WO2019065490A1 - Control device, detection device, method for controlling avalanche diode, program and storage medium - Google Patents

Control device, detection device, method for controlling avalanche diode, program and storage medium Download PDF

Info

Publication number
WO2019065490A1
WO2019065490A1 PCT/JP2018/035014 JP2018035014W WO2019065490A1 WO 2019065490 A1 WO2019065490 A1 WO 2019065490A1 JP 2018035014 W JP2018035014 W JP 2018035014W WO 2019065490 A1 WO2019065490 A1 WO 2019065490A1
Authority
WO
WIPO (PCT)
Prior art keywords
avalanche diode
electromagnetic wave
bias voltage
reverse bias
control device
Prior art date
Application number
PCT/JP2018/035014
Other languages
French (fr)
Japanese (ja)
Inventor
庄悟 宮鍋
古川 淳一
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019545056A priority Critical patent/JPWO2019065490A1/en
Publication of WO2019065490A1 publication Critical patent/WO2019065490A1/en
Priority to JP2022045126A priority patent/JP2022091847A/en
Priority to JP2024035824A priority patent/JP2024053083A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Definitions

  • the present invention relates to a control device, a detection device, a method of controlling an avalanche diode, a program, and a storage medium.
  • a detection device using TOF may be used.
  • Patent Document 1 describes an example of such a detection device.
  • the detection device comprises a transmitter and a receiver.
  • the transmitter transmits light.
  • the light transmitted from the transmitter reflects off the object.
  • Light reflected from the object is received by the receiver.
  • the detection device can calculate the distance to the object based on the time until the receiver receives the light transmitted from the transmitter.
  • An avalanche diode can be used for the receiver used for TOF.
  • AD can multiply photocurrent by reverse bias voltage.
  • the higher the multiplication factor of the photocurrent the higher the level of the signal of the photocurrent generated from the AD.
  • the higher the multiplication factor the higher the level of the noise generated from the AD.
  • Patent Document 2 describes that the shot noise becomes higher as the multiplication factor becomes higher. Further, Patent Document 2 describes that the AD is operated at an optimal multiplication factor, ie, a multiplication factor that maximizes the signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • the optimal multiplication factor of AD fluctuates depending on the external environment, eg, temperature. Therefore, when operating the AD at a constant reverse bias voltage, fluctuations in the external environment may cause the noise level to exceed a certain level (allowable value).
  • One of the problems to be solved by the present invention is, for example, stable operation of AD at high SNR and high multiplication factor.
  • the invention according to claim 1 is A transmitter for transmitting an electromagnetic wave, An avalanche diode for receiving the electromagnetic wave reflected by the object; A controller configured to control a reverse bias voltage applied to the avalanche diode;
  • the control unit is a control device that controls the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode does not receive the electromagnetic wave.
  • the invention according to claim 7 is A transmitter for transmitting an electromagnetic wave, A receiver having an avalanche diode for receiving an electromagnetic wave transmitted from the transmitter and reflected from an object; A control unit that controls a reverse bias voltage applied to the avalanche diode; Equipped with The control unit is a detection device that controls the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode does not receive an electromagnetic wave.
  • the invention according to claim 8 is An irradiation unit for irradiating an electromagnetic wave, A receiver capable of receiving the electromagnetic wave reflected by the object; A control unit that controls the receiver; Equipped with The control unit is a control device that controls the receiver based on a reception signal of the receiver when the receiver does not receive the electromagnetic wave.
  • the invention according to claim 9 is A method of controlling an avalanche diode, comprising A reverse bias voltage is applied to an avalanche diode, and the reverse bias voltage is controlled based on a level of a signal generated from the avalanche diode when the avalanche diode is not receiving an electromagnetic wave.
  • the invention according to claim 10 is It is a program for making a computer perform the method according to claim 9.
  • the invention according to claim 11 is A storage medium storing the program according to claim 10.
  • FIG. 2 is a diagram showing a control device according to a first embodiment.
  • FIG. 7 is a diagram showing a control device according to a second embodiment.
  • FIG. 7 is a view showing a detection device according to a third embodiment.
  • FIG. 7 is a diagram showing a detection device according to a fourth embodiment.
  • FIG. 1 is a diagram showing a control device 10 according to the embodiment.
  • the control device 10 includes a control unit 100.
  • the control unit 100 controls the reverse bias voltage applied to the avalanche diode (AD) 222.
  • the AD 222 is transmitted from an electromagnetic wave (specifically, a transmitter (for example, a transmitter 210 described later with reference to FIG. 9 or 10) and described later with a target (for example, FIG. 9 or 10)
  • the reverse bias voltage is controlled based on the level of the signal generated from the AD 222 when the electromagnetic wave (reflected by the object O) is not received.
  • the level of this signal may be a maximum value in a predetermined period in which the AD 222 does not receive an electromagnetic wave, or may be RMS (root mean square) in a predetermined period in which the AD 222 does not receive an electromagnetic wave.
  • the AD 222 can be stably operated at high signal-to-noise ratio (SNR) and high multiplication factor.
  • SNR signal-to-noise ratio
  • a high reverse bias voltage is required to obtain a high multiplication factor for AD.
  • the higher the reverse bias voltage the higher the level of noise generated from AD, in particular the level of dark current noise. Therefore, in order to obtain high SNR and high multiplication factor, it is necessary to operate AD with an optimal reverse bias voltage that can suppress the noise level below a certain level while obtaining high multiplication factor.
  • the optimum reverse bias voltage varies depending on the external environment, eg temperature.
  • the control unit 100 controls the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 receives no electromagnetic wave.
  • Such a configuration makes it possible to apply an optimal reverse bias voltage to the AD 222 according to the change of the external environment. Therefore, the AD 222 can be stably operated at high SNR and high multiplication factor.
  • the AD 222 can receive an electromagnetic wave.
  • the electromagnetic waves are, in one example, light (eg, ultraviolet light, visible light or infrared radiation), and in other examples, radio waves.
  • the AD 222 can be, for example, an avalanche photodiode (APD), particularly if the AD 222 receives light.
  • APD avalanche photodiode
  • the control device 10 includes a control unit 100.
  • the control unit 100 applies a reverse bias voltage to the AD 222. Furthermore, the control unit 100 detects the level of a signal generated from the AD 222 when the AD 222 does not receive an electromagnetic wave. Although this signal is noise (that is, a signal that can not contribute to detection of an electromagnetic wave), it includes, for example, dark current noise as described later with reference to FIG. The level of this noise tends to increase as the reverse bias voltage rises.
  • the control unit 100 compares the level of the noise with the target level, and controls the reverse bias voltage so that the level of the noise matches the target level. In this manner, the AD 222 can be stably operated at high SNR and high multiplication factor.
  • the information on the target level described above is information used to control the reverse bias voltage. Information on the target level is stored in a memory or the like (not shown), and the control unit 10 acquires information on the target level by accessing the memory or the like as appropriate.
  • the control unit 100 may control the reverse bias voltage based on the relationship between the dark current noise and the reception signal level. Specifically, as described later with reference to FIG. 3, the control unit 100 determines the reverse bias voltage based on the ratio of the received signal level to the dark current noise, in more detail, such that the SNR is maximized. Can be controlled.
  • the control device 10 can be, for example, a circuit.
  • the computer may cause the control device 10 (control unit 100) to apply a reverse bias voltage, and the control device 10 (control unit 100) to control the reverse bias voltage.
  • a program can cause a computer to perform the method described above. This program can be stored on a storage medium.
  • FIG. 2 is a graph showing an example of the multiplication factor of AD and the dark current of AD.
  • the multiplication factor and the dark current both increase as the reverse bias voltage increases.
  • the rate of change of the amplification factor with respect to the reverse bias voltage is relatively gentle (less than the first predetermined value).
  • the rate of change of the amplification with respect to the reverse bias voltage is relatively steep (more than the second predetermined value).
  • the dark current increases rapidly when the reverse bias voltage exceeds about 140V.
  • the reverse bias voltage 140 V there is a region where the dark current is suppressed to a low level while the multiplication factor exceeds 100.
  • the rate of change of the amplification factor of the avalanche diode with respect to the rise of the bias voltage is less than the first predetermined value. It is desirable to operate AD in a region between a certain region and a region where the rate of change is equal to or greater than a second predetermined value.
  • FIG. 3 is a graph showing an example of dark current noise of AD and a received signal level of AD.
  • the signal level on the vertical axis of FIG. 3 indicates the RMS of the dark current noise and the average level of the received signal.
  • dark current noise was measured without irradiating the electromagnetic wave (light) to the AD, and the received signal level when the electromagnetic wave (light) was irradiated to the AD was measured. That is, the signal level of the dark current noise in FIG. 3 indicates the level of the output signal from AD when the electromagnetic wave (light) is not irradiated to AD.
  • the reception signal level in FIG. 3 indicates the level of the output signal from AD when the predetermined electromagnetic wave is received by AD.
  • the predetermined electromagnetic wave is, for example, an electromagnetic wave in which the electromagnetic wave emitted from the irradiation unit is reflected by a reference reflector (not shown), and an appropriate light amount (AD is not saturated and is not buried in noise) The light amount that can obtain a certain degree of output signal).
  • the reference reflector may be provided inside a housing that is an exterior of the device, or may be provided outside.
  • the level of the reception signal is rapidly increasing from 130 V to 140 V of the reverse bias voltage.
  • the level of dark current noise is rapidly increasing near the reverse bias voltage 140V.
  • FIG. 3 in consideration of measuring dark current noise without irradiating light to AD and measuring the reception signal level when light is irradiated to AD, FIG.
