてからオフされるまでの間、つまり1回の走行中に1回、摩耗状態に関するデータをタイヤ側装置1に対して要求する。ここでは、ステップS230で肯定判定され、かつ、ステップS240で否定判定されるとステップS250に進むことで、IGスイッチ30がオンしてからの走行累積時間が所定時間、例えば10分以内に摩耗状態に関するデータの要求信号を送信する。 In step S230, the control unit 21b determines whether the cumulative traveling time after the IG switch 30 is turned on is 10 minutes or less. If an affirmative determination is made here, the process proceeds to step S240, and the control unit 21b determines whether detection of a wear state has been instructed, that is, whether a request signal for data regarding the wear state has been transmitted. Since the wear of the tire 3 does not rapidly progress, it is considered to be preferable if the wear state can be detected at least once during one running. For this reason, from the time the IG switch 30 is turned on to the time it is turned off, that is, once during one travel, data on the wear state is requested to the tire side device 1. Here, if the affirmative determination is made in step S230 and the negative determination is made in step S240, the process proceeds to step S250 so that the cumulative running time after the IG switch 30 is turned on is worn out within a predetermined time, for example 10 minutes. Send a request signal for data on
 一方、IGオン後の走行累積時間が所定時間を超えたり、摩耗状態に関するデータの要求信号が既に送信されたりして、ステップS230で否定判定されるかステップS240で肯定判定されると、ステップS260に進む。そして、ステップS260において、データ待ち受け処理が実行される。このデータ待ち受け処理について、図8を参照して説明する。 On the other hand, if the cumulative travel time after IG ON exceeds the predetermined time or the request signal of data relating to the wear state is already transmitted, and if the negative determination is made in step S230 or the positive determination is made in step S240, step S260 Go to Then, in step S260, a data waiting process is performed. This data waiting process will be described with reference to FIG.
 データ待ち受け処理は、制御部21bにて所定の制御周期毎に実行される。まず、ステップS300において、各タイヤ側装置1から送られてくるデータの受信を行うデータ受信処理を実行する。そして、データ受信が行われるとステップS310に進み、制御部21bは、受信したデータが荷重に関するデータであるか否かを判定する。ここで肯定判定されると、ステップS320に進み、各タイヤ側装置1からの荷重に関するデータに基づいて上記した手法により各車輪の荷重を算出し、その結果をトルク制御ECU24やブレーキECU23に伝達する。その後、処理を終了する。 The data waiting process is executed by the control unit 21b at predetermined control intervals. First, in step S300, data reception processing for receiving data sent from each tire-side device 1 is executed. And if data reception is performed, it will progress to Step S310, and control part 21b will judge whether received data are data about a load. If an affirmative determination is made here, the process proceeds to step S320, calculates the load of each wheel by the method described above based on the data on the load from each tire-side device 1, and transmits the result to torque control ECU 24 or brake ECU 23. . Thereafter, the process ends.
 また、ステップS310で否定判定された場合には、ステップS330に進み、受信したデータが摩耗状態に関するデータまたはタイヤ空気圧に関するデータであるか否かを判定する。ここで肯定判定されると、ステップS340に進む。そして、受信したデータが摩耗状態に関するデータであれば、このデータとナビゲーションECU22から伝えられる車両の移動距離情報とに基づいて上記した手法により各タイヤ3の摩耗状態を算出し、その結果を報知装置26に伝達する。また、受信したデータがタイヤ空気圧に関するデータであれば、このデータからタイヤ空気圧を取得し、その結果を報知装置26に伝達する。その後、処理を終了する。 In addition, if the negative determination is made in step S310, the process proceeds to step S330, and it is determined whether the received data is data regarding a wear state or data regarding tire air pressure. If an affirmative determination is made here, the process proceeds to step S340. Then, if the received data is data relating to the wear state, the wear state of each tire 3 is calculated by the method described above based on this data and the travel distance information of the vehicle transmitted from the navigation ECU 22, and the result is reported Transmit to 26. If the received data is data relating to tire air pressure, the tire air pressure is acquired from this data, and the result is transmitted to the notification device 26. Thereafter, the process ends.
 さらに、ステップS330でも否定判定された場合には、ステップS350に進む。この場合、受信したデータが路面データであることから、そのデータに含まれる特徴量を全サポートベクタと比較して類似度を判定し、類似度に基づいて車両の走行路面における路面状態を判別する。そして、路面状態の判別結果をブレーキECU23に伝達し、処理を終了する。 Furthermore, when a negative determination is made also in step S330, the process proceeds to step S350. In this case, since the received data is road surface data, the feature amount included in the data is compared with all the support vectors to determine the similarity, and the road surface condition of the traveling road of the vehicle is determined based on the similarity. . Then, the determination result of the road surface state is transmitted to the brake ECU 23, and the process is ended.
