WO2019088023A1 - Road surface state estimation device - Google Patents

Road surface state estimation device Download PDF

Info

Publication number
WO2019088023A1
WO2019088023A1 PCT/JP2018/040124 JP2018040124W WO2019088023A1 WO 2019088023 A1 WO2019088023 A1 WO 2019088023A1 JP 2018040124 W JP2018040124 W JP 2018040124W WO 2019088023 A1 WO2019088023 A1 WO 2019088023A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
tire
surface state
unit
data
Prior art date
Application number
PCT/JP2018/040124
Other languages
French (fr)
Japanese (ja)
Inventor
高俊 関澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018108583A external-priority patent/JP6828716B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019088023A1 publication Critical patent/WO2019088023A1/en
Priority to US16/859,524 priority Critical patent/US11498571B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters

Definitions

  • the present disclosure detects a vibration received by a tire and generates a road surface data indicating a road surface state based on the vibration data, and a vehicle body side system that receives the road surface data and estimates the road surface state.
  • the present invention relates to a state estimation device.
  • Patent Document 1 there is provided a road surface state estimation method including an acceleration sensor on the back of the tire tread, detecting the vibration applied to the tire by the acceleration sensor, and estimating the road surface state based on the detection result of the vibration. Proposed.
  • the feature vector is extracted from the tire's vibration waveform detected by the acceleration sensor, and the similarity between the extracted feature vector and all the support vectors stored for each type of road surface is calculated.
  • the kernel function is used to calculate the degree of similarity between the extracted feature vector and all the support vectors, and the kind of road surface having the highest degree of similarity, eg, dry road surface, wet road surface, etc. Presumed.
  • the control unit provided in the tire calculates the degree of similarity and estimates the road surface condition, and transmits the estimation result to the vehicle body system
  • the support unit is stored in the control unit provided in the tire. It is necessary to perform data processing of similarity calculation. For this reason, the amount of power consumption is enormous in the tire, and the amount of memory consumption in the control unit is also enormous because enormous data storage and data processing are required.
  • control unit provided in the tire only extracts the feature vector, transmits the data to the vehicle body side system, and calculates the similarity to all the support vectors in the vehicle body side system to determine the road surface state. It can also be done. In that case, since the timing of data transmission can not be determined, the frequency of communication can not but be increased, and power consumption is increased by high frequency data transmission.
  • the road surface state estimation device includes a tire side device disposed in a tire and a vehicle body side system disposed in the vehicle body side.
  • the tire side device performs data communication between a vibration detection unit that outputs a detection signal according to the magnitude of the vibration of the tire, a first control unit that creates road surface data based on the detection signal, and a vehicle body side system. And a first transmission / reception unit to perform.
  • the vehicle body side system is based on the information on the road surface condition acquired by the peripheral device that acquires information on the road surface condition, the second transmitting / receiving unit that performs data communication with the tire device, and the road surface condition
  • the second transmitting / receiving unit causes the tire transmitting / receiving unit to transmit vehicle body side information indicating that there is a change in the road surface condition, and the road surface based on the road surface data received by the second transmitting / receiving unit.
  • a second control unit configured to estimate a state.
  • the road surface state is estimated by such a road surface state estimation device
  • transmission of the road surface data from the tire side device is made to be only at the change timing of the road surface state.
  • the road surface data is transmitted from the tire side device only at the timing when it is determined that the road surface state has been changed by the tire side device or the vehicle body side system. Therefore, the communication frequency can be reduced, and power saving of the first control unit in the tire can be realized.
  • the support vector storage unit for storing the support vector in the first control unit of the tire-side device but also the structure not provided with the support vector can be realized.
  • the support vector storage unit is not provided, the memory saving of the first control unit in the tire can be achieved.
  • the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
  • FIG. 1 It is the figure which showed the block configuration in the vehicle mounting state of the tire apparatus concerning 1st Embodiment. It is a block diagram showing details of a tire side device and a vehicle body side system. It is a cross-sectional schematic diagram of the tire in which the tire side apparatus was attached. It is an output voltage waveform figure of the acceleration acquisition part at the time of tire rotation. It is a figure which shows a mode that the detection signal of the acceleration acquisition part was divided for every time window of predetermined time width
  • the determinants Xi (r) and Xi (r-1) in each section obtained by dividing the time axis waveform at the time of the current rotation of the tire and the time axis waveform at the time before one rotation by the time window of the predetermined time width T Is a diagram showing the relationship between the distance yz and the distance yz . It is a flowchart of the vehicle body side determination processing which the control part of a vehicle body side system performs. It is a flowchart of the tire side determination process which the control part of a tire side apparatus performs. It is a flowchart of the data transmission process which the control part of a tire side apparatus performs.
  • a tire device 100 having a road surface state estimation function according to the present embodiment will be described with reference to FIGS. 1 to 10.
  • the tire device 100 according to the present embodiment estimates the road surface state during traveling based on the vibration applied to the ground contact surface of the tire provided on each wheel of the vehicle, and notifies of the danger of the vehicle or the vehicle based on the road surface state. It performs exercise control and the like.
  • the tire device 100 is configured to have a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
  • the vehicle body side system 2 includes a receiver 21, an electronic control unit for brake control (hereinafter referred to as a brake ECU) 22, an informing device 23, a peripheral device 24, and the like.
  • the part of the tire device 100 that realizes the road surface state estimation function corresponds to the road surface state estimation device.
  • the receiver 21 and the peripheral device 24 in the tire side device 1 and the vehicle body side system 2 constitute a road surface state estimation device.
  • the tire device 100 of the present embodiment transmits data (hereinafter referred to as road surface data) according to the road surface condition on the traveling road surface of the tire 3 from the tire device 1 and receives the road surface data by the receiver 21 Make an estimate of Specifically, the tire side device 1 transmits road surface data when it is determined that the road surface state has changed. Further, the vehicle body side system 2 also determines that there is a change in the road surface state based on the information from the peripheral device 24, and when there is a change in the road surface state, information to that effect (hereinafter referred to as the vehicle body side The information is transmitted to the tire side device 1).
  • road surface data data (hereinafter referred to as road surface data) according to the road surface condition on the traveling road surface of the tire 3 from the tire device 1 and receives the road surface data by the receiver 21 make an estimate of Specifically, the tire side device 1 transmits road surface data when it is determined that the road surface state has changed. Further, the vehicle body side system 2 also determines that there is a change in the road surface
  • the tire-side device 1 transmits road surface data also when the vehicle-side information is transmitted, in addition to the case where it is determined that the road surface state has changed by itself. Then, the receiver 21 receives road surface data sent when there is a change in the road surface condition, and estimates the road surface condition based on the received road surface data.
  • the tire device 100 transmits the estimation result of the road surface condition in the receiver 21 to the notification device 23, and causes the notification device 23 to notify the estimation result of the road surface condition.
  • This makes it possible to convey the road surface condition to the driver, for example, a dry road, a wet road, or a frozen road, and to warn the driver if the road surface is slippery.
  • the tire device 100 transmits a road surface state to the brake ECU 22 or the like that performs vehicle motion control so that vehicle motion control for avoiding a danger is performed. For example, at the time of freezing, the braking force generated with respect to the brake operation amount is weakened as compared to the case of the dry road, so that the vehicle motion control corresponding to the time when the road surface ⁇ is low is achieved.
  • the tire side device 1 and the vehicle body side system 2 are configured as follows.
  • the tire side device 1 is disposed in each of the tires 3 so that bidirectional communication with the vehicle side system 2 is enabled. Specifically, as shown in FIG. 2, the tire side device 1 is configured to include the acceleration acquiring unit 10, the control unit 11 and the data communication unit 12, and as shown in FIG. 3, the tread of the tire 3 31 is provided on the back side.
  • the acceleration acquisition unit 10 constitutes a vibration detection unit for detecting a vibration applied to the tire 3.
  • the acceleration acquisition unit 10 is configured of an acceleration sensor.
  • the acceleration acquiring unit 10 is an acceleration sensor, for example, the acceleration acquiring unit 10 is a direction in contact with the circular track drawn by the tire-side device 1 when the tire 3 rotates, that is, indicated by an arrow X in FIG.
  • a detection signal of acceleration is output as a detection signal corresponding to the vibration in the tire tangential direction.
  • the acceleration acquiring unit 10 generates, as a detection signal, an output voltage in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
  • the acceleration acquisition unit 10 performs acceleration detection at a predetermined sampling cycle which is set to a cycle shorter than one rotation of the tire 3 and outputs it as a detection signal.
  • the control unit 11 corresponds to a first control unit, is constituted by a known microcomputer including a CPU, a ROM, a RAM, an I / O and the like, and performs the above-described processing according to a program stored in the ROM and the like. .
  • the control unit 11 is configured to include a feature quantity extraction unit 11a, a feature quantity storage unit 11b, a change determination unit 11c, and a transmission control unit 11d as functional units that perform those processes.
  • the feature amount extraction unit 11a extracts the feature amount of the tire vibration by processing the detection signal using the detection signal output from the acceleration acquisition unit 10 as a detection signal representing the vibration data in the tire tangential direction.
  • the feature amount of the tire G is extracted by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G).
  • the feature amount extraction unit 11a transmits data including the extracted feature amount to the data communication unit 12 as road surface data via the transmission control unit 11d. The details of the feature quantities referred to here will be described later.
  • the feature amount storage unit 11 b stores the feature amount extracted by the feature amount extraction unit 11 a one turn before the tire 3 (hereinafter referred to as the “previous feature amount”). Since the fact that the tire 3 has made one rotation can be confirmed by a method described later, every time the tire 3 makes one rotation, the feature amount for one rotation is stored.
  • the feature amount for one rotation of the tire 3 may be updated every time the tire 3 makes one rotation, or a plurality of rotations may be stocked, and the tire 3 makes one rotation every time the tire 3 makes one rotation. You may delete old data. However, from the viewpoint of saving memory of the control unit 11 in the tire 3, it is preferable to reduce the amount of data to be stored, and therefore, it is preferable to update data each time the tire 3 makes one rotation.
  • the change determination unit 11c is configured to extract the feature quantity extracted by the feature quantity extraction unit 11a during the current rotation of the tire 3 (hereinafter referred to as the present feature quantity) and the previous feature quantity of the tire 3 stored in the feature quantity storage unit 11b. It is determined whether or not there is a change in road surface condition based on. Further, as described later, the change determination unit 11c also determines the presence or absence of the change in the road surface state based on whether or not the vehicle body side information is received from the receiver 21 of the vehicle body side system 2. When the change determination unit 11c determines that there is a change in the road surface state, it transmits a control signal indicating that to the transmission control unit 11d.
  • the change determination unit 11 c distinguishes the determination of the presence or absence of the change in the road surface state based on the feature amount in the tire device 1 and the determination of the presence or absence of the change in the road surface state based on the vehicle body side information from the vehicle body side system 2. The decision is being made.
  • the former determination is referred to as “tire side determination” and the latter determination is referred to as “vehicle side determination”.
  • the transmission control unit 11 d controls data transmission from the data communication unit 12.
  • the transmission control unit 11d receives a control signal indicating that there is a change in the road surface condition from the change determination unit 11c, it transmits the road surface data including the current feature amount extracted by the feature amount extraction unit 11a at that time. Tell the communication unit 12.
  • the road surface data indicates data communication if the result of the determination on the road surface state is a change either in the tire side determination result or the vehicle body side determination result. It is transmitted to the part 12.
  • the data communication unit 12 constitutes a first transmission / reception unit, and performs data communication with a data communication unit 25 described later of the receiver 21 in the vehicle body side system 2.
  • the data communication unit 12 may be configured separately for the transmission unit and the reception unit.
  • Various forms of bi-directional communication can be applied, such as Bluetooth communication including BLE (abbreviation of Bluetooth Low Energy) communication, wireless LAN such as wifi (abbreviation of Local Area Network), Sub-GHz communication, Ultra-wide band communication, ZigBee, etc. can be applied.
  • BLE abbreviation of Bluetooth Low Energy
  • wireless LAN such as wifi (abbreviation of Local Area Network)
  • Sub-GHz communication Ultra-wide band communication
  • ZigBee ZigBee, etc.
  • Bluetooth is a registered trademark.
  • the data communication unit 12 transmits the road surface data including the feature amount at this time.
  • the timing of data transmission from the data communication unit 12 is controlled by the transmission control unit 11 d, so data transmission is not performed every time the tire 3 makes one rotation, and when there is a change in the road surface condition Data transmission is performed only in
  • the data communication unit 12 receives it and transmits it to the change determination unit 11c.
  • the change determination unit 11c can determine the presence or absence of the change in the road surface state based on the transmitted vehicle body side information.
  • the receiver 21 is configured to have a data communication unit 25 and a control unit 26.
  • the data communication unit 25 is a part that configures a second transmission / reception unit that performs data communication with the tire side device 1, and road surface data including the present feature amount transmitted from the data communication unit 12 of the tire side device 1 It plays a role of receiving and communicating to the control unit 26. Also, when the vehicle-body-side information indicating that there is a change in the road surface state is transmitted from the control unit 26 based on the information of the peripheral device 24, it also plays a role of transmitting it to the data communication unit 12 of each tire-side device 1.
  • the data communication unit 25 is described here as one configuration, the data communication unit 25 may be configured separately for the transmission unit and the reception unit.
  • the control unit 26 corresponds to a second control unit, is configured by a well-known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various processes in accordance with a program stored in the ROM or the like.
  • the control unit 26 includes a support vector storage unit 26a, a state estimation unit 26b, and a change determination unit 26c as functional units that perform various processes.
  • the support vector storage unit 26a stores and stores support vectors for each type of road surface.
  • the support vector is a feature that serves as an example, and is obtained, for example, by learning using a support vector machine.
  • the vehicle equipped with the tire-side device 1 is run experimentally for each type of road surface, and at that time the feature quantity extracted by the feature quantity extraction unit 11a is learned for a predetermined number of tire rotations, and a typical feature quantity among them What is extracted a predetermined number of times is taken as a support vector. For example, feature amounts for one million rotations are learned for each type of road surface, and typical feature amounts for 100 rotations are extracted therefrom as support vectors.
  • the state estimation unit 26 b compares the current feature amount sent from the tire-side device 1 received by the data communication unit 25 with the support vector for each type of road surface stored in the support vector storage unit 26 a, Estimate the road surface condition. For example, the feature amount is compared with the support vector for each type of road surface, and the road surface of the support vector having the closest feature amount this time is estimated to be the current traveling road surface.
  • the change determination unit 26c determines that there is a change in the road surface condition based on the information from the peripheral device 24, and when there is a change in the road surface condition, the data communication unit 25 indicates the vehicle side information to that effect. To the data communication unit 12 of each tire-side device 1. In addition, since various things can be used for the peripheral device 24 as will be described later, the processing performed by the change determination unit 26 c differs depending on which device is applied as the peripheral device 24. Will be described later.
  • the control unit 26 transmits the estimated road surface state to the notification device 23, and notifies the driver of the road surface condition from the notification device 23 as necessary.
  • the driver can keep in mind the driving corresponding to the road surface condition, and the danger of the vehicle can be avoided.
  • the road surface state estimated through the notification device 23 may be displayed at all times, or the road surface state is determined only when the driving needs to be performed more carefully, such as a wet road or a frozen road. The status may be displayed to warn the driver.
  • the road surface state is transmitted from the receiver 21 to the ECU for executing the vehicle movement control such as the brake ECU 22, and the vehicle movement control is performed based on the transmitted road surface state.
  • the brake ECU 22 constitutes a braking control device that performs various brake control. Specifically, the brake ECU 22 controls the braking force by increasing or decreasing the wheel cylinder pressure by driving an actuator for controlling the brake fluid pressure. The brake ECU 22 can also control the braking force of each wheel independently. When the road surface condition is transmitted from the receiver 21 by the brake ECU 22, the braking force is controlled as the vehicle motion control based thereon. For example, the brake ECU 22 weakens the braking force generated with respect to the amount of brake operation by the driver, as compared to a dry road surface, when it is indicated that the road surface state transmitted is a frozen road. Thereby, it is possible to suppress the wheel slip and to avoid the danger of the vehicle.
  • the notification device 23 is configured of, for example, a meter indicator, and is used when notifying the driver of the road surface condition.
  • the notification device 23 is configured by a meter indicator, the driver is disposed at a visible position during driving of the vehicle, for example, installed in an instrument panel of the vehicle.
  • the meter display can notify the driver of the road surface condition visually by performing display in a mode in which the road surface condition can be grasped when the road surface condition is transmitted from the receiver 21.
  • the notification device 23 can also be configured by a buzzer, a voice guidance device, or the like. In that case, the notification device 23 can aurally notify the driver of the road surface condition by buzzer sound or voice guidance.
  • the meter display was mentioned as the example as the alerting
  • the peripheral device 24 is configured by various devices provided in the vehicle, and plays a role of acquiring information on the road surface state and transmitting it to the change determination unit 26c.
  • the various devices provided in the vehicle may be any device as long as it can acquire information on the road surface state.
  • an on-vehicle camera, a wiper device, a brake ECU 22 or the like may be applied.
  • an on-vehicle camera When an on-vehicle camera is applied as the peripheral device 24, image data of a road surface in front of the vehicle is acquired by the on-vehicle camera, and the image data is transmitted to the change determination unit 26c.
  • the change determination unit 26c analyzes the image data of the on-vehicle camera, and determines that there is a change in the road surface state based on the analysis result.
  • drive information of the wiper device is transmitted to the change determination unit 26c.
  • the wiper device When the wiper device is driven, it is when it is raining or snowing.
  • the change determination unit 26c acquires, from the control unit of the wiper apparatus, information indicating that the wiper drive has been performed, and determines that there is a change in the road surface state based on the information.
  • the brake ECU 22 when the brake ECU 22 is applied as the peripheral device 24, information related to the road surface state used for various controls performed by the brake ECU 22 is transmitted to the change determination unit 26c.
  • the brake ECU 22 performs various controls such as ABS (abbreviation of Antilock Brake System) and VSC (abbreviation of Vehicle stability control), and estimates a road surface friction coefficient and a road surface state. Therefore, when the brake ECU 22 transmits information on the road surface condition, the change determination unit 26c determines that the road surface condition has changed based on the information.
  • a known method may be applied to the estimation of the road surface state based on the analysis of the image data acquired by the on-vehicle camera and the estimation of the road surface state by the brake ECU 22.
  • the tire device 100 is configured as described above.
  • each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local Area Network) by CAN (abbreviation of Controller Area Network) communication etc., for example. Therefore, each part can communicate information with each other through the in-vehicle LAN.
  • in-vehicle LAN abbreviation of Local Area Network
  • CAN abbreviation of Controller Area Network
  • the feature amount referred to here is an amount indicating the feature of the vibration applied to the tire 3 acquired by the acceleration acquiring unit 10, and is expressed as, for example, a feature vector.
  • An output voltage waveform of a detection signal of the acceleration acquisition unit 10 at the time of tire rotation is, for example, a waveform shown in FIG. 4.
  • the output voltage of the acceleration acquiring unit 10 has a maximum value at the start of the ground contact when the portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 starts to contact with the rotation of the tire 3.
  • the peak value at the start of grounding where the output voltage of the acceleration acquiring unit 10 has a maximum value is referred to as a first peak value.
  • the acceleration acquisition unit 10 when the tire 3 is rotated, the acceleration acquisition unit 10 is not in contact with the ground when the portion corresponding to the location where the acceleration acquisition unit 10 is disposed is in contact with the ground.
  • Output voltage has a local minimum value.
  • the peak value at the end of grounding where the output voltage of the acceleration acquiring unit 10 has a local minimum value is referred to as a second peak value.
  • the peak value of the output voltage of the acceleration acquisition unit 10 at such timing is as follows. That is, when a portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed on the ground as the tire 3 rotates, the portion of the tire 3 having a substantially cylindrical surface in the vicinity of the acceleration acquiring unit 10 is It is pressed and deformed into a planar shape. By receiving the impact at this time, the output voltage of the acceleration acquiring unit 10 takes a first peak value. In addition, when a portion of the tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed is separated from the ground contact surface as the tire 3 rotates, the tire 3 is released from pressure in the vicinity of the acceleration acquisition unit 10 It returns to approximately cylindrical shape from.