  • the received signal level shown in is not due to dark current noise. That is, it can be said that the ratio of the received signal level to the dark current noise corresponds to the multiplication factor of AD. Therefore, it can be said that the optimum multiplication factor of AD is the multiplication factor when the ratio of the received signal level to the dark current noise is maximum, and in the example shown in FIG. It can be estimated as a multiplication factor at any voltage.
  • the control unit 100 (FIG. 1) can control the reverse bias voltage based on the relationship between the dark current noise and the received signal level.
  • FIGS. 4, 5 and 6 are diagram for explaining an example of the operation of AD.
  • FIG. 4 shows the operation of AD at reverse bias voltages of 100V, 110V, 120V and 130V.
  • FIG. 5 shows the operation of AD at reverse bias voltages of 135V and 137V.
  • FIG. 6 shows the operation of AD at reverse bias voltage 138V.
  • the horizontal axis represents time
  • the vertical axis represents the intensity of the signal output from AD.
  • AD is irradiated with electromagnetic waves in approximately 2.5 ⁇ 10 -8 seconds.
  • the signal hardly fluctuates even when the electromagnetic wave is irradiated to AD in approximately 2.5 ⁇ 10 ⁇ 8 seconds for any of the reverse bias voltages 100 V, 110 V, 120 V and 130 V. That is, it can be said that the reverse bias voltage in the example shown in FIG. 4 is not so high as to obtain a multiplication factor necessary for the AD to detect an electromagnetic wave.
  • the signal largely fluctuates in approximately 2.5 ⁇ 10 -8 seconds for any of the reverse bias voltages 135 V and 137 V, and the signal is substantially constant in the other regions. . That is, the reverse bias voltage in the example shown in FIG. 5 has an appropriate height for suppressing the level of noise generated from AD below a certain level while obtaining the multiplication factor necessary for AD to detect an electromagnetic wave. It can be said that In particular, the amplitude of the signal at approximately 2.5 ⁇ 10 -8 seconds at a reverse bias voltage of 137 V is greater than the amplitude of the signal at approximately 2.5 ⁇ 10 -8 seconds at a reverse bias voltage of 135 V. Therefore, it can be said that AD can operate more favorably at a reverse bias voltage of 137 V than a reverse bias voltage of 135 V.
  • the signal largely fluctuates in about 2.5 ⁇ 10 -8 seconds, the signal fluctuates with a certain magnitude in other regions. That is, although the reverse bias voltage in the example shown in FIG. 6 makes it possible to obtain the multiplication factor necessary for AD to detect an electromagnetic wave, the level of noise generated from AD is a certain level (tolerance) It can be said that the height can not be reduced.
  • the AD 222 can be stably operated at high SNR and high multiplication factor.
  • FIG. 7 is a view showing the control device 10 according to the first embodiment, and corresponds to FIG. 1 of the embodiment.
  • the control device 10 according to the present embodiment is the same as the control device 10 according to the embodiment except for the following points.
  • the control device 10 includes a calculation unit 110.
  • the calculation unit 110 calculates the level of the signal generated (outputted) from the AD 222.
  • the calculator 110 can calculate the level of the signal generated from the AD 222 by calculating the RMS of the signal generated from the AD 222.
  • the calculation unit 110 calculates the level by excluding the signal having the reference amplitude or more. By selecting an appropriate reference amplitude, it excludes the signal generated from AD 222 when AD 222 is receiving an electromagnetic wave, and calculates the level of the signal generated from AD 222 when AD 222 is not receiving an electromagnetic wave be able to.
  • the reference amplitude may be, for example, 0.04.
  • the signal generated from the AD 222 when the AD 222 is receiving the electromagnetic wave (a signal at approximately 2.5 ⁇ 10 ⁇ 8 seconds) is excluded, and the AD 222 is generated from the AD 222 when the electromagnetic wave is not received.
  • the level of the signal can be calculated.
  • Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110. By such an operation, the control unit 100 can control the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving the electromagnetic wave.
  • the AD 222 is transmitted from an electromagnetic wave (specifically, a transmitter (for example, a transmitter 210 described later with reference to FIG. 9 or 10) and described later with a target (for example, FIG. 9 or 10)
  • an electromagnetic wave specifically, a transmitter (for example, a transmitter 210 described later with reference to FIG. 9 or 10) and described later with a target (for example, FIG. 9 or 10)
  • the reverse bias voltage can be controlled so that the calculation result of the calculation unit 110 becomes a predetermined value.
  • the predetermined value corresponds to the area described with reference to FIG.
  • the AD 222 can be operated stably at high SNR and high multiplication factor.
  • FIG. 8 is a view showing the control device 10 according to the second embodiment, and corresponds to FIG. 1 of the embodiment.
  • the control device 10 according to the present embodiment is the same as the control device 10 according to the embodiment except for the following points.
  • the control device 10 includes a calculation unit 110 and a switch 120.
  • the calculation unit 110 calculates the level of the signal generated from the AD 222.
  • the calculator 110 can calculate the level of the signal generated from the AD 222 by calculating the RMS of the signal generated from the AD 222.
  • the switch 120 switches on or off transmission of the signal to the calculation unit 110.
  • Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110.
  • the switch 120 can switch the transmission on or off according to the timing at which the AD 222 receives an electromagnetic wave. Specifically, the switch 120 turns off the transmission when the AD 222 receives an electromagnetic wave, and turns on the transmission when the AD 222 does not receive an electromagnetic wave.
  • the calculation unit 110 excludes the signal generated from the AD 222 when the AD 222 receives an electromagnetic wave, and outputs the signal generated from the AD 222 when the AD 222 does not receive an electromagnetic wave. It becomes possible to calculate the level.
  • the switch 120 can switch the transmission on or off based on the timing.
  • the AD 222 receives an electromagnetic wave transmitted from the transmitter 210 and reflected from the object O as described later with reference to FIG. 10, the switch 120 is based on the timing at which the electromagnetic wave is transmitted from the transmitter 210. Then, the transmission can be switched on or off.
  • Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110. By such an operation, the control unit 100 can control the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving the electromagnetic wave.
  • the AD 222 can be operated stably at high SNR and high multiplication factor.
  • FIG. 9 is a diagram illustrating a detection device 20 according to a third embodiment.
  • the detection device 20 includes a control device 10, a transmitter 210, a receiver 220, and a calculation unit 230.
  • the control device 10 shown in FIG. 9 is similar to the control device 10 shown in FIG.
  • the transmitter 210 can transmit an electromagnetic wave.
  • the receiver 220 has an AD 222.
  • the AD 222 shown in FIG. 9 is similar to the AD 222 shown in FIG. In particular, in the example shown in FIG. 9, the AD 222 receives an electromagnetic wave transmitted from the transmitter 210 and reflected from the object O.
  • the calculation unit 230 calculates the distance from the detection device 20 to the object O based on the time until the electromagnetic wave is transmitted from the transmitter 210 and the receiver 220 (AD 222) receives the electromagnetic wave.
  • control unit 100 controls the reverse bias voltage applied to the avalanche diode (AD) 222. Further, the control unit 100 controls the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 receives no electromagnetic wave. Here, the control unit 100 may control the reverse bias voltage based on the level of the signal generated from the AD 222 in a period in which the transmitter 210 is not transmitting (emitting) an electromagnetic wave to the object O. . With this configuration, it is possible to detect the level of the signal generated from the AD 222 when the AD 222 does not receive an electromagnetic wave. Therefore, as in the example shown in FIG. 7, the AD 222 can be stably operated at high SNR and high multiplication factor.
  • the transmitter 210 can transmit an electromagnetic wave.
  • the transmitter 210 can transmit light (eg, ultraviolet light, visible light or infrared light) in one example, and can transmit radio waves in another example.
  • the detection device 20 can function as LIDAR (Light Detecion And Ranging).
  • the transmitter 210 can be, for example, a laser diode (LD).
  • the detection device 20 may function as RADAR (RAdio Detecion And Ranging).
  • the electromagnetic wave transmitted from the transmitter 210 is reflected by the object O.
  • the electromagnetic wave reflected from the object O is received by the receiver 220, specifically, the AD 222.
  • the calculation unit 230 can measure the distance to the object O based on TOF (Time Of Flight). Specifically, the calculation unit 230 calculates the distance from the detection device 20 to the object O based on the time from the transmission of the electromagnetic wave from the transmitter 210 to the reception of the electromagnetic wave by the receiver 220 (AD 222). be able to.
  • TOF Time Of Flight
  • the calculation unit 110 calculates the level of the signal generated from the AD 222.
  • the calculation unit 110 calculates the level by excluding the signal having the reference amplitude or more. That is, the calculation unit 110 selects an appropriate reference amplitude to exclude the signal generated from the AD 222 when the AD 222 receives an electromagnetic wave, and generates the AD 222 when the AD 222 does not receive an electromagnetic wave.
  • Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110. By such an operation, the control unit 100 can control the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving the electromagnetic wave.
  • FIG. 10 is a diagram showing a detection apparatus 20 according to a fourth embodiment, which corresponds to FIG. 9 of the third embodiment.
  • the detection device 20 according to the present embodiment is the same as the detection device 20 according to the third embodiment except for the following points.
  • the detection device 20 includes a control unit 240.
  • the control unit 240 controls the transmitter 210, and in particular, controls the timing of transmission of the electromagnetic wave by the transmitter 210.
  • the control device 10 shown in FIG. 10 is the same as the control device 10 shown in FIG.
  • the switch 120 switches on or off transmission of a signal generated from the AD 222 to the control unit 100.
  • the on / off of the transmission of the switch 120 is controlled by the control unit 240.
  • the control unit 240 controls on / off of the transmission of the switch 120 based on the timing of transmission of the electromagnetic wave by the transmitter 210.
  • the time until the electromagnetic wave is transmitted from the transmitter 210 and the receiver 220 (AD 222) receives the electromagnetic wave is also within a certain range It is decided within. Therefore, by switching the transmission on or off based on the timing of transmission of the electromagnetic wave by the transmitter 210, the control unit 100 determines the level of the signal generated from the AD 222 when the AD 222 does not receive the electromagnetic wave. , Reverse bias voltage can be controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

