WO2019141236A1 - 一种微波宽带双工器及微波收发信装置 - Google Patents

一种微波宽带双工器及微波收发信装置 Download PDF

Info

Publication number
WO2019141236A1
WO2019141236A1 PCT/CN2019/072334 CN2019072334W WO2019141236A1 WO 2019141236 A1 WO2019141236 A1 WO 2019141236A1 CN 2019072334 W CN2019072334 W CN 2019072334W WO 2019141236 A1 WO2019141236 A1 WO 2019141236A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
band
filter
broadband
duplexer
Prior art date
Application number
PCT/CN2019/072334
Other languages
English (en)
French (fr)
Inventor
张勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19741269.5A priority Critical patent/EP3742621A4/en
Publication of WO2019141236A1 publication Critical patent/WO2019141236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present application relates to, but is not limited to, the field of communication technologies, for example, to a microwave broadband duplexer and a microwave transceiver device.
  • the microwave frequency band mainly refers to various microwave frequency range divisions given by ITU for fixed wireless systems (International Telecommunication Union-Radio communication ssector (ITU-R) F series recommendations, And other microwave frequency range partitioning based on these recommendations, such as various frequency partitionings referenced in European Standard ETSI EN 302 217, or other similar fixed wireless system frequency partitioning.
  • ITU-R International Telecommunication Union-Radio communication ssector
  • These microwave bands mainly include 6 gigahertz (GHz) or more up to the millimeter band, and are mainly used in fixed wireless systems such as point-to-point microwave communication. Further smaller channels of smaller bandwidth are further defined in these microwave bands based on ITU-R F recommendations.
  • ITU-R F.636 gives a 15 GHz microwave band divided into 14.4 GHz to 15.35 GHz (ie 14400 MHz (megahertz) to 15350 MHz), which can be internally continuous at different bandwidths such as 56 MHz, 40 MHz, 28 MHz or 14 MHz. Divide multiple smaller channels.
  • each microwave band is divided into a receiving band (RX band) and a transmitting band (TX band) by the ITU-R, so that one device can receive and transmit differently.
  • the frequency works in both directions at the same time (note that: because the communication is bidirectional, the microwave frequency band must have another division of the receiving and transmitting frequency bands and its matching, that is, the transmitting frequency band and the receiving frequency band of one device are The receiving frequency band and the transmitting frequency band of the communication object (the other device), the receiving frequency band and the transmitting frequency band of the two devices are interchanged).
  • the frequency separation between the internal transmit and receive channels of a device is called the TR space and is given in the ITU-R Recommendation.
  • ITU-R F.636 gives a 15 GHz microwave band allocation: the transmit band is 14.4 GHz to 14.860 GHz, the receive band is 14.890 GHz to 15.350 GHz, and the duplex interval is 490 MHz (which is equal to 14.890 GHz to 14.4 GHz). , also equal to 15.350GHz - 14.860GHz); in line with this, ITU-R F.636 must have another opposite 15GHz microwave band division: the transmission band is 14.890GHz to 15.350GHz, and the receiving band is 14.4GHz to 14.860 GHz with a duplex spacing of 490 MHz.
  • the device manufacturer divides a plurality of pairs of receiving and transmitting sub-bands, and each pair of receiving and transmitting sub-bands can cover a plurality of pairs (not all) of receiving and transmitting channels.
  • Each pair of receiving and transmitting sub-bands corresponds to the pass band of a duplexer's transmit and receive branch filter, and the duplexer is called a sub-band duplexer; one microwave transceiver only contains one Sub-band duplexer.
  • the divided sub-bands are narrowband.
  • the embodiment of the present application provides a microwave broadband duplexer and a microwave transceiver device, which can reduce the types of microwave transceiver devices and ensure the productivity, reliability, and performance indicators of the microwave transceiver device.
  • an embodiment of the present application provides a microwave broadband duplexer, including: a circulator, a broadband transmit branch filter, and a broadband receive branch filter; the circulator and the broadband transmit branch filter and the broadband a branching filter is connected; the broadband branching filter is connected to the microwave transmitting unit, and the broadband receiving and branching filter is connected to the microwave receiving unit; wherein the microwave transmitting unit comprises a microwave transmitting bandpass filter
  • the microwave transmit band pass filter bank includes a routing module and at least two band pass filters, the routing modules are respectively connected to the at least two band pass filters, and one of the band pass filters is selected Work.
  • the embodiment of the present application provides a microwave transceiver device, including: a microwave broadband duplexer, a microwave transmitting unit, and a microwave receiving unit;
  • the microwave broadband duplexer includes a circulator and a broadband branch filter.
  • a wideband branching filter is connected to the wideband branching filter and the wideband branching filter;
  • the wideband branching filter is connected to the microwave transmitting unit, and the broadband receiving branch a filter is coupled to the microwave receiving unit;
  • the microwave transmitting unit includes a microwave transmitting band pass filter bank, the microwave transmitting band pass filter bank includes a routing module and at least two band pass filters, The routing module is respectively connected to the at least two band pass filters and selects one of the band pass filters to operate.
  • FIG. 1 is a schematic structural view of a classical microwave transceiver using a sub-band duplexer
  • FIG. 2 is a schematic structural view of the sub-band duplexer of FIG. 1;
  • 3 is a schematic diagram of coverage bands of multiple sub-band duplexers
  • FIG. 4 is a schematic structural diagram of a software full sub-band microwave transceiver
  • FIG. 5 is a schematic structural view of the software full sub-band duplexer of FIG. 4;
  • FIG. 6 is a schematic diagram of a coverage band of a software full sub-band duplexer
  • FIG. 7 is a schematic diagram of a microwave transceiver provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of signal flow of a microwave transceiver provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a microwave broadband duplexer according to an embodiment of the present application.
  • FIG. 10 is a diagram showing an example of a connection structure between a circulator and a broadband branch filter of a microwave broadband duplexer according to an embodiment of the present application;
  • FIG. 11 is a schematic diagram of a coverage band of a microwave broadband duplexer according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a microwave transmit band pass filter bank according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a transmit frequency band covered by a microwave transmit band pass filter bank according to an embodiment of the present application
  • Figure 15 is a schematic view of an example 1 of the present application.
  • Example 16 is a schematic diagram of Example 2 of the present application.
  • Figure 17 is a schematic diagram of Example 3 of the present application.
  • Example 18 is a schematic diagram of a microwave transmit band pass filter bank in Example 3 of the present application.
  • FIG. 19 is a schematic diagram of a transmit band covered by a microwave transmit bandpass filter bank in Example 3 of the present application.
  • duplexer in a microwave transceiver is subject to the following two factors.
  • the duplexing filter of the duplexer has sufficient suppression and reduction for the transmitted microwave signal (transmitting the main signal, transmitted to the remote receiver) leaking from the branching passband of the duplexer. It falls into the receiver of this unit.
  • the duplexing branch filter reduces the unwanted spurious emissions outside the transmitter, especially for unwanted spurious emissions that fall into the passband of the duplex filter of the duplexer. Suppression.
  • the above two requirements reflect the isolation requirements and external spurious emission requirements between the internal transceivers and transmitters of the microwave transceiver.
  • the classic microwave transceiver shown in Figure 1 and the software full sub-band microwave transceiver shown in Figure 4 use a narrowband duplexer for the following reasons: First, reduce the filter passband The relative bandwidth can improve the out-of-band suppression at the fixed frequency position outside the passband, and enhance the isolation and isolation between the transceiver and the transmitter; secondly, it can reduce the design difficulty of the transmitter, and the good band of the narrowband duplexer External suppression can effectively reduce the spurious emission of the transmitter.
  • the classical microwave transceiver includes at least the following parts: a sub-band duplexer 101, a microwave power amplifier (hereinafter referred to as a microwave power amplifier) 102, a microwave transmission broadband filter 103, a microwave up-converter 104, and a microwave.
  • the local oscillator hereinafter referred to as microwave transmitting local oscillator
  • the local oscillator hereinafter referred to as microwave transmitting local oscillator
  • the transmitting intermediate frequency filter 106 the transmitting intermediate frequency filter 106
  • the receiving intermediate frequency filter 107 the microwave down converter 108
  • microwave microwave receiving local oscillator
  • the transmit IF filter 106 can be used when there is an intermediate frequency in the transmitter portion of the microwave transceiver.
  • the microwave signaling local oscillator 105 is adapted to provide a microwave upconverter signal to the microwave upconverter 104.
  • the microwave upconverter 104 is adapted to vary the low frequency transmit signal to the microwave signal required for antenna transmission.
  • the microwave power amplifier 102 is adapted to amplify the transmitted microwave signal filtered by the microwave transmitting broadband filter 103, and sends the transmitted microwave signal to the antenna via the sub-band duplexer 101.
  • the microwave low noise amplifier 110 is adapted to amplify the received microwave signal of the antenna and send it to the microwave downconverter 108.
  • the microwave receiving local oscillator 109 is adapted to provide the microwave downconverter 108 with a receiving microwave local oscillator signal.
  • the microwave downconverter 108 is adapted to downconvert the microwave signal received by the antenna to a low frequency signal.
  • the receiving intermediate frequency filter 107 is adapted to filter the intermediate frequency signal after microwave down conversion.
  • the classic microwave transceiver shown in Figure 1 uses a sub-band duplexer 101.
  • each pair of receiving and transmitting sub-bands divided in the receiving and transmitting frequency bands of the microwave frequency band can cover a plurality of (not all) receiving and transmitting channels.
  • the divided sub-bands are narrowband.
  • the microwave transceiver works, only a pair of receiving and transmitting channels can be selected in the current receiving and sending sub-bands. If you want to select channels in other sub-bands, you can only replace the devices. Therefore, a microwave frequency band requires multiple microwave transceivers with different sub-bands to achieve full-band coverage.
