JP2009056818A - Vehicular system for traveling road surface state estimation - Google Patents

Vehicular system for traveling road surface state estimation Download PDF

Info

Publication number
JP2009056818A
JP2009056818A JP2007223079A JP2007223079A JP2009056818A JP 2009056818 A JP2009056818 A JP 2009056818A JP 2007223079 A JP2007223079 A JP 2007223079A JP 2007223079 A JP2007223079 A JP 2007223079A JP 2009056818 A JP2009056818 A JP 2009056818A
Authority
JP
Japan
Prior art keywords
acceleration
value
road surface
wheel
arithmetic processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007223079A
Other languages
Japanese (ja)
Other versions
JP4952444B2 (en
Inventor
Daisuke Kanari
大輔 金成
Naoshi Miyashita
直士 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007223079A priority Critical patent/JP4952444B2/en
Publication of JP2009056818A publication Critical patent/JP2009056818A/en
Application granted granted Critical
Publication of JP4952444B2 publication Critical patent/JP4952444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a state detection system for a traveling road surface that quickly and accurately detects the state of a traveling road surface during vehicle traveling. <P>SOLUTION: Sensor units 100A, 100B detect x acceleration in a rotational tangential direction and y acceleration in a rotary-shaft direction in an idle wheel and a drive wheel, respectively. At least one of an integrated value, an average value, a variance value, skewness, or a kurtosis within a fixed measurement time of the x, y acceleration, and further, that of r acceleration generated by subjecting the x, y acceleration to vector synthesis are calculated in a main unit 200. An operation value of the calculation result and an operation value as pattern data for each state of a traveling road surface previously stored in a storage part 204 are compared with each other so as to estimate the state of a traveling road surface. Then, the estimation result is outputted to a high-order device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両走行時に車両の駆動輪に発生する加速度と遊動輪に発生する加速度を検出して走行路面の状態を推定する車両走行路面状態推定システムに関するものである。   The present invention relates to a vehicle traveling road surface state estimation system that detects an acceleration generated on a driving wheel of a vehicle and an acceleration generated on an idle wheel during traveling of the vehicle and estimates a state of a traveling road surface.

従来、車両において安全走行を行うために注意しなければならない事項として、車両のタイヤ内空気圧を適度な状態に設定することや、タイヤの摩耗状態に注意を払いタイヤの点検を行うことなどがあげられる。   Conventionally, matters that must be taken into consideration for safe driving in vehicles include setting the vehicle's tire air pressure to an appropriate level, and paying attention to tire wear and checking the tires. It is done.

しかしながら、タイヤの点検を行い、タイヤの状態を良好な状態に保っていても、雨天候時に路面が濡れている場合など、路面とタイヤとの間の摩擦力が低下すると、ブレーキをかけたときにスリップして、思わぬ方向に車両が移動してしまい、事故を引き起こすことがあった。   However, when the tires are inspected and the tires are kept in good condition, the brakes are applied when the frictional force between the road surface and the tire decreases, such as when the road surface is wet during rainy weather. Slip into the car and the vehicle may move in an unexpected direction, causing an accident.

このようなスリップや急発進などによって発生する事故を防止するために、アンチロック・ブレーキ・システム(Anti-Lock Brake System、以下、ABSと称する)、トラクション・コントロール・システム、さらには、これらに加えてYAWセンサを設けたスタビリティー制御システムなどが開発された。   In order to prevent accidents caused by such slips and sudden starts, an anti-lock brake system (hereinafter referred to as ABS), a traction control system, and in addition to these A stability control system equipped with a YAW sensor has been developed.

例えば、ABSは、各タイヤの回転状態を検出し、この検出結果に基づいて各タイヤがロック状態に入るのを防止するように制動力を制御するシステムである。   For example, ABS is a system that detects the rotational state of each tire and controls the braking force so as to prevent each tire from entering a locked state based on the detection result.

タイヤの回転状態として、各タイヤの回転数や、空気圧、歪み等の状態を検出して、この検出結果を制御に用いることが可能である。   As the rotation state of the tire, it is possible to detect the number of rotations of each tire, the state of air pressure, distortion, and the like, and use this detection result for control.

このような制御システムの一例としては、例えば、特開平05-338528号公報に開示される自動車のブレーキ装置(以下、特許文献1と称する)、特開2001-018775号公報に開示されるブレーキ制御装置(以下、特許文献2と称する)、特開2001-182578号公報に開示される車両の制御方法および装置(以下、特許文献3と称する)、特開2002-137721号公報に開示される車両運動制御装置(以下、特許文献4と称する)、特開2002-160616号公報に開示されるブレーキ装置(以下、特許文献5と称する)などが知られている。   Examples of such a control system include, for example, an automobile brake device disclosed in Japanese Patent Laid-Open No. 05-338528 (hereinafter referred to as Patent Document 1), and brake control disclosed in Japanese Patent Laid-Open No. 2001-018775. Device (hereinafter referred to as Patent Document 2), vehicle control method and apparatus disclosed in Japanese Patent Application Laid-Open No. 2001-182578 (hereinafter referred to as Patent Document 3), and vehicle disclosed in Japanese Patent Application Laid-Open No. 2002-137721 A motion control device (hereinafter referred to as Patent Document 4), a brake device disclosed in JP 2002-160616 A (hereinafter referred to as Patent Document 5), and the like are known.

特許文献1には、ブレーキペダルと連結されるバキュームブースタにバキュームタンクから負圧が供給され、このバキュームタンクにバキュームポンプから負圧が供給され、このバキュームポンプがポンプモータにより駆動されることにより、加速度センサ14により自動車の減速加速度が所定値に達した状態が検出されたときにバキュームポンプが作動する用のポンプモータを制御して、急激なブレーキ操作時及びその直後のブレーキ操作時における操作フィーリングの変化を防止するブレーキ装置が開示されている。   In Patent Document 1, negative pressure is supplied from a vacuum tank to a vacuum booster connected to a brake pedal, and negative pressure is supplied from a vacuum pump to the vacuum tank, and the vacuum pump is driven by a pump motor. When the acceleration sensor 14 detects that the deceleration acceleration of the vehicle has reached a predetermined value, the pump motor for operating the vacuum pump is controlled so that the operation fee at the time of a sudden brake operation and the brake operation immediately thereafter is controlled. A brake device for preventing ring changes is disclosed.

特許文献2には、ABS制御を実行する制御手段を備えたブレーキ制御装置において、制御手段に、車両に発生している横方向加速度を推定する横加速度推定手段と、この横加速度推定手段による推定横加速度と、車両挙動検出手段による推定横加速度と、車両挙動検出手段に含まれる横加速度センサが検出する検出横加速度とを比較し、両者の差が所定値未満であれば舵角に見合った正常旋回中と判定し、前記差が所定値以上であれば非正常旋回中と判定する比較判定手段とを設け、前記制御手段をABS制御中に、正常旋回判定時と非正常旋回判定時とで制御を切り替えるようにしたブレーキ制御装置が開示されている。   In Patent Document 2, in a brake control device including a control unit that executes ABS control, a lateral acceleration estimation unit that estimates a lateral acceleration generated in a vehicle and an estimation by the lateral acceleration estimation unit are included in the control unit. The lateral acceleration, the estimated lateral acceleration by the vehicle behavior detecting means, and the detected lateral acceleration detected by the lateral acceleration sensor included in the vehicle behavior detecting means are compared, and if the difference between the two is less than a predetermined value, the steering angle is met. Comparing and determining means for determining that the vehicle is turning normally and determining that the vehicle is turning abnormally if the difference is greater than or equal to a predetermined value is provided. Discloses a brake control device that switches control.

特許文献3には、車両の減速度および/または加速度を調節するための制御信号が対応の設定値により形成される車両の制御方法および装置において、走行路面傾斜により発生する車両加速度または車両減速度を表わす補正係数が形成され、この補正係数が設定値に重ね合わされて、車両の減速度および/または加速度の設定を改善する車両の制御方法および装置が開示されている。   Patent Document 3 discloses a vehicle acceleration method or a vehicle deceleration generated by a traveling road surface inclination in a vehicle control method and apparatus in which a control signal for adjusting a vehicle deceleration and / or acceleration is formed by a corresponding set value. A vehicle control method and apparatus are disclosed that improve the vehicle deceleration and / or acceleration settings by forming a correction factor representative of

特許文献4には、複数の車輪を有する車両の実ヨーイング運動状態量として重心点の横すべり角変化速度β’を取得し、その変化速度β’の絶対値が設定値β0’以上で有れば、ブレーキ液圧ΔPを左右後輪の何れかのブレーキに作用させることにより、変化速度β’の絶対値が大きいほど値が大きいほど値が大きく且つ変化速度β’の絶対値を減少させる向きのヨーイングモーメントを発生させ、このヨーイングモーメント制御中にも、ブレーキ液圧ΔPが作用させられた車輪においてスリップ制御が必要か否かの判定を継続し、スリップ制御が必要になれば、ブレーキ液圧ΔPを抑制することによりスリップ率を適正範囲に保つスリップ制御を行う車両運動制御装置が開示されている。 In Patent Document 4, the lateral slip angle change speed β ′ of the center of gravity is acquired as the actual yawing motion state quantity of the vehicle having a plurality of wheels, and the absolute value of the change speed β ′ is greater than or equal to the set value β 0 ′. For example, by applying the brake fluid pressure ΔP to one of the left and right rear brakes, the larger the value of the change speed β ′, the larger the value and the smaller the value of the change speed β ′. During the yawing moment control, it is determined whether or not the slip control is necessary for the wheel to which the brake fluid pressure ΔP is applied. If the slip control is necessary, the brake fluid pressure A vehicle motion control device that performs slip control that keeps the slip ratio within an appropriate range by suppressing ΔP is disclosed.