 このように、待ち受け処理において、各タイヤ側装置1から送信されたデータを受信し、受信したデータの種類に応じて、路面状態や摩耗状態の検出を行ったり、各車輪にかかる荷重の検出を行い、その結果を車体側システム2の各部に伝達することができる。 As described above, in the stand-by process, the data transmitted from each tire-side device 1 is received, and the road surface state and the wear state are detected according to the type of the received data, or the load applied to each wheel is detected. And the result can be transmitted to each part of the vehicle body side system 2.
 また、車体側システム2と通信センター200とは、互いに通信を行っている。これにより、通信センター200による路面状態のマッピングが行われたり、通信センター200のデータベースに収集された路面状態等を示した路面データの車体側システム2への提供が行われたりしている。 Further, the vehicle body side system 2 and the communication center 200 communicate with each other. As a result, mapping of the road surface state by the communication center 200 is performed, and provision of road surface data indicating the road surface state and the like collected in the database of the communication center 200 to the vehicle body side system 2 is performed.
 図9および図10を参照して、通信センター200によるマッピングについて説明する。なお、図9は、通信センター200のマッピングのために制御部21bが実行するマッピングデータ送信処理の詳細を示したものであり、所定の制御周期毎に実行される。また、図10は、通信センター200が行うマッピング処理であり、通信センター200に備えられる図示しないマイコンなどの制御部によって所定の制御周期毎に実行される。 Mapping by the communication center 200 will be described with reference to FIGS. 9 and 10. FIG. 9 shows the details of the mapping data transmission process executed by the control unit 21b for the mapping of the communication center 200, and is executed every predetermined control cycle. FIG. 10 shows the mapping process performed by the communication center 200, which is executed at predetermined control cycles by a control unit such as a microcomputer (not shown) provided in the communication center 200.
 まず、図9に示すように、ステップS400において、制御部21bは、現在位置検出を行う。この処理は、ナビゲーションECU22から現在位置情報を得ることによって行われる。そして、ステップS410に進み、制御部21bは、通信センター200に現在位置情報を送信する。このとき、通信センター200側で車両を特定できるように、現在位置情報に車両ごとに個々に決められているID情報を付けて通信センター200に送信している。 First, as shown in FIG. 9, in step S400, the control unit 21b performs current position detection. This process is performed by obtaining current position information from the navigation ECU 22. Then, in step S410, the control unit 21b transmits current position information to the communication center 200. At this time, ID information individually determined for each vehicle is added to the current position information and transmitted to the communication center 200 so that the vehicle can be specified on the communication center 200 side.
 一方、図10に示すように、通信センター200は、ステップS500において、データ受信処理を行っており、各車両の車体側システム2からのデータの受信を行う。そして、通信センター200は、データ受信を行うとステップS510に進み、データ中に含まれる現在位置情報に基づいて、データを送ってきた車両の現在位置がマッピングに必要な位置であるか否かを判定する。ここで否定判定された場合にはそのまま処理を終了するが、肯定判定された場合にはステップS520に進んで、データを送ってきた車両に対して路面データを要求する要求信号を送る。そして、ステップS530において、路面データの受信処理を行う。 On the other hand, as shown in FIG. 10, the communication center 200 performs data reception processing in step S500, and receives data from the vehicle body side system 2 of each vehicle. Then, when the communication center 200 receives data, the process proceeds to step S510, and based on the current position information included in the data, it is determined whether the current position of the vehicle that has sent the data is a position required for mapping. judge. If a negative determination is made here, the processing is ended as it is, but if a positive determination is made, the processing proceeds to step S520, where a request signal for requesting road surface data is sent to the vehicle that has sent data. Then, in step S530, road surface data reception processing is performed.
 また、制御部21bは、図9に示すように、ステップS410の処理の後、ステップS420に進み、路面データの要求信号の受信が有ったか否かを判定している。上記したように、通信センター200から路面データの要求信号が送信されると、ステップS420で肯定判定される。そして、ステップS420で肯定判定されると、ステップS430に進み、路面データの送信を行ったのち処理を終了する。このとき、各タイヤ側装置1から送信された特徴量を含む路面データをそのまま送信しても良いし、制御部21bでの路面状態の検出結果を示した路面データとしても良い。勿論、特徴量と路面状態の検出結果の双方を含む路面データとしても良い。 Further, as shown in FIG. 9, after the process of step S410, the control section 21b proceeds to step S420, and determines whether or not the request signal of the road surface data has been received. As described above, when the request signal of the road surface data is transmitted from the communication center 200, an affirmative determination is made in step S420. Then, if an affirmative determination is made in step S420, the process proceeds to step S430, the road surface data is transmitted, and the process ends. At this time, the road surface data including the feature amount transmitted from each tire side device 1 may be transmitted as it is, or may be road surface data indicating the detection result of the road surface condition in the control unit 21b. Of course, the road surface data may include both the feature amount and the detection result of the road surface state.
