WO2019142778A1 - Reception device, control method, program, and storage medium - Google Patents
Reception device, control method, program, and storage medium Download PDFInfo
- Publication number
- WO2019142778A1 WO2019142778A1 PCT/JP2019/000904 JP2019000904W WO2019142778A1 WO 2019142778 A1 WO2019142778 A1 WO 2019142778A1 JP 2019000904 W JP2019000904 W JP 2019000904W WO 2019142778 A1 WO2019142778 A1 WO 2019142778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- angle
- gain
- electromagnetic wave
- emitting
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/489—Gain of receiver varied automatically during pulse-recurrence period
Definitions
- the present invention relates to a technology for receiving an electromagnetic wave reflected by an object.
- a distance measuring device that performs scanning with laser light.
- a plurality of distance values are calculated by dynamically changing the transmission intensity or the reception amplification factor at predetermined time intervals, and the received wave is not saturated among the calculated distance values,
- the laser radar apparatus which can output the high distance value of the intensity
- the present invention has been made to solve the problems as described above, and it is possible to accurately output even when an electromagnetic wave reflected by an object present at a distance or near distance is received.
- the main object of the present invention is to provide a receiver capable of
- the invention described in the claims is a receiving device, which has a reflecting portion that reflects an electromagnetic wave while changing an angle, and an emitting portion that emits an electromagnetic wave while changing an emitting direction, and the electromagnetic wave reflected by an object.
- the invention described in the claims is a receiving device, which has a reflecting portion that reflects an electromagnetic wave while changing the angle, and the emitting portion that emits an electromagnetic wave while changing the emitting direction, and the above reflected by the object
- a receiver comprising: a receiver configured to receive an electromagnetic wave; and a determiner configured to determine a gain of the receiver based on an amount of change in the angle of the reflector after the emitter emits the electromagnetic wave.
- the invention described in the claims is a control method executed by a receiving apparatus having a reflection unit that reflects an electromagnetic wave while changing an angle, and an emission process of emitting an electromagnetic wave while changing an emission direction, and reflection by an object Receiving step of receiving the electromagnetic wave by the receiving portion, and gain of an amplifying portion amplifying the output signal of the receiving portion based on an angle change amount of the reflecting portion after emitting the electromagnetic wave in the emitting step And determining a step of determining
- the invention described in the claims includes a reflection unit that reflects an electromagnetic wave while changing an angle, and an emission unit that emits an electromagnetic wave while changing an emission direction, and a reception unit that receives the electromagnetic wave reflected by an object.
- a program executed by the computer of the receiving apparatus the amplifying unit amplifying the output signal of the receiving unit based on the amount of change in the angle of the reflecting unit after the emitting unit emits the electromagnetic wave.
- the computer functions as a determination unit to determine the gain of
- the waveform in the time series of a trigger signal and a segment extraction signal is shown.
- the structural example of a receiving block is shown.
- the side view of the MEMS mirror which showed the state at the time of reflection of transmitting light, and reflection of return light is shown.
- An example of the correspondence of the angle change amount of the MEMS mirror in one segment period and the amplification factor of an amplifier is shown.
- a receiving apparatus comprising: a reflector configured to reflect an electromagnetic wave while changing an angle; and an emitter configured to emit an electromagnetic wave while changing an emission direction, and to be reflected by an object
- a determination unit that determines a gain of an output signal of the receiving unit based on a receiving unit that receives the electromagnetic wave and an angle change amount of the reflecting unit after the emitting unit emits the electromagnetic wave And.
- the farther the distance is the larger the amount of change in the angle of the reflecting portion that occurs before the electromagnetic wave emitted toward the object returns to the receiving portion, and the reception strength becomes weaker.
- the receiving apparatus determines the gain of the amplifying unit for amplifying the output signal of the receiving unit based on the above-mentioned angle change amount, thereby receiving the electromagnetic wave received without causing saturation and deficiency of the signal level. It is possible to preferably generate an output signal according to the intensity of.
- the determination unit determines the gain to be a smaller value as the amount of change in angle is smaller. In other words, the determination unit changes the gain to a smaller value as the angle change amount is smaller.
- the closer the object is to the distance the smaller the amount of change in the angle of the reflecting portion that occurs before the electromagnetic wave emitted toward the object returns to the receiving portion, and the receiving intensity becomes stronger.
- the gain of the amplification unit can be suitably determined in consideration of
- the reflecting unit is a MEMS mirror
- the determining unit determines the gain based on an angle of the reflecting unit and the amount of change in the angle.
- the speed of the angular change of the MEMS mirror differs depending on the scanning position. Therefore, in this aspect, the receiving apparatus can more accurately determine the gain of the amplification unit by further considering the angle of the MEMS mirror which is the reflection unit.
- the receiving device further includes a correction unit that corrects an output signal from the amplification unit based on a gain of the amplification unit when the output signal is output.
- the receiving device can preferably generate an output signal that does not depend on the gain of the amplification unit.
- the receiving device further includes a calculating unit that calculates a distance to the object based on the output signal corrected by the correcting unit. According to this aspect, the receiving device can accurately calculate the distance to the object based on the corrected output signal.
- the emitting unit periodically and repeatedly emits the electromagnetic wave
- the determining unit determines the gain based on the amount of change in angle within one cycle. According to this aspect, the receiving apparatus can accurately determine the gain of the amplification unit in each cycle when emitting electromagnetic waves periodically and repeatedly.
- the receiving device has a reflecting portion that reflects the electromagnetic wave while changing the angle, and an emitting portion that emits the electromagnetic wave while changing the emitting direction, and the object reflected by the object
- the receiver includes: a receiver configured to receive the electromagnetic wave; and a determiner configured to determine a gain of the receiver based on an amount of change in angle of the reflector after the emitter emits the electromagnetic wave.
- the receiving apparatus determines the gain of the receiving unit based on the above-mentioned angle change amount, thereby producing an output signal according to the intensity of the received electromagnetic wave without causing saturation and deficiency of the signal level. Can be suitably generated.
- a control method executed by a receiving apparatus having a reflecting portion for reflecting an electromagnetic wave while changing an angle comprising: an emitting step for emitting an electromagnetic wave while changing an emitting direction; An amplification process for amplifying an output signal of the receiving unit based on an amount of change in angle of the reflecting unit after receiving the electromagnetic wave reflected by the object by the receiving unit; Determining the gain of the part.
- the receiving apparatus can preferably generate an output signal according to the intensity of the received electromagnetic wave without causing saturation and deficiency of the signal level.
- a reflecting portion for reflecting an electromagnetic wave while changing an angle
- an emitting portion for emitting an electromagnetic wave while changing an emitting direction, and the electromagnetic wave reflected by an object.
- a program executed by a computer of a receiving apparatus having a receiving unit, the output unit amplifying the output signal of the receiving unit based on an amount of change in angle of the reflecting unit after the emitting unit emits the electromagnetic wave.
- the computer functions as a determination unit that determines the gain of the amplification unit.
- the computer can preferably generate an output signal according to the intensity of the received electromagnetic wave without causing saturation and deficiency of the signal level.
- the program is stored in a storage medium.
- FIG. 1 is a schematic configuration of a distance measuring apparatus 100 common to the first embodiment and the second embodiment.
- the distance measuring apparatus 100 discretely measures the distance to an object present in the external world by emitting a pulse laser which is an electromagnetic wave to a predetermined angle range in the horizontal direction and the vertical direction, and measures the position of the object Generate three-dimensional point cloud information to be shown.
- the distance measuring apparatus 100 is, for example, a Time of Flight type lidar (Lidar: Light Detection and Ranging or Laser Illuminated Detection And Ranging).
- the range finder 100 mainly includes a crystal oscillator 10, a synchronization control unit 11, an LD driver 12, a laser diode 13, a MEMS mirror 14, a drive driver 15, an angle sensor 16, and a reception block 17. And a signal processing unit 20.
- the crystal oscillator 10 outputs a pulse-like clock signal “S1” to the synchronization control unit 11 and the A / D converter 23.
- the synchronization control unit 11 outputs a pulse-like trigger signal “S2” to the LD driver 12.
- a period from the assertion of the trigger signal S2 to the next assertion is also referred to as a "segment period”.
- the synchronization control unit 11 outputs a segment extraction signal “S3” that determines the timing of extracting the output of the A / D converter 23 to the signal processing unit 20.
- the trigger signal S2 and the segment extraction signal S3 are logic signals and are synchronized as shown in FIG. 2 described later.
- the LD driver 12 supplies a pulse current to the laser diode 13 in synchronization with the trigger signal S2 input from the synchronization control unit 11.
- the laser diode 13 is, for example, an infrared pulse laser, and emits a light pulse (also referred to as “transmission light”) based on the pulse current supplied from the LD driver 12.
- the MEMS mirror 14 reflects the light pulse emitted from the laser diode 13 to the outside while changing the angle in the range of a predetermined horizontal angle and vertical angle, and the light reflected by the object irradiated with the light pulse (“ ) Is reflected toward the light receiving element 21. In this case, the MEMS mirror 14 emits a light pulse for each segment obtained by equally dividing the above-described horizontal angle.
- the MEMS mirror 14 is an example of the "reflecting portion" in the present invention.
- the drive driver 15 applies a drive current to the MEMS mirror 14 to drive the MEMS mirror 14 in the horizontal direction and the vertical direction.
- the MEMS mirror 14 is provided with an angle sensor 16.
- the angle sensor 16 is, for example, a piezo sensor that detects the position of the MEMS mirror 14 in the horizontal direction and the vertical direction.
- the angle sensor 16 supplies the signal processing unit 20 with an angle detection signal “S4” related to the detection angle of the MEMS mirror 14.
- the LD driver 12, the laser diode 13, and the MEMS mirror 14 are examples of the "emission part" in the present invention.
- the receiving block 17 outputs a voltage signal proportional to the intensity of the return light from the object, and mainly includes the light receiving element 21, a current / voltage conversion circuit (transimpedance amplifier) 22, and an A / D converter 23. And. A specific configuration example of the reception block 17 will be described later with reference to FIG.
- the light receiving element 21 is, for example, an avalanche photodiode, and generates a weak current according to the light quantity of the reflected light from the object guided by the MEMS mirror 14, that is, the return light.
- the light receiving element 21 supplies the generated weak current to the current-voltage conversion circuit 22.
- the current voltage conversion circuit 22 amplifies the weak current supplied from the light receiving element 21 and converts it into a voltage signal, and inputs the converted voltage signal to the A / D converter 23.
- the A / D converter 23 converts the voltage signal supplied from the current-voltage conversion circuit 22 into a digital signal based on the clock signal S1 supplied from the crystal oscillator 10, and supplies the converted digital signal to the signal processing unit 20.
- the light receiving element 21 is an example of the “receiving unit” in the present invention
- the current-voltage conversion circuit 22 is an example of the “amplifying unit” in the present invention.
- the signal processing unit 20 determines the reception amplification factor (gain) to be set in the reception block 17 based on the angle detection signal S4 supplied from the angle sensor 16, and receives the control signal “S5” related to the reception amplification factor. Supply to.
- the signal processing unit 20 functions as a “determination unit” in the present invention.
- the signal processing unit 20 functions as a “computer” in the present invention when it is executed by a program.
- the signal processing unit 20 generates a digital signal which is an output of the A / D converter 23 in a period in which the segment extraction signal S3 is asserted as a signal (also referred to as a “segment signal”) related to the light reception intensity for each segment. Do. Then, the signal processing unit 20 generates point group information indicating the distance and angle of the object based on the segment signal. Specifically, the signal processing unit 20 detects a peak from the waveform of the segment signal, and estimates an amplitude and a delay time corresponding to the detected peak.
- the signal processing unit 20 determines, among the peaks of the waveform indicated by the segment signal, information of a distance corresponding to a delay time of a peak at which the estimated amplitude is a predetermined threshold or more and information of an angle corresponding to the target segment.
- a set is generated as information of each point constituting point cloud information.
- FIG. 2 shows waveforms of the trigger signal S2 and the segment extraction signal S3 in time series.
- the rising edges of the trigger signal S2 and the segment extraction signal S3 are synchronized, and the segment extraction signal S3 is asserted for a predetermined period longer than the period in which the trigger signal S2 is asserted.
- the signal processing unit 20 extracts a signal output by the A / D converter 18 while the trigger signal S2 is asserted as a segment signal.
- the maximum distance measurement distance (distance measurement limit distance) from the rider unit 100 is longer.
- a high voltage "Vr” supplied from the signal processing unit 20 or the like is applied to the light receiving element 21 as a reverse bias, and a detection current proportional to the return light from the object flows. Then, the detected current output from the light receiving element 21 is amplified by the current voltage conversion circuit 22 and converted into a voltage signal.
- the amplification factor (also referred to as “gain M”) of the current-voltage conversion circuit 22 can be adjusted by the control signal S5 supplied from the signal processing unit 20.
- the voltage signal output from the current-voltage conversion circuit 22 is amplified by the preamplifier 27 and supplied to the A / D converter 23.
- the laser When attempting to realize distance measurement for an object at a long distance by the distance measuring apparatus 100, the laser is such that the intensity of the voltage signal input to the A / D converter 23 is equal to or higher than the intensity distinguishable by the A / D converter 23. It is necessary to increase the output of the diode 13 and also to increase the light receiving sensitivity (image magnification) of the receiving block 17.
- the distance measuring apparatus 100 dynamically adjusts the gain M of the current-voltage conversion circuit 22 to either an object existing in the vicinity or an object existing in the distance The distance to the subject is accurately measured.
- the signal processing unit 20 measures the amount of change in the angle of the MEMS mirror 14 (also referred to as “the amount of change in angle d ⁇ ”) after the light pulse is emitted, and corresponds to the amount of change in angle d ⁇ .
- the gain M is gradually changed within each segment period.
- the signal processing unit 20 substantially expands the dynamic range of the A / D converter 23, and preferably suppresses saturation or deficiency of the signal level of the voltage signal input to the A / D converter 23.