This control device (10) is provided with a control unit (100). The control unit (100) controls a reverse bias voltage applied to an avalanche diode (AD) (222). The control unit (100) controls the reverse bias voltage on the basis of the level of a signal generated from the AD (222) when the AD (222) is not receiving electromagnetic waves.

Description

制御装置、検出装置、アバランシェダイオードを制御する方法、プログラム及び記憶媒体Control device, detection device, method of controlling avalanche diode, program, and storage medium
 本発明は、制御装置、検出装置、アバランシェダイオードを制御する方法、プログラム及び記憶媒体に関する。 The present invention relates to a control device, a detection device, a method of controlling an avalanche diode, a program, and a storage medium.
 対象物までの距離を検出するため、TOF(Time Of Flight)を用いた検出装置を用いることがある。特許文献1には、このような検出装置の一例について記載されている。この検出装置は、送信器及び受信器を備えている。送信器は、光を送信する。送信器から送信された光は、対象物で反射する。対象物から反射した光は、受信器によって受信される。検出装置は、送信器から送信された光を受信器が受信するまでの時間に基づいて、対象物までの距離を算出することができる。 In order to detect the distance to an object, a detection device using TOF (Time Of Flight) may be used. Patent Document 1 describes an example of such a detection device. The detection device comprises a transmitter and a receiver. The transmitter transmits light. The light transmitted from the transmitter reflects off the object. Light reflected from the object is received by the receiver. The detection device can calculate the distance to the object based on the time until the receiver receives the light transmitted from the transmitter.
 TOFに用いられる受信器には、アバランシェダイオード(AD)を用いることができる。ADは、逆バイアス電圧によって光電流を増倍することができる。光電流の増倍率が高くなるほど、ADから発生する光電流の信号のレベルが高くなるが、その一方で増倍率が高くなるほど、ADから発生するノイズのレベルも高くなる。特に特許文献2には、増倍率が高くなるにつれてショットノイズが高くなることが記載されている。さらに、特許文献2には、ADを、最適な増倍率、すなわち、SNR(Signal-to-Noise Ratio)が最大となる増倍率で動作させることについて記載されている。 An avalanche diode (AD) can be used for the receiver used for TOF. AD can multiply photocurrent by reverse bias voltage. The higher the multiplication factor of the photocurrent, the higher the level of the signal of the photocurrent generated from the AD. On the other hand, the higher the multiplication factor, the higher the level of the noise generated from the AD. In particular, Patent Document 2 describes that the shot noise becomes higher as the multiplication factor becomes higher. Further, Patent Document 2 describes that the AD is operated at an optimal multiplication factor, ie, a multiplication factor that maximizes the signal-to-noise ratio (SNR).
特開2011-095208号公報JP, 2011-095208, A 特開2006-203050号公報JP 2006-203050 A
 上述したように、高SNR及び高増倍率でADを動作させるためには、ADを最適な増倍率で動作させる必要がある。一方で、ADの最適な増倍率は、外部環境、例えば、温度に依存して変動する。したがって、常に一定の逆バイアス電圧でADを動作させると、外部環境の変動によってノイズのレベルが一定レベル(許容値)を超えることがある。 As described above, in order to operate AD at high SNR and high multiplication factor, it is necessary to operate AD at an optimum multiplication factor. On the other hand, the optimal multiplication factor of AD fluctuates depending on the external environment, eg, temperature. Therefore, when operating the AD at a constant reverse bias voltage, fluctuations in the external environment may cause the noise level to exceed a certain level (allowable value).
 本発明が解決しようとする課題としては、高SNR及び高増倍率でADを安定的に動作させることが一例として挙げられる。 One of the problems to be solved by the present invention is, for example, stable operation of AD at high SNR and high multiplication factor.
 請求項1に記載の発明は、
 電磁波を送信する送信器と、
 対象物によって反射された前記電磁波を受信するアバランシェダイオードと、
 前記アバランシェダイオードに印加する逆バイアス電圧を制御する制御部を備え、
 前記制御部は、前記アバランシェダイオードが前記電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルに基づいて、前記逆バイアス電圧を制御する制御装置である。
The invention according to claim 1 is
A transmitter for transmitting an electromagnetic wave,
An avalanche diode for receiving the electromagnetic wave reflected by the object;
A controller configured to control a reverse bias voltage applied to the avalanche diode;
The control unit is a control device that controls the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode does not receive the electromagnetic wave.
 請求項7に記載の発明は、
 電磁波を送信する送信器と、
 前記送信器から送信されて対象物から反射した電磁波を受信するアバランシェダイオードを有する受信器と、
 前記アバランシェダイオードに印加する逆バイアス電圧を制御する制御部と、
を備え、
 前記制御部は、前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルに基づいて、前記逆バイアス電圧を制御する検出装置である。
The invention according to claim 7 is
A transmitter for transmitting an electromagnetic wave,
A receiver having an avalanche diode for receiving an electromagnetic wave transmitted from the transmitter and reflected from an object;
A control unit that controls a reverse bias voltage applied to the avalanche diode;
Equipped with
The control unit is a detection device that controls the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode does not receive an electromagnetic wave.
 請求項8に記載の発明は、
 電磁波を照射する照射部と、
 対象物によって反射された前記電磁波を受信可能な受信器と、
 前記受信器を制御する制御部と、
 を備え、
 前記制御部は、前記受信器が前記電磁波を受信していないときの前記受信器の受信信号に基づいて、前記受信器を制御する、制御装置である。
The invention according to claim 8 is
An irradiation unit for irradiating an electromagnetic wave,
A receiver capable of receiving the electromagnetic wave reflected by the object;
A control unit that controls the receiver;
Equipped with
The control unit is a control device that controls the receiver based on a reception signal of the receiver when the receiver does not receive the electromagnetic wave.
 請求項9に記載の発明は、
 アバランシェダイオードを制御する方法であって、
 アバランシェダイオードに逆バイアス電圧を印加し、前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルに基づいて、前記逆バイアス電圧を制御することを含む方法である。
The invention according to claim 9 is
A method of controlling an avalanche diode, comprising
A reverse bias voltage is applied to an avalanche diode, and the reverse bias voltage is controlled based on a level of a signal generated from the avalanche diode when the avalanche diode is not receiving an electromagnetic wave.
 請求項10に記載の発明は、
 請求項9に記載の方法をコンピュータに実行させるためのプログラムである。
The invention according to claim 10 is
It is a program for making a computer perform the method according to claim 9.
 請求項11に記載の発明は、
 請求項10に記載のプログラムを記憶した記憶媒体である。
The invention according to claim 11 is
A storage medium storing the program according to claim 10.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
実施形態に係る制御装置を示す図である。It is a figure showing a control device concerning an embodiment. ADの増倍率及びADの暗電流の一例を示すグラフである。It is a graph which shows an example of the multiplication factor of AD, and the dark current of AD. ADの暗電流ノイズ及びADの受信信号レベルの一例を示すグラフである。It is a graph which shows an example of dark current noise of AD, and a received signal level of AD. ADの動作の一例を説明するための図である。It is a figure for demonstrating an example of operation | movement of AD. ADの動作の一例を説明するための図である。It is a figure for demonstrating an example of operation | movement of AD. ADの動作の一例を説明するための図である。It is a figure for demonstrating an example of operation | movement of AD. 実施例1に係る制御装置を示す図である。FIG. 2 is a diagram showing a control device according to a first embodiment. 実施例2に係る制御装置を示す図である。FIG. 7 is a diagram showing a control device according to a second embodiment. 実施例3に係る検出装置を示す図である。FIG. 7 is a view showing a detection device according to a third embodiment. 実施例4に係る検出装置を示す図である。FIG. 7 is a diagram showing a detection device according to a fourth embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
 図1は、実施形態に係る制御装置10を示す図である。 FIG. 1 is a diagram showing a control device 10 according to the embodiment.
 図1を用いて制御装置10の概要について説明する。制御装置10は、制御部100を備えている。制御部100は、アバランシェダイオード(AD)222に印加する逆バイアス電圧を制御する。制御部100は、AD222が電磁波(具体的には、送信器(例えば、図9又は10を用いて後述する送信器210)から送信されて対象物(例えば、図9又は10を用いて後述する対象物O)によって反射された電磁波)を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御する。この信号のレベルは、例えば、AD222が電磁波を受信していない所定期間における最大値としてもよいし、又はAD222が電磁波を受信していない所定期間におけるRMS(二乗平均平方根)としてもよい。 The outline of the control device 10 will be described with reference to FIG. The control device 10 includes a control unit 100. The control unit 100 controls the reverse bias voltage applied to the avalanche diode (AD) 222. In the control unit 100, the AD 222 is transmitted from an electromagnetic wave (specifically, a transmitter (for example, a transmitter 210 described later with reference to FIG. 9 or 10) and described later with a target (for example, FIG. 9 or 10) The reverse bias voltage is controlled based on the level of the signal generated from the AD 222 when the electromagnetic wave (reflected by the object O) is not received. For example, the level of this signal may be a maximum value in a predetermined period in which the AD 222 does not receive an electromagnetic wave, or may be RMS (root mean square) in a predetermined period in which the AD 222 does not receive an electromagnetic wave.
 上述した構成によれば、高SNR(Signal-to-Noise Ratio)及び高増倍率でAD222を安定的に動作させることができる。具体的には、ADについて高増倍率を得るためには高い逆バイアス電圧が必要である。一方で、逆バイアス電圧が高くなるにつれて、ADから発生するノイズのレベル、特に暗電流ノイズのレベルが高くなる。したがって、高SNR及び高増倍率を得るためには、高増倍率を得つつノイズのレベルを一定レベル以下に抑えることが可能な、最適な逆バイアス電圧でADを動作させる必要がある。しかしながら、最適な逆バイアス電圧は、外部環境、例えば温度に依存して変動する。したがって、常に一定の逆バイアス電圧でADを動作させると、外部環境の変動によってノイズのレベルが一定レベル(許容値)を超えることがある。対照的に、上述した構成においては、制御部100が、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御している。このような構成によって、外部環境の変動に応じて最適な逆バイアス電圧をAD222に印加することが可能となる。このため、高SNR及び高増倍率でAD222を安定的に動作させることができる。 According to the above-described configuration, the AD 222 can be stably operated at high signal-to-noise ratio (SNR) and high multiplication factor. Specifically, a high reverse bias voltage is required to obtain a high multiplication factor for AD. On the other hand, the higher the reverse bias voltage, the higher the level of noise generated from AD, in particular the level of dark current noise. Therefore, in order to obtain high SNR and high multiplication factor, it is necessary to operate AD with an optimal reverse bias voltage that can suppress the noise level below a certain level while obtaining high multiplication factor. However, the optimum reverse bias voltage varies depending on the external environment, eg temperature. Therefore, when operating the AD at a constant reverse bias voltage, fluctuations in the external environment may cause the noise level to exceed a certain level (allowable value). In contrast, in the configuration described above, the control unit 100 controls the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 receives no electromagnetic wave. Such a configuration makes it possible to apply an optimal reverse bias voltage to the AD 222 according to the change of the external environment. Therefore, the AD 222 can be stably operated at high SNR and high multiplication factor.
