WO2019140871A1 - 一种动力锂电池用浸没式散热冷却液及其制备方法 - Google Patents

一种动力锂电池用浸没式散热冷却液及其制备方法 Download PDF

Info

Publication number
WO2019140871A1
WO2019140871A1 PCT/CN2018/095114 CN2018095114W WO2019140871A1 WO 2019140871 A1 WO2019140871 A1 WO 2019140871A1 CN 2018095114 W CN2018095114 W CN 2018095114W WO 2019140871 A1 WO2019140871 A1 WO 2019140871A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
lithium battery
power lithium
coolant
hydrofluoroether
Prior art date
Application number
PCT/CN2018/095114
Other languages
English (en)
French (fr)
Inventor
焦海军
徐骏骅
朱志鹏
Original Assignee
卓聪(上海)环保ke'ji'fa'zhan'you'xian'gong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卓聪(上海)环保ke'ji'fa'zhan'you'xian'gong filed Critical 卓聪(上海)环保ke'ji'fa'zhan'you'xian'gong
Priority to EP18901355.0A priority Critical patent/EP3741824B1/en
Priority to US16/961,692 priority patent/US20210079281A1/en
Publication of WO2019140871A1 publication Critical patent/WO2019140871A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of chemical industry, in particular to an immersion heat dissipation coolant for a power lithium battery and a preparation method thereof.
  • Lithium battery cooling technology mainly includes indirect cooling technology and direct cooling technology.
  • the existing power lithium battery mainly uses indirect heat dissipation modes such as natural cooling, air cooling, and pipeline liquid cooling. This kind of heat dissipation technology can be used to some extent. It can alleviate the heat dissipation problem of the battery, but it is not enough to meet the heat dissipation requirements of the high heat flux power lithium battery pack.
  • the heat transfer process is complicated, there is contact thermal resistance and convective heat transfer resistance, the total thermal resistance is large, and the heat exchange efficiency is low. At the same time, it may cause internal heat to be superimposed, which leads to higher and higher temperature inside the battery pack, which ultimately affects the service life and safety of the battery pack.
  • some power lithium batteries such as power lithium batteries for electric vehicles, have a harsh environment and high frequency of use.
  • the requirements for lithium battery packs are more stringent, and the temperature field in the battery pack is required to be uniform.
  • the indirect heat dissipation technology is difficult to meet the heat dissipation requirements.
  • the direct cooling technology mainly uses immersion cooling technology, which completely immerses the entire battery pack in the cooling medium.
  • phase change immersion cooling is carried out by the cooling medium evaporating to the upper part of the sealed space in the heat of the battery pack, and is re-cooled to the liquid to complete the cycle by heat exchange with the upper heat exchanger; the single phase immersion cooling completes the circulation through the medium pump to realize heat Exchange.
  • the immersion direct cooling is much faster than the heat of the cooling medium, and the cooling efficiency is much higher than the indirect cooling technology.
  • the phase change cooling utilizes the heat of vaporization latent tropical heat when the refrigerant is boiled, the latent heat of vaporization is much larger than the specific heat of the cooling medium, so the cooling effect of the evaporative cooling is more remarkable.
  • the cooling liquid used for immersion cooling of power lithium battery mainly includes mineral oil, silicone oil, natural ester oil, synthetic ester oil, etc., and its boiling point is high, and the principle of heat dissipation is mainly single-phase immersion cooling, relative to phase change cooling. The effect is poor. Therefore, it is an important task to explore a new phase change immersion coolant for cooling and cooling of power lithium batteries.
  • the present invention provides an immersion cooling coolant for a power lithium battery and a preparation method thereof, which have good heat dissipation effect, high specific heat, low expansion, low toxicity, high insulation, flame retardancy, inertness, material compatibility. Strong characteristics, can quickly achieve heat transfer, effectively solve the problem of heat and heat dissipation of power lithium battery, improve battery life, reduce the risk of failure, and enhance the safety of the battery.
