WO2019142496A1 - Nitride semiconductor epitaxial substrate - Google Patents

Nitride semiconductor epitaxial substrate Download PDF

Info

Publication number
WO2019142496A1
WO2019142496A1 PCT/JP2018/043406 JP2018043406W WO2019142496A1 WO 2019142496 A1 WO2019142496 A1 WO 2019142496A1 JP 2018043406 W JP2018043406 W JP 2018043406W WO 2019142496 A1 WO2019142496 A1 WO 2019142496A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
substrate
semiconductor layer
heat
Prior art date
Application number
PCT/JP2018/043406
Other languages
French (fr)
Japanese (ja)
Inventor
好伸 成田
Original Assignee
株式会社サイオクス
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイオクス, 住友化学株式会社 filed Critical 株式会社サイオクス
Publication of WO2019142496A1 publication Critical patent/WO2019142496A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a nitride semiconductor epitaxial substrate.
  • nitride semiconductor epitaxial substrate used for a high electron mobility transistor HEMT: High Electron Mobility Transistor
  • AlN aluminum nitride
  • the heat dissipation may be a problem.
  • the AlN buffer layer has an uneven surface serving as a nucleus when epitaxially growing the nitride semiconductor layer, the heat on the side of the nitride semiconductor layer is less likely to be transmitted to the side of the SiC substrate due to the unevenness It is possible.
  • An object of the present invention is to provide a nitride semiconductor epitaxial substrate capable of improving the heat radiation effect to the side of the substrate.
  • the buffer layer is A nucleation layer having an irregular surface facing the nitride semiconductor layer;
  • a heat equalizing layer comprising a continuous film disposed on the side of the substrate;
  • a nitride semiconductor epitaxial substrate is provided.
  • the heat radiation effect to the side of the substrate can be made favorable.
  • the nitride semiconductor epitaxial substrate is a substrate-like structure used as a base when manufacturing a semiconductor device such as HEMT described later.
  • the nitride semiconductor epitaxial substrate may be referred to as "intermediate” or “intermediate precursor” because it is used as a substrate of a semiconductor device.
  • the intermediate 10 includes at least a substrate 11, a buffer layer 12 formed on the substrate 11, and a first nitride semiconductor layer formed on the buffer layer 12. (Hereinafter referred to as “first nitride semiconductor layer” or “first layer”) 13 and a second nitride semiconductor layer formed on first nitride semiconductor layer 13 (hereinafter referred to as “second nitride” A semiconductor layer “or” second layer "14).
  • the substrate 11 is configured as a base substrate on which the buffer layer 12, the first nitride semiconductor layer 13 and the like are grown, and is configured using, for example, a SiC substrate.
  • a semi-insulating SiC substrate of polytype 4H or polytype 6H is used as the substrate 11.
  • the numbers 4H and 6H indicate the repetition cycle in the c-axis direction, and H indicates a hexagonal crystal.
  • “semi-insulating” as referred to herein means, for example, a state in which the specific resistance is 10 5 ⁇ ⁇ cm or more.
  • the substrate 11 has a semi-insulating property, the diffusion of free electrons from the side of the first nitride semiconductor layer 13 to the substrate 11 is suppressed when configuring the semiconductor device 20 described later, and the leakage current is It can be suppressed.
  • the substrate 11 is preferably a semi-insulating SiC substrate, but may be a conductive SiC substrate, a sapphire substrate, a silicon substrate, a GaN substrate or the like.
  • the buffer layer 12 is formed mainly of, for example, AlN, which is a group III nitride semiconductor.
  • the buffer layer 12 mainly functions as a buffer layer (buffer layer) that buffers the lattice constant difference between the substrate 11 and the first nitride semiconductor layer 13.
  • the buffer layer 12 also functions as a nucleation layer in which the first nitride semiconductor layer 13 side forms a nucleus for crystal growth of the first nitride semiconductor layer 13 as described later. There is.
  • the buffer layer 12 may be referred to as an “AlN layer” or an “AlN buffer layer”.
  • the first nitride semiconductor layer 13 is formed mainly of GaN, which is, for example, a group III nitride semiconductor.
  • the first nitride semiconductor layer 13 is a buffer layer in which a partial region (for example, a region located on the side of the AlN buffer layer 12) mainly buffers the lattice constant difference between the AlN buffer layer 12 and the first nitride semiconductor layer 13. While functioning as a (buffer layer), other regions (for example, a region located on the side of the second nitride semiconductor layer 14) function as an electron transit layer (channel layer) for mainly causing electrons to travel. ing.
  • the piezoelectric effect (the crystal is distorted in the second nitride semiconductor layer 14 due to the lattice constant difference between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14
  • Two dimensional electron gas (2DEG: Two Dimensional Electron Gas) induced by the effect of the electric field is present.
  • the surface of the region functioning as the electron transit layer (upper surface of the first nitride semiconductor layer 13) is a group III atom polar surface (+ c surface).
  • the first nitride semiconductor layer 13 may be referred to as a “GaN layer” or a “GaN channel / buffer layer”.
  • the second nitride semiconductor layer 14 has a wider band gap than the group III nitride semiconductor constituting the GaN channel / buffer layer 13 and is smaller than the lattice constant of the group III nitride semiconductor constituting the GaN channel / buffer layer 13 It consists of a group III nitride semiconductor having a lattice constant, and is composed mainly of, for example, Al x Ga 1 -xN (where 0 ⁇ x ⁇ 1).
  • the second nitride semiconductor layer 14 functions as an electron supply layer that supplies electrons to the electron transit layer of the GaN channel / buffer layer 13 and also functions as a barrier layer (barrier layer) that spatially confines the 2DEG.
  • the surface (upper surface) of the second nitride semiconductor layer 14 is a group III atom polar surface (+ c surface). With such a configuration, spontaneous polarization and piezoelectric polarization occur in the second nitride semiconductor layer 14. The polarization action induces a high concentration of 2DEG near the heterojunction interface in the GaN channel / buffer layer 13.
  • the second nitride semiconductor layer 14 may be referred to as an "AlGaN layer” or an "AlGaN barrier layer".
  • the HEMT 20 includes the intermediate 10 having the above-described configuration, a third nitride semiconductor layer 21 formed on the AlGaN barrier layer 14 in the intermediate 10, and a third nitride.
  • a gate electrode 22, a source electrode 23 and a drain electrode 24 formed on the semiconductor layer 21 are provided.
  • the third nitride semiconductor layer 21 is formed mainly of GaN, which is, for example, a group III nitride semiconductor.
  • the third nitride semiconductor layer 21 is interposed between the AlGaN barrier layer 14 and the gate electrode 22 in order to improve, for example, the device characteristics (controllability of the threshold voltage, etc.) when the HEMT 20 is configured.
  • the HEMT 20 is not necessarily an essential component and may be omitted.
  • the third nitride semiconductor layer 21 may be referred to as a "GaN cap layer".
  • the gate electrode 22 has, for example, a multilayer structure (Ni / Au) of nickel (Ni) and gold (Au).
  • Ni nickel
  • Au gold
  • the source electrode 23 is disposed at a predetermined distance from the gate electrode 22 and has, for example, a multilayer structure (Ti / Al) of titanium (Ti) and aluminum (Al).
  • the drain electrode 24 is disposed opposite to the source electrode 23 with the gate electrode 22 on the opposite side of the gate electrode 22 and at a predetermined distance from the gate electrode 22, similarly to the source electrode 23, for example, a multilayer structure of Ti and Al (Ti / Al. It consists of Al).
  • the source electrode 23 and the drain electrode 24 may have a multilayer structure of Ni / Au stacked on a multilayer structure of Ti / Al.
  • the HEMT 20 having the above-described configuration has good heat dissipation.
  • the heat generated in the vicinity of the gate electrode 22 is dissipated at once if it reaches the substrate 11. Therefore, in order to obtain good heat dissipation, the resistance component of heat transfer to reach the substrate 11 is very important.
  • the inventors of the present application examined the resistive component of heat transfer in the HEMT 20, in particular, the resistive component of heat transfer in the intermediate body 10 constituting the HEMT 20, it is presumed that the surface shape of the AlN buffer layer 12 is related. It became clear. Specifically, although the AlN buffer layer 12 has an uneven surface on the side of the first nitride semiconductor layer 13 to function as a nucleation layer, the uneven surface affects the resistance component of heat transfer. I understood it. More specifically, it has been found that the magnitude of the heat transfer resistive component may change due to the uneven surface, for example, the heat transfer resistive component tends to be smaller when the uneven surface is closer to being flat.
  • the uneven surface of the AlN buffer layer 12 affects the crystal quality of the first nitride semiconductor layer 13 formed thereon. Specifically, the crystal quality of the first nitride semiconductor layer 13 formed thereon tends to deteriorate as the size of the unevenness on the uneven surface decreases. As to the crystal quality of the first nitride semiconductor layer 13, if the film thickness of the first nitride semiconductor layer 13 is increased, the deterioration of the crystal quality is suppressed, but for that purpose, the growth time of crystal growth is prolonged As a result, the productivity of the intermediate 10 and the like is impaired. Therefore, the film thickness of the first nitride semiconductor layer 13 is preferably suppressed to a certain extent.
  • the AlN buffer is simply used. It is not always appropriate to configure the uneven surface of the layer 12 to be flatter.
  • the inventor of the present application found that when the AlN buffer layer 12 is divided in the in-plane direction by the uneven surface of the AlN buffer layer 12, the heat transfer resistance component becomes large. It came to gain the knowledge that there is a risk of In other words, even if the size of the asperities on the asperity surface is such that good crystal quality can be obtained, heat transfer is not performed unless the AlN buffer layer 12 is divided in the in-plane direction by the asperity surface. The idea is that it becomes feasible to obtain good heat dissipation by reducing the resistance component.
  • the present invention is based on the above-mentioned findings newly found by the present inventor.
  • the intermediate 10 according to the present embodiment is characterized in that the AlN buffer layer 12 is a major feature.
  • the AlN buffer layer 12 includes a nucleation layer 12 b having an uneven surface 12 a facing the first nitride semiconductor layer 13 and a heat equalizing layer 12 c formed of a continuous film disposed on the side of the substrate 11. There is.
  • the nucleation layer 12 b and the heat equalizing layer 12 c are each formed of, for example, AlN as a main component.
  • the nucleation layer 12 b is for forming a nucleus when crystal growth of the first nitride semiconductor layer 13 is performed, and has a concavo-convex surface 12 a facing the first nitride semiconductor layer 13.
  • the shape of the convex part or recessed part which comprises the uneven surface 12a will not be specifically limited if it can form a nucleus.
  • the uneven surface 12a of the nucleation layer 12b has a surface roughness Rz of the uneven surface 12a (that is, the sum of the maximum value of the peak height of the protrusions and the maximum value of the valley depth of the recesses) is, for example, 7 nm or more Is formed.
  • the crystal quality of the first nitride semiconductor layer 13 formed thereon may be adversely affected, but if the value of the surface roughness Rz is 7 nm or more, An adverse effect on the crystal quality of the mono-nitride semiconductor layer 13 can be suppressed. Therefore, if crystal growth is performed on the uneven surface 12a, the first nitride semiconductor layer 13 of good crystal quality can be obtained, for example, as the defect density is low, as described in detail later. Become.
  • the residual impurity concentration in the first nitride semiconductor layer 13 tends to increase.
  • the crystal at the interface between the nucleation layer 12 b and the first nitride semiconductor layer 13 has a low resistance, which makes it easy for the current to leak when the HEMT 20 is formed.
  • the value of the surface roughness Rz is 7 nm or more, the increase of the residual impurity concentration can be suppressed, and the leak current when configuring the HEMT 20 can be suppressed low.
  • the uneven surface 12a of the nucleation layer 12b has a surface roughness Rz of, for example, less than 20 nm. If the size of the unevenness on the uneven surface 12a of the nucleation layer 12b is small so that the value of the surface roughness Rz is less than 20 nm, compared to the case where the unevenness is large, from the side of the first nitride semiconductor layer 13 Heat is easily transmitted to the AlN buffer layer 12. This is considered to be because energy transfer is more likely to occur between the crystal lattices because the smaller the unevenness, the more the crystal lattices are aligned.
  • the surface temperature of the second nitride semiconductor layer 14 in the intermediate 10 has a relationship as shown in FIG.
  • the surface temperature of the second nitride semiconductor layer 14 is a high temperature of about 120 ° C. when the size of the unevenness on the uneven surface 12a is large.
  • the surface temperature also decreases.
  • the heat equalizing layer 12 c is a layer that constitutes the AlN buffer layer 12 together with the nucleation layer 12 b, and is formed of a continuous film disposed on the side of the substrate 11.
  • a continuous film refers to a film in which a film is continuously formed in a plane and there is no part divided in the in-plane direction.
  • the AlN buffer layer 12 includes not only the nucleation layer 12 b but also the heat equalizing layer 12 c which is a continuous film. Therefore, even if the nucleation layer 12b has the uneven surface 12a, since the heat equalizing layer 12c which is a continuous film is present, the AlN buffer layer 12 is divided in the in-plane direction by the uneven surface 12a. The heat transferred from the side of the first nitride semiconductor layer 13 is diffused in the in-plane direction by the heat equalizing layer 12c which is a continuous film, and the heat is efficiently transmitted to the substrate 11 side. It will be possible to communicate. That is, since the AlN buffer layer 12 is not divided in the in-plane direction by having the heat equalizing layer 12 c, it is possible to reduce the resistance component of heat transfer and obtain good heat dissipation. .
  • the heat equalizing layer 12 c is formed to have a film thickness of 3 nm or more. If the film thickness is 3 nm or more, the heat equalizing layer 12c can be reliably made a continuous film. Further, if the heat spreader 12c has a thickness of 3 nm or more, for example, even if the nucleation layer 12b is a discontinuous film, the thinnest portion of the AlN buffer layer 12 has a thickness of 3 nm or more. This is very effective in improving the heat radiation effect to the side of the substrate 11.
  • the surface temperature and the film thickness of the heat equalizing layer 12c have a relationship as shown in FIG.
  • the film thickness of the heat equalizing layer 12c is very thin such as 1 nm or less
  • the surface temperature of the second nitride semiconductor layer 14 is in a high temperature state of about 120 ° C.
  • the surface temperature increases, the surface temperature also decreases.
  • the film thickness of the heat equalizing layer 12c when the film thickness of the heat equalizing layer 12c is small, heat is not easily transmitted to the side of the substrate 11, but as the film thickness of the heat equalized layer 12c increases, from the side of the first nitride semiconductor layer 13 to the side of the substrate 11 The heat is easily transmitted. Then, when the film thickness of the heat equalizing layer 12c becomes 3 nm or more (that is, the thickness that ensures a continuous film), the drop of the surface temperature of the second nitride semiconductor layer 14 tends to be saturated, and the surface temperature is It becomes a low temperature state of about 60 to 70 ° C. That is, when the film thickness of the heat equalizing layer 12 c is 3 nm or more, it is possible to transfer the heat on the side of the first nitride semiconductor layer 13 to the side of the substrate 11 favorably.
  • the film thickness of the heat equalizing layer 12c is 3 nm or more, the value (upper limit value, etc.) is not particularly limited, and the AlN buffer layer 12 having the nucleation layer 12b and the heat equalizing layer 12c is not particularly limited. It is sufficient if the thickness can buffer the difference in lattice constant between the substrate 11 and the first nitride semiconductor layer 13 as a whole.
  • the first nitride semiconductor layer 13 formed on the uneven surface 12 a of the nucleation layer 12 b of the AlN buffer layer 12 as described above is formed to have a thickness of 0.4 ⁇ m to 2.0 ⁇ m. .
  • the film thickness of the first nitride semiconductor layer 13 is set to 0.4 ⁇ m or more and 2.0 ⁇ m or less, it is possible to achieve both the suppression of deterioration of crystal quality and the suppression of deterioration of productivity in a well-balanced manner.
  • the crystal quality referred to here includes both of those relating to crystallinity (defect density and the like) and those relating to residual impurity concentration (purity).
  • the half value width of a X-ray rocking curve is mentioned, for example.
  • the full width at half maximum of the X-ray rocking curve indicates the uniformity of the plane orientation of the crystal of a specific plane orientation within the area of the spot size (usually about 1 mm in diameter) of the X-ray beam at the measurement point. Therefore, the half value width of the X-ray rocking curve of the growth surface of the crystal to be epitaxially grown is an indicator of the uniformity of the surface orientation of the growth surface.
  • the half value width of the X-ray rocking curve of the (002) plane of the nitride semiconductor crystal is a spot of the growth direction of a large number of micro crystal columns constituting the nitride semiconductor layer grown in the [002] direction It is an index showing how the regions of the size are aligned, and the larger the half-width is, the more irregular the growth direction of the crystal column is.
  • n-type conductive layer is formed in a nitride semiconductor layer
  • silicon (Si (Si) is grown while epitaxial growth of the nitride semiconductor crystal forming the nitride semiconductor layer is performed by metal organic vapor phase epitaxy (MOVPE) or the like).
  • MOVPE metal organic vapor phase epitaxy
  • n-type impurities such as oxygen and oxygen (O).
  • O which behaves as an n-type impurity is difficult to be taken in when the growth surface of the nitride semiconductor crystal is the (002) plane, and is easily taken in when it is the other surface.
  • the uniformity of the growth direction of the micro crystal columns constituting the nitride semiconductor crystal grown with the (002) plane as the growth surface is lower, O is more easily taken into the nitride semiconductor crystal, and as a result thereof The concentration of n-type impurities is increased. Therefore, the half value width of the X-ray rocking curve of the nitride semiconductor layer which is a nitride semiconductor crystal grown with the (002) plane as the growth plane and whose top surface has the (002) plane orientation is the n-type at the measurement point It also serves as an indicator of the n-type impurity concentration in the conductive layer.
  • the surface roughness Rz of the uneven surface 12a of the nucleation layer 12b of the AlN buffer layer 12 is 7 nm or more, and the film thickness of the first nitride semiconductor layer 13 formed thereon is 0.4 ⁇ m or more If so, for the first nitride semiconductor layer 13, the full width at half maximum of the X-ray rocking curve in the (002) plane can be made 300 seconds or less in the whole area in the plane. If the half width of the X-ray rocking curve is 300 seconds or less, it can be said that the plane orientation of the crystals constituting the first nitride semiconductor layer 13 is uniform, and it is clear that good crystal quality is obtained. .
  • an intermediate 10 is manufactured by the following procedure using a metal organic vapor phase epitaxy (MOVPE) apparatus.
  • MOVPE metal organic vapor phase epitaxy
  • the epitaxial growth of the AlN layer 12 is first performed on the soaking layer 12 c and then on the nucleation layer 12 b.
  • the epitaxial growth of the heat equalizing layer 12c is performed under growth conditions that can form a continuous film. Specifically, the temperature of the substrate 11 is adjusted to a growth temperature (for example, 1200 ° C. or more and 1300 ° C. or less) suitable for the growth of the continuous film. That is, the growth temperature is adjusted to a temperature higher than that in the film formation of the nucleation layer 12 b described later. Thereby, the heat equalizing layer 12c can be formed as a continuous film.
  • a growth temperature for example, 1200 ° C. or more and 1300 ° C. or less
  • the temperature of the substrate 11 is adjusted to a growth temperature (for example, 1100 ° C. or more and 1200 ° C. or less) suitable for the formation of the uneven surface 12 a. That is, the growth temperature is adjusted to a temperature lower than at the time of forming the heat equalizing layer 12c described above. Thereby, it is possible to form the nucleation layer 12 b having the uneven surface 12 a whose surface roughness Rz is 7 nm or more and less than 20 nm.
  • the growth temperature has been exemplified as the growth condition to be changed, the growth temperature is not limited thereto, and it is possible to form each of the heat equalizing layer 12 c and the nucleation layer 12 b as follows:
  • Other growth conditions eg, V / III ratio, growth rate, etc.
  • V / III ratio may be used.
  • the V / III ratio is lowered so as to form a continuous film for the heat equalizing layer 12c
  • the V / III ratio so as to form the irregular surface 12a for the nucleation layer 12b. Can be considered as high.
  • the growth rate is decreased so as to form a continuous film for the heat equalizing layer 12c
  • the growth rate is increased so as to form the uneven surface 12a for the nucleation layer 12b.
  • the growth conditions such as the growth temperature, the V / III ratio, and the growth rate may be appropriately combined and adjusted.
  • the surface roughness Rz of the uneven surface 12a of the AlN layer 12 is 7 nm or more on the soaking layer 12c which is a continuous film having a thickness of 3 nm or more.
  • the nucleation layer 12b which is present and less than 20 nm is formed. Then, when the growth of the AlN layer 12 having a predetermined thickness is completed, the supply of TMA gas is stopped. At this time, the supply of NH 3 gas is continued.
  • the temperature of the substrate 11 is adjusted to a predetermined growth temperature of the GaN layer 13 (for example, 1000 ° C. or more and 1100 ° C. or less). Then, when the temperature of the substrate 11 reaches a predetermined growth temperature, for example, trimethylgallium (TMG) gas is supplied as a group III source gas while the supply of the NH 3 gas is continued. Thereby, the GaN layer 13 made of single crystal GaN is epitaxially grown on the AlN layer 12.
  • TMG trimethylgallium
  • the supply of TMG gas is stopped. At this time, the supply of NH 3 gas is continued.
  • the supply of TMG gas and TMA gas is stopped, and the temperature of the substrate 11 is lowered from the growth temperature of the AlGaN layer 14.
  • the carrier gas is stopped, the N 2 gas is supplied as the purge gas, and the supply of the NH 3 gas is continued.
  • the temperature of the nitride semiconductor epitaxial substrate 11 becomes 500 ° C. or less, the supply of NH 3 gas is stopped, the atmosphere in the processing chamber of the MOVPE apparatus is replaced with only N 2 gas, and the pressure is restored to atmospheric pressure.
  • the intermediate 10 (that is, an example of the nitride semiconductor epitaxial substrate) shown in FIG. 1 is manufactured.
  • the intermediate 10 is prepared, and the intermediate 10 is carried into the processing chamber of the MOVPE apparatus. Then, the same process as in the case of the GaN layer forming step (S130) described above is performed to epitaxially grow the GaN cap layer 21 made of single crystal GaN on the AlGaN layer 14 in the intermediate 10. Thereafter, when the growth of the GaN cap layer 21 having a predetermined thickness is completed, the intermediate 10 on which the GaN cap layer 21 is formed is unloaded from the processing chamber. Note that the growth of the GaN cap layer 21 may be carried out continuously in the high temperature state after the above-described AlGaN layer forming step (S140).
  • a resist film is formed on the GaN cap layer 21, and the resist film is patterned so that the region where the source electrode 23 and the drain electrode 24 are to be formed in plan view becomes an opening. Then, for example, a Ti / Al multilayer structure (or a Ti / Al / Ni / Au multilayer structure) is formed by electron beam evaporation so as to cover the GaN cap layer 21 and the resist film. Thereafter, the resist film is removed by liftoff using a predetermined solvent to form the source electrode 23 and the drain electrode 24 in the predetermined region, and the whole is annealed at a predetermined temperature in an N 2 atmosphere for a predetermined time. (Eg, 650 ° C. for 3 minutes). Thereby, each of the source electrode 23 and the drain electrode 24 can be in ohmic contact with the GaN cap layer 21.
  • a resist film is formed to cover the GaN cap layer 21, the source electrode 23, and the drain electrode 24, and the resist film is patterned so that the region where the gate electrode 22 is to be formed in plan view becomes an opening. .
  • a Ni / Au multilayer structure is formed to cover the GaN cap layer 21 and the resist film, for example, by electron beam evaporation.
  • the resist film is removed by liftoff using a predetermined solvent to form the gate electrode 22 in the predetermined region, and the whole is annealed at a predetermined temperature in an N 2 atmosphere for a predetermined time (for example, 450 ° C 10 minutes).
  • the HEMT 20 (that is, an example of the semiconductor device) shown in FIG. 1 is manufactured.
  • the AlN buffer layer 12 is formed of a nucleation layer 12 b having an uneven surface 12 a facing the first nitride semiconductor layer 13 and a continuous film disposed on the side of the substrate 11. And a thermal layer 12c. That is, the AlN buffer layer 12 includes not only the nucleation layer 12 b but also the heat equalizing layer 12 c which is a continuous film. Therefore, even if the nucleation layer 12b has the uneven surface 12a, since the heat equalizing layer 12c which is a continuous film is present, the AlN buffer layer 12 is divided in the in-plane direction by the uneven surface 12a.
  • the heat transferred from the side of the first nitride semiconductor layer 13 is diffused in the in-plane direction by the heat equalizing layer 12c which is a continuous film, and the heat is efficiently transmitted to the substrate 11 side. It will be possible to communicate.
  • the heat equalizing layer 12c which is a continuous film, and the heat is efficiently transmitted to the substrate 11 side. It will be possible to communicate.
  • the heat transfer resistance component is reduced to achieve good heat dissipation. As a result, it is possible to obtain the property, and as a result, the heat radiation effect to the side of the substrate 11 through the AlN buffer layer 12 can be made favorable.
  • the heat equalizing layer 12c has a thickness of 3 nm or more, the heat equalizing layer 12c can be reliably made a continuous film. Further, if the heat spreader 12c has a thickness of 3 nm or more, for example, even if the nucleation layer 12b is a discontinuous film, the thinnest portion of the AlN buffer layer 12 has a thickness of 3 nm or more. This is very effective in improving the heat radiation effect to the side of the substrate 11.
  • the value of the surface roughness Rz of the concavo-convex surface 12 a in the nucleation layer 12 b is 7 nm or more, a good crystal is obtained for the first nitride semiconductor layer 13 formed thereon Quality will be obtained. That is, if the size of the unevenness on the uneven surface 12a is too small, the crystal quality of the first nitride semiconductor layer 13 formed thereon may be adversely affected, but if the value of the surface roughness Rz is 7 nm or more The adverse effect on the crystal quality of the first nitride semiconductor layer 13 can be suppressed. Therefore, for example, it is possible to obtain the first nitride semiconductor layer 13 of good crystal quality in which the defect density is low and the residual impurity concentration is suppressed.
  • the first nitride semiconductor layer 13 formed on the concavo-convex surface 12 a of the nucleation layer 12 b of the AlN buffer layer 12 is formed with a thickness of 0.4 ⁇ m to 2.0 ⁇ m. It is done.
  • the first nitride semiconductor layer (GaN layer) 13 epitaxially grown on the concavo-convex surface 12 a of the nucleation layer 12 b can alleviate the adverse effect on the crystal quality caused by the size of the concavities and convexities of the concavo-convex surface 12 a, This leads to an increase in growth time (that is, deterioration in productivity).
  • the film thickness of the first nitride semiconductor layer 13 is set to 0.4 ⁇ m or more and 2.0 ⁇ m or less, both the deterioration suppression of the crystal quality and the deterioration suppression of the productivity are satisfied in a balanced manner. Is possible. That is, while making it possible to reliably reduce the adverse effect on the crystal quality by setting the film thickness to 0.4 ⁇ m or more, suppressing the deterioration of productivity as much as possible by setting the film thickness to 2.0 ⁇ m or less it can.
  • the heat equalizing layer 12c has a thickness of 3 nm or more, and the surface roughness Rz of the concavo-convex surface 12a of the nucleation layer 12b is 7 nm or more and is less than 20 nm.
  • the present invention is not limited thereto.
  • the relationship between the surface temperature of the second nitride semiconductor layer 14 and the surface roughness Rz of the uneven surface 12a of the nucleation layer 12b exhibits different behavior from that of FIG. Even if the value of the roughness Rz is out of the range shown in the present embodiment, good heat dissipation may be obtained.
  • the relationship between the surface temperature of the second nitride semiconductor layer 14 and the film thickness of the heat equalizing layer 12c is as shown in FIG. Shows a different behavior, and good heat dissipation may be obtained even if the film thickness of the heat equalizing layer 12c is out of the range shown in this embodiment. That is, the film thickness of the heat equalizing layer 12c and the value of the surface roughness Rz of the uneven surface 12a of the nucleation layer 12b mutually affect each other in terms of heat dissipation.
  • the heat dissipation may occur even if these numerical values are out of the range shown in this embodiment. It may be possible to make the sex a good thing. The same can be said for the crystal quality of the first nitride semiconductor layer 13 as well as the heat dissipation. That is, if the value of the surface roughness Rz of the uneven surface 12a is appropriately set, a good crystal is obtained regardless of the combination of the value of the surface roughness Rz and the film thickness of the heat equalizing layer 12c. Quality and heat dissipation may be obtained.
  • the AlN buffer layer 12 is added to the nucleation layer 12 b and the heat spreader layer 12 c is a continuous film. As long as it is included, it becomes feasible to obtain good heat dissipation while maintaining good crystal quality.
  • the intermediate (nitride semiconductor epitaxial substrate) 10 is the substrate 11, the AlN layer (AlN buffer layer) 12, the GaN layer (first nitride semiconductor layer) 13, and the AlGaN layer (second nitride)
  • the nitride semiconductor layer may be a single layer, as long as the nitride semiconductor layer is formed at least on the substrate via the buffer layer. It may have other layers not described in the above embodiment.
  • the first nitride semiconductor layer is the GaN layer 13 and the second nitride semiconductor layer is the AlGaN layer 14 by way of example, but the present invention is limited thereto is not. That is, the nitride semiconductor layer is not limited to the GaN crystal or the AlGaN crystal as long as it is made of a single crystal of a group III nitride semiconductor, and for example, aluminum nitride (AlN), indium nitride (InN), indium gallium nitride A nitride crystal such as InGaN) or aluminum indium nitride nitride (AlInGaN), that is, a nitride crystal represented by a composition formula of Al x In y Ga 1 -x- N (0 ⁇ x + y ⁇ 1) It may be.
  • AlN aluminum nitride
  • AlN aluminum nitride
  • InN indium nitride
  • AlInGaN aluminum
  • the HEMT 20 which is one of the FETs is taken as an example of a semiconductor device manufactured using the intermediate (nitride semiconductor epitaxial substrate) 10, but the present invention is limited thereto The same applies to other semiconductor devices.
  • a substrate A buffer layer formed on the substrate; And a nitride semiconductor layer formed on the buffer layer.
  • the buffer layer is A nucleation layer having an irregular surface facing the nitride semiconductor layer;
  • a heat equalizing layer comprising a continuous film disposed on the side of the substrate;
  • a nitride semiconductor epitaxial substrate is provided.
  • the heat equalizing layer is formed to have a film thickness of 3 nm or more.
  • the nucleation layer is formed to have a surface roughness Rz of less than 20 nm.
  • the nucleation layer is formed to have a surface roughness Rz of 7 nm or more.
  • the nitride semiconductor layer has a first layer formed on the uneven surface of the nucleation layer, The first layer is formed to have a thickness of 0.4 ⁇ m to 2.0 ⁇ m.
  • Nitride semiconductor epitaxial substrate (intermediate) 11 11 substrate 12 buffer layer (AlN buffer layer) 12a uneven surface 12b nucleation layer 12c soaking layer 13 first nitride semiconductor Layer (GaN layer, GaN channel / buffer layer), 14 ... second nitride semiconductor layer (AlGaN layer, AlGaN barrier layer), 15 ... two-dimensional electron gas (2DEG), 17 ... near interface region, 20 ... semiconductor device (HEMT), 21: third nitride semiconductor layer (GaN layer, GaN cap layer), 22: gate electrode, 23: source electrode, 24: drain electrode