 さらに、通信センター200から路面データの要求信号されたときに、タイヤ側装置1に対して、路面データを要求する要求信号を出力するようにし、通常計測モードでなくても路面データを作成させて送信させるようにすることもできる。つまり、通信センター200が必要とするポイントに車両が走行しようとする際に、通信センター200から車両側に路面データを送信するように指示し、その指示を受けて、車体側システム2からタイヤ側装置1に路面データの送信を要求することもできる。この場合、タイヤ側装置1は、通常モード計測でなくても、振動センサ部11の検出信号に基づいて路面データを作成し、車体側システム2に路面データを送信することになる。また、通信センター200は、タイヤ側装置1から送信されてきた現在位置情報から車両が走行するであろうポイントを推測できるため、車両がそのポイントを走行するよりも前に、そのポイントの位置情報を車体側システム2に伝えることができる。これにより、車両がそのポイントを走行する際に、受信機21からタイヤ側装置1に要求信号を出すことで、そのポイントの路面データを得ることができる。 Furthermore, when the request signal of the road surface data is sent from the communication center 200, the request signal for requesting the road surface data is outputted to the tire side device 1, and the road surface data is created even if it is not in the normal measurement mode. It can also be made to transmit. That is, when the vehicle tries to travel to a point required by the communication center 200, the communication center 200 instructs the vehicle side to transmit road surface data, and in response to the instruction, the vehicle side system 2 receives the tire side It is also possible to request the device 1 to transmit road surface data. In this case, the tire side device 1 creates road surface data based on the detection signal of the vibration sensor unit 11 and transmits the road surface data to the vehicle body side system 2 even if it is not the normal mode measurement. Also, since the communication center 200 can estimate the point at which the vehicle will travel from the current position information transmitted from the tire-side device 1, the position information of the point before the vehicle travels the point Can be transmitted to the vehicle body side system 2. As a result, when the vehicle travels the point, the receiver 21 can issue a request signal to the tire-side device 1 to obtain the road surface data of the point.
 そして、車両側からの路面データの送信が行われると、図10に示すステップS530においてデータ受信が行われたのち、ステップS540に進み、通信センター200は、受信した路面データに基づくマッピングを行う。すなわち、通信センター200は、受信した路面データに基づいて、データベースに記憶されている地図データ中の各道路の場所ごとの路面状態の情報を更新する。これにより、時々刻々と変化する路面状態のマッピングが行われる。 Then, when the road surface data is transmitted from the vehicle side, after data reception is performed in step S530 shown in FIG. 10, the process proceeds to step S540, and the communication center 200 performs mapping based on the received road surface data. That is, based on the received road surface data, the communication center 200 updates the road surface state information for each road location in the map data stored in the database. Thereby, mapping of the road surface condition which changes every moment is performed.
 なお、通信センター200で各道路の場所ごとの路面状態の情報を記憶したデータベースを管理していることから、通信センター200から各車両の車両通信装置25に路面データを送信することで、車両が走行しようとしている道路の路面データを提供できる。 Since the communication center 200 manages a database storing road surface state information for each road location, the vehicle transmits the road surface data from the communication center 200 to the vehicle communication device 25 of each vehicle. It is possible to provide road surface data of the road which is about to travel.
 以上説明したように、本実施形態のタイヤシステム100では、車体側システム2から各タイヤ側装置1に対して要求信号を出し、必要なデータを伝えるようにしている。具体的には、摩耗状態に関するデータや荷重に関するデータが必要な場合には、それらのデータが必要であることを示す要求信号を出している。 As described above, in the tire system 100 of the present embodiment, the vehicle body side system 2 outputs a request signal to each tire side device 1 to transmit necessary data. Specifically, when data on the wear state and data on the load are required, a request signal indicating that the data is necessary is issued.
 このため、各タイヤ側装置1の制御部13は、要求信号に基づいて車両の状態を把握し、車両の状態に応じて適切なタイミングで必要とされるデータを車体側システム2に送信することができる。また、制御部13は、振動センサ部11の検出信号を処理する際に、要求信号に基づいて検出信号の処理用のアルゴリズムを切り替えれば、複数の検出対象にも対応できる。これにより、1つの振動センサ部11の検出信号に基づいて1つの制御部13で検出結果が得られる。したがって、各タイヤ側装置1に対して複数の振動センサ部および複数のマイコンを備えたり、処理能力の高いマイコンを備えたりしなくても済み、タイヤ側装置1の重量・体格の増加を抑制できると共に、消費電力の低減を図ることが可能となる。 Therefore, the control unit 13 of each tire side device 1 grasps the state of the vehicle based on the request signal, and transmits the required data to the vehicle body side system 2 at an appropriate timing according to the state of the vehicle. Can. Further, when processing the detection signal of the vibration sensor unit 11, the control unit 13 can cope with a plurality of detection targets by switching an algorithm for processing the detection signal based on the request signal. Thereby, based on the detection signal of one vibration sensor unit 11, the detection result is obtained by one control unit 13. Therefore, it is not necessary to provide a plurality of vibration sensors and a plurality of microcomputers for each tire side device 1 or a microcomputer having a high processing capability, and increase in weight and physical size of the tire side device 1 can be suppressed At the same time, it is possible to reduce power consumption.