  • the immersion heat-dissipating coolant for power lithium battery provided by the invention comprises the following components by weight ratio: 30 parts-70 parts of hydrofluoroether compound, 30 parts-50 parts of halogenated hydrocarbon, 1 part-10 of alcohol compound Parts, antioxidants 0.01 parts - 0.5 parts, preservatives 0.01 parts - 0.5 parts, nano metal oxides 0.01 parts - 0.5 parts.
  • the hydrofluoroether compound, the halogenated hydrocarbon and the alcohol compound are mixed to form a hydrofluoroether azeotrope having high specific heat, low expansion, low toxicity, and high insulation.
  • the characteristics of flame retardant, inertness and strong material compatibility can quickly realize the heat transfer effect, effectively solve the problem of heat and heat dissipation of the power lithium battery, improve the service life of the battery, reduce the risk of failure, and enhance the safety of the battery.
  • the hydrofluoroether compound comprises 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 1,1,2,2-tetrafluoroethyl ether 1,1,1,2,3,3-hexafluoro-3-methoxypropane and methyl nonafluorobutyl ether.
  • the halogenated hydrocarbon comprises 1,1-dichloroethane and 1,2-dichloroethylene.
  • the alcohol compound comprises methanol and ethanol.
  • the antioxidant is a bisphenol compound.
  • the antioxidant is phenol.
  • the preservative is an imidazole compound which prevents corrosion oxidation of a metal material in the battery assembly.
  • the preservative is benzotriazole.
  • the nano metal oxide is at least one of nano titanium dioxide, aluminum oxide and zinc oxide dispersed in a cooling liquid to increase the specific heat capacity of the cooling liquid, increase the chance of collision between particles, improve thermal conductivity, and enhance liquid. Turbulence and turbulence effects improve heat distribution, reduce thermal gradients and eliminate thermal polarization.
  • the method for preparing a submerged heat dissipation coolant for a power lithium battery comprises the following steps:
  • the prepared power lithium battery is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • a certain amount of the hydrofluoroether compound is added to the reactor equipped with the stirring device, and the room temperature is about 25 ° C in the step of maintaining the room temperature.
  • the stirring device is turned on, and a suitable proportion of the halogenated hydrocarbon and the alcohol compound are separately added while stirring to form a hydrofluoroether azeotrope. After the halogenated hydrocarbon and the alcohol compound are added, further stirring is required for about 15 minutes. .
  • an antioxidant and a preservative are sequentially added to the hydrofluoroether azeotrope, and the step of stirring uniformly is stirred for about 15 minutes.
  • the present invention mainly comprises a hydrofluoroether compound, and forms an azeotrope by mixing with a compound such as a halogenated hydrocarbon or an alcohol, and is supplemented with an antioxidant, a preservative, and a non-conductive nano metal oxide additive to form a coolant composition. .
  • the hydrofluoroether compound used in the present invention has a boiling point of 50 ° C to 60 ° C, and an azeotrope formed with a halogenated hydrocarbon, an alcohol or the like has a boiling point of 40 ° C to 60 ° C, and is used for a power lithium battery immersion type.
  • the heat dissipation is phase change heat dissipation, and the heat dissipation efficiency is high.
  • the battery pack can be used in extreme environments to maintain a temperature that is best suited for battery operation.
  • the coolant material of the invention has strong compatibility, and does not chemically react to the battery cell, the casing and the parts and materials immersed in the coolant.
  • the non-conductive nano metal oxide used in the invention is used as an additive, which is dispersed in the cooling liquid, increases the specific surface area and specific heat capacity of the cooling liquid, increases the collision chance between particles, improves the thermal conductivity, enhances the turbulent flow and turbulence effect of the liquid, and improves Thermal distribution properties, reduced thermal gradients and elimination of thermal polarization.