 次に、図1を用いて、制御装置10の詳細について説明する。 Next, details of the control device 10 will be described with reference to FIG.
 AD222は、電磁波を受信可能である。電磁波は、一例において光(例えば、紫外線、可視光線又は赤外線)であり、他の例において電波である。特にAD222が光を受信する場合、AD222は、例えば、アバランシェフォトダイオード(APD)にすることができる。 The AD 222 can receive an electromagnetic wave. The electromagnetic waves are, in one example, light (eg, ultraviolet light, visible light or infrared radiation), and in other examples, radio waves. The AD 222 can be, for example, an avalanche photodiode (APD), particularly if the AD 222 receives light.
 制御装置10は、制御部100を備えている。制御部100は、AD222に逆バイアス電圧を印加する。さらに、制御部100は、AD222が電磁波を受信していないときにAD222から発生する信号のレベルを検出する。この信号は、ノイズ(すなわち、電磁波の検出に寄与し得ない信号)といえ、図3を用いて後述するように、例えば、暗電流ノイズを含んでいる。このノイズのレベルは、逆バイアス電圧の上昇にともなって高くなる傾向を有している。図1に示す例では、制御部100は、上記ノイズのレベルと目標レベルとを比較し、上記ノイズのレベルが目標レベルと一致するように逆バイアス電圧を制御している。このようにして、高SNR及び高増倍率でAD222を安定的に動作させることができる。なお、上述の目標レベルに関する情報は、逆バイアス電圧の制御に用いられる情報である。当該目標レベルに関する情報は、図示しないメモリ等に記憶されており、制御部10は適宜当該メモリ等にアクセスすることによって、当該目標レベルに関する情報を取得する。 The control device 10 includes a control unit 100. The control unit 100 applies a reverse bias voltage to the AD 222. Furthermore, the control unit 100 detects the level of a signal generated from the AD 222 when the AD 222 does not receive an electromagnetic wave. Although this signal is noise (that is, a signal that can not contribute to detection of an electromagnetic wave), it includes, for example, dark current noise as described later with reference to FIG. The level of this noise tends to increase as the reverse bias voltage rises. In the example shown in FIG. 1, the control unit 100 compares the level of the noise with the target level, and controls the reverse bias voltage so that the level of the noise matches the target level. In this manner, the AD 222 can be stably operated at high SNR and high multiplication factor. The information on the target level described above is information used to control the reverse bias voltage. Information on the target level is stored in a memory or the like (not shown), and the control unit 10 acquires information on the target level by accessing the memory or the like as appropriate.
 制御部100は、暗電流ノイズと受信信号レベルとの関係に基づいて、逆バイアス電圧を制御してもよい。具体的には、図3を用いて後述するように、制御部100は、暗電流ノイズに対する受信信号レベルの比に基づいて、より詳細には、このSNRが最大になるように、逆バイアス電圧を制御することができる。 The control unit 100 may control the reverse bias voltage based on the relationship between the dark current noise and the reception signal level. Specifically, as described later with reference to FIG. 3, the control unit 100 determines the reverse bias voltage based on the ratio of the received signal level to the dark current noise, in more detail, such that the SNR is maximized. Can be controlled.
 制御装置10(制御部100)は、例えば、回路とすることができる。さらに、コンピュータが、制御装置10(制御部100)に逆バイアス電圧を印加させ、制御装置10(制御部100)に逆バイアス電圧を制御させるようにしてもよい。一例において、プログラムがコンピュータに上述した方法を実行させることができる。このプログラムは記憶媒体に記憶させることができる。 The control device 10 (control unit 100) can be, for example, a circuit. Furthermore, the computer may cause the control device 10 (control unit 100) to apply a reverse bias voltage, and the control device 10 (control unit 100) to control the reverse bias voltage. In one example, a program can cause a computer to perform the method described above. This program can be stored on a storage medium.
 図2は、ADの増倍率及びADの暗電流の一例を示すグラフである。 FIG. 2 is a graph showing an example of the multiplication factor of AD and the dark current of AD.
 図2に示すように、増倍率及び暗電流は、いずれも、逆バイアス電圧の増加にともなって、増加している。ここで、逆バイアス電圧が135V近傍までの領域については、逆バイアス電圧に対する増幅度の変化率は比較的ゆるやか(第1所定値以下)である。また、逆バイアス電圧が140V以上となる領域については、逆バイアス電圧に対する増幅度の変化率は比較的急峻(第2所定値以上)である。一方、暗電流は、逆バイアス電圧が約140Vを超えると、急激に増加している。一方、逆バイアス電圧140Vの周辺には、増倍率が100を超えつつも暗電流が低く抑えられている領域がある。したがって、暗電流ノイズのレベルを低く抑えつつADにつき高増倍率を得るためには、上述した領域内(すなわち、バイアス電圧の上昇に対する前記アバランシェダイオードの増幅度の変化率が第1所定値以下である領域と、前記変化率が第2所定値以上である領域と、の間の領域)でADを動作させることが望ましい。 As shown in FIG. 2, the multiplication factor and the dark current both increase as the reverse bias voltage increases. Here, in the region up to the reverse bias voltage of around 135 V, the rate of change of the amplification factor with respect to the reverse bias voltage is relatively gentle (less than the first predetermined value). Further, in the region where the reverse bias voltage is 140 V or more, the rate of change of the amplification with respect to the reverse bias voltage is relatively steep (more than the second predetermined value). On the other hand, the dark current increases rapidly when the reverse bias voltage exceeds about 140V. On the other hand, around the reverse bias voltage 140 V, there is a region where the dark current is suppressed to a low level while the multiplication factor exceeds 100. Therefore, in order to obtain a high multiplication factor per AD while keeping the level of dark current noise low, the rate of change of the amplification factor of the avalanche diode with respect to the rise of the bias voltage is less than the first predetermined value. It is desirable to operate AD in a region between a certain region and a region where the rate of change is equal to or greater than a second predetermined value.
 図3は、ADの暗電流ノイズ及びADの受信信号レベルの一例を示すグラフである。図3の縦軸の信号レベルは、暗電流ノイズのRMSと受信信号の平均レベルを示している。図3に示す例では、ADに電磁波(光)を照射せずに暗電流ノイズを測定し、ADに電磁波(光)が照射されたときの受信信号レベルを測定した。すなわち、図3における暗電流ノイズの信号レベルは、ADに電磁波(光)が照射されていないときのADからの出力信号のレベルを示している。また、図3における受信信号レベルは、所定の電磁波をADが受信しているときのADからの出力信号のレベルを示している。なお、ここでの所定の電磁波とは、例えば、照射部から照射された電磁波が不図示の基準反射体によって反射された電磁波であり、適度な光量(ADが飽和せず、且つノイズに埋もれない程度の出力信号が得られる程度の光量)を有している。基準反射体は、装置の外装たる筐体の内部に設けられていてもよいし、外部に設けられたものを利用してもよい。 FIG. 3 is a graph showing an example of dark current noise of AD and a received signal level of AD. The signal level on the vertical axis of FIG. 3 indicates the RMS of the dark current noise and the average level of the received signal. In the example shown in FIG. 3, dark current noise was measured without irradiating the electromagnetic wave (light) to the AD, and the received signal level when the electromagnetic wave (light) was irradiated to the AD was measured. That is, the signal level of the dark current noise in FIG. 3 indicates the level of the output signal from AD when the electromagnetic wave (light) is not irradiated to AD. Further, the reception signal level in FIG. 3 indicates the level of the output signal from AD when the predetermined electromagnetic wave is received by AD. Here, the predetermined electromagnetic wave is, for example, an electromagnetic wave in which the electromagnetic wave emitted from the irradiation unit is reflected by a reference reflector (not shown), and an appropriate light amount (AD is not saturated and is not buried in noise) The light amount that can obtain a certain degree of output signal). The reference reflector may be provided inside a housing that is an exterior of the device, or may be provided outside.
 図3に示すように、受信信号のレベルは、逆バイアス電圧130Vから140Vにかけて急激に増加している。一方、暗電流ノイズのレベルは、逆バイアス電圧140Vの近傍で急激に増加している。 As shown in FIG. 3, the level of the reception signal is rapidly increasing from 130 V to 140 V of the reverse bias voltage. On the other hand, the level of dark current noise is rapidly increasing near the reverse bias voltage 140V.
 図3に示す例では、上述したように、ADに光を照射せずに暗電流ノイズを測定し、ADに光を照射したときの受信信号レベルを測定していることに鑑みると、図3に示す受信信号レベルは、暗電流ノイズに起因していない。つまり、暗電流ノイズに対する受信信号レベルの比は、ADの増倍率に対応するといえる。したがって、ADの最適な増倍率は、暗電流ノイズに対する受信信号レベルの比が最大になるときの増倍率であるといえ、特に図3に示す例では、逆バイアス電圧135Vから140Vまでのうちのいずれかの電圧における増倍率と見積もることができる。このようにして、上述したように、制御部100(図1)は、暗電流ノイズと受信信号レベルとの関係に基づいて、逆バイアス電圧を制御することができる。 In the example shown in FIG. 3, as described above, in consideration of measuring dark current noise without irradiating light to AD and measuring the reception signal level when light is irradiated to AD, FIG. The received signal level shown in is not due to dark current noise. That is, it can be said that the ratio of the received signal level to the dark current noise corresponds to the multiplication factor of AD. Therefore, it can be said that the optimum multiplication factor of AD is the multiplication factor when the ratio of the received signal level to the dark current noise is maximum, and in the example shown in FIG. It can be estimated as a multiplication factor at any voltage. Thus, as described above, the control unit 100 (FIG. 1) can control the reverse bias voltage based on the relationship between the dark current noise and the received signal level.