  • the receiving and transmitting frequency bands (Tx/Rx band), and the receiving and transmitting channels (Tx/Rx channel) are all divided by ITU-R.
  • the sub band is designed by the transceiver manufacturer. The designer wants each subband to contain as many channels as possible to reduce the number of subbands and the type of transceiver.
  • the sub-band duplexer of the classic microwave transceiver may include: a narrowband combining mechanism, a narrowband branching filter, and a narrowband branching filter; wherein the narrowband combining mechanism is connected to the antenna through the antenna port.
  • the narrowband branching filter is connected to the transmitter part through the transmitting port, and the narrowband receiving branching filter is connected to the receiver part through the receiving port.
  • the center frequency of the narrowband transmit branch filter is the center of the transmit subband, and the center frequency of the narrowband receive split filter is the center of the receive subband.
  • FIG. 3 depicts the case where multiple sub-band duplexers cover the transmit and receive bands.
  • each microwave band specified by ITU-RF (from band start to band stop) can be divided into a transmit band (Tx band, starting from the transmit band ( Ftx-start) to the end of the transmit band (Ftx-stop) and the receive band (Rx band, from the start of the receive band (Frx-start) to the end of the receive band (Frx-stop)).
  • the receiving and transmitting frequency bands contain many channels of smaller bandwidth specified by ITU-R.F.
  • the equipment manufacturer divides the N-pair sub-bands in the receiving and transmitting frequency bands, corresponding to N duplexers (ie, N microwave transceivers), and each sub-band contains several aisle.
  • the subband is the passband of the transmit and receive branch filters of the subband duplexer, and the subbands are used in pairs.
  • the interval between any pair of subband center frequencies eg, fc1 and fc1', fc2 and fc2', ..., fcN, and fcN') (eg, fc1'-fc1, fc2'-fc2,...,fcN' -fcN)
  • the software full sub-band microwave transceiver includes at least the following parts: a software full sub-band duplexer 201, a control circuit 211, a microwave power amplifier (hereinafter referred to as a microwave power amplifier) 202, and a microwave transmission broadband filter. 203.
  • Microwave upconverter 204 microwave transmitting local oscillator (hereinafter referred to as microwave transmitting local oscillator) 205, transmitting intermediate frequency filter 206, receiving intermediate frequency filter 207, microwave down converter 208, microwave receiving The local oscillator (hereinafter referred to as microwave receiving local oscillator) 209 and the microwave low noise amplifier 210.
  • the description of the local oscillator 209 and the microwave low noise amplifier 210 is the same as that of the classical microwave transceiver, and thus will not be described again.
  • the software all-sub-band duplexer 201 used in the software all-sub-band microwave transceiver is a software electrically tuned duplexer, and the passband of the transmit and receive branch filters is still narrowband, but The electric tuning of the center frequency of the filter enables the receiving and transmitting bands to move throughout the receiving and transmitting bands.
  • a software full sub-band transceiver can completely cover the receiving and transmitting frequency bands, the electric tuning duplexer is complicated to manufacture, low in reliability, high in price, and relatively low in performance indicators.
  • the software full sub-band duplexer of the software full sub-band microwave transceiver may include: a broadband combining mechanism, a narrowband branching filter, and a narrowband receiving branch filter; wherein the broadband combining mechanism passes the antenna
  • the port is connected to the antenna, and the narrowband branching filter is connected to the transmitter part through the transmitting port, and the narrowband receiving branching filter is connected to the receiver part through the receiving port.
  • the center frequencies of the narrowband branching filter and the narrowband branching filter are respectively tunable.
  • Figure 6 depicts a software full subband (narrowband and electrically tuned motor) duplexer covering the transmit and transmit bands.
  • a narrowband duplexer can cover all the subbands in FIG. 3 by moving the frequency of the passband, because the center frequency of the receiving and transmitting subbands of the narrowband duplexer can be set by software.
  • the narrow-band duplexer is electrically tuned using a motor so that its center frequency can be arbitrarily moved in the receiving and transmitting bands. Therefore, the software all-sub-band duplexer does not require sub-band division.
  • the embodiment of the present application provides a microwave transceiver device, including: a microwave broadband duplexer, a microwave transmitting unit, and a microwave receiving unit; wherein the microwave broadband duplexer includes a circulator, a broadband branch filter, and a broadband receiving branch a filter; the circulator is connected to the broadband branching filter and the wideband branching filter; the wideband branching filter is connected to the microwave transmitting unit, the broadband branching filter is connected to the microwave receiving unit; and the microwave transmitting unit includes the microwave transmitting unit a bandpass filter bank, the microwave transmit bandpass filter bank includes a routing module and at least two bandpass filters, the routing modules are respectively connected to at least two bandpass filters, and one of the bandpass filters is selected working.
  • the microwave broadband duplexer includes a circulator, a broadband branch filter, and a broadband receiving branch a filter
  • the circulator is connected to the broadband branching filter and the wideband branching filter
  • the wideband branching filter is connected to the microwave transmitting unit
  • the broadband branching filter is
  • the microwave transceiver device provided in this embodiment can cover most or all channels in the complete receiving and transmitting frequency band in the working microwave frequency band, thereby greatly reducing the equipment type of the microwave transceiver. Moreover, the productivity, reliability, and performance specifications of the microwave transceiver are guaranteed.
  • the microwave transceiver device provided in this embodiment can be a complete device. However, this application is not limited thereto. In other implementations, the device may be deployed in the form of a transceiver module or unit.
  • the microwave transmitting unit may further include: a microwave upconverter and a microwave power amplifier, wherein an output end of the microwave upconverter is connected to an input end of the microwave transmit band pass filter bank, and an output of the microwave transmit band pass filter bank The terminal is connected to the input of the microwave power amplifier, and the output of the microwave power amplifier is connected to the broadband branch filter.
  • a microwave upconverter and a microwave power amplifier wherein an output end of the microwave upconverter is connected to an input end of the microwave transmit band pass filter bank, and an output of the microwave transmit band pass filter bank
  • the terminal is connected to the input of the microwave power amplifier, and the output of the microwave power amplifier is connected to the broadband branch filter.
  • this application is not limited thereto. In other implementations, other microwave devices are also allowed to be inserted between any two of the three, but the order between the three is unchanged.
  • the microwave broadband duplexer may include an integrally assembled circulator, a broadband transmit branch filter, and a broadband receive branch filter; or, the microwave wideband duplexer may include: a separately arranged circulator, and a broadband The branching filter and the wideband branching filter, wherein the circulator can be connected to the wideband branching filter and the wideband branching filter respectively through a port or a transmission line.
  • the circulator may include a first port, a second port, and a third port, wherein the first port is connected to the broadband branching filter, the second port is connected to the antenna, and the third port is connected to the broadband The filter is connected; the signal output from the first port is transmitted to the second port output, and the signal input from the second port is transmitted to the third port output.
  • the signal transmission direction of the circulator is: the signal can only be transmitted from the first port to the second port, and the second port is transmitted to the third port, and the reverse transmission has isolation, that is, the signal cannot be reversely transmitted. In this way, by providing the circulator, it is possible to increase the isolation between the receiving and transmitting branches.
  • the passband of the wideband branching filter may cover a bandwidth above a preset ratio in a transmit band of the microwave band, and the passband of the wideband branching filter may cover a preset in a receive band of the microwave band. Bandwidth above the ratio.
  • the value of the preset ratio may be greater than or equal to 60% and less than 100%; for example, the preset ratio may be 60%, 70%, 99%, and the like.
  • a microwave transceiver device provided in this embodiment can replace multiple classical microwave transceivers using sub-band duplexers in the receiving and transmitting frequency bands of the microwave frequency band, thereby reducing the number of sub-bands and the transceiver. kind of.
  • “predetermined ratio or more” may include a preset ratio.
  • the passband of the wideband branching filter may cover the transmit band of the microwave band
  • the passband of the wideband branching filter may cover the receive band of the microwave band.
  • the microwave transceiver device provided in this embodiment is a full sub-band microwave transceiver device, and can cover a complete receiving and transmitting frequency band. In this way, a microwave transceiver device provided in this embodiment can replace all the classic microwave transceivers using the sub-band duplexer in the receiving and transmitting frequency bands of the microwave frequency band, thereby greatly reducing the device type.
  • the routing module may include: a first routing unit and a second routing unit, the first routing unit being coupled to the input of the at least two bandpass filters, the second routing unit and the at least The outputs of the two bandpass filters are connected.
  • the first routing unit may include one of: a multi-select switch, a single-pole double-throw switch combination, and a splitter; and the second routing unit may include one of the following: a multi-select switch, A combination of single pole double throw switches.
  • the first routing unit may be a multiple-selection switch, and the second routing unit may be a multiple-selection switch.
  • the first routing unit and the second routing unit cooperate to select the same band-pass filter for normal operation.
  • the first routing unit may be a splitter
  • the second routing unit may be a multiple selection switch
  • the second routing unit selects a bandpass filter for normal operation.
  • this application is not limited thereto.
  • the passband of each bandpass filter covers at least one channel in the transmit band of the microwave band