  • the cooling liquid of the invention has the characteristics of high specific heat, low expansion, low toxicity, high insulation, flame retardancy, inertness and strong material compatibility.
  • a submerged heat-dissipating coolant for a power lithium battery which is composed of the following weight ratio formula: 30 parts-70 parts of hydrofluoroether compound, 30 parts-50 parts of halogenated hydrocarbon,
  • the alcohol compound is 1 part to 10 parts
  • the antioxidant is 0.01 part to 0.5 part
  • the preservative is 0.01 part to 0.5 part
  • the nano metal oxide is 0.01 part to 0.5 part.
  • the hydrofluoroether compound, the halogenated hydrocarbon and the alcohol compound are mixed to form a hydrofluoroether azeotrope.
  • the hydrofluoroether compound has a boiling point of 50 ° C to 60 ° C to form hydrogen.
  • the boiling point of the fluoroether azeotrope is between 40 ° C and 60 ° C, and the hydrofluoroether azeotrope formed has the characteristics of high specific heat, low expansion, low toxicity, high insulation, flame retardancy, inertness and strong material compatibility. It can quickly realize heat transfer, effectively solve the problem of heat generation and heat dissipation of the power lithium battery, improve battery life, reduce the risk of failure, and enhance the safety of the battery.
  • the antioxidant is a bisphenol compound.
  • the hydrofluoroether compound may be 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE-347), 1,1,2,2-tetrafluoro Ethyl ether, 1,1,1,2,3,3-hexafluoro-3-methoxypropane (HFE-356mec), methyl nonafluorobutyl ether (HFE-7100), and the like.
  • the halogenated hydrocarbon may be 1,1-dichloroethane, 1,2-dichloroethylene or the like.
  • the alcohol compound may be methanol, ethanol or the like.
  • the antioxidant may be a bisphenol compound such as phenol or the like.
  • the preservative may be an imidazole compound such as benzotriazole or the like for preventing corrosion oxidation of a metal material in the battery assembly.
  • the nano metal oxide is a non-conductive nano metal oxide, such as at least one of nano titanium dioxide, aluminum oxide and zinc oxide, which is dispersed in the cooling liquid, can increase the specific heat capacity of the cooling liquid, increase the collision chance between particles, and improve the heat conduction. Performance, enhanced liquid turbulence and turbulence, improved heat distribution, reduced thermal gradients and elimination of thermal polarization.
  • the antioxidant and the preservative are added in sequence, respectively, and stirred for about 15 minutes;
  • the power lithium battery prepared in step 4 is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • the coolant composition of the present embodiment not only satisfies the performance requirements of high specific heat, low expansion, low toxicity, high insulation, and flame retardancy, but also has the characteristics of inertness, strong material compatibility, and the like, and does not make the battery cell and the shell.
  • the body and the components and materials immersed in the coolant react chemically, which can directly and effectively solve the heating problem of the power lithium battery.
  • Example 1 A submerged heat-dissipating coolant for a power lithium battery consisting of the following weight ratio formulation: 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether ( HFE-347): 55 parts; 1,1-dichloroethane: 42 parts; methanol: 2 parts; phenol: 0.05 parts; benzotriazole: 0.1 parts; nano titanium dioxide: 0.02 parts; nano alumina: 0.03 parts .
  • HFE-347 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • the preparation method of the immersion cooling coolant for the power lithium battery described above is as follows:
  • step 3 After the hydrofluoroether azeotrope is prepared in step 2, 0.05 parts of phenol and 0.1 part of benzotriazole are added in sequence, respectively, and stirred for about 15 minutes.
  • the power lithium battery prepared in step 4 is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • Example 2 A submerged heat-dissipating coolant for a power lithium battery consisting of the following weight ratio formulation: 1,1,2,2-tetrafluoroethyl ethyl ether: 65 parts; 1,1-dichloro Ethane: 32 parts; methanol: 2.5 parts; phenol: 0.05 parts; benzotriazole: 0.1 parts; nano zinc oxide: 0.2 parts; nano-alumina: 0.15 parts.