- FIG. 4A shows a schematic scan line of transmission light on a virtual irradiation surface (virtual irradiation surface) separated by a predetermined distance ahead.
- the irradiation points 50 to 52 indicate points at which transmission light emitted at a certain timing is irradiated on the virtual irradiation surface.
- 4B shows a side view of the MEMS mirror 14 when the transmission light corresponding to the irradiation point 50 is reflected
- FIG. 4C shows the MEMS when the transmission light corresponding to the irradiation point 51 is reflected.
- FIG. 4D shows a side view of the mirror 14 and FIG. 4D shows a side view of the MEMS mirror 14 when the transmission light corresponding to the irradiation point 52 is reflected.
- the broken lines in FIGS. 4A to 4D are lines virtually representing the normal of the MEMS mirror 14.
- FIG. 5 (A) shows a side view of the MEMS mirror 14 when the transmission light is reflected
- FIG. 5 (B) shows when the return light of the transmission light shown in FIG. 5 (A) is incident on the MEMS mirror 14
- the angle change of the MEMS mirror 14 occurs by the angle change amount d ⁇ between the time when the transmission light is reflected and the time when the return light is incident.
- the position of the MEMS mirror 14 when the transmission light is reflected is virtually shown by a broken line. Then, the angle change amount d ⁇ becomes larger as the time from the reflection of the transmission light to the incidence of the return light becomes longer.
- the angle change amount d ⁇ becomes almost zero.
- the angle change amount d ⁇ has a value corresponding to the time from the reflection of the transmission light to the incidence of the return light.
- FIG. 6 shows a functional block diagram of the signal processing unit 20 related to gain correction processing in the first embodiment.
- the signal processing unit 20 functionally converts the angle storage unit 40, the reset unit 41, the angle change amount calculation unit 42, the gain setting unit 43, the output correction unit 44, and And a map 45.
- the angle storage unit 40 stores the angle of the MEMS mirror 14 detected by the angle sensor 16 when the laser diode 13 emits light.
- the angle storage unit 40 stores the angle of the MEMS mirror 14 detected by the angle sensor 16 when the trigger signal S2 is asserted.
- the angle storage unit 40 is, for example, a latch circuit.
- the reset unit 41 clears the angle storage unit 40 for each segment period. For example, the reset unit 41 clears the angle storage unit 40 at an arbitrary timing from the end of the assert period of the segment extraction signal S3 shown in FIG. 2 to the next assertion of the trigger signal S2 and the segment extraction signal S3.
- the angle change amount calculation unit 42 is an angle difference between the angle of the MEMS mirror 14 (also referred to as “light emission angle”) stored in the angle storage unit 40 and the current angle of the MEMS mirror 14 output by the angle sensor 16. Is calculated as the angle change amount d ⁇ . Then, the angle change amount calculation unit 42 supplies the calculated angle change amount d ⁇ to the gain setting unit 43.
- the gain setting unit 43 calculates a gain M to be set from the angle change amount d ⁇ output from the angle change amount calculation unit 42 with reference to a conversion map 45 described later. Then, the gain setting unit 43 supplies the control signal S5 specifying the calculated gain M to the current-voltage conversion circuit 22.
- the gain setting unit 43 sets the gain M so that the gain M decreases as the angle change amount d ⁇ decreases, and the gain M increases as the angle change amount d ⁇ increases.
- the output correction unit 44 stores the gain M supplied from the gain setting unit 43 and the output signal of the A / D converter 23. Then, the output correction unit 44 corrects the output signal of the A / D converter 23 based on the gain M. Specifically, the output correction unit 44 corrects the level of the output signal of the A / D converter 23 so as not to depend on the change of the gain M. For example, the output correction unit 44 corrects the signal level of the output signal of the A / D converter 23 to a signal level predicted to be obtained when the gain M is a predetermined reference value.
- the output correction unit 44 increases or decreases the level of the output signal of the A / D converter 23 by a predetermined ratio according to, for example, the ratio between the gain M notified from the gain setting unit 43 and the above-described reference value.
- the output correction unit 44 suitably generates an output signal that does not depend on the gain M.
- the conversion map 45 is a map that defines an appropriate gain M for the angle change amount d ⁇ , and is referred to by the gain setting unit 43.
- FIG. 7 shows the correspondence between the angle change amount d ⁇ and the gain M in one segment period specified by the conversion map 45.
- the gain M is smaller as the angle change amount d ⁇ is smaller, and the gain M is defined such that the gain M is larger as the angle change amount d ⁇ is larger.
- the gain setting unit 43 determines an appropriate gain M according to the amount of angle change d ⁇ for each segment period, substantially expanding the dynamic range of the A / D converter 23. It can be done.
- the larger the angle change amount d ⁇ ie, the longer the time from reflection of transmission light to incidence of its return light, the longer the object irradiated with the transmission light, the return light
- the larger the angle change amount d ⁇ the smaller the signal level of the voltage signal input to the A / D converter 23. Therefore, in order to prevent the shortage of the signal level in the A / D converter 23, it is necessary to increase the gain M. is there.
- the gain M is smaller as the angle change amount d ⁇ is smaller, and the gain M is defined such that the gain M is larger as the angle change amount d ⁇ is larger.
- FIG. 8 is a flowchart showing the procedure of the gain correction process in the first embodiment.
- the reset unit 41 of the signal processing unit 20 clears the angle storage unit 40 at a predetermined timing before emission of transmission light by the laser diode 13 (step S101). Thereafter, the laser diode 13 emits transmission light based on the trigger signal S2 supplied from the synchronization control unit 11 (step S102). Then, the angle storage unit 40 sets the angle of the MEMS mirror 14 detected by the angle sensor 16 at the timing when the laser diode 13 emits the transmission light (that is, the timing when the trigger signal S2 and the segment extraction signal S3 assert). Are stored (step S103).
- the angle change amount calculation unit 42 calculates an angle difference between the light emission angle stored in the angle storage unit 40 and the current angle of the MEMS mirror 14 output by the angle sensor 16 as the angle change amount d ⁇ (see Step S104). Then, the gain setting unit 43 sets the gain M according to the angle change amount d ⁇ in the current-voltage conversion circuit 22 (step S105). In this case, gain setting unit 43 calculates gain M from angle change amount d ⁇ with reference to conversion map 45 as shown in FIG. 7, and generates control signal S5 for specifying calculated gain M as current-voltage conversion circuit 22. Supply to. Then, after storing the gain M supplied from the gain setting unit 43 and the output signal of the A / D converter 23, the output correction unit 44 stores the output signal of the A / D converter 23 according to the gain M. It corrects (step S106).
- step S107 the signal processing unit 20 determines whether it is the next light emission timing. Then, when the signal processing unit 20 determines that it is the next light emission timing (step S107; Yes), the process returns to step S101 to clear the angle storage unit 40. On the other hand, when the signal processing unit 20 determines that it is not the next light emission timing (step S107; No), the process returns to step S104, and the angle difference from the current angle of the MEMS mirror 14 output by the angle sensor 16 is The angle change amount d ⁇ is calculated. By doing this, the signal processing unit 20 appropriately increases the gain M according to the gradually rising angle change amount d ⁇ for each segment period, and the saturation in the A / D converter 23 and the shortage of the signal level Etc. can be suitably prevented. In step S107, when the assert period of the segment extraction signal S3 ends, the signal processing unit 20 may determine that the next light emission timing has come sufficiently, and the process may return to step S101.
- the distance measuring apparatus 100 includes the LD driver 12, the laser diode 13, the MEMS mirror 14, the receiving element 21, the current-voltage conversion circuit 22, the signal processing unit 20, and the like. Then, the LD driver 12, the laser diode 13, and the MEMS mirror 14 that reflects the light pulse while changing the angle function as an emitting unit, and emit the light pulse while changing the emitting direction.
- the light receiving element 21 receives the return light of the light pulse reflected by the object.
- the signal processing unit 20 determines the gain M of the current-voltage conversion circuit 22 that amplifies the output signal of the light receiving element 21 based on the angle change amount d ⁇ of the MEMS mirror 14 after the emitting unit emits the light pulse. Do.
- the dynamic range of the A / D converter 23 can be substantially expanded, and saturation or deficiency of the signal level in the A / D converter 23 can be suitably suppressed.
- the signal processing unit 20 calculates, for each segment period, an elapsed time (also referred to as “elapsed time Td”) from the time of emission of transmission light instead of the angle change amount d ⁇ .
- an elapsed time also referred to as “elapsed time Td”
- the gain M is changed according to.
- symbol is suitably attached and the description is abbreviate
- FIG. 9 shows a functional block diagram of the signal processing unit 20 related to gain correction processing in the second embodiment.
- the signal processing unit 20 according to the second embodiment functionally includes an elapsed time calculation unit 42A, a gain setting unit 43A, and an output correction unit 44A.
- the elapsed time calculation unit 42A detects the timing at which the light pulse is emitted based on the trigger signal S2 supplied from the synchronization control unit 11, the light pulse is further detected based on the clock signal S1 supplied from the crystal oscillator 10. The elapsed time Td from the emission to the present is calculated. Then, the elapsed time calculation unit 42A supplies the calculated elapsed time Td to the gain setting unit 43A.
- the gain setting unit 43A refers to the conversion map 45A, and determines the gain M to be set from the elapsed time Td supplied from the elapsed time calculation unit 42A. Then, the gain setting unit 43A transmits a control signal S5 instructing application of the determined gain M to the current-voltage conversion circuit 22.
- the output correction unit 44A stores the gain M supplied from the gain setting unit 43A and the output signal of the A / D converter 23. Then, the output correction unit 44A corrects the output signal of the A / D converter 23 based on the gain M. Specifically, like the output correction unit 44 of the first embodiment, the output correction unit 44A corrects the level of the output signal of the A / D converter 23 so as not to depend on the change of the gain M. For example, the output correction unit 44A corrects the level of the output signal of the A / D converter 23 to a signal level predicted to be obtained when the gain M is a predetermined reference value. Thus, the output correction unit 44A suitably generates an output signal that does not depend on the gain M.
- FIG. 10 shows the correspondence between the elapsed time Td and the gain M in one segment period specified by the conversion map 45A.
- the gain M is defined so that the gain M decreases as the elapsed time Td decreases, and the gain M increases as the elapsed time Td increases.
- the correspondence between the elapsed time Td and the gain M shown in FIG. 10 will be supplementarily described.
- the shorter the elapsed time Td the closer the object irradiated with the transmission light is, and the stronger the intensity of the return light. Therefore, as the elapsed time Td is shorter, the signal level of the voltage signal input to the A / D converter 23 is higher, so the gain M needs to be reduced to prevent the saturation in the A / D converter 23.
- the longer the elapsed time Td the longer the object irradiated with the transmission light, and the weaker the intensity of the return light.
- the gain M is smaller as the elapsed time Td is shorter, and the gain M is defined so that the gain M is larger as the elapsed time Td is longer.
- FIG. 11 is a flowchart showing the procedure of gain correction processing in the second embodiment.
- the laser diode 13 emits transmission light based on the trigger signal S2 supplied from the synchronization control unit 11 (step S201). Then, the elapsed time calculation unit 42A calculates an elapsed time Td which is an elapsed time from the timing when the laser diode 13 emits the transmission light (that is, the timing when the trigger signal S2 and the segment extraction signal S3 are asserted) (step S202). . Then, the gain setting unit 43A sets the gain M according to the elapsed time Td calculated by the elapsed time calculation unit 42A in the current-voltage conversion circuit 22 (step S203). In this case, gain setting unit 43A calculates gain M from elapsed time Td with reference to conversion map 45A as shown in FIG. 10, and sends control signal S5 specifying the calculated gain M to current-voltage conversion circuit 22. Supply.
- the output correction unit 44A corrects the output signal of the A / D converter 23 according to the gain M. (Step S204).
- the signal processing unit 20 determines whether it is the next light emission timing (step S205). When the signal processing unit 20 determines that it is the next light emission timing (step S205; Yes), the process returns to step S201. On the other hand, when the signal processing unit 20 determines that it is not the next light emission timing (step S205; No), the process returns to step S202 and continues based on the clock signal S1 and the like supplied from the crystal oscillator 10 Perform the addition. By doing this, the signal processing unit 20 appropriately increases the gain M according to the elapsed time for each segment period, and suitably prevents saturation or shortage of the signal level in the A / D converter 23 and the like. it can. In step S205, when the assert period of the segment extraction signal S3 ends, the signal processing unit 20 may determine that the next light emission timing is approached, and the process may return to step S201.
- the distance measuring apparatus 100 includes the LD driver 12, the laser diode 13, the MEMS mirror 14, the receiving element 21, the current-voltage conversion circuit 22, the signal processing unit 20, and the like. Then, the LD driver 12, the laser diode 13, and the MEMS mirror 14 that reflects the light pulse while changing the angle function as an emitting unit, and emit the light pulse while changing the emitting direction.
- the light receiving element 21 receives the return light of the light pulse reflected by the object.
- the signal processing unit 20 determines the gain M of the current-voltage conversion circuit 22 that amplifies the output signal of the light receiving element 21 based on an elapsed time Td which is an elapsed time after the emitting unit emits the light pulse. .
- Td elapsed time
- the signal processing unit 20 may raise the gain M of the current-voltage conversion circuit 22 stepwise, instead of continuously increasing the gain M of the current-voltage conversion circuit 22.
- the signal processing unit 20 provides one or more timings for changing the gain M in the segment period, and determines the gain M based on the angle change amount d ⁇ or the elapsed time Td at each change timing of the provided gain M.
- the control signal S5 specifying the determined gain M is transmitted to the current-voltage conversion circuit 22.
- the initial value of the gain M is preset to be smaller than the gain M determined at each change timing.
- the signal processing unit 20 sets the gain M to an initial value at an arbitrary timing from the end of the assert period of the segment extraction signal S3 to the timing at which the trigger signal S2 and the segment extraction signal S3 are asserted.
- the gain M is returned to the initial value every time.