  • the output voltage of the acceleration acquiring unit 10 takes a second peak value.
  • the output voltage of the acceleration acquiring unit 10 takes the first and second peak values at the start of grounding and at the end of grounding, respectively. Further, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the pressing are opposite, the sign of the output voltage is also the opposite.
  • step-in area an instant at which a portion of the tire tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed contacts the road surface
  • step-out area an instant at which it is separated from the road surface
  • step-in area includes the timing at which the first peak value is obtained
  • step-out area includes the timing at which the second peak value is obtained.
  • the area in front of the stepping area is the area before the stepping area, and the area from the stepping area to the kicking area, that is, the portion of the tire tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed "Region after kicking out" is taken as "area after kicking out”.
  • five areas R1 to R5 are “pre-step-in area”, “step-in area”, “kick-out front area”, “kick-out area”, and “post-kick out area” in the detection signal in this order. It is shown as.
  • the vibration generated in the tire 3 fluctuates in each of the divided areas according to the road surface state, and the detection signal of the acceleration acquiring unit 10 changes, so that the frequency analysis of the detection signal of the acceleration acquiring unit 10 in each area is performed.
  • each frequency component of the detection signal of the acceleration acquisition unit 10 changes according to the road surface state, it is possible to determine the road surface state based on the frequency analysis of the detection signal.
  • the feature quantity extraction unit 11a detects the detection signal of the acceleration acquisition unit 10 for one rotation of the tire 3 that has a continuous time axis waveform for each time window of a predetermined time width T.
  • the feature quantity is extracted by dividing into a plurality of sections and performing frequency analysis in each section. Specifically, the power spectrum value in each frequency band, that is, the vibration level in the specific frequency band is determined by performing frequency analysis in each section, and this power spectrum value is used as the feature amount.
  • the number of the division divided by the time window of time width T is a value which changes according to the rotational speed of the tire 3 in more detail according to the vehicle speed.
  • the number of sections for one tire rotation is n (where n is a natural number).
  • the power obtained by passing the detection signal of each section through five band pass filters of a plurality of specific frequency bands for example, 0 to 1 kHz, 1 to 2 kHz, 2 to 3 kHz, 3 to 4 kHz, or 4 to 5 kHz
  • This feature quantity is called a feature vector
  • a feature vector Xi of a section i (where i is a natural number of 1 ⁇ i ⁇ n) is represented by aik when the power spectrum value of each specific frequency band is indicated by aik It is expressed as in the following equation as a matrix having.
  • This determinant X is an expression representing the feature amount for one rotation of the tire.
  • the feature amount extraction unit 11 a extracts the feature amount represented by the determinant X by performing frequency analysis on the detection signal of the acceleration acquisition unit 10.
  • the determinant of the current feature is X (r)
  • the determinant of the previous feature is X (r ⁇ 1)
  • the power serving as each element of each determinant Let the spectral value a ik be represented by a (r) ik , a (r ⁇ 1) ik .
  • the determinant X (r) of the current feature and the determinant X (r ⁇ 1) of the previous feature are expressed as follows.
  • the degree of similarity indicates the degree of similarity between the feature quantities indicated by the two determinants, meaning that the higher the degree of similarity, the more similar.
  • the change determination unit 11 c determines the degree of similarity using the kernel method, and determines the change in road surface state based on the degree of similarity.
  • the inner product of the determinant X (r) at the time of the current rotation of the tire 3 and the determinant one rotation before is X (r-1), in other words, for each time window of a predetermined time width T in the feature space
  • the distance between the coordinates indicated by the feature vector Xi of the sections divided by is calculated and used as the similarity.
  • the time axis waveform at the time of the current rotation of the tire 3 and the time axis waveform at one rotation before are each set to a predetermined time width T Divide into each section with the time window of.
  • T a predetermined time width
  • n 5 and i is represented by 1 ⁇ i ⁇ 5.
  • the feature vector Xi of each section during the current rotation is Xi (r)
  • the feature vector of each section before one rotation is Xi (r-1).
  • the feature vector Xi is obtained by dividing into five specific frequency bands
  • the feature vector Xi of each section is represented in a six-dimensional space aligned with the time axis, and the features of the sections
  • the distance between the coordinates indicated by the vector Xi is the distance between the coordinates in the six-dimensional space.
  • the distance between coordinates indicated by the feature vector Xi of each section is smaller as the feature quantities are similar and larger as they are not similar, so the smaller the distance is, the higher the similarity is, and the larger the distance is It indicates that the degree of similarity is low.
  • the distance K yz between coordinates indicated by the feature vector of the compartment between time-division determined for all sections and calculates the distance K yz sum K total of all sections fraction, the total sum K total similarity It is used as the corresponding value.
  • the total sum K total is compared with a predetermined threshold Th, and if the total sum K total is larger than the threshold Th, the similarity is low and it is determined that there is a change in road surface condition, and the total sum K total is smaller than the threshold Th For example, it is determined that the degree of similarity is high and there is no change in the road surface state.
  • the sum K total of the distance K yz between two coordinates indicated by the feature vector of each section is used as a value corresponding to the degree of similarity
  • another parameter may be used as a parameter indicating the degree of similarity.
  • an average distance K ave which is an average value of the distances K yz obtained by dividing the total sum K total by the number of sections can be used.
  • various kernel functions can be used to determine the degree of similarity.
  • the change determination unit 26c performs the vehicle body side determination process shown in FIG. 7 based on the information on the road surface state acquired from the peripheral device 24. This process is performed, for example, during a predetermined control cycle while the ignition (not shown) is on, preferably while the vehicle is traveling.
  • the change determination unit 26 c executes a process of acquiring information on the road surface state from the peripheral device 24 in step S ⁇ b> 100.
  • a process of acquiring information on the road surface state from the peripheral device 24 in step S ⁇ b> 100 For example, when an on-vehicle camera is applied as the peripheral device 24, acquisition of image data, information indicating that the wiper device is driven when the wiper device is applied, road surface when the brake ECU 22 is applied Information on the coefficient of friction or road surface condition is acquired.
  • step S110 the process proceeds to step S110, and as the vehicle body side determination, it is determined whether or not there is a change in the road surface state based on the information acquired in step S100. Thereafter, when the determination in step S110 is affirmative, the process proceeds to step S120, and the data communication unit 25 transmits vehicle body side information indicating that there is a change in the road surface state to each tire side device 1. And when a negative determination is carried out by step S110, a vehicle body side determination process is complete
  • the control unit 11 executes the tire side determination process shown in FIG. 8 and the data transmission process shown in FIG. This process is performed every predetermined control cycle.
  • the control unit 11 performs an input process of a detection signal of the acceleration acquisition unit 10 in step S200. This process is continued in the subsequent step S210 for a period until the tire 3 makes one revolution. Then, when the detection signal of the acceleration acquisition unit 10 is input for one rotation of the tire, the process proceeds to the subsequent step S220, and the feature value of the time axis waveform of the detection signal of the acceleration acquisition unit 10 for one rotation of the tire input as the current feature value. Extract The processes of steps S200 to S220 described above are performed by the feature amount extraction unit 11a of the control unit 11.
  • the fact that the tire 3 has made one rotation is determined based on the time axis waveform of the detection signal of the acceleration acquisition unit 10. That is, since the detection signal draws the time axis waveform shown in FIG. 4, one rotation of the tire 3 can be grasped by confirming the first peak value and the second peak value of the detection signal.
  • the vibration level in the detection signal of the acceleration acquiring unit 10 is smaller than the threshold, it is detected as a period less susceptible to the road surface condition among the "pre-step-in region" and the "after kicking region".
  • the signal may not be input.
  • the extraction of the feature amount performed in step S220 is performed by the method as described above.
  • step S230 the similarity is determined by the above-described method based on the current feature amount and the previous feature amount. For example, the similarity is compared with the threshold Th to determine whether there is a change in the road surface state. Determine if This process is executed based on the current feature amount extracted by the feature amount extraction unit 11a and the previous feature amount stored in the feature amount storage unit 11b in step S250 described later.
  • step S230 When an affirmative determination is made in step S230, the fact that there is a change in the road surface condition is stored in step S240.
  • the process of steps S230 and S240 is performed by the change determination unit 11c of the control unit 11.
  • step S250 the current feature amount is stored as the previous feature amount in the feature amount storage unit 11b, and the process is ended.
  • step S300 it is determined whether or not the tire side device 1 determines that there is a change in the road surface state. This determination is performed based on whether or not the change in the road surface state is stored in step S240 of FIG. 8 described above. If an affirmative determination is made here, the process proceeds to step S310, and if a negative determination is made, the process proceeds to step S320. Then, in step S310 or step S320, it is determined whether or not it is determined in the vehicle body side system 2 that there is a change in the road surface state. This determination is performed based on whether or not the vehicle body side information transmitted in step S120 of FIG. 7 described above is received.
  • step S310 the process proceeds to step S330, and data of “high reliability” is added to road surface data including data of the feature amount this time, and the data communication unit 12 is notified. If the determination is affirmative in step S320, the process proceeds to step S340, and data of “in reliability” is added to the road surface data including the data of the feature amount this time, and the data communication unit 12 is notified. Furthermore, when the negative determination is made in step S310, the process proceeds to step S350, and data of “reliability is low” is added to the road surface data including the data of the feature amount this time and transmitted to the data communication unit 12.
  • step S310 The case where an affirmative determination is made in step S310 is a case where it is determined that there is a change in the road surface condition in both the tire side device 1 and the vehicle body side system 2. Therefore, in this case, it can be said that the reliability of the determination that there is a change in the road surface condition is high. Therefore, the road surface data sent to the data communication unit 12 includes data “high reliability”.
  • the determination in step S320 is affirmed is the case where it is determined that the road surface state has been changed in the vehicle body side system 2 although the tire side device 1 has not been determined to have changed the road surface state.
  • the reliability of the determination that there is a change in the road surface condition is relatively high, although this is not the same as the case where the positive determination is made in step S310. Therefore, the road surface data sent to the data communication unit 12 includes the data “in reliability”.
  • step S310 the case where the negative determination is made in step S310 is a case where it is determined that the road surface state has changed in the tire device 1, but the road surface state has not been determined in the vehicle body side system 2.
  • the road surface data sent to the data communication unit 12 includes data of “reliability is low”.
  • the data communication unit 12 when road surface data is transmitted from the transmission control unit 11 d to the data communication unit 12, the data communication unit 12 outputs the data to the receiver 21. Thereby, the road surface data from each tire side device 1 is received by the receiver 21. As described above, road surface data including the feature amount is transmitted from the data communication unit 12 only when there is a change in the road surface state, and data transmission is not performed when there is no change in the road surface state. I have to. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
  • control unit 26 performs the road surface state estimation process shown in FIG. This process is performed every predetermined control cycle.
  • step S400 data reception processing is performed. This process is performed by the control unit 26 taking in the road surface data when the data communication unit 25 receives the road surface data. When the data communication unit 25 is not receiving data, the control unit 26 ends the process without taking in road surface data.
  • step S410 it is determined whether data has been received. If it has been received, the process proceeds to step S420. If it has not been received, the processes of steps S400 and S410 are repeated until it is received.
  • step S420 the road surface state is estimated.
  • the road surface state is estimated by comparing the current feature amount included in the received road surface data with the support vector classified by road surface type stored in the support vector storage unit 26a.
  • the feature amount is obtained as the similarity with all the support vectors for each type of road surface, and the road surface of the support vector having the highest similarity is estimated to be the current traveling road surface.
  • the calculation of the degree of similarity at this time may use the same method as the calculation of the degree of similarity between the current feature amount and the previous feature amount performed in step S230 of FIG.
  • the method of estimating the road surface state can be changed according to the reliability.
  • each element of the matrix indicating the feature amount used for estimating the road surface condition also includes an element that becomes prominent on a dry road, an element that becomes prominent on a wet road surface, and an element that becomes prominent on a frozen road.
  • the elements of all the matrices indicating the feature amounts included in the road surface data are not used to calculate the similarity, and among the elements, elements that become particularly prominent for each road surface Let's take out only and calculate the similarity.
  • the number of elements is increased and the calculation of the similarity is performed as compared to the case of “in high reliability”. Then, in the case of “reliability is low”, calculation of similarity is performed using all elements of the determinant.
  • the calculation of the degree of similarity can be performed by narrowing down the elements. For this reason, for example, as in the case of “high reliability”, it is also possible to estimate the road surface condition more accurately by taking out only the element that is particularly remarkable for each road surface.
  • the road surface state after the change is either a wet road or a frozen road when the road surface state changes. It may not be clear which way it is. In this case, if the elements that become prominent in the wet path and the elements that become prominent in the freezing path are extracted and the similarity degree is calculated using only these elements, it will be a wet path more clearly It can be estimated if it is a freezing path.
  • the road surface condition is estimated by the tire device 100 according to the present embodiment.
  • transmission of road surface data including the present feature amount from the tire device 1 is performed only at the change timing of the road surface state.
  • the road surface data from the tire side device 1 is transmitted only at the timing when the tire side device 1 or the vehicle body side system 2 determines that there is a change in the road surface state. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
  • the tire device 100 does not have to include the support vector storage unit for storing the support vector in the control unit 11 of the tire side device 1, memory saving of the control unit 11 in the tire 3 can be achieved. .
  • the data processing of similarity calculation by the control unit 11 of the tire-side device 1 may be performed only on the current feature amount and the previous feature amount, and on the similarity calculation of the current feature amount and all support vectors. It may be performed by the vehicle body side system 2. For this reason, it is possible to further suppress the consumption of the memory in the control unit 11 in the tire 3, and to realize memory saving.
  • tire device 100 which can realize memory saving and power saving of control part 11 in tire 3, and tire device 100 containing it.
  • the road surface data from the tire side device 1 It is supposed to be sent. Therefore, even when the tire side device 1 can not grasp the change of the road surface state, the road surface data can be transmitted to the vehicle body side system 2, and the change of the road surface state can be recognized more accurately.
  • the road surface condition estimation method it is possible to change the road surface condition estimation method according to the reliability. For example, it is also possible to estimate the road surface condition with a smaller amount of data according to the reliability. Therefore, the amount of data to be sent as road surface data can be changed from each tire-side device 1 according to the level of reliability, and the power necessary for data transmission can be further reduced, thereby further saving the cost. Power can be realized.
  • the present embodiment is different from the first embodiment in that it is possible to estimate the road surface condition in each tire side device 1 with respect to the first embodiment, and the other is the same as the first embodiment. Only the part will be described.
  • a support vector storage unit 11e is provided instead of the feature storage unit 11b provided in the first embodiment, and the support vector storage unit 26a of the receiver 21 is eliminated.
  • the tire side device 1 can be calculated by the change determination unit 11c calculating the degree of similarity between the current feature value extracted by the feature value extraction unit 11a and all the support vectors stored in the support vector storage unit 11e. In the above, it is possible to determine the change of the road surface condition. Then, when there is a change in the road surface state, data indicating the estimation result of the road surface state based on the calculation of the similarity is transmitted from the tire device 1 as road surface data.
  • the road surface data transmitted by the tire side device 1 is received, and the road surface state indicated by the road surface data is transmitted from the state estimation unit 26b to the brake ECU 22 and the notification device 23.
  • the tire side device 1 can be provided with the support vector storage unit 11 e so that the tire side device 1 can estimate the road surface state. Even in this case, it can be determined based on the estimation result whether or not there is a change in the road surface state. For this reason, when there is a change in the road surface condition in the tire side device 1 or when the vehicle body side information is transmitted from the vehicle body side system 2, the road surface data including the estimation result or the feature value of the road surface condition is transmitted. You can do so. Thereby, although the effect of the memory saving of the control unit 11 in the tire 3 can not be obtained, the same effect as that of the first embodiment can be obtained such that power saving can be realized.
  • the tire side device 1 does not determine the change in the road surface state based on the feature amount with respect to the first embodiment, but determines the change in the road surface state based on the vehicle body side information transmitted from the vehicle body side system 2 Can only be done.
  • the other parts of this embodiment are the same as those of the first embodiment, so only the parts different from the first embodiment will be described.
  • the feature storage unit 11b provided in the first embodiment is eliminated. Further, the change determination unit 11 c can determine that there is a change in the road surface state based on the vehicle body side information sent from the vehicle body side system 2. Then, when there is a change in the road surface state, road surface data including the feature amount is transmitted from the tire side device 1.
  • the receiver 21 determines that there is a change in the road surface state based on the information from the peripheral device 24, the receiver 21 transmits the vehicle body side information to the tire side device 1. Also, the receiver 21 receives the road surface data transmitted by the tire-side device 1, and from the state estimation unit 26b, the feature amount included in the road surface data and the support vector by road surface type stored in the support vector storage portion 26a. The road surface condition is estimated by comparing with. Then, the estimation result of the road surface state is transmitted from the state estimation unit 26 b to the brake ECU 22 and the notification device 23.
  • the tire side device 1 executes the tire side determination process shown in FIG. First, in steps S500 to S520, the same processes as steps S200 to S220 of the tire side determination process shown in FIG. 8 are executed. Then, in step S530, it is determined whether or not it is determined in the vehicle body side system 2 that there is a change in the road surface state. Here, it is positively determined that the vehicle body side information indicating that it is determined that there is a change in the road surface condition described above is transmitted from the vehicle body side system 2, and it is negatively determined that the vehicle body side information is not transmitted. If an affirmative determination is made here, the process proceeds to step S540, the road surface data of the present feature amount obtained in step S520 is transmitted to end the process, and when a negative determination is made, the process ends.
  • the road surface state estimation process shown in FIG. 10 is performed in the tire side device 1 so that the road surface state estimation based on the road surface data transmitted from the tire side device 1 is performed.
  • the vehicle body side information is transmitted to the tire side device 1, and the road surface data is transmitted from the tire side device 1 only in that case. You may do so.
  • the tire side device 1 can not determine that there is a change in the road surface state, it does not have to perform the determination, so that the memory saving of the control unit 11 in the tire 3 is further reduced. realizable. Further, since the road surface data can be requested to the tire side device 1 only when the vehicle body side system 2 requires the road surface data, data transmission of the tire side device 1 can be further restricted. Therefore, power saving of the control unit 11 of the tire side device 1 can be realized.
  • the feature amount one rotation before is stored as the feature amount at the time of the past rotation of the tire 3.
  • the feature amount storage unit 11b does not necessarily have to be the feature amount one rotation before. That is, the feature amount storage unit 11b stores the feature amounts before multiple rotations as the past feature amounts without being limited to storing the feature amounts of the previous time as the feature amounts of the tire 3 in the past rotation (hereinafter referred to as past feature amounts).
  • the average value of the past feature amounts for a plurality of rotations may be stored.
  • the previous feature value among the past feature values may be used, or an average value of a plurality of past values including the previous feature value may be used.
  • the vibration detection unit can also be configured by an element that can perform other vibration detection, such as a piezoelectric element.
  • the road surface data including the feature amount this time is transmitted from the tire device 1.
  • the previous feature amount may be included in the road surface data.
  • the road surface condition before the change can also be estimated by comparing the previous feature quantity with the support vector. Therefore, it is possible to estimate both of the road surface condition before and after the change and to more accurately recognize the change of the road surface condition.
  • control unit 26 of the receiver 21 provided in the vehicle body side system 2 obtains the similarity between the current feature amount and the support vector to estimate the road surface state.
  • the similarity may be determined or the road surface state may be estimated by another ECU, for example, the control unit of the brake ECU 22.
  • tire side apparatus 1 was provided with respect to each of the some tire 3 in said each embodiment, what is necessary is just to be provided in at least one.