  • the preparation method of the immersion cooling coolant for the power lithium battery described above is as follows:
  • step 3 After the hydrofluoroether azeotrope is prepared in step 2, 0.05 parts of phenol and 0.1 part of benzotriazole are added in sequence, respectively, and stirred for about 15 minutes.
  • the power lithium battery prepared in step 4 is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • Example 3 An immersion cooling coolant for a power lithium battery consisting of the following weight ratio formulation: 1,1,1,2,3,3-hexafluoro-3-methoxypropane (HFE-356mec : 75 parts; 1,1-dichloroethane: 22 parts; methanol: 2.8 parts; phenol: 0.05 parts; benzotriazole: 0.1 parts; nano titanium dioxide: 0.02 parts; nano alumina: 0.03 parts.
  • HFE-356mec 75 parts
  • 1,1-dichloroethane 22 parts
  • methanol 2.8 parts
  • phenol 0.05 parts
  • benzotriazole 0.1 parts
  • nano titanium dioxide 0.02 parts
  • nano alumina 0.03 parts.
  • the preparation method of the immersion cooling coolant for the power lithium battery described above is as follows:
  • step 3 After the hydrofluoroether azeotrope is prepared in step 2, 0.05 parts of phenol and 0.1 part of benzotriazole are added in sequence, respectively, and stirred for about 15 minutes.
  • the power lithium battery prepared in step 4 is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • Example 4 An immersion cooling coolant for a power lithium battery consisting of the following weight ratio formulation: methyl nonafluorobutyl ether (HFE-7100): 53 parts; 1,2-dichloroethylene: 45 parts Ethanol: 2 parts; phenol: 0.05 parts; benzotriazole: 0.1 parts; nano titanium dioxide: 0.02 parts; nano-alumina: 0.03 parts.
  • HFE-7100 methyl nonafluorobutyl ether
  • 1,2-dichloroethylene 45 parts
  • Ethanol 2 parts
  • phenol 0.05 parts
  • benzotriazole 0.1 parts
  • nano titanium dioxide 0.02 parts
  • nano-alumina 0.03 parts.
  • the preparation method of the immersion cooling coolant for the power lithium battery described above is as follows:
  • HFE-7100 methyl nonafluorobutyl ether
  • step 3 After the hydrofluoroether azeotrope is prepared in step 2, 0.05 parts of phenol and 0.1 part of benzotriazole are added in sequence, respectively, and stirred for about 15 minutes.
  • the power lithium battery prepared in step 4 is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • Example 5 A submerged heat-dissipating coolant for a power lithium battery consisting of the following weight ratio formulation: 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether ( HFE-347): 55 parts; 1,1-dichloroethane: 42 parts; methanol: 2 parts; phenol: 0.05 parts; benzotriazole: 0.1 parts; nano titanium dioxide: 0.02 parts; nano alumina: 0.03 parts ; nano zinc oxide: 0.05 parts.
  • HFE-347 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • the preparation method of the immersion cooling coolant for the power lithium battery described above is as follows:
  • step 3 After the hydrofluoroether azeotrope is prepared in step 2, 0.05 parts of phenol and 0.1 part of benzotriazole are added in sequence, respectively, and stirred for about 15 minutes.
  • step 4 Add 0.02 parts of nanometer titanium dioxide, 0.03 parts of nano-alumina and 0.05 parts of nano-zinc oxide to the liquid prepared in step 3, and stir at a high speed of 2000 rpm for 30 minutes to obtain immersion heat dissipation for the power lithium battery. Coolant.
  • the power lithium battery prepared in step 4 is filled into a plastic bucket with a immersion heat-dissipating coolant product liquid, and sealed and stored.