- FIG. 12B shows an angle range (also referred to as a “first angle range”) of the MEMS mirror 14 in which the pulse light is irradiated to the scanning region near the center other than the broken line frames 60 and 61 in FIG.
- FIG. 12C shows the relationship between the angle change amount d ⁇ indicated by the conversion map 45 referred to when referred to and the gain M, and FIG. The relationship between the amount of angle change d ⁇ and the gain M indicated by the conversion map 45 referred to at the time of (also referred to as “second angle range”) is shown.
- the angle change of the MEMS mirror 14 is relatively slower than when the angle of the MEMS mirror 14 is within the first angle range, as shown in FIG.
- the rate of increase of the gain M with respect to the change of the angle change amount d ⁇ is higher than that of the conversion map 45 shown in FIG. 12 (B).
- the angle change amount calculation unit 42 refers to the conversion map 45 shown in FIG. M is determined, and when the detection angle of the MEMS mirror 14 falls within the second angle range, the gain M is determined with reference to the conversion map 45 shown in FIG. 12 (B).
- the configuration of the distance measuring apparatus 100 shown in FIG. 1 is an example, and the configuration to which the present invention can be applied is not limited to this.
- the distance measuring apparatus 100 may include a rotating mirror that is rotated by a motor, instead of the MEMS mirror 14.
- the angle sensor 16 detects the rotation angle of the rotating mirror, and the signal processing unit 20 calculates the amount of angle change d ⁇ based on the rotation angle detected by the angle sensor 16.
- the configuration of the reception block 17 shown in FIG. 3 is an example, and the configuration to which the present invention is applicable is not limited thereto.
- the receiving block 17 may have a configuration in which an amplifier is provided between the light receiving element 21 and the A / D converter 23 and the gain of the amplifier can be adjusted.
- the signal processing unit 20 indicates the voltage Vr to be applied to the light receiving element 21 to obtain an appropriate gain of the light receiving element 21 every elapsed time Td, instead of the conversion map 45A.
- a map may be stored, and the voltage Vr to be applied to the light receiving element 21 may be determined with reference to the map.
- the output correction unit 44 or the output correction unit 44A specifies the gain of the light receiving element 21 based on the voltage Vr applied to the light receiving element 21, and based on the gain, The output signal may be corrected as in the first and second embodiments.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
A distance measurement device 100 has an LD driver 12, a laser diode 13, a MEMS mirror 14, a reception element 21, a current/voltage conversion circuit 22, and a signal processing unit 20 and other components. The LD driver 12, the laser diode 13, and the MEMS mirror 14 for reflecting a light pulse while changing an angle function as an emission unit and emit a light pulse while changing an emission direction. The reception element 21 receives return light of a light pulse reflected by an object. The signal processing unit 20 determines the gain M of the current/voltage conversion circuit 22 for amplifying an output signal of the reception element 21, on the basis of the change dθ in the angle of the MEMS mirror 14 after emission of the light pulse by the emission unit.
Description
本発明は、物体で反射された電磁波を受信する技術に関する。
The present invention relates to a technology for receiving an electromagnetic wave reflected by an object.
従来から、レーザ光による走査を行う測距装置が知られている。例えば、特許文献1には、所定の時間間隔で送信強度又は受信増幅率を動的に変化させることで複数の距離値を演算し、演算した距離値の中から、受信波が飽和せず、かつ、受信波の強度の高い距離値を、測距距離として出力することが可能なレーザレーダ装置が開示されている。
Conventionally, a distance measuring device that performs scanning with laser light is known. For example, according to Patent Document 1, a plurality of distance values are calculated by dynamically changing the transmission intensity or the reception amplification factor at predetermined time intervals, and the received wave is not saturated among the calculated distance values, And the laser radar apparatus which can output the high distance value of the intensity | strength of a received wave as a ranging distance is disclosed.
特許文献1の方法では、受信波が飽和せず、かつ、受信波の強度の高い距離値を測距距離として出力することができる一方で、1つの測距距離を定めるのに複数回レーザ光を出射して複数の距離値を算出する必要があるため、測距距離を効率的かつ高密度に取得することが困難となるといった問題が生じる。
According to the method of Patent Document 1, while the received wave is not saturated and a distance value with high intensity of the received wave can be output as a ranging distance, laser light is used multiple times to determine one ranging distance. Because it is necessary to emit light and calculate a plurality of distance values, there arises a problem that it is difficult to obtain distance measurement distances efficiently and at high density.
本発明は、上記のような課題を解決するためになされたものであり、遠方又は近距離に存在する物体のいずれで反射された電磁波を受信した場合であっても、的確に出力を行うことが可能な受信装置を提供することを主な目的とする。
The present invention has been made to solve the problems as described above, and it is possible to accurately output even when an electromagnetic wave reflected by an object present at a distance or near distance is received. The main object of the present invention is to provide a receiver capable of
請求項に記載の発明は、受信装置であって、角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定部と、を有することを特徴とする。
The invention described in the claims is a receiving device, which has a reflecting portion that reflects an electromagnetic wave while changing an angle, and an emitting portion that emits an electromagnetic wave while changing an emitting direction, and the electromagnetic wave reflected by an object. A receiving unit for receiving; and a determining unit for determining a gain of an amplifying unit for amplifying an output signal of the receiving unit based on an amount of change in angle of the reflecting unit after the emitting unit emits the electromagnetic wave. It is characterized by having.
また、請求項に記載の発明は、受信装置であって、角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の利得を決定する決定部と、を有することを特徴とする。
The invention described in the claims is a receiving device, which has a reflecting portion that reflects an electromagnetic wave while changing the angle, and the emitting portion that emits an electromagnetic wave while changing the emitting direction, and the above reflected by the object A receiver comprising: a receiver configured to receive an electromagnetic wave; and a determiner configured to determine a gain of the receiver based on an amount of change in the angle of the reflector after the emitter emits the electromagnetic wave. .
また、請求項に記載の発明は、角度を変えながら電磁波を反射する反射部を有する受信装置が実行する制御方法であって、出射方向を変えながら電磁波を出射する出射工程と、対象物によって反射された前記電磁波を受信部により受信する受信工程と、前記出射工程により前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定工程と、を有することを特徴とする。
The invention described in the claims is a control method executed by a receiving apparatus having a reflection unit that reflects an electromagnetic wave while changing an angle, and an emission process of emitting an electromagnetic wave while changing an emission direction, and reflection by an object Receiving step of receiving the electromagnetic wave by the receiving portion, and gain of an amplifying portion amplifying the output signal of the receiving portion based on an angle change amount of the reflecting portion after emitting the electromagnetic wave in the emitting step And determining a step of determining
また、請求項に記載の発明は、角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、を有する受信装置のコンピュータが実行するプログラムであって、前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定部として前記コンピュータを機能させる。
The invention described in the claims includes a reflection unit that reflects an electromagnetic wave while changing an angle, and an emission unit that emits an electromagnetic wave while changing an emission direction, and a reception unit that receives the electromagnetic wave reflected by an object. A program executed by the computer of the receiving apparatus, the amplifying unit amplifying the output signal of the receiving unit based on the amount of change in the angle of the reflecting unit after the emitting unit emits the electromagnetic wave. The computer functions as a determination unit to determine the gain of
本発明の好適な実施形態によれば、受信装置であって、角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定部と、を有する。一般に、距離が遠い物体ほど、当該物体に向けて出射された電磁波が受信部に戻るまでに生じる反射部の角度変化量が大きく、かつ、受信強度が弱くなる。以上を勘案し、受信装置は、受信部の出力信号を増幅する増幅部の利得を上述の角度変化量に基づいて決定することで、信号レベルの飽和及び不足を生じさせることなく、受信する電磁波の強度に応じた出力信号を好適に生成することができる。
According to a preferred embodiment of the present invention, there is provided a receiving apparatus comprising: a reflector configured to reflect an electromagnetic wave while changing an angle; and an emitter configured to emit an electromagnetic wave while changing an emission direction, and to be reflected by an object A determination unit that determines a gain of an output signal of the receiving unit based on a receiving unit that receives the electromagnetic wave and an angle change amount of the reflecting unit after the emitting unit emits the electromagnetic wave And. Generally, the farther the distance is, the larger the amount of change in the angle of the reflecting portion that occurs before the electromagnetic wave emitted toward the object returns to the receiving portion, and the reception strength becomes weaker. Taking the above into consideration, the receiving apparatus determines the gain of the amplifying unit for amplifying the output signal of the receiving unit based on the above-mentioned angle change amount, thereby receiving the electromagnetic wave received without causing saturation and deficiency of the signal level. It is possible to preferably generate an output signal according to the intensity of.
上記受信装置の一態様では、前記決定部は、前記角度変化量が小さいほど、前記利得を小さな値に決定する。言い換えれば、前記決定部は、前記角度変化量が小さいほど、前記利得を小さな値に変化させる。この態様によれば、受信装置は、距離が近い物体ほど、当該物体に向けて出射された電磁波が受信部に戻るまでに生じる反射部の角度変化量が小さく、かつ、受信強度が強くなることを勘案し、増幅部の利得を好適に決定することができる。
In one aspect of the receiving apparatus, the determination unit determines the gain to be a smaller value as the amount of change in angle is smaller. In other words, the determination unit changes the gain to a smaller value as the angle change amount is smaller. According to this aspect, in the receiving device, the closer the object is to the distance, the smaller the amount of change in the angle of the reflecting portion that occurs before the electromagnetic wave emitted toward the object returns to the receiving portion, and the receiving intensity becomes stronger. The gain of the amplification unit can be suitably determined in consideration of
上記受信装置の他の一態様では、前記決定部は、前記角度変化量に応じて前記利得を変化させる。言い換えれば、前記決定部は、前記角度変化量に応じて前記利得を決定する。この態様によれば、受信装置は、測距対象の物体が存在する距離に応じて増幅部の利得を適切な値に設定することができる。
In another aspect of the receiver, the determination unit changes the gain in accordance with the angle change amount. In other words, the determination unit determines the gain in accordance with the angle change amount. According to this aspect, the reception device can set the gain of the amplification unit to an appropriate value in accordance with the distance at which the object to be distance-measured exists.
上記受信装置の他の一態様では、前記反射部は、MEMSミラーであり、前記決定部は、前記反射部の角度と、前記角度変化量とに基づいて、前記利得を決定する。一般に、MEMSミラーによる走査では、MEMSミラーの角度変化の速度が走査位置によって異なる。よって、この態様では、受信装置は、反射部であるMEMSミラーの角度をさらに勘案することで、増幅部の利得をより的確に決定することができる。
In another aspect of the receiving apparatus, the reflecting unit is a MEMS mirror, and the determining unit determines the gain based on an angle of the reflecting unit and the amount of change in the angle. In general, in the scanning by the MEMS mirror, the speed of the angular change of the MEMS mirror differs depending on the scanning position. Therefore, in this aspect, the receiving apparatus can more accurately determine the gain of the amplification unit by further considering the angle of the MEMS mirror which is the reflection unit.
上記受信装置の他の一態様では、受信装置は、前記増幅部からの出力信号を、当該出力信号を出力したときの前記増幅部の利得に基づき補正する補正部をさらに備える。この態様により、受信装置は、増幅部の利得に依存しない出力信号を好適に生成することができる。
In another aspect of the receiving device, the receiving device further includes a correction unit that corrects an output signal from the amplification unit based on a gain of the amplification unit when the output signal is output. According to this aspect, the receiving device can preferably generate an output signal that does not depend on the gain of the amplification unit.
上記受信装置の他の一態様では、前記補正部が補正した前記出力信号に基づいて、前記対象物との距離を算出する算出部をさらに備える。この態様により、受信装置は、補正された出力信号に基づき対象物との距離を正確に算出することができる。
In another aspect of the receiving device, the receiving device further includes a calculating unit that calculates a distance to the object based on the output signal corrected by the correcting unit. According to this aspect, the receiving device can accurately calculate the distance to the object based on the corrected output signal.
上記受信装置の他の一態様では、前記出射部は、周期的に繰り返し前記電磁波を出射し、前記決定部は、1回の周期内の前記角度変化量に基づいて前記利得を決定する。この態様により、受信装置は、周期的に繰り返して電磁波を出射する場合に、各周期において増幅部の利得を的確に決定することができる。
In another aspect of the receiving apparatus, the emitting unit periodically and repeatedly emits the electromagnetic wave, and the determining unit determines the gain based on the amount of change in angle within one cycle. According to this aspect, the receiving apparatus can accurately determine the gain of the amplification unit in each cycle when emitting electromagnetic waves periodically and repeatedly.
本発明の他の好適な実施形態によれば、受信装置は、角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の利得を決定する決定部と、を有する。この態様によれば、受信装置は、受信部の利得を上述の角度変化量に基づいて決定することで、信号レベルの飽和及び不足を生じさせることなく、受信する電磁波の強度に応じた出力信号を好適に生成することができる。
According to another preferred embodiment of the present invention, the receiving device has a reflecting portion that reflects the electromagnetic wave while changing the angle, and an emitting portion that emits the electromagnetic wave while changing the emitting direction, and the object reflected by the object The receiver includes: a receiver configured to receive the electromagnetic wave; and a determiner configured to determine a gain of the receiver based on an amount of change in angle of the reflector after the emitter emits the electromagnetic wave. According to this aspect, the receiving apparatus determines the gain of the receiving unit based on the above-mentioned angle change amount, thereby producing an output signal according to the intensity of the received electromagnetic wave without causing saturation and deficiency of the signal level. Can be suitably generated.