Abstract

A first control unit (11) of a tire-side device (1) determines that a road surface state has changed. A second control unit (26) of a vehicle body-side system (2) estimates that there has been a change in the road surface state on the basis of information of a peripheral device (24), and transmits vehicle body-side information to the tire-side device (1) when there is a change in the road surface state. In the tire-side device (1), road surface data including a current feature quantity is transmitted from the tire-side device (1) at a timing when the road surface state has changed.

Description

路面状態推定装置Road surface condition estimation device 関連出願への相互参照Cross-reference to related applications
 本出願は、2017年10月30日に出願された日本特許出願番号2017-209401号と、2018年6月6日に出願された日本特許出願番号2018-108583号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-209401 filed on October 30, 2017 and Japanese Patent Application No. 2018-108583 filed on June 6, 2018, which are incorporated herein by reference. The contents of the description are incorporated by reference.
 本開示は、タイヤが受ける振動を検出し、振動データに基づいて路面状態を示す路面データを作成するタイヤ側装置と、路面データを受信して路面状態を推定する車体側システムと、を有する路面状態推定装置に関するものである。 The present disclosure detects a vibration received by a tire and generates a road surface data indicating a road surface state based on the vibration data, and a vehicle body side system that receives the road surface data and estimates the road surface state. The present invention relates to a state estimation device.
 従来、特許文献1において、タイヤトレッドの裏面に加速度センサを備え、加速度センサにてタイヤに加えられる振動を検出すると共に、その振動の検出結果に基づいて路面状態の推定を行う路面状態推定方法が提案されている。この路面状態推定方法では、加速度センサが検出したタイヤの振動波形から特徴ベクトルを抽出し、抽出した特徴ベクトルと路面の種類ごとに記憶しておいた全サポートベクタとの類似度を計算することで、路面状態を推定する。例えば、カーネル関数を用いて、抽出した特徴ベクトルと全サポートベクタとの類似度が計算され、最も類似度が高い路面の種類、例えばドライ路面、ウェット路面などが現在走行中の路面状態であると推定される。このような路面状態推定方法により、ロバスト性の高い路面判定を行うことが可能となる。 Conventionally, in Patent Document 1, there is provided a road surface state estimation method including an acceleration sensor on the back of the tire tread, detecting the vibration applied to the tire by the acceleration sensor, and estimating the road surface state based on the detection result of the vibration. Proposed. In this road surface state estimation method, the feature vector is extracted from the tire's vibration waveform detected by the acceleration sensor, and the similarity between the extracted feature vector and all the support vectors stored for each type of road surface is calculated. , To estimate the road surface condition. For example, the kernel function is used to calculate the degree of similarity between the extracted feature vector and all the support vectors, and the kind of road surface having the highest degree of similarity, eg, dry road surface, wet road surface, etc. Presumed. By such a road surface state estimation method, it is possible to perform road surface determination with high robustness.
特開2016-107833号公報JP, 2016-107833, A
 上記した特許文献1に示される路面状態推定方法は、類似度の計算をタイヤ内に備えられる制御部によって実施するか、それとも車体側システムにおいて実施するか定かではないが、類似度の計算負荷が高いことから、次のような問題を発生させることになる。 The road surface state estimation method shown in Patent Document 1 mentioned above is not sure whether the calculation of the degree of similarity is carried out by the control unit provided in the tire or in the vehicle side system, but the calculation load of the degree of similarity is The high cost causes the following problems.
 例えば、タイヤ内に備えられる制御部において類似度を計算すると共に路面状態の推定を行い、その推定結果を車体側システムに伝える形態とする場合、タイヤ内に備える制御部にサポートベクタを記憶したり、類似度計算のデータ処理を行うことが必要になる。このため、タイヤ内において、電力消費量が膨大になるし、膨大なデータ記憶およびデータ処理が必要になるために制御部内のメモリの消費量も膨大になる。 For example, when the control unit provided in the tire calculates the degree of similarity and estimates the road surface condition, and transmits the estimation result to the vehicle body system, the support unit is stored in the control unit provided in the tire. It is necessary to perform data processing of similarity calculation. For this reason, the amount of power consumption is enormous in the tire, and the amount of memory consumption in the control unit is also enormous because enormous data storage and data processing are required.
 また、タイヤ内に備える制御部において特徴ベクトルの抽出のみを行い、そのデータを車体側システムに送信し、車体側システムにおいて全サポートベクタに対する類似度計算を行って路面状態を判定するという形態とすることもできる。その場合、データ送信のタイミングが決定できないため、通信頻度を上げざるを得ず、高頻度のデータ送信によって電力消費量を増大させる。 In addition, the control unit provided in the tire only extracts the feature vector, transmits the data to the vehicle body side system, and calculates the similarity to all the support vectors in the vehicle body side system to determine the road surface state. It can also be done. In that case, since the timing of data transmission can not be determined, the frequency of communication can not but be increased, and power consumption is increased by high frequency data transmission.
 本開示は、少なくともタイヤ側装置の省電力を実現できる路面状態推定装置を提供することを第1の目的とする。また、タイヤ内の制御部の省メモリおよび省電力を実現できるタイヤ側装置を含む路面状態推定装置を提供することを第2の目的とする。 The present disclosure has a first object to provide a road surface state estimation device capable of realizing power saving of at least a tire side device. Another object of the present invention is to provide a road surface state estimation device including a tire side device capable of realizing memory saving and power saving of a control unit in a tire.
 本開示の1つの観点における路面状態推定装置は、タイヤに配置されるタイヤ側装置および車体側に配置される車体側システムを備えている。タイヤ側装置は、タイヤの振動の大きさに応じた検出信号を出力する振動検出部と、検出信号に基づいて路面データを作成する第1制御部と、車体側システムとの間におけるデータ通信を行う第1送受信部と、を有している。また、車体側システムは、路面状態に関する情報を取得する周辺装置と、タイヤ側装置との間におけるデータ通信を行う第2送受信部と、周辺装置で取得した路面状態に関する情報に基づいて路面状態の変化があったことを判定するとタイヤ側装置に対して路面状態の変化があったことを示す車体側情報を第2送受信部より送信させると共に、第2送受信部が受信した路面データに基づいて路面状態を推定する第2制御部と、を有している。そして、タイヤ側装置における第1制御部に、検出信号に基づいて路面状態の変化があったことを判定する変化判定部と、変化判定部にて路面状態が変化したことが判定されたとき、および、記車体側情報を受信すると、第1送受信部より路面データの送信を行わせる送信制御部と、を備えている。 The road surface state estimation device according to one aspect of the present disclosure includes a tire side device disposed in a tire and a vehicle body side system disposed in the vehicle body side. The tire side device performs data communication between a vibration detection unit that outputs a detection signal according to the magnitude of the vibration of the tire, a first control unit that creates road surface data based on the detection signal, and a vehicle body side system. And a first transmission / reception unit to perform. In addition, the vehicle body side system is based on the information on the road surface condition acquired by the peripheral device that acquires information on the road surface condition, the second transmitting / receiving unit that performs data communication with the tire device, and the road surface condition When it is determined that there has been a change, the second transmitting / receiving unit causes the tire transmitting / receiving unit to transmit vehicle body side information indicating that there is a change in the road surface condition, and the road surface based on the road surface data received by the second transmitting / receiving unit. And a second control unit configured to estimate a state. Then, when it is determined that the first control unit in the tire-side device determines that the road surface state has changed based on the detection signal, and the change determination unit determines that the road surface state has changed, And a transmission control unit that causes the first transmission / reception unit to transmit road surface data when the vehicle body side information is received.
 このような路面状態推定装置によって路面状態の推定を行うに際し、タイヤ側装置からの路面データの送信が路面状態の変化タイミングのみとなるようにしている。具体的には、タイヤ側装置もしくは車体側システムにて路面状態の変化があったと判定されたタイミングにのみ、タイヤ側装置からの路面データの送信が行われるようにしている。このため、通信頻度を低下させることが可能となり、タイヤ内の第1制御部の省電力化を実現することが可能となる。 When the road surface state is estimated by such a road surface state estimation device, transmission of the road surface data from the tire side device is made to be only at the change timing of the road surface state. Specifically, the road surface data is transmitted from the tire side device only at the timing when it is determined that the road surface state has been changed by the tire side device or the vehicle body side system. Therefore, the communication frequency can be reduced, and power saving of the first control unit in the tire can be realized.
 また、タイヤ側装置の第1制御部にサポートベクタを保存するためのサポートベクタ保存部を備える構造だけでなく、備えない構成とすることも可能となる。そして、サポートベクタ保存部を備えない構造とする場合、タイヤ内の第1制御部の省メモリ化を図ることもできる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Further, not only the structure provided with the support vector storage unit for storing the support vector in the first control unit of the tire-side device but also the structure not provided with the support vector can be realized. When the support vector storage unit is not provided, the memory saving of the first control unit in the tire can be achieved.
In addition, the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
第1実施形態にかかるタイヤ装置の車両搭載状態でのブロック構成を示した図である。It is the figure which showed the block configuration in the vehicle mounting state of the tire apparatus concerning 1st Embodiment. タイヤ側装置および車体側システムの詳細を示したブロック図である。It is a block diagram showing details of a tire side device and a vehicle body side system. タイヤ側装置が取り付けられたタイヤの断面模式図である。It is a cross-sectional schematic diagram of the tire in which the tire side apparatus was attached. タイヤ回転時における加速度取得部の出力電圧波形図である。It is an output voltage waveform figure of the acceleration acquisition part at the time of tire rotation. 加速度取得部の検出信号を所定の時間幅Tの時間窓毎に区画した様子を示す図である。It is a figure which shows a mode that the detection signal of the acceleration acquisition part was divided for every time window of predetermined time width | variety T. FIG. タイヤの今回の回転時の時間軸波形と1回転前のときの時間軸波形それぞれを所定の時間幅Tの時間窓で分割した各区画での行列式Xi(r)、Xi(r-1)と距離yzとの関係を示した図である。The determinants Xi (r) and Xi (r-1) in each section obtained by dividing the time axis waveform at the time of the current rotation of the tire and the time axis waveform at the time before one rotation by the time window of the predetermined time width T Is a diagram showing the relationship between the distance yz and the distance yz . 車体側システムの制御部が実行する車体側判定処理のフローチャートである。It is a flowchart of the vehicle body side determination processing which the control part of a vehicle body side system performs. タイヤ側装置の制御部が実行するタイヤ側判定処理のフローチャートである。It is a flowchart of the tire side determination process which the control part of a tire side apparatus performs. タイヤ側装置の制御部が実行するデータ送信処理のフローチャートである。It is a flowchart of the data transmission process which the control part of a tire side apparatus performs. 車体側システムの制御部が実行する路面状態推定処理のフローチャートである。It is a flowchart of the road surface state estimation process which the control part of the vehicle body side system performs. 第2実施形態にかかるタイヤ装置に備えられるタイヤ側装置および車体側システムの詳細を示したブロック図である。It is the block diagram which showed the detail of the tire side device and vehicle body side system with which the tire device concerning a 2nd embodiment is equipped. 第3実施形態にかかるタイヤ装置に備えられるタイヤ側装置および車体側システムの詳細を示したブロック図である。It is a block diagram showing details of a tire side device and a vehicle body side system provided in a tire device according to a third embodiment. 第3実施形態で説明するタイヤ側判定処理のフローチャートである。It is a flowchart of the tire side determination processing demonstrated in 3rd Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 図1~図10を参照して、本実施形態にかかる路面状態推定機能を有するタイヤ装置100について説明する。本実施形態にかかるタイヤ装置100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を推定すると共に、路面状態に基づいて車両の危険性の報知や車両運動制御などを行うものである。
First Embodiment
A tire device 100 having a road surface state estimation function according to the present embodiment will be described with reference to FIGS. 1 to 10. The tire device 100 according to the present embodiment estimates the road surface state during traveling based on the vibration applied to the ground contact surface of the tire provided on each wheel of the vehicle, and notifies of the danger of the vehicle or the vehicle based on the road surface state. It performs exercise control and the like.
 図1および図2に示すようにタイヤ装置100は、車輪側に設けられたタイヤ側装置1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21、ブレーキ制御用の電子制御装置(以下、ブレーキECUという)22、報知装置23、周辺装置24などが備えられている。なお、このタイヤ装置100のうち路面状態推定機能を実現する部分が路面状態推定装置に相当する。本実施形態の場合、タイヤ側装置1と車体側システム2のうちの受信機21や周辺装置24が路面状態推定装置を構成している。 As shown in FIG. 1 and FIG. 2, the tire device 100 is configured to have a tire side device 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side. The vehicle body side system 2 includes a receiver 21, an electronic control unit for brake control (hereinafter referred to as a brake ECU) 22, an informing device 23, a peripheral device 24, and the like. The part of the tire device 100 that realizes the road surface state estimation function corresponds to the road surface state estimation device. In the case of this embodiment, the receiver 21 and the peripheral device 24 in the tire side device 1 and the vehicle body side system 2 constitute a road surface state estimation device.
 本実施形態のタイヤ装置100は、タイヤ側装置1よりタイヤ3の走行路面における路面状態に応じたデータ(以下、路面データという)を送信すると共に、受信機21で路面データを受信して路面状態の推定を行う。具体的には、タイヤ側装置1は、路面状態に変化があったことを判定したときに、路面データの送信を行う。また、車体側システム2でも、周辺装置24からの情報に基づいて路面状態に変化があったことを判定しており、路面状態の変化があった場合に、その旨の情報(以下、車体側情報という)をタイヤ側装置1に送信する。すなわち、タイヤ側装置1は、自身で路面状態に変化があったことを判定した場合に加えて、車体側情報が伝えられたときにも路面データの送信を行う。そして、受信機21では、路面状態の変化があったときに送られてくる路面データが受信され、受信した路面データに基づいて路面状態の推定が行われるようになっている。 The tire device 100 of the present embodiment transmits data (hereinafter referred to as road surface data) according to the road surface condition on the traveling road surface of the tire 3 from the tire device 1 and receives the road surface data by the receiver 21 Make an estimate of Specifically, the tire side device 1 transmits road surface data when it is determined that the road surface state has changed. Further, the vehicle body side system 2 also determines that there is a change in the road surface state based on the information from the peripheral device 24, and when there is a change in the road surface state, information to that effect (hereinafter referred to as the vehicle body side The information is transmitted to the tire side device 1). That is, the tire-side device 1 transmits road surface data also when the vehicle-side information is transmitted, in addition to the case where it is determined that the road surface state has changed by itself. Then, the receiver 21 receives road surface data sent when there is a change in the road surface condition, and estimates the road surface condition based on the received road surface data.
 また、タイヤ装置100は、受信機21での路面状態の推定結果を報知装置23に伝え、報知装置23より路面状態の推定結果を報知させる。これにより、例えばドライ路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。また、タイヤ装置100は、車両運動制御を行うブレーキECU22などに路面状態を伝えることで、危険を回避するための車両運動制御が行われるようにする。例えば、凍結時には、ドライ路の場合と比較してブレーキ操作量に対して発生させられる制動力が弱められるようにすることで、路面μが低いときに対応した車両運動制御となるようにする。具体的には、タイヤ側装置1および車体側システム2は、以下のように構成されている。 In addition, the tire device 100 transmits the estimation result of the road surface condition in the receiver 21 to the notification device 23, and causes the notification device 23 to notify the estimation result of the road surface condition. This makes it possible to convey the road surface condition to the driver, for example, a dry road, a wet road, or a frozen road, and to warn the driver if the road surface is slippery. In addition, the tire device 100 transmits a road surface state to the brake ECU 22 or the like that performs vehicle motion control so that vehicle motion control for avoiding a danger is performed. For example, at the time of freezing, the braking force generated with respect to the brake operation amount is weakened as compared to the case of the dry road, so that the vehicle motion control corresponding to the time when the road surface μ is low is achieved. Specifically, the tire side device 1 and the vehicle body side system 2 are configured as follows.
 タイヤ側装置1は、各タイヤ3それぞれに配置され、車体側システム2との間において双方向通信が可能とされている。具体的には、タイヤ側装置1は、図2に示すように、加速度取得部10、制御部11およびデータ通信部12を備えた構成とされ、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。 The tire side device 1 is disposed in each of the tires 3 so that bidirectional communication with the vehicle side system 2 is enabled. Specifically, as shown in FIG. 2, the tire side device 1 is configured to include the acceleration acquiring unit 10, the control unit 11 and the data communication unit 12, and as shown in FIG. 3, the tread of the tire 3 31 is provided on the back side.
 加速度取得部10は、タイヤ3に加わる振動を検出するための振動検出部を構成するものである。例えば、加速度取得部10は、加速度センサによって構成される。加速度取得部10が加速度センサとされる場合、加速度取得部10は、例えば、タイヤ3が回転する際にタイヤ側装置1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動に応じた検出信号として、加速度の検出信号を出力する。より詳しくは、加速度取得部10は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧を検出信号として発生させる。例えば、加速度取得部10は、タイヤ3が1回転するよりも短い周期に設定される所定のサンプリング周期ごとに加速度検出を行い、それを検出信号として出力している。 The acceleration acquisition unit 10 constitutes a vibration detection unit for detecting a vibration applied to the tire 3. For example, the acceleration acquisition unit 10 is configured of an acceleration sensor. When the acceleration acquiring unit 10 is an acceleration sensor, for example, the acceleration acquiring unit 10 is a direction in contact with the circular track drawn by the tire-side device 1 when the tire 3 rotates, that is, indicated by an arrow X in FIG. A detection signal of acceleration is output as a detection signal corresponding to the vibration in the tire tangential direction. More specifically, the acceleration acquiring unit 10 generates, as a detection signal, an output voltage in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative. For example, the acceleration acquisition unit 10 performs acceleration detection at a predetermined sampling cycle which is set to a cycle shorter than one rotation of the tire 3 and outputs it as a detection signal.
 制御部11は、第1制御部に相当し、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記した処理を行う部分である。そして、制御部11は、それらの処理を行う機能部として特徴量抽出部11a、特徴量保存部11b、変化判定部11cおよび送信制御部11dを備えた構成とされている。 The control unit 11 corresponds to a first control unit, is constituted by a known microcomputer including a CPU, a ROM, a RAM, an I / O and the like, and performs the above-described processing according to a program stored in the ROM and the like. . The control unit 11 is configured to include a feature quantity extraction unit 11a, a feature quantity storage unit 11b, a change determination unit 11c, and a transmission control unit 11d as functional units that perform those processes.
 特徴量抽出部11aは、加速度取得部10が出力する検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号を処理することで、タイヤ振動の特徴量を抽出する。本実施形態の場合、タイヤ3の加速度(以下、タイヤGという)の検出信号を信号処理することで、タイヤGの特徴量を抽出する。また、特徴量抽出部11aは、送信制御部11dを介して、抽出した特徴量を含むデータを路面データとしてデータ通信部12に伝える。なお、ここでいう特徴量の詳細については後で説明する。 The feature amount extraction unit 11a extracts the feature amount of the tire vibration by processing the detection signal using the detection signal output from the acceleration acquisition unit 10 as a detection signal representing the vibration data in the tire tangential direction. In the case of the present embodiment, the feature amount of the tire G is extracted by performing signal processing on a detection signal of the acceleration of the tire 3 (hereinafter referred to as a tire G). Also, the feature amount extraction unit 11a transmits data including the extracted feature amount to the data communication unit 12 as road surface data via the transmission control unit 11d. The details of the feature quantities referred to here will be described later.
 特徴量保存部11bは、タイヤ3の1回転前に特徴量抽出部11aで抽出された特徴量(以下、前回特徴量という)を保存している。タイヤ3が1回転したことについては後述する手法によって確認できることから、タイヤ3が1回転するごとに、1回転分の特徴量を保存している。なお、タイヤ3の1回転分の特徴量については、タイヤ3が1回転するごとにデータ更新するようにしても良いし、複数回転分をストックしておき、タイヤ3が1回転するごとに最も古いデータを消去するようにしても良い。ただし、タイヤ3内での制御部11の省メモリ化の観点からは、ストックするデータ量を少なくすることが好ましいため、タイヤ3が1回転するごとにデータ更新するのが好ましい。 The feature amount storage unit 11 b stores the feature amount extracted by the feature amount extraction unit 11 a one turn before the tire 3 (hereinafter referred to as the “previous feature amount”). Since the fact that the tire 3 has made one rotation can be confirmed by a method described later, every time the tire 3 makes one rotation, the feature amount for one rotation is stored. The feature amount for one rotation of the tire 3 may be updated every time the tire 3 makes one rotation, or a plurality of rotations may be stocked, and the tire 3 makes one rotation every time the tire 3 makes one rotation. You may delete old data. However, from the viewpoint of saving memory of the control unit 11 in the tire 3, it is preferable to reduce the amount of data to be stored, and therefore, it is preferable to update data each time the tire 3 makes one rotation.
 変化判定部11cは、タイヤ3の今回の回転時に特徴量抽出部11aが抽出した特徴量(以下、今回特徴量という)と、特徴量保存部11bに保存されているタイヤ3の前回特徴量とに基づいて、路面状態の変化の有無を判定する。また、変化判定部11cは、後述するように、車体側システム2の受信機21から車体側情報を受信したか否かに基づいても路面状態の変化の有無を判定している。そして、変化判定部11cは、路面状態の変化があったと判定すると、それを示す制御信号を送信制御部11dに伝える。 The change determination unit 11c is configured to extract the feature quantity extracted by the feature quantity extraction unit 11a during the current rotation of the tire 3 (hereinafter referred to as the present feature quantity) and the previous feature quantity of the tire 3 stored in the feature quantity storage unit 11b. It is determined whether or not there is a change in road surface condition based on. Further, as described later, the change determination unit 11c also determines the presence or absence of the change in the road surface state based on whether or not the vehicle body side information is received from the receiver 21 of the vehicle body side system 2. When the change determination unit 11c determines that there is a change in the road surface state, it transmits a control signal indicating that to the transmission control unit 11d.
 なお、変化判定部11cは、タイヤ側装置1での特徴量に基づく路面状態の変化の有無の判定と、車体側システム2からの車体側情報に基づく路面状態の変化の有無の判定について区別して判定を行っている。以下の説明では、前者の判定を「タイヤ側判定」、後者の判定を「車体側判定」と呼ぶ。 The change determination unit 11 c distinguishes the determination of the presence or absence of the change in the road surface state based on the feature amount in the tire device 1 and the determination of the presence or absence of the change in the road surface state based on the vehicle body side information from the vehicle body side system 2. The decision is being made. In the following description, the former determination is referred to as "tire side determination" and the latter determination is referred to as "vehicle side determination".