  • the hydrofluoroether compound used in the present invention has a boiling point of 50 ° C to 60 ° C, and an azeotrope formed with a halogenated hydrocarbon, an alcohol or the like has a boiling point of 40 ° C to 60 ° C, and is used for a power lithium battery immersion type.
  • the heat dissipation is phase change heat dissipation, and the heat dissipation efficiency is high.
  • the battery pack can be used in extreme environments to maintain a temperature that is best suited for battery operation.
  • the coolant material of the invention has strong compatibility, and does not chemically react to the battery cell, the casing and the parts and materials immersed in the coolant.
  • the non-conductive nano metal oxide used in the invention is used as an additive, which is dispersed in the cooling liquid, increases the specific surface area and specific heat capacity of the cooling liquid, increases the collision chance between particles, improves the thermal conductivity, enhances the turbulent flow and turbulence effect of the liquid, and improves Thermal distribution properties, reduced thermal gradients and elimination of thermal polarization.
  • the cooling liquid of the invention has the characteristics of high specific heat, low expansion, low toxicity, high insulation, flame retardancy, inertness and strong material compatibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种动力锂电池用浸没式散热冷却液,包括:氢氟醚类化合物30份-70份,卤代烃30份-50份,醇类化合物1份-10份,抗氧化剂0.01份-0.5份,防腐剂0.01份-0.5份,纳米金属氧化物0.01份-0.5份。氢氟醚类化合物包括1,1,2,2-四氟乙基-2,2,2-三氟乙基醚(HFE-347)、1,1,1,2,3,3-六氟-3-甲氧基丙烷(HFE-356mec)和甲基九氟丁醚(HFE-7100)等;卤代烃包括1,1-二氯乙烷和1,2-二氯乙烯;醇类化合物包括甲醇和乙醇;抗氧化剂为双酚类化合物;防腐剂为咪唑类化合物;纳米金属氧化物为纳米二氧化钛、氧化铝、氧化锌中的至少一种。

Description

一种动力锂电池用浸没式散热冷却液及其制备方法