  • the passband of the bandpass filter bank of the microwave covers the transmit band of the microwave band.
  • all the band pass filters of the microwave transmit band pass filter group can appear in one complete machine at the same time, so that it can cooperate with the untuned microwave broadband duplexer to realize complete reception and transmission in the covered microwave frequency band.
  • each sub-band can be implemented to include as many channels as possible, reducing the number of sub-bands and the type of microwave transceiver.
  • a device in a working microwave band, can cover a complete receiving and transmitting frequency band, that is, covering all ITU-R defined channels in the receiving and transmitting frequency bands.
  • the microwave transceiver device can be considered as only A pair of sub-bands, or no sub-band division (that is, the receiving and transmitting sub-bands are equal to the receiving and transmitting bands); thus, each type of receiving and transmitting frequency band has only one type of equipment, which simplifies the complicated purchase of raw materials for products. Process flow, assembly testing, ordering, shipping, engineering installation, spare parts and maintenance are all significant.
  • a device in a working microwave band, can cover a bandwidth above a preset ratio in a receiving and transmitting frequency band, for example, covering multiple sub-bands instead of all sub-bands, that is, not covering complete transmission and transmission. Band, but the number of subbands and the type of transceiver are reduced compared to classic microwave transceivers.
  • microwave transceiver device is separately used as an example. That is, the microwave transceiver device is taken as an example of the microwave transceiver.
  • FIG. 7 is a schematic diagram of a microwave transceiver provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of signal flow of a microwave transceiver provided by an embodiment of the present application.
  • the microwave transceiver provided in this embodiment includes the following parts: a microwave broadband duplexer 301, a microwave transmitter (corresponding to the aforementioned microwave transmitting unit), and a microwave receiver (corresponding to In the aforementioned microwave receiving unit).
  • the microwave transmitter can include at least the following parts: a microwave power amplifier 302, a microwave transmit band pass filter bank 303, a microwave upconverter 304, a microwave transmit local oscillator 305, and a transmit IF filter. 306;
  • the microwave receiver may include at least the following parts: a receiving intermediate frequency filter 307, a microwave down converter 308, a microwave receiving local oscillator 309, and a microwave low noise amplifier 310.
  • the microwave broadband duplexer includes a circulator, a wideband branching filter, and a wideband branching filter.
  • the microwave broadband duplexer is a three-port device, one end is arranged to be connected with the antenna, and the other ends are respectively connected with the microwave transmitter and the microwave receiver.
  • the microwave broadband duplexer can be a full sub-band duplexer, that is, the passband of the wideband branch filter can cover (greater than or equal to) the transmit band, and the passband of the wideband branch filter can be covered. (greater than or equal to) the receiving band.
  • the passband of the broadband transmit branch filter may cover a bandwidth greater than a preset ratio in the transmit band
  • the passband of the wideband branch filter may cover a bandwidth greater than a preset ratio in the receive band.
  • the value of the preset ratio may be greater than or equal to 60% and less than 100%; at this time, the microwave transceiver provided by this embodiment can replace multiple classic microwave transceivers compared to the classic microwave transceiver. Machine, thereby reducing the number of sub-bands and the type of transceiver.
  • the circulator, the wideband branching filter, and the wideband branching filter can be assembled in an integrated manner. That is, the three can be assembled first, combined and debugged, in the form of a duplexer entity; or the three can be directly connected through the port; or can be flexibly dispersed in the form of three entities in the microwave transceiver
  • the position is connected by a transmission line such as a microstrip, a coaxial line or a waveguide to realize the function of the duplexer, so as to bring about the convenience of the structural design of the whole machine.
  • the circulator is a three-port device, one end is set as an antenna port, and the other ends are respectively connected with a broadband branch filter and a broadband branch filter.
  • the circulator includes three ports; wherein, the port 2 is an antenna port, and is disposed to interface with the antenna, the port 1 is configured to connect the broadband branch filter, and the port 3 is configured to connect the broadband branch filter.
  • the signal transmission direction of the circulator is clockwise, and the signal can only be transmitted from port 1 to port 2, and from port 2 to port 3.
  • port 2 of the circulator is defined as an antenna port
  • port 1 can only be used on the transmitter side
  • port 3 can only be used on the receiver side.
  • the reverse isolation between the circulator ports provides an additional isolation of more than 20 dB between the receiving and transmitting branches of the microwave broadband duplexer (the duplexer's receiving and transmitting isolation is usually dependent on the receiving, The out-of-band suppression of the branching filter); compared with the sub-band duplexer, the microwave broadband duplexer of the embodiment uses a circulator, which increases the isolation between the receiving and transmitting branches, which makes the receiving, The isolation index provided by the branch filter is required to be reduced, that is, the out-of-band rejection index allows corresponding reduction, which is beneficial to widening the passband bandwidth of the transmit and receive branch filters and increasing the frequency coverage of the duplexer. The greater the isolation of the circulator, the more advantageous it is.
  • the microwave broadband duplexer may include, but is not limited to, a waveguide duplexer.
  • Figure 11 illustrates the case of a microwave broadband duplexer used in Figure 7 for one-time coverage of the transmit and receive bands.
  • the transmit and receive branch filters of the microwave wideband duplexer are wideband and can cover all subbands.
  • the transmission frequency and the reception frequency are set in the receiving and transmitting frequency bands according to the selected channel and duplex interval (the frequency interval between channel X' and channel X is equal to the duplex interval).
  • Figure 11 uses only one microwave broadband duplexer, which does not require software tuning and is simple and reliable. However, due to the use of a wideband filter, the out-of-band rejection, that is, the drop in transmission and reception isolation, is caused.
  • Figure 12 depicts the deterioration of out-of-band rejection (transceiver isolation) due to the narrowband duplexer becoming a wideband duplexer.
  • the duplexer passband is narrowed and widened, the edge distances of the two passbands are narrowed, so that the isolation between the filters of the duplexer's receiving and transmitting branches is large (out-of-band rejection).
  • the amplitude is reduced.
  • the isolation of the narrowband duplexer's transmit and receive branching filters is high; as can be seen from Fig. 12(b), the isolation and branching filters of the wideband duplexer have low isolation.
  • a microwave transmit bandpass filter composed of a plurality of narrowband bandpass filters is used. Group, thereby increasing the degree of out-of-band inhibition.
  • the microwave transmit band pass filter bank may include: at least two band pass filters placed in parallel and two multiple select switches, and one of the two multiple select switches is selected.
  • Bandpass filter works.
  • the microwave transmit bandpass filter bank is between the microwave upconverter of the microwave transmitter and the microwave power amplifier.
  • the passband of each bandpass filter covers different frequencies.
  • Each bandpass filter covers multiple transmit channels, and all bandpass filters can cover the entire transmit band.
  • one band-pass filter can be selected by the software to control two multi-select switches according to a user-set signaling channel.
  • the bandwidth of the microwave transmission wideband filter is not less than the transmission frequency band.
  • the microwave transmission bandpass filter is changed from wideband to narrowband, which means that the transmitter has out-of-band suppression.
  • the increase and the reduction of out-of-band spurious emissions further reduce the requirement for out-of-band rejection of the microwave duplexer.
  • the multi-selection method of the microwave transmit band pass filter group of this embodiment reduces the bandwidth of the transmitter from the original entire transmit band to a newly defined similar sub-band (including more transmit channels (channel) )); all bandpass filters of the microwave transmit bandpass filter bank can appear in one complete machine at the same time, however the subband duplexer in Figure 1 is not. Therefore, the microwave transceiver provided by the embodiment can realize the complete receiving and transmitting frequency band covering the microwave frequency band through the combination of the microwave broadband duplexer and the microwave transmitting bandpass filter bank.
  • the band pass filter in the microwave transmit band pass filter bank may include, but is not limited to, a conventionally used microstrip filter.
  • FIG. 13 depicts a schematic diagram of a microwave transmit bandpass filter bank.
  • n (n is an integer greater than or equal to 2) parallel input and output terminals of the parallel bandpass filter use multiple selection switches, the two multiple selection switches must select the same one at the same time
  • the bandpass filter allows the microwave transmitter to work properly.
  • n bandpass filters can cover the entire transmit band.
  • the internal software of the microwave transceiver can control the multi-selection switch to select a unique band-pass filter. As long as the transmission frequency is constant, the band-pass filter is Will not be re-selected.
  • the triggering manner of the multi-selection switch in this embodiment is not limited.
  • the multiple-selection switch may also be a combination of Single Pole Double Throw (SPDT).
  • SPDT Single Pole Double Throw
  • the band pass filter may be a filter in the form of a Printed Circuit Board (PCB) microstrip.
  • Figure 14 depicts the case of the transmit band covered by n bandpass filters. As shown in Figure 14, there must be overlap between the passbands of each of the two bandpass filters to ensure seamless coverage.
  • a plurality of narrowband transmit filters are provided, and using one of them, the bandwidth of the transmitter can be narrowed, thereby improving out-of-band rejection.
  • the microwave power amplifier is configured to amplify the transmitted microwave signal filtered by the microwave transmit band pass filter bank at the end of the microwave transmitter, and then transmit the microwave signal through the microwave.
  • the broadband duplexer is sent to the antenna.
  • the microwave upconverter is set to change the low frequency transmit signal to the transmit microwave frequency required for antenna transmission.