 図4、図5及び図6の各図は、ADの動作の一例を説明するための図である。図4は、逆バイアス電圧100V、110V、120V及び130VにおけるADの動作を示している。図5は、逆バイアス電圧135V及び137VにおけるADの動作を示している。図6は、逆バイアス電圧138VにおけるADの動作を示している。いずれの図のグラフも、横軸は時間を示し、縦軸はADから出力される信号の強度を示している。いずれの例においても、おおよそ2.5×10-8秒でADに電磁波が照射されている。 Each of FIGS. 4, 5 and 6 is a diagram for explaining an example of the operation of AD. FIG. 4 shows the operation of AD at reverse bias voltages of 100V, 110V, 120V and 130V. FIG. 5 shows the operation of AD at reverse bias voltages of 135V and 137V. FIG. 6 shows the operation of AD at reverse bias voltage 138V. In each of the graphs, the horizontal axis represents time, and the vertical axis represents the intensity of the signal output from AD. In any of the examples, AD is irradiated with electromagnetic waves in approximately 2.5 × 10 -8 seconds.
 図4に示す例では、逆バイアス電圧100V、110V、120V及び130Vのいずれについて、おおよそ2.5×10-8秒でADに電磁波が照射されても、信号がほとんど変動していない。つまり、図4に示す例における逆バイアス電圧は、ADが電磁波を検出するために必要な増倍率を得るほど高くないといえる。 In the example shown in FIG. 4, the signal hardly fluctuates even when the electromagnetic wave is irradiated to AD in approximately 2.5 × 10 −8 seconds for any of the reverse bias voltages 100 V, 110 V, 120 V and 130 V. That is, it can be said that the reverse bias voltage in the example shown in FIG. 4 is not so high as to obtain a multiplication factor necessary for the AD to detect an electromagnetic wave.
 図5に示す例では、逆バイアス電圧135V及び137Vのいずれについて、おおよそ2.5×10-8秒で信号が大きく変動しており、かつそれ以外の領域では、信号がほぼ一定となっている。つまり、図5に示す例における逆バイアス電圧は、ADが電磁波を検出するために必要な増倍率を得つつ、ADから発生するノイズのレベルを一定レベル以下に抑えるのに適当な高さになっているといえる。特に、逆バイアス電圧137Vにおけるおおよそ2.5×10-8秒での信号の振幅は、逆バイアス電圧135Vにおけるおおよそ2.5×10-8秒での信号の振幅よりも大きくなっている。このため、ADは、逆バイアス電圧135Vよりも逆バイアス電圧137Vでより好適に動作することができるといえる。 In the example shown in FIG. 5, the signal largely fluctuates in approximately 2.5 × 10 -8 seconds for any of the reverse bias voltages 135 V and 137 V, and the signal is substantially constant in the other regions. . That is, the reverse bias voltage in the example shown in FIG. 5 has an appropriate height for suppressing the level of noise generated from AD below a certain level while obtaining the multiplication factor necessary for AD to detect an electromagnetic wave. It can be said that In particular, the amplitude of the signal at approximately 2.5 × 10 -8 seconds at a reverse bias voltage of 137 V is greater than the amplitude of the signal at approximately 2.5 × 10 -8 seconds at a reverse bias voltage of 135 V. Therefore, it can be said that AD can operate more favorably at a reverse bias voltage of 137 V than a reverse bias voltage of 135 V.
 図6に示す例では、おおよそ2.5×10-8秒で信号が大きく変動しているものの、それ以外の領域でも信号がある程度の大きさで変動している。つまり、図6に示す例における逆バイアス電圧は、ADが電磁波を検出するために必要な増倍率を得ることが可能になっているものの、ADから発生するノイズのレベルを一定レベル(許容値)に抑えることができない高さになっているといえる。 In the example shown in FIG. 6, although the signal largely fluctuates in about 2.5 × 10 -8 seconds, the signal fluctuates with a certain magnitude in other regions. That is, although the reverse bias voltage in the example shown in FIG. 6 makes it possible to obtain the multiplication factor necessary for AD to detect an electromagnetic wave, the level of noise generated from AD is a certain level (tolerance) It can be said that the height can not be reduced.
 上述した事項を鑑みると、図4、図5及び図6に示す例では、ADの最適な逆バイアス電圧は、137V又はその近傍であるといえる。 In view of the above-described matters, in the examples shown in FIG. 4, FIG. 5 and FIG. 6, it can be said that the optimum reverse bias voltage of AD is 137 V or its vicinity.
 さらに、図5及び図6を比較すると、ADに電磁波が照射されていないとき(例えば、-2.5×10-8秒から2.5×10-8秒までの範囲)の信号のレベルは、逆バイアス電圧が最適な逆バイアス電圧を超えると、高くなるといえる。このため、図1を用いて説明したように、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御することによって、高SNR及び高増倍率でAD222を安定的に動作させることができる。 Furthermore, a comparison of FIGS. 5 and 6, when the electromagnetic wave in AD is not irradiated (e.g., a range from -2.5 × 10 -8 seconds to 2.5 × 10 -8 sec) level signal is When the reverse bias voltage exceeds the optimum reverse bias voltage, it can be said that it becomes high. Therefore, as described with reference to FIG. 1, by controlling the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving an electromagnetic wave, high SNR and high multiplication factor can be obtained. The AD 222 can be operated stably.
 以上、本実施形態によれば、高SNR及び高増倍率でAD222を安定的に動作させることができる。 As described above, according to this embodiment, the AD 222 can be stably operated at high SNR and high multiplication factor.
(実施例1)
 図7は、実施例1に係る制御装置10を示す図であり、実施形態の図1に対応する。本実施例に係る制御装置10は、以下の点を除いて、実施形態に係る制御装置10と同様である。
Example 1
FIG. 7 is a view showing the control device 10 according to the first embodiment, and corresponds to FIG. 1 of the embodiment. The control device 10 according to the present embodiment is the same as the control device 10 according to the embodiment except for the following points.
 制御装置10は、算出部110を備えている。算出部110は、AD222から発生する(出力される)信号のレベルを算出する。一例において、算出部110は、AD222から発生する信号のRMSを算出することで、AD222から発生する信号のレベルを算出することができる。 The control device 10 includes a calculation unit 110. The calculation unit 110 calculates the level of the signal generated (outputted) from the AD 222. In one example, the calculator 110 can calculate the level of the signal generated from the AD 222 by calculating the RMS of the signal generated from the AD 222.
 算出部110は、基準振幅以上の信号を除外して、上記レベルを算出する。適切な基準振幅を選択することで、AD222が電磁波を受信しているときにAD222から発生する信号を除外して、AD222が電磁波を受信していないときにAD222から発生する信号のレベルを算出することができる。例えば、図4、図5及び図6に示した例では、基準振幅は、例えば、0.04にすることができる。この場合、AD222が電磁波を受信しているときにAD222から発生する信号(おおよそ2.5×10-8秒における信号)を除外して、AD222が電磁波を受信していないときにAD222から発生する信号のレベルを算出することができる。 The calculation unit 110 calculates the level by excluding the signal having the reference amplitude or more. By selecting an appropriate reference amplitude, it excludes the signal generated from AD 222 when AD 222 is receiving an electromagnetic wave, and calculates the level of the signal generated from AD 222 when AD 222 is not receiving an electromagnetic wave be able to. For example, in the examples shown in FIG. 4, FIG. 5 and FIG. 6, the reference amplitude may be, for example, 0.04. In this case, the signal generated from the AD 222 when the AD 222 is receiving the electromagnetic wave (a signal at approximately 2.5 × 10 −8 seconds) is excluded, and the AD 222 is generated from the AD 222 when the electromagnetic wave is not received. The level of the signal can be calculated.
 制御部100は、算出部110の算出結果に基づいて、逆バイアス電圧を制御する。このような動作によって、制御部100は、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御することができる。 Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110. By such an operation, the control unit 100 can control the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving the electromagnetic wave.
 制御部100は、AD222が電磁波(具体的には、送信器(例えば、図9又は10を用いて後述する送信器210)から送信されて対象物(例えば、図9又は10を用いて後述する対象物O)によって反射された電磁波)を受信していないときに、算出部110の算出結果が所定値になるように、逆バイアス電圧を制御することができる。一例において、この所定値は、図2を用いて説明した領域(すなわち、バイアス電圧の上昇に対する前記アバランシェダイオードの増幅度の変化率が第1所定値以下である領域と、前記変化率が第2所定値以上である領域と、の間の領域)の逆バイアス電圧が印加された際のAD222から発生する信号のレベルにすることができる。 In the control unit 100, the AD 222 is transmitted from an electromagnetic wave (specifically, a transmitter (for example, a transmitter 210 described later with reference to FIG. 9 or 10) and described later with a target (for example, FIG. 9 or 10) When the electromagnetic wave (reflected by the object O) is not received, the reverse bias voltage can be controlled so that the calculation result of the calculation unit 110 becomes a predetermined value. In one example, the predetermined value corresponds to the area described with reference to FIG. 2 (ie, the area in which the rate of change in amplification of the avalanche diode with respect to the increase in bias voltage is less than the first predetermined value); It is possible to set the level of the signal generated from the AD 222 when a reverse bias voltage is applied to the region between the region which is equal to or more than the predetermined value.
 本実施例においても、高SNR及び高増倍率でAD222を安定的に動作させることができる。 Also in this embodiment, the AD 222 can be operated stably at high SNR and high multiplication factor.
(実施例2)
 図8は、実施例2に係る制御装置10を示す図であり、実施形態の図1に対応する。本実施例に係る制御装置10は、以下の点を除いて、実施形態に係る制御装置10と同様である。
(Example 2)
FIG. 8 is a view showing the control device 10 according to the second embodiment, and corresponds to FIG. 1 of the embodiment. The control device 10 according to the present embodiment is the same as the control device 10 according to the embodiment except for the following points.
 制御装置10は、算出部110及びスイッチ120を備えている。算出部110は、AD222から発生する信号のレベルを算出する。一例において、算出部110は、AD222から発生する信号のRMSを算出することで、AD222から発生する信号のレベルを算出することができる。スイッチ120は、上記信号の算出部110への伝達のオン又はオフを切り替える。制御部100は、算出部110の算出結果に基づいて、逆バイアス電圧を制御する。 The control device 10 includes a calculation unit 110 and a switch 120. The calculation unit 110 calculates the level of the signal generated from the AD 222. In one example, the calculator 110 can calculate the level of the signal generated from the AD 222 by calculating the RMS of the signal generated from the AD 222. The switch 120 switches on or off transmission of the signal to the calculation unit 110. Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110.
 スイッチ120は、AD222が電磁波を受信するタイミングに応じて上記伝達のオン又はオフを切り替え可能になっている。具体的には、スイッチ120は、AD222が電磁波を受信しているときは、上記伝達をオフにし、AD222が電磁波を受信していないときは、上記伝達をオンにする。スイッチ120のこのような動作によって、算出部110は、AD222が電磁波を受信しているときにAD222から発生する信号を除外して、AD222が電磁波を受信していないときにAD222から発生する信号のレベルを算出することができるようになる。 The switch 120 can switch the transmission on or off according to the timing at which the AD 222 receives an electromagnetic wave. Specifically, the switch 120 turns off the transmission when the AD 222 receives an electromagnetic wave, and turns on the transmission when the AD 222 does not receive an electromagnetic wave. By such operation of the switch 120, the calculation unit 110 excludes the signal generated from the AD 222 when the AD 222 receives an electromagnetic wave, and outputs the signal generated from the AD 222 when the AD 222 does not receive an electromagnetic wave. It becomes possible to calculate the level.