本专利申请要求2018年1月22日提交的中国专利申请号为201810057912.0,申请人为上海宸海科技集团有限公司,发明名称为“一种动力锂电池用浸没式散热冷却液及其制备方法”的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本发明涉及的是化工领域,具体涉及一种动力锂电池用浸没式散热冷却液及其制备方法。
背景技术
随着新能源汽车的快速发展,动力锂电池的应用更加广泛,但同时也面临一系列急需解决的问题,比如由于电池发热导致其寿命减少、可靠性及安全降低等。锂电池散热技术主要包括间接散热冷却技术和直接冷却技术,现有的动力锂电池主要采用的是自然冷却、风冷、管道式液体冷却等间接的散热模式,此类散热技术在一定程度上可以缓解电池的散热问题,但是不足以满足高热流密度动力锂电池组的散热要求,其缺点明显,传热过程复杂,存在接触热阻及对流换热热阻,热阻总和大,换热效率低,同时可能导致内部热量叠加,从而导致电池组内的温度越来越高,最终直接影响电池组的使用寿命及安全性。此外,一些动力锂电池如电动汽车用动力锂电池使用环境恶劣、使用频率高,对锂电池组要求更加严格,要求电池组内温度场均匀,间接式散热冷却技术难以满足其散热需求。直接冷却技术主要采用的是浸没冷却技术,即将整个电池组完全浸没在冷却介质中。根据冷却介质沸点的不同,分为相变浸没冷却和单相浸没冷却。相变浸没冷却是通过冷却介质在电池组发热处蒸发为气态上升至密闭空间的上方,与上方的换热器换热重新冷却为液体完成循环;单相浸没冷却通过介质泵完成循环,实现热量的交换。浸没式直接冷却由于其冷却介质比热大,散热速度快,制冷效率远高于间接散热冷却技术。在浸没式冷却技术中,相变冷却由于是利用制冷剂沸腾时的汽化潜热带走热量,汽化潜热比冷却介质比热要大很多,因此其蒸发冷却的冷却效果更为显著。
技术问题
目前用于动力锂电池浸没式冷却的冷却液主要包括矿物油、硅油、天然酯油、合成酯油等,其沸点均较高,其散热的原理主要为单相浸没冷却,相对于相变冷却效果较差。因此,探索新型相变浸没冷却液用于动力锂电池的散热冷却是一项重要的工作。
技术解决方案
有鉴于此,本发明提供一种动力锂电池用浸没式散热冷却液及其制备方法,其散热效果好,具有高比热、低膨胀、低毒性、高绝缘、阻燃、惰性、材料兼容性强等特征,能快速的实现热传递,有效地解决动力锂电池发热及散热问题,提高电池使用寿命,降低失效风险,增强电池的安全性。
本发明提供的动力锂电池用浸没式散热冷却液,包括以下重量配比的组分:氢氟醚类化合物30份-70份,卤代烃30份-50份,醇类化合物1份-10份,抗氧化剂0.01份-0.5份,防腐剂0.01份-0.5份,纳米金属氧化物0.01份-0.5份。
作为优选,所述氢氟醚类化合物、卤代烃和醇类化合物混合形成氢氟醚类共沸物,所述氢氟醚类共沸物具有高比热、低膨胀、低毒性、高绝缘、阻燃、惰性、材料兼容性强等特征,能快速的实现热传递效果,有效地解决动力锂电池发热及散热问题,提高电池使用寿命,降低失效风险,增强电池的安全性。
作为优选,所述的氢氟醚类化合物包括1,1,2,2-四氟乙基-2,2,2-三氟乙基醚,1,1,2,2-四氟乙基醚,1,1,1,2,3,3-六氟-3-甲氧基丙烷和甲基九氟丁醚。
作为优选,所述的卤代烃包括1,1-二氯乙烷和1,2-二氯乙烯。
作为优选,所述的醇类化合物包括甲醇和乙醇。
作为优选,所述的抗氧化剂为双酚类化合物。
作为优选,所述的抗氧化剂为苯酚。
作为优选,所述的防腐剂为咪唑类化合物,能防止电池组件中金属材料的腐蚀氧化。
作为优选,所述的防腐剂为苯并三唑。
作为优选,所述的纳米金属氧化物为纳米二氧化钛、氧化铝、氧化锌中至少一种,其分散在冷却液中,提高冷却液的比热容量,增加粒子间碰撞机会,改善导热性能,增强液体乱流及湍流效果,提升热分布性能,减少热梯度和消除热极化。
本发明提供的动力锂电池用浸没式散热冷却液的制备方法,包括以下步骤:
在装有搅拌装置的反应器中加入一定量氢氟醚类化合物,保持室温;
开启搅拌装置,边搅拌边分别加入适当比例的卤代烃和醇类化合物,形成氢氟醚类共沸物;