  • the microwave local oscillator is set to set the transmit microwave local oscillator frequency, and the output microwave local oscillator signal is output to the microwave upconverter.
  • At least one of the transmit IF filters may be included before the microwave upconverter.
  • a transmitting intermediate frequency filter is used, and when the intermediate frequency is zero, a baseband filter can be used.
  • the transmit IF filter may include, but is not limited to, a dielectric (ceramic) filter for classical applications.
  • the transmit IF filter can be used to further provide suppression of the out-of-band spurious emission signal of the transmitter, reduce the isolation of the duplexer, and reduce the interference of the transmitter to the receiver.
  • lower noise devices can be used in the transmitter to reduce noise output.
  • the microwave low noise amplifier is arranged to amplify the received microwave signal of the antenna and send it to the microwave down converter.
  • the microwave down converter is set to change the microwave signal received by the antenna to the low frequency signal.
  • the microwave receiving local oscillator is set to set the receiving microwave local oscillator frequency, and output the receiving microwave local oscillator signal to the microwave down converter.
  • At least one receiving intermediate frequency filter may be included after the microwave down converter.
  • the receiving intermediate frequency filter is set to filter the intermediate frequency signal after microwave down conversion.
  • the received intermediate frequency filter may include, but is not limited to, a conventionally used dielectric (ceramic) filter.
  • the receiving IF filter can be used to further provide suppression of leaked transmitter microwave signals, reducing the need for duplexer isolation.
  • IF filters can include ceramic filters, crystal filters, LC filters, and the like.
  • the combined receiving and transmitting frequency bands are realized by a combined structure of the untuned microwave broadband duplexer and the microwave transmitting bandpass filter bank.
  • the bandpass filter in the microwave transmit bandpass filter bank is narrowband when working, multiple bandpass filters can be present in one complete machine, eliminating the need to replace the device, only through the routing module ( For example, if you select a switch, you can select a bandpass filter, and you can still make the transmitter work at any frequency position in the transmit band without changing the characteristics of its original wideband internal frequency selection.
  • the bandwidth widening of the receive and branch filters in the microwave wideband duplexer enables the receiver to select and receive signals in the complete receive band wideband.
  • a sub-band (narrowband) duplexer is replaced with a wideband duplexer including a circulator, wherein a circulator is provided for the isolation compensation, which provides at least 20 to 30 dB of isolation; in the transmitter channel
  • a multi-selected microwave transmit band pass filter bank is used, which is composed of a plurality of band pass filters which narrow the bandwidth of the single channel microwave transmit wideband filter, and the narrow band pass filter The out-of-band suppression is improved.
  • each sub-band can be configured to include as many channels as possible, and the number of sub-bands (correspondingly, the type of transceiver) can be
  • the collection and transmission frequency bands are reduced to one. There is only one model of equipment in each receiving and transmitting frequency band, which is of great significance for simplifying the complicated raw material procurement, process flow, assembly testing, ordering, delivery, engineering installation, spare parts and maintenance.
  • FIG. 15 is a schematic diagram of a point-to-point double-conversion microwave full sub-band transceiver implemented in the Ku to Ka band.
  • a microwave transceiver in the frequency band is replaced in some frequency bands (for example, 15G, 18G, 23G). All sub-band type classic microwave transceivers on the transmission band.
  • the whole sub-band duplexer is equivalent to the microwave broadband duplexer in FIG. 7.
  • the whole sub-band duplexer includes a circulator, and the circulator has an isolation of 30 dB, and the microwave transmitting band
  • the pass filter bank is a four-in-one structure, that is, includes four band pass filters.
  • the first transmit intermediate frequency amplifier, the first transmit intermediate frequency filter, the intermediate frequency up-converter, the transmit intermediate frequency local oscillator, the second transmit intermediate frequency filter, and the second transmit intermediate frequency amplifier in the transmitter are set.
  • the first receiving intermediate frequency amplifier, the first receiving intermediate frequency filter, the intermediate frequency down converter, the receiving intermediate frequency local oscillator, the second receiving intermediate frequency filter and the second in the receiver The receiving intermediate frequency amplifier is set to the secondary frequency conversion of the received signal.
  • the first transmit intermediate frequency filter and the second transmit intermediate frequency filter in the transmitter can be regarded as the transmit intermediate frequency filter in the above embodiment
  • the first received intermediate frequency filter in the receiver and The second received intermediate frequency filter can be regarded as the received intermediate frequency filter in the above embodiment.
  • Figure 16 is a schematic diagram of a point-to-point microwave full subband transceiver implemented in the low frequency band of the microwave.
  • This example is a common intermediate frequency architecture that is easily adopted by point-to-point microwaves in the low frequency range, and is generally used in the microwave frequency band below the Ku band.
  • the whole sub-band duplexer is equivalent to the microwave broadband duplexer in FIG. 7.
  • the whole sub-band duplexer includes a circulator, and the circulator has an isolation of 30 dB, and the microwave transmitting band
  • the pass filter bank is a four-in-one structure, that is, includes four band pass filters.
  • the microwave low noise amplifier, the microwave upconverter, the microwave transmitting local oscillator, the microwave down converter, the microwave receiving local oscillator, the transmitting intermediate frequency filter, and the receiving intermediate frequency filter reference may be made to the above embodiment. Description, so I won't go into details here.
  • Figure 17 is a schematic diagram of a zero intermediate frequency/digital intermediate frequency microwave full subband transceiver.
  • the transceiver of this example has no intermediate frequency portion, and the transmitting baseband filter and the receiving anti-aliasing filter are equivalent to the functions of the transmitting intermediate frequency filter and the receiving intermediate frequency filter in the above embodiment.
  • the whole sub-band duplexer is equivalent to the microwave broadband duplexer in FIG. 7.
  • the whole sub-band duplexer includes a circulator, and the circulator has an isolation of 20 dB, and the microwave transmitting band
  • the pass filter bank has an alternative structure, that is, includes two band pass filters.
  • the number of Band-Pass Filters (BPFs) in the microwave transmit bandpass filter bank is two, and is passed through two single-pole double-throw switches (SPDT). Select one under software control.
  • the passbands of the two bandpass filters in the microwave transmit bandpass filter bank cover the entire transmit band; compared to the single channel microwave in a classic microwave transmitter
  • the wideband filter is a wideband single-channel bandpass filter with an original bandwidth equal to the transmit band and becomes a narrowband bandpass filter with two bandwidths slightly larger than one-half of the transmit band and having overlapping regions.
  • the microwave transceiver in the above example only needs to manage one type of communication (a pair of communication devices (transmission band and receiving band interchange) for a certain receiving and transmitting frequency band. Only one model is required, which greatly increases efficiency.
  • the microwave transceiver provided in this embodiment can replace various classical sub-band microwave transceivers in the receiving and transmitting frequency bands, thereby being able to cope with various changes or uncertainties. Case.
  • users around the world can adapt to the microwave transceiver provided by this embodiment even if the frequency of application and approval for use in the same transceiver band is very different.
  • the embodiment of the present application further provides a microwave broadband duplexer, including: a circulator, a broadband transmit branch filter, and a broadband receive branch filter; a circulator and a broadband transmit branch filter and a broadband receive branch filter;
  • the branching filter is connected to the microwave transmitting unit, and the broadband branching filter is connected to the microwave receiving unit.
  • the microwave transmitting unit comprises a microwave transmitting band pass filter group
  • the microwave transmitting band pass filter group comprises a routing module and at least two band pass filters
  • the routing module is respectively connected with at least two band pass filters And select one of the bandpass filters to work.
  • the microwave broadband duplexer may include an integrally assembled circulator, a broadband transmit branch filter, and a broadband receive branch filter; or, the microwave wideband duplexer may include: a separately arranged circulator, and a broadband And a branching filter and a broadband branching filter, wherein the circulator is respectively connected to the broadband branching filter and the broadband branching filter through a port or a transmission line.
  • the circulator may include a first port, a second port, and a third port, wherein the first port is connected to the broadband branching filter, the second port is connected to the antenna, and the third port is connected to the broadband The filter is connected; the signal output from the first port is transmitted to the second port output, and the signal input from the second port is transmitted to the third port output.
  • the passband of the broadband transmit branch filter may cover a bandwidth above a preset ratio in a transmit band of the microwave band, and the passband of the wideband branch filter may cover a receive band within the microwave band. Set the bandwidth above the ratio.
  • the value of the preset ratio may be greater than or equal to 60% and less than 100%. However, this application is not limited thereto.
  • the passband of the wideband branching filter may cover the transmit band of the microwave band, and the passband of the wideband branching filter may cover the receive band of the microwave band.
  • microwave broadband duplexer For the description of the microwave broadband duplexer provided in this embodiment, reference may be made to the description of the foregoing embodiments, and thus no further details are provided herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种微波宽带双工器及微波收发信装置;上述微波收发信装置,包括:微波宽带双工器、微波发信单元以及微波收信单元;微波宽带双工器包括环形器、宽带发分支滤波器以及宽带收分支滤波器;环形器与宽带发分支滤波器以及宽带收分支滤波器连接;宽带发分支滤波器与微波发信单元连接,宽带收分支滤波器与微波收信单元连接;微波发信单元包括微波发信带通滤波器组,微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,选路模块分别与至少两个带通滤波器连接,并选择其中一个带通滤波器进行工作。