 なお、AD222に電磁波が到達するタイミングが予め分かっている場合は、スイッチ120は、そのタイミングに基づいて、上記伝達のオン又はオフを切り替えることができる。特に図10を用いて後述するように、AD222が、送信器210から送信されて対象物Oから反射した電磁波を受信する場合は、スイッチ120は、電磁波が送信器210から送信されたタイミングに基づいて、上記伝達のオン又はオフを切り替えることができる。 When the timing at which the electromagnetic wave reaches the AD 222 is known in advance, the switch 120 can switch the transmission on or off based on the timing. In particular, when the AD 222 receives an electromagnetic wave transmitted from the transmitter 210 and reflected from the object O as described later with reference to FIG. 10, the switch 120 is based on the timing at which the electromagnetic wave is transmitted from the transmitter 210. Then, the transmission can be switched on or off.
 制御部100は、算出部110の算出結果に基づいて、逆バイアス電圧を制御する。このような動作によって、制御部100は、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御することができる。 Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110. By such an operation, the control unit 100 can control the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving the electromagnetic wave.
 本実施例においても、高SNR及び高増倍率でAD222を安定的に動作させることができる。 Also in this embodiment, the AD 222 can be operated stably at high SNR and high multiplication factor.
(実施例3)
 図9は、実施例3に係る検出装置20を示す図である。
(Example 3)
FIG. 9 is a diagram illustrating a detection device 20 according to a third embodiment.
 図9を用いて、検出装置20の概要について説明する。検出装置20は、制御装置10、送信器210、受信器220及び算出部230を備えている。図9に示す制御装置10は、図7に示した制御装置10と同様である。送信器210は、電磁波を送信可能である。受信器220は、AD222を有している。図9に示すAD222は、図7に示したAD222と同様である。特に図9に示す例では、AD222は、送信器210から送信されて対象物Oから反射した電磁波を受信する。算出部230は、送信器210から電磁波が送信されて受信器220(AD222)が電磁波を受信するまでの時間に基づいて、検出装置20から対象物Oまでの距離を算出する。 An outline of the detection device 20 will be described with reference to FIG. The detection device 20 includes a control device 10, a transmitter 210, a receiver 220, and a calculation unit 230. The control device 10 shown in FIG. 9 is similar to the control device 10 shown in FIG. The transmitter 210 can transmit an electromagnetic wave. The receiver 220 has an AD 222. The AD 222 shown in FIG. 9 is similar to the AD 222 shown in FIG. In particular, in the example shown in FIG. 9, the AD 222 receives an electromagnetic wave transmitted from the transmitter 210 and reflected from the object O. The calculation unit 230 calculates the distance from the detection device 20 to the object O based on the time until the electromagnetic wave is transmitted from the transmitter 210 and the receiver 220 (AD 222) receives the electromagnetic wave.
 図7に示した例と同様にして、制御部100は、アバランシェダイオード(AD)222に印加する逆バイアス電圧を制御する。さらに、制御部100は、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御する。ここで、制御部100は、送信器210が対象物Oに対して電磁波を送信(射出)していない期間におけるAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御することとしてもよい。このように構成すれば、AD222が電磁波を受信していないときにAD222から発生する信号のレベルを検出することが可能となる。このため、図7に示した例と同様にして、高SNR及び高増倍率でAD222を安定的に動作させることができる。 Similar to the example shown in FIG. 7, the control unit 100 controls the reverse bias voltage applied to the avalanche diode (AD) 222. Further, the control unit 100 controls the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 receives no electromagnetic wave. Here, the control unit 100 may control the reverse bias voltage based on the level of the signal generated from the AD 222 in a period in which the transmitter 210 is not transmitting (emitting) an electromagnetic wave to the object O. . With this configuration, it is possible to detect the level of the signal generated from the AD 222 when the AD 222 does not receive an electromagnetic wave. Therefore, as in the example shown in FIG. 7, the AD 222 can be stably operated at high SNR and high multiplication factor.
 次に、図9を用いて、検出装置20の詳細について説明する。 Next, details of the detection device 20 will be described with reference to FIG.
 送信器210は、電磁波を送信可能である。送信器210は、一例において、光(例えば、紫外線、可視光線又は赤外線)を送信可能であり、他の例において、電波を送信可能である。送信器210が光を送信可能であるとき、検出装置20は、LIDAR(LIght Detecion And Ranging)として機能することができる。送信器210が光を送信可能であるとき、送信器210は、例えば、レーザダイオード(LD)とすることができる。送信器210が電波を送信可能であるとき、検出装置20は、RADAR(RAdio Detecion And Ranging)として機能することができる。 The transmitter 210 can transmit an electromagnetic wave. The transmitter 210 can transmit light (eg, ultraviolet light, visible light or infrared light) in one example, and can transmit radio waves in another example. When the transmitter 210 can transmit light, the detection device 20 can function as LIDAR (Light Detecion And Ranging). When the transmitter 210 can transmit light, the transmitter 210 can be, for example, a laser diode (LD). When the transmitter 210 is capable of transmitting radio waves, the detection device 20 may function as RADAR (RAdio Detecion And Ranging).
 送信器210から送信された電磁波は、対象物Oによって反射される。対象物Oから反射した電磁波は、受信器220、具体的には、AD222によって受信される。 The electromagnetic wave transmitted from the transmitter 210 is reflected by the object O. The electromagnetic wave reflected from the object O is received by the receiver 220, specifically, the AD 222.
 算出部230は、TOF(Time Of Flight)に基づいて、対象物Oまでの距離を測定することができる。具体的には、算出部230は、送信器210から電磁波が送信されて受信器220(AD222)が電磁波を受信するまでの時間に基づいて、検出装置20から対象物Oまでの距離を算出することができる。 The calculation unit 230 can measure the distance to the object O based on TOF (Time Of Flight). Specifically, the calculation unit 230 calculates the distance from the detection device 20 to the object O based on the time from the transmission of the electromagnetic wave from the transmitter 210 to the reception of the electromagnetic wave by the receiver 220 (AD 222). be able to.
 図7に示した例と同様にして、算出部110は、AD222から発生する信号のレベルを算出する。特に、算出部110は、基準振幅以上の信号を除外して、上記レベルを算出する。すなわち、算出部110は、適切な基準振幅を選択することで、AD222が電磁波を受信しているときにAD222から発生する信号を除外して、AD222が電磁波を受信していないときにAD222から発生する信号のレベルを算出することができる。制御部100は、算出部110の算出結果に基づいて、逆バイアス電圧を制御する。このような動作によって、制御部100は、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御することができる。 Similar to the example shown in FIG. 7, the calculation unit 110 calculates the level of the signal generated from the AD 222. In particular, the calculation unit 110 calculates the level by excluding the signal having the reference amplitude or more. That is, the calculation unit 110 selects an appropriate reference amplitude to exclude the signal generated from the AD 222 when the AD 222 receives an electromagnetic wave, and generates the AD 222 when the AD 222 does not receive an electromagnetic wave. To calculate the level of the signal. Control unit 100 controls the reverse bias voltage based on the calculation result of calculation unit 110. By such an operation, the control unit 100 can control the reverse bias voltage based on the level of the signal generated from the AD 222 when the AD 222 is not receiving the electromagnetic wave.
(実施例4)
 図10は、実施例4に係る検出装置20を示す図であり、実施例3の図9に対応する。本実施例に係る検出装置20は、以下の点を除いて、実施例3に係る検出装置20と同様である。
(Example 4)
FIG. 10 is a diagram showing a detection apparatus 20 according to a fourth embodiment, which corresponds to FIG. 9 of the third embodiment. The detection device 20 according to the present embodiment is the same as the detection device 20 according to the third embodiment except for the following points.
 検出装置20は、制御部240を備えている。制御部240は、送信器210を制御しており、特に送信器210による電磁波の送信のタイミングを制御している。 The detection device 20 includes a control unit 240. The control unit 240 controls the transmitter 210, and in particular, controls the timing of transmission of the electromagnetic wave by the transmitter 210.
 図10に示す制御装置10は、図8に示した制御装置10と同様であり、スイッチ120を備えている。スイッチ120は、AD222から発生する信号の制御部100への伝達のオン又はオフを切り替える。スイッチ120の上記伝達のオン又はオフは、制御部240によって制御されている。 The control device 10 shown in FIG. 10 is the same as the control device 10 shown in FIG. The switch 120 switches on or off transmission of a signal generated from the AD 222 to the control unit 100. The on / off of the transmission of the switch 120 is controlled by the control unit 240.
 制御部240は、送信器210による電磁波の送信のタイミングに基づいて、スイッチ120の上記伝達のオン又はオフを制御している。検出装置20から対象物Oまでの距離が予めある程度の範囲内で決まっている場合は、送信器210から電磁波が送信されて受信器220(AD222)が電磁波を受信するまでの時間もある程度の範囲内で決まる。したがって、送信器210による電磁波の送信のタイミングに基づいて上記伝達のオン又はオフを切り替えることで、制御部100は、AD222が電磁波を受信していないときにAD222から発生する信号のレベルに基づいて、逆バイアス電圧を制御することができる。 The control unit 240 controls on / off of the transmission of the switch 120 based on the timing of transmission of the electromagnetic wave by the transmitter 210. When the distance from the detection device 20 to the object O is determined in advance within a certain range, the time until the electromagnetic wave is transmitted from the transmitter 210 and the receiver 220 (AD 222) receives the electromagnetic wave is also within a certain range It is decided within. Therefore, by switching the transmission on or off based on the timing of transmission of the electromagnetic wave by the transmitter 210, the control unit 100 determines the level of the signal generated from the AD 222 when the AD 222 does not receive the electromagnetic wave. , Reverse bias voltage can be controlled.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although an embodiment and an example were described with reference to drawings, these are the illustrations of the present invention and can also adopt various composition except the above.
 この出願は、2017年9月26日に出願された日本出願特願2017-185127号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-185127 filed on Sep. 26, 2017, the entire disclosure of which is incorporated herein.