本発明の他の好適な実施形態によれば、角度を変えながら電磁波を反射する反射部を有する受信装置が実行する制御方法であって、出射方向を変えながら電磁波を出射する出射工程と、対象物によって反射された前記電磁波を受信部により受信する受信工程と、前記出射工程により前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定工程と、を有する。受信装置は、この制御方法を実行することで、信号レベルの飽和及び不足を生じさせることなく、受信する電磁波の強度に応じた出力信号を好適に生成することが可能となる。
According to another preferred embodiment of the present invention, there is provided a control method executed by a receiving apparatus having a reflecting portion for reflecting an electromagnetic wave while changing an angle, comprising: an emitting step for emitting an electromagnetic wave while changing an emitting direction; An amplification process for amplifying an output signal of the receiving unit based on an amount of change in angle of the reflecting unit after receiving the electromagnetic wave reflected by the object by the receiving unit; Determining the gain of the part. By executing this control method, the receiving apparatus can preferably generate an output signal according to the intensity of the received electromagnetic wave without causing saturation and deficiency of the signal level.
本発明の他の好適な実施形態によれば、角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、を有する受信装置のコンピュータが実行するプログラムであって、前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定部として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、信号レベルの飽和及び不足を生じさせることなく、受信する電磁波の強度に応じた出力信号を好適に生成することが可能となる。好適には、上記プログラムは、記憶媒体に記憶される。
According to another preferred embodiment of the present invention, there is provided a reflecting portion for reflecting an electromagnetic wave while changing an angle, and an emitting portion for emitting an electromagnetic wave while changing an emitting direction, and the electromagnetic wave reflected by an object. A program executed by a computer of a receiving apparatus having a receiving unit, the output unit amplifying the output signal of the receiving unit based on an amount of change in angle of the reflecting unit after the emitting unit emits the electromagnetic wave. The computer functions as a determination unit that determines the gain of the amplification unit. By executing this program, the computer can preferably generate an output signal according to the intensity of the received electromagnetic wave without causing saturation and deficiency of the signal level. Preferably, the program is stored in a storage medium.
以下、図面を参照して本発明の好適な第1及び第2実施例について説明する。
Hereinafter, preferred first and second embodiments of the present invention will be described with reference to the drawings.
<第1実施例>
[全体構成]
図1は、第1実施例及び第2実施例に共通する測距装置100の概略構成である。測距装置100は、水平方向および垂直方向の所定の角度範囲に対して電磁波であるパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。測距装置100は、例えば、(Time Of Flight)方式のライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)である。測距装置100は、主に、水晶発振器10と、同期制御部11と、LDドライバ12と、レーザダイオード13と、MEMSミラー14と、駆動ドライバ15と、角度センサ16と、受信ブロック17と、信号処理部20と、を有する。 First Embodiment
[overall structure]
FIG. 1 is a schematic configuration of adistance measuring apparatus 100 common to the first embodiment and the second embodiment. The distance measuring apparatus 100 discretely measures the distance to an object present in the external world by emitting a pulse laser which is an electromagnetic wave to a predetermined angle range in the horizontal direction and the vertical direction, and measures the position of the object Generate three-dimensional point cloud information to be shown. The distance measuring apparatus 100 is, for example, a Time of Flight type lidar (Lidar: Light Detection and Ranging or Laser Illuminated Detection And Ranging). The range finder 100 mainly includes a crystal oscillator 10, a synchronization control unit 11, an LD driver 12, a laser diode 13, a MEMS mirror 14, a drive driver 15, an angle sensor 16, and a reception block 17. And a signal processing unit 20.
[全体構成]
図1は、第1実施例及び第2実施例に共通する測距装置100の概略構成である。測距装置100は、水平方向および垂直方向の所定の角度範囲に対して電磁波であるパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。測距装置100は、例えば、(Time Of Flight)方式のライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)である。測距装置100は、主に、水晶発振器10と、同期制御部11と、LDドライバ12と、レーザダイオード13と、MEMSミラー14と、駆動ドライバ15と、角度センサ16と、受信ブロック17と、信号処理部20と、を有する。 First Embodiment
[overall structure]
FIG. 1 is a schematic configuration of a
水晶発振器10は、同期制御部11及びA/Dコンバータ23にパルス状のクロック信号「S1」を出力する。
The crystal oscillator 10 outputs a pulse-like clock signal “S1” to the synchronization control unit 11 and the A / D converter 23.
同期制御部11は、パルス状のトリガ信号「S2」をLDドライバ12に出力する。以後では、トリガ信号S2がアサートされてから次にアサートされるまでの期間を「セグメント期間」とも呼ぶ。また、同期制御部11は、A/Dコンバータ23の出力を抽出するタイミングを定めるセグメント抽出信号「S3」を信号処理部20に出力する。トリガ信号S2及びセグメント抽出信号S3は、論理信号であり、後述する図2に示すように同期している。
The synchronization control unit 11 outputs a pulse-like trigger signal “S2” to the LD driver 12. Hereinafter, a period from the assertion of the trigger signal S2 to the next assertion is also referred to as a "segment period". Further, the synchronization control unit 11 outputs a segment extraction signal “S3” that determines the timing of extracting the output of the A / D converter 23 to the signal processing unit 20. The trigger signal S2 and the segment extraction signal S3 are logic signals and are synchronized as shown in FIG. 2 described later.
LDドライバ12は、同期制御部11から入力されるトリガ信号S2に同期してパルス電流をレーザダイオード13へ流す。レーザダイオード13は、例えば赤外パルスレーザであって、LDドライバ12から供給されるパルス電流に基づき光パルス(「送信光」とも呼ぶ。)を出射する。
The LD driver 12 supplies a pulse current to the laser diode 13 in synchronization with the trigger signal S2 input from the synchronization control unit 11. The laser diode 13 is, for example, an infrared pulse laser, and emits a light pulse (also referred to as “transmission light”) based on the pulse current supplied from the LD driver 12.
MEMSミラー14は、所定の水平角及び垂直角の範囲において角度を変えながらレーザダイオード13が出射する光パルスを外部へ反射すると共に、当該光パルスが照射された対象物で反射された光(「戻り光」とも呼ぶ。)を受光素子21に向けて反射する。この場合、MEMSミラー14は、上述の水平角を等角度により区切ったセグメントごとに光パルスを出射する。MEMSミラー14は、本発明における「反射部」の一例である。駆動ドライバ15は、MEMSミラー14を水平方向及び垂直方向において駆動するための駆動電流をMEMSミラー14に印加する。
The MEMS mirror 14 reflects the light pulse emitted from the laser diode 13 to the outside while changing the angle in the range of a predetermined horizontal angle and vertical angle, and the light reflected by the object irradiated with the light pulse (“ ) Is reflected toward the light receiving element 21. In this case, the MEMS mirror 14 emits a light pulse for each segment obtained by equally dividing the above-described horizontal angle. The MEMS mirror 14 is an example of the "reflecting portion" in the present invention. The drive driver 15 applies a drive current to the MEMS mirror 14 to drive the MEMS mirror 14 in the horizontal direction and the vertical direction.
MEMSミラー14には、角度センサ16が設けられている。角度センサ16は、例えば、水平方向及び垂直方向のMEMSミラー14の位置をそれぞれ検出するピエゾセンサである。角度センサ16は、MEMSミラー14の検出角度に関する角度検出信号「S4」を信号処理部20へ供給する。LDドライバ12、レーザダイオード13、及びMEMSミラー14は、本発明における「出射部」の一例である。
The MEMS mirror 14 is provided with an angle sensor 16. The angle sensor 16 is, for example, a piezo sensor that detects the position of the MEMS mirror 14 in the horizontal direction and the vertical direction. The angle sensor 16 supplies the signal processing unit 20 with an angle detection signal “S4” related to the detection angle of the MEMS mirror 14. The LD driver 12, the laser diode 13, and the MEMS mirror 14 are examples of the "emission part" in the present invention.
受信ブロック17は、物体からの戻り光の強度に比例した電圧信号を出力するものであって、主に、受光素子21と、電流電圧変換回路(トランスインピーダンスアンプ)22と、A/Dコンバータ23とを有する。なお、受信ブロック17の具体的な構成例については図3を参照して後述する。
The receiving block 17 outputs a voltage signal proportional to the intensity of the return light from the object, and mainly includes the light receiving element 21, a current / voltage conversion circuit (transimpedance amplifier) 22, and an A / D converter 23. And. A specific configuration example of the reception block 17 will be described later with reference to FIG.
受光素子21は、例えば、アバランシェフォトダイオードであり、MEMSミラー14により導かれた対象物からの反射光、即ち戻り光の光量に応じた微弱電流を生成する。受光素子21は、生成した微弱電流を、電流電圧変換回路22へ供給する。電流電圧変換回路22は、受光素子21から供給された微弱電流を増幅して電圧信号に変換し、変換した電圧信号をA/Dコンバータ23へ入力する。A/Dコンバータ23は、水晶発振器10から供給されるクロック信号S1に基づき、電流電圧変換回路22から供給される電圧信号をデジタル信号に変換し、変換したデジタル信号を信号処理部20に供給する。受光素子21は、本発明における「受信部」の一例であり、電流電圧変換回路22は、本発明における「増幅部」の一例である。
The light receiving element 21 is, for example, an avalanche photodiode, and generates a weak current according to the light quantity of the reflected light from the object guided by the MEMS mirror 14, that is, the return light. The light receiving element 21 supplies the generated weak current to the current-voltage conversion circuit 22. The current voltage conversion circuit 22 amplifies the weak current supplied from the light receiving element 21 and converts it into a voltage signal, and inputs the converted voltage signal to the A / D converter 23. The A / D converter 23 converts the voltage signal supplied from the current-voltage conversion circuit 22 into a digital signal based on the clock signal S1 supplied from the crystal oscillator 10, and supplies the converted digital signal to the signal processing unit 20. . The light receiving element 21 is an example of the “receiving unit” in the present invention, and the current-voltage conversion circuit 22 is an example of the “amplifying unit” in the present invention.
信号処理部20は、角度センサ16から供給される角度検出信号S4に基づき、受信ブロック17に設定すべき受信増幅率(ゲイン)を決定し、受信増幅率に関する制御信号「S5」を受信ブロック17へ供給する。このように、信号処理部20は、本発明における「決定部」として機能する。また、信号処理部20は、プログラムにより実行される場合には、本発明における「コンピュータ」として機能する。
The signal processing unit 20 determines the reception amplification factor (gain) to be set in the reception block 17 based on the angle detection signal S4 supplied from the angle sensor 16, and receives the control signal “S5” related to the reception amplification factor. Supply to. Thus, the signal processing unit 20 functions as a "determination unit" in the present invention. Further, the signal processing unit 20 functions as a “computer” in the present invention when it is executed by a program.
また、信号処理部20は、セグメント抽出信号S3がアサートされている期間におけるA/Dコンバータ23の出力であるデジタル信号を、セグメントごとの受光強度に関する信号(「セグメント信号」とも呼ぶ。)として生成する。そして、信号処理部20は、セグメント信号に基づき、対象物の距離及び角度を示す点群情報を生成する。具体的には、信号処理部20は、セグメント信号の波形からピークを検出し、検出したピークに対応する振幅及び遅延時間の推定を行う。そして、信号処理部20は、セグメント信号が示す波形のピークのうち、推定した振幅が所定の閾値以上となるピークの遅延時間に対応する距離の情報と対象のセグメントに対応する角度の情報との組を、点群情報を構成する各点の情報として生成する。
Further, the signal processing unit 20 generates a digital signal which is an output of the A / D converter 23 in a period in which the segment extraction signal S3 is asserted as a signal (also referred to as a “segment signal”) related to the light reception intensity for each segment. Do. Then, the signal processing unit 20 generates point group information indicating the distance and angle of the object based on the segment signal. Specifically, the signal processing unit 20 detects a peak from the waveform of the segment signal, and estimates an amplitude and a delay time corresponding to the detected peak. Then, the signal processing unit 20 determines, among the peaks of the waveform indicated by the segment signal, information of a distance corresponding to a delay time of a peak at which the estimated amplitude is a predetermined threshold or more and information of an angle corresponding to the target segment. A set is generated as information of each point constituting point cloud information.
なお、好適には、信号処理部20などは、高速制御を実現可能なように、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)などのハードウェアにより構成されるとよい。
Preferably, the signal processing unit 20 and the like may be configured by hardware such as an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA) so as to realize high-speed control.
図2は、トリガ信号S2及びセグメント抽出信号S3の時系列での波形を示す。図2に示すように、トリガ信号S2及びセグメント抽出信号S3は立ち上がりが同期しており、トリガ信号S2がアサートされる期間より長い所定期間だけセグメント抽出信号S3がアサートされる。そして、信号処理部20は、トリガ信号S2がアサート中にA/Dコンバータ18が出力する信号をセグメント信号として抽出することになる。そして、セグメント抽出信号S3がアサートされるアサート期間が長いほど、ライダユニット100からの最大測距距離(測距限界距離)が長くなる。
FIG. 2 shows waveforms of the trigger signal S2 and the segment extraction signal S3 in time series. As shown in FIG. 2, the rising edges of the trigger signal S2 and the segment extraction signal S3 are synchronized, and the segment extraction signal S3 is asserted for a predetermined period longer than the period in which the trigger signal S2 is asserted. Then, the signal processing unit 20 extracts a signal output by the A / D converter 18 while the trigger signal S2 is asserted as a segment signal. Then, as the assert period during which the segment extraction signal S3 is asserted is longer, the maximum distance measurement distance (distance measurement limit distance) from the rider unit 100 is longer.
図3は、受信ブロック17の構成例を示す。図3に示す受信ブロック17は、クランプダイオード付きTIA(トランスインピーダンスアンプ)型レシーバであって、受光素子21と、電流電圧変換回路22と、A/Dコンバータ23と、クランプダイオード24と、低抗25、26と、プリアンプ27とを有する。電流電圧変換回路22は、キャパシタ30と、帰還抵抗31と、オペアンプ(演算増幅器)32とを備える。
FIG. 3 shows a configuration example of the reception block 17. The receiving block 17 shown in FIG. 3 is a TIA (transimpedance amplifier) type receiver with a clamp diode, and the light receiving element 21, the current-voltage conversion circuit 22, the A / D converter 23, the clamp diode 24, and the low resistance 25 and 26 and a preamplifier 27. The current-voltage conversion circuit 22 includes a capacitor 30, a feedback resistor 31, and an operational amplifier (operational amplifier) 32.