Description

一种微波宽带双工器及微波收发信装置
本申请要求在2018年01月18日提交中国专利局、申请号为201810048030.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于通信技术领域,例如涉及一种微波宽带双工器及微波收发信装置。
背景技术
微波频段主要指由国际电联针对固定无线系统(fixed wireless system)给出的各种微波频率范围划分(国际电信联盟无线电通信组(International Telecommunication Union-Radio communication ssector,ITU-R)F系列建议,以及基于这些建议的其他微波频率范围划分,例如欧洲标准ETSI EN302 217中参考引用的各种频率划分),或者其他相似的固定无线系统频率划分。这些微波频段主要包括6千兆赫兹(GHz)以上直到毫米波段,主要用于点对点微波通信等固定无线系统。在这些微波频段内基于ITU-R F建议又进一步划分出多个更小带宽的通道(channel)。例如:ITU-R F.636给出一种15GHz微波频段的划分为14.4GHz至15.35GHz(即14400MHz(兆赫兹)至15350MHz),其内部可以按照56MHz、40MHz、28MHz或者14MHz等不同的带宽连续划分出多个更小的通道。
为了实现频分双工(Frequency Division Duplexing,FDD),每个微波频段被ITU-R划分成收信频段(RX band)和发信频段(TX band),以便一台设备收、发以不同的频率同时双向工作(需要注意的是:由于通信是双向的,该微波频段必然存在另一种收、发信频段相反的划分和它匹配,即一台设备的发信频段和收信频段是它的通信对象(另一台设备)的收信频段和发信频段,两台设备的收信频段和发信频段互换)。一台设备内部收、发通道之间的频率间隔叫做双工间隔(TR space),在ITU-R建议中给出。例如:ITU-R F.636给出一种15GHz微波频段划分:发信频段为14.4GHz至14.860GHz,收信频段为14.890GHz至15.350GHz,双工间隔为490MHz(既等于14.890GHz-14.4GHz,也等于 15.350GHz-14.860GHz);与之匹配地,ITU-R F.636一定存在另一种相反的15GHz微波频段划分:发信频段为14.890GHz至15.350GHz,收信频段为14.4GHz至14.860GHz,双工间隔为490MHz。
在微波频段的收信频段、发信频段内设备制造商自行划分出多对收、发子带(sub band),每对收、发子带能覆盖若干对(不是全部)收、发通道。每对收、发子带对应于一个双工器的收、发分支滤波器的通带(pass band),则称这个双工器为子带双工器;一台微波收发信机仅包含一个子带双工器。相对于收、发信频段,划分出的收、发子带是窄带的。微波收发信机工作时,只能在当前收、发子带内选择一对收、发通道,如果想选择其他子带内的通道,只能更换设备。如此,导致收发信机的种类较多,生产和管理复杂。另外,虽然目前可以采用软件全子带微波收发信机实现完整覆盖收、发信频段,但是此类收发信机的制造复杂、可靠性低、性价比较低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种微波宽带双工器及微波收发信装置,能够减少微波收发信设备的种类,并保证微波收发信设备的可生产性、可靠性及性能指标。
第一方面,本申请实施例提供一种微波宽带双工器,包括:环形器、宽带发分支滤波器以及宽带收分支滤波器;所述环形器与所述宽带发分支滤波器以及所述宽带收分支滤波器连接;所述宽带发分支滤波器与微波发信单元连接,所述宽带收分支滤波器与微波收信单元连接;其中,所述微波发信单元包括微波发信带通滤波器组,所述微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,所述选路模块分别与所述至少两个带通滤波器连接,并选择其中一个带通滤波器进行工作。
第二方面,本申请实施例提供一种微波收发信装置,包括:微波宽带双工器、微波发信单元以及微波收信单元;所述微波宽带双工器包括环形器、宽带发分支滤波器以及宽带收分支滤波器;所述环形器与所述宽带发分支滤波器以及所述宽带收分支滤波器连接;所述宽带发分支滤波器与所述微波发信单元连接,所述宽带收分支滤波器与所述微波收信单元连接;所述微波发信单元包括 微波发信带通滤波器组,所述微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,所述选路模块分别与所述至少两个带通滤波器连接,并选择其中一个带通滤波器进行工作。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为使用子带双工器的经典微波收发信机的结构示意图;
图2为图1中子带双工器的结构示意图;
图3为多个子带双工器的覆盖频段示意图;
图4为软件全子带微波收发信机的结构示意图;
图5为图4中软件全子带双工器的结构示意图;
图6为一个软件全子带双工器的覆盖频段示意图;
图7为本申请实施例提供的微波收发信机的示意图;
图8为本申请实施例提供的微波收发信机的信号流动示意图;
图9为本申请实施例提供的微波宽带双工器的结构示意图;
图10为本申请实施例提供的微波宽带双工器的环形器与宽带分支滤波器的连接结构示例图;
图11为本申请实施例提供的一个微波宽带双工器的覆盖频段示意图;
图12为窄带双工器和宽带双工器的收发隔离度的对比图;
图13为本申请实施例提供的微波发信带通滤波器组的示意图;
图14为本申请实施例的微波发信带通滤波器组覆盖的发信频段的示意图;
图15为本申请示例一的示意图;
图16为本申请示例二的示意图;
图17为本申请示例三的示意图;
图18为本申请示例三中的微波发信带通滤波器组的示意图;
图19为本申请示例三中的微波发信带通滤波器组覆盖的发信频段的示意图。
具体实施方式
以下结合附图对本申请实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
在微波收发信机中双工器的选择受制于以下两个因素。
第一,双工器的收分支滤波器,对于从该双工器的发分支通带内泄露过来的发射微波信号(发射主信号,传送给远端的接收机)有足够的抑制,减小落入本机的收信机内。
第二,双工器的发分支滤波器,减少发信机带外的无用杂散发射,尤其对频率会落入该双工器的收分支滤波器的通带内的无用杂散发射有足够的抑制。
上述两个要求体现了微波收发信机内部收、发信机之间的隔离度要求和对外杂散发射要求。
为了实现上述两个要求,图1所示的经典微波收发信机和图4所示的软件全子带微波收发信机都使用了窄带双工器,原因如下:第一,降低滤波器通带的相对带宽,能够提高通带外固定频率位置处的带外抑制度,增强收、发信机间的收发隔离度;第二,能够减少发信机的设计难度,窄带双工器良好的带外抑制能有效降低发信机杂散发射。
如图1所示,经典微波收发信机至少包括以下部分:子带双工器101、微波功率放大器(以下简称为微波功放)102、微波发信宽带滤波器103、微波上变频器104、微波发信本机振荡器(以下简称为微波发信本振)105、发信中频滤波器106、收信中频滤波器107、微波下变频器108、微波收信本机振荡器(以下简称为微波收信本振)109以及微波低噪声放大器110。
其中,发信中频滤波器106可以在微波收发信机的发信机部分存在中频时使用。微波发信本振105适于给微波上变频器104提供发信微波本振信号。微波上变频器104适于将低频的发射信号变到天线发射所需的微波信号上。微波功放102适于放大经过微波发信宽带滤波器103滤波后的发信微波信号,将发信微波信号经子带双工器101送至天线。微波低噪声放大器110适于把天线的接收微波信号放大后送至微波下变频器108。微波收信本振109适于给微波下变频器108提供收信微波本振信号。微波下变频器108适于将天线收到的微波信号下变频为低频信号。收信中频滤波器107适于对微波下变频后的中频信号进行滤波。
图1所示的经典微波收发信机使用子带双工器101。其中,在微波频段的收、发信频段内划分出的每对收、发子带能覆盖若干对(不是全部)收、发通道。相对于收、发信频段,划分出的收、发子带是窄带的。微波收发信机工作时, 只能在当前收、发子带内选择一对收、发通道,如果想选择其他子带内的通道,只能更换设备。因此,一个微波频段需要多台不同子带的微波收发信机才能实现全频段覆盖。需要注意的是:与微波频段(microwave band),收、发信频段(Tx/Rx band),收、发通道(Tx/Rx channel)这三者均由ITU-R统一划分不同,子带(sub band)是由收发信机制造商自行设计的,设计者都希望每一个子带能尽量多得包含通道(channel),以减少子带的数量和收发信机的种类。
如图2所示,经典微波收发信机的子带双工器可以包括:窄带合路机构、窄带发分支滤波器以及窄带收分支滤波器;其中,窄带合路机构通过天线口与天线连接,窄带发分支滤波器通过发射口与发信机部分连接,窄带收分支滤波器通过接收口与收信机部分连接。其中,窄带发分支滤波器的中心频率为发子带中心,窄带收分支滤波器的中心频率为收子带中心。
图3描述了多个子带双工器覆盖收、发信频段的情况。如图3所示,ITU-R.F规定的每一个微波频段(从频段起始(band start)到频段结束(band stop))都可以划分为发信频段(Tx band,从发信频段起始(Ftx-start)到发信频段结束(Ftx-stop))和收信频段(Rx band,从收信频段起始(Frx-start)到收信频段结束(Frx-stop))。收、发信频段都包含很多ITU-R.F规定的更小带宽的通道(channel)。设备制造商自行在收、发信频段划分出N对子带(sub-band),对应着N个双工器(即N个微波收发信机),每个子带(sub-band)包含若干个通道。
其中,子带就是子带双工器的收、发分支滤波器的通带,子带成对使用。任何一对子带中心频率(比如,fc1和fc1’、fc2和fc2’、…、fcN和fcN’)之间的间隔(比如,fc1’-fc1,fc2’-fc2,...,fcN’-fcN)必须满足ITU-R.F规定的微波频段的一种双工间隔。
举例而言,ITU-R建议的18GHz(17.7GHz至19.7GHz)微波频段中,ITU-R F.595规定了一种双工间隔为1010MHz,即要求收、发子带的频率间隔必须满足1010MHz,即,fc1’-fc1=fc2’-fc2=...=fcN’-fcN=1010MHz;fc1,fc2,...,fcN处于发信频段17.7GHz至18.7GHz中;fc1’,fc2’,...,fcN’处于收信频段18.7GHz至19.7GHz中。如果设备制造商将子带划分带宽设为250MHz,则意味着在收、发信频段的每1GHz的带宽中至少需要四对子带(带宽1GHz,N=4),即四个子带双工器。