Abstract

A nitride semiconductor epitaxial substrate which comprises a substrate, a buffer layer that is formed on the substrate, and a nitride semiconductor layer that is formed on the buffer layer, and which is configured such that the buffer layer comprises a nucleation layer that has a recessed and projected surface that faces the nitride semiconductor layer, and a uniform heating layer that is composed of a continuous film and is arranged on the substrate side.

Description

窒化物半導体エピタキシャル基板Nitride semiconductor epitaxial substrate
 本発明は、窒化物半導体エピタキシャル基板に関する。 The present invention relates to a nitride semiconductor epitaxial substrate.
 例えば、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)に用いられる窒化物半導体エピタキシャル基板として、炭化ケイ素(SiC)基板上に、窒化アルミニウム(AlN)バッファ層を介して、窒化ガリウム(GaN)等の窒化物半導体層がエピタキシャル成長されてなるものが知られている(例えば、特許文献1、2参照)。 For example, as a nitride semiconductor epitaxial substrate used for a high electron mobility transistor (HEMT: High Electron Mobility Transistor), gallium nitride (GaN) on a silicon carbide (SiC) substrate via an aluminum nitride (AlN) buffer layer And the like are known to be formed by epitaxial growth of nitride semiconductor layers such as, for example, see Patent Documents 1 and 2.
特開2008-251966号公報JP, 2008-251966, A 特開2013-4924号公報JP, 2013-4924, A
 しかしながら、従来構成の窒化物半導体エピタキシャル基板では、放熱性が問題となり得る。具体的には、AlNバッファ層は窒化物半導体層をエピタキシャル成長させる際の核となる凹凸面を有するが、その凹凸に起因して窒化物半導体層の側の熱がSiC基板の側に伝わり難くなることがあり得る。 However, in the conventional nitride semiconductor epitaxial substrate, the heat dissipation may be a problem. Specifically, although the AlN buffer layer has an uneven surface serving as a nucleus when epitaxially growing the nitride semiconductor layer, the heat on the side of the nitride semiconductor layer is less likely to be transmitted to the side of the SiC substrate due to the unevenness It is possible.
 本発明は、基板の側への放熱効果を良好なものとすることができる窒化物半導体エピタキシャル基板を提供することを目的とする。 An object of the present invention is to provide a nitride semiconductor epitaxial substrate capable of improving the heat radiation effect to the side of the substrate.
 本発明の一態様によれば、
 基板と、
 前記基板上に形成されたバッファ層と、
 前記バッファ層上に形成された窒化物半導体層と、を備え、
 前記バッファ層は、
 前記窒化物半導体層に面する凹凸面を有した核生成層と、
 前記基板の側に配された連続膜からなる均熱層と、
 を含む窒化物半導体エピタキシャル基板が提供される。
According to one aspect of the invention:
A substrate,
A buffer layer formed on the substrate;
And a nitride semiconductor layer formed on the buffer layer.
The buffer layer is
A nucleation layer having an irregular surface facing the nitride semiconductor layer;
A heat equalizing layer comprising a continuous film disposed on the side of the substrate;
A nitride semiconductor epitaxial substrate is provided.
 本発明によれば、基板の側への放熱効果を良好なものとすることができる。 According to the present invention, the heat radiation effect to the side of the substrate can be made favorable.
本発明の一実施形態に係る窒化物半導体エピタキシャル基板の概略構成例を模式的に示す説明図である。It is explanatory drawing which shows typically the schematic structural example of the nitride semiconductor epitaxial substrate which concerns on one Embodiment of this invention. 本発明の一実施形態に係る窒化物半導体エピタキシャル基板における窒化物半導体層の表面温度と核生成層の凹凸面の表面粗さRzとの関係の一具体例を示す説明図である。It is explanatory drawing which shows one specific example of the relationship between surface temperature of the nitride semiconductor layer in the nitride semiconductor epitaxial substrate which concerns on one Embodiment of this invention, and surface roughness Rz of the uneven surface of a nucleation layer. 本発明の一実施形態に係る窒化物半導体エピタキシャル基板における窒化物半導体層の表面温度と均熱層の膜厚との関係の一具体例を示す説明図である。It is explanatory drawing which shows one specific example of the relationship between the surface temperature of the nitride semiconductor layer in the nitride semiconductor epitaxial substrate which concerns on one Embodiment of this invention, and the film thickness of a soaking layer.
<本発明の一実施形態>
 以下、本発明の一実施形態について図面を参照しながら説明する。
<One embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(1)窒化物半導体エピタキシャル基板の基本構成
 先ず、本実施形態に係る窒化物半導体エピタキシャル基板の基本的な構成例を説明する。
 窒化物半導体エピタキシャル基板は、後述するHEMT等の半導体装置を製造する際に基体として用いられる基板状の構造体である。半導体装置の基体として用いられることから、以下、窒化物半導体エピタキシャル基板のことを「中間体」または「中間前駆体」ということもある。
(1) Basic Configuration of Nitride Semiconductor Epitaxial Substrate First, a basic configuration example of the nitride semiconductor epitaxial substrate according to the present embodiment will be described.
The nitride semiconductor epitaxial substrate is a substrate-like structure used as a base when manufacturing a semiconductor device such as HEMT described later. Hereinafter, the nitride semiconductor epitaxial substrate may be referred to as "intermediate" or "intermediate precursor" because it is used as a substrate of a semiconductor device.
 図1に示すように、本実施形態に係る中間体10は、少なくとも、基板11と、基板11上に形成されたバッファ層12と、バッファ層12上に形成された第一の窒化物半導体層(以下、「第一窒化物半導体層」または「第一層」という。)13と、第一窒化物半導体層13上に形成された第二の窒化物半導体層(以下、「第二窒化物半導体層」または「第二層」という。)14と、を備えて構成されている。 As shown in FIG. 1, the intermediate 10 according to this embodiment includes at least a substrate 11, a buffer layer 12 formed on the substrate 11, and a first nitride semiconductor layer formed on the buffer layer 12. (Hereinafter referred to as “first nitride semiconductor layer” or “first layer”) 13 and a second nitride semiconductor layer formed on first nitride semiconductor layer 13 (hereinafter referred to as “second nitride” A semiconductor layer "or" second layer "14).
(基板)
 基板11は、バッファ層12や第一窒化物半導体層13等を成長させる下地基板として構成されたもので、例えばSiC基板を用いて構成されている。具体的には、基板11として、例えば、ポリタイプ4Hまたはポリタイプ6Hの半絶縁性SiC基板が用いられる。4H、6Hの数字はc軸方向の繰返し周期を示し、Hは六方晶を示す。また、ここでいう「半絶縁性」とは、例えば、比抵抗が10Ω・cm以上である状態をいう。基板11が半絶縁性を有していれば、後述する半導体装置20を構成した際に、第一窒化物半導体層13の側から基板11への自由電子の拡散を抑制して、リーク電流を抑えることができる。なお、基板11は、半絶縁性SiC基板を用いることが好ましいが、導電性SiC基板、サファイア基板、シリコン基板、GaN基板等であってもよい。
(substrate)
The substrate 11 is configured as a base substrate on which the buffer layer 12, the first nitride semiconductor layer 13 and the like are grown, and is configured using, for example, a SiC substrate. Specifically, for example, a semi-insulating SiC substrate of polytype 4H or polytype 6H is used as the substrate 11. The numbers 4H and 6H indicate the repetition cycle in the c-axis direction, and H indicates a hexagonal crystal. In addition, “semi-insulating” as referred to herein means, for example, a state in which the specific resistance is 10 5 Ω · cm or more. If the substrate 11 has a semi-insulating property, the diffusion of free electrons from the side of the first nitride semiconductor layer 13 to the substrate 11 is suppressed when configuring the semiconductor device 20 described later, and the leakage current is It can be suppressed. The substrate 11 is preferably a semi-insulating SiC substrate, but may be a conductive SiC substrate, a sapphire substrate, a silicon substrate, a GaN substrate or the like.
(バッファ層)
 バッファ層12は、例えばIII族窒化物半導体であるAlNを主成分として形成されている。バッファ層12は、主として、基板11と第一窒化物半導体層13との格子定数差を緩衝する緩衝層(バッファ層)として機能する。なお、バッファ層12は、後述するように、第一窒化物半導体層13の側が、第一窒化物半導体層13の結晶成長のための核を形成する核生成層として機能するようにもなっている。以下、バッファ層12のことを「AlN層」または「AlNバッファ層」ということもある。
(Buffer layer)
The buffer layer 12 is formed mainly of, for example, AlN, which is a group III nitride semiconductor. The buffer layer 12 mainly functions as a buffer layer (buffer layer) that buffers the lattice constant difference between the substrate 11 and the first nitride semiconductor layer 13. The buffer layer 12 also functions as a nucleation layer in which the first nitride semiconductor layer 13 side forms a nucleus for crystal growth of the first nitride semiconductor layer 13 as described later. There is. Hereinafter, the buffer layer 12 may be referred to as an “AlN layer” or an “AlN buffer layer”.
(第一窒化物半導体層)
 第一窒化物半導体層13は、例えばIII族窒化物半導体であるGaNを主成分として形成されている。第一窒化物半導体層13は、一部領域(例えばAlNバッファ層12の側に位置する領域)が主にAlNバッファ層12と第一窒化物半導体層13との格子定数差を緩衝する緩衝層(バッファ層)として機能するとともに、他部領域(例えば第二窒化物半導体層14の側に位置する領域)が主に電子を走行させるための電子走行層(チャネル層)として機能するようになっている。電子走行層として機能する領域には、第一窒化物半導体層13と第二窒化物半導体層14との格子定数差に起因した第二窒化物半導体層14内のピエゾ効果(結晶が歪むことで電界が生じる効果)によって誘起された二次元電子ガス(2DEG:Two Dimensional Electron Gas)が存在することになる。また、電子走行層として機能する領域の表面(第一窒化物半導体層13の上面)は、III族原子極性面(+c面)となっている。以下、第一窒化物半導体層13のことを「GaN層」または「GaNチャネル/バッファ層」ということもある。
(First nitride semiconductor layer)
The first nitride semiconductor layer 13 is formed mainly of GaN, which is, for example, a group III nitride semiconductor. The first nitride semiconductor layer 13 is a buffer layer in which a partial region (for example, a region located on the side of the AlN buffer layer 12) mainly buffers the lattice constant difference between the AlN buffer layer 12 and the first nitride semiconductor layer 13. While functioning as a (buffer layer), other regions (for example, a region located on the side of the second nitride semiconductor layer 14) function as an electron transit layer (channel layer) for mainly causing electrons to travel. ing. In the region functioning as the electron transit layer, the piezoelectric effect (the crystal is distorted in the second nitride semiconductor layer 14 due to the lattice constant difference between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14 Two dimensional electron gas (2DEG: Two Dimensional Electron Gas) induced by the effect of the electric field is present. Further, the surface of the region functioning as the electron transit layer (upper surface of the first nitride semiconductor layer 13) is a group III atom polar surface (+ c surface). Hereinafter, the first nitride semiconductor layer 13 may be referred to as a “GaN layer” or a “GaN channel / buffer layer”.
(第二窒化物半導体層)
 第二窒化物半導体層14は、GaNチャネル/バッファ層13を構成するIII族窒化物半導体よりも広いバンドギャップと、GaNチャネル/バッファ層13を構成するIII族窒化物半導体の格子定数よりも小さい格子定数とを有するIII族窒化物半導体からなり、例えばAlGa1-xN(ただし、0<x<1)を主成分として構成されている。第二窒化物半導体層14は、GaNチャネル/バッファ層13の電子走行層に電子を供給する電子供給層として機能するとともに、2DEGを空間的に閉じ込める障壁層(バリア層)として機能するようになっている。第二窒化物半導体層14の表面(上面)は、III族原子極性面(+c面)となっている。このような構成により、第二窒化物半導体層14には、自発分極とピエゾ分極とが生じる。その分極作用により、GaNチャネル/バッファ層13内のヘテロ接合界面付近に高濃度の2DEGが誘起されることとなる。以下、第二窒化物半導体層14のことを「AlGaN層」または「AlGaNバリア層」ということもある。
(Second nitride semiconductor layer)
The second nitride semiconductor layer 14 has a wider band gap than the group III nitride semiconductor constituting the GaN channel / buffer layer 13 and is smaller than the lattice constant of the group III nitride semiconductor constituting the GaN channel / buffer layer 13 It consists of a group III nitride semiconductor having a lattice constant, and is composed mainly of, for example, Al x Ga 1 -xN (where 0 <x <1). The second nitride semiconductor layer 14 functions as an electron supply layer that supplies electrons to the electron transit layer of the GaN channel / buffer layer 13 and also functions as a barrier layer (barrier layer) that spatially confines the 2DEG. ing. The surface (upper surface) of the second nitride semiconductor layer 14 is a group III atom polar surface (+ c surface). With such a configuration, spontaneous polarization and piezoelectric polarization occur in the second nitride semiconductor layer 14. The polarization action induces a high concentration of 2DEG near the heterojunction interface in the GaN channel / buffer layer 13. Hereinafter, the second nitride semiconductor layer 14 may be referred to as an "AlGaN layer" or an "AlGaN barrier layer".
(2)半導体装置の基本構成
 続いて、上述した構成の中間体10を用いて構成される半導体装置20の基本的な構成例を説明する。ここでは、半導体装置20として、電界効果型トランジスタ(FET:Field Effect Transistor)の一つであるHEMTを例に挙げる。
(2) Basic Configuration of Semiconductor Device Subsequently, a basic configuration example of the semiconductor device 20 configured using the intermediate body 10 having the above-described configuration will be described. Here, as the semiconductor device 20, a HEMT, which is one of field effect transistors (FETs), is taken as an example.
 図1に示すように、本実施形態に係るHEMT20は、上述した構成の中間体10と、中間体10におけるAlGaNバリア層14上に形成された第三窒化物半導体層21と、第三窒化物半導体層21上に形成されたゲート電極22、ソース電極23およびドレイン電極24と、を備えて構成されている。 As shown in FIG. 1, the HEMT 20 according to this embodiment includes the intermediate 10 having the above-described configuration, a third nitride semiconductor layer 21 formed on the AlGaN barrier layer 14 in the intermediate 10, and a third nitride. A gate electrode 22, a source electrode 23 and a drain electrode 24 formed on the semiconductor layer 21 are provided.
(第三窒化物半導体層)
 第三窒化物半導体層21は、例えばIII族窒化物半導体であるGaNを主成分として形成されている。第三窒化物半導体層21は、例えばHEMT20を構成した際のデバイス特性(閾値電圧の制御性等)を向上させるためにAlGaNバリア層14とゲート電極22との間に介在するものであるが、必ずしも必須構成要素ではなく、これを省いてHEMT20を構成してもよい。以下、第三窒化物半導体層21のことを「GaNキャップ層」ということもある。
(Third nitride semiconductor layer)
The third nitride semiconductor layer 21 is formed mainly of GaN, which is, for example, a group III nitride semiconductor. The third nitride semiconductor layer 21 is interposed between the AlGaN barrier layer 14 and the gate electrode 22 in order to improve, for example, the device characteristics (controllability of the threshold voltage, etc.) when the HEMT 20 is configured. The HEMT 20 is not necessarily an essential component and may be omitted. Hereinafter, the third nitride semiconductor layer 21 may be referred to as a "GaN cap layer".