 送信制御部11dは、データ通信部12からのデータ送信を制御するものである。送信制御部11dは、変化判定部11cから路面状態の変化が有ったことを示す制御信号が伝えられると、そのときに特徴量抽出部11aで抽出された今回特徴量を含む路面データをデータ通信部12に伝える。このため、本実施形態の場合には、タイヤ側判定の結果もしくは車体側判定の結果のいずれか一方でも、路面状態の変化があったとの判定結果であった場合には、路面データがデータ通信部12に伝えられる。 The transmission control unit 11 d controls data transmission from the data communication unit 12. When the transmission control unit 11d receives a control signal indicating that there is a change in the road surface condition from the change determination unit 11c, it transmits the road surface data including the current feature amount extracted by the feature amount extraction unit 11a at that time. Tell the communication unit 12. For this reason, in the case of the present embodiment, the road surface data indicates data communication if the result of the determination on the road surface state is a change either in the tire side determination result or the vehicle body side determination result. It is transmitted to the part 12.
 データ通信部12は、第1送受信部を構成する部分であり、車体側システム2における受信機21の後述するデータ通信部25との間においてデータ通信を行う。データ通信部12は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。双方向通信の形態については、様々なものを適用することができ、BLE(Bluetooth Low Energyの略)通信を含むブルートゥース通信、wifiなどの無線LAN(Local Area Networkの略)、Sub-GHz通信、ウルトラワイドバンド通信、ZigBeeなどを適用できる。なお、「ブルートゥース」は登録商標である。 The data communication unit 12 constitutes a first transmission / reception unit, and performs data communication with a data communication unit 25 described later of the receiver 21 in the vehicle body side system 2. Although the data communication unit 12 is described here as one configuration, the data communication unit 12 may be configured separately for the transmission unit and the reception unit. Various forms of bi-directional communication can be applied, such as Bluetooth communication including BLE (abbreviation of Bluetooth Low Energy) communication, wireless LAN such as wifi (abbreviation of Local Area Network), Sub-GHz communication, Ultra-wide band communication, ZigBee, etc. can be applied. "Bluetooth" is a registered trademark.
 例えば、データ通信部12は、送信制御部11dから路面データが伝えられると、そのタイミングで今回特徴量を含む路面データの送信を行う。データ通信部12からのデータ送信のタイミングについては、送信制御部11dによって制御されることから、タイヤ3が1回転するごとにデータ送信が行われる訳ではなく、路面状態の変化が有ったときにのみデータ送信が行われるようになっている。 For example, when the road surface data is transmitted from the transmission control unit 11 d, the data communication unit 12 transmits the road surface data including the feature amount at this time. The timing of data transmission from the data communication unit 12 is controlled by the transmission control unit 11 d, so data transmission is not performed every time the tire 3 makes one rotation, and when there is a change in the road surface condition Data transmission is performed only in
 また、データ通信部12は、データ通信部25から車体側情報が伝えられると、それを受信して変化判定部11cに伝える。これにより、変化判定部11cは、伝えられた車体側情報に基づいても、路面状態の変化の有無を判定することが可能となる。 Further, when the vehicle-body-side information is transmitted from the data communication unit 25, the data communication unit 12 receives it and transmits it to the change determination unit 11c. Thus, the change determination unit 11c can determine the presence or absence of the change in the road surface state based on the transmitted vehicle body side information.
 一方、受信機21は、図2に示すように、データ通信部25と制御部26とを有した構成とされている。 On the other hand, as shown in FIG. 2, the receiver 21 is configured to have a data communication unit 25 and a control unit 26.
 データ通信部25は、タイヤ側装置1との間においてデータ通信を行う第2送受信部を構成する部分であり、タイヤ側装置1のデータ通信部12より送信された今回特徴量を含む路面データを受信し、制御部26に伝える役割を果たす。また、周辺装置24の情報に基づいて制御部26から路面状態の変化があったことを示す車体側情報が伝えられると、それを各タイヤ側装置1のデータ通信部12に伝える役割も果たす。データ通信部25は、ここでは1つの構成として記載されているが、送信部と受信部それぞれ別々に構成されたものであっても良い。 The data communication unit 25 is a part that configures a second transmission / reception unit that performs data communication with the tire side device 1, and road surface data including the present feature amount transmitted from the data communication unit 12 of the tire side device 1 It plays a role of receiving and communicating to the control unit 26. Also, when the vehicle-body-side information indicating that there is a change in the road surface state is transmitted from the control unit 26 based on the information of the peripheral device 24, it also plays a role of transmitting it to the data communication unit 12 of each tire-side device 1. Although the data communication unit 25 is described here as one configuration, the data communication unit 25 may be configured separately for the transmission unit and the reception unit.
 制御部26は、第2制御部に相当し、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種処理を行っている。そして、制御部26は、各種処理を行う機能部としてサポートベクタ保存部26aと状態推定部26bおよび変化判定部26cを備えている。 The control unit 26 corresponds to a second control unit, is configured by a well-known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs various processes in accordance with a program stored in the ROM or the like. The control unit 26 includes a support vector storage unit 26a, a state estimation unit 26b, and a change determination unit 26c as functional units that perform various processes.
 サポートベクタ保存部26aは、路面の種類ごとにサポートベクタを記憶して保存している。サポートベクタは、手本となる特徴量のことであり、例えばサポートベクタマシンを用いた学習によって得ている。タイヤ側装置1を備えた車両を実験的に路面の種類別に走行させ、そのときに特徴量抽出部11aで抽出した特徴量を所定のタイヤ回転数分学習し、その中から典型的な特徴量を所定数分抽出したものがサポートベクタとされる。例えば、路面の種類別に、100万回転分の特徴量を学習し、その中から100回転分の典型的な特徴量を抽出したものをサポートベクタとしている。 The support vector storage unit 26a stores and stores support vectors for each type of road surface. The support vector is a feature that serves as an example, and is obtained, for example, by learning using a support vector machine. The vehicle equipped with the tire-side device 1 is run experimentally for each type of road surface, and at that time the feature quantity extracted by the feature quantity extraction unit 11a is learned for a predetermined number of tire rotations, and a typical feature quantity among them What is extracted a predetermined number of times is taken as a support vector. For example, feature amounts for one million rotations are learned for each type of road surface, and typical feature amounts for 100 rotations are extracted therefrom as support vectors.
 状態推定部26bは、データ通信部25が受信したタイヤ側装置1より送られてきた今回特徴量と、サポートベクタ保存部26aに保存された路面の種類別のサポートベクタとを比較することで、路面状態を推定する。例えば、今回特徴量を路面の種類別のサポートベクタと対比して、今回特徴量が最も近いサポートベクタの路面を現在の走行路面と推定している。 The state estimation unit 26 b compares the current feature amount sent from the tire-side device 1 received by the data communication unit 25 with the support vector for each type of road surface stored in the support vector storage unit 26 a, Estimate the road surface condition. For example, the feature amount is compared with the support vector for each type of road surface, and the road surface of the support vector having the closest feature amount this time is estimated to be the current traveling road surface.
 変化判定部26cは、周辺装置24からの情報に基づいて、路面状態の変化があったことを判定し、路面状態の変化があった場合に、その旨を示す車体側情報をデータ通信部25から各タイヤ側装置1のデータ通信部12に送信する。なお、周辺装置24には、後述するように様々なものを用いることができることから、周辺装置24としてどの装置が適用されるかに応じて変化判定部26cで行う処理が異なってくるが、これについては後述する。 The change determination unit 26c determines that there is a change in the road surface condition based on the information from the peripheral device 24, and when there is a change in the road surface condition, the data communication unit 25 indicates the vehicle side information to that effect. To the data communication unit 12 of each tire-side device 1. In addition, since various things can be used for the peripheral device 24 as will be described later, the processing performed by the change determination unit 26 c differs depending on which device is applied as the peripheral device 24. Will be described later.
 また、制御部26は、状態推定部26bにて路面状態を推定すると、推定した路面状態を報知装置23に伝え、必要に応じて報知装置23より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置23を通じて推定された路面状態を常に表示するようにしても良いし、推定された路面状態がウェット路や凍結路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。また、受信機21からブレーキECU22などの車両運動制御を実行するためのECUに対して路面状態を伝えており、伝えられた路面状態に基づいて車両運動制御が実行されるようにしている。 In addition, when the road surface state is estimated by the state estimation unit 26b, the control unit 26 transmits the estimated road surface state to the notification device 23, and notifies the driver of the road surface condition from the notification device 23 as necessary. As a result, the driver can keep in mind the driving corresponding to the road surface condition, and the danger of the vehicle can be avoided. For example, the road surface state estimated through the notification device 23 may be displayed at all times, or the road surface state is determined only when the driving needs to be performed more carefully, such as a wet road or a frozen road. The status may be displayed to warn the driver. Further, the road surface state is transmitted from the receiver 21 to the ECU for executing the vehicle movement control such as the brake ECU 22, and the vehicle movement control is performed based on the transmitted road surface state.
 なお、ブレーキECU22は、様々なブレーキ制御を行う制動制御装置を構成するものである。具体的には、ブレーキECU22は、ブレーキ液圧制御用のアクチュエータを駆動することでホイールシリンダ圧を増減して制動力を制御する。また、ブレーキECU22は、各車輪の制動力を独立して制御することもできる。このブレーキECU22により、受信機21から路面状態が伝えられると、それに基づいて車両運動制御として制動力の制御を行っている。例えば、ブレーキECU22は、伝えられた路面状態が凍結路であることを示していた場合、ドライ路面と比較して、ドライバによるブレーキ操作量に対して発生させる制動力を弱めるようにする。これにより、車輪スリップを抑制でき、車両の危険性を回避することが可能となる。 The brake ECU 22 constitutes a braking control device that performs various brake control. Specifically, the brake ECU 22 controls the braking force by increasing or decreasing the wheel cylinder pressure by driving an actuator for controlling the brake fluid pressure. The brake ECU 22 can also control the braking force of each wheel independently. When the road surface condition is transmitted from the receiver 21 by the brake ECU 22, the braking force is controlled as the vehicle motion control based thereon. For example, the brake ECU 22 weakens the braking force generated with respect to the amount of brake operation by the driver, as compared to a dry road surface, when it is indicated that the road surface state transmitted is a frozen road. Thereby, it is possible to suppress the wheel slip and to avoid the danger of the vehicle.
 また、報知装置23は、例えばメータ表示器などで構成され、ドライバに対して路面状態を報知する際に用いられる。報知装置23をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態が伝えられると、その路面状態が把握できる態様で表示を行うことで、視覚的にドライバに対して路面状態を報知することができる。 Further, the notification device 23 is configured of, for example, a meter indicator, and is used when notifying the driver of the road surface condition. When the notification device 23 is configured by a meter indicator, the driver is disposed at a visible position during driving of the vehicle, for example, installed in an instrument panel of the vehicle. The meter display can notify the driver of the road surface condition visually by performing display in a mode in which the road surface condition can be grasped when the road surface condition is transmitted from the receiver 21.
 なお、報知装置23をブザーや音声案内装置などで構成することもできる。その場合、報知装置23は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態を報知することができる。また、視覚的な報知を行う報知装置23としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置23を構成しても良い。 The notification device 23 can also be configured by a buzzer, a voice guidance device, or the like. In that case, the notification device 23 can aurally notify the driver of the road surface condition by buzzer sound or voice guidance. Moreover, although the meter display was mentioned as the example as the alerting | reporting apparatus 23 which alert | reports visual, you may comprise the alerting | reporting apparatus 23 by the indicator which displays information, such as a head-up display.
 周辺装置24は、車両に備えられる各種機器によって構成され、路面状態に関する情報を取得して変化判定部26cに伝える役割を果たす。車両に備えられる各種機器としては、路面状態に関する情報を取得できるものであればどのような機器であっても良く、例えば車載カメラ、ワイパ装置、ブレーキECU22などが適用され得る。 The peripheral device 24 is configured by various devices provided in the vehicle, and plays a role of acquiring information on the road surface state and transmitting it to the change determination unit 26c. The various devices provided in the vehicle may be any device as long as it can acquire information on the road surface state. For example, an on-vehicle camera, a wiper device, a brake ECU 22 or the like may be applied.
 周辺装置24として車載カメラが適用される場合、車載カメラによって車両の前方の路面の画像データを取得し、その画像データを変化判定部26cに伝える。この場合、変化判定部26cは、車載カメラの画像データを解析し、その解析結果に基づいて路面状態の変化があったことを判定する。また、周辺装置24としてワイパ装置が適用される場合、ワイパ装置の駆動情報を変化判定部26cに伝える。ワイパ装置が駆動される場合は雨天や降雪時である。このため、変化判定部26cは、ワイパ装置の制御部からワイパ駆動が行われたことを示す情報を取得し、それに基づいて路面状態の変化があったことを判定する。また、周辺装置24としてブレーキECU22が適用される場合、ブレーキECU22にて行われる各種制御に用いられる路面状態にかかわる情報を変化判定部26cに伝える。ブレーキECU22ではABS(Antilock Brake Systemの略)やVSC(Vehicle stability controlの略)などの各種制御が行われ、路面摩擦係数の推定や路面状態の推定が行われている。このため、変化判定部26cは、ブレーキECU22から路面状態に関する情報が伝えられると、その情報に基づいて路面状態の変化があったことを判定する。なお、車載カメラで取得した画像データの解析に基づく路面状態の推定や、ブレーキECU22による路面状態の推定については公知となっている手法を適用すればよい。 When an on-vehicle camera is applied as the peripheral device 24, image data of a road surface in front of the vehicle is acquired by the on-vehicle camera, and the image data is transmitted to the change determination unit 26c. In this case, the change determination unit 26c analyzes the image data of the on-vehicle camera, and determines that there is a change in the road surface state based on the analysis result. When a wiper device is applied as the peripheral device 24, drive information of the wiper device is transmitted to the change determination unit 26c. When the wiper device is driven, it is when it is raining or snowing. Therefore, the change determination unit 26c acquires, from the control unit of the wiper apparatus, information indicating that the wiper drive has been performed, and determines that there is a change in the road surface state based on the information. In addition, when the brake ECU 22 is applied as the peripheral device 24, information related to the road surface state used for various controls performed by the brake ECU 22 is transmitted to the change determination unit 26c. The brake ECU 22 performs various controls such as ABS (abbreviation of Antilock Brake System) and VSC (abbreviation of Vehicle stability control), and estimates a road surface friction coefficient and a road surface state. Therefore, when the brake ECU 22 transmits information on the road surface condition, the change determination unit 26c determines that the road surface condition has changed based on the information. A known method may be applied to the estimation of the road surface state based on the analysis of the image data acquired by the on-vehicle camera and the estimation of the road surface state by the brake ECU 22.
 以上のようにして、本実施形態にかかるタイヤ装置100が構成されている。なお、車体側システム2を構成する各部は、例えばCAN(Controller Area Networkの略)通信などによる車内LAN(Local Area Networkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。 
 次に、上記した特徴量抽出部11aで抽出する特徴量や、変化判定部11cによる路面状態の変化の判定の詳細について説明する。
The tire device 100 according to the present embodiment is configured as described above. In addition, each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local Area Network) by CAN (abbreviation of Controller Area Network) communication etc., for example. Therefore, each part can communicate information with each other through the in-vehicle LAN.
Next, the details of the determination of the change of the road surface state by the feature amount extracted by the above-described feature amount extraction unit 11a and the change determination unit 11c will be described.
 まず、特徴量抽出部11aで抽出する特徴量について説明する。ここでいう特徴量とは、加速度取得部10が取得したタイヤ3に加わる振動の特徴を示す量であり、例えば特徴ベクトルとして表される。 First, the feature quantities extracted by the feature quantity extraction unit 11a will be described. The feature amount referred to here is an amount indicating the feature of the vibration applied to the tire 3 acquired by the acceleration acquiring unit 10, and is expressed as, for example, a feature vector.
 タイヤ回転時における加速度取得部10の検出信号の出力電圧波形は、例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地し始めた接地開始時に、加速度取得部10の出力電圧が極大値をとる。以下、この加速度取得部10の出力電圧が極大値をとる接地開始時のピーク値を第1ピーク値という。さらに、図4に示されるように、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地していた状態から接地しなくなる接地終了時に、加速度取得部10の出力電圧が極小値をとる。以下、この加速度取得部10の出力電圧が極小値をとる接地終了時のピーク値を第2ピーク値という。 An output voltage waveform of a detection signal of the acceleration acquisition unit 10 at the time of tire rotation is, for example, a waveform shown in FIG. 4. As shown in this figure, the output voltage of the acceleration acquiring unit 10 has a maximum value at the start of the ground contact when the portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 starts to contact with the rotation of the tire 3. Take. Hereinafter, the peak value at the start of grounding where the output voltage of the acceleration acquiring unit 10 has a maximum value is referred to as a first peak value. Furthermore, as shown in FIG. 4, when the tire 3 is rotated, the acceleration acquisition unit 10 is not in contact with the ground when the portion corresponding to the location where the acceleration acquisition unit 10 is disposed is in contact with the ground. Output voltage has a local minimum value. Hereinafter, the peak value at the end of grounding where the output voltage of the acceleration acquiring unit 10 has a local minimum value is referred to as a second peak value.
 加速度取得部10の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地する際、加速度取得部10の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、加速度取得部10の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴ってトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地面から離れる際には、加速度取得部10の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、加速度取得部10の出力電圧が第2ピーク値をとる。このようにして、加速度取得部10の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。 The peak value of the output voltage of the acceleration acquisition unit 10 at such timing is as follows. That is, when a portion of the tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed on the ground as the tire 3 rotates, the portion of the tire 3 having a substantially cylindrical surface in the vicinity of the acceleration acquiring unit 10 is It is pressed and deformed into a planar shape. By receiving the impact at this time, the output voltage of the acceleration acquiring unit 10 takes a first peak value. In addition, when a portion of the tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed is separated from the ground contact surface as the tire 3 rotates, the tire 3 is released from pressure in the vicinity of the acceleration acquisition unit 10 It returns to approximately cylindrical shape from. By receiving an impact when the shape of the tire 3 returns to the original shape, the output voltage of the acceleration acquiring unit 10 takes a second peak value. In this manner, the output voltage of the acceleration acquiring unit 10 takes the first and second peak values at the start of grounding and at the end of grounding, respectively. Further, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the pressing are opposite, the sign of the output voltage is also the opposite.
 ここで、タイヤトレッド31のうち加速度取得部10の配置箇所と対応する部分が路面に接地した瞬間を「踏み込み領域」、路面から離れる瞬間を「蹴り出し領域」とする。「踏み込み領域」には、第1ピーク値となるタイミングが含まれ、「蹴り出し領域」には、第2ピーク値となるタイミングが含まれる。また、踏み込み領域の前を「踏み込み前領域」、踏み込み領域から蹴り出し領域までの領域、つまりタイヤトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地中の領域を「蹴り出し前領域」、蹴り出し領域後を「蹴り出し後領域」とする。このように、タイヤトレッド31のうち加速度取得部10の配置箇所と対応する部分が接地する期間およびその前後を5つの領域に区画することができる。なお、図4中では、検出信号のうちの「踏み込み前領域」、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」、「蹴り出し後領域」を順に5つの領域R1~R5として示してある。 Here, an instant at which a portion of the tire tread 31 corresponding to the location where the acceleration acquisition unit 10 is disposed contacts the road surface is referred to as a "step-in area", and an instant at which it is separated from the road surface is referred to as a "kick-out area". The “step-in area” includes the timing at which the first peak value is obtained, and the “kick-out area” includes the timing at which the second peak value is obtained. In addition, the area in front of the stepping area is the area before the stepping area, and the area from the stepping area to the kicking area, that is, the portion of the tire tread 31 corresponding to the location where the acceleration acquiring unit 10 is placed "Region after kicking out" is taken as "area after kicking out". As described above, it is possible to divide the period in which the portion of the tire tread 31 corresponding to the arrangement location of the acceleration acquiring unit 10 is in contact with the ground and the region before and after the period. In FIG. 4, five areas R1 to R5 are “pre-step-in area”, “step-in area”, “kick-out front area”, “kick-out area”, and “post-kick out area” in the detection signal in this order. It is shown as.
 路面状態に応じて、区画した各領域でタイヤ3に生じる振動が変動し、加速度取得部10の検出信号が変化することから、各領域での加速度取得部10の検出信号を周波数解析することで、車両の走行路面における路面状態を検出する。例えば、圧雪路のような滑り易い路面状態では蹴り出し時の剪断力が低下するため、蹴り出し領域R4や蹴り出し後領域R5において、1kHz~4kHz帯域から選択される帯域値が小さくなる。このように、路面状態に応じて加速度取得部10の検出信号の各周波数成分が変化することから、検出信号の周波数解析に基づいて路面状態を判定することが可能になる。 The vibration generated in the tire 3 fluctuates in each of the divided areas according to the road surface state, and the detection signal of the acceleration acquiring unit 10 changes, so that the frequency analysis of the detection signal of the acceleration acquiring unit 10 in each area is performed. , Detects the road surface condition on the traveling road surface of the vehicle. For example, in a slippery road surface condition such as a snowy road, the shear force at the time of kicking is reduced, so the band value selected from the 1 kHz to 4 kHz band becomes smaller in the kicking out region R4 and the after kicking out region R5. As described above, since each frequency component of the detection signal of the acceleration acquisition unit 10 changes according to the road surface state, it is possible to determine the road surface state based on the frequency analysis of the detection signal.