Claims (11)

  1.  電磁波を送信する送信器と、
     対象物によって反射された前記電磁波を受信するアバランシェダイオードと、
     前記アバランシェダイオードに印加する逆バイアス電圧を制御する制御部を備え、
     前記制御部は、前記アバランシェダイオードが前記電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルに基づいて、前記逆バイアス電圧を制御する制御装置。
    A transmitter for transmitting an electromagnetic wave,
    An avalanche diode for receiving the electromagnetic wave reflected by the object;
    A controller configured to control a reverse bias voltage applied to the avalanche diode;
    The control device controls the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode does not receive the electromagnetic wave.
  2.  請求項1に記載の制御装置において、
     前記アバランシェダイオードから発生する信号のレベルを算出する算出部を備え、
     前記制御部は、前記アバランシェダイオードが前記電磁波を受信していないときに、前記算出部の算出結果が所定値になるように、前記逆バイアス電圧を制御する制御装置。
    In the control device according to claim 1,
    A calculation unit for calculating the level of the signal generated from the avalanche diode,
    The control device controls the reverse bias voltage such that the calculation result of the calculation unit becomes a predetermined value when the avalanche diode does not receive the electromagnetic wave.
  3.  請求項2に記載の制御装置において、
     前記所定値は、前記逆バイアス電圧の上昇に対する前記アバランシェダイオードの増幅度の変化率が第1所定値以下である領域と、前記変化率が第2所定値以上である領域と、の間の値の前記逆バイアス電圧が印加された際の前記アバランシェダイオードから発生する信号のレベルである、制御装置。
    In the control device according to claim 2,
    The predetermined value is a value between a region where the rate of change in amplification of the avalanche diode with respect to the rise of the reverse bias voltage is equal to or less than a first predetermined value and a region where the rate of change is equal to or higher than a second predetermined value. The control device, wherein the level of the signal generated from the avalanche diode when the reverse bias voltage is applied.
  4.  請求項1から3までのいずれか一項に記載の制御装置において、
     前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルは、前記アバランシェダイオードが電磁波を受信していない所定期間における最大値とする制御装置。
    The control device according to any one of claims 1 to 3.
    The control device, wherein a level of a signal generated from the avalanche diode when the avalanche diode does not receive an electromagnetic wave is a maximum value in a predetermined period in which the avalanche diode does not receive an electromagnetic wave.
  5.  請求項1から3までのいずれか一項に記載の制御装置において、
     前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルは、前記アバランシェダイオードが電磁波を受信していない所定期間における二乗平均平方根とする制御装置。
    The control device according to any one of claims 1 to 3.
    The control device, wherein a level of a signal generated from the avalanche diode when the avalanche diode does not receive an electromagnetic wave is a root mean square in a predetermined period when the avalanche diode does not receive the electromagnetic wave.
  6.  請求項1から5までのいずれか一項に記載の制御装置において、
     前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号は、暗電流ノイズを含み、
     前記制御部は、前記暗電流ノイズと前記アバランシェダイオードが所定の電磁波を受信しているときの受信信号レベルとの関係に基づいて、前記逆バイアス電圧を制御する制御装置。
    In the control device according to any one of claims 1 to 5,
    The signal generated from the avalanche diode when the avalanche diode is not receiving an electromagnetic wave includes dark current noise,
    The control device controls the reverse bias voltage based on a relationship between the dark current noise and a reception signal level when the avalanche diode receives a predetermined electromagnetic wave.
  7.  電磁波を送信する送信器と、
     前記送信器から送信されて対象物から反射した電磁波を受信するアバランシェダイオードを有する受信器と、
     前記アバランシェダイオードに印加する逆バイアス電圧を制御する制御部と、
    を備え、
     前記制御部は、前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルに基づいて、前記逆バイアス電圧を制御する検出装置。
    A transmitter for transmitting an electromagnetic wave,
    A receiver having an avalanche diode for receiving an electromagnetic wave transmitted from the transmitter and reflected from an object;
    A control unit that controls a reverse bias voltage applied to the avalanche diode;
    Equipped with
    The control device controls the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode does not receive an electromagnetic wave.
  8.  電磁波を照射する照射部と、
     対象物によって反射された前記電磁波を受信可能な受信器と、
     前記受信器を制御する制御部と、
     を備え、
     前記制御部は、前記受信器が前記電磁波を受信していないときの前記受信器の受信信号に基づいて、前記受信器を制御する、制御装置。
    An irradiation unit for irradiating an electromagnetic wave,
    A receiver capable of receiving the electromagnetic wave reflected by the object;
    A control unit that controls the receiver;
    Equipped with
    The control device controls the receiver based on a signal received by the receiver when the receiver does not receive the electromagnetic wave.
  9.  アバランシェダイオードを制御する方法であって、
     アバランシェダイオードに逆バイアス電圧を印加し、前記アバランシェダイオードが電磁波を受信していないときに前記アバランシェダイオードから発生する信号のレベルに基づいて、前記逆バイアス電圧を制御することを含む方法。
    A method of controlling an avalanche diode, comprising
    Applying a reverse bias voltage to an avalanche diode, and controlling the reverse bias voltage based on a level of a signal generated from the avalanche diode when the avalanche diode is not receiving an electromagnetic wave.
  10.  請求項9に記載の方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the method according to claim 9.
  11.  請求項10に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 10.
PCT/JP2018/035014 2017-09-26 2018-09-21 Control device, detection device, method for controlling avalanche diode, program and storage medium WO2019065490A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019545056A JPWO2019065490A1 (en) 2017-09-26 2018-09-21 Controls, detectors, methods for controlling avalanche diodes, programs and storage media
JP2022045126A JP2022091847A (en) 2017-09-26 2022-03-22 Control device, detection device, method for controlling avalanche diode, program, and storage media
JP2024035824A JP2024053083A (en) 2017-09-26 2024-03-08 Control device, detection device, method for controlling an avalanche diode, program, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-185127 2017-09-26
JP2017185127 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065490A1 true WO2019065490A1 (en) 2019-04-04