(電極)
 ゲート電極22は、例えばニッケル(Ni)と金(Au)との複層構造(Ni/Au)からなる。なお、本明細書においてX/Yの複層構造と記載した場合には、X、Yの順で積層したことを示しているものとする。
 ソース電極23は、ゲート電極22から所定距離離れた位置に配置され、例えばチタン(Ti)とアルミニウム(Al)との複層構造(Ti/Al)からなる。
 ドレイン電極24は、ゲート電極22を挟んでソース電極23と反対側にゲート電極22から所定距離離れた位置に配置され、ソース電極23と同様に、例えばTiとAlとの複層構造(Ti/Al)からなる。
 なお、ソース電極23およびドレイン電極24は、Ti/Alの複層構造上にNi/Auの複層構造が積層されていてもよい。
(electrode)
The gate electrode 22 has, for example, a multilayer structure (Ni / Au) of nickel (Ni) and gold (Au). In addition, when it describes as the multilayer structure of X / Y in this specification, it shall show that it laminated | stacked in order of X and Y. FIG.
The source electrode 23 is disposed at a predetermined distance from the gate electrode 22 and has, for example, a multilayer structure (Ti / Al) of titanium (Ti) and aluminum (Al).
The drain electrode 24 is disposed opposite to the source electrode 23 with the gate electrode 22 on the opposite side of the gate electrode 22 and at a predetermined distance from the gate electrode 22, similarly to the source electrode 23, for example, a multilayer structure of Ti and Al (Ti / Al. It consists of Al).
The source electrode 23 and the drain electrode 24 may have a multilayer structure of Ni / Au stacked on a multilayer structure of Ti / Al.
(3)発明者が得た知見
 上述した構成のHEMT20については、放熱性が良好であることが望ましい。例えば、HEMT20において、ゲート電極22の近傍で発生した熱は、基板11まで到達すれば一気に放熱される。そのため、良好な放熱性を得るためには、基板11に到達するまでの熱伝達の抵抗成分が非常に重要となる。
(3) Findings Obtained by the Inventor It is desirable that the HEMT 20 having the above-described configuration has good heat dissipation. For example, in the HEMT 20, the heat generated in the vicinity of the gate electrode 22 is dissipated at once if it reaches the substrate 11. Therefore, in order to obtain good heat dissipation, the resistance component of heat transfer to reach the substrate 11 is very important.
 そこで、HEMT20における熱伝達の抵抗成分、特にHEMT20を構成する中間体10における熱伝達の抵抗成分について、本願発明者が検討したところ、AlNバッファ層12の表面形状が関係していると推察されることが明らかとなった。具体的には、AlNバッファ層12は核生成層として機能するための凹凸面を第一窒化物半導体層13の側に有しているが、その凹凸面が熱伝達の抵抗成分に影響を及ぼすことがわかった。さらに詳しくは、例えば凹凸面が平坦に近いほうが熱伝達の抵抗成分が小さい傾向にあるといったように、その凹凸面に起因して熱伝達の抵抗成分の大小が変化し得ることがわかった。 Therefore, when the inventors of the present application examined the resistive component of heat transfer in the HEMT 20, in particular, the resistive component of heat transfer in the intermediate body 10 constituting the HEMT 20, it is presumed that the surface shape of the AlN buffer layer 12 is related. It became clear. Specifically, although the AlN buffer layer 12 has an uneven surface on the side of the first nitride semiconductor layer 13 to function as a nucleation layer, the uneven surface affects the resistance component of heat transfer. I understood it. More specifically, it has been found that the magnitude of the heat transfer resistive component may change due to the uneven surface, for example, the heat transfer resistive component tends to be smaller when the uneven surface is closer to being flat.
 その一方で、AlNバッファ層12の凹凸面は、その上に形成される第一窒化物半導体層13の結晶品質に影響を及ぼすことがわかっている。具体的には、凹凸面における凹凸の大きさが小さくなるほど、その上に形成される第一窒化物半導体層13の結晶品質が悪化する傾向にある。なお、第一窒化物半導体層13の結晶品質については、第一窒化物半導体層13の膜厚を大きくすれば結晶品質の悪化が抑制されるが、そのためには結晶成長の成長時間を長くすることになり、中間体10等の生産性が阻害されてしまう。したがって、第一窒化物半導体層13の膜厚は、ある程度に抑えることが好ましい。 On the other hand, it is known that the uneven surface of the AlN buffer layer 12 affects the crystal quality of the first nitride semiconductor layer 13 formed thereon. Specifically, the crystal quality of the first nitride semiconductor layer 13 formed thereon tends to deteriorate as the size of the unevenness on the uneven surface decreases. As to the crystal quality of the first nitride semiconductor layer 13, if the film thickness of the first nitride semiconductor layer 13 is increased, the deterioration of the crystal quality is suppressed, but for that purpose, the growth time of crystal growth is prolonged As a result, the productivity of the intermediate 10 and the like is impaired. Therefore, the film thickness of the first nitride semiconductor layer 13 is preferably suppressed to a certain extent.
 つまり、熱伝達の抵抗成分と第一窒化物半導体層13の結晶品質とがトレードオフの関係にあることから、熱伝達の抵抗成分を小さくして放熱性を良好にするために、単にAlNバッファ層12の凹凸面を平坦に近づくように構成することは、必ずしも適切とは言えない。 That is, since the resistive component of heat transfer and the crystal quality of the first nitride semiconductor layer 13 are in a trade-off relationship, in order to reduce the resistive component of heat transfer and improve the heat dissipation, the AlN buffer is simply used. It is not always appropriate to configure the uneven surface of the layer 12 to be flatter.
 この点につき、さらに検討を重ねた結果、本願発明者は、AlNバッファ層12が有する凹凸面によって当該AlNバッファ層12が面内方向に分断されてしまうと、熱伝達の抵抗成分が大きくなってしまうおそれがあるという知見を得るに至った。換言すると、凹凸面における凹凸の大きさが良好な結晶品質が得られる程度であっても、その凹凸面によって当該AlNバッファ層12が面内方向に分断されてしまうことがなければ、熱伝達の抵抗成分を小さくして良好な放熱性を得ることが実現可能となる、という着想を得た。 As a result of repeated studies on this point, the inventor of the present application found that when the AlN buffer layer 12 is divided in the in-plane direction by the uneven surface of the AlN buffer layer 12, the heat transfer resistance component becomes large. It came to gain the knowledge that there is a risk of In other words, even if the size of the asperities on the asperity surface is such that good crystal quality can be obtained, heat transfer is not performed unless the AlN buffer layer 12 is divided in the in-plane direction by the asperity surface. The idea is that it becomes feasible to obtain good heat dissipation by reducing the resistance component.
 本発明は、本願発明者が新規に見い出した上述の知見に基づくものである。 The present invention is based on the above-mentioned findings newly found by the present inventor.
(4)本実施形態の特徴的な構成
 次に、HEMT20を構成する中間体10について、その特徴的な構成を具体的に説明する。本実施形態に係る中間体10は、AlNバッファ層12に大きな特徴がある。
(4) Characteristic Configuration of the Embodiment Next, the characteristic configuration of the intermediate body 10 constituting the HEMT 20 will be specifically described. The intermediate 10 according to the present embodiment is characterized in that the AlN buffer layer 12 is a major feature.
(バッファ層)
 AlNバッファ層12は、第一窒化物半導体層13に面する凹凸面12aを有した核生成層12bと、基板11の側に配された連続膜からなる均熱層12cと、を有している。なお、核生成層12bおよび均熱層12cは、いずれも、例えばAlNを主成分として形成されている。
(Buffer layer)
The AlN buffer layer 12 includes a nucleation layer 12 b having an uneven surface 12 a facing the first nitride semiconductor layer 13 and a heat equalizing layer 12 c formed of a continuous film disposed on the side of the substrate 11. There is. The nucleation layer 12 b and the heat equalizing layer 12 c are each formed of, for example, AlN as a main component.
(核生成層)
 核生成層12bは、第一窒化物半導体層13を結晶成長させる際に核を形成するためのもので、第一窒化物半導体層13に面する凹凸面12aを有している。凹凸面12aを構成する凸部または凹部の形状は、核を形成し得るものであれば、特に限定されるものではない。
(Nucleation layer)
The nucleation layer 12 b is for forming a nucleus when crystal growth of the first nitride semiconductor layer 13 is performed, and has a concavo-convex surface 12 a facing the first nitride semiconductor layer 13. The shape of the convex part or recessed part which comprises the uneven surface 12a will not be specifically limited if it can form a nucleus.
 核生成層12bにおける凹凸面12aは、その凹凸面12aの表面粗さRzの値(すなわち、凸部の山高さの最大値と凹部の谷深さの最大値の和)が、例えば、7nm以上に形成されている。 The uneven surface 12a of the nucleation layer 12b has a surface roughness Rz of the uneven surface 12a (that is, the sum of the maximum value of the peak height of the protrusions and the maximum value of the valley depth of the recesses) is, for example, 7 nm or more Is formed.
 凹凸面12aにおける凹凸の大きさが小さ過ぎると、その上に形成される第一窒化物半導体層13の結晶品質に悪影響を及ぼし得るが、表面粗さRzの値が7nm以上であれば、第一窒化物半導体層13の結晶品質に悪影響が及ぶのを抑制することができる。したがって、その凹凸面12aの上に対して結晶成長を行えば、詳細を後述するように、例えば欠陥密度が低いといったように、良好な結晶品質の第一窒化物半導体層13が得られるようになる。 If the size of the unevenness on the uneven surface 12a is too small, the crystal quality of the first nitride semiconductor layer 13 formed thereon may be adversely affected, but if the value of the surface roughness Rz is 7 nm or more, An adverse effect on the crystal quality of the mono-nitride semiconductor layer 13 can be suppressed. Therefore, if crystal growth is performed on the uneven surface 12a, the first nitride semiconductor layer 13 of good crystal quality can be obtained, for example, as the defect density is low, as described in detail later. Become.
 また、凹凸面12aにおける凹凸の大きさが小さ過ぎると、第一窒化物半導体層13における残留不純物濃度が増大する傾向がある。残留不純物濃度が増大すると、核生成層12bと第一窒化物半導体層13との界面での結晶が低抵抗化し、これによりHEMT20を構成した際に電流がリークし易くなる。ところが、表面粗さRzの値が7nm以上であれば、残留不純物濃度の増大を抑制することができ、HEMT20を構成した際のリーク電流を低く抑えられるようになる。 In addition, when the size of the unevenness on the uneven surface 12 a is too small, the residual impurity concentration in the first nitride semiconductor layer 13 tends to increase. When the residual impurity concentration is increased, the crystal at the interface between the nucleation layer 12 b and the first nitride semiconductor layer 13 has a low resistance, which makes it easy for the current to leak when the HEMT 20 is formed. However, if the value of the surface roughness Rz is 7 nm or more, the increase of the residual impurity concentration can be suppressed, and the leak current when configuring the HEMT 20 can be suppressed low.
 また、核生成層12bにおける凹凸面12aは、表面粗さRzの値が、例えば、20nm未満に形成されている。
 表面粗さRzの値が20nm未満となる程度に、核生成層12bの凹凸面12aにおける凹凸の大きさが小さければ、当該凹凸が大きい場合に比べて、第一窒化物半導体層13の側からの熱がAlNバッファ層12に伝わり易くなる。これは、凹凸が小さいほど、結晶格子が揃っていることになるので、結晶格子間を伝わるエネルギー伝達が生じやすいからと考えられる。つまり、凹凸面12aにおける凹凸を小さくすることで、第一窒化物半導体層13の側から伝わる熱を基板11の側に良好に伝えることが可能となり、AlNバッファ層12を介した基板11の側への放熱効果を良好にする上で非常に有効なものとなる。
The uneven surface 12a of the nucleation layer 12b has a surface roughness Rz of, for example, less than 20 nm.
If the size of the unevenness on the uneven surface 12a of the nucleation layer 12b is small so that the value of the surface roughness Rz is less than 20 nm, compared to the case where the unevenness is large, from the side of the first nitride semiconductor layer 13 Heat is easily transmitted to the AlN buffer layer 12. This is considered to be because energy transfer is more likely to occur between the crystal lattices because the smaller the unevenness, the more the crystal lattices are aligned. That is, by reducing the unevenness on the uneven surface 12a, it is possible to transfer the heat transmitted from the side of the first nitride semiconductor layer 13 to the side of the substrate 11 favorably, and the side of the substrate 11 via the AlN buffer layer 12 It is very effective in improving the heat radiation effect to the substrate.
 具体的には、第一窒化物半導体層13の側の熱を、例えば中間体10における第二窒化物半導体層14の表面温度によって考えた場合に、その表面温度と核生成層12bの凹凸面12aの表面粗さRzとは、図2に示すような関係を有している。
 例えば、凹凸面12aの表面粗さRzの値が30nm以上といったように、その凹凸面12aにおける凹凸の大きさが大きい場合には、第二窒化物半導体層14の表面温度が120℃程度の高温な状態にあるが、表面粗さRzの値が小さくなるにつれて、表面温度も下がっている。つまり、凹凸面12aの表面粗さRzの値が大きいと基板11の側に熱が伝わり難いが、表面粗さRzの値が小さくなるにつれて、第一窒化物半導体層13の側から基板11の側へ熱が伝わり易くなっている。
 そして、表面粗さRzの値が20nm未満となる程度に、凹凸面12aにおける凹凸の大きさが小さくなると、第二窒化物半導体層14の表面温度の下降が飽和する傾向にあり、その表面温度が60~70℃程度の低温な状態となる。つまり、表面粗さRzの値が20nm未満であれば、第一窒化物半導体層13の側の熱を基板11の側へ良好に伝えることが可能となっている。
Specifically, when the heat on the side of the first nitride semiconductor layer 13 is considered by, for example, the surface temperature of the second nitride semiconductor layer 14 in the intermediate 10, the surface temperature and the uneven surface of the nucleation layer 12b The surface roughness Rz of 12a has a relationship as shown in FIG.
For example, when the surface roughness Rz of the uneven surface 12a is 30 nm or more, the surface temperature of the second nitride semiconductor layer 14 is a high temperature of about 120 ° C. when the size of the unevenness on the uneven surface 12a is large. However, as the value of the surface roughness Rz decreases, the surface temperature also decreases. That is, when the value of the surface roughness Rz of the uneven surface 12a is large, heat is hardly transmitted to the side of the substrate 11. However, as the value of the surface roughness Rz becomes smaller, the substrate 11 is closer to the first nitride semiconductor layer 13 side. Heat is easily transmitted to the side.
Then, when the size of the unevenness on the uneven surface 12a decreases to such an extent that the value of the surface roughness Rz is less than 20 nm, the drop of the surface temperature of the second nitride semiconductor layer 14 tends to saturate, and the surface temperature Is a low temperature of about 60 to 70.degree. That is, when the value of the surface roughness Rz is less than 20 nm, the heat on the side of the first nitride semiconductor layer 13 can be favorably conducted to the side of the substrate 11.
(均熱層)
 均熱層12cは、核生成層12bとともにAlNバッファ層12を構成する層であり、基板11の側に配された連続膜からなるものである。ここで、連続膜とは、膜が面内に連続的に形成されており、その面内方向に分断された箇所がない膜のことをいう。
(Uniform heat layer)