 また、車体側システム2よりすべての検出対象に対応して要求信号を送信するのではなく、比較的高頻度で必要とされる路面データについては、タイヤ側装置1で通常モード計測として所定のタイミングで行われるようにしている。このため、車体側システム2からの要求信号が無くても路面データの送信を行うことができる。ただし、路面データについても、車体側システム2からの要求信号に基づいて送信されるようにしても良い。 Also, for the road surface data that is required with relatively high frequency rather than transmitting the request signal corresponding to all the detection targets from the vehicle body side system 2, the predetermined timing as the normal mode measurement is made by the tire side device 1 To be done in Therefore, the road surface data can be transmitted without the request signal from the vehicle body side system 2. However, road surface data may also be transmitted based on a request signal from the vehicle body side system 2.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
The present disclosure has been described based on the above-described embodiment, but is not limited to the embodiment, and includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
 例えば、上記実施形態では、タイヤ3に関わる複数種類の検出対象として、路面状態やタイヤ3の摩耗状態、各車輪に印加される荷重、タイヤ空気圧を例に挙げた。しかしながら、これらは一例を挙げたに過ぎない。すなわち、振動センサ部11や空気圧検出部12などのセンシング部が出力する複数種類の検出対象に対応する検出信号に基づいて、検出対象に関するデータを作成し、それをタイヤ側装置1から車体側システム2に対して伝える場合に、本開示を適用できる。勿論、路面状態やタイヤ3の摩耗状態、各車輪に印加される荷重のすべてが検出対象とされる必要はなく、そのうちの1つもしくは複数が検出対象となっていても良いし、これら以外のものが検出対象となっていても良い。また、センシング部として、振動センサ部11や空気圧検出部12を例に挙げたが、他の検出対象を検出するための検出信号を出力するものであっても良い。 For example, in the above embodiment, the road surface condition, the worn condition of the tire 3, the load applied to each wheel, and the tire air pressure are exemplified as the plurality of types of detection targets related to the tire 3. However, these are just one example. That is, based on detection signals corresponding to a plurality of types of detection targets outputted by the sensing unit such as the vibration sensor unit 11 or the air pressure detection unit 12, data concerning the detection target is created The present disclosure can be applied to the case of communicating to (2). Of course, it is not necessary that all of the road surface condition, the worn condition of the tire 3 and the load applied to each wheel need to be detected, and one or more of them may be detected. One may be the detection target. In addition, although the vibration sensor unit 11 and the air pressure detection unit 12 are exemplified as the sensing unit, a detection signal for detecting another detection target may be output.
 また、路面状態やタイヤ3の摩耗状態、各車輪に印加される荷重等、タイヤ3に関わる複数種類の検出対象の検出のために取得する各種値も、それぞれが検出対象となり得る。例えば、上記実施形態においては、振動センサ部11の検出信号からタイヤGの特徴量、接地区間やタイヤ3の回転速度を求め、これらに基づいて、上記したタイヤ3に関わる複数種類の検出対象を検出した。ここでいうタイヤGの特徴量、接地区間やタイヤ3の回転速度などについても、振動センサ部11の検出信号から検出する検出対象となり得る。さらに、ここで挙げた検出対象以外のものを検出対象とする場合においても、車体側システム2からの要求信号に基づいてタイヤ側装置1で検出することができる。そして、その検出結果をタイヤ側装置1から適切なタイミングで送信することができる。 In addition, various values acquired for detection of a plurality of types of detection targets related to the tire 3, such as the road surface state, the worn state of the tire 3, the load applied to each wheel, and the like may also be detection targets. For example, in the above embodiment, the characteristic amount of the tire G, the contact zone and the rotational speed of the tire 3 are determined from the detection signal of the vibration sensor unit 11, and based on these, plural types of detection targets related to the tire 3 described above Detected The feature quantities of the tire G, the contact zone, the rotational speed of the tire 3 and the like can be objects to be detected from the detection signal of the vibration sensor unit 11 as well. Furthermore, even in the case where detection targets other than the detection target mentioned here are to be detected, the tire side device 1 can detect the target based on the request signal from the vehicle body side system 2. Then, the detection result can be transmitted from the tire side device 1 at an appropriate timing.