特許文献5には、車両前後方向の加速度を検出する加速度センサと、各車輪の車輪速度の検出を行う車輪速度センサと、ブレーキ圧を検出するブレーキ圧センサとのうち、少なくとも2つを備え、少なくとも2つのセンサからのフィードバックによって目標ブレーキ圧を演算し、この演算結果に基づいて、指示電流演算部で指示電流を演算し、その指示電流をブレーキ駆動用アクチュエータに流し、指示電流の大きさに応じた制動力を発生させることにより、外乱が生じたり、1つのセンサが故障したりしても出力異常を抑制することができるブレーキ装置が開示されている。   Patent Document 5 includes at least two of an acceleration sensor that detects acceleration in the vehicle longitudinal direction, a wheel speed sensor that detects wheel speed of each wheel, and a brake pressure sensor that detects brake pressure. The target brake pressure is calculated by feedback from at least two sensors, and based on the calculation result, the command current is calculated by the command current calculation unit, and the command current is supplied to the brake drive actuator to obtain the magnitude of the command current. A brake device is disclosed that can suppress an output abnormality even if a disturbance occurs or one sensor breaks down by generating a corresponding braking force.

さらに、特許第3787608号公報(特許文献6)に開示されるようにABSを利用して車輪がロックしたときの走行路面と車輪との間の摩擦を推定し、この推定した摩擦に基づいてABSの制御パラメータを変更する技術が開示されている。   Further, as disclosed in Japanese Patent No. 3787608 (Patent Document 6), the friction between the traveling road surface and the wheel when the wheel is locked is estimated using the ABS, and the ABS is based on the estimated friction. A technique for changing the control parameter is disclosed.

特許文献6には、車両の車輪と走行路面との間に作用する路面摩擦力Fに応じた路面摩擦力情報と、車両の車輪とブレーキ装置との間に作用するブレーキトルク力Tに応じたブレーキトルク情報とを得ることができる任意数の第1のセンサを有するABS装置であって、第1のセンサからの路面摩擦力情報とブレーキトルク情報との差に応じた差分パラメータMを演算する差分パラメータ演算手段と、差分パラメータ演算手段により演算された差分パラメータMを補正して積分することにより、車輪のロック時に0になるように車輪速度パラメータMωを演算する車輪速度パラメータ演算手段と、車輪速度パラメータ演算手段により演算された車輪速度パラメータMωを用いてブレーキ装置の液圧を制御するブレーキ液圧制御手段とを備えたことを特徴とするABS装置が開示されている。   In Patent Document 6, road surface friction force information corresponding to a road surface friction force F acting between a vehicle wheel and a traveling road surface, and a brake torque force T acting between the vehicle wheel and a brake device are used. An ABS device having an arbitrary number of first sensors capable of obtaining brake torque information, and calculating a difference parameter M corresponding to a difference between road surface friction force information from the first sensor and brake torque information. A difference parameter calculation means, a wheel speed parameter calculation means for calculating the wheel speed parameter Mω to be zero when the wheel is locked by correcting and integrating the difference parameter M calculated by the difference parameter calculation means; Brake hydraulic pressure control means for controlling the hydraulic pressure of the brake device using the wheel speed parameter Mω calculated by the speed parameter calculating means. The ABS apparatus characterized by these is disclosed.

また、特許第3448995号公報(特許文献7)に開示されるように、加速時において走行路面を車輪がスリップしたときの摩擦を推定し、推定した摩擦に基づいてスロットル開度を制御する技術が知られている。   Further, as disclosed in Japanese Patent No. 3448995 (Patent Document 7), there is a technique for estimating the friction when the wheel slips on the road surface during acceleration and controlling the throttle opening based on the estimated friction. Are known.

特許文献7には、エンジンの吸気通路にスロットル弁と直列に配設され、全開位置と所定開度の全閉位置との2段階に切換制御される第2スロットル弁と、車両の駆動輪のスリップ状態を検出するスリップ状態検出手段と、検出されたスリップ状態に応じて第2スロットル弁を全閉位置に制御して車両の駆動力を減少させる第1の駆動力減少制御手段と、車両走行路面の摩擦係数の状態を検出する路面状態検出手段と、第1の駆動力減少制御手段より応答性良く車両の駆動力を減少制御する第2の駆動力減少制御手段と、第1の駆動力減少制御手段の作動を制限する駆動力減少制御制限手段とを備え、摩擦係数の高い路面状態では、駆動力減少制御制限手段により第1の駆動力減少制御手段の作動を制限し、必要な駆動力減少制御を第2の駆動力減少制御手段で賄うことを特徴とする車両の駆動力制御装置が開示されている。   In Patent Document 7, a second throttle valve that is arranged in series with a throttle valve in an intake passage of an engine and is controlled to be switched in two stages of a fully open position and a fully closed position of a predetermined opening degree, and a drive wheel of a vehicle. Slip state detecting means for detecting a slip state; first driving force reduction control means for reducing the driving force of the vehicle by controlling the second throttle valve to a fully closed position in accordance with the detected slip state; Road surface state detecting means for detecting the state of the friction coefficient of the road surface, second driving force reduction control means for controlling the driving force of the vehicle to decrease more responsively than the first driving force reduction control means, and first driving force Driving force reduction control limiting means for limiting the operation of the reduction control means, and when the road surface condition has a high friction coefficient, the driving force reduction control limiting means limits the operation of the first driving force reduction control means, and the necessary drive Force reduction control for the second drive Driving force control apparatus for a vehicle, characterized in that the cover in force reduction control means is disclosed.

また、近年では最新鋭のハイテク技術を駆使した安全装備を搭載する乗用車が増えている。例えばミリ波レーダーや赤外線カメラを用い、前方の車両を検知して自動的に減速・停止して追突を防止する機能や、暗い夜道で歩行者を感知して運転手に警告したり或いは減速・停止する機能などの事故回避技術も実用化され始めた。このような技術を用いることにより、車両の追突事故や路肩を歩く人をはねるといった重大事故の発生を回避できるように努めている。
特開平05-338528号公報 特開2001-018775号公報 特開2001-182578号公報 特開2002-137721号公報 特開2002-160616号公報 特許第3787608号公報 特許第3448995号公報
In recent years, more and more passenger cars are equipped with safety equipment using the latest high-tech technology. For example, a millimeter wave radar or infrared camera is used to detect the vehicle ahead and automatically decelerate and stop to prevent rear-end collisions, or to detect pedestrians on dark night roads or to Accident avoidance technology, such as the ability to stop, has started to be put into practical use. By using such technology, efforts are being made to avoid the occurrence of serious accidents such as rear-end collisions of vehicles and hitting people walking on the shoulders.
Japanese Patent Laid-Open No. 05-338528 JP 2001-018775 A Japanese Patent Laid-Open No. 2001-182578 JP 2002-137721 A Japanese Patent Laid-Open No. 2002-160616 Japanese Patent No. 3787608 Japanese Patent No. 3442995

上記のようなアンチロック・ブレーキ・システムを必要とする理由の一つとしては、車両走行する路面の状態変化が挙げられる。天候や環境によって路面状態が変化することにより、車体の振動や安定性の低下、さらにはブレーキの効き具合の変化やブレーキ操作時の車輪のスリップなどが生ずる。このため、路面状態を迅速且つ的確に検出する技術開発が行われている。   One of the reasons for requiring the anti-lock brake system as described above is a change in the state of the road surface on which the vehicle travels. When the road surface condition changes depending on the weather and the environment, the vibration of the vehicle body and the stability decrease, and further, the change of the braking effect and the slip of the wheel at the time of the brake operation occur. For this reason, technology development for quickly and accurately detecting the road surface state is being performed.

しかしながら、例えば、ABSは開発段階で自動車メーカーが選んだ基準の新車装着用タイヤでパラメータが決定されているが、実用上はタイヤの摩耗、履き替え、乗車人数、天候、路面等の状態によって変化するため、単一のパラメータでは最適な制御を望むことは極めて難しい。   However, for example, ABS has parameters determined by the standard new car tires selected by automakers at the development stage, but in practice it varies depending on conditions such as tire wear, replacement, number of passengers, weather, road surface, etc. Therefore, it is extremely difficult to achieve optimum control with a single parameter.

さらに、ミリ波レーダーや赤外線カメラを用いた検知結果に基づいて車両の制動制御を行い、追突事故等を防止する場合も、タイヤの摩耗、履き替え、乗車人数、天候、路面が乾燥している、濡れている、凍っている等の路面の状態によって、制動を開始してから車両が停止するまでの走行距離が異なるため、適切な制動制御を行うことが難しかった。   In addition, tire wear, change of clothes, number of passengers, weather, and road surface are dry when braking control of vehicles based on detection results using millimeter wave radars and infrared cameras to prevent rear-end collisions, etc. Depending on the condition of the road surface, such as wet or frozen, the distance traveled from the start of braking to the stop of the vehicle varies, making it difficult to perform appropriate braking control.

また、特許文献6,7に開示される技術では、いずれも制御パラメータを変更できるのは走行開始時或いは低速走行時であり、車両走行中、特に高速走行時にパラメータを変更することは極めて困難なことである。   In the technologies disclosed in Patent Documents 6 and 7, the control parameter can be changed at the start of traveling or at low speed traveling, and it is extremely difficult to change the parameter during vehicle traveling, particularly at high speed traveling. That is.

本発明の目的は上記の問題点に鑑み、車両走行時における走行路面状態を迅速且つ的確に検出できる走行路面状態検出システムを提供することである。   In view of the above problems, an object of the present invention is to provide a traveling road surface state detection system that can quickly and accurately detect a traveling road surface state during vehicle travel.