The heat equalizing layer 12 c is a layer that constitutes the AlN buffer layer 12 together with the nucleation layer 12 b, and is formed of a continuous film disposed on the side of the substrate 11. Here, a continuous film refers to a film in which a film is continuously formed in a plane and there is no part divided in the in-plane direction.
 このような均熱層12cを有することで、AlNバッファ層12は、核生成層12bのみならず連続膜である均熱層12cをも含むことになる。したがって、核生成層12bが凹凸面12aを有していても、連続膜である均熱層12cが存在していることから、その凹凸面12aによってAlNバッファ層12が面内方向に分断されてしまうといったことがなく、第一窒化物半導体層13の側から伝わる熱が連続膜である均熱層12cによって面内方向に拡散されることになり、その熱を基板11の側に効率的に伝えることが可能となる。つまり、均熱層12cを有することで、AlNバッファ層12が面内方向に分断されてしまうことがないので、熱伝達の抵抗成分を小さくして良好な放熱性を得ることが実現可能となる。 By having such a heat equalizing layer 12 c, the AlN buffer layer 12 includes not only the nucleation layer 12 b but also the heat equalizing layer 12 c which is a continuous film. Therefore, even if the nucleation layer 12b has the uneven surface 12a, since the heat equalizing layer 12c which is a continuous film is present, the AlN buffer layer 12 is divided in the in-plane direction by the uneven surface 12a. The heat transferred from the side of the first nitride semiconductor layer 13 is diffused in the in-plane direction by the heat equalizing layer 12c which is a continuous film, and the heat is efficiently transmitted to the substrate 11 side. It will be possible to communicate. That is, since the AlN buffer layer 12 is not divided in the in-plane direction by having the heat equalizing layer 12 c, it is possible to reduce the resistance component of heat transfer and obtain good heat dissipation. .
 均熱層12cは、3nm以上の膜厚で形成されている。3nm以上の膜厚であれば、均熱層12cを確実に連続膜とすることができる。また、均熱層12cが3nm以上の膜厚であれば、例えば核生成層12bが不連続膜であっても、AlNバッファ層12の最も薄いところでも3nm以上の膜厚を有することになるので、基板11の側への放熱効果を良好にする上で非常に有効なものとなる。 The heat equalizing layer 12 c is formed to have a film thickness of 3 nm or more. If the film thickness is 3 nm or more, the heat equalizing layer 12c can be reliably made a continuous film. Further, if the heat spreader 12c has a thickness of 3 nm or more, for example, even if the nucleation layer 12b is a discontinuous film, the thinnest portion of the AlN buffer layer 12 has a thickness of 3 nm or more. This is very effective in improving the heat radiation effect to the side of the substrate 11.
 具体的には、第一窒化物半導体層13の側の熱を、例えば中間体10における第二窒化物半導体層14の表面温度によって考えた場合に、その表面温度と均熱層12cの膜厚とは、図3に示すような関係を有している。
 例えば、均熱層12cの膜厚が1nm以下といったように、その膜厚が非常に薄い場合には、第二窒化物半導体層14の表面温度が120℃程度の高温な状態にあるが、均熱層12cの膜厚が厚くなるにつれて、表面温度も下がっている。つまり、均熱層12cの膜厚が薄いと基板11の側に熱が伝わり難いが、均熱層12cの膜厚が厚くなるにつれて、第一窒化物半導体層13の側から基板11の側へ熱が伝わり易くなっている。
 そして、均熱層12cの膜厚が3nm以上(すなわち、確実に連続膜となる厚さ)になると、第二窒化物半導体層14の表面温度の下降が飽和する傾向にあり、その表面温度が60~70℃程度の低温な状態となる。つまり、均熱層12cの膜厚が3nm以上であれば、第一窒化物半導体層13の側の熱を基板11の側へ良好に伝えることが可能となっている。
Specifically, when the heat on the side of the first nitride semiconductor layer 13 is considered by, for example, the surface temperature of the second nitride semiconductor layer 14 in the intermediate 10, the surface temperature and the film thickness of the heat equalizing layer 12c And have a relationship as shown in FIG.
For example, when the film thickness of the heat equalizing layer 12c is very thin such as 1 nm or less, the surface temperature of the second nitride semiconductor layer 14 is in a high temperature state of about 120 ° C. As the film thickness of the thermal layer 12c increases, the surface temperature also decreases. That is, when the film thickness of the heat equalizing layer 12c is small, heat is not easily transmitted to the side of the substrate 11, but as the film thickness of the heat equalized layer 12c increases, from the side of the first nitride semiconductor layer 13 to the side of the substrate 11 The heat is easily transmitted.
Then, when the film thickness of the heat equalizing layer 12c becomes 3 nm or more (that is, the thickness that ensures a continuous film), the drop of the surface temperature of the second nitride semiconductor layer 14 tends to be saturated, and the surface temperature is It becomes a low temperature state of about 60 to 70 ° C. That is, when the film thickness of the heat equalizing layer 12 c is 3 nm or more, it is possible to transfer the heat on the side of the first nitride semiconductor layer 13 to the side of the substrate 11 favorably.
 なお、均熱層12cの膜厚は、3nm以上であれば、その値(上限値等)が特に限定されることはなく、核生成層12bと均熱層12cとを有するAlNバッファ層12の全体で基板11と第一窒化物半導体層13との格子定数差を緩衝し得る厚さであればよい。 If the film thickness of the heat equalizing layer 12c is 3 nm or more, the value (upper limit value, etc.) is not particularly limited, and the AlN buffer layer 12 having the nucleation layer 12b and the heat equalizing layer 12c is not particularly limited. It is sufficient if the thickness can buffer the difference in lattice constant between the substrate 11 and the first nitride semiconductor layer 13 as a whole.
(第一窒化物半導体層)
 以上のようなAlNバッファ層12の核生成層12bにおける凹凸面12a上に形成される第一窒化物半導体層13は、0.4μm以上2.0μm以下の膜厚で形成されていることが好ましい。
(First nitride semiconductor layer)
It is preferable that the first nitride semiconductor layer 13 formed on the uneven surface 12 a of the nucleation layer 12 b of the AlN buffer layer 12 as described above is formed to have a thickness of 0.4 μm to 2.0 μm. .
 第一窒化物半導体層13については、その膜厚が厚くなるほど、凹凸面12aの凹凸の大きさに起因する結晶品質への悪影響を緩和できる一方で、成長時間の長時間化(すなわち生産性の悪化)を招いてしまう。第一窒化物半導体層13の膜厚を0.4μm以上2.0μm以下とすれば、結晶品質の悪化抑制と生産性の悪化抑制との両方をバランスよく成立させることが可能となる。すなわち、膜厚を0.4μm以上とすることで結晶品質への悪影響を確実に緩和し得るようにしつつ、膜厚を2.0μm以下とすることで生産性の悪化抑制を極力抑制することができる。なお、ここでいう結晶品質には、結晶性(欠陥密度等)に関するものと残留不純物濃度(純度)に関するものとの両方を含んでいるものとする。 As for the first nitride semiconductor layer 13, as the film thickness increases, the adverse effect on the crystal quality due to the size of the unevenness of the uneven surface 12 a can be alleviated, while the growth time is extended (that is, the productivity is increased). Worse). If the film thickness of the first nitride semiconductor layer 13 is set to 0.4 μm or more and 2.0 μm or less, it is possible to achieve both the suppression of deterioration of crystal quality and the suppression of deterioration of productivity in a well-balanced manner. That is, while making it possible to reliably reduce the adverse effect on the crystal quality by setting the film thickness to 0.4 μm or more, suppressing the deterioration of productivity as much as possible by setting the film thickness to 2.0 μm or less it can. In addition, it is assumed that the crystal quality referred to here includes both of those relating to crystallinity (defect density and the like) and those relating to residual impurity concentration (purity).
 第一窒化物半導体層13の結晶性についての指標としては、例えば、X線ロッキングカーブの半値幅が挙げられる。X線ロッキングカーブの半値幅は、その測定点におけるX線ビームのスポットサイズ(通常は直径1mm程度)の領域内の、ある特定面方位の結晶の面方位の均一性を示す。そのため、エピタキシャル成長する結晶の成長面のX線ロッキングカーブの半値幅は、成長面の面方位の均一性の指標となる。例えば、窒化物半導体結晶の(002)面のX線ロッキングカーブの半値幅は、[002]方向に成長した窒化物半導体層を構成する多数のミクロな結晶柱の成長方向がX線ビームのスポットサイズの領域の中でどれだけ揃っているかを示す指標となり、半値幅が大きいほど結晶柱の成長方向が不揃いであることを示す。 As a parameter | index about the crystallinity of the 1st nitride semiconductor layer 13, the half value width of a X-ray rocking curve is mentioned, for example. The full width at half maximum of the X-ray rocking curve indicates the uniformity of the plane orientation of the crystal of a specific plane orientation within the area of the spot size (usually about 1 mm in diameter) of the X-ray beam at the measurement point. Therefore, the half value width of the X-ray rocking curve of the growth surface of the crystal to be epitaxially grown is an indicator of the uniformity of the surface orientation of the growth surface. For example, the half value width of the X-ray rocking curve of the (002) plane of the nitride semiconductor crystal is a spot of the growth direction of a large number of micro crystal columns constituting the nitride semiconductor layer grown in the [002] direction It is an index showing how the regions of the size are aligned, and the larger the half-width is, the more irregular the growth direction of the crystal column is.
 また、例えば、窒化物半導体層中にn型導電層を形成する場合、その窒化物半導体層を構成する窒化物半導体結晶を有機金属気相成長法(MOVPE法)等によりエピタキシャル成長させながらシリコン(Si)や酸素(O)等のn型不純物を導入する。このとき、特に、n型不純物として振舞うOは、窒化物半導体結晶の成長面が(002)面である場合に取り込まれ難く、その他の面である場合には取り込まれ易い。そのため、(002)面を成長面として成長させた窒化物半導体結晶を構成するミクロな結晶柱の成長方向の均一性が低いほど、窒化物半導体結晶中へOが取り込まれ易くなり、その結果としてn型不純物の濃度が高くなる。したがって、(002)面を成長面として成長した窒化物半導体結晶からなる、上面の面方位が(002)面である窒化物半導体層のX線ロッキングカーブの半値幅は、その測定点におけるn型導電層中のn型不純物濃度の指標にもなる。 Also, for example, when an n-type conductive layer is formed in a nitride semiconductor layer, silicon (Si (Si) is grown while epitaxial growth of the nitride semiconductor crystal forming the nitride semiconductor layer is performed by metal organic vapor phase epitaxy (MOVPE) or the like). Introduce n-type impurities such as oxygen and oxygen (O). At this time, in particular, O which behaves as an n-type impurity is difficult to be taken in when the growth surface of the nitride semiconductor crystal is the (002) plane, and is easily taken in when it is the other surface. Therefore, as the uniformity of the growth direction of the micro crystal columns constituting the nitride semiconductor crystal grown with the (002) plane as the growth surface is lower, O is more easily taken into the nitride semiconductor crystal, and as a result thereof The concentration of n-type impurities is increased. Therefore, the half value width of the X-ray rocking curve of the nitride semiconductor layer which is a nitride semiconductor crystal grown with the (002) plane as the growth plane and whose top surface has the (002) plane orientation is the n-type at the measurement point It also serves as an indicator of the n-type impurity concentration in the conductive layer.
 AlNバッファ層12の核生成層12bにおける凹凸面12aの表面粗さRzの値が7nm以上であり、かつ、その上に形成される第一窒化物半導体層13の膜厚が0.4μm以上であれば、その第一窒化物半導体層13については、(002)面におけるX線ロッキングカーブの半値幅を、面内の全域において300秒以下にすることが可能となる。X線ロッキングカーブの半値幅が300秒以下であれば、第一窒化物半導体層13を構成する結晶の面方位が均一であると言え、良好な結晶品質が得られていることが明らかである。 The surface roughness Rz of the uneven surface 12a of the nucleation layer 12b of the AlN buffer layer 12 is 7 nm or more, and the film thickness of the first nitride semiconductor layer 13 formed thereon is 0.4 μm or more If so, for the first nitride semiconductor layer 13, the full width at half maximum of the X-ray rocking curve in the (002) plane can be made 300 seconds or less in the whole area in the plane. If the half width of the X-ray rocking curve is 300 seconds or less, it can be said that the plane orientation of the crystals constituting the first nitride semiconductor layer 13 is uniform, and it is clear that good crystal quality is obtained. .
(5)窒化物半導体エピタキシャル基板および半導体装置の製造方法
 次に、上述した構成の中間体(すなわち、窒化物半導体エピタキシャル基板)10の製造方法およびHEMT(すなわち、半導体装置)20の製造方法ついて説明する。
(5) Method of Manufacturing Nitride Semiconductor Epitaxial Substrate and Semiconductor Device Next, a method of manufacturing the intermediate having the above-described configuration (that is, nitride semiconductor epitaxial substrate) 10 and a method of manufacturing HEMT (that is, semiconductor device) 20 will be described. Do.
(窒化物半導体エピタキシャル基板の製造方法)
 先ず、窒化物半導体エピタキシャル基板の一例である中間体10を製造する場合について説明する。
(Method of manufacturing nitride semiconductor epitaxial substrate)
First, a case of manufacturing an intermediate 10 which is an example of a nitride semiconductor epitaxial substrate will be described.
 本実施形態では、例えば、有機金属気相成長(MOVPE:Metal Organic Vapor Phase Epitaxy)装置を用い、以下の手順により、中間体10を製造する。 In the present embodiment, for example, an intermediate 10 is manufactured by the following procedure using a metal organic vapor phase epitaxy (MOVPE) apparatus.
(S110:基板用意工程)
 中間体10の製造にあたっては、先ず、基板11として、例えば、ポリタイプ4Hの半絶縁性SiC基板を用意する。
(S110: Substrate preparation process)
In the production of the intermediate 10, first, for example, a semi-insulating SiC substrate of polytype 4H is prepared as the substrate 11.
(S120:AlN層形成工程)
 基板11を用意したら、MOVPE装置の処理室内に、用意した基板11を搬入する。そして、処理室内にキャリアガス(希釈ガス)として水素(H)ガス(または、Hガスおよび窒素(N)ガスの混合ガス)を供給し、基板11の温度を所定の成長温度(例えば1100℃以上1300℃以下)まで上昇させる。基板11の温度が所定の成長温度となったら、例えば、III族原料ガスとしてトリメチルアルミニウム(TMA)ガスと、V族原料ガスとしてアンモニア(NH)ガスとを、それぞれ基板11に対して供給する。これにより、基板11上にAlNからなるAlN層12を成長させる。
(S120: AlN layer formation process)
After preparing the substrate 11, the prepared substrate 11 is carried into the processing chamber of the MOVPE apparatus. Then, hydrogen (H 2 ) gas (or a mixed gas of H 2 gas and nitrogen (N 2 ) gas) is supplied as a carrier gas (dilution gas) into the processing chamber, and the temperature of the substrate 11 is set to a predetermined growth temperature (for example, The temperature is raised to 1100 ° C. or more and 1300 ° C. or less. When the temperature of the substrate 11 reaches a predetermined growth temperature, for example, trimethylaluminum (TMA) gas as a group III source gas and ammonia (NH 3 ) gas as a group V source gas are supplied to the substrate 11, respectively. . Thus, the AlN layer 12 made of AlN is grown on the substrate 11.