 また、各種値について、同じ値であっても複数の検出対象として把握することもできる。例えば、タイヤGの特徴量について、複数の検出対象として把握できる。具体的には、タイヤGの特徴量については様々な波形処理の方法があり、各波形処理にて得られるタイヤGの特徴量それぞれを検出対象として把握できる。この場合、タイヤGの特徴量が複数の検出対象として把握される。例えば、路面状態として特にドライ路面に関する特徴量を要求したい場合や、ウェット路面や凍結路および積雪路の特徴量を要求したい場合など、より詳細に路面状態の判別を行いたいときに要求したい特徴量が異なることがある。その場合、振動センサ部11の検出信号の波形処理のアルゴリズムが異なったものとなり得る。そのような場合には、同じようにタイヤGの特徴量を検出対象としていても、得たい特徴量が異なっていることから、複数の検出対象となる。 Further, various values can be grasped as a plurality of detection targets even if they have the same value. For example, the feature amount of the tire G can be grasped as a plurality of detection targets. Specifically, there are various waveform processing methods for the feature amount of the tire G, and each feature amount of the tire G obtained by each waveform processing can be grasped as a detection target. In this case, the feature quantities of the tire G are grasped as a plurality of detection targets. For example, if you want to make a more detailed determination of the road surface condition, for example, if you want to request a feature amount related to the dry road surface as a road surface condition, or if you want to request a feature amount on a wet road surface, frozen road or snow road. May be different. In that case, the algorithm of the waveform processing of the detection signal of the vibration sensor unit 11 may be different. In such a case, even if the feature amount of the tire G is to be detected in the same manner, the feature amounts to be obtained are different, so a plurality of detection targets are obtained.
 また、上記実施形態では、振動検出部を構成する振動センサ部11を加速度センサによって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって構成することもできる。 Further, in the above embodiment, although the case where the vibration sensor unit 11 constituting the vibration detection unit is constituted by an acceleration sensor is exemplified, it may be constituted by another element capable of detecting vibration, such as a piezoelectric element. .
 また、上記実施形態では、振動センサ部11の検出信号に現れる路面状態を示す路面データとして、特徴量を含むデータを用いている。しかしながら、これも一例を示したに過ぎず、他のデータを路面データとして用いても良い。例えば、タイヤ3の1回転中の振動データに含まれる5つの領域R1~R5それぞれの振動波形の積分値データを路面データとしても良いし、検出信号そのものの生データを路面データとしても良い。 Further, in the above embodiment, data including a feature amount is used as road surface data indicating a road surface condition appearing in a detection signal of the vibration sensor unit 11. However, this is also merely an example, and other data may be used as road surface data. For example, integrated value data of vibration waveforms of each of the five regions R1 to R5 included in vibration data during one rotation of the tire 3 may be road surface data, or raw data of the detection signal itself may be road surface data.
 また、上記実施形態の場合、受信機21にて、道路情報や現在位置の情報と車速および通信センター200から伝えられる路面データに基づく車両の危険性の判定に加えて、報知装置26への車両の危険性の報知の指示を行う制御部としての役割を果たしている。しかしながら、これは一例を示したに過ぎず、受信機21とは別に制御部を備えても良いし、ナビゲーションECU22やブレーキECU23などの他のECUを制御部として機能させるようにしても良い。 Further, in the case of the above embodiment, in addition to the determination of the danger of the vehicle based on the road information and the information on the current position and the vehicle speed and the road surface data transmitted from the communication center 200 by the receiver 21 Plays a role as a control unit that gives an instruction of notification of the danger of However, this is merely an example, and a control unit may be provided separately from the receiver 21, or another ECU such as the navigation ECU 22 or the brake ECU 23 may function as the control unit.
 さらに、タイヤ側装置1にサポートベクタを記憶しておき、タイヤ側装置1で路面状態の判別を行えるようにして、路面状態の判別結果を示すデータを路面データとして、車体側システム2に送るようにしても良い。また、荷重についても、各車輪の4輪それぞれの接地面積比から算出するという手法だけでなく、タイヤ空気圧と接地面積との関係から算出するという手法を採用することもできる。その場合、各タイヤ側装置1において荷重を算出できることから、各タイヤ側装置1内において荷重を算出しておき、その算出結果を車体側システム2に伝えるという形態とすることもできる。 Furthermore, the support vector is stored in the tire side device 1 so that the road surface state can be determined by the tire side device 1, and data indicating the determination result of the road surface state is sent to the vehicle body side system 2 as road surface data. You may Further, not only the method of calculating the load from the contact area ratio of each of the four wheels, but also the method of calculating from the relationship between the tire pressure and the contact area can be adopted. In that case, since the load can be calculated in each tire side device 1, the load can be calculated in each tire side device 1 and the calculation result can be transmitted to the vehicle body side system 2.