本発明は前記目的を達成するために、車両走行時における走行路面の状態を推定する車両走行路面状態推定システムにおいて、車両の駆動輪に設けられ該駆動輪における所定検出方向の加速度を検出して該加速度値に対応する電気信号を出力する駆動輪加速度センサと、車両の遊動輪に設けられ該遊動輪における前記検出方向の加速度を検出して該加速度値に対応する電気信号を出力する遊動輪加速度センサと、前記駆動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記駆動輪加速度センサによって検出された加速度の一定の測定時間内の頻度分布を求める第1演算処理手段と、前記遊動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記遊動輪加速度センサによって検出された加速度の前記測定時間内の頻度分布を求める第2演算処理手段と、前記第1演算処理手段によって求めた頻度分布と前記第2演算処理手段によって求めた頻度分布の情報を走行路面の状態毎に記憶している記憶手段と、前記第1演算処理手段によって求めた頻度分布と前記第2演算処理手段によって求めた頻度分布と前記記憶手段の記憶情報とを比較して走行路面の状態を推定し、該推定結果の情報を出力する路面状態推定手段とを備えている車両走行路面状態推定システムを提案する。   In order to achieve the above object, the present invention provides a vehicle traveling road surface state estimation system that estimates the state of a traveling road surface during vehicle traveling by detecting acceleration in a predetermined detection direction provided on the driving wheels of the vehicle. A driving wheel acceleration sensor that outputs an electrical signal corresponding to the acceleration value, and an idler wheel that is provided on an idler wheel of a vehicle and detects an acceleration in the detection direction of the idler wheel and outputs an electrical signal corresponding to the acceleration value A first calculation for inputting an acceleration sensor and an electric signal output from the driving wheel acceleration sensor and obtaining a frequency distribution within a certain measurement time of the acceleration detected by the driving wheel acceleration sensor based on the electric signal. An electric signal output from the processing means and the idle wheel acceleration sensor is input, and an additive detected by the idle wheel acceleration sensor based on the electric signal is input. Second calculation processing means for obtaining a frequency distribution within the measurement time, frequency distribution obtained by the first calculation processing means, and information on the frequency distribution obtained by the second calculation processing means for each state of the road surface The stored storage means, the frequency distribution obtained by the first arithmetic processing means, the frequency distribution obtained by the second arithmetic processing means, and the storage information of the storage means are compared to estimate the state of the traveling road surface. A vehicle travel road surface state estimation system including road surface state estimation means for outputting information of the estimation result is proposed.

また、本発明は前記目的を達成するために、車両走行時における走行路面の状態を推定する車両走行路面状態推定システムにおいて、車両の駆動輪に設けられ該駆動輪における所定検出方向の加速度を検出して該加速度値に対応する電気信号を出力する駆動輪加速度センサと、車両の遊動輪に設けられ該遊動輪における前記検出方向の加速度を検出して該加速度値に対応する電気信号を出力する遊動輪加速度センサと、前記駆動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記駆動輪加速度センサによって検出された加速度の一定の測定時間内の積算値又は平均値又は分散値又は歪度又は尖度のうちの少なくとも何れか1つを算出する演算処理を行い演算値を算出する第1演算処理手段と、前記遊動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記遊動輪加速度センサによって検出された加速度に前記演算処理を行い演算値を算出する第2演算処理手段と、前記第1演算処理手段による演算値と前記第2演算処理手段による演算値の情報を走行路面の状態毎に記憶している記憶手段と、前記第1演算処理手段による演算値と前記第2演算処理手段による演算値と前記記憶手段の記憶情報とを比較して走行路面の状態を推定し、該推定結果の情報を出力する路面状態推定手段とを備えている車両走行路面状態推定システムを提案する。   In order to achieve the above object, the present invention provides a vehicle road surface state estimation system for estimating the road surface state during vehicle travel, and detects acceleration in a predetermined detection direction provided on the drive wheel of the vehicle. And a driving wheel acceleration sensor that outputs an electrical signal corresponding to the acceleration value, and an acceleration signal that is provided on the idler wheel of the vehicle and detects the acceleration in the detection direction of the idler wheel, and outputs an electrical signal corresponding to the acceleration value. An idle wheel acceleration sensor and an electric signal output from the driving wheel acceleration sensor are input, and based on the electric signal, an integrated value or an average value within a fixed measurement time of the acceleration detected by the driving wheel acceleration sensor Or a first arithmetic processing means for calculating an arithmetic value by calculating at least one of a variance value, a skewness or a kurtosis, and the idle wheel acceleration sensor. A second arithmetic processing means for inputting an electrical signal output from the sensor, performing the arithmetic processing on the acceleration detected by the idle wheel acceleration sensor based on the electric signal, and calculating an arithmetic value; and the first arithmetic operation Storage means for storing information on the calculation value by the processing means and the calculation value by the second calculation processing means for each state of the road surface, the calculation value by the first calculation processing means and the calculation by the second calculation processing means A vehicle traveling road surface state estimating system is provided that includes a road surface state estimating unit that compares the value and the stored information of the storage unit to estimate the state of the traveling road surface and outputs information of the estimation result.

本発明の車両走行路面状態推定システムによれば、車両走行時における駆動輪に生ずる加速度と遊動輪に生ずる加速度を検出し、これらの加速度の一定測定時間内の積算値又は平均値又は分散値又は歪度又は尖度を求めることによって車両走行時における走行路面状態を迅速且つ的確に推定することができる。   According to the vehicle traveling road surface state estimation system of the present invention, the acceleration generated in the driving wheel and the acceleration generated in the idle wheel during the traveling of the vehicle are detected, and the integrated value, average value, variance value, or By obtaining the skewness or kurtosis, the traveling road surface state during vehicle traveling can be estimated quickly and accurately.

以下に、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

図1は本発明の一実施形態の車両走行路面状態推定システムにおけるセンサユニット100(100A,100B)とメインユニット200の電気系回路を示すブロック図である。   FIG. 1 is a block diagram showing an electric system circuit of a sensor unit 100 (100A, 100B) and a main unit 200 in a vehicle travel road surface state estimation system according to an embodiment of the present invention.

センサユニット100(100A,100B)は、加速度センサ101、アナログ/ディジタル(A/D)変換回路102、演算処理部103、送信機104、送信用アンテナ105、受信機106、受信用アンテナ107から構成されている。一方のセンサユニット100Aは車両の駆動輪に設けられ、他方のセンサユニット100Bは車両の遊動輪に設けられ、それぞれ図2に示すように車輪(タイヤ)の回転接線方向xと回転軸方向yに生ずる加速度を加速度センサ101によって検出できるようにリムに固定されている。尚、図2において、センサユニット100はリム306に固定されており、タイヤ300は、例えば、周知のチューブレスラジアルタイヤであり、本実施形態においてはホイール及びリムを含むものである。タイヤ300は、タイヤ本体305とリム306及びホイール(図示せず)から構成され、タイヤ本体305は周知のキャップトレッド301、アンダートレッド302、ベルト303A,303B、カーカス304等から構成されている。   The sensor unit 100 (100A, 100B) includes an acceleration sensor 101, an analog / digital (A / D) conversion circuit 102, an arithmetic processing unit 103, a transmitter 104, a transmission antenna 105, a receiver 106, and a reception antenna 107. Has been. One sensor unit 100A is provided on the drive wheel of the vehicle, and the other sensor unit 100B is provided on the idler wheel of the vehicle. As shown in FIG. 2, the rotation tangent direction x and the rotation axis direction y of the wheel (tire) are respectively shown. The generated acceleration is fixed to the rim so that the acceleration sensor 101 can detect it. In FIG. 2, the sensor unit 100 is fixed to the rim 306, and the tire 300 is, for example, a well-known tubeless radial tire, and in this embodiment includes a wheel and a rim. The tire 300 includes a tire body 305, a rim 306, and a wheel (not shown). The tire body 305 includes a known cap tread 301, under tread 302, belts 303A and 303B, carcass 304, and the like.

加速度センサ101は、タイヤ300の回転接線方向xに発生する加速度と回転軸方向yに発生する加速度を検出してこれらの加速度の値を表すアナログ電気信号を出力する。   The acceleration sensor 101 detects an acceleration generated in the rotational tangent direction x of the tire 300 and an acceleration generated in the rotational axis direction y, and outputs an analog electric signal representing the value of these accelerations.

A/D変換回路102は、加速度センサ101から出力される回転接線方向xに発生する加速度に対応するアナログ電気信号と回転軸方向yに発生する加速度に対応するアナログ電気信号のそれぞれの値をディジタル値に変換して出力する。   The A / D conversion circuit 102 digitally outputs the analog electrical signal corresponding to the acceleration generated in the rotational tangent direction x and the analog electrical signal corresponding to the acceleration generated in the rotational axis direction y output from the acceleration sensor 101. Convert to value and output.

演算処理部103は、例えば周知のCPUを主体として構成され、アンテナ108及び受信機107から自己に固有の識別情報を指定した送信開始命令を受信してから送信停止命令を受信するまでの間を測定時間として、この測定時間の間のみ、A/D変換回路102から加速度のディジタル値を入力し、このディジタル値を含む所定フォーマットの加速度情報を生成し、この加速度情報を送信機105を介して所定周波数の電波によってアンテナ106から送信する。尚、自己の識別情報は記憶部104に予め記憶されている。   The arithmetic processing unit 103 is composed mainly of a well-known CPU, for example, and it receives a transmission start command designating identification information unique to itself from the antenna 108 and the receiver 107 until a transmission stop command is received. As a measurement time, only during this measurement time, a digital value of acceleration is input from the A / D conversion circuit 102, acceleration information of a predetermined format including this digital value is generated, and this acceleration information is transmitted via the transmitter 105. Transmission is performed from the antenna 106 by radio waves of a predetermined frequency. Note that the self identification information is stored in the storage unit 104 in advance.

尚、ノイズ等の影響を除去するために加速度センサの出力信号をハイパスフィルタやバンドパスフィルタを通してからA/D変換回路102に入力するようにしても良い。   In order to eliminate the influence of noise or the like, the output signal of the acceleration sensor may be input to the A / D conversion circuit 102 after passing through a high-pass filter or a band-pass filter.

メインユニット200は、車両の駆動輪と遊動輪との間の車体に設けられ、イグニッションスイッチを介してバッテリーから供給される電力にて動作し、受信用アンテナ201と、受信機202、演算処理部203、記憶部204、送信機205、送信用アンテナ206から構成されている。   The main unit 200 is provided in a vehicle body between a driving wheel and an idler wheel of the vehicle, and operates with electric power supplied from a battery via an ignition switch, and includes a receiving antenna 201, a receiver 202, and an arithmetic processing unit. 203, a storage unit 204, a transmitter 205, and a transmission antenna 206.

受信機202は、アンテナ201を介してセンサユニット100(100A,100B)から送信された加速度情報を受信し、ディジタルデータとして演算処理部203に出力する。   The receiver 202 receives acceleration information transmitted from the sensor unit 100 (100A, 100B) via the antenna 201, and outputs it to the arithmetic processing unit 203 as digital data.