 このとき、AlN層12のエピタキシャル成長は、先ず、均熱層12cについて行われ、次いで、核生成層12bについて行われる。 At this time, the epitaxial growth of the AlN layer 12 is first performed on the soaking layer 12 c and then on the nucleation layer 12 b.
 均熱層12cについてのエピタキシャル成長は、連続膜を形成し得る成長条件にて行う。具体的には、基板11の温度を連続膜の成長に適した成長温度(例えば1200℃以上1300℃以下)に調整する。つまり、成長温度を後述する核生成層12bの成膜時よりも高温に調整する。これにより、均熱層12cを連続膜として形成することができる。 The epitaxial growth of the heat equalizing layer 12c is performed under growth conditions that can form a continuous film. Specifically, the temperature of the substrate 11 is adjusted to a growth temperature (for example, 1200 ° C. or more and 1300 ° C. or less) suitable for the growth of the continuous film. That is, the growth temperature is adjusted to a temperature higher than that in the film formation of the nucleation layer 12 b described later. Thereby, the heat equalizing layer 12c can be formed as a continuous film.
 そして、所定時間の結晶成長を行って、均熱層12cを3nm以上の膜厚に成長させたら、続いて、成長条件を変更し、その変更後の成長条件で、核生成層12bをエピタキシャル成長させる。核生成層12bについてのエピタキシャル成長は、凹凸面12aを形成し得る成長条件にて行う。具体的には、基板11の温度を凹凸面12aの形成に適した成長温度(例えば1100℃以上1200℃以下)に調整する。つまり、成長温度を上述した均熱層12cの成膜時よりも低温に調整する。これにより、表面粗さRzの値が7nm以上であり、また20nm未満でもある凹凸面12aを有した核生成層12bを形成することができる。 Then, crystal growth is performed for a predetermined time to grow the heat equalizing layer 12c to a film thickness of 3 nm or more, and then the growth conditions are changed, and the nucleation layer 12b is epitaxially grown under the growth conditions after the change. . The epitaxial growth of the nucleation layer 12b is performed under growth conditions that can form the uneven surface 12a. Specifically, the temperature of the substrate 11 is adjusted to a growth temperature (for example, 1100 ° C. or more and 1200 ° C. or less) suitable for the formation of the uneven surface 12 a. That is, the growth temperature is adjusted to a temperature lower than at the time of forming the heat equalizing layer 12c described above. Thereby, it is possible to form the nucleation layer 12 b having the uneven surface 12 a whose surface roughness Rz is 7 nm or more and less than 20 nm.
 なお、ここでは、変更すべき成長条件として、成長温度を例に挙げたが、必ずしもこれらに限られることはなく、均熱層12cおよび核生成層12bのそれぞれを形成し得るものであれば、他の成長条件(例えば、V/III比や成長速度等)であってもよい。具体的には、例えば、均熱層12cについては連続膜を形成し得るようにV/III比を低くする一方で、核生成層12bについては凹凸面12aを形成し得るようにV/III比を高くする、といったことが考えられる。また、例えば、均熱層12cについては連続膜を形成し得るように成長速度を遅くする一方で、核生成層12bについては凹凸面12aを形成し得るように成長速度を速くする、といったことが考えられる。さらには、成長温度、V/III比、成長速度等の成長条件を適宜組み合わせて調整するようにしてもよい。 Here, although the growth temperature has been exemplified as the growth condition to be changed, the growth temperature is not limited thereto, and it is possible to form each of the heat equalizing layer 12 c and the nucleation layer 12 b as follows: Other growth conditions (eg, V / III ratio, growth rate, etc.) may be used. Specifically, for example, while the V / III ratio is lowered so as to form a continuous film for the heat equalizing layer 12c, the V / III ratio so as to form the irregular surface 12a for the nucleation layer 12b. Can be considered as high. Also, for example, while the growth rate is decreased so as to form a continuous film for the heat equalizing layer 12c, the growth rate is increased so as to form the uneven surface 12a for the nucleation layer 12b. Conceivable. Furthermore, the growth conditions such as the growth temperature, the V / III ratio, and the growth rate may be appropriately combined and adjusted.
 このような成長条件の変更を経ることで、AlN層12については、3nm以上の膜厚の連続膜である均熱層12cの上に、凹凸面12aの表面粗さRzの値が7nm以上であり、また20nm未満でもある核生成層12bが形成されたものとなる。そして、所定の厚さのAlN層12の成長が完了したら、TMAガスの供給を停止する。なお、このとき、NHガスの供給を継続する。 With such a change in growth conditions, the surface roughness Rz of the uneven surface 12a of the AlN layer 12 is 7 nm or more on the soaking layer 12c which is a continuous film having a thickness of 3 nm or more. The nucleation layer 12b which is present and less than 20 nm is formed. Then, when the growth of the AlN layer 12 having a predetermined thickness is completed, the supply of TMA gas is stopped. At this time, the supply of NH 3 gas is continued.
(S130:GaN層形成工程)
 次に、基板11の温度をGaN層13の所定の成長温度(例えば1000℃以上1100℃以下)に調整する。そして、基板11の温度が所定の成長温度となったら、NHガスの供給を継続した状態で、例えば、III族原料ガスとしてトリメチルガリウム(TMG)ガスを供給する。これにより、AlN層12上に単結晶のGaNからなるGaN層13をエピタキシャル成長させる。
(S130: GaN layer formation process)
Next, the temperature of the substrate 11 is adjusted to a predetermined growth temperature of the GaN layer 13 (for example, 1000 ° C. or more and 1100 ° C. or less). Then, when the temperature of the substrate 11 reaches a predetermined growth temperature, for example, trimethylgallium (TMG) gas is supplied as a group III source gas while the supply of the NH 3 gas is continued. Thereby, the GaN layer 13 made of single crystal GaN is epitaxially grown on the AlN layer 12.
 そして、0.4μm以上2.0μm以下のGaN層13の成長が完了したら、TMGガスの供給を停止する。なお、このとき、NHガスの供給を継続する。 Then, when the growth of the GaN layer 13 of 0.4 μm or more and 2.0 μm or less is completed, the supply of TMG gas is stopped. At this time, the supply of NH 3 gas is continued.
(S140:AlGaN層形成工程)
 次に、例えば、基板11の温度を維持したまま、NHガスの供給を継続した状態で、例えば、III族原料ガスとしてTMGガスおよびTMAガスを供給する。これにより、電子走行層140上に単結晶のAlGaNからなるAlGaN層14をエピタキシャル成長させる。
(S140: AlGaN layer formation process)
Next, for example, while the temperature of the substrate 11 is maintained, the supply of the NH 3 gas is continued, for example, the TMG gas and the TMA gas are supplied as the group III source gas. Thereby, the AlGaN layer 14 made of single crystal AlGaN is epitaxially grown on the electron transit layer 140.
 そして、所定の厚さのAlGaN層14の成長が完了したら、TMGガスおよびTMAガスの供給を停止し、基板11の温度をAlGaN層14の成長温度から低下させる。なお、このとき、通常は、キャリアガスを停止し、パージガスとしてNガスを供給するとともに、NHガスの供給を継続する。そして、窒化物半導体エピタキシャル基板11の温度が500℃以下となったら、NHガスの供給を停止し、MOVPE装置の処理室内の雰囲気をNガスのみへ置換して大気圧に復帰させる。 Then, when the growth of the AlGaN layer 14 having a predetermined thickness is completed, the supply of TMG gas and TMA gas is stopped, and the temperature of the substrate 11 is lowered from the growth temperature of the AlGaN layer 14. At this time, normally, the carrier gas is stopped, the N 2 gas is supplied as the purge gas, and the supply of the NH 3 gas is continued. Then, when the temperature of the nitride semiconductor epitaxial substrate 11 becomes 500 ° C. or less, the supply of NH 3 gas is stopped, the atmosphere in the processing chamber of the MOVPE apparatus is replaced with only N 2 gas, and the pressure is restored to atmospheric pressure.
 その後、GaN層13およびAlGaN層14を含む中間体10が搬出可能な温度にまで低下したら、その中間体10を処理室内から搬出する。
 以上により、図1に示す中間体10(すなわち、窒化物半導体エピタキシャル基板の一例)が製造される。
Thereafter, when the temperature of the intermediate 10 including the GaN layer 13 and the AlGaN layer 14 decreases to a temperature at which the intermediate 10 can be unloaded, the intermediate 10 is unloaded from the processing chamber.
Thus, the intermediate 10 (that is, an example of the nitride semiconductor epitaxial substrate) shown in FIG. 1 is manufactured.
(半導体装置の製造方法)
 続いて、中間体10を用いて、半導体装置の一例であるHEMT20を製造する場合について説明する。
(Method of manufacturing semiconductor device)
Subsequently, a case of manufacturing the HEMT 20 which is an example of the semiconductor device using the intermediate body 10 will be described.
(S150:GaN層形成工程)
 HEMT20の製造にあたっては、先ず、中間体10を用意し、その中間体10をMOVPE装置の処理室内に搬入する。そして、上述したGaN層形成工程(S130)の場合と同様の処理を行って、中間体10におけるAlGaN層14の上に単結晶のGaNからなるGaNキャップ層21をエピタキシャル成長させる。その後、所定の厚さのGaNキャップ層21の成長が完了したら、GaNキャップ層21が形成された中間体10を処理室内から搬出する。なお、このGaNキャップ層21の成長は、上述したAlGaN層形成工程(S140)の後に高温状態のまま引き続いて実施してもよい。
(S150: GaN layer formation process)
In manufacturing the HEMT 20, first, the intermediate 10 is prepared, and the intermediate 10 is carried into the processing chamber of the MOVPE apparatus. Then, the same process as in the case of the GaN layer forming step (S130) described above is performed to epitaxially grow the GaN cap layer 21 made of single crystal GaN on the AlGaN layer 14 in the intermediate 10. Thereafter, when the growth of the GaN cap layer 21 having a predetermined thickness is completed, the intermediate 10 on which the GaN cap layer 21 is formed is unloaded from the processing chamber. Note that the growth of the GaN cap layer 21 may be carried out continuously in the high temperature state after the above-described AlGaN layer forming step (S140).
(S160:電極形成工程)
 次いで、GaNキャップ層21上にレジスト膜を形成し、平面視でソース電極23およびドレイン電極24が形成されることとなる領域が開口となるようにレジスト膜をパターニングする。そして、例えば、電子ビーム蒸着法により、GaNキャップ層21およびレジスト膜を覆うようにTi/Alの複層構造(またはTi/Al/Ni/Auの複層構造)を形成する。その後、所定の溶媒を用い、リフトオフによりレジスト膜を除去することで、上記所定領域にソース電極23およびドレイン電極24を形成し、その全体をN雰囲気中において所定の温度で所定時間アニール処理する(例えば、650℃3分間)。これにより、ソース電極23およびドレイン電極24のそれぞれをGaNキャップ層21に対してオーミック接合させることができる。
(S160: electrode formation process)
Next, a resist film is formed on the GaN cap layer 21, and the resist film is patterned so that the region where the source electrode 23 and the drain electrode 24 are to be formed in plan view becomes an opening. Then, for example, a Ti / Al multilayer structure (or a Ti / Al / Ni / Au multilayer structure) is formed by electron beam evaporation so as to cover the GaN cap layer 21 and the resist film. Thereafter, the resist film is removed by liftoff using a predetermined solvent to form the source electrode 23 and the drain electrode 24 in the predetermined region, and the whole is annealed at a predetermined temperature in an N 2 atmosphere for a predetermined time. (Eg, 650 ° C. for 3 minutes). Thereby, each of the source electrode 23 and the drain electrode 24 can be in ohmic contact with the GaN cap layer 21.
 次に、GaNキャップ層21、ソース電極23およびドレイン電極24を覆うようにレジスト膜を形成し、平面視でゲート電極22が形成されることとなる領域が開口となるようにレジスト膜をパターニングする。そして、例えば電子ビーム蒸着法により、GaNキャップ層21およびレジスト膜を覆うようにNi/Auの複層構造を形成する。その後、所定の溶媒を用い、リフトオフによりレジスト膜を除去することで、上記所定領域にゲート電極22を形成し、その全体をN雰囲気中において所定の温度で所定時間アニール処理する(例えば、450℃10分間)。 Next, a resist film is formed to cover the GaN cap layer 21, the source electrode 23, and the drain electrode 24, and the resist film is patterned so that the region where the gate electrode 22 is to be formed in plan view becomes an opening. . Then, a Ni / Au multilayer structure is formed to cover the GaN cap layer 21 and the resist film, for example, by electron beam evaporation. Thereafter, the resist film is removed by liftoff using a predetermined solvent to form the gate electrode 22 in the predetermined region, and the whole is annealed at a predetermined temperature in an N 2 atmosphere for a predetermined time (for example, 450 ° C 10 minutes).
 以上により、図1に示すHEMT20(すなわち、半導体装置の一例)が製造される。 Thus, the HEMT 20 (that is, an example of the semiconductor device) shown in FIG. 1 is manufactured.
(6)本実施形態により得られる効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(6) Effects Obtained by the Present Embodiment According to the present embodiment, one or more effects described below can be obtained.
(a)本実施形態においては、AlNバッファ層12が、第一窒化物半導体層13に面する凹凸面12aを有した核生成層12bと、基板11の側に配された連続膜からなる均熱層12cと、を有している。つまり、AlNバッファ層12は、核生成層12bのみならず連続膜である均熱層12cをも含むことになる。したがって、核生成層12bが凹凸面12aを有していても、連続膜である均熱層12cが存在していることから、その凹凸面12aによってAlNバッファ層12が面内方向に分断されてしまうといったことがなく、第一窒化物半導体層13の側から伝わる熱が連続膜である均熱層12cによって面内方向に拡散されることになり、その熱を基板11の側に効率的に伝えることが可能となる。このように、本実施形態によれば、均熱層12cを有することで、AlNバッファ層12が面内方向に分断されてしまうことがないので、熱伝達の抵抗成分を小さくして良好な放熱性を得ることが実現可能となり、その結果としてAlNバッファ層12を介した基板11の側への放熱効果を良好なものとすることができる。 (A) In the present embodiment, the AlN buffer layer 12 is formed of a nucleation layer 12 b having an uneven surface 12 a facing the first nitride semiconductor layer 13 and a continuous film disposed on the side of the substrate 11. And a thermal layer 12c. That is, the AlN buffer layer 12 includes not only the nucleation layer 12 b but also the heat equalizing layer 12 c which is a continuous film. Therefore, even if the nucleation layer 12b has the uneven surface 12a, since the heat equalizing layer 12c which is a continuous film is present, the AlN buffer layer 12 is divided in the in-plane direction by the uneven surface 12a. The heat transferred from the side of the first nitride semiconductor layer 13 is diffused in the in-plane direction by the heat equalizing layer 12c which is a continuous film, and the heat is efficiently transmitted to the substrate 11 side. It will be possible to communicate. As described above, according to the present embodiment, since the AlN buffer layer 12 is not divided in the in-plane direction by having the heat equalizing layer 12 c, the heat transfer resistance component is reduced to achieve good heat dissipation. As a result, it is possible to obtain the property, and as a result, the heat radiation effect to the side of the substrate 11 through the AlN buffer layer 12 can be made favorable.
(b)特に、本実施形態で説明したように、均熱層12cが3nm以上の膜厚であれば、その均熱層12cを確実に連続膜とすることができる。また、均熱層12cが3nm以上の膜厚であれば、例えば核生成層12bが不連続膜であっても、AlNバッファ層12の最も薄いところでも3nm以上の膜厚を有することになるので、基板11の側への放熱効果を良好にする上で非常に有効なものとなる。 (B) In particular, as described in the present embodiment, if the heat equalizing layer 12c has a thickness of 3 nm or more, the heat equalizing layer 12c can be reliably made a continuous film. Further, if the heat spreader 12c has a thickness of 3 nm or more, for example, even if the nucleation layer 12b is a discontinuous film, the thinnest portion of the AlN buffer layer 12 has a thickness of 3 nm or more. This is very effective in improving the heat radiation effect to the side of the substrate 11.