受光素子21には、信号処理部20等から供給される高電圧「Vr」が逆バイアスとして印加されており、物体からの戻り光に比例した検出電流が流れる。そして、受光素子21が出力した検出電流は、電流電圧変換回路22により増幅されて電圧信号に変換される。ここで、電流電圧変換回路22(即ちオペアンプ32)の増幅率(「ゲインM」とも呼ぶ。)は、信号処理部20から供給される制御信号S5により調整可能となっている。そして、電流電圧変換回路22から出力された電圧信号は、プリアンプ27により増幅されてA/Dコンバータ23に供給される。
A high voltage "Vr" supplied from the signal processing unit 20 or the like is applied to the light receiving element 21 as a reverse bias, and a detection current proportional to the return light from the object flows. Then, the detected current output from the light receiving element 21 is amplified by the current voltage conversion circuit 22 and converted into a voltage signal. Here, the amplification factor (also referred to as “gain M”) of the current-voltage conversion circuit 22 (that is, the operational amplifier 32) can be adjusted by the control signal S5 supplied from the signal processing unit 20. The voltage signal output from the current-voltage conversion circuit 22 is amplified by the preamplifier 27 and supplied to the A / D converter 23.
測距装置100により遠距離の物体に対する測距を実現しようとした場合、A/Dコンバータ23に入力される電圧信号の強度がA/Dコンバータ23により識別可能な強度以上となるように、レーザダイオード13の出力を上げ、かつ、受信ブロック17の受光感度(像倍率)も上げる必要がある。一方、このような設定状態において、物体が近距離に存在し、光強度が過大となる戻り光を受光した場合、A/Dコンバータ23に入力される電圧信号が飽和し、セグメント信号が適切に生成されない。以上を勘案し、第1及び第2実施例では、測距装置100は、電流電圧変換回路22のゲインMを動的に調整することで、近傍に存在する物体及び遠方に存在する物体のいずれに対しても的確に測距を行う。
When attempting to realize distance measurement for an object at a long distance by the distance measuring apparatus 100, the laser is such that the intensity of the voltage signal input to the A / D converter 23 is equal to or higher than the intensity distinguishable by the A / D converter 23. It is necessary to increase the output of the diode 13 and also to increase the light receiving sensitivity (image magnification) of the receiving block 17. On the other hand, in such a setting state, when the object is at a short distance and the return light whose light intensity becomes excessive is received, the voltage signal input to the A / D converter 23 is saturated and the segment signal is appropriately Not generated Taking the above into consideration, in the first and second embodiments, the distance measuring apparatus 100 dynamically adjusts the gain M of the current-voltage conversion circuit 22 to either an object existing in the vicinity or an object existing in the distance The distance to the subject is accurately measured.
[ゲイン補正処理]
次に、第1実施例においてゲインMを動的に変更する処理(「ゲイン補正処理」とも呼ぶ。)について詳しく説明する。概略的には、信号処理部20は、光パルスが出射されてからのMEMSミラー14の角度の変化量(「角度変化量dθ」とも呼ぶ。)を計測し、当該角度変化量dθに応じてゲインMを各セグメント期間内で徐変させる。これにより、信号処理部20は、A/Dコンバータ23のダイナミックレンジを実質的に拡大し、A/Dコンバータ23に入力される電圧信号の信号レベルの飽和や不足を好適に抑制する。 [Gain correction processing]
Next, processing for dynamically changing the gain M (also referred to as "gain correction processing") in the first embodiment will be described in detail. Generally, thesignal processing unit 20 measures the amount of change in the angle of the MEMS mirror 14 (also referred to as “the amount of change in angle dθ”) after the light pulse is emitted, and corresponds to the amount of change in angle dθ. The gain M is gradually changed within each segment period. As a result, the signal processing unit 20 substantially expands the dynamic range of the A / D converter 23, and preferably suppresses saturation or deficiency of the signal level of the voltage signal input to the A / D converter 23.
次に、第1実施例においてゲインMを動的に変更する処理(「ゲイン補正処理」とも呼ぶ。)について詳しく説明する。概略的には、信号処理部20は、光パルスが出射されてからのMEMSミラー14の角度の変化量(「角度変化量dθ」とも呼ぶ。)を計測し、当該角度変化量dθに応じてゲインMを各セグメント期間内で徐変させる。これにより、信号処理部20は、A/Dコンバータ23のダイナミックレンジを実質的に拡大し、A/Dコンバータ23に入力される電圧信号の信号レベルの飽和や不足を好適に抑制する。 [Gain correction processing]
Next, processing for dynamically changing the gain M (also referred to as "gain correction processing") in the first embodiment will be described in detail. Generally, the
まず、MEMSミラー14の角度の時間変化について図4及び図5を参照して説明する。
First, the time change of the angle of the MEMS mirror 14 will be described with reference to FIGS. 4 and 5.
図4(A)は、前方に所定距離だけ離れた仮想的な照射面(仮想照射面)における送信光の概略的な走査線を示す。ここで、照射点50~52は、あるタイミングで出射された送信光が仮想照射面上で照射された点を示す。図4(B)は、照射点50に対応する送信光を反射したときのMEMSミラー14の側面図を示し、図4(C)は、照射点51に対応する送信光を反射したときのMEMSミラー14の側面図を示し、図4(D)は、照射点52に対応する送信光を反射したときのMEMSミラー14の側面図を示す。図4(A)~(D)における破線は、MEMSミラー14の法線を仮想的に示した線である。
FIG. 4A shows a schematic scan line of transmission light on a virtual irradiation surface (virtual irradiation surface) separated by a predetermined distance ahead. Here, the irradiation points 50 to 52 indicate points at which transmission light emitted at a certain timing is irradiated on the virtual irradiation surface. 4B shows a side view of the MEMS mirror 14 when the transmission light corresponding to the irradiation point 50 is reflected, and FIG. 4C shows the MEMS when the transmission light corresponding to the irradiation point 51 is reflected. FIG. 4D shows a side view of the mirror 14 and FIG. 4D shows a side view of the MEMS mirror 14 when the transmission light corresponding to the irradiation point 52 is reflected. The broken lines in FIGS. 4A to 4D are lines virtually representing the normal of the MEMS mirror 14.
図4(B)~図4(D)に示すように、MEMSミラー14は、照射点50に対応する送信光を反射したときと、照射点51に対応する送信光を反射したときと、照射点52に対応する送信光を反射したときとで角度が変化している。このように、MEMSミラー14は、連続的に角度を変えることで送信光の出射方向を制御するため、送信光を反射してからその戻り光が入射するまでの間においても角度変化が生じる。
As shown in FIGS. 4B to 4D, the MEMS mirror 14 reflects the transmission light corresponding to the irradiation point 50, reflects the transmission light corresponding to the irradiation point 51, and emits the irradiation light. The angle changes when the transmission light corresponding to the point 52 is reflected. As described above, since the MEMS mirror 14 controls the emission direction of the transmission light by continuously changing the angle, the angle change occurs between the reflection of the transmission light and the incidence of the return light.
図5(A)は、送信光を反射したときのMEMSミラー14の側面図を示し、図5(B)は、図5(A)に示す送信光の戻り光がMEMSミラー14に入射したときのMEMSミラー14の側面図を示す。図5(A)、(B)の例では、送信光を反射してからその戻り光が入射するまでの間に、角度変化量dθだけMEMSミラー14の角度変化が発生している。なお、図5(B)では、送信光を反射したときのMEMSミラー14の位置を破線により仮想的に示している。そして、角度変化量dθは、送信光を反射してからその戻り光が入射するまでの時間が長いほど大きくなる。よって、送信光が照射される対象物が近距離に存在する場合、送信光を反射してからその戻り光が入射するまでの時間が短いため、角度変化量dθはほぼ0となる。一方、送信光が照射される対象物が遠方に存在する場合、角度変化量dθは、送信光を反射してからその戻り光が入射するまでの時間に応じた値となる。
FIG. 5 (A) shows a side view of the MEMS mirror 14 when the transmission light is reflected, and FIG. 5 (B) shows when the return light of the transmission light shown in FIG. 5 (A) is incident on the MEMS mirror 14 Side view of the MEMS mirror 14 of FIG. In the examples of FIGS. 5A and 5B, the angle change of the MEMS mirror 14 occurs by the angle change amount dθ between the time when the transmission light is reflected and the time when the return light is incident. In FIG. 5B, the position of the MEMS mirror 14 when the transmission light is reflected is virtually shown by a broken line. Then, the angle change amount dθ becomes larger as the time from the reflection of the transmission light to the incidence of the return light becomes longer. Therefore, when the target to which the transmission light is irradiated is present at a short distance, the time from the reflection of the transmission light to the incidence of the return light is short, so the angle change amount dθ becomes almost zero. On the other hand, when the target to which the transmission light is irradiated is present in the distance, the angle change amount dθ has a value corresponding to the time from the reflection of the transmission light to the incidence of the return light.
図6は、第1実施例におけるゲイン補正処理に関する信号処理部20の機能的なブロック図を示す。図6に示すように、信号処理部20は、機能的には、角度記憶部40と、リセット部41と、角度変化量演算部42と、ゲイン設定部43と、出力補正部44と、変換マップ45とを含む。
FIG. 6 shows a functional block diagram of the signal processing unit 20 related to gain correction processing in the first embodiment. As shown in FIG. 6, the signal processing unit 20 functionally converts the angle storage unit 40, the reset unit 41, the angle change amount calculation unit 42, the gain setting unit 43, the output correction unit 44, and And a map 45.
角度記憶部40は、レーザダイオード13の発光時に角度センサ16が検出したMEMSミラー14の角度を記憶する。例えば、角度記憶部40は、トリガ信号S2がアサートされたときに角度センサ16が検出したMEMSミラー14の角度を記憶する。角度記憶部40は、例えばラッチ回路である。リセット部41は、セグメント期間ごとに角度記憶部40をクリアする。例えば、リセット部41は、図2に示すセグメント抽出信号S3のアサート期間終了後から次にトリガ信号S2及びセグメント抽出信号S3がアサートされるまでの任意のタイミングで角度記憶部40をクリアする。
The angle storage unit 40 stores the angle of the MEMS mirror 14 detected by the angle sensor 16 when the laser diode 13 emits light. For example, the angle storage unit 40 stores the angle of the MEMS mirror 14 detected by the angle sensor 16 when the trigger signal S2 is asserted. The angle storage unit 40 is, for example, a latch circuit. The reset unit 41 clears the angle storage unit 40 for each segment period. For example, the reset unit 41 clears the angle storage unit 40 at an arbitrary timing from the end of the assert period of the segment extraction signal S3 shown in FIG. 2 to the next assertion of the trigger signal S2 and the segment extraction signal S3.
角度変化量演算部42は、角度記憶部40に記憶されたMEMSミラー14の角度(「発光時角度」とも呼ぶ。)と、角度センサ16が出力するMEMSミラー14の現在の角度との角度差を角度変化量dθとして算出する。そして、角度変化量演算部42は、算出した角度変化量dθをゲイン設定部43へ供給する。
The angle change amount calculation unit 42 is an angle difference between the angle of the MEMS mirror 14 (also referred to as “light emission angle”) stored in the angle storage unit 40 and the current angle of the MEMS mirror 14 output by the angle sensor 16. Is calculated as the angle change amount dθ. Then, the angle change amount calculation unit 42 supplies the calculated angle change amount dθ to the gain setting unit 43.
ゲイン設定部43は、後述する変換マップ45を参照し、角度変化量演算部42が出力する角度変化量dθから設定すべきゲインMを算出する。そして、ゲイン設定部43は、算出したゲインMを指定した制御信号S5を電流電圧変換回路22へ供給する。ここで、ゲイン設定部43は、後述するように、角度変化量dθが小さいほどゲインMを小さくし、角度変化量dθが大きいほどゲインMを大きくするようにゲインMを設定する。
The gain setting unit 43 calculates a gain M to be set from the angle change amount dθ output from the angle change amount calculation unit 42 with reference to a conversion map 45 described later. Then, the gain setting unit 43 supplies the control signal S5 specifying the calculated gain M to the current-voltage conversion circuit 22. Here, as described later, the gain setting unit 43 sets the gain M so that the gain M decreases as the angle change amount dθ decreases, and the gain M increases as the angle change amount dθ increases.
出力補正部44は、ゲイン設定部43から供給されるゲインMと、A/Dコンバータ23の出力信号とを記憶する。そして、出力補正部44は、ゲインMに基づき、A/Dコンバータ23の出力信号を補正する。具体的には、出力補正部44は、A/Dコンバータ23の出力信号のレベルがゲインMの変化に依存しないように補正する。例えば、出力補正部44は、A/Dコンバータ23の出力信号の信号レベルを、ゲインMを所定の基準値とした場合に得られると予測される信号レベルに補正する。この場合、出力補正部44は、例えば、ゲイン設定部43から通知されたゲインMと上述の基準値との比率に応じて、A/Dコンバータ23の出力信号のレベルを所定率だけ増減させる。これにより、出力補正部44は、ゲインMに依存しない出力信号を好適に生成する。
The output correction unit 44 stores the gain M supplied from the gain setting unit 43 and the output signal of the A / D converter 23. Then, the output correction unit 44 corrects the output signal of the A / D converter 23 based on the gain M. Specifically, the output correction unit 44 corrects the level of the output signal of the A / D converter 23 so as not to depend on the change of the gain M. For example, the output correction unit 44 corrects the signal level of the output signal of the A / D converter 23 to a signal level predicted to be obtained when the gain M is a predetermined reference value. In this case, the output correction unit 44 increases or decreases the level of the output signal of the A / D converter 23 by a predetermined ratio according to, for example, the ratio between the gain M notified from the gain setting unit 43 and the above-described reference value. Thus, the output correction unit 44 suitably generates an output signal that does not depend on the gain M.