如图4所示,软件全子带微波收发信机至少包括以下部分:软件全子带双工器201、控制电路211、微波功率放大器(以下简称为微波功放)202、微波发信宽带滤波器203、微波上变频器204、微波发信本机振荡器(以下简称为微波发信本振)205、发信中频滤波器206、收信中频滤波器207、微波下变频器208、微波收信本机振荡器(以下简称为微波收信本振)209以及微波低噪声放大器210。其中,关于微波功放202、微波发信宽带滤波器203、微波上变频器204、微波发信本振205、发信中频滤波器206、收信中频滤波器207、微波下变频器208、微波收信本振209以及微波低噪声放大器210的说明同经典微波收发信机中的相应器件,故于此不再赘述。
如图4所示,软件全子带微波收发信机使用的软件全子带双工器201为一个软件电调谐双工器,其收、发分支滤波器的通带仍然是窄带的,但是通过对滤波器中心频率的电动调谐,使得收、发通带能够在整个收、发信频段内移动。虽然一台软件全子带收发信机能够完整覆盖收、发信频段,但是电调谐双工器的制造复杂、可靠性低、价格提升且性能指标相对下降。
如图5所示,软件全子带微波收发信机的软件全子带双工器可以包括:宽带合路机构、窄带发分支滤波器以及窄带收分支滤波器;其中,宽带合路机构通过天线口与天线连接,窄带发分支滤波器通过发射口与发信机部分连接,窄带收分支滤波器通过接收口与收信机部分连接。其中,窄带发分支滤波器和窄带收分支滤波器的中心频率分别可调谐。
图6描述了一个软件全子带(窄带且含电调谐马达)双工器覆盖收、发信频段的情况。如图6所示,使用一个窄带双工器通过移动通带的频率就可以覆盖到图3中的全部子带,这是由于窄带双工器的收、发子带的中心频率可以通过软件设置,使用马达对该窄带双工器进行电动调谐,使其中心频率可以在收、发信频段内任意移动。因此,软件全子带双工器无需子带划分。
本申请实施例提供一种微波收发信装置,包括:微波宽带双工器、微波发信单元以及微波收信单元;其中,微波宽带双工器包括环形器、宽带发分支滤波器以及宽带收分支滤波器;环形器与宽带发分支滤波器以及宽带收分支滤波器连接;宽带发分支滤波器与微波发信单元连接,宽带收分支滤波器与微波收信单元连接;微波发信单元包括微波发信带通滤波器组,微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,选路模块分别与至少两个带通滤波 器连接,并选择其中一个带通滤波器进行工作。
本实施例提供的微波收发信装置在工作的微波频段内可以覆盖完整的收、发信频段下的大部分或全部通道,从而可以大大减少微波收发信机的设备种类。而且,保证了微波收发信装置的可生产性、可靠性以及性能指标。
本实施例提供的微波收发信装置可以单独成为整机设备。然而,本申请对此并不限定。在其他实现方式中,可以如收发模块或单元等形式部署在设备中。
其中,微波发信单元还可以包括:微波上变频器以及微波功率放大器,微波上变频器的输出端与微波发信带通滤波器组的输入端连接,微波发信带通滤波器组的输出端与微波功率放大器的输入端连接,微波功率放大器的输出端与宽带发分支滤波器连接。然而,本申请对此并不限定。在其他实现方式中,也允许在这三者的任意两者之间再插入其他的微波器件,但是这三者之间的前后顺序不变。
在示例性实施方式中,微波宽带双工器可以包括一体化组装的环形器、宽带发分支滤波器以及宽带收分支滤波器;或者,微波宽带双工器可以包括:单独设置的环形器、宽带发分支滤波器以及宽带收分支滤波器,其中,环形器可以通过端口或者传输线分别与宽带发分支滤波器以及宽带收分支滤波器连接。
在示例性实施方式中,环形器可以包括第一端口、第二端口以及第三端口,其中,第一端口与宽带发分支滤波器连接,第二端口与天线连接,第三端口与宽带收分支滤波器连接;从第一端口输出的信号传送到第二端口输出,从第二端口输入的信号传送到第三端口输出。其中,环形器的信号传送方向为:信号只能从第一端口传送到第二端口,从第二端口传送到第三端口,反向传输具有隔离度,即无法反向传送信号。如此,通过设置环形器,能够增加收、发分支之间的隔离度。
在示例性实施方式中,宽带发分支滤波器的通带可以覆盖微波频段的发信频段内预设比例以上的带宽,宽带收分支滤波器的通带可以覆盖微波频段的收信频段内预设比例以上的带宽。示例性地,预设比例的取值可以大于或等于60%且小于100%;比如,预设比例为可以为60%、70%、99%等等。如此,本实施例提供的一台微波收发信装置可以取代微波频段的收、发信频段内的采用子带双工器的多台经典微波收发信机,从而减少子带的数量和收发信机的种类。需要说明的是,本实施例中,“预设比例以上”可以包括预设比例。
在示例性实施方式中,宽带发分支滤波器的通带可以覆盖微波频段的发信频段,宽带收分支滤波器的通带可以覆盖微波频段的收信频段。本实施例提供的一台微波收发信装置为全子带微波收发信装置,可以覆盖完整的收、发信频段。如此,本实施例提供的一台微波收发信装置可以替代微波频段的收、发信频段内的所有采用子带双工器的经典微波收发信机,从而大大减少设备类型。
在示例性实施方式中,选路模块可以包括:第一选路单元以及第二选路单元,第一选路单元与至少两个带通滤波器的输入端连接,第二选路单元与至少两个带通滤波器的输出端连接。
在示例性实施方式中,第一选路单元可以包括以下之一:多选一开关、单刀双掷开关的组合、分路器;第二选路单元可以包括以下之一:多选一开关、单刀双掷开关的组合。
示例性地,第一选路单元可以为多选一开关,第二选路单元可以为多选一开关,第一选路单元和第二选路单元配合选中同一个带通滤波器实现正常工作。示例性地,第一选路单元可以为分路器,第二选路单元可以为多选一开关,第二选路单元选择一个带通滤波器进行正常工作。然而,本申请对此并不限定。
在示例性实施方式中,每个带通滤波器的通带分别覆盖微波频段的发信频段内的至少一个通道,微波发信带通滤波器组的通带覆盖微波频段的发信频段。其中,微波发信带通滤波器组的所有带通滤波器可以同时出现在一台整机设备中,从而可以与非调谐的微波宽带双工器配合实现覆盖微波频段内的完整收、发信频段,或者覆盖收、发信频段内预设比例以上的带宽。
在本实施例中,可以实现每个子带能尽可能多地包含通道,减少子带的数量和微波收发信机的种类。示例性地,在工作的微波频段内一台设备可以覆盖完整的收、发信频段,即覆盖收、发信频段下的所有ITU-R规定的通道,此时,可以认为微波收发信装置只有一对子带划分,或者说没有子带划分(即收、发子带等于收、发信频段);如此,每种收、发信频段只有一个型号的设备,对于简化产品复杂的原材料采购、工艺流程、组装测试、订货、发货、工程安装、备品备件和维护维修,都具有重大的意义。示例性地,在工作的微波频段内一台设备可以覆盖收、发信频段内预设比例以上的带宽,比如覆盖多个子带,而非全部的子带,即不覆盖完整的收、发信频段,但是相较于经典微波收发信机减少了子带的数量和收发信机的种类。
下面以微波收发信装置单独为整机为例进行说明。即以微波收发信装置为微波收发信机为例进行说明。
图7为本申请实施例提供的微波收发信机的示意图。图8为本申请实施例提供的微波收发信机的信号流动示意图。如图7和图8所示,本实施例提供的微波收发信机包括以下部分:微波宽带双工器301、微波发信机(对应于前述的微波发信单元)以及微波收信机(对应于前述的微波收信单元)。
其中,如图7所示,微波发信机可以至少包括以下部分:微波功放302、微波发信带通滤波器组303、微波上变频器304、微波发信本振305以及发信中频滤波器306;微波收信机可以至少包括以下部分:收信中频滤波器307、微波下变频器308、微波收信本振309以及微波低噪声放大器310。
如图8和图9所示,微波宽带双工器包括环形器、宽带发分支滤波器以及宽带收分支滤波器。微波宽带双工器为一个三端口器件,一端设置为和天线对接,另两端分别与微波发信机和微波收信机连接。
本实施例中,微波宽带双工器可以为一个全子带双工器,即宽带发分支滤波器的通带可以覆盖(大于或等于)发信频段,宽带收分支滤波器的通带可以覆盖(大于或等于)收信频段。然而,本申请对此并不限定。在其他实现方式中,宽带发分支滤波器的通带可以覆盖发信频段内预设比例以上的带宽,宽带收分支滤波器的通带可以覆盖收信频段内预设比例以上的带宽。示例性地,预设比例的取值可以大于或等于60%且小于100%;此时,相较于经典微波收发信机,本实施例提供的微波收发信机可以取代多台经典微波收发信机,从而减少子带的数量和收发信机的种类。
本实施例中,环形器、宽带发分支滤波器以及宽带收分支滤波器可以采用一体化方式进行组装。即,三者可以先行组装、合并调试,以一个双工器实体的形式出现;或者三者可以直接通过端口连接;或者也可以以三个实体的形式灵活地分散设计在微波收发信机的不同位置,通过微带、同轴线或波导等传输线把它们连接起来实现双工器的功能,以带来整机结构设计上的便利。
本实施例中,环形器为一个三端口器件,一端设置为天线口,另外两端分别与宽带发分支滤波器和宽带收分支滤波器连接。如图10所示,环形器包括三个端口;其中,端口2为天线口,设置为和天线对接,端口1设置为连接宽带发分支滤波器,端口3设置为连接宽带收分支滤波器。其中,环形器的信号传 送方向为顺时针方向,信号只能从端口1传送到端口2输出,从端口2传送到端口3输出。环形器端口间具有反向隔离,即从端口1到端口3,从端口2到端口1,从端口3到端口2不能传送信号。如此,在图10中,环形器的端口2定义为天线口时,端口1只能用在发信机一侧,端口3只能用在收信机一侧。
本实施例中,环形器端口间的反向隔离度为微波宽带双工器的收、发分支之间提供了额外的20dB以上的隔离度(双工器的收、发隔离度通常依靠收、发分支滤波器的带外抑制度);相较于子带双工器,本实施例的微波宽带双工器使用了环形器,增加了收、发分支之间的隔离度,这使得收、发分支滤波器提供的隔离度指标要求降低,即带外抑制度指标允许相应的降低,有利于拓宽收、发分支滤波器的通带带宽,增加双工器的频率覆盖范围。环形器的隔离度越大越有利。
本实施例中,微波宽带双工器可以包括但不限于波导双工器。
图11描述了图7所用的一个微波宽带双工器一次性覆盖收、发信频段的情况。如图11所示,微波宽带双工器的收、发分支滤波器为宽带,可以覆盖全部子带。收、发信频段内按照所选的通道(channel)和双工间隔设置发信频率和收信频率(channel X’与channel X的频率间隔等于双工间隔)。图11使用的微波宽带双工器只有一个,不需要软件调谐,简单因而可靠。然而,由于使用宽带滤波器,造成了带外抑制度即收发隔离度的下降。图12描述了由于窄带双工器变成宽带双工器而引起的带外抑制(收发隔离度)的恶化情况。当双工器通带由窄变宽时,收、发两个通带的边缘距离拉近,使得双工器的收、发支路的滤波器相互之间的隔离度(带外抑制)大幅度减低。由图12(a)可见,窄带双工器的收、发分支滤波器的隔离度高;由图12(b)可见,宽带双工器的收、发分支滤波器的隔离度低。