(c)また、本実施形態によれば、核生成層12bにおける凹凸面12aの表面粗さRzの値が20nm未満となる程度に、その凹凸面12aにおける凹凸の大きさが小さいので、当該凹凸が大きい場合に比べて、第一窒化物半導体層13の側からの熱がAlNバッファ層12に伝わり易くなる。これは、凹凸が小さいほど、結晶格子が揃っていることになるので、結晶格子間を伝わるエネルギー伝達が生じやすいからと考えられる。つまり、凹凸面12aにおける凹凸を小さくすることで、第一窒化物半導体層13の側から伝わる熱を基板11の側に良好に伝えることが可能となり、AlNバッファ層12を介した基板11の側への放熱効果を良好にする上で非常に有効なものとなる。 (C) Further, according to the present embodiment, since the size of the concavities and convexities in the concavo-convex surface 12 a is small to such an extent that the surface roughness Rz of the concavo-convex surface 12 a in the nucleation layer 12 b is less than 20 nm The heat from the side of the first nitride semiconductor layer 13 is more easily transmitted to the AlN buffer layer 12 compared to the case where. This is considered to be because energy transfer is more likely to occur between the crystal lattices because the smaller the unevenness, the more the crystal lattices are aligned. That is, by reducing the unevenness on the uneven surface 12a, it is possible to transfer the heat transmitted from the side of the first nitride semiconductor layer 13 to the side of the substrate 11 favorably, and the side of the substrate 11 via the AlN buffer layer 12 It is very effective in improving the heat radiation effect to the substrate.
(d)また、本実施形態によれば、核生成層12bにおける凹凸面12aの表面粗さRzの値が7nm以上なので、その上に形成される第一窒化物半導体層13について、良好な結晶品質が得られるようになる。つまり、凹凸面12aにおける凹凸の大きさが小さ過ぎると、その上に形成される第一窒化物半導体層13の結晶品質に悪影響を及ぼし得るが、表面粗さRzの値が7nm以上であれば、第一窒化物半導体層13の結晶品質に悪影響が及ぶのを抑制することができる。したがって、例えば、欠陥密度が低く、残留不純物濃度が抑制された、良好な結晶品質の第一窒化物半導体層13が得られる。 (D) Further, according to the present embodiment, since the value of the surface roughness Rz of the concavo-convex surface 12 a in the nucleation layer 12 b is 7 nm or more, a good crystal is obtained for the first nitride semiconductor layer 13 formed thereon Quality will be obtained. That is, if the size of the unevenness on the uneven surface 12a is too small, the crystal quality of the first nitride semiconductor layer 13 formed thereon may be adversely affected, but if the value of the surface roughness Rz is 7 nm or more The adverse effect on the crystal quality of the first nitride semiconductor layer 13 can be suppressed. Therefore, for example, it is possible to obtain the first nitride semiconductor layer 13 of good crystal quality in which the defect density is low and the residual impurity concentration is suppressed.
(e)また、本実施形態では、AlNバッファ層12の核生成層12bにおける凹凸面12a上に形成される第一窒化物半導体層13が、0.4μm以上2.0μm以下の膜厚で形成されている。核生成層12bの凹凸面12a上にエピタキシャル成長されてなる第一窒化物半導体層(GaN層)13については、凹凸面12aの凹凸の大きさに起因する結晶品質への悪影響を緩和できる一方で、成長時間の長時間化(すなわち生産性の悪化)を招いてしまう。本実施形態によれば、第一窒化物半導体層13の膜厚を0.4μm以上2.0μm以下としているので、結晶品質の悪化抑制と生産性の悪化抑制との両方をバランスよく成立させることが可能となる。すなわち、膜厚を0.4μm以上とすることで結晶品質への悪影響を確実に緩和し得るようにしつつ、膜厚を2.0μm以下とすることで生産性の悪化抑制を極力抑制することができる。 (E) Further, in the present embodiment, the first nitride semiconductor layer 13 formed on the concavo-convex surface 12 a of the nucleation layer 12 b of the AlN buffer layer 12 is formed with a thickness of 0.4 μm to 2.0 μm. It is done. The first nitride semiconductor layer (GaN layer) 13 epitaxially grown on the concavo-convex surface 12 a of the nucleation layer 12 b can alleviate the adverse effect on the crystal quality caused by the size of the concavities and convexities of the concavo-convex surface 12 a, This leads to an increase in growth time (that is, deterioration in productivity). According to the present embodiment, since the film thickness of the first nitride semiconductor layer 13 is set to 0.4 μm or more and 2.0 μm or less, both the deterioration suppression of the crystal quality and the deterioration suppression of the productivity are satisfied in a balanced manner. Is possible. That is, while making it possible to reliably reduce the adverse effect on the crystal quality by setting the film thickness to 0.4 μm or more, suppressing the deterioration of productivity as much as possible by setting the film thickness to 2.0 μm or less it can.
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
Other Embodiments
The embodiments of the present invention have been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
 上述した実施形態では、主として、均熱層12cが3nm以上の膜厚であり、核生成層12bにおける凹凸面12aの表面粗さRzの値が7nm以上であり、また20nm未満でもある場合を例に挙げたが、本発明がこれに限定されるものではない。
 例えば、均熱層12cの膜厚によっては、第二窒化物半導体層14の表面温度と核生成層12bの凹凸面12aの表面粗さRzとの関係が図2とは異なる振舞いを見せ、表面粗さRzの値が本実施形態で示した範囲から外れていても、良好な放熱性が得られることがあり得る。これと同様に、例えば、核生成層12bの凹凸面12aの表面粗さRzの値によっては、第二窒化物半導体層14の表面温度と均熱層12cの膜厚との関係が図3とは異なる振舞いを見せ、均熱層12cの膜厚が本実施形態で示した範囲から外れていても、良好な放熱性が得られることがあり得る。つまり、均熱層12cの膜厚と核生成層12bの凹凸面12aの表面粗さRzの値とは、放熱性という観点において互いに影響を及ぼし合っている。そのため、放熱性に関していえば、均熱層12cの膜厚と凹凸面12aの表面粗さRzの値との組み合わせによっては、これらの数値が本実施形態で示した範囲から外れていても、放熱性を良好なものとし得ることがある。
 また、放熱性のみならず、第一窒化物半導体層13の結晶品質についても、同様のことがいえる。すなわち、凹凸面12aの表面粗さRzの値が適切に設定されていれば、その表面粗さRzの値と均熱層12cの膜厚とがどのような組み合わせであっても、良好な結晶品質と放熱性が得られることがあり得る。
 以上のことを踏まえると、いずれかの数値が本実施形態で示した範囲から外れている場合であっても、AlNバッファ層12が核生成層12bに加えて連続膜である均熱層12cを含んでさえいれば、良好な結晶品質を維持したまま、良好な放熱性を得ることが実現可能となる。
In the above-described embodiment, mainly, the heat equalizing layer 12c has a thickness of 3 nm or more, and the surface roughness Rz of the concavo-convex surface 12a of the nucleation layer 12b is 7 nm or more and is less than 20 nm. However, the present invention is not limited thereto.
For example, depending on the film thickness of the heat equalizing layer 12c, the relationship between the surface temperature of the second nitride semiconductor layer 14 and the surface roughness Rz of the uneven surface 12a of the nucleation layer 12b exhibits different behavior from that of FIG. Even if the value of the roughness Rz is out of the range shown in the present embodiment, good heat dissipation may be obtained. Similarly, for example, depending on the value of the surface roughness Rz of the uneven surface 12a of the nucleation layer 12b, the relationship between the surface temperature of the second nitride semiconductor layer 14 and the film thickness of the heat equalizing layer 12c is as shown in FIG. Shows a different behavior, and good heat dissipation may be obtained even if the film thickness of the heat equalizing layer 12c is out of the range shown in this embodiment. That is, the film thickness of the heat equalizing layer 12c and the value of the surface roughness Rz of the uneven surface 12a of the nucleation layer 12b mutually affect each other in terms of heat dissipation. Therefore, with regard to the heat dissipation, depending on the combination of the film thickness of the heat equalizing layer 12c and the value of the surface roughness Rz of the uneven surface 12a, the heat dissipation may occur even if these numerical values are out of the range shown in this embodiment. It may be possible to make the sex a good thing.
The same can be said for the crystal quality of the first nitride semiconductor layer 13 as well as the heat dissipation. That is, if the value of the surface roughness Rz of the uneven surface 12a is appropriately set, a good crystal is obtained regardless of the combination of the value of the surface roughness Rz and the film thickness of the heat equalizing layer 12c. Quality and heat dissipation may be obtained.
Based on the above, even if any numerical value is out of the range shown in the present embodiment, the AlN buffer layer 12 is added to the nucleation layer 12 b and the heat spreader layer 12 c is a continuous film. As long as it is included, it becomes feasible to obtain good heat dissipation while maintaining good crystal quality.
 また、上述した実施形態では、中間体(窒化物半導体エピタキシャル基板)10が基板11、AlN層(AlNバッファ層)12、GaN層(第一窒化物半導体層)13およびAlGaN層(第二窒化物半導体層)14が積層されてなる場合を例に挙げたが、本発明がこれに限定されるものではない。本発明に係る窒化物半導体エピタキシャル基板は、少なくとも基板上にバッファ層を介して窒化物半導体層が形成されたものであれば、その窒化物半導体層が単層のものであってもよいし、上述の実施形態では説明しない他の層を有したものであってもよい。 In the embodiment described above, the intermediate (nitride semiconductor epitaxial substrate) 10 is the substrate 11, the AlN layer (AlN buffer layer) 12, the GaN layer (first nitride semiconductor layer) 13, and the AlGaN layer (second nitride) Although the case where the semiconductor layer 14 is stacked is taken as an example, the present invention is not limited to this. In the nitride semiconductor epitaxial substrate according to the present invention, the nitride semiconductor layer may be a single layer, as long as the nitride semiconductor layer is formed at least on the substrate via the buffer layer. It may have other layers not described in the above embodiment.
 また、上述した実施形態では、第一窒化物半導体層がGaN層13であり、第二窒化物半導体層がAlGaN層14である場合を例に挙げたが、本発明がこれに限定されるものではない。すなわち、窒化物半導体層は、III族窒化物半導体の単結晶からなるものであれば、GaN結晶またはAlGaN結晶に限らず、例えば、窒化アルミニウム(AlN)、窒化インジウム(InN)、窒化インジウムガリウム(InGaN)、窒化アルミニウムインジウムガリウム(AlInGaN)等の窒化物結晶、すなわち、AlInGa1-x-yN(0≦x+y≦1)の組成式で表される窒化物結晶からなるものであってもよい。 In the above-described embodiment, the first nitride semiconductor layer is the GaN layer 13 and the second nitride semiconductor layer is the AlGaN layer 14 by way of example, but the present invention is limited thereto is not. That is, the nitride semiconductor layer is not limited to the GaN crystal or the AlGaN crystal as long as it is made of a single crystal of a group III nitride semiconductor, and for example, aluminum nitride (AlN), indium nitride (InN), indium gallium nitride A nitride crystal such as InGaN) or aluminum indium nitride nitride (AlInGaN), that is, a nitride crystal represented by a composition formula of Al x In y Ga 1 -x- N (0 ≦ x + y ≦ 1) It may be.
 また、上述の実施形態では、中間体(窒化物半導体エピタキシャル基板)10を用いて製造される半導体装置として、FETの一つであるHEMT20を例に挙げたが、本発明がこれに限定されることはなく、他の半導体デバイスについても全く同様に適用することが可能である。 In the above-described embodiment, the HEMT 20 which is one of the FETs is taken as an example of a semiconductor device manufactured using the intermediate (nitride semiconductor epitaxial substrate) 10, but the present invention is limited thereto The same applies to other semiconductor devices.
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally stated.
[付記1]
 本発明の一態様によれば、
 基板と、
 前記基板上に形成されたバッファ層と、
 前記バッファ層上に形成された窒化物半導体層と、を備え、
 前記バッファ層は、
 前記窒化物半導体層に面する凹凸面を有した核生成層と、
 前記基板の側に配された連続膜からなる均熱層と、
 を含む窒化物半導体エピタキシャル基板が提供される。
[Supplementary Note 1]
According to one aspect of the invention:
A substrate,
A buffer layer formed on the substrate;
And a nitride semiconductor layer formed on the buffer layer.
The buffer layer is
A nucleation layer having an irregular surface facing the nitride semiconductor layer;
A heat equalizing layer comprising a continuous film disposed on the side of the substrate;
A nitride semiconductor epitaxial substrate is provided.
[付記2]
 付記1に記載の窒化物半導体エピタキシャル基板において、好ましくは、
 前記均熱層は、3nm以上の膜厚で形成されている。
[Supplementary Note 2]
In the nitride semiconductor epitaxial substrate described in Appendix 1, preferably
The heat equalizing layer is formed to have a film thickness of 3 nm or more.
[付記3]
 付記1または2に記載の窒化物半導体エピタキシャル基板において、好ましくは、
 前記核生成層は、前記凹凸面の表面粗さRzの値が20nm未満に形成されている。
[Supplementary Note 3]
Preferably, in the nitride semiconductor epitaxial substrate described in the supplementary note 1 or 2,
The nucleation layer is formed to have a surface roughness Rz of less than 20 nm.
[付記4]
 付記3に記載の窒化物半導体エピタキシャル基板において、好ましくは、
 前記核生成層は、前記凹凸面の表面粗さRzの値が7nm以上に形成されている。
[Supplementary Note 4]
In the nitride semiconductor epitaxial substrate described in Appendix 3, preferably,
The nucleation layer is formed to have a surface roughness Rz of 7 nm or more.
[付記5]
 付記3または4に記載の窒化物半導体エピタキシャル基板において、好ましくは、
 前記窒化物半導体層は、前記核生成層の前記凹凸面上に形成された第一層を有しており、
 前記第一層は、0.4μm以上2.0μm以下の膜厚で形成されている。
[Supplementary Note 5]
Preferably, in the nitride semiconductor epitaxial substrate as set forth in Appendix 3 or 4,
The nitride semiconductor layer has a first layer formed on the uneven surface of the nucleation layer,
The first layer is formed to have a thickness of 0.4 μm to 2.0 μm.
 10…窒化物半導体エピタキシャル基板(中間体)、11…基板、12…バッファ層(AlNバッファ層)、12a…凹凸面、12b…核生成層、12c…均熱層、13…第一窒化物半導体層(GaN層、GaNチャネル/バッファ層)、14…第二窒化物半導体層(AlGaN層、AlGaNバリア層)、15…二次元電子ガス(2DEG)、17…界面近傍領域、20…半導体装置(HEMT)、21…第三窒化物半導体層(GaN層、GaNキャップ層)、22…ゲート電極、23…ソース電極、24…ドレイン電極 DESCRIPTION OF SYMBOLS 10 Nitride semiconductor epitaxial substrate (intermediate) 11 11 substrate 12 buffer layer (AlN buffer layer) 12a uneven surface 12b nucleation layer 12c soaking layer 13 first nitride semiconductor Layer (GaN layer, GaN channel / buffer layer), 14 ... second nitride semiconductor layer (AlGaN layer, AlGaN barrier layer), 15 ... two-dimensional electron gas (2DEG), 17 ... near interface region, 20 ... semiconductor device ( HEMT), 21: third nitride semiconductor layer (GaN layer, GaN cap layer), 22: gate electrode, 23: source electrode, 24: drain electrode