変換マップ45は、角度変化量dθに対する適切なゲインMを規定したマップであり、ゲイン設定部43により参照される。
The conversion map 45 is a map that defines an appropriate gain M for the angle change amount dθ, and is referred to by the gain setting unit 43.
図7は、変換マップ45により特定される1回のセグメント期間での角度変化量dθとゲインMとの対応関係を示す。図7に示す変換マップ45では、角度変化量dθが小さいほどゲインMが小さくなり、角度変化量dθが大きくなるほどゲインMが大きくなるようにゲインMが規定されている。このような変換マップ45を参照することで、ゲイン設定部43は、セグメント期間ごとに、角度変化量dθに応じて適切なゲインMを定め、A/Dコンバータ23のダイナミックレンジを実質的に拡大させることができる。
FIG. 7 shows the correspondence between the angle change amount dθ and the gain M in one segment period specified by the conversion map 45. In the conversion map 45 shown in FIG. 7, the gain M is smaller as the angle change amount dθ is smaller, and the gain M is defined such that the gain M is larger as the angle change amount dθ is larger. By referring to such a conversion map 45, the gain setting unit 43 determines an appropriate gain M according to the amount of angle change dθ for each segment period, substantially expanding the dynamic range of the A / D converter 23. It can be done.
図7に示す角度変化量dθとゲインMとの対応関係について補足説明する。図4及び図5で説明したように、角度変化量dθが小さいほど、即ち、送信光を反射してからその戻り光が入射するまでの時間が短いほど、当該送信光が照射された物体は近距離に存在し、戻り光の強度は強くなる。よって、角度変化量dθが小さいほど、A/Dコンバータ23に入力される電圧信号の信号レベルが高くなるため、A/Dコンバータ23での飽和を防ぐためにゲインMを小さくする必要がある。同様に、角度変化量dθが大きいほど、即ち、送信光を反射してからその戻り光が入射するまでの時間が長いほど、当該送信光が照射された物体は遠距離に存在し、戻り光の強度は弱くなる。よって、角度変化量dθが大きいほど、A/Dコンバータ23に入力される電圧信号の信号レベルが小さくなるため、A/Dコンバータ23での信号レベルの不足を防ぐためにゲインMを大きくする必要がある。以上を勘案し、図7に示す変換マップ45では、角度変化量dθが小さいほどゲインMが小さくなり、角度変化量dθが大きくなるほどゲインMが大きくなるようにゲインMが規定されている。
The correspondence between the amount of angle change dθ and the gain M shown in FIG. 7 will be supplementarily described. As described in FIGS. 4 and 5, the smaller the angle change amount dθ, that is, the shorter the time from reflection of transmission light to incidence of its return light, the object irradiated with the transmission light is It exists at a short distance, and the intensity of the return light becomes strong. Therefore, the smaller the angle change amount dθ, the higher the signal level of the voltage signal input to the A / D converter 23. Therefore, in order to prevent the saturation in the A / D converter 23, it is necessary to reduce the gain M. Similarly, the larger the angle change amount dθ, ie, the longer the time from reflection of transmission light to incidence of its return light, the longer the object irradiated with the transmission light, the return light The strength of the Therefore, the larger the angle change amount dθ, the smaller the signal level of the voltage signal input to the A / D converter 23. Therefore, in order to prevent the shortage of the signal level in the A / D converter 23, it is necessary to increase the gain M. is there. Taking the above into consideration, in the conversion map 45 shown in FIG. 7, the gain M is smaller as the angle change amount dθ is smaller, and the gain M is defined such that the gain M is larger as the angle change amount dθ is larger.
図8は、第1実施例におけるゲイン補正処理の手順を示すフローチャートである。
FIG. 8 is a flowchart showing the procedure of the gain correction process in the first embodiment.
まず、信号処理部20のリセット部41は、レーザダイオード13による送信光の発光前の所定のタイミングで角度記憶部40をクリアする(ステップS101)。その後、レーザダイオード13は、同期制御部11から供給されるトリガ信号S2に基づき、送信光を発光する(ステップS102)。そして、角度記憶部40は、レーザダイオード13が送信光を出射するタイミング(即ちトリガ信号S2及びセグメント抽出信号S3がアサートするタイミング)において角度センサ16が検出したMEMSミラー14の角度を、発光時角度として記憶する(ステップS103)。
First, the reset unit 41 of the signal processing unit 20 clears the angle storage unit 40 at a predetermined timing before emission of transmission light by the laser diode 13 (step S101). Thereafter, the laser diode 13 emits transmission light based on the trigger signal S2 supplied from the synchronization control unit 11 (step S102). Then, the angle storage unit 40 sets the angle of the MEMS mirror 14 detected by the angle sensor 16 at the timing when the laser diode 13 emits the transmission light (that is, the timing when the trigger signal S2 and the segment extraction signal S3 assert). Are stored (step S103).
次に、角度変化量演算部42は、角度記憶部40に記憶された発光時角度と、角度センサ16が出力するMEMSミラー14の現在の角度との角度差を角度変化量dθとして算出する(ステップS104)。そして、ゲイン設定部43は、角度変化量dθに応じたゲインMを、電流電圧変換回路22に設定する(ステップS105)。この場合、ゲイン設定部43は、図7に示されるような変換マップ45を参照して角度変化量dθからゲインMを算出し、算出したゲインMを指定する制御信号S5を電流電圧変換回路22へ供給する。そして、出力補正部44は、ゲイン設定部43から供給されるゲインMと、A/Dコンバータ23の出力信号とを記憶した後、当該ゲインMに応じて、A/Dコンバータ23の出力信号を補正する(ステップS106)。
Next, the angle change amount calculation unit 42 calculates an angle difference between the light emission angle stored in the angle storage unit 40 and the current angle of the MEMS mirror 14 output by the angle sensor 16 as the angle change amount dθ (see Step S104). Then, the gain setting unit 43 sets the gain M according to the angle change amount dθ in the current-voltage conversion circuit 22 (step S105). In this case, gain setting unit 43 calculates gain M from angle change amount dθ with reference to conversion map 45 as shown in FIG. 7, and generates control signal S5 for specifying calculated gain M as current-voltage conversion circuit 22. Supply to. Then, after storing the gain M supplied from the gain setting unit 43 and the output signal of the A / D converter 23, the output correction unit 44 stores the output signal of the A / D converter 23 according to the gain M. It corrects (step S106).
そして、信号処理部20は、次の発光タイミングか否か判定する(ステップS107)。そして、信号処理部20は、次の発光タイミングであると判断した場合(ステップS107;Yes)、ステップS101へ処理を戻して角度記憶部40のクリアを行う。一方、信号処理部20は、次の発光タイミングではないと判断した場合(ステップS107;No)、ステップS104へ処理を戻し、角度センサ16が出力するMEMSミラー14の現在の角度との角度差を角度変化量dθとして算出する。このようにすることで、信号処理部20は、セグメント期間ごとに、徐々に上昇する角度変化量dθに応じて適切にゲインMを大きくし、A/Dコンバータ23での飽和や信号レベルの不足などを好適に防ぐことができる。なお、信号処理部20は、ステップS107において、セグメント抽出信号S3のアサート期間が終了した場合に次の発光タイミングに十分近付いたと判断し、ステップS101へ処理を戻してもよい。
Then, the signal processing unit 20 determines whether it is the next light emission timing (step S107). Then, when the signal processing unit 20 determines that it is the next light emission timing (step S107; Yes), the process returns to step S101 to clear the angle storage unit 40. On the other hand, when the signal processing unit 20 determines that it is not the next light emission timing (step S107; No), the process returns to step S104, and the angle difference from the current angle of the MEMS mirror 14 output by the angle sensor 16 is The angle change amount dθ is calculated. By doing this, the signal processing unit 20 appropriately increases the gain M according to the gradually rising angle change amount dθ for each segment period, and the saturation in the A / D converter 23 and the shortage of the signal level Etc. can be suitably prevented. In step S107, when the assert period of the segment extraction signal S3 ends, the signal processing unit 20 may determine that the next light emission timing has come sufficiently, and the process may return to step S101.
以上説明したように、第1実施例に係る測距装置100は、LDドライバ12、レーザダイオード13、MEMSミラー14、受信素子21、電流電圧変換回路22、及び信号処理部20などを有する。そして、LDドライバ12、レーザダイオード13、及び角度を変えながら光パルスを反射するMEMSミラー14は、出射部として機能し、出射方向を変えながら光パルスを出射する。受光素子21は、対象物によって反射された光パルスの戻り光を受信する。そして、信号処理部20は、出射部が光パルスを出射してからのMEMSミラー14の角度変化量dθに基づいて、受光素子21の出力信号を増幅する電流電圧変換回路22のゲインMを決定する。これにより、A/Dコンバータ23のダイナミックレンジを実質的に拡大し、A/Dコンバータ23での信号レベルの飽和や不足を好適に抑制することができる。
As described above, the distance measuring apparatus 100 according to the first embodiment includes the LD driver 12, the laser diode 13, the MEMS mirror 14, the receiving element 21, the current-voltage conversion circuit 22, the signal processing unit 20, and the like. Then, the LD driver 12, the laser diode 13, and the MEMS mirror 14 that reflects the light pulse while changing the angle function as an emitting unit, and emit the light pulse while changing the emitting direction. The light receiving element 21 receives the return light of the light pulse reflected by the object. Then, the signal processing unit 20 determines the gain M of the current-voltage conversion circuit 22 that amplifies the output signal of the light receiving element 21 based on the angle change amount dθ of the MEMS mirror 14 after the emitting unit emits the light pulse. Do. As a result, the dynamic range of the A / D converter 23 can be substantially expanded, and saturation or deficiency of the signal level in the A / D converter 23 can be suitably suppressed.
<第2実施例>
第2実施例では、信号処理部20は、角度変化量dθに代えて、送信光の発光時からの経過時間(「経過時間Td」とも呼ぶ。)をセグメント期間ごとに算出し、経過時間Tdに応じてゲインMを変化させる点で第1実施例と異なる。その他、第1実施例と同様の構成については、適宜同一の符号を付し、その説明を省略する。 Second Embodiment
In the second embodiment, thesignal processing unit 20 calculates, for each segment period, an elapsed time (also referred to as “elapsed time Td”) from the time of emission of transmission light instead of the angle change amount dθ. Is different from the first embodiment in that the gain M is changed according to. In addition, about the structure similar to 1st Example, the same code | symbol is suitably attached and the description is abbreviate | omitted.
第2実施例では、信号処理部20は、角度変化量dθに代えて、送信光の発光時からの経過時間(「経過時間Td」とも呼ぶ。)をセグメント期間ごとに算出し、経過時間Tdに応じてゲインMを変化させる点で第1実施例と異なる。その他、第1実施例と同様の構成については、適宜同一の符号を付し、その説明を省略する。 Second Embodiment
In the second embodiment, the
図9は、第2実施例におけるゲイン補正処理に関する信号処理部20の機能的なブロック図を示す。図9に示すように、第2実施例に係る信号処理部20は、機能的には、経過時間演算部42Aと、ゲイン設定部43Aと、出力補正部44Aとを有する。
FIG. 9 shows a functional block diagram of the signal processing unit 20 related to gain correction processing in the second embodiment. As shown in FIG. 9, the signal processing unit 20 according to the second embodiment functionally includes an elapsed time calculation unit 42A, a gain setting unit 43A, and an output correction unit 44A.
経過時間演算部42Aは、同期制御部11から供給されるトリガ信号S2に基づき、光パルスが出射されるタイミングを検知した場合、さらに水晶発振器10から供給されるクロック信号S1に基づき、光パルスが出射されてから現在までの経過時間Tdを算出する。そして、経過時間演算部42Aは、算出した経過時間Tdをゲイン設定部43Aへ供給する。
When the elapsed time calculation unit 42A detects the timing at which the light pulse is emitted based on the trigger signal S2 supplied from the synchronization control unit 11, the light pulse is further detected based on the clock signal S1 supplied from the crystal oscillator 10. The elapsed time Td from the emission to the present is calculated. Then, the elapsed time calculation unit 42A supplies the calculated elapsed time Td to the gain setting unit 43A.
ゲイン設定部43Aは、変換マップ45Aを参照し、経過時間演算部42Aから供給された経過時間Tdから設定すべきゲインMを決定する。そして、ゲイン設定部43Aは、決定したゲインMの適用を指示する制御信号S5を、電流電圧変換回路22へ送信する。
The gain setting unit 43A refers to the conversion map 45A, and determines the gain M to be set from the elapsed time Td supplied from the elapsed time calculation unit 42A. Then, the gain setting unit 43A transmits a control signal S5 instructing application of the determined gain M to the current-voltage conversion circuit 22.
出力補正部44Aは、ゲイン設定部43Aから供給されるゲインMと、A/Dコンバータ23の出力信号とを記憶する。そして、出力補正部44Aは、当該ゲインMに基づき、A/Dコンバータ23の出力信号を補正する。具体的には、出力補正部44Aは、第1実施例の出力補正部44と同様に、A/Dコンバータ23の出力信号のレベルがゲインMの変化に依存しないように補正する。例えば、出力補正部44Aは、A/Dコンバータ23の出力信号のレベルを、ゲインMを所定の基準値とした場合に得られると予測される信号レベルに補正する。これにより、出力補正部44Aは、ゲインMに依存しない出力信号を好適に生成する。
The output correction unit 44A stores the gain M supplied from the gain setting unit 43A and the output signal of the A / D converter 23. Then, the output correction unit 44A corrects the output signal of the A / D converter 23 based on the gain M. Specifically, like the output correction unit 44 of the first embodiment, the output correction unit 44A corrects the level of the output signal of the A / D converter 23 so as not to depend on the change of the gain M. For example, the output correction unit 44A corrects the level of the output signal of the A / D converter 23 to a signal level predicted to be obtained when the gain M is a predetermined reference value. Thus, the output correction unit 44A suitably generates an output signal that does not depend on the gain M.