演算処理部203は、例えば周知のCPUを主体として構成され、後述するように、測定時間内に受信機202から加速度情報を入力し、測定時間終了後の測定休止時間に、その加速度の値に基づいて後述する演算値を算出して、この演算値と記憶部204に記憶されているパターンデータとしての演算値とに基づいて走行路面の状態を推定し、この推定結果を車両制御装置等の上位装置に出力する。   The arithmetic processing unit 203 is configured mainly with a well-known CPU, for example, and inputs acceleration information from the receiver 202 within the measurement time, as described later, and sets the acceleration value during the measurement pause time after the measurement time ends. Based on the calculated value and the calculated value as the pattern data stored in the storage unit 204, the state of the traveling road surface is estimated based on the calculated value based on the calculated value. Output to the host device.

記憶部204は、書き換え可能な不揮発性のメモリや磁気ディスク装置などの所定の記憶媒体を有し、この記憶媒体には、センサユニット100(100A,100B)のそれぞれの識別情報と、予め実験等によって求めた走行路面の状態に対応した複数の演算値がパターンデータとして記憶されている。   The storage unit 204 has a predetermined storage medium such as a rewritable nonvolatile memory or a magnetic disk device. The storage medium includes identification information of each of the sensor units 100 (100A, 100B), an experiment or the like in advance. A plurality of calculated values corresponding to the state of the traveling road surface obtained by the above are stored as pattern data.

走行路面の状態を推定するために前述したようにメインユニット200の記憶部204には予め走行路面の状態毎に、加速度センサ101によって検出されたタイヤ300の回転接線方向xの加速度(以下、x加速度と称する)と回転軸方向yの加速度(以下、y加速度と称する)及びこれらのベクトル合成加速度r(以下、r加速度と称する)のそれぞれの測定時間内の平均値、分散値、歪度、尖度、及びr加速度の積算値が遊動輪と駆動輪のそれぞれに関してデータパターンとして実験によって求められて予め記憶されている。   As described above, the storage unit 204 of the main unit 200 stores, in advance, the acceleration in the rotational tangential direction x of the tire 300 detected by the acceleration sensor 101 for each state of the traveling road surface (hereinafter, x An average value, a variance value, a skewness, and a vector synthesized acceleration r (hereinafter, referred to as r acceleration) within a measurement time, respectively. Accumulated values of kurtosis and r acceleration are obtained by experiments as data patterns for each of the idler wheels and the drive wheels and stored in advance.

例えば、走行路面が乾燥した状態(DRY)、濡れた状態(WET)、及び凍った状態(ICE)のときの、遊動輪と駆動輪それぞれにおけるx加速度の平均値、分散値、歪度、尖度は、図3乃至図6に示す演算値がパターンデータとして記憶部204に記憶されている。   For example, when the traveling road surface is in a dry state (DRY), a wet state (WET), and a frozen state (ICE), the average value, the variance value, the skewness, the peak value of the x acceleration in each of the idler wheel and the drive wheel The calculation values shown in FIGS. 3 to 6 are stored in the storage unit 204 as pattern data.

ここで、測定時間内に検出されたx加速度がn個(nは自然数)存在し、それぞれの値がx1,x2,…xnであるとき、平均値、分散値、歪度、尖度のそれぞれは、次の(1)〜(4)式を用いて求められる。   Here, when there are n x accelerations (n is a natural number) detected within the measurement time and each value is x1, x2,... Xn, each of the average value, the variance value, the skewness, and the kurtosis. Is obtained using the following equations (1) to (4).

Figure 2009056818
尚、本実施形態では、これらの演算値を算出する際に、次の4つの積算値すなわち検出加速度の4乗値の積算値と、検出加速度の3乗値の積算値と、検出加速度の2乗値の積算値と、検出加速度の積算値とを求めることにより、上記の(1)〜(4)式を用いて、平均値、分散値、歪度、尖度を瞬時に算出する。
Figure 2009056818
In the present embodiment, when calculating these calculated values, the following four integrated values, that is, the integrated value of the detected acceleration fourth power, the integrated value of the detected acceleration third power, and the detected acceleration of 2 are calculated. By calculating the integrated value of the multiplier value and the integrated value of the detected acceleration, the average value, variance value, skewness, and kurtosis are instantaneously calculated using the above equations (1) to (4).

Figure 2009056818
また、上記のパターンデータの他に、図7乃至図10に示す走行路面が乾燥した状態(DRY)、濡れた状態(WET)、及び凍った状態(ICE)のときの、遊動輪と駆動輪それぞれにおけるy加速度の平均値、分散値、歪度、尖度の演算値、及び、図11乃至図14に示す走行路面が乾燥した状態(DRY)、濡れた状態(WET)、及び凍った状態(ICE)のときの、遊動輪と駆動輪それぞれにおけるr加速度の平均値、分散値、歪度、尖度の演算値がパターンデータとして記憶部204に記憶されている。
Figure 2009056818
In addition to the above-described pattern data, idle wheels and drive wheels when the road surface shown in FIGS. 7 to 10 is dry (DRY), wet (WET), and frozen (ICE). Calculated values of average value, variance value, skewness, kurtosis of y acceleration and dry road surface (DRY), wet state (WET), and frozen state shown in FIGS. In the case of (ICE), the average value, variance value, skewness, and kurtosis calculated values of r acceleration in each of the idler wheel and the drive wheel are stored in the storage unit 204 as pattern data.

上記のように、走行路面が乾燥した状態(DRY)、濡れた状態(WET)、及び凍った状態(ICE)のときの、遊動輪と駆動輪それぞれにおけるx加速度、y加速度、r加速度の平均値、分散値、歪度、尖度の演算値は、走行路面の状態に応じた特有のパターンを有しているので、車両走行時に実測した検出値から算出した演算値によって走行路面の状態を推定することができる。   As described above, the average of the x acceleration, y acceleration, and r acceleration in each of the idler wheel and the drive wheel when the traveling road surface is dry (DRY), wet (WET), and frozen (ICE). Since the calculated values of variance, variance, skewness, and kurtosis have a specific pattern according to the condition of the road surface, the condition of the road surface is calculated by the calculated value calculated from the detected value measured during vehicle travel. Can be estimated.

このように走行路面の状態によって特有のデータパターンを有する他の例として、図15乃至図26に測定時間内における加速度の出現頻度をスペクトラムで表したものを示す。   As another example having such a specific data pattern depending on the state of the traveling road surface, FIGS. 15 to 26 show the frequency of appearance of acceleration within the measurement time in a spectrum.

図15は走行路面が濡れている状態におけるx加速度とy加速度をベクトル合成したr加速度をxy平面に描いたスペクトラムであり、図16乃至図18はこのときのx加速度とy加速度とr加速度のそれぞれの出現頻度を横軸を加速度の絶対値、縦軸を頻度として表したものである。また、図19は走行路面が積雪状態におけるx加速度とy加速度をベクトル合成したr加速度をxy平面に描いたスペクトラムであり、図20乃至図22はこのときのx加速度とy加速度とr加速度のそれぞれの出現頻度を横軸を加速度の絶対値、縦軸を頻度として表したものである。このように、走行路面が濡れている状態のときと積雪状態のときとでは出現頻度のスペクトラムが全く異なっていることがわかる。   FIG. 15 is a spectrum in which the r acceleration obtained by vector synthesis of the x acceleration and the y acceleration when the road surface is wet is drawn on the xy plane. FIGS. 16 to 18 show the x acceleration, the y acceleration, and the r acceleration at this time. Each frequency of appearance is represented by the absolute value of acceleration on the horizontal axis and the frequency on the vertical axis. FIG. 19 shows a spectrum in which the r acceleration obtained by vector synthesis of the x acceleration and the y acceleration when the road surface is snowy is drawn on the xy plane, and FIGS. 20 to 22 show the x acceleration, y acceleration and r acceleration at this time. Each frequency of appearance is represented by the absolute value of acceleration on the horizontal axis and the frequency on the vertical axis. Thus, it can be seen that the appearance frequency spectrum is completely different between the wet road surface and the snowy state.

また、図23は走行路面が乾燥している状態のときに車両が時速40kmで走行したときの測定時間内における遊動輪のx加速度とy加速度をベクトル合成したr加速度をxy平面に描いた出現頻度のスペクトラムであり、図24は走行路面が乾燥している状態のときに車両が時速40kmで走行したときの測定時間内における駆動輪のx加速度とy加速度をベクトル合成したr加速度をxy平面に描いた出現頻度のスペクトラムであり、図25は走行路面が濡れている状態のときに車両が時速40kmで走行したときの測定時間内における遊動輪のx加速度とy加速度をベクトル合成したr加速度をxy平面に描いた出現頻度のスペクトラムであり、図26は走行路面が濡れている状態のときに車両が時速40kmで走行したときの測定時間内における駆動輪のx加速度とy加速度をベクトル合成したr加速度をxy平面に描いた出現頻度のスペクトラムである。このように、走行路面が乾燥している状態のときと濡れている状態のときとでは出現頻度のスペクトラムが全く異なっていることがわかる。   Also, FIG. 23 shows the appearance of r acceleration obtained by vector synthesis of the x acceleration and y acceleration of the idler wheel in the measurement time when the vehicle travels at a speed of 40 km / h when the road surface is dry on the xy plane. FIG. 24 shows the frequency spectrum, and FIG. 24 shows the r acceleration obtained by vector synthesis of the x acceleration and the y acceleration of the drive wheel within the measurement time when the vehicle travels at a speed of 40 km when the road surface is dry. 25 is a spectrum of the appearance frequency depicted in FIG. 25, and FIG. 25 shows r acceleration obtained by vector synthesis of the x acceleration and y acceleration of the idler wheel within the measurement time when the vehicle travels at a speed of 40 km when the traveling road surface is wet. Is a spectrum of the appearance frequency drawn on the xy plane, and FIG. 26 is a measurement time when the vehicle travels at a speed of 40 km / h when the traveling road surface is wet. The x acceleration and y acceleration of the driving wheels in the inner is a spectrum of frequency of occurrence of r acceleration vector-synthesized depicted in the xy plane. Thus, it can be seen that the appearance frequency spectrum is completely different between when the road surface is dry and when it is wet.

また、図27は、測定時間内に検出したr加速度の絶対値を積算した値を示したグラフであり、時速20km、40km、60km、80kmで走行したときの積算値である。また、図において、Aは走行路面が乾燥しているときの遊動輪におけるr加速度の絶対値を積算した値を表し、Bは走行路面が濡れているときの遊動輪におけるr加速度の絶対値を積算した値を表し、Cは走行路面が乾燥しているときの駆動輪におけるr加速度の絶対値を積算した値を表し、Dは走行路面が濡れているときの駆動輪におけるr加速度の絶対値を積算した値を表している。このように、r加速度絶対値は乾燥状態に比べ、濡れた状態での値は増加し、かつ走行速度が大きいほどその差が顕著であることがわかる。現在の走行速度を読み込み、そのときのr加速度絶対値の積算値を閾値判定することで、路面が濡れているかの判定が可能となる。この実施例の場合、遊動輪のほうが差が顕著であり、遊動輪のみでも判定が可能である。また、走行速度が大きいほど差が顕著であることから、危険度の高い高速走行ほど確実な推定が可能となる。逆に低速では差が小さく判定は難しくなるが、低速走行はもともと危険が少ないので、路面推定が困難であっても問題はない。つまり低速時は路面推定をキャンセルして無線送信回数を減らすことにより、システムの消費電力を低減することが好ましい。   FIG. 27 is a graph showing a value obtained by integrating the absolute values of the r acceleration detected within the measurement time, and is an integrated value when traveling at a speed of 20 km, 40 km, 60 km, and 80 km per hour. In the figure, A represents a value obtained by accumulating absolute values of r acceleration on idle wheels when the road surface is dry, and B represents an absolute value of r acceleration on idle wheels when the road surface is wet. C represents an integrated value, C represents an integrated value of the absolute value of r acceleration on the driving wheel when the road surface is dry, and D represents an absolute value of the r acceleration on the driving wheel when the road surface is wet. Represents the value obtained by integrating. Thus, it can be seen that the absolute value of the r acceleration is greater in the wet state than in the dry state, and the difference is more significant as the traveling speed is increased. It is possible to determine whether the road surface is wet by reading the current traveling speed and determining the integrated value of the absolute value of r acceleration at that time as a threshold value. In the case of this embodiment, the difference is more noticeable with the idle wheel, and the determination can be made with only the idle wheel. In addition, since the difference is more conspicuous as the traveling speed increases, more reliable estimation is possible for high-speed traveling with higher risk. On the other hand, the difference is small and difficult to judge at low speeds, but low-speed traveling is inherently less dangerous, so there is no problem even if it is difficult to estimate the road surface. In other words, at low speeds, it is preferable to reduce power consumption of the system by canceling road surface estimation and reducing the number of times of wireless transmission.

尚、本実施形態においては、図28に示すように、測定時間t1と測定休止時間を交互に設定し、測定時間t1を0.1秒〜10秒の範囲内の時間に、測定休止時間t2を5秒〜5分の範囲内の時間にそれぞれ設定している。   In the present embodiment, as shown in FIG. 28, the measurement time t1 and the measurement pause time are alternately set, and the measurement time t1 is set to a time within the range of 0.1 seconds to 10 seconds. Is set to a time within a range of 5 seconds to 5 minutes.

次に、本実施形態におけるセンサユニットの処理動作を図29に示すフローチャートを参照して説明する。   Next, the processing operation of the sensor unit in this embodiment will be described with reference to the flowchart shown in FIG.

センサユニット100(100A,100B)は、動作を開始するとメインユニット200から自己の識別情報を指定した送信開始命令を受信したか否かを監視し(SA1)、この送信開始命令を受信したときに測定時間が開始されたものとして、所定のサンプリングタイムでx加速度とy加速度を検出して(SA2)、この検出データを自己の識別情報と共にメインユニット200に送信する(SA3)。この後、メインユニット200から自己の識別情報を指定した送信終了命令を受信したか否かを監視し(SA4)、受信しないときは上記SA2,SA3の処理を繰り返し、受信したときは上記SA1の処理に移行する。   When the operation starts, the sensor unit 100 (100A, 100B) monitors whether or not a transmission start command specifying its own identification information is received from the main unit 200 (SA1), and when this transmission start command is received. Assuming that the measurement time has started, x acceleration and y acceleration are detected at a predetermined sampling time (SA2), and this detected data is transmitted to the main unit 200 together with its own identification information (SA3). Thereafter, it is monitored whether or not a transmission end command designating its own identification information is received from the main unit 200 (SA4). If not received, the processes of SA2 and SA3 are repeated. Transition to processing.

上記の処理によってセンサユニット100(100A,100B)は、測定時間のみに加速の検出を行い、その検出データをメインユニット200に送信するので、電池等の消費を必要最小限に抑えることができる。   By the above processing, the sensor unit 100 (100A, 100B) detects acceleration only during the measurement time and transmits the detection data to the main unit 200, so that consumption of the battery or the like can be minimized.

次に、本実施形態におけるメインユニットの路面状態判定処理動作の一例を図30に示すフローチャートを参照して説明する。   Next, an example of the road surface state determination processing operation of the main unit in the present embodiment will be described with reference to the flowchart shown in FIG.

メインユニット200は、動作を開始すると測定時間の計時を開始する(SB1)と同時にセンサユニット100(100A,100B)のそれぞれに対して識別情報を指定した送信開始命令を送信する(SB2)。   When the operation starts, the main unit 200 starts measuring the measurement time (SB1) and simultaneously transmits a transmission start command designating identification information to each of the sensor units 100 (100A, 100B) (SB2).

この後、各センサユニット100(100A,100B)から送信される検出データを受信し、これらの検出データを遊動輪と駆動輪に分けて記憶部204に記憶し(SB3)、測定時間が終了したか否かを判定する(SB4)。この判定の結果、測定時間が終了していないときは上記SB3の処理を繰り返し、終了したときはセンサユニット100(100A,100B)のそれぞれに対して識別情報を指定した送信終了命令を送信する(SB5)。   Thereafter, the detection data transmitted from each sensor unit 100 (100A, 100B) is received, and the detection data is divided into idle wheels and drive wheels and stored in the storage unit 204 (SB3), and the measurement time is finished. Is determined (SB4). As a result of the determination, if the measurement time has not ended, the process of SB3 is repeated, and when it ends, a transmission end command designating identification information is transmitted to each of the sensor units 100 (100A, 100B) ( SB5).

次いで、メインユニット200は、測定休止時間の計時を開始し(SB6)、記憶部204に記憶しておいた検出データをもとに、前述した演算値を算出する(SB7)。さらに、記憶部204に予め記憶してあるパターンデータを読み出して、上記SB7の処理によって算出した演算値と比較し(SB8)、この比較結果から走行路面の状態を推定して(SB9)、この推定結果を上位装置に出力する(SB10)。この後、測定休止時間が終了したか否かを判定して(SB11)、終了したときに上記SB1の処理に移行する。   Next, the main unit 200 starts measuring the measurement pause time (SB6), and calculates the above-described calculation value based on the detection data stored in the storage unit 204 (SB7). Further, the pattern data stored in advance in the storage unit 204 is read out and compared with the calculated value calculated by the process of SB7 (SB8), and the state of the traveling road surface is estimated from the comparison result (SB9). The estimation result is output to the host device (SB10). Thereafter, it is determined whether or not the measurement pause time has ended (SB11). When the measurement pause time has ended, the process proceeds to SB1.

次に、本実施形態におけるメインユニットの路面状態判定処理動作の他の例を図31に示すフローチャートを参照して説明する。尚、ここでは上記処理の一部を変えて行っている閾値判定処理の部分について詳述し、上記と同じ処理に関しては説明を省略する。   Next, another example of the road surface state determination processing operation of the main unit in the present embodiment will be described with reference to the flowchart shown in FIG. Here, a part of the threshold determination process performed by changing a part of the above process will be described in detail, and the description of the same process as above will be omitted.

メインユニット200は、動作を開始すると遊動輪および駆動輪のそれぞれのセンサユニット100A,100Bから検出データを受信し(SC1)、受信したデータに対してフィルタ処理を行ってノイズ成分を取り除いた後に記憶部204に記憶する(SC2)。この後、検出データをもとに前述した演算値を算出する(SC3)。この演算処理では遊動輪と駆動輪のそれぞれのr加速度の平均値或いは積算値を算出する。   When the main unit 200 starts operation, the main unit 200 receives detection data from each of the sensor units 100A and 100B of the idler wheel and the drive wheel (SC1), performs a filtering process on the received data to remove noise components, and stores them. The data is stored in the unit 204 (SC2). Thereafter, the above-described calculation value is calculated based on the detection data (SC3). In this calculation process, an average value or an integrated value of r accelerations of the idle wheel and the drive wheel is calculated.

次に、メインユニット200は、車両走行速度の情報を取得し(SC4)、車両走行速度が25km/hよりも低速であるか否かを判定する(SC5)。この判定の結果、車両走行速度が25km/hよりも低速であるときは、前記SC1の処理に移行する。ここで、車両走行速度が25km/hよりも低速であるときは、路面の違いによる加速度変化が少ないこと、および路面状態の判定を行わなくとも危険性が少ないこと等の理由により、低速での路面状態の判定をキャンセルすることによって無線送信の回数を減らし、消費電力を低減するようにしている。   Next, the main unit 200 acquires vehicle travel speed information (SC4), and determines whether the vehicle travel speed is lower than 25 km / h (SC5). As a result of the determination, when the vehicle traveling speed is lower than 25 km / h, the process proceeds to SC1. Here, when the vehicle traveling speed is lower than 25 km / h, the acceleration change due to the difference in the road surface is small, and the risk is low even if the road surface condition is not judged. By canceling the determination of the road surface state, the number of times of wireless transmission is reduced to reduce power consumption.

また、上記SC5の判定の結果、車両走行速度が25km/h以上であるときは、予め記憶部204に記憶されている遊動輪及び駆動輪のそれぞれについてのr加速度演算値の閾値を読み込み(SC6)、駆動輪の演算値が閾値よりも大きいか否かを判定する(SC7)。この判定の結果、駆動輪のr加速度演算値が閾値以下のときは後述するSC11の処理に移行し、駆動輪のr加速度演算値が閾値よりも大きいときは、遊動輪のr加速度演算値が閾値よりも大きいか否かを判定し(SC8)、遊動輪のr加速度演算値が閾値よりも大きいときは走行路面の状態が濡れている(WET)と推定してこの推定結果を出力した後に上記SC1の処理に移行する(SC9)。また、SC8の判定の結果、遊動輪のr加速度演算値が閾値以下のときは走行路面の状態が凍っている(ICE)と推定してこの推定結果を出力した後に上記SC1の処理に移行する(SC10)。   If the vehicle running speed is 25 km / h or higher as a result of the determination in SC5, the threshold value of the r acceleration calculation value for each of the idler wheel and the drive wheel stored in advance in the storage unit 204 is read (SC6 ), It is determined whether or not the calculated value of the drive wheel is larger than a threshold value (SC7). As a result of the determination, when the r acceleration calculated value of the driving wheel is equal to or smaller than the threshold value, the process proceeds to SC11 described later, and when the r acceleration calculated value of the driving wheel is larger than the threshold value, the r acceleration calculated value of the idle wheel is After determining whether or not it is larger than the threshold value (SC8), and when the r acceleration calculation value of the idler wheel is larger than the threshold value, it is estimated that the traveling road surface is wet (WET), and this estimation result is output. The process proceeds to SC1 (SC9). If the result of SC8 determination is that the r acceleration calculation value of the idle wheel is equal to or less than the threshold value, it is estimated that the traveling road surface is frozen (ICE), and after the output of this estimation result, the process proceeds to SC1. (SC10).

また、上記SC7の判定の結果、駆動輪のr加速度演算値が閾値以下のときは、遊動輪のr加速度演算値が駆動輪のr加速度演算値よりも小さいか否かを判定する(SC11)。この判定の結果、遊動輪のr加速度演算値が駆動輪のr加速度演算値よりも小さいときは、走行路面の状態が凍っている(ICE)と推定してこの推定結果を出力した後に上記SC1の処理に移行する(SC12)。また、上記SC11の判定の結果、遊動輪のr加速度演算値が駆動輪のr加速度演算値以上のときは、走行路面の状態が乾燥しいる(DRY)と推定してこの推定結果を出力した後に上記SC1の処理に移行する(SC13)。   If the result of the SC7 determination is that the r acceleration calculated value of the driving wheel is equal to or less than the threshold value, it is determined whether or not the r acceleration calculated value of the idle wheel is smaller than the r acceleration calculated value of the driving wheel (SC11). . As a result of this determination, when the r acceleration calculation value of the idle wheel is smaller than the r acceleration calculation value of the driving wheel, it is estimated that the traveling road surface is frozen (ICE) and the estimation result is output, and then the above SC1. The process proceeds to (SC12). If the result of the SC11 determination is that the r acceleration calculation value of the idle wheel is equal to or greater than the r acceleration calculation value of the drive wheel, it is estimated that the traveling road surface is dry (DRY) and this estimation result is output. Later, the process proceeds to SC1 (SC13).

尚、この例では、r加速度の平均値或いは積算値を演算値として用いて路面状態を推定したが、これに限定されることなく、尖度や歪度を演算値として用いても同様に路面状態を推定することができることは言うまでもない。   In this example, the road surface state is estimated using the average value or the integrated value of the r acceleration as the calculated value. However, the present invention is not limited to this, and the road surface is similarly applied even if the kurtosis or the skewness is used as the calculated value. It goes without saying that the state can be estimated.

以上説明したように、本実施形態によれば、車両走行時における駆動輪に生ずる加速度と遊動輪に生ずる加速度を検出し、これらの加速度の一定測定時間内の積算値又は平均値又は分散値又は歪度又は尖度を求めることによって車両走行時における走行路面状態を迅速且つ的確に推定することができる。従って、本実施形態の走行路面状態推定ステムの推定結果をアンチロック・ブレーキ・システム等の車両走行制御装置に用いることにより、より安全な走行を実現することが可能になる。   As described above, according to the present embodiment, the acceleration generated in the driving wheel and the acceleration generated in the idle wheel during vehicle travel are detected, and the integrated value, average value, variance value, or By obtaining the skewness or kurtosis, the traveling road surface state during vehicle traveling can be estimated quickly and accurately. Therefore, safer traveling can be realized by using the estimation result of the traveling road surface state estimation system of the present embodiment for a vehicle traveling control device such as an anti-lock brake system.

尚、上記実施形態では、メインユニット200からの命令により測定時間のみにセンサユニット100(100A,100B)からのデータ送信を行うようにしたが、さらに、車両の走行・非走行を判定して、車両走行時で且つ測定時間であるときのみにセンサユニット100(100A,100B)からのデータ送信を行うようにしても良い。   In the above-described embodiment, data transmission from the sensor unit 100 (100A, 100B) is performed only during the measurement time according to a command from the main unit 200. Data transmission from the sensor unit 100 (100A, 100B) may be performed only when the vehicle is running and during the measurement time.

また、センサユニット100(100A,100B)において前述した4つの積算値を算出し他後に、この4つの積算値とデータ個数nを識別情報と共にメインユニット200に送信するようにしても良い。このようにすることによりサンプリングした検出データを個々に送信するよりも送信電力を低減することができ、センサユニット100A,100Bの電力消費量を低減することができ、電池寿命を延ばすことができる。   Further, after the four integrated values described above are calculated in the sensor unit 100 (100A, 100B), the four integrated values and the number of data n may be transmitted to the main unit 200 together with the identification information. By doing so, it is possible to reduce the transmission power compared to transmitting the sampled detection data individually, the power consumption of the sensor units 100A and 100B can be reduced, and the battery life can be extended.

本発明の一実施形態の車両走行路面状態推定システムにおけるセンサユニットとメインユニットの電気系回路を示すブロック図The block diagram which shows the electric system circuit of a sensor unit and a main unit in the vehicle travel road surface state estimation system of one Embodiment of this invention. 本発明の一実施形態におけるセンサユニットの装着例を示す図The figure which shows the example of mounting | wearing of the sensor unit in one Embodiment of this invention. 本発明の一実施形態における路面状態とx加速度平均値の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and x acceleration average value in one Embodiment of this invention 本発明の一実施形態における路面状態とx加速度分散値の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and x acceleration dispersion value in one Embodiment of this invention. 本発明の一実施形態における路面状態とx加速度歪度の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and x acceleration distortion degree in one Embodiment of this invention 本発明の一実施形態における路面状態とx加速度尖度の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and x acceleration kurtosis in one Embodiment of this invention 本発明の一実施形態における路面状態とy加速度平均値の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and y acceleration average value in one Embodiment of this invention 本発明の一実施形態における路面状態とy加速度分散値の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and y acceleration dispersion value in one Embodiment of this invention. 本発明の一実施形態における路面状態とy加速度歪度の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and y acceleration distortion degree in one Embodiment of this invention 本発明の一実施形態における路面状態とy加速度尖度の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and y acceleration kurtosis in one Embodiment of this invention 本発明の一実施形態における路面状態とz加速度平均値の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and z acceleration average value in one Embodiment of this invention. 本発明の一実施形態における路面状態とz加速度分散値の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and z acceleration dispersion value in one Embodiment of this invention. 本発明の一実施形態における路面状態とz加速度歪度の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and z acceleration distortion degree in one Embodiment of this invention. 本発明の一実施形態における路面状態とz加速度尖度の関係の一例を示す図The figure which shows an example of the relationship between the road surface state and z acceleration kurtosis in one Embodiment of this invention 本発明の一実施形態における走行路面が濡れた状態における加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the acceleration appearance frequency spectrum in the state where the driving | running | working road surface became wet in one Embodiment of this invention. 本発明の一実施形態における走行路面が濡れた状態におけるx加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the x acceleration appearance frequency spectrum in the state where the driving | running | working road surface became wet in one Embodiment of this invention. 本発明の一実施形態における走行路面が濡れた状態におけるy加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the y acceleration appearance frequency spectrum in the state in which the driving | running | working road surface was wet in one Embodiment of this invention. 本発明の一実施形態における走行路面が濡れた状態におけるr加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the r acceleration appearance frequency spectrum in the state in which the driving | running | working road surface became wet in one Embodiment of this invention. 本発明の一実施形態における走行路面が積雪状態における加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the acceleration appearance frequency spectrum in the snow-covered road surface in one Embodiment of this invention 本発明の一実施形態における走行路面が積雪状態におけるx加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the x acceleration appearance frequency spectrum in case the driving | running road surface in one embodiment of this invention is a snowy state. 本発明の一実施形態における走行路面が積雪状態におけるy加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the y acceleration appearance frequency spectrum when the driving | running road surface in one Embodiment of this invention is a snowy state. 本発明の一実施形態における走行路面が積雪状態におけるr加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of r acceleration appearance frequency spectrum in case the driving | running road surface in one Embodiment of this invention is a snowy state. 本発明の一実施形態における走行路面が乾燥状態における遊動輪の加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the acceleration appearance frequency spectrum of the idler wheel in the dry state in the driving | running | working road surface in one Embodiment of this invention. 本発明の一実施形態における走行路面が乾燥状態における駆動輪の加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the acceleration appearance frequency spectrum of a driving wheel in the driving | running | working road surface in a dry state in one Embodiment of this invention. 本発明の一実施形態における走行路面が濡れた状態における遊動輪の加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the acceleration appearance frequency spectrum of the idler wheel in the state where the driving | running | working road surface became wet in one Embodiment of this invention. 本発明の一実施形態における走行路面が濡れた状態における駆動輪の加速度出現頻度スペクトラムの一例を示す図The figure which shows an example of the acceleration appearance frequency spectrum of a driving wheel in the state where the driving | running | working road surface became wet in one Embodiment of this invention. 本発明の一実施形態における走行路面状態と駆動輪及び駆動輪のr加速度積算値との関係の一例を示す図The figure which shows an example of the relationship between the driving | running | working road surface state in one Embodiment of this invention, and the r acceleration integrated value of a driving wheel and a driving wheel. 本発明の一実施形態における測定時間と測定休止時間との関係を示す図The figure which shows the relationship between the measurement time in one Embodiment of this invention, and measurement rest time 本発明の一実施形態におけるセンサユニットの処理動作を説明するフローチャートThe flowchart explaining the processing operation of the sensor unit in one Embodiment of this invention. 本発明の一実施形態におけるメインユニットの路面状態判定処理動作の一例を説明するフローチャートThe flowchart explaining an example of the road surface state determination processing operation | movement of the main unit in one Embodiment of this invention. 本発明の一実施形態におけるメインユニットの路面状態判定処理動作の他の例を説明するフローチャートThe flowchart explaining the other example of the road surface state determination processing operation of the main unit in one Embodiment of this invention.

符号の説明Explanation of symbols

100,100A,100B…センサユニット、101…加速度センサ、102…アナログ/ディジタル(A/D)変換回路、103…演算処理部、104…送信機、105…送信用アンテナ、106…受信機、107…受信用アンテナ、200…メインユニット、201…受信用アンテナ、202…受信機、203…演算処理部、204…記憶部、205…送信機、206…送信用アンテナ。   100, 100A, 100B ... sensor unit, 101 ... acceleration sensor, 102 ... analog / digital (A / D) conversion circuit, 103 ... arithmetic processing unit, 104 ... transmitter, 105 ... transmitting antenna, 106 ... receiver, 107 ... Reception antenna, 200 ... main unit, 201 ... reception antenna, 202 ... receiver, 203 ... arithmetic processing unit, 204 ... storage unit, 205 ... transmitter, 206 ... transmission antenna.

Claims (5)

車両走行時における走行路面の状態を推定する車両走行路面状態推定システムにおいて、
車両の駆動輪に設けられ該駆動輪における所定検出方向の加速度を検出して該加速度値に対応する電気信号を出力する駆動輪加速度センサと、
車両の遊動輪に設けられ該遊動輪における前記検出方向の加速度を検出して該加速度値に対応する電気信号を出力する遊動輪加速度センサと、
前記駆動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記駆動輪加速度センサによって検出された加速度の一定の測定時間内の頻度分布を求める第1演算処理手段と、
前記遊動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記遊動輪加速度センサによって検出された加速度の前記測定時間内の頻度分布を求める第2演算処理手段と、
前記第1演算処理手段によって求めた頻度分布と前記第2演算処理手段によって求めた頻度分布の情報を走行路面の状態毎に記憶している記憶手段と、
前記第1演算処理手段によって求めた頻度分布と前記第2演算処理手段によって求めた頻度分布と前記記憶手段の記憶情報とを比較して走行路面の状態を推定し、該推定結果の情報を出力する路面状態推定手段とを備えている
ことを特徴とする車両走行路面状態推定システム。
In a vehicle travel road surface state estimation system that estimates the state of the travel road surface during vehicle travel,
A driving wheel acceleration sensor that is provided on a driving wheel of a vehicle and detects an acceleration in a predetermined detection direction in the driving wheel and outputs an electric signal corresponding to the acceleration value;
An idle wheel acceleration sensor that is provided on an idler wheel of a vehicle and detects an acceleration in the detection direction of the idler wheel and outputs an electrical signal corresponding to the acceleration value;
A first arithmetic processing means for inputting an electrical signal output from the driving wheel acceleration sensor and obtaining a frequency distribution within a predetermined measurement time of the acceleration detected by the driving wheel acceleration sensor based on the electrical signal;
Second arithmetic processing means for inputting an electrical signal output from the idle wheel acceleration sensor and obtaining a frequency distribution of the acceleration detected by the idle wheel acceleration sensor within the measurement time based on the electrical signal;
Storage means for storing the frequency distribution obtained by the first arithmetic processing means and the frequency distribution information obtained by the second arithmetic processing means for each state of the traveling road surface;
The frequency distribution obtained by the first arithmetic processing means, the frequency distribution obtained by the second arithmetic processing means and the storage information of the storage means are compared to estimate the state of the traveling road surface, and information on the estimation result is output. A vehicle road surface state estimation system, comprising:
車両走行時における走行路面の状態を推定する車両走行路面状態推定システムにおいて、
車両の駆動輪に設けられ該駆動輪における所定検出方向の加速度を検出して該加速度値に対応する電気信号を出力する駆動輪加速度センサと、
車両の遊動輪に設けられ該遊動輪における前記検出方向の加速度を検出して該加速度値に対応する電気信号を出力する遊動輪加速度センサと、
前記駆動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記駆動輪加速度センサによって検出された加速度の一定の測定時間内の積算値又は平均値又は分散値又は歪度又は尖度のうちの少なくとも何れか1つを算出する演算処理を行い演算値を算出する第1演算処理手段と、
前記遊動輪加速度センサから出力される電気信号を入力し、該電気信号に基づいて、前記遊動輪加速度センサによって検出された加速度に前記演算処理を行い演算値を算出する第2演算処理手段と、
前記第1演算処理手段による演算値と前記第2演算処理手段による演算値の情報を走行路面の状態毎に記憶している記憶手段と、
前記第1演算処理手段による演算値と前記第2演算処理手段による演算値と前記記憶手段の記憶情報とを比較して走行路面の状態を推定し、該推定結果の情報を出力する路面状態推定手段とを備えている
ことを特徴とする車両走行路面状態推定システム。
In a vehicle travel road surface state estimation system that estimates the state of the travel road surface during vehicle travel,
A driving wheel acceleration sensor that is provided on a driving wheel of a vehicle and detects an acceleration in a predetermined detection direction in the driving wheel and outputs an electric signal corresponding to the acceleration value;
An idle wheel acceleration sensor that is provided on an idler wheel of a vehicle and detects an acceleration in the detection direction of the idler wheel and outputs an electrical signal corresponding to the acceleration value;
An electric signal output from the driving wheel acceleration sensor is input, and based on the electric signal, an integrated value, an average value, a variance value, or a skewness within a certain measurement time of the acceleration detected by the driving wheel acceleration sensor. Or first arithmetic processing means for calculating an arithmetic value by performing arithmetic processing for calculating at least one of kurtosis;
Second arithmetic processing means for inputting an electric signal output from the idle wheel acceleration sensor, and calculating the calculation value by performing the calculation process on the acceleration detected by the idle wheel acceleration sensor based on the electric signal;
Storage means for storing information on the calculation value by the first calculation processing means and the calculation value by the second calculation processing means for each state of the traveling road surface;
Road surface state estimation that estimates the state of the traveling road surface by comparing the calculated value by the first arithmetic processing means, the calculated value by the second arithmetic processing means, and the storage information of the storage means, and outputs information of the estimation result A vehicle travel road surface state estimation system.
前記駆動輪加速度センサは、前記駆動輪の回転接線方向の第1加速度と前記駆動輪の回転軸に平行な方向の第2加速度とを検出してそれぞれの加速度値に対応する電気信号を出力する手段を有し、
前記遊動輪加速度センサは、前記遊動輪の回転接線方向の第3加速度と前記遊動輪の回転軸に平行な方向の第4加速度とを検出してそれぞれの加速度値に対応する電気信号を出力する手段を有し、
前記第1演算処理手段は、前記駆動輪加速度センサによって検出された第1及び第2加速度の一定の測定時間内の積算値又は平均値又は分散値又は歪度又は尖度のうちの少なくとも何れか1つを算出する演算処理を行い演算値を算出する手段を有し、
前記第2演算処理手段は、前記遊動輪加速度センサによって検出された第3及び第4加速度に前記演算処理を行い演算値を算出する手段を有している
ことを特徴とする請求項2に記載の車両走行路面状態推定システム。
The drive wheel acceleration sensor detects a first acceleration in a rotational tangent direction of the drive wheel and a second acceleration in a direction parallel to the rotation axis of the drive wheel, and outputs an electrical signal corresponding to each acceleration value. Having means,
The idle wheel acceleration sensor detects a third acceleration in a rotational tangential direction of the idle wheel and a fourth acceleration in a direction parallel to the rotation axis of the idle wheel, and outputs an electrical signal corresponding to each acceleration value. Having means,
The first arithmetic processing means is at least one of an integrated value, an average value, a variance value, a skewness, or a kurtosis within a certain measurement time of the first and second accelerations detected by the driving wheel acceleration sensor. A means for performing calculation processing to calculate one and calculating a calculation value;
The said 2nd arithmetic processing means has a means to perform the said arithmetic processing to the 3rd and 4th acceleration detected by the said idle wheel acceleration sensor, and to calculate a calculated value. Vehicle road surface state estimation system.
前記駆動輪加速度センサは、前記駆動輪の回転接線方向の第1加速度と前記駆動輪の回転軸に平行な方向の第2加速度とを検出してそれぞれの加速度値に対応する電気信号を出力する手段を有し、
前記遊動輪加速度センサは、前記遊動輪の回転接線方向の第3加速度と前記遊動輪の回転軸に平行な方向の第4加速度とを検出してそれぞれの加速度値に対応する電気信号を出力する手段を有し、
前記第1演算処理手段は、前記駆動輪加速度センサによって検出された第1加速度のベクトルと第2加速度のベクトルとを合成したベクトルの絶対値を算出すると共に、該絶対値の一定の測定時間内の積算値又は平均値又は分散値又は歪度又は尖度のうちの少なくとも何れか1つを算出する演算処理を行い演算値を算出する手段を有し、
前記第2演算処理手段は、前記遊動輪加速度センサによって検出された第3加速度のベクトルと第4加速度のベクトルとを合成したベクトルの絶対値を算出すると共に、該絶対値に前記演算処理を行い演算値を算出する手段を有している
ことを特徴とする請求項2に記載の車両走行路面状態推定システム。
The drive wheel acceleration sensor detects a first acceleration in a rotational tangent direction of the drive wheel and a second acceleration in a direction parallel to the rotation axis of the drive wheel, and outputs an electrical signal corresponding to each acceleration value. Having means,
The idle wheel acceleration sensor detects a third acceleration in a rotational tangential direction of the idle wheel and a fourth acceleration in a direction parallel to the rotation axis of the idle wheel, and outputs an electrical signal corresponding to each acceleration value. Having means,
The first arithmetic processing means calculates an absolute value of a vector obtained by combining the vector of the first acceleration and the vector of the second acceleration detected by the driving wheel acceleration sensor, and within a certain measurement time of the absolute value. Means for calculating an operation value by performing an operation process for calculating at least one of an integrated value, an average value, a variance value, a skewness, or a kurtosis.
The second arithmetic processing means calculates an absolute value of a vector obtained by combining the third acceleration vector and the fourth acceleration vector detected by the idle wheel acceleration sensor, and performs the arithmetic processing on the absolute value. The vehicle running road surface state estimation system according to claim 2, further comprising means for calculating a calculated value.
前記測定時間が0.1秒〜10秒の範囲内の時間に設定され、且つ測定時間と次の測定時間との間の測定休止時間が5秒〜5分の範囲内の時間に設定されている
ことを特徴とする請求項2に記載の車両走行路面状態推定システム。
The measurement time is set to a time within a range of 0.1 seconds to 10 seconds, and a measurement pause time between the measurement time and the next measurement time is set to a time within a range of 5 seconds to 5 minutes. The vehicle travel road surface state estimation system according to claim 2, wherein
JP2007223079A 2007-08-29 2007-08-29 Vehicle running road surface state estimation system Active JP4952444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223079A JP4952444B2 (en) 2007-08-29 2007-08-29 Vehicle running road surface state estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223079A JP4952444B2 (en) 2007-08-29 2007-08-29 Vehicle running road surface state estimation system