Claims (5)

  1.  基板と、
     前記基板上に形成されたバッファ層と、
     前記バッファ層上に形成された窒化物半導体層と、を備え、
     前記バッファ層は、
     前記窒化物半導体層に面する凹凸面を有した核生成層と、
     前記基板の側に配された連続膜からなる均熱層と、
     を含む窒化物半導体エピタキシャル基板。
    A substrate,
    A buffer layer formed on the substrate;
    And a nitride semiconductor layer formed on the buffer layer.
    The buffer layer is
    A nucleation layer having an irregular surface facing the nitride semiconductor layer;
    A heat equalizing layer comprising a continuous film disposed on the side of the substrate;
    A nitride semiconductor epitaxial substrate including:
  2.  前記均熱層は、3nm以上の膜厚で形成されている
     請求項1に記載の窒化物半導体エピタキシャル基板。
    The nitride semiconductor epitaxial substrate according to claim 1, wherein the heat equalizing layer is formed to have a film thickness of 3 nm or more.
  3.  前記核生成層は、前記凹凸面の表面粗さRzの値が20nm未満に形成されている
     請求項1または2に記載の窒化物半導体エピタキシャル基板。
    The nitride semiconductor epitaxial substrate according to claim 1, wherein the nucleation layer is formed such that the value of the surface roughness Rz of the uneven surface is less than 20 nm.
  4.  前記核生成層は、前記凹凸面の表面粗さRzの値が7nm以上に形成されている
     請求項3に記載の窒化物半導体エピタキシャル基板。
    The nitride semiconductor epitaxial substrate according to claim 3, wherein the nucleation layer is formed such that the value of the surface roughness Rz of the uneven surface is 7 nm or more.
  5.  前記窒化物半導体層は、前記核生成層の前記凹凸面上に形成された第一層を有しており、
     前記第一層は、0.4μm以上2.0μm以下の膜厚で形成されている
     請求項3または4に記載の窒化物半導体エピタキシャル基板。
    The nitride semiconductor layer has a first layer formed on the uneven surface of the nucleation layer,
    The nitride semiconductor epitaxial substrate according to claim 3, wherein the first layer is formed to have a thickness of 0.4 μm or more and 2.0 μm or less.
PCT/JP2018/043406 2018-01-18 2018-11-26 Nitride semiconductor epitaxial substrate WO2019142496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-006495 2018-01-18
JP2018006495A JP2019125737A (en) 2018-01-18 2018-01-18 Nitride semiconductor epitaxial substrate