図10は、変換マップ45Aにより特定される1回のセグメント期間での経過時間TdとゲインMとの対応関係を示す。図10に示す変換マップ45Aでは、経過時間Tdが短いほどゲインMが小さくなり、経過時間Tdが長くなるほどゲインMが大きくなるようにゲインMが規定されている。
FIG. 10 shows the correspondence between the elapsed time Td and the gain M in one segment period specified by the conversion map 45A. In the conversion map 45A shown in FIG. 10, the gain M is defined so that the gain M decreases as the elapsed time Td decreases, and the gain M increases as the elapsed time Td increases.
図10に示す経過時間TdとゲインMとの対応関係について補足説明する。一般に、経過時間Tdが短いほど、送信光が照射された物体が近距離に存在し、その戻り光の強度は強くなる。よって、経過時間Tdが短いほど、A/Dコンバータ23に入力される電圧信号の信号レベルが高くなるため、A/Dコンバータ23での飽和を防ぐためにゲインMを小さくする必要がある。一方、経過時間Tdが長いほど、送信光が照射された物体が遠距離となり、その戻り光の強度は弱くなる。よって、経過時間Tdが長いほど、A/Dコンバータ23に入力される電圧信号の信号レベルが小さくなるため、A/Dコンバータ23での信号レベルの不足を防ぐためにゲインMを大きくする必要がある。以上を勘案し、図10に示す変換マップ45Aでは、経過時間Tdが短いほどゲインMが小さくなり、経過時間Tdが長くなるほどゲインMが大きくなるようにゲインMが規定されている。
The correspondence between the elapsed time Td and the gain M shown in FIG. 10 will be supplementarily described. Generally, the shorter the elapsed time Td, the closer the object irradiated with the transmission light is, and the stronger the intensity of the return light. Therefore, as the elapsed time Td is shorter, the signal level of the voltage signal input to the A / D converter 23 is higher, so the gain M needs to be reduced to prevent the saturation in the A / D converter 23. On the other hand, the longer the elapsed time Td, the longer the object irradiated with the transmission light, and the weaker the intensity of the return light. Therefore, as the elapsed time Td is longer, the signal level of the voltage signal input to the A / D converter 23 is smaller. Therefore, in order to prevent the shortage of the signal level in the A / D converter 23, it is necessary to increase the gain M. . Taking the above into consideration, in the conversion map 45A shown in FIG. 10, the gain M is smaller as the elapsed time Td is shorter, and the gain M is defined so that the gain M is larger as the elapsed time Td is longer.
図11は、第2実施例におけるゲイン補正処理の手順を示すフローチャートである。
FIG. 11 is a flowchart showing the procedure of gain correction processing in the second embodiment.
レーザダイオード13は、同期制御部11から供給されるトリガ信号S2に基づき、送信光を発光する(ステップS201)。そして、経過時間演算部42Aは、レーザダイオード13が送信光を出射するタイミング(即ちトリガ信号S2及びセグメント抽出信号S3がアサートするタイミング)からの経過時間である経過時間Tdを計算する(ステップS202)。そして、ゲイン設定部43Aは、経過時間演算部42Aが算出した経過時間Tdに応じたゲインMを、電流電圧変換回路22に設定する(ステップS203)。この場合、ゲイン設定部43Aは、図10に示されるような変換マップ45Aを参照して経過時間TdからゲインMを算出し、算出したゲインMを指定する制御信号S5を電流電圧変換回路22へ供給する。
The laser diode 13 emits transmission light based on the trigger signal S2 supplied from the synchronization control unit 11 (step S201). Then, the elapsed time calculation unit 42A calculates an elapsed time Td which is an elapsed time from the timing when the laser diode 13 emits the transmission light (that is, the timing when the trigger signal S2 and the segment extraction signal S3 are asserted) (step S202). . Then, the gain setting unit 43A sets the gain M according to the elapsed time Td calculated by the elapsed time calculation unit 42A in the current-voltage conversion circuit 22 (step S203). In this case, gain setting unit 43A calculates gain M from elapsed time Td with reference to conversion map 45A as shown in FIG. 10, and sends control signal S5 specifying the calculated gain M to current-voltage conversion circuit 22. Supply.
出力補正部44Aは、ゲイン設定部43Aから供給されるゲインMと、A/Dコンバータ23の出力信号とを記憶した後、当該ゲインMに応じて、A/Dコンバータ23の出力信号を補正する(ステップS204)。
After storing the gain M supplied from the gain setting unit 43A and the output signal of the A / D converter 23, the output correction unit 44A corrects the output signal of the A / D converter 23 according to the gain M. (Step S204).
そして、信号処理部20は、次の発光タイミングか否か判定する(ステップS205)。そして、信号処理部20は、次の発光タイミングであると判断した場合(ステップS205;Yes)、ステップS201へ処理を戻す。一方、信号処理部20は、次の発光タイミングではないと判断した場合(ステップS205;No)、ステップS202へ処理を戻し、水晶発振器10から供給されるクロック信号S1等に基づき引き続き経過時間Tdの加算を行う。このようにすることで、信号処理部20は、セグメント期間ごとの経過時間に応じて適切にゲインMを大きくし、A/Dコンバータ23での信号レベルの飽和や不足などを好適に防ぐことができる。なお、信号処理部20は、ステップS205において、セグメント抽出信号S3のアサート期間が終了した場合に次の発光タイミングに近付いたと判断し、ステップS201へ処理を戻してもよい。
Then, the signal processing unit 20 determines whether it is the next light emission timing (step S205). When the signal processing unit 20 determines that it is the next light emission timing (step S205; Yes), the process returns to step S201. On the other hand, when the signal processing unit 20 determines that it is not the next light emission timing (step S205; No), the process returns to step S202 and continues based on the clock signal S1 and the like supplied from the crystal oscillator 10 Perform the addition. By doing this, the signal processing unit 20 appropriately increases the gain M according to the elapsed time for each segment period, and suitably prevents saturation or shortage of the signal level in the A / D converter 23 and the like. it can. In step S205, when the assert period of the segment extraction signal S3 ends, the signal processing unit 20 may determine that the next light emission timing is approached, and the process may return to step S201.
以上説明したように、第2実施例に係る測距装置100は、LDドライバ12、レーザダイオード13、MEMSミラー14、受信素子21、電流電圧変換回路22、及び信号処理部20などを有する。そして、LDドライバ12、レーザダイオード13、及び角度を変えながら光パルスを反射するMEMSミラー14は、出射部として機能し、出射方向を変えながら光パルスを出射する。受光素子21は、対象物によって反射された光パルスの戻り光を受信する。そして、信号処理部20は、出射部が光パルスを出射してからの経過時間である経過時間Tdに基づいて、受光素子21の出力信号を増幅する電流電圧変換回路22のゲインMを決定する。これにより、A/Dコンバータ23のダイナミックレンジを実質的に拡大し、A/Dコンバータ23での信号レベルの飽和や不足を好適に抑制することができる。
As described above, the distance measuring apparatus 100 according to the second embodiment includes the LD driver 12, the laser diode 13, the MEMS mirror 14, the receiving element 21, the current-voltage conversion circuit 22, the signal processing unit 20, and the like. Then, the LD driver 12, the laser diode 13, and the MEMS mirror 14 that reflects the light pulse while changing the angle function as an emitting unit, and emit the light pulse while changing the emitting direction. The light receiving element 21 receives the return light of the light pulse reflected by the object. Then, the signal processing unit 20 determines the gain M of the current-voltage conversion circuit 22 that amplifies the output signal of the light receiving element 21 based on an elapsed time Td which is an elapsed time after the emitting unit emits the light pulse. . As a result, the dynamic range of the A / D converter 23 can be substantially expanded, and saturation or deficiency of the signal level in the A / D converter 23 can be suitably suppressed.
<変形例>
次に、第1及び第2実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて上述の実施例に適用してもよい。 <Modification>
Next, modifications suitable for the first and second embodiments will be described. The following modifications may be arbitrarily combined and applied to the above-described embodiment.
次に、第1及び第2実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて上述の実施例に適用してもよい。 <Modification>
Next, modifications suitable for the first and second embodiments will be described. The following modifications may be arbitrarily combined and applied to the above-described embodiment.
(変形例1)
第1及び第2実施例において、信号処理部20は、電流電圧変換回路22のゲインMを連続的に上昇させる代わりに、電流電圧変換回路22のゲインMを段階的に上昇させてもよい。 (Modification 1)
In the first and second embodiments, thesignal processing unit 20 may raise the gain M of the current-voltage conversion circuit 22 stepwise, instead of continuously increasing the gain M of the current-voltage conversion circuit 22.
第1及び第2実施例において、信号処理部20は、電流電圧変換回路22のゲインMを連続的に上昇させる代わりに、電流電圧変換回路22のゲインMを段階的に上昇させてもよい。 (Modification 1)
In the first and second embodiments, the
例えば、信号処理部20は、セグメント期間のうちゲインMを変更するタイミングを1又は複数個設け、設けたゲインMの各変更タイミングにおいて、角度変化量dθ又は経過時間Tdに基づきゲインMを決定し、決定したゲインMを指定した制御信号S5を電流電圧変換回路22に送信する。この場合、ゲインMの初期値は、各変更タイミングにおいて決定されるゲインMよりも小さい値となるように予め設定される。なお、信号処理部20は、セグメント抽出信号S3のアサート期間終了後からトリガ信号S2及びセグメント抽出信号S3がアサートされるタイミングまでの任意のタイミングにおいてゲインMを初期値に設定することで、セグメント期間ごとにゲインMを初期値に戻す。
For example, the signal processing unit 20 provides one or more timings for changing the gain M in the segment period, and determines the gain M based on the angle change amount dθ or the elapsed time Td at each change timing of the provided gain M. The control signal S5 specifying the determined gain M is transmitted to the current-voltage conversion circuit 22. In this case, the initial value of the gain M is preset to be smaller than the gain M determined at each change timing. The signal processing unit 20 sets the gain M to an initial value at an arbitrary timing from the end of the assert period of the segment extraction signal S3 to the timing at which the trigger signal S2 and the segment extraction signal S3 are asserted. The gain M is returned to the initial value every time.
このように、信号処理部20は、段階的にゲインMを上げる態様であっても、好適にA/Dコンバータ23のダイナミックレンジを実質的に拡大させ、A/Dコンバータ23での信号レベルの飽和や不足を好適に抑制することができる。
Thus, the signal processing unit 20 preferably substantially expands the dynamic range of the A / D converter 23 even when the gain M is gradually increased, and the signal level of the A / D converter 23 can be reduced. Saturation or deficiency can be suitably suppressed.
(変形例2)
第1実施例において、角度変化量演算部42は、MEMSミラー14の角度に応じて、参照すべき変換マップ45を切り替えてもよい。 (Modification 2)
In the first embodiment, the angle changeamount calculation unit 42 may switch the conversion map 45 to be referred to in accordance with the angle of the MEMS mirror 14.
第1実施例において、角度変化量演算部42は、MEMSミラー14の角度に応じて、参照すべき変換マップ45を切り替えてもよい。 (Modification 2)
In the first embodiment, the angle change
図12(A)は、前方に所定距離だけ離れた仮想的な照射面(仮想照射面)における光パルスの概略的な走査線を示す。一般に、MEMSミラー14による走査においては、走査領域の主走査方向の左右端領域(破線枠60、61参照)では、他の領域(即ち中央付近の走査領域)に比べて走査速度(即ちMEMSミラー14の角速度)が遅くなる。よって、MEMSミラー14が走査領域の左右端領域に向けられている場合には、他の場合と比較し、同じ経過時間でも計測される角度変化量dθが小さくなる。以上を勘案し、本変形例では、角度変化量演算部42は、MEMSミラー14の角度に応じて参照すべき変換マップ45を切り替える。
FIG. 12A shows a schematic scan line of light pulses on a virtual irradiation surface (virtual irradiation surface) separated by a predetermined distance ahead. In general, in the scanning by the MEMS mirror 14, the scanning speed (ie, the MEMS mirror) in the left and right end areas of the scanning area in the main scanning direction (see dashed frames 60 and 61) compared to other areas (ie, scanning areas near the center) The angular velocity of 14) becomes slower. Therefore, when the MEMS mirror 14 is directed to the left and right end regions of the scanning region, the angle change amount dθ measured at the same elapsed time is smaller than in the other cases. In consideration of the above, in the present modification, the angle change amount calculation unit 42 switches the conversion map 45 to be referred to in accordance with the angle of the MEMS mirror 14.
図12(B)は、図12(A)の破線枠60、61以外の中央付近の走査領域にパルス光が照射されるMEMSミラー14の角度範囲(「第1角度範囲」とも呼ぶ。)のときに参照される変換マップ45が示す角度変化量dθとゲインMとの関係を示し、図12(C)は、破線枠60、61の走査領域にパルス光が照射されるMEMSミラー14の角度(「第2角度範囲」とも呼ぶ。)のときに参照される変換マップ45が示す角度変化量dθとゲインMとの関係を示す。
FIG. 12B shows an angle range (also referred to as a “first angle range”) of the MEMS mirror 14 in which the pulse light is irradiated to the scanning region near the center other than the broken line frames 60 and 61 in FIG. FIG. 12C shows the relationship between the angle change amount dθ indicated by the conversion map 45 referred to when referred to and the gain M, and FIG. The relationship between the amount of angle change dθ and the gain M indicated by the conversion map 45 referred to at the time of (also referred to as “second angle range”) is shown.