 また、上記各実施形態では、複数のタイヤ3のそれぞれに対してタイヤ側装置1を備えるようにしたが、少なくとも1つに備えられていればよい。 Moreover, although the tire side apparatus 1 was provided with respect to each of the some tire 3 in said each embodiment, what is necessary is just to be provided in at least one.

Claims (7)

  1.  車両に備えられるタイヤ(3)に配置され、該タイヤに関わる複数種類の検出対象のうちのいずれかの検出対象に関するデータを送信するタイヤ側装置(1)、および、前記車両における車体側に配置され、前記検出対象に関するデータを受信し、該検出対象の検出結果を取得する車体側システム(2)を有するタイヤシステムであって、
     前記タイヤ側装置は、
     前記複数種類の検出対象に対応する検出信号を出力するセンシング部(11、12)と、
     前記センシング部の検出信号を信号処理し、前記検出対象に関するデータを作成する信号処理部(13)と、
     前記車体側システムとの間において双方向通信を行い、前記信号処理部の作成した前記検出対象に関するデータを前記車体側システムに送信する第1データ通信部(14)と、を有し、
     前記車体側システムは、
     前記タイヤ側装置との間において双方向通信を行い、前記検出対象に関するデータを受信する第2データ通信部(21a)と、
     前記検出対象に関するデータに基づいて、該検出対象に関するデータが示す該検出対象の検出結果を取得する制御部(21b)と、を有し、
     前記車体側システムは、前記第2データ通信部を通じて前記タイヤ側装置に対して前記複数種類の検出対象のうちいずれの検出対象が必要であるかを要求する要求信号を出力し、
     前記タイヤ側装置は、前記要求信号に基づいて、前記複数種類の検出対象の中から該要求信号が示す検出対象に関するデータを作成し、該データを前記第1データ通信部から前記車体側システムに送信するタイヤシステム。
    A tire side device (1) which is disposed in a tire (3) provided in a vehicle and transmits data on one of a plurality of detection objects related to the tire and which is disposed on the vehicle body side of the vehicle A tire system having a vehicle body side system (2) for receiving data relating to the detection target and acquiring a detection result of the detection target,
    The tire side device is
    Sensing units (11, 12) for outputting detection signals corresponding to the plurality of types of detection targets;
    A signal processing unit (13) that performs signal processing on a detection signal of the sensing unit to create data regarding the detection target;
    A first data communication unit (14) that performs two-way communication with the vehicle body side system and transmits the data on the detection target created by the signal processing unit to the vehicle body side system;
    The body side system is
    A second data communication unit (21a) that performs bidirectional communication with the tire-side device and receives data related to the detection target;
    A control unit (21b) for acquiring a detection result of the detection target indicated by the data regarding the detection target based on the data regarding the detection target;
    The vehicle body side system outputs, through the second data communication unit, a request signal for requesting which one of the plurality of types of detection targets is required to the tire side device.
    The tire-side device creates data on a detection target indicated by the request signal from the plurality of types of detection targets based on the request signal, and transmits the data from the first data communication unit to the vehicle-side system Tire system to send.
  2.  前記複数種類の検出対象には、前記タイヤの摩耗状態および前記タイヤの走行路面における路面状態が含まれ、
     前記車体側システムは、前記車両の起動スイッチ(30)がオンされてからオフされるまでの間に少なくとも1回、前記要求信号として、前記検出対象が前記摩耗状態であることを示す信号を送信し、
     前記タイヤ側装置は、前記要求信号として、前記検出対象が前記摩耗状態であることを示す信号が送信されてくると、前記摩耗状態に関するデータを作成して該データを前記第1データ通信部から前記車体側システムに送信し、前記要求信号が送信されていないときには、前記検出対象として、通常モード計測を行うことで前記路面状態に関するデータを作成して該データを前記第1データ通信部から前記車体側システムに送信する請求項1に記載のタイヤシステム。
    The plurality of types of detection targets include a worn state of the tire and a road surface state on a traveling road surface of the tire,
    The vehicle body side system transmits, as the request signal, a signal indicating that the object to be detected is in the worn state at least once during the period from when the start switch (30) of the vehicle is turned on to when it is turned off. And
    When the tire side device transmits a signal indicating that the detection target is the wear state as the request signal, the tire side device creates data relating to the wear state and sends the data from the first data communication unit. When the request signal is not transmitted, the data on the road surface condition is created by performing the normal mode measurement as the detection target, and the data is transmitted from the first data communication unit when the request signal is not transmitted. The tire system according to claim 1, which transmits to the vehicle body side system.