 このため、特徴量抽出部11aは、連続した時間軸波形となっているタイヤ3の1回転分の加速度取得部10の検出信号を、図5に示すように所定の時間幅Tの時間窓毎に複数の区画に分割し、各区画で周波数解析を行うことで特徴量を抽出している。具体的には、各区画で周波数解析を行うことで、各周波数帯域でのパワースペクトル値、つまり特定周波数帯域の振動レベルを求め、このパワースペクトル値を特徴量としている。 Therefore, as shown in FIG. 5, the feature quantity extraction unit 11a detects the detection signal of the acceleration acquisition unit 10 for one rotation of the tire 3 that has a continuous time axis waveform for each time window of a predetermined time width T. The feature quantity is extracted by dividing into a plurality of sections and performing frequency analysis in each section. Specifically, the power spectrum value in each frequency band, that is, the vibration level in the specific frequency band is determined by performing frequency analysis in each section, and this power spectrum value is used as the feature amount.
 なお、時間幅Tの時間窓で分割された区画の数は車速に応じて、より詳しくはタイヤ3の回転速度に応じて変動する値である。以下の説明では、タイヤ1回転分の区画数をn(ただし、nは自然数)としている。 In addition, the number of the division divided by the time window of time width T is a value which changes according to the rotational speed of the tire 3 in more detail according to the vehicle speed. In the following description, the number of sections for one tire rotation is n (where n is a natural number).
 例えば、各区画それぞれの検出信号を複数の特定周波数帯域のフィルタ、例えば0~1kHz、1~2kHz、2~3kHz、3~4kHz、4~5kHzの5つのバンドパスフィルタに通して得られたパワースペクトル値を特徴量としている。この特徴量は、特徴ベクトルと呼ばれるもので、ある区画i(ただし、iは1≦i≦nの自然数)の特徴ベクトルXiは、各特定周波数帯域のパワースペクトル値をaikで示すと、これを要素とする行列として、次式のように表される。 For example, the power obtained by passing the detection signal of each section through five band pass filters of a plurality of specific frequency bands, for example, 0 to 1 kHz, 1 to 2 kHz, 2 to 3 kHz, 3 to 4 kHz, or 4 to 5 kHz Spectral values are used as feature quantities. This feature quantity is called a feature vector, and a feature vector Xi of a section i (where i is a natural number of 1 ≦ i ≦ n) is represented by aik when the power spectrum value of each specific frequency band is indicated by aik It is expressed as in the following equation as a matrix having.
Figure JPOXMLDOC01-appb-M000001
 なお、パワースペクトル値aikにおけるkは、特定周波数帯域の数、つまりバンドパスフィルタの数であり、上記のように0~5kHzの帯域を5つに分ける場合、k=1~5となる。そして、全区画1~nの特徴ベクトルX1~Xnを総括して示した行列式Xは、次式となる。
Figure JPOXMLDOC01-appb-M000001
Note that k in the power spectrum value a ik is the number of specific frequency bands, that is, the number of band pass filters, and k = 1 to 5 when the 0 to 5 kHz band is divided into five as described above. Then, the determinant X collectively indicating the feature vectors X1 to Xn of all the sections 1 to n is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
 この行列式Xがタイヤ1回転分の特徴量を表した式となる。特徴量抽出部11aでは、この行列式Xで表される特徴量を加速度取得部10の検出信号を周波数解析することによって抽出している。
Figure JPOXMLDOC01-appb-M000002
This determinant X is an expression representing the feature amount for one rotation of the tire. The feature amount extraction unit 11 a extracts the feature amount represented by the determinant X by performing frequency analysis on the detection signal of the acceleration acquisition unit 10.
 続いて、変化判定部11cによる路面状態の変化の判定について説明する。この判定は、特徴量抽出部11aが抽出した今回特徴量と、特徴量保存部11bに保存された前回特徴量とを用いて類似度を算出することにより行われる。 Subsequently, determination of the change of the road surface state by the change determination unit 11c will be described. This determination is performed by calculating the similarity using the current feature amount extracted by the feature amount extraction unit 11a and the previous feature amount stored in the feature amount storage unit 11b.
 上記したように特徴量を表す行列式Xについて、今回特徴量の行列式をX(r)、前回特徴量の行列式をX(r-1)とし、それぞれの行列式の各要素となるパワースペクトル値aikをa(r)ik,a(r-1)ikで表すとする。その場合、今回特徴量の行列式X(r)と前回特徴量の行列式X(r-1)は、それぞれ次のように表される。 As described above, with regard to the determinant X representing the feature, the determinant of the current feature is X (r), and the determinant of the previous feature is X (r−1), and the power serving as each element of each determinant Let the spectral value a ik be represented by a (r) ik , a (r−1) ik . In that case, the determinant X (r) of the current feature and the determinant X (r−1) of the previous feature are expressed as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 類似度は、2つの行列式で示される特徴量同士の似ている度合いを示しており、類似度が高いほどより似ていることを意味している。本実施形態の場合、変化判定部11cは、カーネル法を用いて類似度を求め、その類似度に基づいて路面状態の変化の判定を行う。ここでは、タイヤ3の今回の回転時の行列式X(r)と1回転前の行列式をX(r-1)の内積、換言すれば特徴空間内において所定の時間幅Tの時間窓毎で分割した区画同士の特徴ベクトルXiが示す座標間の距離を算出し、それを類似度として用いている。
Figure JPOXMLDOC01-appb-M000004
The degree of similarity indicates the degree of similarity between the feature quantities indicated by the two determinants, meaning that the higher the degree of similarity, the more similar. In the case of the present embodiment, the change determination unit 11 c determines the degree of similarity using the kernel method, and determines the change in road surface state based on the degree of similarity. Here, the inner product of the determinant X (r) at the time of the current rotation of the tire 3 and the determinant one rotation before is X (r-1), in other words, for each time window of a predetermined time width T in the feature space The distance between the coordinates indicated by the feature vector Xi of the sections divided by is calculated and used as the similarity.
 例えば、図6に示すように、加速度取得部10の検出信号の時間軸波形について、タイヤ3の今回の回転時の時間軸波形と1回転前のときの時間軸波形それぞれを所定の時間幅Tの時間窓で各区画に分割する。図示例の場合、各時間軸波形を5つの区画に分割しているため、n=5となり、iは、1≦i≦5で表される。ここで、図中に示したように、今回の回転時の各区画の特徴ベクトルXiをXi(r)、1回転前のときの各区画の特徴ベクトルをXi(r-1)とする。その場合、各区画の特徴ベクトルXiが示す座標間の距離Kyzについては、今回の回転時の各区画の特徴ベクトルXi(r)を含む横の升と1回転前のときの各区画の特徴ベクトルXi(r-1)を含む縦の升とが交差する升のように示される。なお、距離Kyzについて、yはXi(r-1)におけるiを書き換えたものであり、zはXi(r)におけるiを書き換えたものである。また、車速については、今回の回転時と1回転前とで大きな変化はないため、基本的には各回転時の区画数は等しくなる。 For example, as shown in FIG. 6, regarding the time axis waveform of the detection signal of the acceleration acquiring unit 10, the time axis waveform at the time of the current rotation of the tire 3 and the time axis waveform at one rotation before are each set to a predetermined time width T Divide into each section with the time window of. In the case of the illustrated example, since each time axis waveform is divided into five sections, n = 5 and i is represented by 1 ≦ i ≦ 5. Here, as shown in the figure, the feature vector Xi of each section during the current rotation is Xi (r), and the feature vector of each section before one rotation is Xi (r-1). In that case, with respect to the distance K yz between the coordinates indicated by the feature vector Xi of each section, the features of each section before one rotation and the lateral ridge including the feature vector Xi (r) of each section at the current rotation It is indicated as a weir that intersects with a vertical weir containing the vector Xi (r-1). Note that y is the one obtained by rewriting i in Xi (r-1), and z is the one obtained by rewriting i in Xi (r) for the distance Kyz . Further, the vehicle speed does not change significantly between the current rotation and one rotation before, so basically the number of sections at each rotation is equal.
 本実施形態の場合、5つの特定周波数帯域に分けて特徴ベクトルXiを取得しているため、時間軸と合わせた6次元空間において各区画の特徴ベクトルXiが表されることとなり、区画同士の特徴ベクトルXiが示す座標間の距離は、6次元空間における座標間の距離となる。ただし、各区画の特徴ベクトルXiが示す座標間の距離については、特徴量同士が似ているほど小さく、似ていないほど大きくなることから、当該距離が小さいほど類似度が高く、距離が大きいほど類似度が低いことを示している。 In the case of this embodiment, since the feature vector Xi is obtained by dividing into five specific frequency bands, the feature vector Xi of each section is represented in a six-dimensional space aligned with the time axis, and the features of the sections The distance between the coordinates indicated by the vector Xi is the distance between the coordinates in the six-dimensional space. However, the distance between coordinates indicated by the feature vector Xi of each section is smaller as the feature quantities are similar and larger as they are not similar, so the smaller the distance is, the higher the similarity is, and the larger the distance is It indicates that the degree of similarity is low.
 例えば、時分割によって区画1~nとされている場合、区画1同士の特徴ベクトルが示す座標間の距離Kyzについては、次式で示される。 For example, when divisions 1 to n are made by time division, the distance K yz between the coordinates indicated by the feature vectors of the divisions 1 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
 このようにして、時分割による区画同士の特徴ベクトルが示す座標間の距離Kyzを全区画について求め、全区画分の距離Kyzの総和Ktotalを演算し、この総和Ktotalが類似度に対応する値として用いている。そして、総和Ktotalを所定の閾値Thと比較し、総和Ktotalが閾値Thよりも大きければ、類似度が低く、路面状態の変化が有ったと判定し、総和Ktotalが閾値Thよりも小さければ、類似度が高く、路面状態の変化は無かったと判定する。
Figure JPOXMLDOC01-appb-M000005
In this manner, the distance K yz between coordinates indicated by the feature vector of the compartment between time-division determined for all sections, and calculates the distance K yz sum K total of all sections fraction, the total sum K total similarity It is used as the corresponding value. Then, the total sum K total is compared with a predetermined threshold Th, and if the total sum K total is larger than the threshold Th, the similarity is low and it is determined that there is a change in road surface condition, and the total sum K total is smaller than the threshold Th For example, it is determined that the degree of similarity is high and there is no change in the road surface state.
 なお、ここでは類似度に対応する値として各区画の特徴ベクトルが示す2つの座標間の距離Kyzの総和Ktotalを用いているが、類似度を示すパラメータとして他のものを用いることもできる。例えば、類似度を示すパラメータとして、総和Ktotalを区画数で割って求めた距離Kyzの平均値である平均距離Kaveを用いることができる。また、特許文献1に示されているように、様々なカーネル関数を用いて類似度を求めることもできる。また、特徴ベクトルのすべてを用いるのではなく、その中から類似度の低いパスを除いて類似度の演算を行うようにしても良い。 Here, although the sum K total of the distance K yz between two coordinates indicated by the feature vector of each section is used as a value corresponding to the degree of similarity, another parameter may be used as a parameter indicating the degree of similarity. . For example, as a parameter indicating the degree of similarity, an average distance K ave which is an average value of the distances K yz obtained by dividing the total sum K total by the number of sections can be used. Also, as shown in Patent Document 1, various kernel functions can be used to determine the degree of similarity. Further, instead of using all of the feature vectors, it is also possible to calculate the similarity by excluding paths with low similarity from them.
 続いて、本実施形態にかかるタイヤ装置100の作動について、図7~図10を参照して説明する。 Subsequently, the operation of the tire device 100 according to the present embodiment will be described with reference to FIGS. 7 to 10.
 まず、車体側システム2では、周辺装置24から取得する路面状態に関する情報に基づき、変化判定部26cにて、図7に示す車体側判定処理を実行している。この処理は、例えば図示しないイグニッションがオンされている期間中、好ましくは車両の走行中に、所定の制御周期毎に実行される。 First, in the vehicle body side system 2, the change determination unit 26c performs the vehicle body side determination process shown in FIG. 7 based on the information on the road surface state acquired from the peripheral device 24. This process is performed, for example, during a predetermined control cycle while the ignition (not shown) is on, preferably while the vehicle is traveling.
 図7に示すように、変化判定部26cは、ステップS100において、周辺装置24から路面状態に関する情報を取得する処理を実行する。例えば、周辺装置24として車載カメラが適用される場合には画像データの取得、ワイパ装置が適用される場合にはワイパ装置が駆動されたことを示す情報、ブレーキECU22が適用される場合には路面摩擦係数もしくは路面状態の情報の取得が行われる。 As shown in FIG. 7, the change determination unit 26 c executes a process of acquiring information on the road surface state from the peripheral device 24 in step S <b> 100. For example, when an on-vehicle camera is applied as the peripheral device 24, acquisition of image data, information indicating that the wiper device is driven when the wiper device is applied, road surface when the brake ECU 22 is applied Information on the coefficient of friction or road surface condition is acquired.
 続いて、ステップS110に進み、車体側判定として、ステップS100で取得した情報に基づき、路面状態の変化があったか否かの判定を行う。その後、ステップS110で肯定判定された場合には、ステップS120に進み、データ通信部25を通じて、各タイヤ側装置1に向けて路面状態の変化があったことを示す車体側情報を送信する。そして、ステップS110で否定判定された場合は車体側情報を送信することなく車体側判定処理を終了し、ステップS120において車体側情報を送信した場合にも、その後、車体側判定処理を終了する。 Subsequently, the process proceeds to step S110, and as the vehicle body side determination, it is determined whether or not there is a change in the road surface state based on the information acquired in step S100. Thereafter, when the determination in step S110 is affirmative, the process proceeds to step S120, and the data communication unit 25 transmits vehicle body side information indicating that there is a change in the road surface state to each tire side device 1. And when a negative determination is carried out by step S110, a vehicle body side determination process is complete | finished, without transmitting vehicle body side information, and when a vehicle body side information is transmitted in step S120, a vehicle body side determination process is complete | finished after that.
 一方、各車輪のタイヤ側装置1では、制御部11にて、図8に示すタイヤ側判定処理および図9に示すデータ送信処理を実行している。この処理は、所定の制御周期ごとに実行される。 On the other hand, in the tire side device 1 of each wheel, the control unit 11 executes the tire side determination process shown in FIG. 8 and the data transmission process shown in FIG. This process is performed every predetermined control cycle.
 まず、図8に示すように、制御部11は、ステップS200において、加速度取得部10の検出信号の入力処理を行う。この処理は、続くステップS210において、タイヤ3が1回転するまでの期間継続される。そして、加速度取得部10の検出信号をタイヤ1回転分入力すると、その後のステップS220に進み、今回特徴量として、入力したタイヤ1回転分の加速度取得部10の検出信号の時間軸波形の特徴量を抽出する。以上のステップS200~S220の処理は、制御部11のうちの特徴量抽出部11aによって行われる。 First, as shown in FIG. 8, the control unit 11 performs an input process of a detection signal of the acceleration acquisition unit 10 in step S200. This process is continued in the subsequent step S210 for a period until the tire 3 makes one revolution. Then, when the detection signal of the acceleration acquisition unit 10 is input for one rotation of the tire, the process proceeds to the subsequent step S220, and the feature value of the time axis waveform of the detection signal of the acceleration acquisition unit 10 for one rotation of the tire input as the current feature value. Extract The processes of steps S200 to S220 described above are performed by the feature amount extraction unit 11a of the control unit 11.
 なお、タイヤ3が1回転したことについては、加速度取得部10の検出信号の時間軸波形に基づいて判定している。すなわち、検出信号は図4に示した時間軸波形を描くことから、検出信号の第1ピーク値や第2ピーク値を確認することでタイヤ3の1回転を把握することができる。 The fact that the tire 3 has made one rotation is determined based on the time axis waveform of the detection signal of the acceleration acquisition unit 10. That is, since the detection signal draws the time axis waveform shown in FIG. 4, one rotation of the tire 3 can be grasped by confirming the first peak value and the second peak value of the detection signal.
 また、路面状態が検出信号の時間軸波形の変化として特に現れるのが、「踏み込み領域」、「蹴り出し前領域」、「蹴り出し領域」を含めたその前後の期間である。このため、この期間中のデータが入力されていれば良く、必ずしもタイヤ1回転中における加速度取得部10の検出信号すべてのデータを入力していなくても良い。例えば、「踏み込み前領域」や「蹴り出し後領域」については、「踏み込み領域」の近傍や「蹴り出し領域」の近傍のデータがあれば良い。このため、加速度取得部10の検出信号のうちの振動レベルが閾値よりも小さくなる領域については、「踏み込み前領域」や「蹴り出し後領域」の中でも路面状態の影響を受け難い期間として、検出信号の入力を行わないようにしても良い。 Further, it is the period before and after that including the “step-in area”, the “before kicking area”, and the “kicking area” that the road surface condition particularly appears as a change of the time axis waveform of the detection signal. Therefore, data in this period may be input, and data of all detection signals of the acceleration acquisition unit 10 during one rotation of the tire may not necessarily be input. For example, with regard to the “area before stepping in” and the “area after kicking out”, data in the vicinity of the “step-in area” or in the vicinity of the “kicking-out area” is sufficient. For this reason, in a region where the vibration level in the detection signal of the acceleration acquiring unit 10 is smaller than the threshold, it is detected as a period less susceptible to the road surface condition among the "pre-step-in region" and the "after kicking region". The signal may not be input.
 また、ステップS220で行う特徴量の抽出については、上述した通りの手法によって行っている。 The extraction of the feature amount performed in step S220 is performed by the method as described above.
 この後、ステップS230に進み、今回特徴量と前回特徴量とに基づいて、上述した手法によって類似度を求め、例えば類似度を閾値Thと比較することで、路面状態の変化が有ったか否かを判定する。この処理は、特徴量抽出部11aで抽出した今回特徴量と、後述するステップS250において特徴量保存部11bに保存された前回特徴量とに基づいて実行される。 Thereafter, the process proceeds to step S230, and the similarity is determined by the above-described method based on the current feature amount and the previous feature amount. For example, the similarity is compared with the threshold Th to determine whether there is a change in the road surface state. Determine if This process is executed based on the current feature amount extracted by the feature amount extraction unit 11a and the previous feature amount stored in the feature amount storage unit 11b in step S250 described later.
 そして、ステップS230で肯定判定されると、ステップS240において路面状態の変化があったことを記憶しておく。なお、これらステップS230、S240の処理は、制御部11のうちの変化判定部11cによって行われる。 When an affirmative determination is made in step S230, the fact that there is a change in the road surface condition is stored in step S240. The process of steps S230 and S240 is performed by the change determination unit 11c of the control unit 11.
 最後に、ステップS250に進み、今回特徴量を前回特徴量として特徴量保存部11bに保存して、処理を終了する。 Finally, the process proceeds to step S250, the current feature amount is stored as the previous feature amount in the feature amount storage unit 11b, and the process is ended.
 また、制御部11は、図9に示すデータ送信処理を実行している。まず、ステップS300では、タイヤ側装置1において路面状態の変化があったと判定されたか否かを判定する。この判定は、上記した図8のステップS240において路面状態の変化があったことが記憶されているか否かに基づいて行われる。ここで肯定判定された場合にはステップS310に進み、否定判定された場合にはステップS320に進む。そして、ステップS310やステップS320では、車体側システム2において路面状態の変化があったと判定されたか否かを判定する。この判定は、上記した図7のステップS120で送信された車体側情報が受信されているか否かに基づいて行われる。 Further, the control unit 11 executes data transmission processing shown in FIG. First, in step S300, it is determined whether or not the tire side device 1 determines that there is a change in the road surface state. This determination is performed based on whether or not the change in the road surface state is stored in step S240 of FIG. 8 described above. If an affirmative determination is made here, the process proceeds to step S310, and if a negative determination is made, the process proceeds to step S320. Then, in step S310 or step S320, it is determined whether or not it is determined in the vehicle body side system 2 that there is a change in the road surface state. This determination is performed based on whether or not the vehicle body side information transmitted in step S120 of FIG. 7 described above is received.
 そして、ステップS310で肯定判定された場合にはステップS330に進み、今回特徴量のデータを含む路面データに「信頼性高」のデータを加えてデータ通信部12に伝える。また、ステップS320で肯定判定された場合にはステップS340に進み、今回特徴量のデータを含む路面データに「信頼性中」のデータを加えてデータ通信部12に伝える。さらに、ステップS310で否定判定された場合にはステップS350に進み、今回特徴量のデータを含む路面データに「信頼性低」のデータを加えてデータ通信部12に伝える。 Then, if an affirmative determination is made in step S310, the process proceeds to step S330, and data of “high reliability” is added to road surface data including data of the feature amount this time, and the data communication unit 12 is notified. If the determination is affirmative in step S320, the process proceeds to step S340, and data of “in reliability” is added to the road surface data including the data of the feature amount this time, and the data communication unit 12 is notified. Furthermore, when the negative determination is made in step S310, the process proceeds to step S350, and data of “reliability is low” is added to the road surface data including the data of the feature amount this time and transmitted to the data communication unit 12.
 ステップS310で肯定判定された場合とは、タイヤ側装置1と車体側システム2の両方で路面状態の変化があったと判定された場合である。このため、この場合には路面状態の変化があったという判定の信頼性が高いと言える。したがって、データ通信部12に送られる路面データに「信頼性高」というデータを含めている。 The case where an affirmative determination is made in step S310 is a case where it is determined that there is a change in the road surface condition in both the tire side device 1 and the vehicle body side system 2. Therefore, in this case, it can be said that the reliability of the determination that there is a change in the road surface condition is high. Therefore, the road surface data sent to the data communication unit 12 includes data “high reliability”.
 また、ステップS320で肯定判定された場合とは、タイヤ側装置1では路面状態の変化があったと判定されなかったものの車体側システム2で路面状態の変化があったと判定された場合である。この場合には、ステップS310で肯定判定された場合ほどではないが、路面状態の変化があったという判定の信頼性が比較的高いと言える。したがって、データ通信部12に送られる路面データに「信頼性中」というデータを含めている。 Further, the case where the determination in step S320 is affirmed is the case where it is determined that the road surface state has been changed in the vehicle body side system 2 although the tire side device 1 has not been determined to have changed the road surface state. In this case, the reliability of the determination that there is a change in the road surface condition is relatively high, although this is not the same as the case where the positive determination is made in step S310. Therefore, the road surface data sent to the data communication unit 12 includes the data “in reliability”.
 さらに、ステップS310で否定判定された場合とは、タイヤ側装置1では路面状態の変化があったと判定されたものの車体側システム2で路面状態の変化があったと判定されなかった場合である。この場合には、路面状態の変化があった可能性があるものの、信頼性が比較的低いと言える。したがって、データ通信部12に送られる路面データに「信頼性低」というデータを含めている。 Furthermore, the case where the negative determination is made in step S310 is a case where it is determined that the road surface state has changed in the tire device 1, but the road surface state has not been determined in the vehicle body side system 2. In this case, although there may be a change in the road surface condition, it can be said that the reliability is relatively low. Therefore, the road surface data sent to the data communication unit 12 includes data of “reliability is low”.
 なお、ここではタイヤ側装置1のみで路面状態の変化があったと判定された場合に「信頼性低」、車体側システム2のみで路面状態の変化があったと判定された場合に「信頼性中」とした。しかしながら、信頼性の高低はシステム仕様などに応じて異なってくるため、両者を比較し、信頼性が高い方を「信頼性中」、信頼性が低い方を「信頼性低」とすれば良い。 Here, when it is determined that there is a change in the road surface condition only with the tire side device 1, "reliability is low", and when it is determined that there is a change in the road surface condition only with the vehicle body side system 2, "under reliability" ". However, since the level of reliability varies depending on the system specifications etc., it is better to compare the two and set the one with high reliability as “in reliability” and the one with low reliability as “low reliability”. .