本实施例中,为了弥补宽带双工器采用宽带滤波器所带来的收发隔离度下降,在微波发信机中,使用由多个窄带的带通滤波器组成的微波发信带通滤波器组,从而提高带外抑制度。
本实施例中,如图8所示,微波发信带通滤波器组可以包括:至少两个并行放置的带通滤波器以及两个多选一开关,由两个多选一开关选择其中一个带通滤波器进行工作。微波发信带通滤波器组处于微波发信机的微波上变频器和微波功放之间。每个带通滤波器的通带覆盖的频率不同,每个带通滤波器覆盖 多个发信通道(channel),全部的带通滤波器可以共同覆盖整个发信频段。在微波收发信机工作时,可以由软件根据用户设置的发信通道(channel)控制两个多选一开关选择一个带通滤波器。在经典微波收发信机中的微波发信宽带滤波器的带宽不小于发信频段,本实施例中,将微波发信带通滤波器由宽带变成窄带,意味着发信机带外抑制度的提高、带外杂散发射的减小,进一步降低了对微波双工器带外抑制的要求。
本实施例的微波发信带通滤波器组的多选一方式使发信机的带宽从原来的整个发信频段缩小为一个新定义的类似的子带(包含较多的发信通道(channel));微波发信带通滤波器组的所有带通滤波器可同时出现在一台整机中,然而图1中的子带双工器不可以。因此,本实施例提供的微波收发信机通过微波宽带双工器和微波发信带通滤波器组的组合可以实现覆盖微波频段的完整收、发信频段。
本实施例中,微波发信带通滤波器组中的带通滤波器可以包含但不限于常规使用的微带滤波器。
图13描述了微波发信带通滤波器组的示意图。如图13所示,n(n为大于或等于2的整数)个并行的带通滤波器的输入端和输出端都使用了多选一开关,这两个多选一开关必须同时选中同一个带通滤波器,微波发信机才能正常工作。本示例中,n个带通滤波器可以覆盖整个发信频段。本示例中,根据用户输入的发信通道(channel)频率,微波收发信机内部软件可以控制多选一开关选择某个唯一的带通滤波器,只要发信频率不变,带通滤波器就不会被重新选择。本实施例对于多选一开关的触发方式并不限定。
示例性地,如图13的右侧图可见,在n大于2时,多选一开关也可以是为单刀双掷开关(Single Pole Double Throw,SPDT)的组合。示例性地,当n为2时,可以采用单刀双掷开关(SPDT)。示例性地,带通滤波器可以为印制电路板(Printed Circuit Board,PCB)微带形式的滤波器。
图14描述了n个带通滤波器覆盖的发信频段的情况。如图14所示,每两个带通滤波器的通带之间必须有重叠部分,以保证无缝覆盖。本实施例中,设置多个窄带的发信滤波器,且使用其中一个,可以使发信机的带宽变窄,从而提高带外抑制。
如图7和图8所示,本实施例中,微波功放设置为在微波发信机末端放大 经微波发信带通滤波器组滤波后的发信微波信号,然后将发信微波信号经微波宽带双工器送至天线。微波上变频器设置为将低频的发射信号变到天线发射所需的发信微波频率上。微波发信本振设置为设置发信微波本振频率,输出发信微波本振信号到微波上变频器中。在微波上变频器之前可以包含至少一处的发信中频滤波器。当微波发信机存在中频时使用发信中频滤波器,零中频时可以采用基带滤波器。发信中频滤波器可以包含但不限于经典应用的介质(陶瓷)滤波器。发信中频滤波器可以用来进一步提供对发信机带外杂散发射信号的抑制,减小对双工器隔离度的要求,降低发信机对收信机的干扰。另外,发信机中可以使用更低噪声的器件来减少噪声输出。
如图7和图8所示,本实施例中,微波低噪声放大器设置为把天线的接收微波信号放大后送至微波下变频器。微波下变频器设置为将天线接收到的微波信号变到低频信号上。微波收信本振设置为设置收信微波本振频率,输出收信微波本振信号到微波下变频器中。在微波下变频器之后可以包含至少一处的收信中频滤波器。收信中频滤波器设置为对微波下变频后的中频信号进行滤波。收信中频滤波器可以包含但不限于常规使用的介质(陶瓷)滤波器。收信中频滤波器可以用来进一步提供对泄露进来的发信机微波信号的抑制,减小对双工器隔离度的要求。
需要说明的是,不论是使用一中频还是多中频的微波收发信机,在中频电路中不同的部分可以根据需要增加中频滤波器,中频滤波器的带宽可以设计的很窄,这样带外抑制可以设计得较高,典型的中频滤波器可以包括陶瓷滤波器、晶体滤波器、LC滤波器等。
本实施例中,通过非调谐的微波宽带双工器和微波发信带通滤波器组的组合结构,实现覆盖收、发信频段。尽管工作时,微波发信带通滤波器组中的带通滤波器是一个窄带的,但是多个带通滤波器可以出现在一台整机中,从而不用更换设备,只通过选路模块(比如,多选一开关)选择带通滤波器即可,仍可以使发信机工作于发信频段的任何频率位置,并未改变其原有的宽带内选频工作的特征。微波宽带双工器中收、分支滤波器的带宽拓宽使得收信机能够在完整的收信频段宽带内选频接收信号。
本实施例中,使用含环形器的宽带双工器取代子带(窄带)双工器,其中发挥隔离度补偿作用的是环形器,它至少提供20至30dB的隔离度;在发信机 通道中,使用多选一的微波发信带通滤波器组,其中由多个把单通道的微波发信宽带滤波器的带宽变窄后的带通滤波器组成,变窄的带通滤波器的带外抑制度得到提升。由于拓宽了整机收发信带宽,使得在设计微波收发信机时,可以实现每一个子带能尽量多得包含通道(channel),可以把子带数量(相应地,收发信机种类)在该种收、发信频段下减少为一种。每种收、发信频段只有一个型号的设备,对于简化产品复杂的原材料采购、工艺流程、组装测试、订货、发货、工程安装、备品备件和维护维修,都具有重大的意义。
下面通过多个示例对本申请的方案进行说明。
示例一
图15所示为在Ku至Ka频段内实现的点对点二次变频微波全子带收发信机的示意图。在经典微波收发信机的基础上,通过对双工器和发信通道滤波器的改造,在部分频段(比如,15G、18G、23G)上,实现该频段的一台微波收发信机取代收、发信频段上的全部子带型经典微波收发信机。
如图15所示,全子带双工器相当于图7中的微波宽带双工器,本示例中,全子带双工器包含环形器,环形器的隔离度为30dB,微波发信带通滤波器组为四选一的结构,即包括四个带通滤波器。关于微波功效、微波低噪声放大器、微波上变频器、微波发信本振、微波下变频器以及微波收信本振的说明可以参照上述实施例中的描述,故于此不再赘述。
本示例中,发信机中的第一发信中频放大器、第一发信中频滤波器、中频上变频器、发信中频本振、第二发信中频滤波器、第二发信中频放大器设置为发信信号的两次变频,收信机中的第一收信中频放大器、第一收信中频滤波器、中频下变频器、收信中频本振、第二收信中频滤波器以及第二收信中频放大器设置为接收信号的二次变频。其中,发信机中的第一发信中频滤波器和第二发信中频滤波器可以被视为上述实施例中的发信中频滤波器,收信机中的第一收信中频滤波器和第二收信中频滤波器可以被视为上述实施例中的收信中频滤波器。
示例二
图16所示为在微波低频段内实现的点对点微波全子带收发信机的示意图。本示例是常见的在低频段容易被点对点微波采用的一次中频架构,一般用于Ku波段以下的微波频段。
如图16所示,全子带双工器相当于图7中的微波宽带双工器,本示例中,全子带双工器包含环形器,环形器的隔离度为30dB,微波发信带通滤波器组为四选一的结构,即包括四个带通滤波器。关于微波功效、微波低噪声放大器、微波上变频器、微波发信本振、微波下变频器、微波收信本振、发信中频滤波器以及收信中频滤波器的说明可以参照上述实施例中的描述,故于此不再赘述。
示例三
图17所示为零中频/数字中频微波全子带收发信机的示意图。本示例的收发信机没有中频部分,其中,发信基带滤波器和收信抗混叠滤波器相当于上述实施例中的发信中频滤波器和收信中频滤波器的功能。
如图17所示,全子带双工器相当于图7中的微波宽带双工器,本示例中,全子带双工器包含环形器,环形器的隔离度为20dB,微波发信带通滤波器组为二选一的结构,即包括两个带通滤波器。关于微波功效、微波低噪声放大器、微波上变频器、微波发信本振、微波下变频器以及微波收信本振的说明可以参照上述实施例中的描述,故于此不再赘述。
在本示例中,如图18所示,微波发信带通滤波器组中的带通滤波器(Band-Pass Filter,BPF)的个数为二,通过两个单刀双掷开关(SPDT)在软件控制下进行二选一。
在本示例中,如图19所示,微波发信带通滤波器组中的两个带通滤波器的通带覆盖整个发信频段;相较于经典微波发信机中的单通道的微波发信宽带滤波器,由一个原带宽等于发信频段的宽带单通道带通滤波器变成了两个带宽略大于二分之一发信频段并且有重叠区域的窄带带通滤波器。
上述示例中的微波收发信机在生产、销售物流过程中,针对某收、发信频段只需要管理一种型号(与之通信的对端设备(发信频段和收信频段互换),也只需要一种型号),从而大大提升了效率。相较于经典子带微波收发信机,本实施例提供的一台微波收发信机可以替代该收、发频段内的各种经典子带微波收发信机,从而可以应对各种变化或不确定的情况。典型地,世界各地的用户即使在同一收发信频段内去申请和被批准使用的频点差异很大,也可以适于本实施例提供的微波收发信机。
此外,本申请实施例还提供一种微波宽带双工器,包括:环形器、宽带发分支滤波器以及宽带收分支滤波器;环形器与宽带发分支滤波器以及宽带收分 支滤波器连接;宽带发分支滤波器与微波发信单元连接,宽带收分支滤波器与微波收信单元连接。其中,微波发信单元包括微波发信带通滤波器组,微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,选路模块分别与至少两个带通滤波器连接,并选择其中一个带通滤波器进行工作。
在示例性实施方式中,微波宽带双工器可以包括一体化组装的环形器、宽带发分支滤波器以及宽带收分支滤波器;或者,微波宽带双工器可以包括:单独设置的环形器、宽带发分支滤波器以及宽带收分支滤波器,其中,环形器通过端口或者传输线分别与宽带发分支滤波器以及宽带收分支滤波器连接。
在示例性实施方式中,环形器可以包括第一端口、第二端口以及第三端口,其中,第一端口与宽带发分支滤波器连接,第二端口与天线连接,第三端口与宽带收分支滤波器连接;从第一端口输出的信号传送到第二端口输出,从第二端口输入的信号传送到第三端口输出。
在示例性实施方式中,宽带发分支滤波器的通带可以覆盖微波频段的发信频段内预设比例以上的带宽,宽带收分支滤波器的通带可以覆盖微波频段内的收信频段内预设比例以上的带宽。示例性地,预设比例的取值可以大于或等于60%且小于100%。然而,本申请对此并不限定。
在示例性实施方式中,宽带发分支滤波器的通带可以覆盖微波频段的发信频段,宽带收分支滤波器的通带可以覆盖微波频段的收信频段。
关于本实施例提供的微波宽带双工器的说明可以参照上述实施例的描述,故于此不再赘述。

Claims (14)

  1. 一种微波宽带双工器,包括:
    环形器、宽带发分支滤波器以及宽带收分支滤波器;
    所述环形器分别与所述宽带发分支滤波器以及所述宽带收分支滤波器连接;所述宽带发分支滤波器与微波发信单元连接,所述宽带收分支滤波器与微波收信单元连接;
    其中,所述微波发信单元包括微波发信带通滤波器组,所述微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,所述选路模块分别与所述至少两个带通滤波器连接,并选择其中一个带通滤波器进行工作。
  2. 根据权利要求1所述的微波宽带双工器,其中,所述微波宽带双工器包括一体化组装的环形器、宽带发分支滤波器以及宽带收分支滤波器;
    或者,所述微波宽带双工器包括:单独设置的环形器、宽带发分支滤波器以及宽带收分支滤波器,其中,所述环形器通过端口或者传输线分别与所述宽带发分支滤波器以及所述宽带收分支滤波器连接。
  3. 根据权利要求1所述的微波宽带双工器,其中,所述宽带发分支滤波器的通带覆盖微波频段的发信频段内预设比例以上的带宽,所述宽带收分支滤波器的通带覆盖所述微波频段内的收信频段内所述预设比例以上的带宽。
  4. 根据权利要求3所述的微波宽带双工器,其中,所述预设比例的取值大于或等于60%且小于100%。
  5. 根据权利要求1所述的微波宽带双工器,其中,所述宽带发分支滤波器的通带覆盖微波频段的发信频段,所述宽带收分支滤波器的通带覆盖所述微波频段的收信频段。
  6. 一种微波收发信装置,包括:
    微波宽带双工器、微波发信单元以及微波收信单元;
    所述微波宽带双工器包括环形器、宽带发分支滤波器以及宽带收分支滤波器;所述环形器与所述宽带发分支滤波器以及所述宽带收分支滤波器连接;所述宽带发分支滤波器与所述微波发信单元连接,所述宽带收分支滤波器与所述微波收信单元连接;
    所述微波发信单元包括微波发信带通滤波器组,所述微波发信带通滤波器组包括选路模块以及至少两个带通滤波器,所述选路模块分别与所述至少两个带通滤波器连接,并选择其中一个带通滤波器进行工作。
  7. 根据权利要求6所述的微波收发信装置,其中,所述微波宽带双工器包括一体化组装的环形器、宽带发分支滤波器以及宽带收分支滤波器;
    或者,所述微波宽带双工器包括:单独设置的环形器、宽带发分支滤波器以及宽带收分支滤波器,其中,所述环形器通过端口或者传输线分别与所述宽带发分支滤波器以及所述宽带收分支滤波器连接。
  8. 根据权利要求6所述的微波收发信装置,其中,所述宽带发分支滤波器的通带覆盖微波频段的发信频段内预设比例以上的带宽,所述宽带收分支滤波器的通带覆盖所述微波频段的收信频段内所述预设比例以上的带宽。
  9. 根据权利要求8所述的微波收发信装置,其中,所述预设比例的取值大于或等于60%,且小于100%。
  10. 根据权利要求6所述的微波收发信装置,其中,所述宽带发分支滤波器的通带覆盖微波频段的发信频段,所述宽带收分支滤波器的通带覆盖所述微波频段的收信频段。
  11. 根据权利要求6所述的微波收发信装置,其中,所述选路模块包括:第一选路单元以及第二选路单元;
    所述第一选路单元与所述至少两个带通滤波器的输入端连接,所述第二选路单元与所述至少两个带通滤波器的输出端连接。
  12. 根据权利要求11所述的微波收发信装置,其中,所述第一选路单元包括以下之一:多选一开关、单刀双掷开关的组合,以及分路器;
    所述第二选路单元包括以下之一:所述多选一开关以及所述单刀双掷开关的组合。
  13. 根据权利要求6所述的微波收发信装置,其中,所述每个带通滤波器的通带分别覆盖微波频段的发信频段内的至少一个通道,所述微波发信带通滤波器组的通带覆盖所述微波频段的所述发信频段。
  14. 根据权利要求6所述的微波收发信装置,其中,所述微波发信单元还包括:微波上变频器以及微波功率放大器;
    所述微波上变频器的输出端与所述微波发信带通滤波器组的输入端连接,所述微波发信带通滤波器组的输出端与所述微波功率放大器的输入端连接,所述微波功率放大器的输出端与所述宽带发分支滤波器连接。
PCT/CN2019/072334 2018-01-18 2019-01-18 一种微波宽带双工器及微波收发信装置 WO2019141236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19741269.5A EP3742621A4 (en) 2018-01-18 2019-01-18 HYPER FREQUENCY BROADBAND DUPLEXER AND HYPER FREQUENCY TRANSCEIVER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810048030.8A CN110061757A (zh) 2018-01-18 2018-01-18 一种微波宽带双工器及微波收发信装置
CN201810048030.8 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019141236A1 true WO2019141236A1 (zh) 2019-07-25

Family

ID=67301999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072334 WO2019141236A1 (zh) 2018-01-18 2019-01-18 一种微波宽带双工器及微波收发信装置

Country Status (3)

Country Link
EP (1) EP3742621A4 (zh)
CN (1) CN110061757A (zh)
WO (1) WO2019141236A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768692B (zh) * 2019-10-30 2022-01-11 北京中石正旗技术有限公司 一种动态可调的超宽带无线信道组件
CN110912569B (zh) * 2019-12-11 2021-09-17 重庆会凌电子新技术有限公司 超短波宽带收发机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588619B1 (ko) * 2004-04-06 2006-06-14 주식회사 케이티프리텔 복수 링 백 톤 대체음 제공 방법
CN202210798U (zh) * 2011-09-28 2012-05-02 四川九立微波有限公司 通讯机选频接收机前端组件
CN105680901A (zh) * 2014-11-19 2016-06-15 中兴通讯股份有限公司 一种实现载频信号合路分配的装置和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1089085A (en) * 1966-06-13 1967-11-01 Bendix Corp Signal amplifier
JP2000349576A (ja) * 1999-06-09 2000-12-15 Nagano Japan Radio Co 受信装置
EP1100212A1 (en) * 1999-11-09 2001-05-16 Lucent Technologies Inc. Transmitting/receiving apparatus for electromagnetic signals
CN2831456Y (zh) * 2005-11-03 2006-10-25 中兴通讯股份有限公司 一种双工器
US7808312B2 (en) * 2008-10-31 2010-10-05 Micro Mobio Corporation Broadband RF linear amplifier
US10044381B2 (en) * 2012-02-23 2018-08-07 Qualcomm Incorporated Wireless device with filters to support co-existence in adjacent frequency bands
US9030270B2 (en) * 2012-08-03 2015-05-12 Entropic Communications, Inc. Cascaded diplexer circuit
JP2014154961A (ja) * 2013-02-06 2014-08-25 Mitsubishi Electric Corp 広帯域無線周波受信機および広帯域無線周波受信方法
CN105099493B (zh) * 2014-04-25 2018-05-18 华为技术有限公司 射频电路和移动终端
CN204029959U (zh) * 2014-06-26 2014-12-17 北京七星华创电子股份有限公司 一种l-x波段高抑制度腔体双工器
CN104467908B (zh) * 2014-12-12 2016-08-17 中国电子科技集团公司第五十四研究所 X频段地空传输宽带收发信机
CN107113016B (zh) * 2014-12-26 2019-06-11 株式会社村田制作所 高频前端电路及通信装置
CN105607076B (zh) * 2015-12-23 2018-01-19 北京时代民芯科技有限公司 一种北斗二代b1和b3双频接收机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588619B1 (ko) * 2004-04-06 2006-06-14 주식회사 케이티프리텔 복수 링 백 톤 대체음 제공 방법
CN202210798U (zh) * 2011-09-28 2012-05-02 四川九立微波有限公司 通讯机选频接收机前端组件
CN105680901A (zh) * 2014-11-19 2016-06-15 中兴通讯股份有限公司 一种实现载频信号合路分配的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742621A4 *

Also Published As

Publication number Publication date
CN110061757A (zh) 2019-07-26
EP3742621A1 (en) 2020-11-25
EP3742621A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
EP2982037B1 (en) Electronically tunable filter
US7274919B2 (en) Radiofrequency transmitter and/or receiver
CN109728835B (zh) 一种多频段收发高隔离度的电路装置
US10340874B2 (en) Filter circuit, RF front end circuit, and communication apparatus
US9948327B2 (en) Front end circuit and method of operating a front end circuit
US20210006274A1 (en) Radio frequency front end circuit and communication device
US11043930B2 (en) Radio frequency circuit, radio frequency front end circuit, and communication apparatus
EP0964477A1 (en) Antenna sharing device for dual frequency band
WO2019141236A1 (zh) 一种微波宽带双工器及微波收发信装置
US20210006272A1 (en) Radio-frequency front-end circuit
DE10200048B4 (de) Verbindung der Sende- und Empfangseinrichtungen von Multiband-/Multimode-Funkgeräten mit einer oder mehreren Antennen
US20020154683A1 (en) Single oscillator transceiver frequency plan
US6115363A (en) Transceiver bandwidth extension using double mixing
US9954265B2 (en) Two-transmitter two-receiver antenna coupling unit for microwave digital radios
US7904027B2 (en) Branching filter and multiplex transceiver
CN106849983A (zh) 一种毫米波收发组件
JP2016524416A (ja) 共通に使用されるフィルタを有するモバイル通信装置、このモバイル通信装置の動作方法およびフィルタの使用
EP3301753A1 (en) Multiplexer apparatus and method of use thereof
Konpang et al. Novel RF interference rejection technique using a four-port diplexer
WO2005034376A1 (de) Verfahren und vorrichtung zum verbinden der sende- und empfangseinrichtungen von multiband-/multimode-­funkgeräten mit einer oder mehreren teilweise gemeinsam genutzten antennen
US20090111405A1 (en) Signal matching module for single or multiple systems
US7876175B2 (en) Compact diplexer
RU2768791C1 (ru) Приемопередающий модуль полнодиапазонной радиорелейной станции
CN216214013U (zh) 耦合电路、耦合器和通信装置
US7697888B2 (en) Broad distribution bi-directional user terminal at configurable broadcast frequencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019741269

Country of ref document: EP

Effective date: 20200818