  3.  前記車体側システムは、前記要求信号として、前記検出対象が前記摩耗状態であることを示す信号を送信することを、前記起動スイッチがオンされてからオフされるまでの間に1回のみ行う請求項2に記載のタイヤシステム。 The vehicle body side system transmits, as the request signal, a signal indicating that the object to be detected is in the worn state only once during the period from when the start switch is turned on to when it is turned off. The tire system according to Item 2.
  4.  前記車体側システムは、前記起動スイッチがオンされてからの走行累積時間が所定時間以内に、前記要求信号として、前記検出対象が前記摩耗状態であることを示す信号を送信する請求項2または3に記載のタイヤシステム。 The vehicle body side system transmits, as the request signal, a signal indicating that the object to be detected is in the worn state, within a predetermined time period, from a cumulative running time after the start switch is turned on. The tire system described in.
  5.  前記車体側システムは、道路情報の収集を行う通信センター(200)に対して前記路面状態に関するデータを伝えると共に前記通信センターから前記車両が走行予定の道路の路面状態に関するデータを取得する車両通信装置(25)と、前記車両の現在位置情報を取得する位置情報取得部(22)と、を有し、前記車両通信装置を通じて前記通信センターに対して前記現在位置情報を伝え、該通信センターより前記路面状態に関するデータを要求する要求信号が送られてくると、前記第2データ通信部を通じて前記タイヤ側装置に対して、前記検出対象が前記路面状態であることを示す要求信号を送信し、
     前記タイヤ側装置は、前記要求信号として、前記検出対象が前記路面状態であることを示す信号が送信されてくると、前記通常モード計測でなくても、前記路面状態に関するデータを作成して該データを前記第1データ通信部から前記車体側システムに送信する請求項2または3に記載のタイヤシステム。
    A vehicle communication system for transmitting data relating to the road surface condition to a communication center (200) that collects road information, and acquiring data relating to the road surface condition of the road on which the vehicle is traveling from the communication center (25) and a position information acquisition unit (22) for acquiring current position information of the vehicle, and transmitting the current position information to the communication center through the vehicle communication device, and When a request signal requesting data relating to the road surface condition is sent, a request signal indicating that the detection target is the road surface condition is transmitted to the tire device via the second data communication unit,
    When the tire side device transmits a signal indicating that the detection target is the road surface state as the request signal, the tire side device creates data relating to the road surface state even if it is not the normal mode measurement. The tire system according to claim 2 or 3, wherein data is transmitted from the first data communication unit to the vehicle body side system.
  6.  前記複数種類の検出対象には、前記タイヤが装着された車輪の荷重が含まれ、
     前記車体側システムは、前記要求信号として、前記検出対象が車両運動制御のために用いられる前記荷重であることを示す信号を送信し、
     前記タイヤ側装置は、前記要求信号として、前記検出対象が前記荷重であることを示す信号が送信されてくると、前記荷重に関するデータを作成して該データを前記第1データ通信部から前記車体側システムに送信する請求項1に記載のタイヤシステム。
    The plurality of types of detection targets include the load of the wheel on which the tire is mounted,
    The vehicle body side system transmits, as the request signal, a signal indicating that the detection target is the load used for vehicle motion control.
    When the tire side device transmits a signal indicating that the detection target is the load as the request signal, the tire side device creates data relating to the load and transmits the data from the first data communication unit to the vehicle body The tire system according to claim 1, which transmits to a side system.
  7.  前記複数種類の検出対象には、前記タイヤが装着された車輪の荷重が含まれ、
     前記車体側システムは、前記要求信号として、前記検出対象が車両運動制御のために用いられる前記荷重であることを示す信号を送信し、
     前記タイヤ側装置は、前記要求信号として、前記検出対象が前記荷重であることを示す信号が送信されてくると、前記荷重に関するデータを作成して該データを前記第1データ通信部から前記車体側システムに送信し、前記要求信号が送信されていないときには、前記検出対象として、前記摩耗状態に関するデータの作成もしくは前記通常モード計測を行うことで前記路面状態に関するデータの作成を行って前記第1データ通信部から前記車体側システムに送信する請求項2ないし4のいずれか1つに記載のタイヤシステム。
    The plurality of types of detection targets include the load of the wheel on which the tire is mounted,
    The vehicle body side system transmits, as the request signal, a signal indicating that the detection target is the load used for vehicle motion control.
    When the tire side device transmits a signal indicating that the detection target is the load as the request signal, the tire side device creates data relating to the load and transmits the data from the first data communication unit to the vehicle body When the request signal is not transmitted, data on the road surface condition is created by creating data on the abrasion condition or performing the normal mode measurement as the detection target. The tire system according to any one of claims 2 to 4, wherein the data communication unit transmits the data to the vehicle body side system.