Publications (2)

Publication Number Publication Date
JP2009056818A true JP2009056818A (en) 2009-03-19
JP4952444B2 JP4952444B2 (en) 2012-06-13

Family

ID=40552983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223079A Active JP4952444B2 (en) 2007-08-29 2007-08-29 Vehicle running road surface state estimation system

Country Status (1)

Country Link
JP (1) JP4952444B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023050A (en) * 2011-07-20 2013-02-04 Bridgestone Corp Road surface condition estimation method, and road surface condition estimation device
JP6154951B1 (en) * 2016-10-18 2017-06-28 サイトセンシング株式会社 Velocity measuring device, position measuring device, velocity measuring method and program
WO2017221578A1 (en) * 2016-06-22 2017-12-28 株式会社Soken Road surface condition estimation device
WO2018207648A1 (en) * 2017-05-12 2018-11-15 株式会社ブリヂストン Road surface condition determining method and road surface condition determining device
WO2019088023A1 (en) * 2017-10-30 2019-05-09 株式会社デンソー Road surface state estimation device
JP2019081530A (en) * 2017-10-30 2019-05-30 株式会社デンソー Road surface state estimation apparatus
CN112997189A (en) * 2018-10-31 2021-06-18 罗伯特·博世有限公司 Method for supporting camera-based surroundings detection of a travelling tool by means of road moisture information of a first ultrasonic sensor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338528A (en) * 1992-06-09 1993-12-21 Mazda Motor Corp Brake device for automobile
JPH1120654A (en) * 1997-06-27 1999-01-26 Hino Motors Ltd Road surface frictional coefficient estimating device and method therefor
JP2001018775A (en) * 1999-07-05 2001-01-23 Unisia Jecs Corp Brake control device
JP2001163211A (en) * 1999-12-07 2001-06-19 Sumitomo Rubber Ind Ltd Road surface friction coefficient judging device and method
JP2001163202A (en) * 1999-12-08 2001-06-19 Sumitomo Rubber Ind Ltd Road surface friction coefficient decision device and method therefor
JP2001182578A (en) * 1999-11-13 2001-07-06 Robert Bosch Gmbh Method and device for controlling vehicle
JP2001247027A (en) * 2000-03-03 2001-09-11 Sumitomo Rubber Ind Ltd Road surface friction coefficient deciding device and method therefor
JP2002037046A (en) * 2000-07-24 2002-02-06 Sumitomo Rubber Ind Ltd Initialization device and method for road surface friction coefficient determining device
JP2002137721A (en) * 2001-08-16 2002-05-14 Toyota Motor Corp Vehicle movement control device
JP2002160616A (en) * 2000-11-28 2002-06-04 Denso Corp Brake device
JP2002340863A (en) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc Road surface determination device and system
JP2003182476A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Device for estimating road surface condition and tire traveling condition, and vehicle control device
JP3448995B2 (en) * 1994-12-01 2003-09-22 日産自動車株式会社 Vehicle driving force control device
JP3787608B2 (en) * 1997-05-22 2006-06-21 日本電子工業株式会社 ABS equipment

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338528A (en) * 1992-06-09 1993-12-21 Mazda Motor Corp Brake device for automobile
JP3448995B2 (en) * 1994-12-01 2003-09-22 日産自動車株式会社 Vehicle driving force control device
JP3787608B2 (en) * 1997-05-22 2006-06-21 日本電子工業株式会社 ABS equipment
JPH1120654A (en) * 1997-06-27 1999-01-26 Hino Motors Ltd Road surface frictional coefficient estimating device and method therefor
JP2001018775A (en) * 1999-07-05 2001-01-23 Unisia Jecs Corp Brake control device
JP2001182578A (en) * 1999-11-13 2001-07-06 Robert Bosch Gmbh Method and device for controlling vehicle
JP2001163211A (en) * 1999-12-07 2001-06-19 Sumitomo Rubber Ind Ltd Road surface friction coefficient judging device and method
JP2001163202A (en) * 1999-12-08 2001-06-19 Sumitomo Rubber Ind Ltd Road surface friction coefficient decision device and method therefor
JP2001247027A (en) * 2000-03-03 2001-09-11 Sumitomo Rubber Ind Ltd Road surface friction coefficient deciding device and method therefor
JP2002037046A (en) * 2000-07-24 2002-02-06 Sumitomo Rubber Ind Ltd Initialization device and method for road surface friction coefficient determining device
JP2002160616A (en) * 2000-11-28 2002-06-04 Denso Corp Brake device
JP2002340863A (en) * 2001-05-15 2002-11-27 Toyota Central Res & Dev Lab Inc Road surface determination device and system
JP2002137721A (en) * 2001-08-16 2002-05-14 Toyota Motor Corp Vehicle movement control device
JP2003182476A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Device for estimating road surface condition and tire traveling condition, and vehicle control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023050A (en) * 2011-07-20 2013-02-04 Bridgestone Corp Road surface condition estimation method, and road surface condition estimation device
WO2017221578A1 (en) * 2016-06-22 2017-12-28 株式会社Soken Road surface condition estimation device
JP2017226322A (en) * 2016-06-22 2017-12-28 株式会社Soken Road surface condition estimation device
US10866161B2 (en) 2016-06-22 2020-12-15 Denso Corporation Road surface condition estimation apparatus
JP6154951B1 (en) * 2016-10-18 2017-06-28 サイトセンシング株式会社 Velocity measuring device, position measuring device, velocity measuring method and program
JP2018066615A (en) * 2016-10-18 2018-04-26 サイトセンシング株式会社 Speed measurement device, position measurement device, speed measurement method and program
JP2018194337A (en) * 2017-05-12 2018-12-06 株式会社ブリヂストン Road surface state discrimination method, and road surface state discrimination device
CN110622043A (en) * 2017-05-12 2019-12-27 株式会社普利司通 Road surface state discrimination method and road surface state discrimination device
WO2018207648A1 (en) * 2017-05-12 2018-11-15 株式会社ブリヂストン Road surface condition determining method and road surface condition determining device
US11486702B2 (en) 2017-05-12 2022-11-01 Bridgestone Corporation Road surface condition determination method and road surface condition determination apparatus
WO2019088023A1 (en) * 2017-10-30 2019-05-09 株式会社デンソー Road surface state estimation device
JP2019081530A (en) * 2017-10-30 2019-05-30 株式会社デンソー Road surface state estimation apparatus
US11498571B2 (en) 2017-10-30 2022-11-15 Denso Corporation Road surface state estimation device
CN112997189A (en) * 2018-10-31 2021-06-18 罗伯特·博世有限公司 Method for supporting camera-based surroundings detection of a travelling tool by means of road moisture information of a first ultrasonic sensor

Also Published As

Publication number Publication date
JP4952444B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4952444B2 (en) Vehicle running road surface state estimation system
JP6045702B2 (en) Method, control device and system for determining tread depth of tire tread
EP2955078B1 (en) Tire classfication
US10106160B2 (en) Driving aid arrangement, a vehicle and a method of controlling a longitudinal velocity of a vehicle
US10328915B2 (en) Vehicle stability control system and method
KR100793869B1 (en) Adative cruise control system for vehicle
JP3025261B2 (en) Method and apparatus for generating operation signal of stop lamp for automobile
US20050085987A1 (en) Method and apparatus for estimating road surface state and tire running state, abs and vehicle control using the same
JP2019124668A (en) Road surface condition identification device and tire system comprising the same
CN103857550A (en) Method and system for adaptively controlling distance and speed and for stopping a motor vehicle, and a motor vehicle which works with same
JP2007055284A (en) Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
US11505015B2 (en) Determining a tire pressure status in a vehicle
JP2010216856A (en) Apparatus for estimation of weight and gradient, and vehicle control apparatus using the same
ITMI20101789A1 (en) METHOD AND SYSTEM TO DETERMINE POTENTIAL FRICTION BETWEEN A TIRE FOR VEHICLES AND A ROLLING SURFACE
US7937204B2 (en) Brake control method and brake control device
CN111516661B (en) Distributed anti-skid control method and device for railway vehicle
JP2006131136A (en) Vehicular signal processing unit
KR101213620B1 (en) Electronic stability control apparatus by using wheel lateral acceleration
JP5263068B2 (en) Vehicle slip determination device
EP2137008B1 (en) Indirect tire pressure monitoring
JP2008100610A (en) Traveling road surface state detecting system and sensor unit
US8085138B2 (en) Display-image switching apparatus and method
JP5686363B2 (en) Road friction coefficient estimation device
JP5097438B2 (en) Tire dynamic load radius reference value initialization method and apparatus, and tire dynamic load radius reference value initialization program
JP5067229B2 (en) Rotation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4952444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250