Publications (1)

Publication Number Publication Date
WO2019142496A1 true WO2019142496A1 (en) 2019-07-25

Family

ID=67302171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043406 WO2019142496A1 (en) 2018-01-18 2018-11-26 Nitride semiconductor epitaxial substrate

Country Status (2)

Country Link
JP (1) JP2019125737A (en)
WO (1) WO2019142496A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216739A (en) * 2020-08-25 2021-01-12 西安电子科技大学 Low-thermal-resistance silicon-based gallium nitride microwave millimeter wave device material structure and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591151B1 (en) * 2022-01-21 2023-10-19 웨이브로드 주식회사 Method of manufacturing a non emitting iii-nitride semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023677A (en) * 2009-07-21 2011-02-03 Hitachi Cable Ltd Compound semiconductor epitaxial wafer, and method of manufacturing the same
WO2011016304A1 (en) * 2009-08-07 2011-02-10 日本碍子株式会社 Epitaxial substrate for semiconductor element, method for manufacturing epitaxial substrate for semiconductor element, and semiconductor element
JP2013012767A (en) * 2012-08-31 2013-01-17 Fujitsu Ltd Compound semiconductor device, and method for manufacturing the same
JP2016029741A (en) * 2015-11-05 2016-03-03 住友化学株式会社 Method for manufacturing nitride semiconductor epitaxial wafer for transistors
JP2016127223A (en) * 2015-01-08 2016-07-11 信越半導体株式会社 Epitaxial substrate for electronic device, electronic device, method for manufacturing epitaxial substrate for electronic device, and method for manufacturing electronic device
JP2016195241A (en) * 2015-03-31 2016-11-17 クアーズテック株式会社 Nitride semiconductor substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891650B2 (en) * 2011-08-18 2016-03-23 富士通株式会社 Compound semiconductor device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023677A (en) * 2009-07-21 2011-02-03 Hitachi Cable Ltd Compound semiconductor epitaxial wafer, and method of manufacturing the same
WO2011016304A1 (en) * 2009-08-07 2011-02-10 日本碍子株式会社 Epitaxial substrate for semiconductor element, method for manufacturing epitaxial substrate for semiconductor element, and semiconductor element
JP2013012767A (en) * 2012-08-31 2013-01-17 Fujitsu Ltd Compound semiconductor device, and method for manufacturing the same
JP2016127223A (en) * 2015-01-08 2016-07-11 信越半導体株式会社 Epitaxial substrate for electronic device, electronic device, method for manufacturing epitaxial substrate for electronic device, and method for manufacturing electronic device
JP2016195241A (en) * 2015-03-31 2016-11-17 クアーズテック株式会社 Nitride semiconductor substrate
JP2016029741A (en) * 2015-11-05 2016-03-03 住友化学株式会社 Method for manufacturing nitride semiconductor epitaxial wafer for transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216739A (en) * 2020-08-25 2021-01-12 西安电子科技大学 Low-thermal-resistance silicon-based gallium nitride microwave millimeter wave device material structure and preparation method

Also Published As

Publication number Publication date
JP2019125737A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP2006332367A (en) High electron mobility transistor, field-effect transistor, epitaxial substrate, method for manufacturing the same and method for manufacturing group iii nitride based transistor
JP2014239159A (en) Semiconductor device and manufacturing method of the same
JP6729416B2 (en) Nitride semiconductor device and method for manufacturing nitride semiconductor device
JP5788296B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP2009231561A (en) Nitride semiconductor crystal thin film and its manufacturing method, and semiconductor device and method of manufacturing the same
JP2016207748A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2018056591A (en) Nitride semiconductor device and nitride semiconductor substrate
JP4468744B2 (en) Method for producing nitride semiconductor thin film
WO2019142496A1 (en) Nitride semiconductor epitaxial substrate
JP5436819B2 (en) High-frequency semiconductor element, epitaxial substrate for forming high-frequency semiconductor element, and method for producing epitaxial substrate for forming high-frequency semiconductor element
JP2015177152A (en) Nitride semiconductor laminate and semiconductor device
JP2007123824A (en) Electronic device using group-iii nitride based compound semiconductor
JP5460751B2 (en) Semiconductor device
JP2012256704A (en) Semiconductor device and manufacturing method thereof
JP6917798B2 (en) Nitride semiconductor epitaxial substrate and semiconductor device
US9437725B2 (en) Semiconductor device and semiconductor substrate
JP5399021B2 (en) Epitaxial substrate for forming high-frequency semiconductor element and method for producing epitaxial substrate for forming high-frequency semiconductor element
JP2014090065A (en) Nitride-based semiconductor epitaxial wafer and nitride-based field-effect transistor
JP6815278B2 (en) Nitride semiconductor laminate, semiconductor device, nitride semiconductor laminate manufacturing method and semiconductor device manufacturing method
TWI572036B (en) Nitride crystal structure
JP2004289005A (en) Epitaxial substrate, semiconductor device, and high electron mobility transistor
JP2012064977A (en) Group iii nitride semiconductor stacked wafer and group iii nitride semiconductor device
JP2016219590A (en) Semiconductor substrate manufacturing method and semiconductor device manufacturing method
JP7457053B2 (en) Nitride semiconductor laminate, semiconductor device, and method for manufacturing nitride semiconductor laminate
JP5616420B2 (en) Epitaxial substrate for forming high-frequency semiconductor element and method for producing epitaxial substrate for forming high-frequency semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901239

Country of ref document: EP

Kind code of ref document: A1