PCT/JP2019/001311 2018-01-19 2019-01-17 Tire system WO2019142870A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980008514.2A CN111615479B (en) 2018-01-19 2019-01-17 Tire system
DE112019000466.2T DE112019000466T5 (en) 2018-01-19 2019-01-17 TIRE SYSTEM
US16/930,083 US11906391B2 (en) 2018-01-19 2020-07-15 Tire system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018007423 2018-01-19
JP2018-007423 2018-01-19
JP2018118776A JP7091877B2 (en) 2018-01-19 2018-06-22 Tire system
JP2018-118776 2018-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/930,083 Continuation US11906391B2 (en) 2018-01-19 2020-07-15 Tire system

Publications (1)

Publication Number Publication Date
WO2019142870A1 true WO2019142870A1 (en) 2019-07-25

Family

ID=67301033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001311 WO2019142870A1 (en) 2018-01-19 2019-01-17 Tire system

Country Status (1)

Country Link
WO (1) WO2019142870A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122753A (en) * 2019-01-31 2020-08-13 Toyo Tire株式会社 Tire estimation system and tire estimation method
WO2021045051A1 (en) * 2019-09-04 2021-03-11 株式会社デンソー Tire device
WO2023026901A1 (en) * 2021-08-23 2023-03-02 株式会社ブリヂストン Tire management device, tire management program, and tire management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189795A (en) * 2010-03-12 2011-09-29 Pacific Ind Co Ltd Tire wear detection device
JP2012116417A (en) * 2010-12-03 2012-06-21 Yokohama Rubber Co Ltd:The Pneumatic tire, tire deterioration state determining system and tire deterioration state determining method
US20140008132A1 (en) * 2011-02-14 2014-01-09 Stefan Kamamann Method and system for determining the load of a motor vehicle, and motor vehicle
JP2017181168A (en) * 2016-03-29 2017-10-05 株式会社デンソー Road surface condition detection system
JP2018009974A (en) * 2016-07-01 2018-01-18 株式会社デンソー Tire-mounted sensor and road surface state estimation device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189795A (en) * 2010-03-12 2011-09-29 Pacific Ind Co Ltd Tire wear detection device
JP2012116417A (en) * 2010-12-03 2012-06-21 Yokohama Rubber Co Ltd:The Pneumatic tire, tire deterioration state determining system and tire deterioration state determining method
US20140008132A1 (en) * 2011-02-14 2014-01-09 Stefan Kamamann Method and system for determining the load of a motor vehicle, and motor vehicle
JP2017181168A (en) * 2016-03-29 2017-10-05 株式会社デンソー Road surface condition detection system
JP2018009974A (en) * 2016-07-01 2018-01-18 株式会社デンソー Tire-mounted sensor and road surface state estimation device including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122753A (en) * 2019-01-31 2020-08-13 Toyo Tire株式会社 Tire estimation system and tire estimation method
WO2021045051A1 (en) * 2019-09-04 2021-03-11 株式会社デンソー Tire device
JP2021037885A (en) * 2019-09-04 2021-03-11 株式会社Soken Tire device
JP7367404B2 (en) 2019-09-04 2023-10-24 株式会社Soken tire equipment
US11846502B2 (en) 2019-09-04 2023-12-19 Denso Corporation Tire device
WO2023026901A1 (en) * 2021-08-23 2023-03-02 株式会社ブリヂストン Tire management device, tire management program, and tire management method

Similar Documents

Publication Publication Date Title
CN111615479B (en) Tire system
JP6777103B2 (en) Road surface condition determination device and tire system including it
JP6551274B2 (en) Hydroplaning judgment device
WO2019124482A1 (en) Apparatus for determining road surface conditions
JP6614073B2 (en) Road surface condition estimation device
WO2017141585A1 (en) Vehicle risk avoidance device
WO2019142869A1 (en) Tire system
JP2018009974A (en) Tire-mounted sensor and road surface state estimation device including the same
WO2019074027A1 (en) Road surface condition determining device, and tire system provided with same
WO2019142870A1 (en) Tire system
JP7047466B2 (en) Road surface condition determination device
JP2015530955A (en) Method, control device and system for determining tread depth of tire tread
WO2020122188A1 (en) Tire wear detection device
WO2019103095A1 (en) Road surface conditions determination device
WO2020054658A1 (en) Tire system
WO2019131568A1 (en) Road surface condition assessing device
JP2019081530A (en) Road surface state estimation apparatus
WO2020004471A1 (en) Road surface state determination device and tire system provided therewith
JP2019132770A (en) Road surface state determining device
WO2019131567A1 (en) Road surface condition determination device
WO2018003693A1 (en) Tire mounted sensor and road surface condition estimating device including same
WO2019088023A1 (en) Road surface state estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740674

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19740674

Country of ref document: EP

Kind code of ref document: A1