 このようにして、送信制御部11dから路面データがデータ通信部12に伝えられると、データ通信部12より受信機21に向けて出力される。これにより、受信機21に各タイヤ側装置1からの路面データが受信される。このように、路面状態の変化が有った時にのみデータ通信部12から今回特徴量を含む路面データが送信されるようにしてあり、路面状態の変化が無かったときにはデータ送信が行われないようにしている。このため、通信頻度を低下させることが可能となり、タイヤ3内の制御部11の省電力化を実現することが可能となる。 As described above, when road surface data is transmitted from the transmission control unit 11 d to the data communication unit 12, the data communication unit 12 outputs the data to the receiver 21. Thereby, the road surface data from each tire side device 1 is received by the receiver 21. As described above, road surface data including the feature amount is transmitted from the data communication unit 12 only when there is a change in the road surface state, and data transmission is not performed when there is no change in the road surface state. I have to. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
 さらに、受信機21では、制御部26にて、図10に示す路面状態推定処理を行う。この処理は、所定の制御周期ごとに実行される。 Furthermore, in the receiver 21, the control unit 26 performs the road surface state estimation process shown in FIG. This process is performed every predetermined control cycle.
 まず、ステップS400では、データ受信処理が行われる。この処理は、データ通信部25が路面データを受信したときに、その路面データを制御部26が取り込むことによって行われる。データ通信部25がデータ受信を行っていないときには、制御部26は何も路面データを取り込むことなく本処理を終えることになる。 First, in step S400, data reception processing is performed. This process is performed by the control unit 26 taking in the road surface data when the data communication unit 25 receives the road surface data. When the data communication unit 25 is not receiving data, the control unit 26 ends the process without taking in road surface data.
 この後、ステップS410に進み、データ受信が有ったか否かを判定し、受信していた場合にはステップS420に進み、受信していなければ受信するまでステップS400、S410の処理が繰り返される。 Thereafter, the process proceeds to step S410, and it is determined whether data has been received. If it has been received, the process proceeds to step S420. If it has not been received, the processes of steps S400 and S410 are repeated until it is received.
 そして、ステップS420に進み、路面状態の推定を行う。路面状態の推定については、受信した路面データに含まれる今回特徴量と、サポートベクタ保存部26aに保存された路面の種類別のサポートベクタとを比較することで行う。例えば、今回特徴量を路面の種類別の全サポートベクタとの類似度を求め、最も類似度が高かったサポートベクタの路面を現在の走行路面と推定している。このときの類似度の演算については、図7のステップS230で行った今回特徴量と前回特徴量との類似度の演算と同じ手法を用いれば良い。 Then, in step S420, the road surface state is estimated. The road surface state is estimated by comparing the current feature amount included in the received road surface data with the support vector classified by road surface type stored in the support vector storage unit 26a. For example, the feature amount is obtained as the similarity with all the support vectors for each type of road surface, and the road surface of the support vector having the highest similarity is estimated to be the current traveling road surface. The calculation of the degree of similarity at this time may use the same method as the calculation of the degree of similarity between the current feature amount and the previous feature amount performed in step S230 of FIG.
 また、上記したように、今回特徴量のデータに信頼性の高低を示すデータも付されていることから、信頼性に応じて路面状態の推定手法を変えて行うこともできる。 Further, as described above, since the data indicating the level of reliability is also attached to the data of the feature amount this time, the method of estimating the road surface state can be changed according to the reliability.
 例えば、路面状態の推定に用いる特徴量を示す行列の各要素でも、ドライ路で顕著になる要素や、ウェット路面で顕著になる要素、もしくは、凍結路で顕著になる要素などがある。このため、「信頼性高」の場合には、路面データに含まれた特徴量を示す行列すべての要素を用いて類似度の演算を行うのではなく、その中でも特に路面ごとで顕著になる要素のみを取り出して類似度の演算を行うようにする。また、「信頼性中」の場合には、「信頼性高」の場合と比較して、要素数を増やして類似度の演算を行うようにする。そして、「信頼性低」の場合には、行列式すべての要素を用いて類似度の演算を行うようにする。 For example, each element of the matrix indicating the feature amount used for estimating the road surface condition also includes an element that becomes prominent on a dry road, an element that becomes prominent on a wet road surface, and an element that becomes prominent on a frozen road. For this reason, in the case of “high reliability”, the elements of all the matrices indicating the feature amounts included in the road surface data are not used to calculate the similarity, and among the elements, elements that become particularly prominent for each road surface Let's take out only and calculate the similarity. Further, in the case of “in reliability”, the number of elements is increased and the calculation of the similarity is performed as compared to the case of “in high reliability”. Then, in the case of “reliability is low”, calculation of similarity is performed using all elements of the determinant.
 このように、類似度の演算に用いる要素を信頼性の高低に基づいて変えることで、より要素を絞って類似度の演算を行うことができる。このため、例えば「信頼性高」の場合のように、特に路面ごとで顕著になる要素のみを取り出すことで、より的確に路面状態の推定を行うことも可能となる。例えば、車体側システム2において、路面状態の変化前がドライ路面と推定していた場合において、路面状態が変化したときに、変化後の路面状態がウェット路と凍結路のいずれかであるものの、いずれであるかが明確ではないような場合がある。この場合には、ウェット路で顕著になる要素や凍結路で顕著になる要素を抽出し、それらの要素のみを用いて類似度の演算を行うようにすれば、より明確にウェット路であるか凍結路であるかを推定できる。 As described above, by changing the element used for the calculation of the degree of similarity based on the level of the reliability, the calculation of the degree of similarity can be performed by narrowing down the elements. For this reason, for example, as in the case of “high reliability”, it is also possible to estimate the road surface condition more accurately by taking out only the element that is particularly remarkable for each road surface. For example, in the vehicle body side system 2, when the road surface state is estimated to be dry before the road surface state changes, the road surface state after the change is either a wet road or a frozen road when the road surface state changes. It may not be clear which way it is. In this case, if the elements that become prominent in the wet path and the elements that become prominent in the freezing path are extracted and the similarity degree is calculated using only these elements, it will be a wet path more clearly It can be estimated if it is a freezing path.
 また、このようにすれば、信頼性に応じてより少ないデータ量で路面状態を推定することも可能となる。したがって、各タイヤ側装置1からは、信頼性の高さに応じて路面データとして送るデータ量を変えるようにすることもでき、それにより更にデータ送信に必要な電力を低減できるため、更なる省電力を実現することができる。 Also, in this way, it is possible to estimate the road surface condition with a smaller amount of data according to the reliability. Therefore, the amount of data to be sent as road surface data can be changed from each tire-side device 1 according to the level of reliability, and the power necessary for data transmission can be further reduced, thereby further saving the cost. Power can be realized.
 以上説明したようにして、本実施形態にかかるタイヤ装置100による路面状態の推定が行われる。このような路面状態の推定を行うに際し、タイヤ側装置1からの今回特徴量を含む路面データの送信が路面状態の変化タイミングのみとなるようにしている。具体的には、タイヤ側装置1もしくは車体側システム2にて路面状態の変化があったと判定されたタイミングにのみ、タイヤ側装置1からの路面データの送信が行われるようにしている。このため、通信頻度を低下させることが可能となり、タイヤ3内の制御部11の省電力化を実現することが可能となる。 As described above, the road surface condition is estimated by the tire device 100 according to the present embodiment. When such a road surface state is estimated, transmission of road surface data including the present feature amount from the tire device 1 is performed only at the change timing of the road surface state. Specifically, the road surface data from the tire side device 1 is transmitted only at the timing when the tire side device 1 or the vehicle body side system 2 determines that there is a change in the road surface state. Therefore, the communication frequency can be reduced, and power saving of the control unit 11 in the tire 3 can be realized.
 また、タイヤ装置100は、タイヤ側装置1の制御部11にサポートベクタを保存するためのサポートベクタ保存部を備えないで済むため、タイヤ3内の制御部11の省メモリ化を図ることもできる。 In addition, since the tire device 100 does not have to include the support vector storage unit for storing the support vector in the control unit 11 of the tire side device 1, memory saving of the control unit 11 in the tire 3 can be achieved. .
 さらに、タイヤ側装置1の制御部11による類似度計算のデータ処理については、今回特徴量と前回特徴量とに対してのみ行えば良く、今回特徴量と全サポートベクタとの類似度計算については車体側システム2で行えば良い。このため、更にタイヤ3内の制御部11でのメモリの消費量を抑えることが可能となり、省メモリ化を実現することが可能となる。 Furthermore, the data processing of similarity calculation by the control unit 11 of the tire-side device 1 may be performed only on the current feature amount and the previous feature amount, and on the similarity calculation of the current feature amount and all support vectors. It may be performed by the vehicle body side system 2. For this reason, it is possible to further suppress the consumption of the memory in the control unit 11 in the tire 3, and to realize memory saving.
 よって、タイヤ3内の制御部11の省メモリおよび省電力を実現できるタイヤ側装置1およびそれを含むタイヤ装置100とすることが可能となる。 Therefore, it becomes possible to set it as tire device 100 which can realize memory saving and power saving of control part 11 in tire 3, and tire device 100 containing it.
 また、タイヤ側装置1で路面状態の変化があったと判定された場合のみでなく、車体側システム2で路面状態の変化があったと判定された場合にも、タイヤ側装置1からの路面データの送信が行われるようにしている。このため、タイヤ側装置1で路面状態の変化が把握できなかった場合にも路面データを車体側システム2に伝えることが可能となり、より精度良く路面状態の変化を認識することが可能となる。 Further, not only when the tire side device 1 determines that there is a change in the road surface state, but also when the vehicle body side system 2 determines that there is a change in the road surface state, the road surface data from the tire side device 1 It is supposed to be sent. Therefore, even when the tire side device 1 can not grasp the change of the road surface state, the road surface data can be transmitted to the vehicle body side system 2, and the change of the road surface state can be recognized more accurately.
 さらに、路面データと共に信頼性に関するデータも含めることで、信頼性に応じて路面状態の推定手法を変えて行うこともできる。例えば、信頼性に応じてより少ないデータ量で路面状態を推定することも可能となる。したがって、各タイヤ側装置1からは、信頼性の高さに応じて路面データとして送るデータ量を変えるようにすることもでき、それにより更にデータ送信に必要な電力を低減できるため、更なる省電力を実現することができる。 Furthermore, by including road surface data and data on reliability, it is possible to change the road surface condition estimation method according to the reliability. For example, it is also possible to estimate the road surface condition with a smaller amount of data according to the reliability. Therefore, the amount of data to be sent as road surface data can be changed from each tire-side device 1 according to the level of reliability, and the power necessary for data transmission can be further reduced, thereby further saving the cost. Power can be realized.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して各タイヤ側装置1において路面状態の推定まで行えるようにしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Second Embodiment
The second embodiment will be described. The present embodiment is different from the first embodiment in that it is possible to estimate the road surface condition in each tire side device 1 with respect to the first embodiment, and the other is the same as the first embodiment. Only the part will be described.
 本実施形態では、図11に示すように、第1実施形態で備えていた特徴量保存部11bに代えてサポートベクタ保存部11eを備え、受信機21のサポートベクタ保存部26aを無くしている。また、変化判定部11cにおいて、特徴量抽出部11aで抽出した今回特徴量とサポートベクタ保存部11eに記憶してある全サポートベクタとの間で類似度の演算を行うことで、タイヤ側装置1において路面状態の変化を判定できるようにしている。そして、路面状態の変化があったときに、タイヤ側装置1から路面データとして類似度の演算に基づく路面状態の推定結果を示すデータが送信される。 In the present embodiment, as shown in FIG. 11, a support vector storage unit 11e is provided instead of the feature storage unit 11b provided in the first embodiment, and the support vector storage unit 26a of the receiver 21 is eliminated. In addition, the tire side device 1 can be calculated by the change determination unit 11c calculating the degree of similarity between the current feature value extracted by the feature value extraction unit 11a and all the support vectors stored in the support vector storage unit 11e. In the above, it is possible to determine the change of the road surface condition. Then, when there is a change in the road surface state, data indicating the estimation result of the road surface state based on the calculation of the similarity is transmitted from the tire device 1 as road surface data.
 一方、受信機21では、タイヤ側装置1の送信した路面データを受信し、状態推定部26bより、路面データに示される路面状態をブレーキECU22や報知装置23へ伝える。 On the other hand, in the receiver 21, the road surface data transmitted by the tire side device 1 is received, and the road surface state indicated by the road surface data is transmitted from the state estimation unit 26b to the brake ECU 22 and the notification device 23.
 このように、タイヤ側装置1にサポートベクタ保存部11eを備え、タイヤ側装置1において路面状態の推定を行えるようにすることもできる。この場合であっても、推定結果に基づいて路面状態の変化があったか否かを判定することができる。このため、タイヤ側装置1にて路面状態の変化があった場合や車体側システム2から車体側情報が伝えられたときに、路面状態の推定結果もしくは特徴量を含む路面データの送信が行われるようにすることができる。これにより、タイヤ3内の制御部11の省メモリの効果は得られないものの、省電力を実現できるなど、第1実施形態と同様の効果を得ることができる。 As described above, the tire side device 1 can be provided with the support vector storage unit 11 e so that the tire side device 1 can estimate the road surface state. Even in this case, it can be determined based on the estimation result whether or not there is a change in the road surface state. For this reason, when there is a change in the road surface condition in the tire side device 1 or when the vehicle body side information is transmitted from the vehicle body side system 2, the road surface data including the estimation result or the feature value of the road surface condition is transmitted. You can do so. Thereby, although the effect of the memory saving of the control unit 11 in the tire 3 can not be obtained, the same effect as that of the first embodiment can be obtained such that power saving can be realized.
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1実施形態に対して各タイヤ側装置1では特徴量に基づく路面状態の変化の判定は行わず、車体側システム2から伝えられる車体側情報に基づく路面状態の変化の判定のみ行えるようにしたものである。本実施形態のその他の部分については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
Third Embodiment
A third embodiment will be described. In this embodiment, the tire side device 1 does not determine the change in the road surface state based on the feature amount with respect to the first embodiment, but determines the change in the road surface state based on the vehicle body side information transmitted from the vehicle body side system 2 Can only be done. The other parts of this embodiment are the same as those of the first embodiment, so only the parts different from the first embodiment will be described.
 本実施形態では、図12に示すように、第1実施形態で備えていた特徴量保存部11bを無くしている。また、変化判定部11cにおいて、車体側システム2から送られてきた車体側情報に基づいて路面状態の変化があったことを判定できるようにしている。そして、路面状態の変化があったときに、タイヤ側装置1から特徴量を含む路面データが送信される。 In the present embodiment, as shown in FIG. 12, the feature storage unit 11b provided in the first embodiment is eliminated. Further, the change determination unit 11 c can determine that there is a change in the road surface state based on the vehicle body side information sent from the vehicle body side system 2. Then, when there is a change in the road surface state, road surface data including the feature amount is transmitted from the tire side device 1.
 一方、受信機21は、周辺装置24からの情報に基づいて路面状態の変化があったことを判定すると、車体側情報をタイヤ側装置1に伝える。また、受信機21は、タイヤ側装置1の送信した路面データを受信し、状態推定部26bより、路面データに含まれる特徴量とサポートベクタ保存部26aに保存された路面の種類別のサポートベクタとを比較することで、路面状態を推定する。そして、状態推定部26bから、路面状態の推定結果がブレーキECU22や報知装置23へ伝えられる。 On the other hand, when the receiver 21 determines that there is a change in the road surface state based on the information from the peripheral device 24, the receiver 21 transmits the vehicle body side information to the tire side device 1. Also, the receiver 21 receives the road surface data transmitted by the tire-side device 1, and from the state estimation unit 26b, the feature amount included in the road surface data and the support vector by road surface type stored in the support vector storage portion 26a. The road surface condition is estimated by comparing with. Then, the estimation result of the road surface state is transmitted from the state estimation unit 26 b to the brake ECU 22 and the notification device 23.
 具体的には、まず、車体側システム2において、第1実施形態で説明したように、図7のフローチャートに示す車体側判定処理を実行することで、周辺装置24に基づく路面状態の変化の判定を行う。これに基づいて、路面状態の変化があったことが判定されると、その旨を示す車体側情報の送信が行われる。 Specifically, first, in the vehicle body side system 2, as described in the first embodiment, by performing the vehicle body side determination process shown in the flowchart of FIG. 7, the determination of the change in road surface state based on the peripheral device 24 I do. If it is determined based on this that there has been a change in the road surface state, transmission of vehicle body side information indicating that fact is performed.
 一方、タイヤ側装置1では、図13に示すタイヤ側判定処理を実行する。まず、ステップS500~S520では、図8示すタイヤ側判定処理のステップS200~S220と同様の処理を実行する。そして、ステップS530では、車体側システム2において、路面状態の変化があったことが判定されたか否かを判定する。ここで、車体側システム2より、上記した路面状態の変化があったことが判定された旨を示す車体側情報が伝えられていると肯定判定され、伝えられていないと否定判定される。ここで肯定判定されるとステップS540に進んでステップS520で得た今回特徴量の路面データを送信して処理を終了し、否定判定されるとそのまま処理を終了する。 On the other hand, the tire side device 1 executes the tire side determination process shown in FIG. First, in steps S500 to S520, the same processes as steps S200 to S220 of the tire side determination process shown in FIG. 8 are executed. Then, in step S530, it is determined whether or not it is determined in the vehicle body side system 2 that there is a change in the road surface state. Here, it is positively determined that the vehicle body side information indicating that it is determined that there is a change in the road surface condition described above is transmitted from the vehicle body side system 2, and it is negatively determined that the vehicle body side information is not transmitted. If an affirmative determination is made here, the process proceeds to step S540, the road surface data of the present feature amount obtained in step S520 is transmitted to end the process, and when a negative determination is made, the process ends.
 その後は、タイヤ側装置1において、図10に示した路面状態推定処理を実行することで、タイヤ側装置1より伝えられた路面データに基づく路面状態推定が行われるようにする。 Thereafter, the road surface state estimation process shown in FIG. 10 is performed in the tire side device 1 so that the road surface state estimation based on the road surface data transmitted from the tire side device 1 is performed.
 このように、車体側システム2において路面状態の変化があったことを判定した場合に車体側情報をタイヤ側装置1に伝え、その場合にのみタイヤ側装置1から路面データを送信させるようにするようにしても良い。 As described above, when it is determined that there is a change in the road surface state in the vehicle body side system 2, the vehicle body side information is transmitted to the tire side device 1, and the road surface data is transmitted from the tire side device 1 only in that case. You may do so.
 このような形態とする場合、タイヤ側装置1では路面状態の変化があったことの判定が行えないものの、当該判定を行わなくて済むことから、さらにタイヤ3内の制御部11の省メモリを実現できる。また、車体側システム2が路面データを必要とするときにのみタイヤ側装置1に路面データをリクエストすることができるため、タイヤ側装置1のデータ送信を更に制限できる。したがって、タイヤ側装置1の制御部11の省電力化を実現することが可能となる。 In such a form, although the tire side device 1 can not determine that there is a change in the road surface state, it does not have to perform the determination, so that the memory saving of the control unit 11 in the tire 3 is further reduced. realizable. Further, since the road surface data can be requested to the tire side device 1 only when the vehicle body side system 2 requires the road surface data, data transmission of the tire side device 1 can be further restricted. Therefore, power saving of the control unit 11 of the tire side device 1 can be realized.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
The present disclosure has been described based on the above-described embodiment, but is not limited to the embodiment, and includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
 例えば、特徴量保存部11bでは、タイヤ3の過去の回転時における特徴量として、1回転前の特徴量を保存するようにしたが、必ずしも1回転前の特徴量のみである必要はない。すなわち、特徴量保存部11bにタイヤ3の過去の回転時の特徴量(以下、過去特徴量という)として前回特徴量を保存するのに限らず、複数回転前の特徴量を過去特徴量として保存したり、複数回転分の過去特徴量の平均値を保存したりしても良い。そして、前回特徴量との類似度の計算については、過去特徴量のうちの前回特徴量を用いたり、前回特徴量を含めた過去複数分の平均値を用いたりしても良い。ただし、省メモリの観点からは、できるだけ少ない数の特徴量を保存させるだけにする方が好ましい。 For example, in the feature amount storage unit 11b, the feature amount one rotation before is stored as the feature amount at the time of the past rotation of the tire 3. However, the feature amount storage unit 11b does not necessarily have to be the feature amount one rotation before. That is, the feature amount storage unit 11b stores the feature amounts before multiple rotations as the past feature amounts without being limited to storing the feature amounts of the previous time as the feature amounts of the tire 3 in the past rotation (hereinafter referred to as past feature amounts). Alternatively, the average value of the past feature amounts for a plurality of rotations may be stored. Then, for the calculation of the degree of similarity with the previous feature value, the previous feature value among the past feature values may be used, or an average value of a plurality of past values including the previous feature value may be used. However, from the viewpoint of memory saving, it is preferable to store only as few feature quantities as possible.
 また、上記実施形態では、振動検出部を加速度取得部10によって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって振動検出部を構成することもできる。 In the above embodiment, although the case where the vibration detection unit is configured by the acceleration acquisition unit 10 is illustrated, the vibration detection unit can also be configured by an element that can perform other vibration detection, such as a piezoelectric element.
 また、路面状態の変化があったときに、タイヤ側装置1から今回特徴量を含む路面データを送信するようにしているが、前回特徴量についても路面データに含めるようにしても良い。その場合、車体側システム2において、前回特徴量をサポートベクタと比較することで、変化前の路面状態についても推定できる。したがって、変化前後の路面状態の両方を推定し、より的確に路面状態の変化を認識することが可能となる。 In addition, when there is a change in the road surface state, the road surface data including the feature amount this time is transmitted from the tire device 1. However, the previous feature amount may be included in the road surface data. In that case, in the vehicle body side system 2, the road surface condition before the change can also be estimated by comparing the previous feature quantity with the support vector. Therefore, it is possible to estimate both of the road surface condition before and after the change and to more accurately recognize the change of the road surface condition.
 また、上記実施形態では、車体側システム2に備えられる受信機21の制御部26によって今回特徴量とサポートベクタとの類似度を求め、路面状態の推定を行うようにしている。しかしながら、これも一例を示したに過ぎず、他のECU、例えばブレーキECU22の制御部によって類似度を求めたり、路面状態の推定を行うようにしても良い。 Further, in the above embodiment, the control unit 26 of the receiver 21 provided in the vehicle body side system 2 obtains the similarity between the current feature amount and the support vector to estimate the road surface state. However, this is only an example, and the similarity may be determined or the road surface state may be estimated by another ECU, for example, the control unit of the brake ECU 22.
 また、上記各実施形態では、複数のタイヤ3のそれぞれに対してタイヤ側装置1を備えるようにしたが、少なくとも1つに備えられていればよい。 Moreover, although the tire side apparatus 1 was provided with respect to each of the some tire 3 in said each embodiment, what is necessary is just to be provided in at least one.

Claims (9)

  1.  タイヤ(3)に配置され、路面状態に関するデータである路面データを送信するタイヤ側装置(1)、および、車体側に配置され、前記路面データを受信して前記路面状態を推定する車体側システム(2)を有する路面状態推定装置であって、
     前記タイヤ側装置は、
     前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、前記検出信号に基づいて前記路面データを作成する第1制御部(11)と、前記車体側システムとの間におけるデータ通信を行う第1送受信部(12)と、を有し、
     前記車体側システムは、
     路面状態に関する情報を取得する周辺装置(24)と、前記タイヤ側装置との間におけるデータ通信を行う第2送受信部(25)と、前記周辺装置で取得した前記路面状態に関する情報に基づいて前記路面状態の変化があったことを判定すると前記タイヤ側装置に対して前記路面状態の変化があったことを示す車体側情報を前記第2送受信部より送信させると共に、前記第2送受信部が受信した前記路面データに基づいて路面状態を推定する第2制御部(26)と、を有し、
     さらに、前記第1制御部は、前記検出信号に基づいて路面状態の変化があったことを判定する変化判定部(11c)と、前記変化判定部にて前記路面状態が変化したことが判定されたとき、および、記車体側情報を受信すると、前記第1送受信部より前記路面データの送信を行わせる送信制御部(11d)と、を備えている路面状態推定装置。
    A tire side device (1) arranged in a tire (3) and transmitting road surface data which is data relating to a road surface state, and a vehicle side system arranged in a vehicle side and receiving the road surface data to estimate the road surface state A road surface state estimation device having (2), wherein
    The tire side device is
    A vibration detection unit (10) that outputs a detection signal according to the magnitude of the vibration of the tire; a first control unit (11) that creates the road surface data based on the detection signal; and the vehicle body side system A first transmission / reception unit (12) for performing data communication between the
    The body side system is
    The peripheral device (24) for acquiring information related to the road surface state, the second transmitting / receiving unit (25) performing data communication with the tire side device, and the information based on the information related to the road surface state acquired by the peripheral device When it is determined that there is a change in the road surface state, the second transmitting / receiving unit transmits the vehicle body side information indicating that the road surface state has changed to the tire device, and the second transmitting / receiving unit receives A second control unit (26) for estimating the road surface state based on the road surface data as described above;
    Furthermore, it is determined that the road surface state has changed in the change determination portion (11c) in which the first control portion determines that the road surface state has changed based on the detection signal, and the change determination portion And a transmission control unit (11d) that causes the first transmission / reception unit to transmit the road surface data when vehicle body side information is received.
  2.  前記第1制御部は、前記タイヤの1回転中における前記検出信号の特徴量を抽出すると共に特徴量を含む前記路面データを作成する特徴量抽出部(11a)を備え、
     前記変化判定部は、前記特徴量抽出部で前記タイヤの今回の回転時に抽出された前記特徴量を今回特徴量として、該今回特徴量と前記特徴量保存部に保存された前記過去特徴量とに基づいて、路面状態が変化したことを判定し、
     前記送信制御部は、前記今回特徴量を含む前記路面データを送信する請求項1に記載の路面状態推定装置。
    The first control unit includes a feature extraction unit (11a) that extracts a feature of the detection signal during one rotation of the tire and creates the road surface data including the feature.
    The change determination unit uses the feature amount extracted at the current rotation of the tire by the feature amount extraction unit as the current feature amount, and the current feature amount and the past feature amount stored in the feature amount storage unit. Determine that the road surface condition has changed based on
    The road surface state estimation device according to claim 1, wherein the transmission control unit transmits the road surface data including the current feature amount.
  3.  前記変化判定部は、前記今回特徴量と前記過去特徴量との類似度を演算し、該類似度に基づいて前記路面状態が変化したことを判定する請求項2に記載の路面状態推定装置。 The road surface state estimation device according to claim 2, wherein the change determination unit calculates the degree of similarity between the current feature amount and the past feature amount, and determines that the road surface state has changed based on the degree of similarity.
  4.  前記特徴量保存部は、前記特徴量抽出部で抽出された1回転前の前記特徴量である前回特徴量を前記過去特徴量として保存し、
     前記変化判定部は、前記今回特徴量と前記前回特徴量とに基づいて前記路面状態が変化したことを判定する請求項2または3に記載の路面状態推定装置。
    The feature storage unit stores the previous feature, which is the feature before one rotation extracted by the feature extraction unit, as the past feature.
    The road surface state estimation device according to claim 2 or 3, wherein the change determination unit determines that the road surface state has changed based on the current feature amount and the previous feature amount.
  5.  前記第1制御部は、前記変化判定部にて路面状態の変化があったことが判定された場合と前記車体側情報を受信した場合の両方を満たしているときには、路面状態の変化があったことの信頼性が高いことを示すデータを前記路面データに含め、いずれか一方のみの場合には両方を満たしている場合よりも前記信頼性が低いことを示すデータを前記路面データに含める請求項1ないし4のいずれか1つに記載の路面状態判定装置。 The first control unit changes the road surface condition when both of the case where the change determination unit determines that the road surface condition has changed and the case where the vehicle body side information is received are satisfied. The road surface data includes data indicating that the road surface data is highly reliable, and the road surface data includes data indicating that the reliability is lower in the case of either one than in the case where both are satisfied. The road surface state determination device according to any one of 1 to 4.
  6.  タイヤ(3)に配置され、路面状態に関するデータである路面データを送信するタイヤ側装置(1)、および、車体側に配置され、前記路面データを受信して前記路面状態を推定する車体側システム(2)を有する路面状態推定装置であって、
     前記タイヤ側装置は、
     前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(10)と、前記検出信号に基づいて前記路面データを作成する第1制御部(11)と、前記車体側システムとの間におけるデータ通信を行う第1送受信部(12)と、を有し、
     前記車体側システムは、
     路面状態に関する情報を取得する周辺装置(24)と、前記タイヤ側装置との間におけるデータ通信を行う第2送受信部(25)と、前記周辺装置で取得した前記路面状態に関する情報に基づいて前記路面状態の変化があったことを判定すると前記タイヤ側装置に対して前記路面状態の変化があったことを示す車体側情報を前記第2送受信部より送信させると共に、前記第2送受信部が受信した前記路面データに基づいて路面状態を推定する第2制御部(25)と、を有し、
     前記第1制御部は、前記第1送受信部が前記車体側情報を受信すると、前記第1送受信部より前記路面データを前記車体側システムに送信する路面状態推定装置。
    A tire side device (1) arranged in a tire (3) and transmitting road surface data which is data relating to a road surface state, and a vehicle side system arranged in a vehicle side and receiving the road surface data to estimate the road surface state A road surface state estimation device having (2), wherein
    The tire side device is
    A vibration detection unit (10) that outputs a detection signal according to the magnitude of the vibration of the tire; a first control unit (11) that creates the road surface data based on the detection signal; and the vehicle body side system A first transmission / reception unit (12) for performing data communication between the
    The body side system is
    The peripheral device (24) for acquiring information related to the road surface state, the second transmitting / receiving unit (25) performing data communication with the tire side device, and the information based on the information related to the road surface state acquired by the peripheral device When it is determined that there is a change in the road surface state, the second transmitting / receiving unit transmits the vehicle body side information indicating that the road surface state has changed to the tire device, and the second transmitting / receiving unit receives A second control unit (25) for estimating the road surface state based on the road surface data as described above;
    The road surface state estimation device according to claim 1, wherein the first control unit transmits the road surface data from the first transmission / reception unit to the vehicle body system when the first transmission / reception unit receives the vehicle body-side information.
  7.  前記第1制御部は、前記タイヤの1回転中における前記検出信号の特徴量を抽出すると共に特徴量を含む前記路面データを作成する特徴量抽出部(11a)を備え、
     前記送信制御部は、前記今回特徴量を含む前記路面データを送信する請求項6に記載の路面状態推定装置。
    The first control unit includes a feature extraction unit (11a) that extracts a feature of the detection signal during one rotation of the tire and creates the road surface data including the feature.
    The road surface state estimation device according to claim 6, wherein the transmission control unit transmits the road surface data including the current feature amount.
  8.  前記特徴量抽出部が抽出する前記特徴量は、前記検出信号の時間軸波形の特徴ベクトルにて表される請求項2ないし4および7のいずれか1つに記載の路面状態推定装置。 The road surface state estimation apparatus according to any one of claims 2 to 4, wherein the feature quantity extracted by the feature quantity extraction unit is represented by a feature vector of a time axis waveform of the detection signal.
  9.  前記第2制御部は、前記路面状態の種類ごとに前記特徴量のサポートベクタを保存したサポートベクタ保存部(26a)と、前記路面データに含まれる前記今回特徴量と前記サポートベクタ保存部に保存された前記サポートベクタとに基づいて前記路面状態の推定を行う状態推定部(26b)と、を備えている請求項2ないし4、7および8のいずれか1つに記載の路面状態推定装置。 The second control unit stores a support vector storage unit (26a) storing the support vector of the feature amount for each type of the road surface state, the current feature amount included in the road surface data, and the support vector storage unit The road surface state estimation device according to any one of claims 2 to 4, 7 and 8, further comprising: a state estimation unit (26b) that estimates the road surface state based on the support vector.
PCT/JP2018/040124 2017-10-30 2018-10-29 Road surface state estimation device WO2019088023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/859,524 US11498571B2 (en) 2017-10-30 2020-04-27 Road surface state estimation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-209401 2017-10-30
JP2017209401 2017-10-30
JP2018-108583 2018-06-06
JP2018108583A JP6828716B2 (en) 2017-10-30 2018-06-06 Road surface condition estimation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/859,524 Continuation US11498571B2 (en) 2017-10-30 2020-04-27 Road surface state estimation device

Publications (1)

Publication Number Publication Date
WO2019088023A1 true WO2019088023A1 (en) 2019-05-09

Family

ID=66331886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040124 WO2019088023A1 (en) 2017-10-30 2018-10-29 Road surface state estimation device

Country Status (1)

Country Link
WO (1) WO2019088023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198336B2 (en) 2017-10-30 2021-12-14 Denso Corporation Transmission and receiving arrangement for a tire pressure detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170222A (en) * 2003-12-10 2005-06-30 Toyota Motor Corp Wheel information processing device
JP2007055284A (en) * 2005-08-22 2007-03-08 Bridgestone Corp Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
JP2009056818A (en) * 2007-08-29 2009-03-19 Yokohama Rubber Co Ltd:The Vehicular system for traveling road surface state estimation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170222A (en) * 2003-12-10 2005-06-30 Toyota Motor Corp Wheel information processing device
JP2007055284A (en) * 2005-08-22 2007-03-08 Bridgestone Corp Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
JP2009056818A (en) * 2007-08-29 2009-03-19 Yokohama Rubber Co Ltd:The Vehicular system for traveling road surface state estimation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198336B2 (en) 2017-10-30 2021-12-14 Denso Corporation Transmission and receiving arrangement for a tire pressure detection device

Similar Documents

Publication Publication Date Title
JP2019081530A (en) Road surface state estimation apparatus
JP6777103B2 (en) Road surface condition determination device and tire system including it
CN110603180B (en) Tire side device and tire device comprising same
JP6733707B2 (en) Road surface condition determination device and tire system including the same
WO2019088024A1 (en) Road surface state determination device and tire system including same
WO2019124482A1 (en) Apparatus for determining road surface conditions
WO2019103095A1 (en) Road surface conditions determination device
WO2019131568A1 (en) Road surface condition assessing device
JP6614073B2 (en) Road surface condition estimation device
WO2019074027A1 (en) Road surface condition determining device, and tire system provided with same
JP7047466B2 (en) Road surface condition determination device
CN111615479B (en) Tire system
JP2018009974A (en) Tire-mounted sensor and road surface state estimation device including the same
WO2020004471A1 (en) Road surface state determination device and tire system provided therewith
WO2019103094A1 (en) Road surface conditions determination device
WO2019142870A1 (en) Tire system
WO2021045050A1 (en) Tire side device and road surface state discrimination device containing same
WO2019151415A1 (en) Road surface condition determination device
JP2019089532A (en) Road surface condition determining device
WO2019131567A1 (en) Road surface condition determination device
WO2019088023A1 (en) Road surface state estimation device
WO2018003693A1 (en) Tire mounted sensor and road surface condition estimating device including same
WO2019093437A1 (en) Road surface condition assessing device
JP2019117181A (en) Road surface state discriminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873542

Country of ref document: EP

Kind code of ref document: A1