Family

ID=65902804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035014 WO2019065490A1 (en) 2017-09-26 2018-09-21 Control device, detection device, method for controlling avalanche diode, program and storage medium

Country Status (2)

Country Link
JP (3) JPWO2019065490A1 (en)
WO (1) WO2019065490A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039066A (en) * 2019-09-05 2021-03-11 株式会社東芝 Light detection device and electronic device
WO2021111766A1 (en) * 2019-12-04 2021-06-10 ソニーセミコンダクタソリューションズ株式会社 Light-receiving device, method for controlling light-receiving device, and ranging device
JP2022091847A (en) * 2017-09-26 2022-06-21 パイオニア株式会社 Control device, detection device, method for controlling avalanche diode, program, and storage media

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000576A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine
JP2020000575A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine
JP2020000574A (en) * 2018-06-29 2020-01-09 株式会社三洋物産 Game machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060576A (en) * 1983-09-13 1985-04-08 Mitsubishi Electric Corp Laser distance measuring device
JPH03296309A (en) * 1990-04-13 1991-12-27 Mitsubishi Electric Corp Optical reception circuit
JPH0471187U (en) * 1990-10-31 1992-06-24
JPH11160432A (en) * 1997-11-28 1999-06-18 Koden Electron Co Ltd Optical pulse radar and optical pulse receiver
US5929982A (en) * 1997-02-04 1999-07-27 Tektronix, Inc. Active APD gain control for an optical receiver
JP2008286669A (en) * 2007-05-18 2008-11-27 Sokkia Topcon Co Ltd Light wave range finder
JP2012073210A (en) * 2010-09-30 2012-04-12 Topcon Corp Distance measurement device
US20120162373A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Dynamic range three-dimensional image system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201519A (en) * 1995-01-20 1996-08-09 Mitsubishi Electric Corp Light reception circuit
JP5797884B2 (en) * 2010-08-04 2015-10-21 株式会社日立ハイテクノロジーズ Light quantity detection method and apparatus
JP2013036928A (en) * 2011-08-10 2013-02-21 Denso Corp Data analysis device, radar device and data analysis method
JPWO2019065490A1 (en) * 2017-09-26 2020-11-05 パイオニア株式会社 Controls, detectors, methods for controlling avalanche diodes, programs and storage media

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060576A (en) * 1983-09-13 1985-04-08 Mitsubishi Electric Corp Laser distance measuring device
JPH03296309A (en) * 1990-04-13 1991-12-27 Mitsubishi Electric Corp Optical reception circuit
JPH0471187U (en) * 1990-10-31 1992-06-24
US5929982A (en) * 1997-02-04 1999-07-27 Tektronix, Inc. Active APD gain control for an optical receiver
JPH11160432A (en) * 1997-11-28 1999-06-18 Koden Electron Co Ltd Optical pulse radar and optical pulse receiver
JP2008286669A (en) * 2007-05-18 2008-11-27 Sokkia Topcon Co Ltd Light wave range finder
JP2012073210A (en) * 2010-09-30 2012-04-12 Topcon Corp Distance measurement device
US20120162373A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Dynamic range three-dimensional image system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022091847A (en) * 2017-09-26 2022-06-21 パイオニア株式会社 Control device, detection device, method for controlling avalanche diode, program, and storage media
JP2021039066A (en) * 2019-09-05 2021-03-11 株式会社東芝 Light detection device and electronic device
JP7133523B2 (en) 2019-09-05 2022-09-08 株式会社東芝 Photodetector and electronic device
WO2021111766A1 (en) * 2019-12-04 2021-06-10 ソニーセミコンダクタソリューションズ株式会社 Light-receiving device, method for controlling light-receiving device, and ranging device

Also Published As

Publication number Publication date
JP2022091847A (en) 2022-06-21
JP2024053083A (en) 2024-04-12
JPWO2019065490A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2019065490A1 (en) Control device, detection device, method for controlling avalanche diode, program and storage medium
CN107946903B (en) Apparatus for controlling driving current of illumination source
KR101770872B1 (en) TOF camera for vehicle and method for driving thereof
US9519052B2 (en) Distance measuring device
US10302747B2 (en) Distance measuring apparatus, electronic device, method for measuring distance, and recording medium
JP5690541B2 (en) Distance measuring device
US20180081061A1 (en) Adaptive transmission power control for a LIDAR
KR20150095033A (en) Laser radar apparatus and method for acquiring image thereof
US10281578B2 (en) Compensated distance measurement methods and apparatus
US20150268343A1 (en) Range finder, mobile object and range-finding method
CN112799086B (en) Method, device and equipment for laser ranging
US20130135606A1 (en) Distance measuring device
US9677873B2 (en) Apparatus, method and computer program for determining a distance to an object using a determined peak width of a self-mixing interference (SMI) signal
US20190227146A1 (en) Electronic circuit and time-of-flight sensor comprising such an electronic circuit
WO2020022012A1 (en) Laser beam irradiation device and laser beam irradiation method
KR20180130480A (en) Optical transmitting and receiving device and method
WO2016193727A1 (en) Controlling emission of passive q-switched laser pulses
JP7098971B2 (en) Distance measuring device and distance measuring method
WO2016013242A1 (en) Distance measurement device and distance measurement method
CN110476130B (en) Measurement system and method for performing time-of-flight measurements
KR20180086895A (en) Lidar system and voltage applying apparatus for photo diode
JP2006510032A (en) Method and apparatus for manufacturing optical links using laser pulses
US20200400787A1 (en) Laser distance measuring device
US6723976B2 (en) Optical detector with regulated emission
US8072656B2 (en) Image forming apparatus and optical controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863578

Country of ref document: EP

Kind code of ref document: A1