MEMSミラー14の角度が第2角度範囲内となる場合、MEMSミラー14の角度が第1角度範囲内となる場合よりもMEMSミラー14の角度変化が相対的に遅いため、図12(C)に示す変換マップ45では、図12(B)に示す変換マップ45よりも、角度変化量dθの変化に対するゲインMの上昇率が高くなっている。そして、角度変化量演算部42は、角度センサ16から供給されるMEMSミラー14の検出角度が第1角度範囲内となる場合には、図12(A)に示す変換マップ45を参照してゲインMを決定し、MEMSミラー14の検出角度が第2角度範囲内となる場合には、図12(B)に示す変換マップ45を参照してゲインMを決定する。
When the angle of the MEMS mirror 14 is within the second angle range, the angle change of the MEMS mirror 14 is relatively slower than when the angle of the MEMS mirror 14 is within the first angle range, as shown in FIG. In the conversion map 45 shown, the rate of increase of the gain M with respect to the change of the angle change amount dθ is higher than that of the conversion map 45 shown in FIG. 12 (B). Then, when the detection angle of the MEMS mirror 14 supplied from the angle sensor 16 falls within the first angle range, the angle change amount calculation unit 42 refers to the conversion map 45 shown in FIG. M is determined, and when the detection angle of the MEMS mirror 14 falls within the second angle range, the gain M is determined with reference to the conversion map 45 shown in FIG. 12 (B).
このように、本変形例では、MEMSミラー14の角度に応じた走査速度の違いを考慮し、より適切なゲインMを設定することができる。
As described above, in the present modification, it is possible to set a more appropriate gain M in consideration of the difference in scanning speed according to the angle of the MEMS mirror 14.
(変形例3)
図1に示す測距装置100の構成は一例であり、本発明が適用可能な構成はこれに限定されない。例えば、測距装置100は、MEMSミラー14に代えて、モータで回転する回転ミラーを備えてもよい。この場合、角度センサ16は、回転ミラーの回転角度を検出し、信号処理部20は、角度センサ16が検出する回転角度に基づき角度変化量dθを算出する。 (Modification 3)
The configuration of thedistance measuring apparatus 100 shown in FIG. 1 is an example, and the configuration to which the present invention can be applied is not limited to this. For example, the distance measuring apparatus 100 may include a rotating mirror that is rotated by a motor, instead of the MEMS mirror 14. In this case, the angle sensor 16 detects the rotation angle of the rotating mirror, and the signal processing unit 20 calculates the amount of angle change dθ based on the rotation angle detected by the angle sensor 16.
図1に示す測距装置100の構成は一例であり、本発明が適用可能な構成はこれに限定されない。例えば、測距装置100は、MEMSミラー14に代えて、モータで回転する回転ミラーを備えてもよい。この場合、角度センサ16は、回転ミラーの回転角度を検出し、信号処理部20は、角度センサ16が検出する回転角度に基づき角度変化量dθを算出する。 (Modification 3)
The configuration of the
同様に、図3に示される受信ブロック17の構成は一例であり、本発明が適用可能な構成はこれに限定されない。例えば、受信ブロック17は、受光素子21とA/Dコンバータ23との間に増幅器が設けられ、当該増幅器のゲインを調整可能な構成であればよい。
Similarly, the configuration of the reception block 17 shown in FIG. 3 is an example, and the configuration to which the present invention is applicable is not limited thereto. For example, the receiving block 17 may have a configuration in which an amplifier is provided between the light receiving element 21 and the A / D converter 23 and the gain of the amplifier can be adjusted.
(変形例4)
信号処理部20は、電流電圧変換回路22のゲインMを変更する代わりに、受光素子21のゲインを変更してもよい。 (Modification 4)
Thesignal processing unit 20 may change the gain of the light receiving element 21 instead of changing the gain M of the current-voltage conversion circuit 22.
信号処理部20は、電流電圧変換回路22のゲインMを変更する代わりに、受光素子21のゲインを変更してもよい。 (Modification 4)
The
例えば、第1実施例の場合、信号処理部20は、変換マップ45に代えて、角度変化量dθごとに、適切な受光素子21のゲインを得るために受光素子21に印加すべき電圧Vrを示すマップを記憶する。そして、信号処理部20は、当該マップを参照することで、送信光の発光タイミングからのMEMSミラー14の角度変化量dθに基づき、受光素子21に印加すべき電圧Vrを決定し、当該電圧Vrを受光素子21に印加する。これにより、信号処理部20は、受光量の飽和や不足が生じないように受光素子21のゲインを適切に設定することができる。
For example, in the case of the first embodiment, instead of the conversion map 45, the signal processing unit 20 applies the voltage Vr to be applied to the light receiving element 21 to obtain an appropriate gain of the light receiving element 21 for each angle change amount dθ. Store the map shown. Then, the signal processing unit 20 determines the voltage Vr to be applied to the light receiving element 21 based on the angle change amount dθ of the MEMS mirror 14 from the light emission timing of the transmission light by referring to the map, and the voltage Vr Is applied to the light receiving element 21. Thus, the signal processing unit 20 can appropriately set the gain of the light receiving element 21 so as not to cause saturation or deficiency of the light reception amount.
第2実施例においても同様に、信号処理部20は、変換マップ45Aに代えて、経過時間Tdごとに、適切な受光素子21のゲインを得るために受光素子21に印加すべき電圧Vrを示すマップを記憶し、当該マップを参照して受光素子21に印加すべき電圧Vrを決定するとよい。なお、本変形例においても、出力補正部44又は出力補正部44Aは、受光素子21に印加された電圧Vrに基づき受光素子21のゲインを特定し、当該ゲインに基づき、A/Dコンバータ23の出力信号を第1及び第2実施例と同様に補正するとよい。
Similarly in the second embodiment, the signal processing unit 20 indicates the voltage Vr to be applied to the light receiving element 21 to obtain an appropriate gain of the light receiving element 21 every elapsed time Td, instead of the conversion map 45A. A map may be stored, and the voltage Vr to be applied to the light receiving element 21 may be determined with reference to the map. Also in this modification, the output correction unit 44 or the output correction unit 44A specifies the gain of the light receiving element 21 based on the voltage Vr applied to the light receiving element 21, and based on the gain, The output signal may be corrected as in the first and second embodiments.
10 水晶発振器
11 同期制御部
12 LDドライバ
13 レーザダイオード
14 MEMSミラー
15 駆動ドライバ
16 角度センサ
17 受信ブロック
20 信号処理部
100 測距装置 DESCRIPTION OFSYMBOLS 10 Crystal oscillator 11 Synchronization control part 12 LD driver 13 Laser diode 14 MEMS mirror 15 Drive driver 16 Angle sensor 17 Reception block 20 Signal processing part 100 Ranging device
11 同期制御部
12 LDドライバ
13 レーザダイオード
14 MEMSミラー
15 駆動ドライバ
16 角度センサ
17 受信ブロック
20 信号処理部
100 測距装置 DESCRIPTION OF
Claims (11)
- 角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、
対象物によって反射された前記電磁波を受信する受信部と、
前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定部と、
を有する受信装置。 An emitting unit that has a reflecting unit that reflects an electromagnetic wave while changing the angle, and that emits an electromagnetic wave while changing the emitting direction;
A receiver for receiving the electromagnetic wave reflected by the object;
A determination unit that determines a gain of an amplification unit that amplifies an output signal of the reception unit based on an amount of change in angle of the reflection unit after the emission unit emits the electromagnetic wave;
Receiving device having: - 前記決定部は、前記角度変化量が小さいほど、前記利得を小さな値に決定する、請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the determination unit determines the gain to a smaller value as the amount of change in angle is smaller.
- 前記決定部は、前記角度変化量に応じて前記利得を変化させる、請求項1又は2に記載の受信装置。 The receiving device according to claim 1, wherein the determination unit changes the gain in accordance with the amount of change in angle.
- 前記反射部は、MEMSミラーであり、
前記決定部は、前記反射部の角度と、前記角度変化量とに基づいて、前記利得を決定する、請求項1~3のいずれか一項に記載の受信装置。 The reflection unit is a MEMS mirror,
The receiver according to any one of claims 1 to 3, wherein the determination unit determines the gain based on an angle of the reflection unit and the amount of change in the angle. - 前記増幅部からの出力信号を、当該出力信号を出力したときの前記増幅部の利得に基づき補正する補正部をさらに備える、請求項1~4のいずれか一項に記載の受信装置。 The receiver according to any one of claims 1 to 4, further comprising a correction unit that corrects an output signal from the amplification unit based on a gain of the amplification unit when the output signal is output.
- 前記補正部が補正した前記出力信号に基づいて、前記対象物との距離を算出する算出部をさらに備える、請求項5に記載の受信装置。 The receiving device according to claim 5, further comprising a calculating unit that calculates a distance to the object based on the output signal corrected by the correcting unit.
- 前記出射部は、周期的に繰り返し前記電磁波を出射し、
前記決定部は、1回の周期内の前記角度変化量に基づいて前記利得を決定する、
請求項1乃至6のいずれか一項に記載の受信装置。 The emitting unit periodically and repeatedly emits the electromagnetic wave,
The determining unit determines the gain based on the angle change amount in one cycle.
The receiver according to any one of claims 1 to 6. - 角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、
対象物によって反射された前記電磁波を受信する受信部と、
前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の利得を決定する決定部と、
を有する受信装置。 An emitting unit that has a reflecting unit that reflects an electromagnetic wave while changing the angle, and that emits an electromagnetic wave while changing the emitting direction;
A receiver for receiving the electromagnetic wave reflected by the object;
A determination unit that determines a gain of the receiving unit based on an amount of change in angle of the reflecting unit after the emitting unit emits the electromagnetic wave;
Receiving device having: - 角度を変えながら電磁波を反射する反射部を有する受信装置が実行する制御方法であって、
出射方向を変えながら電磁波を出射する出射工程と、
対象物によって反射された前記電磁波を受信部により受信する受信工程と、
前記出射工程により前記電磁波を出射してからの前記反射部の角度変化量に基づいて、
前記受信部の出力信号を増幅する増幅部の利得を決定する決定工程と、
を有する制御方法。 A control method executed by a receiving apparatus having a reflection unit that reflects an electromagnetic wave while changing an angle,
An emitting step of emitting an electromagnetic wave while changing an emitting direction;
A receiving step of receiving the electromagnetic wave reflected by the object by a receiving unit;
Based on the amount of change in angle of the reflecting portion after emitting the electromagnetic wave in the emitting step,
A determination step of determining a gain of an amplification unit for amplifying an output signal of the reception unit;
Controlling method. - 角度を変えながら電磁波を反射する反射部を有し、出射方向を変えながら電磁波を出射する出射部と、対象物によって反射された前記電磁波を受信する受信部と、を有する受信装置のコンピュータが実行するプログラムであって、
前記出射部が前記電磁波を出射してからの前記反射部の角度変化量に基づいて、前記受信部の出力信号を増幅する増幅部の利得を決定する決定部
として前記コンピュータを機能させるプログラム。 The computer of the receiving apparatus has a reflection unit that reflects the electromagnetic wave while changing the angle, and an emission unit that emits the electromagnetic wave while changing the emission direction, and a reception unit that receives the electromagnetic wave reflected by the object The program to be
A program that causes the computer to function as a determination unit that determines a gain of an amplification unit that amplifies an output signal of the reception unit based on an amount of change in angle of the reflection unit after the emission unit emits the electromagnetic wave. - 請求項10に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008190 | 2018-01-22 | ||
JP2018-008190 | 2018-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019142778A1 true WO2019142778A1 (en) | 2019-07-25 |
Family
ID=67301737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000904 WO2019142778A1 (en) | 2018-01-22 | 2019-01-15 | Reception device, control method, program, and storage medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019142778A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003167054A (en) * | 2001-12-04 | 2003-06-13 | Denso Corp | Distance measuring method and distance measuring device |
JP2014020963A (en) * | 2012-07-19 | 2014-02-03 | Fujitsu Ltd | Distance measurement apparatus, emission timing controller and program |
WO2016101973A1 (en) * | 2014-12-22 | 2016-06-30 | Trimble Ab | Distance measurement instrument |
-
2019
- 2019-01-15 WO PCT/JP2019/000904 patent/WO2019142778A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003167054A (en) * | 2001-12-04 | 2003-06-13 | Denso Corp | Distance measuring method and distance measuring device |
JP2014020963A (en) * | 2012-07-19 | 2014-02-03 | Fujitsu Ltd | Distance measurement apparatus, emission timing controller and program |
WO2016101973A1 (en) * | 2014-12-22 | 2016-06-30 | Trimble Ab | Distance measurement instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10302747B2 (en) | Distance measuring apparatus, electronic device, method for measuring distance, and recording medium | |
EP3009859B1 (en) | Distance measuring device | |
WO2017060965A1 (en) | Light control device, control method, program, and storage medium | |
CN111679260B (en) | Drag point identification processing method, laser radar, and computer-readable storage medium | |
JP6413960B2 (en) | Distance measuring device | |
JP2008267920A (en) | Laser range finding device and laser range finding method | |
JPH09236661A (en) | Distance measuring method and distance measuring device | |
US20150268343A1 (en) | Range finder, mobile object and range-finding method | |
JP3635154B2 (en) | Distance measuring device | |
JP6700575B2 (en) | Circuit device, photodetector, object detection device, sensing device, mobile device, photodetection method, and object detection method | |
JP2007170819A (en) | Pulse-wave radar apparatus | |
JP2013096742A (en) | Radar apparatus | |
JP4984671B2 (en) | Radar equipment | |
WO2019065490A1 (en) | Control device, detection device, method for controlling avalanche diode, program and storage medium | |
KR20200088654A (en) | LiDAR device and operating method of the same | |
JP2020052051A (en) | Light control device, control method, program and storage medium | |
JP6417981B2 (en) | Ranging device | |
WO2019142778A1 (en) | Reception device, control method, program, and storage medium | |
JP2019109193A (en) | Distance measuring device, mobile device and distance measuring | |
JP2019128177A (en) | Receiving device, control method, program, and storage medium | |
US20240004070A1 (en) | Optical rangefinder and optical rangefinding method | |
US11327159B2 (en) | Electronic distance meter | |
JP7003949B2 (en) | Optical range measuring device | |
CN110476130B (en) | Measurement system and method for performing time-of-flight measurements | |
JP7324925B2 (en) | LIGHT CONTROL DEVICE, CONTROL METHOD, PROGRAM AND STORAGE MEDIUM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19741466 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19741466 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |