WO2019141158A1 - 信号模式的确定、信号模式的获得方法及装置、存储介质 - Google Patents

信号模式的确定、信号模式的获得方法及装置、存储介质 Download PDF

Info

Publication number
WO2019141158A1
WO2019141158A1 PCT/CN2019/071728 CN2019071728W WO2019141158A1 WO 2019141158 A1 WO2019141158 A1 WO 2019141158A1 CN 2019071728 W CN2019071728 W CN 2019071728W WO 2019141158 A1 WO2019141158 A1 WO 2019141158A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mode
sidelink
pattern
transmitting end
Prior art date
Application number
PCT/CN2019/071728
Other languages
English (en)
French (fr)
Inventor
杨瑾
卢有雄
黄双红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019141158A1 publication Critical patent/WO2019141158A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, for example, to a method for determining a signal pattern, a method and device for obtaining a signal pattern, and a storage medium.
  • 5G fifth generation of mobile communication
  • UE User Equipment
  • CP-OFDM Cyclic Prefix-OFDM Orthogonal Frequency Division Multiplex
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • FIG. 1 is According to the schematic diagram of the related art Sidelink communication structure, as shown in FIG. 1, the mode of direct communication between the UE and the UE has a feature different from the communication mode of the traditional cellular system, and is suitable for a short-distance communication user capable of applying Sidelink communication. Saidlink communication not only saves wireless spectrum resources, but also reduces the data transmission pressure of the core network, can reduce system resource consumption, increase the spectrum efficiency of cellular communication systems, reduce terminal transmission power consumption, and save network operation costs to a large extent. .
  • the UE uses Sidelink resources for information transmission.
  • the Sidelink communication method includes Device to Device (D2D) communication and Vehicle to Vehicle (Vehicle to Vehicle). , V2V) communication, etc.
  • the UE transmits the Sidelink control information using a Physical Side Link Control Channel (PSCCH) resource, and uses the PSSCH resource to transmit the Sidelink data, and shares the channel in the PSCCH or the physical edge link (Physical Sidelink).
  • the signal transmitted on the Shared Channel, PSSCH) resource must use the DFT-S-OFDM mode, also known as the Single Carrier-Frequency Division Multiple Access SC-FDMA mode.
  • the UE receiving signals in the Sidelink listens to the resources in the Sidelink resource pool, and receives the processed signals by receiving the DFT-S-OFDM signals. As shown in FIG. 2, the UE blindly detects the receiving edge chain in the PSCCH resource pool.
  • the Sidelink Control Information (SCI) after detecting the SCI information, receives the data information on the PSSCH resource according to the indication of the SCI.
  • the UE transmits a Sidelink signal using a resource in a Sidelink resource pool.
  • the edge link resource pool includes a PSCCH resource pool for carrying side link control information, and a PSSCH resource pool for carrying side link data service information.
  • the UE transmits a signal in Sidelink to use the DFT-S-OFDM mode.
  • the UE receiving signal in the Sidelink listens to the resources in the Sidelink resource pool, and receives the processed signal by receiving the DFT-S-OFDM signal.
  • the embodiment of the present application provides a signal mode determination, a signal mode obtaining method and device, and a storage medium, so as to avoid determining a signal mode used for transmitting a Sidelink signal when transmitting a Sidelink signal on a side link Sidelink in the related art. Case.
  • An embodiment of the present application provides a method for determining a signal mode, including: determining, by a transmitting end, a signal mode for transmitting a Sidelink signal on a side link Sidelink, wherein the Sidelink signal includes at least one of the following: physical edge link control The channel PSCCH signal, the physical side link shared channel PSSCH signal, the physical side link discovery channel PSDCH signal, and the physical side link broadcast channel PSBCH signal; the transmitting end transmits the Sidelink signal on the side link using the determined signal pattern.
  • a signal mode determining apparatus including: a determining module configured to determine a signal mode for transmitting a Sidelink signal on an edge link Sidelink, wherein the Sidelink signal includes at least one of the following: Side link control channel PSCCH signal, physical side link shared channel PSSCH signal, physical side link discovery channel PSDCH signal, and physical side link broadcast channel PSBCH signal; transmitting module, set to use determined signal mode on side link Send the Sidelink signal on.
  • a determining module configured to determine a signal mode for transmitting a Sidelink signal on an edge link Sidelink, wherein the Sidelink signal includes at least one of the following: Side link control channel PSCCH signal, physical side link shared channel PSSCH signal, physical side link discovery channel PSDCH signal, and physical side link broadcast channel PSBCH signal; transmitting module, set to use determined signal mode on side link Send the Sidelink signal on.
  • Another embodiment of the present application further provides a method for obtaining a signal mode, including: receiving, by a receiving end, a signal mode of a side link Sidelink signal; wherein the Sidelink signal includes at least one of the following: physical edge link control The channel PSCCH signal, the physical side link shared channel PSSCH signal, the physical side link discovery channel PSDCH signal, and the physical side link broadcast channel PSBCH signal; the receiving end receives the Sidelink signal on the side link according to the obtained signal pattern.
  • a signal mode obtaining apparatus including: an obtaining module, configured to obtain a signal mode of a Sidelink signal on an edge link Sidelink; wherein the Sidelink signal includes at least one of the following: a physical edge Link control channel PSCCH signal, physical side link shared channel PSSCH signal, physical edge link discovery channel PSDCH signal, and physical side link broadcast channel PSBCH signal; receiving module, set to be on the side link according to the acquired signal pattern Receive the Sidelink signal.
  • an obtaining module configured to obtain a signal mode of a Sidelink signal on an edge link Sidelink
  • the Sidelink signal includes at least one of the following: a physical edge Link control channel PSCCH signal, physical side link shared channel PSSCH signal, physical edge link discovery channel PSDCH signal, and physical side link broadcast channel PSBCH signal
  • receiving module set to be on the side link according to the acquired signal pattern Receive the Sidelink signal.
  • Yet another embodiment of the present application also provides a storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps of any one of the method embodiments described above.
  • a further embodiment of the present application further provides an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to run the computer program to perform any of the above methods The steps in the examples.
  • FIG. 1 is a schematic diagram of a Sidelink communication structure according to the related art
  • FIG. 2 is a schematic diagram of a Sidelink signal receiving process according to the related art
  • FIG. 3 is a flowchart of a method for determining a signal pattern according to an embodiment of the present application
  • FIG. 4 is a structural block diagram of a signal mode determining apparatus according to an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for obtaining a signal pattern according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of an apparatus for obtaining a signal pattern according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of sending a Sidelink signal according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of receiving a Sidelink signal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method 1 of determining a Sidelink signal pattern according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second method of determining a Sidelink signal pattern according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a third method of determining a Sidelink signal pattern according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a method 4 of determining a Sidelink signal pattern according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a method five of determining a Sidelink signal pattern in accordance with an embodiment of the present application.
  • the transmitting UE sends the Sidelink control information SCI on the PSCCH resource, and indicates to the receiving UE the PSSCH resource used by the transmitted Sidelink data information, and related control information, such as modulation and coding mode. (Modulation and Coding Scheme, MCS), power control indication, data retransmission indication, and the like.
  • the transmitting UE transmits the Sidelink data on the PSSCH resource indicated by the SCI.
  • the UE may also send Sidelink broadcast information on a Physical Sidelink Broadcast Channel (PSBCH) resource, and send Sidelink discovery information on a Physical Sidelink Discovery Channel (PSDCH) resource.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSDCH Physical Sidelink Discovery Channel
  • the network side configures the Sidelink resource pool for the UE, or the system pre-configures the Sidelink resource pool, and the UE uses the resources in the Sidelink resource pool to carry the Sidelink information.
  • the Sidelink resource pool includes a PSCCH resource pool and a PSSCH resource pool, and a PSBCH resource pool configured to notify broadcast information of the Sidelink communication, and a PSDCH resource pool configured to carry the Sidelink discovery signal.
  • a PSCCH resource pool is a group of resources used to carry the Sidelink control information SCI, which is configured by the network side through physical layer or higher layer signaling, or pre-configured by the system.
  • the PSCCH resource pool includes at least one time domain resource unit in the time domain, and the time domain resource unit includes any one of the following: a subframe, a slot, and a symbol.
  • the PSCCH resource pool includes one or more Resource Blocks (RBs) or at least one Resource Block Group (RBG) in the frequency domain, and the multiple RBs or RBGs included may be consecutive or discontinuous.
  • RBs Resource Blocks
  • RBG Resource Block Group
  • a PSSCH resource pool is a group of resources used to carry Sidelink data, which is configured by the network side through physical layer or higher layer signaling, or pre-configured by the system.
  • the PSSCH resource pool includes at least one time domain resource unit on the time domain, and the time domain resource unit includes any one of the following: a subframe, a time slot, and a symbol.
  • the PSSCH resource pool includes at least one RB or at least one RBG in the frequency domain, and the plurality of RBs or RBGs included may be continuous or discontinuous.
  • the UE is supported in a 5G communication system using two baseband signal modes: CP-OFDM and DFT-S-OFDM.
  • the signal transmitted by the UE in Sidelink in the Sidelink communication may adopt more than one signal mode, such as the CP-OFDM mode and the DFT-S-OFDM mode
  • the transmitting UE needs to determine to use one of the modes for generating the transmission signal.
  • the receiving end UE needs to be able to distinguish and determine the mode of the received signal, and process the received signal according to the receiving method of the corresponding mode.
  • an embodiment of a method for determining a signal pattern is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer executable instructions, and Although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 3 is a flowchart of a method for determining a signal pattern according to an embodiment of the present application. As shown in FIG. 3, the method includes steps S102 and S104.
  • step S102 the transmitting end determines a signal mode for transmitting a Sidelink signal on the side link Sidelink, wherein the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, and a physical edge link shared channel PSSCH signal.
  • the physical edge link discovers the channel PSDCH signal, and the physical edge link broadcasts the channel PSBCH signal.
  • step S104 the transmitting end transmits the Sidelink signal on the side link using the determined signal pattern.
  • the transmitting end determines a signal mode for transmitting a Sidelink signal on the side link Sidelink, wherein the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, a physical edge The link discovery channel PSDCH signal, the physical side link broadcast channel PSBCH signal; the transmitting end transmits the Sidelink signal on the side link using the determined signal pattern, so that the transmission cannot be determined when the Sidelink signal is transmitted on the side link Sidelink.
  • the signal mode used by the Sidelink signal determines the signal pattern used to transmit the Sidelink signal on the side link Sidelink.
  • the transmitting end determines that the signal pattern for transmitting the Sidelink signal on the side link Sidelink includes at least one of: a cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) mode, or an orthogonal frequency based on a discrete Fourier transform.
  • CP-OFDM Orthogonal Frequency Division Multiplexing
  • the transmitting end determines a signal mode for transmitting the Sidelink signal on the edge link, and at least includes one of the following: the transmitting end determines the signal mode according to the configuration information of the edge link resource pool; the transmitting end is predefined according to the system. Determining the signal mode; the transmitting end determines the signal mode according to the configuration indication on the network side; the transmitting end selects to determine the signal mode; and the transmitting end determines the signal mode of the associated signal according to the correspondence between the signal mode of the reference signal and the signal mode of the associated signal .
  • the reference signal is at least one of the Sidelink signals
  • the associated signal is at least one of the Sidelink signals.
  • the configuration information of the edge link resource pool includes an indication of the signal mode
  • the sending end determines the signal mode according to the configuration information of the edge link resource pool, including: the sending end according to the configuration information of the edge link resource pool
  • the indication of the signal pattern included in the determination determines the configured signal pattern.
  • the sending end determines the signal mode according to the configuration indication of the network side, where the sending end determines the signal mode according to at least one of high layer signaling and physical layer signaling of the network side.
  • the transmitting end selects to determine the signal mode, including: the transmitting end randomly selects among the available signal modes to determine the signal mode; or the transmitting end selects to determine the signal mode according to a predefined rule.
  • the transmitting end selects a signal pattern according to a predefined rule, and the transmitting end determines the signal mode according to at least one of the following factors: a device capability of the transmitting end, a service requirement of the transmitting end, and a cellular communication uplink signal mode of the transmitting end.
  • the monitoring result of the peer-to-peer link and the measurement result of the peer-to-peer link at the transmitting end are included in the transmitting end.
  • the transmitting end determines a signal mode for transmitting the Sidelink signal on the edge link, and determining a signal mode of the associated signal according to a correspondence between a signal mode of the reference signal and a signal mode of the associated signal includes: The transmitting end determines a signal mode of the associated signal corresponding to the reference signal according to the signal mode of the reference signal, wherein there is a unique correspondence between the signal mode of the reference signal and the signal mode of the associated signal.
  • the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal is predefined by the system or by the network side configuration.
  • the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal is predefined by the system, or is indicated by the network side configuration, between the signal pattern of the reference signal and the signal pattern of the associated signal.
  • the correspondence relationship includes at least one of the following: the PSCCH signal is a reference signal, the PSSCH signal is an associated signal; the PSBCH signal is a reference signal, the PSCCH signal is an associated signal; the PSBCH signal is a reference signal, the PSCCH signal and the PSSCH signal are associated signals; and the PSDCH signal is The reference signal, the PSCCH signal is an associated signal; the PSDCH signal is a reference signal, and the PSCCH signal and the PSSCH signal are associated signals.
  • a signal pattern of the associated signal corresponding to the reference signal is determined based on the signal pattern of the reference signal.
  • the transmitting end determines the signal mode of the Sidelink signal, including: when the transmitting end determines the signal mode of the plurality of Sidelink signals, the signal mode determined by the transmitting end for the plurality of Sidelink signals is different.
  • the sending end after the sending end determines the signal mode, the sending end indicates the adopted signal mode, including at least one of the following: the transmitting end passes the high layer signaling and the physical layer signaling At least one of the signal patterns used by the transmitting end; and the transmitting end implicitly indicating the signal pattern employed by the transmitting end by demodulating a reference signal.
  • the high layer signaling includes: wireless connection control signaling, or an edge link broadcast message; the physical layer signaling includes: edge link control information.
  • the transmitting end implicitly indicating the signal mode adopted by the transmitting end by using a demodulation reference signal comprises: transmitting by using a sequence or cyclic shift implicit indication used by the demodulation reference signal The signal pattern used by the terminal.
  • a signal mode determining device is further provided, and the device is configured to implement the foregoing embodiments and example embodiments, and details are not described herein.
  • the term "module” may implement a combination of at least one of software and hardware for a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a signal mode determining apparatus according to an embodiment of the present application. As shown in FIG. 4, the apparatus includes a determining module 40 and a transmitting module 42.
  • the determining module 40 is configured to determine a signal mode for transmitting a Sidelink signal on the side link Sidelink, wherein the Sidelink signal includes at least one of: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, a physical edge The link discovery channel PSDCH signal, the physical edge link broadcast channel PSBCH signal.
  • the Sidelink signal includes at least one of: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, a physical edge The link discovery channel PSDCH signal, the physical edge link broadcast channel PSBCH signal.
  • the transmitting module 42 is arranged to transmit the Sidelink signal on the side link using the determined signal pattern.
  • the transmitting end determines a signal mode for transmitting a Sidelink signal on the side link Sidelink, wherein the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, and a physical edge link shared channel PSSCH signal.
  • the physical edge link discovers the channel PSDCH signal and the physical side link broadcast channel PSBCH signal; the transmitting end transmits the Sidelink signal on the side link using the determined signal pattern. Therefore, it is possible to avoid the case where the signal pattern used for transmitting the Sidelink signal cannot be determined when the Sidelink signal is transmitted on the side link Sidelink, and the signal pattern used for determining the transmission of the Sidelink signal on the side link Sidelink can be realized.
  • the transmitting end determines that the signal pattern for transmitting the Sidelink signal on the side link Sidelink includes at least one of: a cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) mode, and an orthogonal frequency based on the discrete Fourier transform.
  • CP-OFDM Orthogonal Frequency Division Multiplexing
  • the determining module 40 is configured to determine, by operation of at least one of the following, a signal mode for transmitting the Sidelink signal on the edge link: determining a signal mode according to configuration information of the edge link resource pool; Defining a signal mode; determining a signal mode according to a configuration indication on the network side; selecting to determine a signal mode; and determining a signal mode of the associated signal according to a correspondence between a signal mode of the reference signal and a signal mode of the associated signal.
  • the reference signal is at least one of the Sidelink signals
  • the associated signal is at least one of the Sidelink signals.
  • the configuration information of the edge link resource pool includes an indication of the signal mode
  • the determining module 40 is configured to determine the configured according to the indication of the signal mode included in the configuration information of the edge link resource pool. Signal pattern.
  • the determining module 40 is configured to determine the signal pattern according to at least one of higher layer signaling and physical layer signaling on the network side.
  • the determining module 40 is further configured to: randomly select among the available signal patterns to determine the signal pattern; or, select a signal pattern according to a predefined rule selection.
  • the signal pattern is selected according to a predefined rule
  • the determining module 40 is configured to determine the signal mode according to at least one of the following factors: device capability at the transmitting end, traffic demand at the transmitting end, and cellular communication uplink signal at the transmitting end. Mode, the listening result of the peer-to-peer link, and the measurement result of the peer link on the transmitting side.
  • the determining module 40 is further configured to determine a signal mode for transmitting the Sidelink signal on the edge link, and determine the associated signal according to a correspondence between a signal mode of the reference signal and a signal mode of the associated signal.
  • the signal mode includes: determining a signal mode of the associated signal corresponding to the reference signal according to a signal mode of the reference signal, wherein there is a unique correspondence between the signal mode of the reference signal and the signal mode of the associated signal.
  • the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal is predefined by the system or by the network side configuration.
  • the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal is predefined by the system, or is indicated by the network side configuration, and the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal.
  • the PSCCH signal is a reference signal
  • the PSBCH signal is a reference signal
  • the PSCCH signal is a correlation signal
  • the PSBCH signal is a reference signal
  • the PSCCH signal and the PSSCH signal are associated signals
  • the PSDCH signal is a reference signal.
  • the PSCCH signal is an associated signal: and the PSDCH signal is a reference signal, and the PSCCH signal and the PSSCH signal are associated signals.
  • a signal pattern of the associated signal corresponding to the reference signal is determined based on the signal pattern of the reference signal.
  • the determination module 40 when determining the signal patterns of the plurality of Sidelink signals, is arranged to determine that the signal patterns determined for the plurality of Sidelink signals are different.
  • the determining module 40 is configured to indicate the signal pattern employed after determining the signal pattern by operation of at least one of:
  • the signal pattern employed by the transmitting end is indicated by at least one of higher layer signaling and physical layer signaling; and the signal pattern employed by the transmitting end is implicitly indicated by a demodulation reference signal.
  • the high layer signaling includes: wireless connection control signaling, or an edge link broadcast message; the physical layer signaling includes: edge link control information.
  • the determining module 40 is arranged to implicitly indicate the signal pattern corresponding to the sequence or cyclic shift used by the sequence or cyclic shift used by the demodulation reference signal.
  • FIG. 5 is a flowchart of a method for obtaining a signal pattern according to an embodiment of the present application. As shown in FIG. 5, the method includes step S502 and step S504.
  • step S502 the receiving end obtains a signal mode of the side link Sidelink signal, where the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, and a physical edge chain.
  • step S504 the receiving end receives the Sidelink signal on the side link according to the obtained signal pattern.
  • the receiving end obtains a signal mode of the side link Sidelink signal; wherein the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, and a physical edge link
  • the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, and a physical edge link
  • the channel PSDCH signal is found, the physical side link broadcasts the channel PSBCH signal, and the receiving end receives the Sidelink signal on the side link according to the obtained signal pattern. Therefore, it is possible to avoid the case where the signal pattern used for transmitting the Sidelink signal cannot be determined when the Sidelink signal is received on the side link Sidelink, and the Sidelink signal can be received based on the obtained signal pattern used for transmitting the Sidelink signal.
  • the signal pattern is at least one of a cyclic prefix orthogonal frequency division multiplexing CP-OFDM mode and a discrete Fourier transform based orthogonal frequency division multiplexing DFT-S-OFDM mode.
  • the receiving end obtains the signal mode of the Sidelink signal, and at least includes one of the following: the receiving end obtains the signal mode according to configuration information of the edge link resource pool; the receiving end is predefined according to the system Obtaining the signal mode; the receiving end obtains the signal mode according to a configuration indication of a network side; the receiving end obtains the signal mode according to an indication of a transmitting end; the receiving end obtains the signal mode according to detection; The receiving end obtains a signal pattern of the associated signal according to a correspondence between a signal pattern of the reference signal and a signal pattern of the associated signal.
  • the reference signal is at least one of the Sidelink signals
  • the associated signal is at least one of the Sidelink signals.
  • the configuration information of the edge link resource pool includes an indication of the signal mode
  • the receiving end obtains the signal mode according to configuration information of an edge link resource pool, including: the receiving And obtaining, by the terminal, the configured signal mode according to the indication of the signal mode included in configuration information of the edge link resource pool.
  • the receiving end obtains the signal mode according to the configuration indication of the network side, where the receiving end obtains the signal according to at least one of high layer signaling and physical layer signaling of the network side. mode.
  • the receiving end obtains the signal mode according to the indication of the sending end, and the receiving end receives at least one of the high layer signaling and the physical layer signaling of the sending end, according to the received high layer signaling.
  • the signal pattern is obtained by indicating information of at least one of physical layer signaling.
  • the high layer signaling includes: a wireless connection control signaling, or an edge link broadcast message; and the physical layer signaling includes: edge link control information.
  • the receiving end obtains the signal mode according to the detecting, comprising: the receiving end obtaining the Sidelink signal by detecting a sequence or cyclic shift used by the demodulation reference signal in the Sidelink signal.
  • the signal pattern comprising: the receiving end obtaining the Sidelink signal by detecting a sequence or cyclic shift used by the demodulation reference signal in the Sidelink signal. The signal pattern.
  • obtaining a signal mode of the associated signal according to a correspondence between a signal mode of the reference signal and a signal mode of the associated signal includes: the receiving end obtaining and the signal according to a signal mode of the reference signal a signal pattern of the associated signal corresponding to the reference signal, wherein there is a unique correspondence between a signal pattern of the reference signal and a signal pattern of the associated signal.
  • the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal is predefined by the system or indicated by the network side configuration.
  • the correspondence between the signal mode of the reference signal and the signal mode of the associated signal includes at least one of: the PSCCH signal is a reference signal, the PSSCH signal is an associated signal; and the PSBCH signal is a reference a signal, the PSCCH signal is an associated signal; the PSBCH signal is a reference signal, the PSCCH signal and the PSSCH signal are associated signals; the PSDCH signal is a reference signal, the PSCCH signal is an associated signal; The PSDCH signal is a reference signal, and the PSCCH signal and the PSSCH signal are associated signals.
  • a signal pattern of the associated signal corresponding to the signal pattern of the reference signal is determined based on a signal pattern of the reference signal.
  • a device for obtaining a signal pattern is provided, which is configured to implement the above-described embodiments and example embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of at least one of software and hardware for a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of an apparatus for obtaining a signal pattern according to an embodiment of the present application. As shown in FIG. 6, the method includes an obtaining module 60 and a receiving module 62.
  • the obtaining module 60 is configured to obtain a signal mode of the Sidelink signal on the side link Sidelink; wherein the Sidelink signal comprises at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, a physical edge chain The channel discovery channel PSDCH signal, the physical edge link broadcast channel PSBCH signal.
  • the Sidelink signal comprises at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, a physical edge chain The channel discovery channel PSDCH signal, the physical edge link broadcast channel PSBCH signal.
  • the receiving module 62 is configured to receive the Sidelink signal according to the acquired signal pattern on the side link.
  • the signal mode of the Sidelink signal is obtained by the function of the foregoing module, wherein the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, and a physical edge link.
  • the channel PSDCH signal is found, the physical side link broadcasts the channel PSBCH signal, and then the Sidelink signal is received on the side link according to the obtained signal mode. Therefore, it is possible to avoid transmitting the Sidelink when receiving the Sidelink signal on the side link Sidelink.
  • the Sidelink signal can be received based on the obtained signal pattern used to transmit the Sidelink signal.
  • the signal mode is a cyclic prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) mode, or a discrete Fourier transform based Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) mode.
  • CP-OFDM Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM discrete Fourier transform based Orthogonal Frequency Division Multiplexing
  • the obtaining module 60 is configured to obtain a signal mode of the Sidelink signal by using at least one of the following: obtaining a signal mode according to configuration information of the edge link resource pool; obtaining a signal mode according to a system predefined; The configuration on the network side indicates that the signal mode is obtained; the signal mode is obtained according to the indication of the transmitting end; the signal mode is obtained according to the detection; and the signal mode of the associated signal is obtained according to the correspondence between the signal mode of the reference signal and the signal mode of the associated signal .
  • the reference signal is at least one of the Sidelink signals, and the associated signal is at least one of the Sidelink signals.
  • the configuration information of the edge link resource pool includes an indication of the signal mode
  • the obtaining module 60 is configured to: according to the signal included in the configuration information of the edge link resource pool The indication of the mode obtains the configured signal pattern.
  • the obtaining module 60 is further configured to obtain the signal mode according to the configuration indication of the network side: obtaining the signal mode according to at least one of high layer signaling and physical layer signaling of the network side.
  • the obtaining module 60 is configured to: receive at least one of high layer signaling and physical layer signaling of the sending end, according to an indication of at least one of the received high layer signaling and physical layer signaling
  • the information obtains the signal pattern.
  • the high layer signaling includes: a wireless connection control signaling, or an edge link broadcast message; and the physical layer signaling includes: edge link control information.
  • the obtaining module 60 is configured to obtain the signal pattern of the Sidelink signal by detecting a sequence or cyclic shift used by the demodulation reference signal in the Sidelink signal.
  • the obtaining module 60 is configured to obtain a signal pattern of the associated signal corresponding to the reference signal according to a signal pattern of the reference signal, wherein a signal pattern of the reference signal and the associated signal There is a unique correspondence between the signal patterns.
  • the correspondence between the signal pattern of the reference signal and the signal pattern of the associated signal is predefined by the system or indicated by the network side configuration.
  • the correspondence between the signal mode of the reference signal and the signal mode of the associated signal includes at least one of: the PSCCH signal is a reference signal, the PSSCH signal is an associated signal; and the PSBCH signal is a reference a signal, the PSCCH signal is an associated signal; the PSBCH signal is a reference signal, the PSCCH signal and the PSSCH signal are associated signals; the PSDCH signal is a reference signal, the PSCCH signal is an associated signal; The PSDCH signal is a reference signal, and the PSCCH signal and the PSSCH signal are associated signals.
  • a signal pattern of the associated signal corresponding to the used sequence or cyclic shift is determined based on the signal pattern of the reference signal.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the above embodiment avoids the case where the signal mode used for transmitting the Sidelink signal cannot be determined when the Sidelink signal is transmitted on the side link Sidelink, thereby implementing the determination of sending the Sidelink on the Sidelink Sidelink.
  • the signal mode used by the signal is not limited to the above description.
  • a method for determining a signal mode is proposed.
  • the method in which the transmitting UE determines the signal mode used for transmitting the signal, and the receiving UE obtains the received Sidelink signal mode.
  • the method enables the receiving UE to obtain the mode of the received Sidelink signal, and then processes the received signal by using a corresponding receiving processing manner. It avoids the situation where the receiving UE cannot receive the signal when the Sidelink signal mode is uncertain.
  • the UE When the UE sends a signal in Sidelink, it supports the use of multiple signal generation modes, which are called mode 1, mode 2, ... mode n, and the receiving UE needs to determine the mode adopted by the received signal.
  • mode 1, mode 2, ... mode n the case where the Sidelink signal transmission supports two modes is taken as an example, for example, mode one is a CP-OFDM mode, and mode two is a DFT-S-OFDM mode.
  • At least one of the following methods may be used to determine the signal mode of the transmitted signal used:
  • the UE determines that the Sidelink signal transmission mode includes determining a signal mode of at least one of the following Sidelink signals: a PSCCH signal mode, a PSSCH signal mode, a PSBCH signal mode, and a PSDCH signal mode.
  • the Sidelink signal that carries the SCI information on the PSCCH resource and is sent on the PSCCH resource may be referred to as the PSCCH signal.
  • the Sidelink data information is carried on the PSSCH resource, and the signal for transmitting the Sidelink data information is referred to as the PSSCH signal, and the signal transmitted on the PSBCH resource carrying the Sidelink broadcast information is the PSBCH signal, and the signal carrying the Sidelink discovery information is sent on the PSDCH resource.
  • the signal is the PSDCH signal.
  • Determining the mode in which the UE sends the Sidelink signal includes determining a mode of the at least one type of the foregoing, and the sending mode in which the same UE sends different Sidelink signals may be the same or different.
  • the signal transmission mode used may be indicated to the receiving end by using at least one of the following methods:
  • DMRS Demodulation Reference Signal
  • the transmitting UE When the transmitting UE needs to send a Sidelink signal on the PSCCH resource or the PSSCH resource, it first needs to determine the signal mode that the transmitting signal should adopt.
  • the transmission signal is generated by using the signal mode, at least one of the SCI and the Sidelink data information to be transmitted is processed according to the method of the CP-OFDM mode to generate a signal to be transmitted. Including sub-carrier mapping processing, Inverse Discrete Fourier Transformation (IDFT) processing, cyclic prefix (CP) processing, and modulation to radio frequency (radio frequency) )deal with.
  • IDFT Inverse Discrete Fourier Transformation
  • CP cyclic prefix
  • modulation to radio frequency (radio frequency) modulation to radio frequency (radio frequency)
  • the information to be transmitted is processed according to the DFT-S-OFDM mode, including performing N-point Discrete Fourier Transformation (DFT) processing and subcarrier mapping processing.
  • DFT Discrete Fourier Transformation
  • the steps of the signal generated by the transmitting UE are different for different modes of signals. Therefore, when the UE transmits a signal in Sidelink, it first needs to determine the signal mode used by the transmission signal, and process and transmit at least one of the Sidelink control information and the Sidelink data information to be transmitted according to the determined signal mode.
  • the UE When receiving the Sidelink signal, the UE needs to obtain the mode of the received Sidelink signal. After obtaining the signal mode, the received signal is processed according to the corresponding mode, and the information carried in the signal is obtained.
  • the process of receiving the processed signal is different, and the mode 1 is CP-OFDM and the mode 2 is DFT-S-OFDM as an example.
  • Methods for obtaining a signal pattern of a received Sidelink signal include:
  • the receiving end UE When the receiving end UE receives a certain Sidelink signal on the PSCCH resource or the PSSCH resource, it first needs to obtain the signal mode of the signal.
  • the received signal is a mode-one signal
  • the received signal is processed according to the method of receiving the CP-OFDM mode, including performing de-cyclic prefix processing, M-point discrete Fourier transform processing, and de-subcarrier mapping processing. And information detection processing.
  • the received signal is a mode two signal
  • the received signal is processed according to the method of receiving the DFT-S-OFDM mode, including performing decyclic prefix processing on the signal, M-point discrete Fourier transform processing, and de-subcarrier mapping. Processing, N-point discrete Fourier transform processing, and information detection processing, as shown in FIG.
  • the processing steps of the receiving UE are different. Therefore, when the UE receives the signal, the UE needs to obtain the signal mode of the signal first when receiving the signal, so that the corresponding receiving processing mode can be performed. The received signal is processed.
  • Method 1 Determine the Sidelink signal mode by resource pool configuration.
  • a physical resource that can be used to transmit a Sidelink signal constitutes a Sidelink resource pool, such as a PSCCH resource pool and a PSSCH resource pool.
  • the UE performing the Sidelink communication needs to obtain the configuration information of the Sidelink resource pool, and sends the Sidelink signal using the resources in the Sidelink resource pool, and receives the Sidelink signal from other UEs in the Sidelink resource pool.
  • the configuration information of the Sidelink resource pool may be indicated by the network side to indicate the UE, or may be pre-configured by the system to indicate the signal mode of the signal sent on the corresponding Sidelink resource pool.
  • the Sidelink resource pool includes at least one of a PSCCH resource pool and a PSSCH resource pool.
  • the UE receives the configuration information from the network side, or determines the available Sidelink resource pool and the corresponding Sidelink signal mode by the system pre-configuration.
  • the UE can simultaneously support multiple Sidelink resource pool configurations, and use the resources to send Sidelink signals according to the configured signal mode, or receive Sidelink signals from multiple resource pools according to the configured signal mode.
  • the corresponding signal mode can be configured for each Sidelink resource pool.
  • the signal mode corresponding to the Sidelink resource pool must be used.
  • the signal mode of the Sidelink resource pool is unique.
  • the receiving signal should be processed in the configured signal mode.
  • the Sidelink resource pool includes at least one of a PSCCH resource pool and a PSSCH resource pool, and the PSCCH resource pool and the PSSCH resource pool are configurable to use the same or different signal patterns.
  • the UE When the UE obtains the Sidelink resource pool configuration information, the UE includes the signal mode configuration corresponding to the Sidelink resource pool. Based on the configuration information of the Sidelink resource pool, the UE may determine that when the UE uses the resources in the resource pool to send the Sidelink signal, the signal mode configured for the resource pool must be used; when the UE receives the signal in the resource pool, the UE may The configuration information determines that the received signal is a configured signal pattern and processes the received signal in the resource pool in accordance with the receiving method of the corresponding signal pattern.
  • the UE can be configured according to the signal mode indicated in the Sidelink resource configuration, and serves as a basis for the UE to perform Sidelink resource selection. For example, the UE only supports the mode 1 mode to send the Sidelink signal, and when the system is pre-configured with multiple Sidelink resource pools, and the corresponding signal modes of the respective resource pools are different, the UE may select the resource pool corresponding to the signal mode one, in the selected Select resources in the resource pool for Sidelink signaling.
  • the UE preferentially sends the Sidelink signal by using the mode 2, and the UE may select the resource pool configured as the signal mode 2 according to the configuration of the Sidelink resource pool, and select the resource in the UE. Sending of the Sidelink signal.
  • the first method is to establish a fixed relationship between the Sidelink signal mode and the Sidelink resource pool configuration, so that the UE determines the corresponding signal mode by obtaining the configuration information of the Sidelink resource pool, and avoids the mode blind detection when the UE receives the Sidelink signal, which is beneficial to reduce
  • the UE implements complexity and reduces UE power consumption.
  • the UE obtains the Sidelink resource pool configuration information from the network side, and includes configurations of multiple PSCCH resource pools. For example, including the resources contained in each PSCCH resource pool, and the corresponding signal patterns.
  • the Sidelink resource pool configuration indication is: PSCCH resource pool #1, #2 uses mode one; PSCCH resource pool #3, #4 uses mode two.
  • the UE selects one PSCCH resource to send the SCI in the PSCCH resource pool #1, and according to the indication in the resource pool configuration information, the UE generates the signal according to the mode 1 in the SCI information to be sent, and carries the PSCCH in the PSCCH resource pool #1. Sent on the resource.
  • the UE receives the signal in the PSCCH resource pools #2, #3, #4, and according to the indication in the resource pool configuration information, when the UE blindly detects the SCI information in the PSCCH resource pool #2, the received mode is processed in the mode one mode.
  • the signal when the SCI information is blindly detected in the PSCCH resource pools #3, #4, the received signal is processed in the mode 2 mode, and the specific method of the UE processing mode 1 and mode 2 signals is as described in the exemplary embodiment 1.
  • the UE parses the SCI from the received signal, as shown in FIG.
  • Method 2 Pre-define/configure the Sidelink signal mode.
  • the signal mode of Sidelink may be configured by the network side or predefined by the system, including at least one transmission mode of the Sidelink signal, such as PSCCH signal mode, PSSCH signal mode, and PSBCH signal mode.
  • the UE transmits or receives a signal on the Sidelink resource according to a signal mode configured by the network side or a system predefined signal mode when transmitting and receiving the Sidelink signal, and includes at least one of a PSCCH signal, a PSSCH signal, and a PSBCH signal.
  • the network side may indicate at least one of a Sidelink PSCCH signal mode, a PSSCH signal mode, and a PSBCH signal mode by using a high layer signaling configuration, or at least one of a PSCCH signal mode, a PSSCH signal mode, and a PSBCH signal mode predefined by the system.
  • the network side publicly configured, or the system predefined Sidelink signal mode is a common configuration, that is, the same cell, or all UEs in the same Sidelink communication group use the same configuration.
  • the transmitting UE transmits at least one of a PSCCH signal, a PSSCH signal, and a PSBCH signal pattern using the indicated signal pattern according to the configuration.
  • the receiving end UE receives at least one of a PSCCH signal, a PSSCH signal, and a PSBCH signal on the corresponding resource according to the signal mode of the configuration indication.
  • the UE receives the common configuration information on the network side, where the configuration related to Sidelink is indicated, including the use of the Sidelink control channel usage mode 1 for carrying the SCI information on the PSCCH resource.
  • the signal mode adopted for the Sidelink data channel is indicated in the SCI information, for example, the bit signal mode indication information is set in the SCI, and the signal mode of the signal transmitted on the PSSCH resource corresponding to the SCI is mode 1 or Mode two.
  • the signal carrying the SCI is generated in mode 1 and sent on the PSCCH resource.
  • the PSSCH signal mode is determined by the UE autonomously. The UE selects to use the same signal mode as the PSCCH to transmit the PSSCH signal, and indicates in the SCI signal that the mode of the signal transmitting the Sidelink data information on the corresponding PSSCH resource is mode one. Then, the UE uses the mode 1 to send the SCI information on the PSCCH resource, and sends the Sidelink data information in the mode 1 on the corresponding PSSCH resource, as shown in FIG.
  • the UE when detecting the received SCI in the PSCCH resource pool, the UE detects the signal on the PSCCH resource in mode 1, and obtains the SCI information from the parsing. For example, the UE determines a mode of receiving a corresponding PSSCH signal according to the signal mode indication information of the PSSCH signal mode in the obtained SCI.
  • the signal mode indication information indicates that the first link data signal sent on the corresponding PSSCH resource uses mode one, and the UE receives the signal in the mode 1 receiving processing mode on the corresponding PSSCH resource, and obtains corresponding Sidelink data information, such as Figure 10 shows.
  • Method 3 Configure the UE Sidelink signal transmission mode on the network side.
  • the Sidelink signal mode can be configured for the UE by the network side through UE-specific high layer signaling or physical layer signaling.
  • the network side configures the Sendlink signal mode for the UE through dedicated signaling.
  • the configuration of the method is different.
  • the configuration signaling is sent to each UE independently. That is, the signal modes of multiple Sidelink UEs can be set to the same mode or different modes.
  • the configuration signaling in the second method is common configuration signaling, that is, all UEs adopt a unified Sidelink signal mode.
  • the independent configuration of each UE in the third method is beneficial to the flexible configuration of the Sidelink communication, and the Sidelink UE adapted to different services, capabilities, and requirements.
  • the Sidelink signal mode configured by the network side for the UE may include any one of the following configurations: only configuring the PSCCH signal mode; configuring only the PSSCH signal mode; and configuring the PSCCH and PSSCH signal modes.
  • the network side can configure the UE to send the PSCCH and PSSCH signals in a unified signal mode, and then the network side only informs one signal mode in the indication signaling of the UE, that is, the role of indicating the PSCCH and PSSCH signal modes.
  • the network side configuration UE may send the PSCCH and the PSSCH signal by using different signal modes, and the indication signal of the network side to the UE may notify the signal mode of at least one of the PSCCH and the PSSCH, and for the signal mode that is not explicitly configured on the network side, The UE can determine it by itself.
  • the network side may indicate the UE through the high layer signaling configuration, and the signal mode of the signal transmitted by the Sidelink uses the same signal mode as the uplink signal transmission of the UE in the cellular communication. Then the network side does not need to explicitly indicate the Sidelink signal mode for the UE.
  • the UE generates a Sidelink signal and transmits it by using a signal mode in which an uplink signal is transmitted to the network side as a Sidelink signal mode according to the configuration.
  • the UE receives configuration signaling on the network side, wherein the configuration related to Sidelink is indicated, including the use of the Sidelink control channel mode 1 for carrying SCI information on the PSCCH resource, and the mode 2 transmitting the PSSCH signal.
  • the transmitting UE transmits the PSCCH signal and the PSSCH signal by using the mode 1 and the mode 2 on the configured Sidelink resources according to the configuration on the network side.
  • the method can implement the flexible configuration of the Sidelink signal sent by the Sidelink UE on the network side, and achieve the functions of flexibly coordinating the signal modes of the UE, reducing the receiving complexity, and satisfying the capability requirements of the UE.
  • Method 4 The UE selects a Sidelink signal transmission mode.
  • the UE may autonomously select to determine a Sidelink signal mode, including selecting at least one of a PSCCH signal mode and a PSSCH signal mode.
  • the UE may choose to use the same or different signal patterns for the PSCCH signal and the PSSCH signal.
  • the UE transmits at least one of a PSCCH signal and a PSSCH signal using the selected signal mode.
  • the UE obtains the configuration of the Sidelink resource pool from the network side, and includes the configuration information of the resources in the resource pool. However, if the Sidelink signal mode is not configured on the network side or the two modes are supported, the UE can freely select the Sidelink signal mode.
  • the network side configures the UE by signaling, and the signal mode of the signal transmitted by the Sidelink is determined by the UE.
  • the UE may arbitrarily select a mode for transmitting the PSCCH signal and the PSSCH from the signal mode supported by the Sidelink according to the indication of the network side. At least one of the signals.
  • the UE performs Sidelink communication on the dedicated carrier of the D2D communication or the V2X communication, and does not receive the configuration indication information of the network side, the UE must independently determine the Sidelink signal mode for transmitting the Sidelink signal.
  • one of the available signal modes may be randomly selected as the Sidelink signal transmission mode, or the UE may select the Sidelink channel according to the UE's own capabilities, service requirements, scenario requirements, and cellular communication uplink signal mode.
  • the signal pattern of the signal transmitted by Sidelink is determined by factors such as the result of the Sidelink channel measurement.
  • the signal mode is determined autonomously, and the UE determines that the Sidelink signal mode is mode one when the UE only supports the signal generation mode 1 according to its own capability. For example, the UE uses the mode 1 to generate a Sidelink signal and the SCI on the PSCCH resource. In addition, the UE indicates that the mode of the signal for transmitting the Sidelink data information on the corresponding PSSCH resource is mode one in the SCI signal, and the UE transmits the Sidelink data information in mode one on the indicated PSSCH resource.
  • Method 5 Determine the associated Sidelink signal mode according to the reference Sidelink signal signal mode.
  • Sidelink communication it is possible to determine, by the network side configuration or the system, a certain Sidelink signal as a reference signal, and at least one other Sidelink signal as a related associated Sidelink signal. And defining a signal pattern determined by the signal mode of the reference Sidelink signal for the corresponding associated Sidelink signal, for example, defining the associated Sidelink signal pattern is the same as the reference Sidelink signal pattern.
  • the relationship between the reference Sidelink signal and the associated Sidelink signal includes, but is not limited to, the PSCCH signal is the reference signal, the PSSCH signal is the correlation signal, the PSBCH signal is the reference signal, the PSCCH signal is the correlation signal, and the PSBCH signal is the reference signal, the PSCCH signal and the PSSCH.
  • the signal is an associated signal;
  • the PSDCH signal is a reference signal, the PSCCH signal is an associated signal;
  • the PSDCH signal is a reference signal, and the PSCCH signal and the PSSCH signal are associated signals.
  • the correspondence between the network side configuration or the system predefined reference Sidelink signal mode and the associated Sidelink signal mode is as shown in Table 1.
  • the signal pattern of the reference Sidelink signal may also be specified as the signal pattern of other Sidelink signals in the corresponding Sidelink resource pool.
  • the UE obtains the configuration indication from the network side, the reference Sidelink signal is a PSBCH signal, the PSCCH signal is a corresponding associated signal, and the associated signal is configured to adopt the same signal mode as the reference signal.
  • the reference Sidelink signal is a PSBCH signal
  • the PSCCH signal is a corresponding associated signal
  • the associated signal is configured to adopt the same signal mode as the reference signal.
  • the UE monitors and receives the PSBCH signal in the resource pool according to the configuration indication, and determines that the signal mode of the reference signal is mode one, and the UE should send the PSCCH signal in mode one.
  • the network side configures the PSBCH as a reference signal, and defines that other Sidelink signals are associated with the Sidelink signal, using the same signal pattern as the reference signal.
  • the UE determines, according to the configuration indication, that the reference signal mode is mode 2 after receiving the PSBCH signal on the PSBCH resource, and correspondingly, the UE sends the other signals in the Sidelink by using the mode 2.
  • the network side configuration, or the system pre-defined determines the corresponding PSSCH signal mode according to the PSCCH signal mode, and the specific rule is that the PSCCH signal mode is the same as the corresponding PSSCH signal mode.
  • the UE may determine that the mode of the corresponding PSSCH signal is the same as the PSCCH signal mode.
  • the UE directly uses the signal mode of the corresponding PSCCH signal to receive and process the PSSCH signal, and does not need to perform blind detection reception and judgment on the PSSCH signal mode.
  • the PSCCH signal and the corresponding PSSCH signal means that the SCI information carried in the PSCCH signal indicates a PSSCH channel resource, and corresponding control information, such as MCS, etc., the PSSCH signal carried on the PSSCH resource indicated by the SCI can be called The PSSCH signal corresponding to this PSCCH signal.
  • the reference Sidelink signal is a PSCCH signal
  • the corresponding associated Sidelink signal is a PSSCH signal
  • the associated signal adopts the same signal pattern as the reference signal.
  • the receiving end UE detects the received PSCCH signal in the PSCCH resource pool, and determines that the signal mode of the PSCCH is mode 2 by blindly detecting the DMRS.
  • the UE can determine that the signal mode of the corresponding PSSCH signal is also mode 2.
  • the UE receives and processes the PSSCH signal in mode 2 on the PSSCH resource indicated by the SCI, and obtains the Sidelink data information from the parsing, as shown in FIG.
  • Method six The sender indicates the Sidelink signal mode used.
  • the signal mode used by the transmitting end to send the Sidelink signal can be notified to the receiving end by direct indication or indirect indication, so that the receiving end obtains the signal mode of the corresponding signal, thereby avoiding the blind detection of the receiving end and reducing the processing complexity of the receiving end.
  • the transmitting end UE indicates the corresponding signal mode to the receiving end by using a direct indication or an indirect indication, and may be configured by the network side or predefined by the system.
  • the transmitting UE indicates the used Sidelink signal mode by using a direct indication or an indirect indication according to the configuration or the predefined.
  • the direct indication method includes: the transmitting end UE indicates, by using at least one of the high layer signaling and the physical layer signaling, a signal mode used by the transmitting end UE to send the Sidelink signal to the receiving end.
  • the high layer signaling may be RRC signaling sent by the sending end UE to the receiving end UE, or may be broadcast type information of the transmitting end UE, and there is no specific receiving target UE.
  • the physical layer signaling is SCI, for example, by setting a signal mode indication field in the SCI, and indicating a signal mode of the PSSCH signal to the receiving end.
  • the method of indirect indication includes that the signal mode adopted for the Sidelink data channel can be implicitly indicated by the corresponding demodulation reference signal.
  • the corresponding DMRS is carried, and the signal pattern of the corresponding signal may be indirectly indicated by using a different sequence or a different cyclic shift by the corresponding DMRS.
  • the DMRS in the PSCCH signal may indirectly indicate the signal pattern of at least one of the PSCCH signal and the corresponding PSSCH signal, or the DMRS in the PSSCH signal indirectly indicates the signal pattern of the PSSCH signal.
  • DMRS sequences or cyclic shift indirect indications of the Sidelink signal pattern is shown in Table 2. It is predefined by the network side configuration or system.
  • the signal patterns indicated by different DMRS sequences or cyclic shifts are:
  • the network side configuration or the system is predefined to use different DMRS sequences for different signal modes, or different DMRS cyclic shifts, and the transmitting end UE uses according to the configuration or predefined configuration of the DMRS sequence or cyclic shift in Table 2.
  • the corresponding DMRS sequence or cyclic shift generates and transmits the DMRS carried in the PSCCH signal, which achieves the role of indirectly indicating the PSSCH signal mode.
  • the transmitting UE transmits the PSCCH signal and the PSSCH signal using mode one according to the configuration instruction of the network side.
  • the transmitting UE When the system pre-defined the UE to indicate the signal mode by the direct indication method, the transmitting UE indicates the bit pattern in the SCI with the 1 bit signal mode, and indicates to the receiving UE the signal mode used by the PSSCH signal, and the indication bit bit is “1”. Mode 1 is used, and bit "0" indicates that mode 2 is adopted.
  • the receiving end After receiving the SCI information, the receiving end may obtain indication information from the corresponding mode indication field, determine a corresponding PSSCH signal mode, and receive the PSSCH signal in the indicated mode on the corresponding PSSCH resource according to the indication.
  • the transmitting end UE uses the DMRS sequence n1, the sequence n2, ..., the sequence N in the DMRS transmission of the PSCCH signal according to the rule shown in Table 2.
  • a sequence that implicitly indicates that the PSCCH signal is a mode one transmission. It is also implicitly indicated that the corresponding PSSCH signal is also transmitted using mode one.
  • the receiving end receives the PSCCH signal, by detecting the DMRS sequence, combined with Table 2, the corresponding signal pattern can be determined.
  • Method seven The receiving end UE determines the Sidelink signal mode by detecting the DMRS.
  • the receiving UE determines the Sidelink signal mode by blindly detecting the DMRS on the Sidelink resource, including detecting and determining at least one of a PSCCH signal mode and a PSSCH signal mode.
  • the receiving end UE may determine a corresponding signal mode by detecting a Demodulation Reference Signal (DMRS) in the PSCCH signal or the PSSCH signal, for example, determining a corresponding signal mode by detecting the DMRS includes: determining by blindly detecting the DMRS sequence Signal mode; signal mode is determined by blind detection of DMRS cyclic shift.
  • DMRS Demodulation Reference Signal
  • the network side configuration or the system is predefined to use different DMRS sequences for different signal modes, or different DMRS cyclic shifts, and the UE obtains a list of DMRS sequences available when different Sidelink signal patterns are generated according to configuration or predefined. , or the corresponding DMRS cyclic shift list, as shown in Table 2. Then, the receiving UE can determine the signal mode of the current signal by receiving the DMRS sequence or cyclic shift in the detection signal when receiving the Sidelink signal.
  • the UE obtains the correspondence between the Sidelink signal mode and the corresponding DMRS sequence list according to the system pre-definition, as shown in Table 2. Then, when the UE receives the signal, the UE uses the blind detection and reception method to determine the corresponding signal mode by detecting the DMRS sequence in the signal, and receives and processes the corresponding signal according to the determined signal mode.
  • the UE when detecting the received SCI in the PSCCH resource pool, the UE detects the DMRS sequence according to the PSCCH channel structure, and compares the detected DMRS sequence with the sequence list in Table 2, when the detected DMRS sequence is mode one. When the corresponding DMRS sequence is used, it is determined that the currently received PSCCH signal is a mode one signal. For example, the UE receives the signal on the PSCCH resource and receives the SCI information from the mode. When the detected DMRS sequence is the DMRS sequence corresponding to the mode 2, it determines that the currently received PSCCH signal is the mode 2 signal. For example, the UE receives and processes the signal on the PSCCH resource in mode 2, and parses the SCI information therefrom, as shown in FIG.
  • the receiving UE can determine the PSCCH signal by detecting and determining the signal mode indicated by the DMRS in the PSCCH signal. Mode, and the mode of the PSSCH signal indicated by this SCI information.
  • Method eight The receiving UE determines the Sidelink signal mode according to the SCI indication.
  • the UE When receiving the Sidelink signal, the UE first receives the parsed PSCCH signal, obtains the SCI information, and receives the PSSCH signal according to the PSSCH resource indicated by the SCI. Therefore, the method in which the receiving end UE determines the PSSCH signal mode determines the PSSCH signal mode by blind detection DMRS as described in the above method 6.
  • the signal mode of the corresponding PSSCH signal can also be determined by the SCI indication in the received PSCCH signal.
  • the UE After detecting that the PSCCH signal is received, the UE parses and obtains the SCI indication information, which includes an indication of the signal mode of the corresponding PSSCH signal. Then, the UE may perform receiving processing on the corresponding PSSCH resource according to the indicated mode according to the indication of the SCI, and obtain Sidelink data information on the PSSCH resource.
  • the system pre-defined PSCCH signal mode is fixed using mode one, and the signal mode of the corresponding PSSCH signal is indicated by the transmitting end UE in the corresponding SCI.
  • the receiving UE detects the received PSCCH signal in a fixed mode 1 in the PSCCH resource pool, and obtains an SCI indication, wherein the corresponding PSSCH signal mode is indicated as mode 2. For example, the UE receives and processes the PSSCH signal according to the indicated mode 2 on the indicated PSSCH resource according to the indication of the SCI, and obtains the Sidelink data information from the analysis, as shown in FIG.
  • Embodiments of the present application also provide a storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps of any one of the method embodiments described above.
  • the storage medium described above can be configured to store a computer program configured to perform the following steps:
  • the transmitting end determines a signal mode for transmitting a Sidelink signal on the side link Sidelink, where the Sidelink signal includes at least one of the following: a physical edge link control channel PSCCH signal, a physical edge link shared channel PSSCH signal, and a physical edge link.
  • the channel PSDCH signal is found, and the physical side link broadcasts the channel PSBCH signal.
  • the transmitting end sends the Sidelink signal on the side link using the determined signal pattern.
  • the storage medium is further configured to store a computer program configured to perform the following steps:
  • the transmitting end determines a signal mode for transmitting the Sidelink signal on the edge link, and at least includes one of the following: the transmitting end determines the signal mode according to the configuration information of the edge link resource pool; the transmitting end determines the signal mode according to the system predefined; the transmitting end Determining a signal mode according to a configuration indication on the network side; the transmitting end selects a determining signal mode; and the transmitting end determines a signal mode of the associated signal according to a correspondence between a signal mode of the reference signal and a signal mode of the associated signal, wherein the reference signal is At least one of the Sidelink signals, the associated signal being at least one of the Sidelink signals.
  • the configuration information of the edge link resource pool includes an indication of the signal mode
  • the sending end determines the signal mode according to the configuration information of the edge link resource pool, including: the pair included in the configuration information of the edge link resource pool by the sending end
  • the indication of the signal pattern determines the configured signal pattern.
  • the sending end determines the signal mode according to the configuration indication of the network side, where the sending end determines the signal mode according to at least one of high layer signaling and physical layer signaling of the network side.
  • the transmitting end selects the determining signal mode, and the method includes: the transmitting end randomly selects the determining signal mode in the available signal mode; or the transmitting end selects the determining signal mode according to a predefined rule.
  • the sending end selects a determining signal mode according to a predefined rule, and the sending end determines the signal mode according to at least one of the following factors: a device capability of the transmitting end, a service requirement of the transmitting end, a cellular communication uplink signal mode of the transmitting end, and a transmitting end edge.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store computer programs.
  • Embodiments of the present application also provide an electronic device including a memory and a processor having a computer program stored therein, the processor being configured to execute a computer program to perform the steps of any of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • modules or steps of the present application described above can be implemented in a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. For example, they may be implemented in program code executable by a computing device such that they may be stored in a storage device for execution by a computing device and, in some instances, may be performed in a different order than that illustrated herein. Or the steps described, either separately as individual integrated circuit modules, or as a plurality of modules or steps in a single integrated circuit module. Thus, the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号模式的确定、信号模式的获得方法及装置、存储介质。其中,上述信号模式的确定方法包括:发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,Sidelink信号包括以下至少一种:PSCCH信号,PSSCH信号,PSDCH信号,PSBCH信号;发送端使用确定的信号模式在边链路上发送Sidelink信号。

Description

信号模式的确定、信号模式的获得方法及装置、存储介质
本申请要求在2018年01月18日提交中国专利局、申请号为201810048720.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种信号模式的确定、信号模式的获得方法及装置、存储介质。
背景技术
随着无线通信技术的发展和用户对通信需求的日益增加,为了满足更高、更快和更新的通信需要,第五代移动通信(5th Generation,5G)技术已成为未来网络发展的趋势。
在5G通信系统中,用户设备(User Equipment,UE)进行信号传输有2种模式:循环前缀正交频分复用(Cyclic Prefix-OFDM Orthogonal Frequency Division Multiplex,CP-OFDM)和基于离散傅氏变换的正交频分复用(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)。当UE向网络侧发送信号时,可以根据配置使用其中一种模式生成发送信号,在相应的资源上向网络侧发送。从网络侧的角度来说,可以确定UE发送信号所使用的资源及模式,则网络侧按照相应的模式在相应资源上进行信号的接收。
在边链路(Sidelink)通信系统中,UE之间有业务需要传输时,UE之间的业务数据不经过网络侧的转发,而是直接由数据源UE通过Sidelink传输给目标UE,图1是根据相关技术的Sidelink通信结构的示意图,如图1所示,这种UE与UE之间直接进行通信的模式具有区别于传统蜂窝系统通信模式的特征,对于能够应用Sidelink通信的近距离通信用户来说,Sidelink通信不但节省了无线频谱资源,而且降低了核心网的数据传输压力,能够减少系统资源占用,增加蜂窝通信系统频谱效率,降低终端发射功耗,并在很大程度上节省网络运营成本。
在Sidelink通信系统中,UE之间使用Sidelink资源进行信息的传输,根据 具体的应用场景及业务类型等,Sidelink通信方式包括设备到设备(Device to Device,D2D)通信,车辆到车辆(Vehicle to Vehicle,V2V)通信等。
在相关技术的Sidelink通信中,UE使用物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)资源发送Sidelink控制信息,使用PSSCH资源发送Sidelink数据时,在PSCCH或物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH)资源上所发送的信号必须使用DFT-S-OFDM模式,也称为单载波频分多址接入(Single Carrier-Frequency Division Multiple Access SC-FDMA)模式。相应的,在Sidelink进行信号接收的UE监听Sidelink资源池中的资源,并采用接收DFT-S-OFDM信号的方式接收处理信号,如图2所示,UE在PSCCH资源池中盲检测接收边链路控制信息(Sidelink Control Information,SCI),当检测到SCI信息后,根据SCI的指示接收PSSCH资源上的数据信息。
在相关技术的Sidelink通信方法中,UE使用边链路资源池(Sidelink resource pool)中的资源发送Sidelink信号。边链路资源池包括用于承载边链路控制信息的PSCCH资源池,,以及用于承载边链路数据业务信息的PSSCH资源池。UE在Sidelink发送信号固定使用DFT-S-OFDM模式。相应的,在Sidelink进行信号接收的UE监听Sidelink资源池中的资源,并采用接收DFT-S-OFDM信号的方式接收处理信号。
针对相关技术中,在边链路Sidelink上发送Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况,目前尚未提出有效的改善方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种信号模式的确定、信号模式的获得方法及装置、存储介质,以避免相关技术中在边链路Sidelink上发送Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况。
本申请的一个实施例,提供了一种信号模式的确定方法,包括:发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信 号;发送端使用确定的信号模式在边链路上发送Sidelink信号。
本申请的另一个实施例,提供了一种信号模式的确定装置,包括:确定模块,设置为确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;发送模块,设置为使用确定的信号模式在边链路上发送Sidelink信号。
本申请的另一个实施例,还提供了一种信号模式的获得方法,包括:接收端获得边链路Sidelink信号的信号模式;其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;接收端根据获得的信号模式在边链路上接收所述Sidelink信号。
本申请的另一个实施例,提供了一种信号模式的获得装置,包括:获得模块,设置为在边链路Sidelink上获得Sidelink信号的信号模式;其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;接收模块,设置为在边链路上根据获取的信号模式接收Sidelink信号。
本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据相关技术的Sidelink通信结构的示意图;
图2是根据相关技术的Sidelink信号接收流程示意图;
图3是根据本申请实施例的一种信号模式的确定方法的流程图;
图4是根据本申请实施例的一种信号模式的确定装置的结构框图;
图5是根据本申请实施例的一种信号模式的获得方法的流程图;
图6是根据本申请实施例的一种信号模式的获得装置的结构框图;
图7是根据本申请实施例的一种发送Sidelink信号的流程示意图;
图8是根据本申请实施例的一种接收Sidelink信号的流程示意图;
图9是根据本申请实施例的确定Sidelink信号模式的方法一的示意图;
图10是根据本申请实施例的确定Sidelink信号模式的方法二的示意图;
图11是根据本申请实施例的确定Sidelink信号模式的方法三的示意图;
图12是根据本申请实施例的确定Sidelink信号模式的方法四的示意图;
图13是根据本申请实施例的确定Sidelink信号模式的方法五的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为了更好的理解以下实施例以及示例实施例的技术方案,以下先对一些实施例以及示例实施例中涉及的基本概念进行简单说明。
当UE在Sidelink进行信息的交互时,发送端UE在PSCCH资源上发送Sidelink控制信息SCI,向接收端UE指示所传输的Sidelink数据信息所使用的PSSCH资源,以及相关的控制信息,如调制编码方式(Modulation and Coding Scheme,MCS),功率控制指示,数据重传指示等。发送端UE在SCI所指示的PSSCH资源上发送Sidelink数据。另外,UE还可以在物理边链路广播信道(Physical Sidelink Broadcast Channel,PSBCH)资源上发送Sidelink广播信息,在物理边链路发现信道(Physical Sidelink Discovery Channel,PSDCH)资源上发送Sidelink发现信息。
在Sidelink通信中,网络侧为UE配置Sidelink资源池,或者由系统预配置 Sidelink资源池,UE使用Sidelink资源池中的资源承载Sidelink信息。例如,Sidelink资源池包括PSCCH资源池和PSSCH资源池,另外还有为通知Sidelink通信的广播信息配置的PSBCH资源池,为承载Sidelink发现信号配置的PSDCH资源池。
PSCCH资源池是指,用于承载Sidelink控制信息SCI的一组资源,由网络侧通过物理层或高层信令配置,或者由系统预配置。PSCCH资源池在时域上包含至少一个时域资源单元,时域资源单元包括以下任意一项:子帧(subframe),时隙(slot),符号(symbol)。PSCCH资源池在频域上包含一个或多个资源块(Resource Block,RB),或者至少一个资源块组(Resource Block group,RBG),所包含的多个RB或RBG可以连续或不连续。
PSSCH资源池是指,用于承载Sidelink数据的一组资源,由网络侧通过物理层或高层信令配置,或者由系统预配置。PSSCH资源池在时域上包含至少一个时域资源单元,时域资源单元包括以下任意一项:子帧,时隙,符号。PSSCH资源池在频域上包含至少一个RB,或者至少一个RBG,所包含的多个RB或RBG可以连续或不连续。
在5G通信系统中支持UE采用两种基带信号模式:CP-OFDM和DFT-S-OFDM。当Sidelink通信中UE在Sidelink发送的信号可以采用多于一种信号模式时,例如CP-OFDM模式和DFT-S-OFDM模式时,发送端UE需要确定使用其中一种模式用于生成发送信号,同时,接收端UE需要能够区分并确定所接收信号的模式,按照相应模式的接收方法处理所接收到的信号。
实施例1
根据本申请实施例,提供了一种信号模式的确定方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图3是根据本申请实施例的一种信号模式的确定方法的流程图,如图3所示,该方法包括步骤S102和步骤S104。
在步骤S102中,发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号, 物理边链路广播信道PSBCH信号。
在步骤S104,中发送端使用确定的信号模式在所述边链路上发送所述Sidelink信号。
通过上述步骤,发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号;发送端使用确定的信号模式在边链路上发送Sidelink信号,因此,可以避免在边链路Sidelink上发送Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况,进而实现在边链路Sidelink上确定发送Sidelink信号所使用的信号模式。
在一个实施例中,发送端确定在边链路Sidelink上发送Sidelink信号的信号模式包括以下至少之一:循环前缀正交频分复用CP-OFDM模式,或基于离散傅氏变换的正交频分复用DFT-S-OFDM模式。
在一个实施例中,发送端确定在边链路上发送所述Sidelink信号的信号模式,至少包括以下之一:发送端根据边链路资源池的配置信息确定信号模式;发送端根据系统预定义确定信号模式;发送端根据网络侧的配置指示确定信号模式;发送端选择以确定信号模式;发送端根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定关联信号的信号模式。其中,基准信号为Sidelink信号中的至少一种,关联信号为Sidelink信号中的至少一种。
在一个实施例中,边链路资源池的配置信息中包含对信号模式的指示,发送端根据边链路资源池的配置信息确定信号模式,包括:发送端根据边链路资源池的配置信息中包含的对所述信号模式的指示确定所配置的信号模式。
在一个实施例中,发送端根据网络侧的配置指示确定信号模式,包括:所述发送端根据网络侧的高层信令和物理层信令中的至少一种确定所述信号模式。
在一个实施例中,发送端选择以确定信号模式,包括:发送端在可用信号模式中随机选择以确定信号模式;或者,发送端根据预定义的规则选择以确定信号模式。
在一个实施例中,发送端根据预定义的规则选择以确定信号模式,发送端根据下列因素中的至少一项确定信号模式:发送端的设备能力、发送端的业务需求、发送端的蜂窝通信上行信号模式、发送端对边链路的监听结果,以及发 送端对边链路的测量结果。
在一个实施例中,发送端确定在边链路上发送所述Sidelink信号的信号模式,可以根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定关联信号的信号模式包括:发送端根据所述基准信号的信号模式确定与基准信号对应的关联信号的信号模式,其中,基准信号的信号模式与关联信号的信号模式之间存在唯一的对应关系。基准信号的信号模式与关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示。
在一个实施例中,基准信号的信号模式与所述关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示,基准信号的信号模式与关联信号的信号模式之间的对应关系包括以下至少一种:PSCCH信号为基准信号,PSSCH信号为关联信号;PSBCH信号为基准信号,PSCCH信号为关联信号;PSBCH信号为基准信号,PSCCH信号和PSSCH信号为关联信号;PSDCH信号为基准信号,PSCCH信号为关联信号;PSDCH信号为基准信号,PSCCH信号和PSSCH信号为关联信号。根据基准信号的信号模式,确定与基准信号对应的关联信号的信号模式。
在一个实施例中,发送端确定Sidelink信号的信号模式,包括:发送端确定多种Sidelink信号的信号模式时,发送端为多种Sidelink信号确定的信号模式不相同。
需要说明的是,当有4种信号,只有两种信号模式,必然有2种以上信号是相同模式。
在一个实施例中,所述发送端确定所述信号模式后,所述发送端指示所采用的所述信号模式,包括以下至少之一:所述发送端通过高层信令和物理层信令中的至少一种指示所述发送端所采用的所述信号模式;以及所述发送端通过解调参考信号隐式指示所述发送端所采用的所述信号模式。
在一个实施例中,所述高层信令包括:无线连接控制信令,或边链路广播消息;所述物理层信令包括:边链路控制信息。
在一个实施例中,所述发送端通过解调参考信号隐式指示所述发送端所采用的所述信号模式包括:通过所述解调参考信号所使用的序列或循环移位隐式指示发送端所使用的的所述信号模式。
实施例2
在本实施例中还提供了一种信号模式的确定装置,该装置设置为实现上述实施例及示例实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少一种的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本申请实施例的一种信号模式的确定装置的结构框图,如图4所示,该装置包括确定模块40以及发送模块42。
确定模块40,设置为确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号。
发送模块42,设置为使用确定的信号模式在边链路上发送Sidelink信号。
通过上述模块的综合作用,发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;发送端使用确定的信号模式在边链路上发送Sidelink信号。因此,可以避免在边链路Sidelink上发送Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况,进而实现在边链路Sidelink上确定发送Sidelink信号所使用的信号模式。
在一个实施例中,发送端确定在边链路Sidelink上发送Sidelink信号的信号模式包括以下至少之一:循环前缀正交频分复用CP-OFDM模式,以及基于离散傅氏变换的正交频分复用DFT-S-OFDM模式。
在一个实施例中,确定模块40,设置为通过以下至少之一的操作确定在边链路上发送所述Sidelink信号的信号模式:根据边链路资源池的配置信息确定信号模式;根据系统预定义确定信号模式;根据网络侧的配置指示确定信号模式;选择以确定信号模式;以及根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定关联信号的信号模式。其中,基准信号为Sidelink信号中的至少一种,关联信号为Sidelink信号中的至少一种。
在一个实施例中,边链路资源池的配置信息中包含对信号模式的指示,确定模块40,设置为根据边链路资源池的配置信息中包含的对所述信号模式的指 示确定所配置的信号模式。
在一个实施例中,确定模块40,设置为根据网络侧的高层信令和物理层信令中的至少一种确定所述信号模式。
在一个实施例中,确定模块40,还设置为:在可用信号模式中随机选择以确定信号模式;或者,根据预定义的规则选择以确定信号模式。
在一个实施例中,根据预定义的规则选择以确定信号模式,确定模块40设置为根据下列因素中的至少一项确定信号模式:发送端的设备能力、发送端的业务需求、发送端的蜂窝通信上行信号模式、发送端对边链路的监听结果,以及发送端对边链路的测量结果。
在一个实施例中,确定模块40,还设置为确定在边链路上发送所述Sidelink信号的信号模式,可以根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定关联信号的信号模式包括:根据所述基准信号的信号模式确定与基准信号对应的关联信号的信号模式,其中,基准信号的信号模式与关联信号的信号模式之间存在唯一的对应关系。基准信号的信号模式与关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示。
在一个实施例中,基准信号的信号模式与关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示,基准信号的信号模式与关联信号的信号模式之间的对应关系包括以下至少一种:PSCCH信号为基准信号,PSSCH信号为关联信号;PSBCH信号为基准信号,PSCCH信号为关联信号;PSBCH信号为基准信号,PSCCH信号和PSSCH信号为关联信号;PSDCH信号为基准信号,PSCCH信号为关联信号:以及PSDCH信号为基准信号,PSCCH信号和PSSCH信号为关联信号。根据基准信号的信号模式,确定与基准信号对应的关联信号的信号模式。
在一个实施例中,确定多种Sidelink信号的信号模式时,确定模块40设置为:为多种Sidelink信号确定的信号模式不相同。
需要说明的是,当有4种信号,只有两种信号模式,必然有2种以上信号是相同模式。
在一个实施例中,确定模块40,设置为通过以下至少之一的操作确定所述信号模式后,指示所采用的所述信号模式:
通过高层信令和物理层信令中的至少一种指示所述发送端所采用的所述信 号模式;以及通过解调参考信号隐式指示所述发送端所采用的所述信号模式。
在一个实施例中,所述高层信令包括:无线连接控制信令,或边链路广播消息;所述物理层信令包括:边链路控制信息。
在一个实施例中,确定模块40,设置为:通过所述解调参考信号所使用的序列或循环移位隐式指示与所使用的序列或循环移位所对应的所述信号模式。
实施例3
图5是根据本申请实施例的一种信号模式的获得方法的流程图,如图5所示,该方法包括步骤S502和步骤S504。
在步骤S502中,接收端获得边链路Sidelink信号的信号模式;其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号。
在步骤S504中,接收端根据获得的信号模式在边链路上接收所述Sidelink信号。
通过上述步骤,接收端获得边链路Sidelink信号的信号模式;其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号,以及接收端根据获得的信号模式在边链路上接收所述Sidelink信号。因此,可以避免在边链路Sidelink上接收Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况,进而能够根据获得的发送Sidelink信号所使用的信号模式来接收Sidelink信号。
在一个实施例中,所述信号模式为循环前缀正交频分复用CP-OFDM模式,和基于离散傅氏变换的正交频分复用DFT-S-OFDM模式中的至少一种。
在一个实施例中,接收端获得所述Sidelink信号的信号模式,至少包括以下之一:所述接收端根据边链路资源池的配置信息获得所述信号模式;所述接收端根据系统预定义获得所述信号模式;所述接收端根据网络侧的配置指示获得所述信号模式;所述接收端根据发送端的指示获得所述信号模式;所述接收端根据检测获得所述信号模式;以及所述接收端根据基准信号的信号模式与关联信号的信号模式之间的对应关系,获得所述关联信号的信号模式。其中,所述基准信号为所述Sidelink信号中的至少一种,所述关联信号为所述Sidelink信号 中的至少一种。
在一个实施例中,所述边链路资源池的配置信息中包含对所述信号模式的指示,所述接收端根据边链路资源池的配置信息获得所述信号模式,包括:所述接收端根据所述边链路资源池的配置信息中包含的对所述信号模式的指示获得所配置的所述信号模式。
在一个实施例中,所述接收端根据网络侧的配置指示获得所述信号模式,包括:所述接收端根据网络侧的高层信令和物理层信令中的至少一种指示获得所述信号模式。
在一个实施例中,接收端根据发送端的指示获得所述信号模式,包括:所述接收端接收所述发送端的高层信令和物理层信令中的至少一种,根据接收到的高层信令和物理层信令中至少一种的指示信息获得所述信号模式。其中,所述高层信令包括:无线连接控制信令,或边链路广播消息;所述物理层信令包括:边链路控制信息。
在一个实施例中,所述接收端根据检测获得所述信号模式,包括:所述接收端通过检测所述Sidelink信号中的解调参考信号所使用的序列或者循环移位,获得所述Sidelink信号的所述信号模式。
在一个实施例中,根据基准信号的信号模式与关联信号的信号模式之间的对应关系,获得所述关联信号的信号模式包括:所述接收端根据所述基准信号的信号模式获得与所述基准信号对应的所述关联信号的信号模式,其中,所述基准信号的信号模式与所述关联信号的信号模式之间存在唯一的对应关系。所述基准信号的信号模式与所述关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示。
在一个实施例中,基准信号的信号模式与关联信号的信号模式之间的对应关系包括以下至少一种:所述PSCCH信号为基准信号,所述PSSCH信号为关联信号;所述PSBCH信号为基准信号,所述PSCCH信号为关联信号;所述PSBCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号;所述PSDCH信号为基准信号,所述PSCCH信号为关联信号;以及所述PSDCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号。根据所述基准信号的信号模式,确定与所述基准信号的信号模式对应的关联信号的信号模式。
实施例4
在本实施例中还提供了一种信号模式的获得装置,该装置设置为实现上述实施例及示例实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少一种的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本申请实施例的一种信号模式的获得装置的结构框图,如图6所示,包括获得模块60和接收模块62。
获得模块60,设置为在边链路Sidelink上获得Sidelink信号的信号模式;其中,Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号。
接收模块62,设置为在边链路上根据获取的信号模式接收Sidelink信号。
通过上述模块的作用,获得边链路Sidelink信号的信号模式;其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号,进而根据获得的信号模式在边链路上接收所述Sidelink信号,因此,可以避免在边链路Sidelink上接收Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况,进而能够根据获得的发送Sidelink信号所使用的信号模式来接收Sidelink信号。
在一个实施例中,所述信号模式为循环前缀正交频分复用CP-OFDM模式,或基于离散傅氏变换的正交频分复用DFT-S-OFDM模式。
在一个实施例中,获得模块60,设置为通过以下至少之一的操作获得所述Sidelink信号的信号模式:根据边链路资源池的配置信息获得信号模式;根据系统预定义获得信号模式;根据网络侧的配置指示获得信号模式;根据发送端的指示获得信号模式;根据检测获得信号模式;以及根据基准信号的信号模式与关联信号的信号模式之间的对应关系,获得所述关联信号的信号模式。其中,所述基准信号为所述Sidelink信号中的至少一种,所述关联信号为所述Sidelink信号中的至少一种。
在一个实施例中,所述边链路资源池的配置信息中包含对所述信号模式的 指示,获得模块60,设置为根据所述边链路资源池的配置信息中包含的对所述信号模式的指示获得所配置的所述信号模式。
在一个实施例中,获得模块60,还设置为根据网络侧的配置指示获得所述信号模式:根据网络侧的高层信令和物理层信令中的至少一种指示获得所述信号模式。
在一个实施例中,获得模块60,设置为:接收所述发送端的高层信令和物理层信令中的至少一种,根据接收到的高层信令和物理层信令中至少一种的指示信息获得所述信号模式。其中,所述高层信令包括:无线连接控制信令,或边链路广播消息;所述物理层信令包括:边链路控制信息。
在一个实施例中,获得模块60,设置为:通过检测所述Sidelink信号中的解调参考信号所使用的序列或者循环移位,获得所述Sidelink信号的所述信号模式。
在一个实施例中,获得模块60,设置为根据所述基准信号的信号模式获得与所述基准信号对应的所述关联信号的信号模式,其中,所述基准信号的信号模式与所述关联信号的信号模式之间存在唯一的对应关系。所述基准信号的信号模式与所述关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示。
在一个实施例中,基准信号的信号模式与关联信号的信号模式之间的对应关系包括以下至少一种:所述PSCCH信号为基准信号,所述PSSCH信号为关联信号;所述PSBCH信号为基准信号,所述PSCCH信号为关联信号;所述PSBCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号;所述PSDCH信号为基准信号,所述PSCCH信号为关联信号;以及所述PSDCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号。根据所述基准信号的信号模式,确定与所使用的序列或循环移位对应的关联信号的信号模式。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
从以上的描述中,可以看出,上述实施例避免了在边链路Sidelink上发送Sidelink信号时,不能确定发送Sidelink信号所使用的信号模式的情况,进而实 现在边链路Sidelink上确定发送Sidelink信号所使用的信号模式。
以下结合示例实施例对上述数据处理方法进行说明,但不用于限定本申请实施例的保护范围。
示例实施例1
在本示例实施例提出了一种确定信号模式的方法,用于Sidelink信号可能采用多种模式进行发送时,发送端UE确定发送信号使用的信号模式的方法,以及接收端UE获得接收Sidelink信号模式的方法,使接收端UE能够获得所接收的Sidelink信号的模式,进而采用相应的接收处理方式对所接收的信号进行处理。避免了Sidelink信号模式不确定时,接收端UE无法接收信号的情况。
UE在Sidelink发送信号时,支持使用多种信号生成模式,分别称为模式一,模式二,...模式n,接收端UE需要确定所接收的信号所采用的模式。在下面的说明中,以Sidelink信号发送支持两种模式为例,例如模式一为CP-OFDM模式,模式二为DFT-S-OFDM模式。
UE发送Sidelink信号时,可以采用下列方法中的至少一种确定所使用的发送信号的信号模式:
1.由Sidelink资源池配置确定;
2.预定义/配置Sidelink信号模式;
3.由网络侧配置UE;
4.由UE选择发送Sidelink信号的模式;
5.由基准Sidelink信号模式确定其他至少一种关联Sidelink信号模式。
其中,UE确定Sidelink信号发送模式包括确定以下至少一种Sidelink信号的信号模式:PSCCH信号模式、PSSCH信号模式、PSBCH信号模式,以及PSDCH信号模式。
其中,PSCCH信号承载SCI信息并在PSCCH资源上发送的Sidelink信号,可以简称发送SCI信息的信号为PSCCH信号。类似的,Sidelink数据信息承载在PSSCH资源上,可以简称发送Sidelink数据信息的信号为PSSCH信号,承载Sidelink广播信息的在PSBCH资源上发送的信号为PSBCH信号,承载Sidelink发现信息的在PSDCH资源上发送的信号为PSDCH信号。
确定UE发送Sidelink信号的模式包括确定上述至少一种信号的模式,且同一个UE发送不同的Sidelink信号的发送模式可以相同,也可以不同。下面主要 以PSCCH信号和PSSCH信号为例进行说明,PSBCH与PSDCH信号模式的确定方法可相应类似使用。
在一个实施例中,UE发送Sidelink信号时,可以采用下列方法中的至少一种向接收端指示所使用的信号发送模式:
1.通过高层信令指示相应的Sidelink信号模式;
2.在SCI中指示相应PSSCH信号模式;
3.通过解调参考信号(Demodulation Reference Signal,DMRS)隐式指示Sidelink信号模式。
示例实施例2
当发送端UE需要在PSCCH资源或PSSCH资源上发送Sidelink信号时,首先需确定发送信号应采用的信号模式。当采用信号模式一生成发送信号时,则按照CP-OFDM模式的方法将待发送的SCI和Sidelink数据信息中的至少一种进行处理,生成待发送信号。包括将信息进行子载波映射(sub-carrier mapping)处理,M点离散傅氏逆变换(Inverse Discrete Fourier Transformation,IDFT)处理,加循环前缀(cyclic prefix,CP)处理,以及调制到射频(radio frequency)处理。
当采用信号模式二生成发送信号时,则按照DFT-S-OFDM模式的方法处理待发送的信息,包括将信息进行N点离散傅氏变换(Discrete Fourier Transformation,DFT)处理,子载波映射处理,M点离散傅氏逆变换处理,以及加循环前缀处理,最终发送信号,如图7所示。
可以看到,对于不同模式的信号,发送端UE生成信号的步骤是不同的。因此UE在Sidelink发送信号时,首先需要确定发送信号使用的信号模式,根据确定的信号模式对待发送的Sidelink控制信息和Sidelink数据信息中的至少一种进行处理并发送。
UE接收Sidelink信号时,需要获得所接收的Sidelink信号的模式,获得信号模式后,按照相应的模式对所接收的信号进行处理,并获得信号中承载的信息。
当Sidelink信号采用不同的模式时,接收处理信号的流程不同,以模式一为CP-OFDM和模式二为DFT-S-OFDM为例进行说明。
获得所接收Sidelink信号的信号模式的方法包括:
1.由Sidelink资源池配置确定;
2.预定义/配置Sidelink信号模式;
3.盲检测确定Sidelink信号模式;
4.通过发送端指示的高层和物理层信令中的至少一种指示确定Sidelink信号模式;
5.通过基准Sidelink信号模式确定另外至少一种关联Sidelink信号模式。
示例实施例3
当接收端UE在PSCCH资源或PSSCH资源上接收到某个Sidelink信号时,首先需获得此信号的信号模式。当所接收到的信号为模式一信号时,则按照接收CP-OFDM模式的方法处理所接收到的信号,包括将信号进行去循环前缀处理,M点离散傅氏变换处理,解子载波映射处理,以及信息检测处理。
当所接收到的信号为模式二信号时,则按照接收DFT-S-OFDM模式的方法处理所接收到的信号,包括将信号进行去循环前缀处理,M点离散傅氏变换处理,解子载波映射处理,N点离散傅氏逆变换处理,以及信息检测处理,如图8所示。
可以看到,对于不同模式的信号,接收端UE的处理步骤是不同的,因此UE在Sidelink接收信号时,需要在接收信号时首先获得此信号的信号模式,才能够按照相应的接收处理方式对所接收的信号进行处理。
下面对上述确定Sidelink信号发送模式,接收模式的方法分别进行说明。
方法一、由资源池配置确定Sidelink信号模式。
在Sidelink通信中,可用于发送Sidelink信号的物理资源构成Sidelink资源池,例如PSCCH资源池,PSSCH资源池。进行Sidelink通信的UE需要获得Sidelink资源池的配置信息,并使用Sidelink资源池中的资源发送Sidelink信号,并且在Sidelink资源池中接收来自其他UE的Sidelink信号。Sidelink资源池的配置信息可以由网络侧配置指示UE,或者由系统预配置,指示出相应Sidelink资源池上发送信号的信号模式。Sidelink资源池包括PSCCH资源池和PSSCH资源池中的至少一种。UE从网络侧接收配置信息,或者由系统预配置确定可用的Sidelink资源池及相应的Sidelink信号模式。UE可以同时支持多个Sidelink资源池配置,并使用其中的资源按照配置的信号模式发送Sidelink信号,或从多个资 源池中按照配置的信号模式接收Sidelink信号。
当Sidelink信号发送支持多种模式时,可以为每个Sidelink资源池配置相应的信号模式,即使用某个Sidelink资源池中的资源发送Sidelink信号时,必须使用此Sidelink资源池对应的信号模式,每个Sidelink资源池的信号模式唯一。相应的,在此资源池中接收Sidelink信号时,应以配置的信号模式进行接收处理。这里,Sidelink资源池包括PSCCH资源池和PSSCH资源池中的至少一种,PSCCH资源池与PSSCH资源池可配置使用相同或不同的信号模式。
UE在获得Sidelink资源池配置信息时,其中包括此Sidelink资源池对应的信号模式配置。则基于Sidelink资源池配置信息,UE可以确定,当UE使用此资源池中的资源发送Sidelink信号时,必须使用为此资源池配置的信号模式;当UE接收此资源池中的信号时,可以根据配置信息确定所接收的信号是所配置的信号模式,并按照相应信号模式的接收方法来处理在此资源池中接收到的信号。
另外,UE可根据Sidelink资源配置中指示的信号模式配置,作为UE进行Sidelink资源选择的依据。例如,UE仅支持模式一方式发送Sidelink信号,则当系统预配置有多个Sidelink资源池,且各个资源池相应的信号模式不同,UE可选择使用对应信号模式一的资源池,在所选择的资源池中选择资源进行Sidelink信号发送。或者,例如,UE当前的蜂窝通信上行信号采用模式二发送,则UE优先采用模式二发送Sidelink信号,则UE可根据Sidelink资源池配置,选择配置为信号模式二的资源池,在其中选择资源进行Sidelink信号的发送。
此外,方法一是在Sidelink信号模式与Sidelink资源池配置之间建立固定的关系,使UE通过获得Sidelink资源池配置信息确定相应的信号模式,避免UE接收Sidelink信号时进行模式盲检,有利于减少UE实现复杂度,降低UE功耗。
示例实施例4
UE从网络侧获得Sidelink资源池配置信息,其中包括多个PSCCH资源池的配置。例如,包括每个PSCCH资源池中包含的资源,以及相应的信号模式。根据配置信息,Sidelink资源池配置指示为:PSCCH资源池#1,#2使用模式一;PSCCH资源池#3,#4使用模式二。
UE在PSCCH资源池#1中选择一个PSCCH资源发送SCI,且根据资源池配置信息中的指示,UE将待发送的SCI信息按照模式一的方式生成信号,承载在PSCCH资源池#1中的PSCCH资源上发送。
UE在PSCCH资源池#2,#3,#4中接收信号,则根据资源池配置信息中的指示,UE在PSCCH资源池#2中盲检SCI信息时,采用模式一的方式处理所接收的信号,在PSCCH资源池#3,#4中盲检SCI信息时,采用模式二的方式处理所接收的信号,UE处理模式一,模式二信号的具体方法如示例实施例1中所述。例如,UE从所接收的信号中解析SCI,如图9所示。
方法二、预定义/配置Sidelink信号模式。
在Sidelink通信中,可以由网络侧配置或者由系统预定义Sidelink的信号模式,包括至少一种Sidelink信号的传输模式,如PSCCH信号模式,PSSCH信号模式,PSBCH信号模式。
UE在发送及接收Sidelink信号时按照网络侧配置的信号模式或系统预定义的信号模式发送或接收Sidelink资源上的信号,包括PSCCH信号、PSSCH信号以及PSBCH信号中的至少一种。其中,网络侧可以通过高层信令配置指示Sidelink PSCCH信号模式、PSSCH信号模式以及PSBCH信号模式中的至少一种,或者由系统预定义PSCCH信号模式、PSSCH信号模式以及PSBCH信号模式中的至少一种。在方法二中,网络侧公共配置的,或系统预定义的Sidelink信号模式为公共配置,即相同小区,或相同Sidelink通信组中的所有UE使用相同的配置。
在一个实施例中,发送端UE根据配置,使用指示的信号模式发送PSCCH信号、PSSCH信号以及PSBCH信号模式中的至少一种。相应的,接收端UE根据配置指示的信号模式,在相应资源上接收PSCCH信号、PSSCH信号以及PSBCH信号中的至少一种。
示例实施例5
UE接收网络侧的公共配置信息,其中指示了Sidelink相关的配置,包括Sidelink控制信道使用模式一用于承载SCI信息在PSCCH资源上发送。另外,对Sidelink数据信道采用的信号模式在SCI信息中指示,例如在SCI中设置1比特(bit)信号模式指示信息,用于指示此SCI对应的PSSCH资源上发送信号的信号模式为模式一或者模式二。
根据网络侧的配置,UE在Sidelink资源上发送信号时,以模式一生成承载SCI的信号,并在PSCCH资源上发送。而PSSCH信号模式由UE自主确定, UE选择使用与PSCCH相同的信号模式发送PSSCH信号,并在SCI信号中指示了相应PSSCH资源上发送Sidelink数据信息的信号的模式为模式一。则UE使用模式一在PSCCH资源上发送SCI信息,在相应的PSSCH资源上以模式一发送Sidelink数据信息,如图10所示。
根据网络侧的配置,UE在PSCCH资源池中检测接收SCI时,以模式一检测PSCCH资源上的信号,并从中解析获得SCI信息。例如,UE根据获得的SCI中的PSSCH信号模式的信号模式指示信息确定接收相应PSSCH信号的模式。其中,信号模式指示信息指示相应的PSSCH资源上发送的Sidelink数据信号使用了模式一,则UE在相应的PSSCH资源上,以模式一的接收处理方式接收信号,并获得相应的Sidelink数据信息,如图10所示。
方法三、网络侧配置UE Sidelink信号发送模式。
在Sidelink通信中,可以由网络侧通过UE专用的高层信令或物理层信令为UE配置Sidelink信号模式。
网络侧通过专用信令为UE配置Sidelink信号模式,与方法二中的配置不同,由于配置信令是独立下发给每个UE,即多个Sidelink UE的信号模式可以设置为相同模式或不同模式,而方法二中的配置信令是公共配置信令,即所有UE采用统一的Sidelink信号模式。方法三中各个UE独立的配置有利于Sidelink通信灵活的配置,以及适应于不同业务、能力、需求的Sidelink UE。
网络侧为UE配置的Sidelink信号模式中,可以包括以下任意一种配置方式:仅配置PSCCH信号模式;仅配置PSSCH信号模式;配置PSCCH和PSSCH信号模式。
另外,网络侧可以配置UE采用统一的信号模式发送PSCCH和PSSCH信号,则网络侧向UE的指示信令中仅通知一种信号模式,即达到指示PSCCH和PSSCH信号模式的作用。或者,网络侧配置UE可以采用不同的信号模式发送PSCCH和PSSCH信号,则网络侧向UE的指示信令可以通知PSCCH和PSSCH中至少一种的信号模式,对于网络侧未明确配置的信号模式,UE可以自行确定。
或者,网络侧可以通过高层信令配置指示UE,在Sidelink发送信号的信号模式与UE在蜂窝通信中的上行信号发送使用相同的信号模式。则网络侧不需要再为UE明确指示Sidelink信号模式。UE根据配置,使用向网络侧发送上行信 号的信号模式作为Sidelink信号模式,生成Sidelink信号并发送。
示例实施例6
UE接收网络侧的配置信令,其中指示了Sidelink相关的配置,包括Sidelink控制信道使用模式一用于承载SCI信息在PSCCH资源上发送,以及使用模式二发送PSSCH信号。
发送端UE根据网络侧的配置,在配置的Sidelink资源上分别使用模式一和模式二发送PSCCH信号及PSSCH信号。
此方法可以实现网络侧对Sidelink UE发送Sidelink信号的灵活配置,达到灵活协调各UE信号模式,降低接收复杂度,满足UE能力需求等作用。
方法四、UE选择Sidelink信号发送模式。
在Sidelink通信中,UE可以自主选择确定Sidelink信号模式,包括选择PSCCH信号模式和PSSCH信号模式中的至少一种。UE可以选择为PSCCH信号和PSSCH信号使用相同或不同的信号模式。例如,UE使用所选择信号模式发送PSCCH信号和PSSCH信号中的至少一种。
示例实施例7
UE从网络侧获得Sidelink资源池配置,其中包含了资源池中资源的配置信息,但网络侧未配置Sidelink信号模式或配置为两种模式都可支持,则UE可以自由选择Sidelink信号模式。
或者,网络侧通过信令配置UE,在Sidelink发送信号的信号模式由UE自行确定,则UE根据网络侧的指示,可以从Sidelink支持的信号模式中任意选择一种模式用于发送PSCCH信号和PSSCH信号中的至少一种。
或者,UE在D2D通信或V2X通信的专用载波上进行Sidelink通信,未接收到网络侧的配置指示信息,则UE须自主确定Sidelink信号模式,用于发送Sidelink信号。
UE自主确定Sidelink信号模式时,可以在所有可用信号模式中随机选择一种作为Sidelink信号发送模式,或者,UE可以依据UE本身的能力、业务需求、场景需求、蜂窝通信上行信号模式,对Sidelink信道监听的结果,对Sidelink信道测量的结果等因素,选择确定自身在Sidelink发送信号的信号模式。
UE在Sidelink资源上发送信号时,自主确定信号模式,UE根据自身能力, 当UE仅支持以模式一生成信号时,则UE确定Sidelink信号模式为模式一。例如,UE使用模式一生成Sidelink信号,在PSCCH资源上发送SCI。另外,UE在SCI信号中指示了相应PSSCH资源上发送Sidelink数据信息的信号的模式为模式一,则UE在所指示的PSSCH资源上以模式一发送Sidelink数据信息。
方法五、根据基准Sidelink信号信号模式确定关联Sidelink信号模式。
在Sidelink通信中,可以由网络侧配置或系统预定义确定由某一种Sidelink信号为基准信号,其他至少一种Sidelink信号为相关的关联Sidelink信号。并定义由基准Sidelink信号的信号模式确定相应关联Sidelink信号的信号模式,例如,定义关联Sidelink信号模式与基准Sidelink信号模式相同。
例如,基准Sidelink信号与关联Sidelink信号的关系包括但不限于:PSCCH信号为基准信号,PSSCH信号为关联信号;PSBCH信号为基准信号,PSCCH信号为关联信号;PSBCH信号为基准信号,PSCCH信号和PSSCH信号为关联信号;PSDCH信号为基准信号,PSCCH信号为关联信号;PSDCH信号为基准信号,PSCCH信号和PSSCH信号为关联信号。
或者,网络侧配置或系统预定义基准Sidelink信号模式与关联Sidelink信号模式之间的对应关系,例如表1所示。
表1
Figure PCTCN2019071728-appb-000001
另外,当采用PSDCH信号或PSBCH信号作为基准Sidelink信号时,还可以规定以基准Sidelink信号的信号模式作为相应Sidelink资源池中其他Sidelink信号的信号模式。
示例实施例8
UE从网络侧获得配置指示,基准Sidelink信号为PSBCH信号,PSCCH信号为相应的关联信号,且配置为关联信号采用与基准信号相同的信号模式。
UE根据配置指示,在资源池中监听接收PSBCH信号,判断并获得基准信号的信号模式为模式一,则UE应以模式一发送PSCCH信号。
或者,网络侧配置PSBCH为基准信号,并且定义其他Sidelink信号均为关联Sidelink信号,采用与基准信号相同的信号模式。
UE根据配置指示,在PSBCH资源上接收PSBCH信号后,判定基准信号模式为模式二,则相应的,UE在Sidelink发送其他信号都采用模式二进行发送。
示例实施例9
网络侧配置,或者系统预定义根据PSCCH信号模式确定相应的PSSCH信号模式,具体规则为PSCCH信号模式与相应的PSSCH信号模式相同。
UE在接收到PSCCH信号后,可以确定相应的PSSCH信号的模式与PSCCH信号模式相同。UE在接收PSSCH信号时,直接使用相应PSCCH信号的信号模式去接收处理PSSCH信号,不再需要对PSSCH信号模式进行盲检接收及判断。
这里,PSCCH信号及相应的PSSCH信号是指,PSCCH信号中承载的SCI信息指示了一个PSSCH信道资源,以及相应的控制信息,如MCS等,则被SCI指示的PSSCH资源上承载的PSSCH信号可以称为此PSCCH信号对应的PSSCH信号。
根据网络侧的配置,基准Sidelink信号为PSCCH信号,相应的关联Sidelink信号为PSSCH信号,关联信号采用与基准信号相同的信号模式。
根据此配置,接收端UE在PSCCH资源池中检测接收PSCCH信号,通过盲检测DMRS确定了PSCCH的信号模式为模式二。相应的,UE可以确定相应的PSSCH信号的信号模式同样为模式二。例如,UE在SCI所指示的PSSCH资源上以模式二接收处理PSSCH信号,从中解析获得Sidelink数据信息,如图11所示。
方法六、发送端指示所使用的Sidelink信号模式。
发送端发送Sidelink信号所使用的信号模式可以通过直接指示或间接指示的方式通知接收端,使接收端获得相应信号的信号模式,从而达到避免接收端盲检测,降低接收端处理复杂度的作用。
发送端UE采用直接指示或间接指示的方法向接收端指示相应的信号模式,可以由网络侧配置,或者由系统预定义。发送端UE根据配置或预定义,采用直 接指示,或间接指示的方法指示所使用的Sidelink信号模式。
直接指示的方法包括,发送端UE通过高层信令和物理层信令中的至少一种向接收端指示发送端UE发送Sidelink信号使用的信号模式。高层信令可以是发送端UE向接收端UE发送的RRC信令,也可以是发送端UE的广播类信息,没有特定接收目标UE。物理层信令为SCI,例如,在SCI中通过设置信号模式指示域,向接收端指示PSSCH信号的信号模式。
间接指示的方法包括,对Sidelink数据信道采用的信号模式可以通过相应的解调参考信号进行隐式指示。在PSBCH信号,PSCCH信号,PSSCH信号,PSDCH信号发送中,都携带有相应的DMRS,则可以通过相应DMRS使用不同的序列或不同的循环移位来间接指示相应信号的信号模式。
例如,在PSCCH信号中的DMRS可以间接指示此PSCCH信号和相应的PSSCH信号中至少一种的信号模式,或者在PSSCH信号中的DMRS间接指示了此PSSCH信号的信号模式。
不同DMRS序列或循环移位间接指示Sidelink信号模式的一个例子如表2所示,由网络侧配置或系统预定义,不同DMRS序列或循环移位对应指示的信号模式为:
表2
Figure PCTCN2019071728-appb-000002
其中,网络侧配置或系统预定义为不同的信号模式使用不同的DMRS序列,或者不同的DMRS循环移位,则发送端UE根据表2中的DMRS序列或循环移位的配置或预定义,使用相应的DMRS序列或循环移位生成PSCCH信号中携带的DMRS并发送,达到了间接指示PSSCH信号模式的作用。
示例实施例10
发送端UE根据网络侧的配置指示,使用模式一发送PSCCH信号和PSSCH信号。
当系统预定义发送端UE以直接指示的方法提示信号模式,则发送端UE在 SCI中以1bit信号模式指示位,向接收端UE指示PSSCH信号使用的信号模式,指示位bit为“1”表示采用模式一,bit为“0”表示采用模式二。接收端接收到SCI信息后,可以从相应的模式指示域中获得指示信息,确定相应的PSSCH信号模式,并根据指示在相应的PSSCH资源上以指示的模式接收PSSCH信号。
当系统预定义发送端UE以间接指示的方法指示信号模式,则发送端UE根据表2所示规则,在PSCCH信号的DMRS发送时,使用DMRS序列n1,序列n2,...,序列N中的一个序列,隐式指示了此PSCCH信号为模式一发送。也隐式指示了相应的PSSCH信号也采用模式一发送。接收端接收PSCCH信号时,通过检测DMRS序列,结合表2,即可以确定相应的信号模式。
方法七、接收端UE通过检测DMRS确定Sidelink信号模式。
接收端UE在Sidelink资源上通过盲检测DMRS确定Sidelink信号模式,包括检测确定PSCCH信号模式和PSSCH信号模式中的至少一种。
接收端UE可以通过检测PSCCH信号或PSSCH信号中的解调参考信号(Demodulation Reference Signal,DMRS)来确定相应的信号模式,例如,通过检测DMRS确定相应信号模式的方式包括:通过盲检DMRS序列确定信号模式;通过盲检DMRS循环移位确定信号模式。
其中,网络侧配置或系统预定义为不同的信号模式使用不同的DMRS序列,或者不同的DMRS循环移位,则UE根据配置或预定义,获得不同的Sidelink信号模式生成信号时可用的DMRS序列列表,或者相应的DMRS循环移位列表,如表2所示。则接收端UE在接收Sidelink信号时可以通过接收检测信号中的DMRS序列或循环移位确定当前信号的信号模式。
示例实施例11
UE根据系统预定义,获得了Sidelink信号模式与相应的DMRS序列列表之间的对应关系,例如表2所示。则UE在Sidelink接收信号时,采用盲检测接收的方法,通过检测信号中的DMRS序列来确定相应的信号模式,并根据确定的信号模式接收处理相应信号。
根据表2,UE在PSCCH资源池中检测接收SCI时,按照PSCCH信道结构从中检测DMRS序列,并将检测到的DMRS序列与表2中的序列列表进行对照,当所检测到的DMRS序列为模式一对应的DMRS序列时,则确定当前接收的PSCCH 信号为模式一信号。例如,UE以模式一接收处理此PSCCH资源上的信号,并从中解析获得SCI信息;当所检测到的DMRS序列为模式二对应的DMRS序列时,则确定当前接收的PSCCH信号为模式二信号。例如,UE以模式二接收处理此PSCCH资源上的信号,并从中解析获得SCI信息,如图12所示。
或者,当系统预定义PSCCH信号中的DMRS隐式指示了此PSCCH信号及相应PSSCH信号的信号模式时,则接收端UE通过检测判断PSCCH信号中DMRS所指示的信号模式,可以确定此PSCCH信号的模式,以及此SCI信息指示的PSSCH信号的模式。
方法八、接收端UE根据SCI指示确定Sidelink信号模式。
UE在接收Sidelink信号时,会先接收解析PSCCH信号,获得SCI信息,再根据SCI指示的PSSCH资源接收PSSCH信号。因此,接收端UE确定PSSCH信号模式的方法除了上述方法六所述通过盲检测DMRS确定PSSCH信号模式,还可以通过已接收的PSCCH信号中的SCI指示来确定相应PSSCH信号的信号模式。
UE检测接收到PSCCH信号后,从中解析获得SCI指示信息,其中包含对相应PSSCH信号的信号模式的指示。则UE可以根据SCI的指示,在相应的PSSCH资源上按照指示的模式对PSSCH信号进行接收处理,并获得PSSCH资源上的Sidelink数据信息。
示例实施例12
系统预定义PSCCH信号模式固定采用模式一,且相应PSSCH信号的信号模式由发送端UE在相应的SCI中指示。
接收端UE在PSCCH资源池中按照固定的模式一检测接收PSCCH信号,从中获得SCI指示,其中指示了相应的PSSCH信号模式为模式二。例如,UE根据SCI的指示,在所指示的PSSCH资源上,按照指示的模式二接收处理PSSCH信号,从中解析获得Sidelink数据信息,如图13所示。
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个实施例中,上述存储介质可以被设置为存储设置为执行以下步骤的计算机程序:
S1,发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中, Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,物理边链路广播信道PSBCH信号。
S2,发送端使用确定的信号模式在边链路上发送Sidelink信号。
在一个实施例中,存储介质还被设置为存储设置为执行以下步骤的计算机程序:
S3,发送端确定在边链路上发送Sidelink信号的信号模式,至少包括以下之一:发送端根据边链路资源池的配置信息确定信号模式;发送端根据系统预定义确定信号模式;发送端根据网络侧的配置指示确定信号模式;发送端选择确定信号模式;发送端根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定关联信号的信号模式,其中,基准信号为所述Sidelink信号中的至少一种,关联信号为Sidelink信号中的至少一种。
S4,边链路资源池的配置信息中包含对信号模式的指示,发送端根据边链路资源池的配置信息确定信号模式,包括:发送端根据边链路资源池的配置信息中包含的对所述信号模式的指示确定所配置的信号模式。
S5,发送端根据网络侧的配置指示确定信号模式,包括:所述发送端根据网络侧的高层信令和物理层信令中的至少一种确定所述信号模式。
S6,发送端选择确定信号模式,包括:发送端在可用信号模式中随机选择确定信号模式;或者,发送端根据预定义的规则选择确定信号模式。
S7,发送端根据预定义的规则选择确定信号模式,发送端根据下列因素中的至少一项确定信号模式:发送端的设备能力、发送端的业务需求、发送端的蜂窝通信上行信号模式、发送端对边链路的监听结果,以及发送端对边链路的测量结果。
在一个实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个实施例中,上述电子装置还可以包括传输设备以及输入输出设备, 其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在一个实施例中,本实施例中的具体示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。例如,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (32)

  1. 一种信号模式的确定方法,包括:
    发送端确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;
    所述发送端使用确定的信号模式在所述边链路上发送所述Sidelink信号。
  2. 根据权利要求1所述的方法,其中,所述信号模式包括以下至少之一:循环前缀正交频分复用CP-OFDM模式,和基于离散傅氏变换的正交频分复用DFT-S-OFDM模式。
  3. 根据权利要求1所述的方法,其中,所述发送端确定在边链路上发送所述Sidelink信号的信号模式,至少包括以下之一:
    所述发送端根据边链路资源池的配置信息确定所述信号模式;
    所述发送端根据系统预定义确定所述信号模式;
    所述发送端根据网络侧的配置指示确定所述信号模式;
    所述发送端选择以确定所述信号模式;
    所述发送端根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定所述关联信号的信号模式,其中,所述基准信号为所述Sidelink信号中的至少一种,所述关联信号为所述Sidelink信号中的至少一种。
  4. 根据权利要求3所述的方法,其中,所述边链路资源池的配置信息中包含对所述信号模式的指示,所述发送端根据边链路资源池的配置信息确定所述信号模式,包括:
    所述发送端根据所述边链路资源池的配置信息中包含的对所述信号模式的指示确定所配置的所述信号模式。
  5. 根据权利要求3所述的方法,其中,所述发送端根据网络侧的配置指示确定所述信号模式,包括:所述发送端根据所述网络侧的高层信令和物理层信令中的至少一种确定所述信号模式。
  6. 根据权利要求3所述的方法,其中,所述发送端选择以确定所述信号模式,包括:
    所述发送端在可用信号模式中随机选择以确定所述信号模式;
    或者,所述发送端根据预定义的规则选择以确定所述信号模式。
  7. 根据权利要求6所述的方法,在所述发送端根据预定义的规则选择以确定所述信号模式中,所述发送端根据下列因素中的至少一项确定所述信号模式:
    所述发送端的设备能力、所述发送端的业务需求、所述发送端的蜂窝通信上行信号模式、所述发送端对所述边链路的监听结果,以及所述发送端对所述边链路的测量结果。
  8. 根据权利要求3所述的方法,其中,所述根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定所述关联信号的信号模式包括:
    所述发送端根据所述基准信号的信号模式确定与所述基准信号对应的所述关联信号的信号模式,其中,所述基准信号的信号模式与所述关联信号的信号模式之间存在唯一的对应关系;
    其中,所述基准信号的信号模式与所述关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示。
  9. 根据权利要求8所述的方法,其中,所述基准信号的信号模式与关联信号的信号模式之间的对应关系包括以下至少一种:
    所述PSCCH信号为基准信号,所述PSSCH信号为关联信号;
    所述PSBCH信号为基准信号,所述PSCCH信号为关联信号;
    所述PSBCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号;
    所述PSDCH信号为基准信号,所述PSCCH信号为关联信号;以及
    所述PSDCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号;
    根据所述基准信号的信号模式,确定与所述基准信号对应的关联信号的信号模式。
  10. 根据权利要求1所述的方法,其中,发送端确定在边链路上发送Sidelink信号的信号模式,包括:
    所述发送端确定多种所述Sidelink信号的所述信号模式,其中所述发送端为多种所述Sidelink信号确定的信号模式不相同。
  11. 根据权利要求1所述的方法,其中,在所述发送端确定在边链路Sidelink上发送Sidelink信号的所述信号模式后,所述方法还包括:所述发送端指示所采用的所述信号模式,包括以下至少之一:
    所述发送端通过高层信令和物理层信令中的至少一种指示所述发送端所采用的所述信号模式;
    所述发送端通过解调参考信号隐式指示所述发送端所采用的所述信号模式。
  12. 根据权利要求11所述的方法,其中,所述高层信令包括:无线连接控制信令,或边链路广播消息;所述物理层信令包括:边链路控制信息。
  13. 根据权利要求11所述的方法,其中,所述发送端通过解调参考信号隐式指示所述发送端所采用的所述信号模式包括:
    通过所述解调参考信号所使用的序列或循环移位,隐式指示与所使用的序列或循环移位对应的所述信号模式。
  14. 一种信号模式的获得方法,包括:
    接收端获得边链路Sidelink信号的信号模式;其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;
    所述接收端根据获得的信号模式在所述边链路上接收所述Sidelink信号。
  15. 根据权利要求14所述的方法,其中,所述信号模式包括以下至少之一:循环前缀正交频分复用CP-OFDM模式,和基于离散傅氏变换的正交频分复用DFT-S-OFDM模式。
  16. 根据权利要求14所述的方法,其中,接收端获得所述Sidelink信号的信号模式,至少包括以下之一:
    所述接收端根据边链路资源池的配置信息获得所述信号模式;
    所述接收端根据系统预定义获得所述信号模式;
    所述接收端根据网络侧的配置指示获得所述信号模式;
    所述接收端根据发送端的指示获得所述信号模式;
    所述接收端根据检测获得所述信号模式;
    所述接收端根据基准信号的信号模式与关联信号的信号模式之间的对应关系,获得所述关联信号的信号模式,其中,所述基准信号为所述Sidelink信号中的至少一种,所述关联信号为所述Sidelink信号中的至少一种。
  17. 根据权利要求16所述的方法,其中,所述边链路资源池的配置信息中包含对所述信号模式的指示,所述接收端根据边链路资源池的配置信息获得所 述信号模式,包括:
    所述接收端根据所述边链路资源池的配置信息中包含的对所述信号模式的指示获得所配置的所述信号模式。
  18. 根据权利要求16所述的方法,其中,所述接收端根据网络侧的配置指示获得所述信号模式,包括:所述接收端根据所述网络侧的高层信令和物理层信令中的至少一种指示获得所述信号模式。
  19. 根据权利要求16所述的方法,其中,所述接收端根据发送端的指示获得所述信号模式,包括:
    所述接收端接收所述发送端的高层信令和物理层信令中的至少一种,根据接收到的所述高层信令和物理层信令中的所述至少一种的指示信息获得所述信号模式;其中,
    所述高层信令包括:无线连接控制信令,或边链路广播消息;所述物理层信令包括:边链路控制信息。
  20. 根据权利要求16所述的方法,其中,所述接收端根据检测获得所述信号模式,包括:
    所述接收端通过检测所述Sidelink信号中的解调参考信号所使用的序列或者循环移位,获得所述Sidelink信号的所述信号模式。
  21. 根据权利要求16所述的方法,其中,所述根据基准信号的信号模式与关联信号的信号模式之间的对应关系,获得所述关联信号的信号模式包括:
    所述接收端根据所述基准信号的信号模式获得与所述基准信号对应的所述关联信号的信号模式,其中,所述基准信号的信号模式与所述关联信号的信号模式之间存在唯一的对应关系;
    其中,所述基准信号的信号模式与所述关联信号的信号模式之间的对应关系由系统预定义,或者由网络侧配置指示。
  22. 根据权利要求21所述的方法,其中,所述基准信号的信号模式与关联信号的信号模式之间的对应关系包括以下至少一种:
    所述PSCCH信号为基准信号,所述PSSCH信号为关联信号;
    所述PSBCH信号为基准信号,所述PSCCH信号为关联信号;
    所述PSBCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号;
    所述PSDCH信号为基准信号,所述PSCCH信号为关联信号;以及
    所述PSDCH信号为基准信号,所述PSCCH信号和所述PSSCH信号为关联信号;
    根据所述基准信号的信号模式,确定相应关联信号的信号模式。
  23. 一种信号模式的确定装置,包括:
    确定模块,设置为确定在边链路Sidelink上发送Sidelink信号的信号模式,其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;
    发送模块,设置为使用确定的信号模式在所述边链路上发送所述Sidelink信号。
  24. 根据权利要求23所述的装置,其中,所述确定模块,设置为通过以下至少之一的操作确定在边链路上发送所述Sidelink信号的信号模式:
    根据边链路资源池的配置信息确定所述信号模式;
    根据系统预定义确定所述信号模式;
    根据网络侧的配置指示确定所述信号模式;
    选择以确定所述信号模式;
    根据基准信号的信号模式与关联信号的信号模式之间的对应关系,确定所述关联信号的信号模式,其中,所述基准信号为所述Sidelink信号中的至少一种,所述关联信号为所述Sidelink信号中的至少一种。
  25. 根据权利要求24所述的装置,其中所述边链路资源池的配置信息中包含对所述信号模式的指示,所述确定模块设置为:
    根据所述边链路资源池的配置信息中包含对所述信号模式的指示来确定所配置的所述信号模式。
  26. 根据权利要求24所述的装置,其中,所述确定模块,设置为通过以下方式来根据网络侧的配置指示确定所述信号模式:
    根据网络侧的高层信令和物理层信令中的至少一种确定所述信号模式。
  27. 一种信号模式的获得装置,包括:
    获得模块,设置为在边链路Sidelink上获得Sidelink信号的信号模式;其中,所述Sidelink信号包括以下至少一种:物理边链路控制信道PSCCH信号,物理 边链路共享信道PSSCH信号,物理边链路发现信道PSDCH信号,以及物理边链路广播信道PSBCH信号;
    接收模块,设置为在所述边链路上根据获取的所述信号模式接收所述Sidelink信号。
  28. 根据权利要求27所述的装置,其中,所述获得模块,设置为通过以下至少之一的操作在边链路上获得所述Sidelink信号的信号模式:
    根据边链路资源池的配置信息获得所述信号模式;
    根据系统预定义获得所述信号模式;
    根据网络侧的配置指示获得所述信号模式;
    根据发送端的指示获得所述信号模式;
    根据检测获得所述信号模式;
    根据基准信号的信号模式与关联信号的信号模式之间的对应关系,获得所述关联信号的信号模式,其中,所述基准信号为所述Sidelink信号中的至少一种,所述关联信号为所述Sidelink信号中的至少一种。
  29. 根据权利要求28所述的装置,其中,所述边链路资源池的配置信息中包含对所述信号模式的指示,所述获得模块设置为:
    根据所述边链路资源池的配置信息中包含的对所述信号模式的指示获得所配置的所述信号模式。
  30. 根据权利要求28所述的装置,其中,所述获得模块,设置为通过以下方式来根据网络侧的配置指示获得所述信号模式:
    根据网络侧的高层信令和物理层信令中的至少一种指示获得所述信号模式。
  31. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至13,或14至22任一项中所述的方法。
  32. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-13,或14至22任一项中所述的方法。
PCT/CN2019/071728 2018-01-18 2019-01-15 信号模式的确定、信号模式的获得方法及装置、存储介质 WO2019141158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810048720.3A CN110061818B (zh) 2018-01-18 2018-01-18 信号模式的确定、信号模式的获得方法及装置、存储介质
CN201810048720.3 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019141158A1 true WO2019141158A1 (zh) 2019-07-25

Family

ID=67301958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071728 WO2019141158A1 (zh) 2018-01-18 2019-01-15 信号模式的确定、信号模式的获得方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN110061818B (zh)
WO (1) WO2019141158A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081852A1 (zh) * 2019-10-30 2021-05-06 华为技术有限公司 一种资源指示方法及相关设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4037423A4 (en) * 2019-09-29 2023-11-08 Beijing Xiaomi Mobile Software Co., Ltd. SIDELINK OPERATION PROCESSING METHOD AND DEVICE, AND STORAGE MEDIUM
CN112566068A (zh) * 2019-09-29 2021-03-26 华为技术有限公司 一种dmrs样式指示信息的传输方法和通信装置
WO2021087974A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 一种控制信息的发送方法、装置和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938021A (zh) * 2013-01-16 2015-09-23 交互数字专利控股公司 发现信号生成和接收
CN105813204A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 资源池配置方法及设备
WO2016161609A1 (zh) * 2015-04-09 2016-10-13 华为技术有限公司 一种终端到终端d2d系统中信号收发方法及装置
WO2016181095A1 (en) * 2015-05-14 2016-11-17 Blackberry Limited Allocating resources for a device-to-device transmission
CN107534828A (zh) * 2015-04-08 2018-01-02 英特尔公司 用于增强的设备到设备(d2d)的控制信令机制

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451211B (zh) * 2014-09-25 2019-12-27 中兴通讯股份有限公司 用于设备到设备通信的方法及装置
WO2016099196A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 단말 간 (device-to-device, d2d) 통신을 지원하는 무선 통신 시스템에서 전송 자원을 할당하는 방법
KR20160134367A (ko) * 2015-05-15 2016-11-23 주식회사 아이티엘 단말간 직접 통신에서 단말과 네트워크 간 릴레이 구성 방법 및 장치
US10491354B2 (en) * 2015-06-23 2019-11-26 Electronics And Telecommunications Research Institute Method and apparatus for transmitting data in direct device-to-device communication
CN107231687B (zh) * 2016-03-24 2020-01-14 上海朗帛通信技术有限公司 一种蜂窝网的窄带通信的方法和装置
WO2017171895A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Link adaptation for low complexity device to device (d2d) communication
CN105979527A (zh) * 2016-04-29 2016-09-28 金陵科技学院 基于群组匹配的终端直通资源分配方法
WO2017201273A1 (en) * 2016-05-19 2017-11-23 Intel IP Corporation Subframe structure for discrete fourier transform (dft) spread orthogonal frequency division multiplexing (s-ofdm) waveforms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938021A (zh) * 2013-01-16 2015-09-23 交互数字专利控股公司 发现信号生成和接收
CN105813204A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 资源池配置方法及设备
CN107534828A (zh) * 2015-04-08 2018-01-02 英特尔公司 用于增强的设备到设备(d2d)的控制信令机制
WO2016161609A1 (zh) * 2015-04-09 2016-10-13 华为技术有限公司 一种终端到终端d2d系统中信号收发方法及装置
WO2016181095A1 (en) * 2015-05-14 2016-11-17 Blackberry Limited Allocating resources for a device-to-device transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081852A1 (zh) * 2019-10-30 2021-05-06 华为技术有限公司 一种资源指示方法及相关设备

Also Published As

Publication number Publication date
CN110061818A (zh) 2019-07-26
CN110061818B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2019141158A1 (zh) 信号模式的确定、信号模式的获得方法及装置、存储介质
CN104919876B (zh) 基于ue的d2d发现
WO2019096291A1 (zh) 信息发送、接收方法及装置
JP6545296B2 (ja) Qosパラメータに基づくマルチキャリアモードの動的な選択
US20210329556A1 (en) Method and apparatus for reducing power consumption of terminal in wireless communication system
CN111726877B (zh) 数据传输方法、终端和基站
WO2016201739A1 (zh) 资源调度的方法、装置和设备
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
WO2013067828A1 (zh) 信息发送及盲检方法和设备
CN109391576B (zh) 基于序列的信号处理方法、通信设备及通信系统
CN107872838B (zh) 中继指示方法及接入点ap
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
CN109391424B (zh) 一种数据发送方法、设备及系统
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
CN114731258A (zh) 利用dci中的可配置的天线端口字段确定和指示天线端口的系统和方法
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
KR20200087619A (ko) 무선 통신 시스템에서 단말 지원 정보 송수신 방법 및 장치
CN114270972A (zh) 一种上行传输资源的确定方法及装置
WO2017080271A1 (zh) 传输调度信息的方法和装置
US20180145858A1 (en) Apparatus and method for transmitting and receiving signals in wireless communication system
TW201904336A (zh) 帶寬分段的配置方法及網絡設備、終端
WO2020063479A1 (zh) 由用户设备执行的方法以及用户设备
WO2022143868A1 (zh) 资源映射方法、装置及设备
WO2018126965A1 (zh) 参考信号的资源确定方法及装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19741181

Country of ref document: EP

Kind code of ref document: A1