在氢氟醚类共沸物中依次加入抗氧化剂和防腐剂,搅拌均匀;
加入纳米金属氧化物添加剂,并搅拌均匀,制得动力锂电池用浸没式散热冷却液;
将制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
作为优选,在装有搅拌装置的反应器中加入一定量氢氟醚类化合物,保持室温的步骤中,室温为25℃左右。
作为优选,开启搅拌装置,边搅拌边分别加入适当比例的卤代烃和醇类化合物,形成氢氟醚类共沸物的步骤中,加入卤代烃和醇类化合物后需进一步搅拌大约15分钟。
作为优选,在氢氟醚类共沸物中依次加入抗氧化剂和防腐剂,搅拌均匀的步骤中需搅拌大约15分钟。
作为优选,加入纳米金属氧化物添加剂,并搅拌均匀,制得动力锂电池用浸没式散热冷却液的步骤中,加入纳米金属氧化物添加剂后,以转速2000转/分钟高速搅拌30分钟。
本发明以氢氟醚类化合物为主,通过与卤代烃、醇类等化合物混合形成共沸物,并辅以抗氧剂、防腐剂及不导电纳米金属氧化物添加剂等形成冷却液组合物。
有益效果
本发明具有以下有益效果:
1、本发明所使用氢氟醚类化合物其沸点在50℃-60℃,与卤代烃、醇类等形成的共沸物沸点在40℃-60℃,对于用于动力锂电池组浸没式散热为相变式散热,散热效率高。使电池组可以在极端环境下使用都保持在一个最适合电池工作的温度。
2、本发明冷却液材料兼容性强,对电池电芯、壳体及浸没在冷却液内的零部件和材料不会发生化学反应。
3、本发明使用的不导电纳米金属氧化物作为添加剂,其分散在冷却液中,提高冷却液比表面和比热容量,增加粒子间碰撞机会,改善导热性能,增强液体乱流及湍流效果,提升热分布性能,减少热梯度和消除热极化。
4、本发明冷却液具有高比热、低膨胀、低毒性、高绝缘、阻燃、惰性、材料兼容性强等特征。
本发明的实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明的具体实施方式、结构、特征及其功效,详细说明如后。
本具体实施方式采用以下技术方案:一种动力锂电池用浸没式散热冷却液,由以下重量配比的配方组成:氢氟醚类化合物30份-70份,卤代烃30份-50份,醇类化合物1份-10份,抗氧化剂0.01份-0.5份,防腐剂0.01份-0.5份,纳米金属氧化物0.01份-0.5份。在配置本实施方式的动力锂电池用浸没式散热冷却液时,各组分的称取单位可以为克,也可以为千克,只需保证各组分的质量单位相同即可。
在上述配方中,氢氟醚类化合物、卤代烃和醇类化合物混合形成氢氟醚类共沸物,在本实施例中,氢氟醚类化合物沸点在50℃-60℃,形成的氢氟醚类共沸物的沸点在40℃-60℃,且形成的氢氟醚类共沸物具有高比热、低膨胀、低毒性、高绝缘、阻燃、惰性、材料兼容性强等特征,能快速的实现热传递,有效地解决动力锂电池的发热及散热问题,提高电池使用寿命,降低失效风险,增强电池的安全性。抗氧化剂为双酚类化合物。
具体地,氢氟醚类化合物可以为1,1,2,2-四氟乙基-2,2,2-三氟乙基醚(HFE-347),1,1,2,2-四氟乙基醚,1,1,1,2,3,3-六氟-3-甲氧基丙烷(HFE-356mec),甲基九氟丁醚(HFE-7100)等。卤代烃可以为1,1-二氯乙烷,1,2-二氯乙烯等。醇类化合物可以为甲醇,乙醇等。抗氧化剂可以为双酚类化合物,例如苯酚等。防腐剂可以为咪唑类化合物,例如,苯并三唑等,用于防止电池组件中金属材料的腐蚀氧化。纳米金属氧化物为不导电的纳米金属氧化物,例如纳米二氧化钛、氧化铝、氧化锌中至少一种,其分散在冷却液中,能够提高冷却液的比热容量,增加粒子间碰撞机会,改善导热性能,增强液体乱流及湍流效果,提升热分布性能,减少热梯度和消除热极化。
本具体实施方式的动力锂电池用浸没式散热冷却液的制备方法包括:
1、在装有搅拌装置的反应器中加入一定量氢氟醚类化合物,保持室温25℃左右;
2、开启搅拌装置,边搅拌边分别加入适当比例的卤代烃和醇类化合物,搅拌大约15分钟,形成氢氟醚类共沸物;
3、待步骤2制备好氢氟醚类共沸物后,再依次加入抗氧化剂和防腐剂,分别搅拌约15分钟;
4、将纳米金属氧化物添加剂加入到步骤3中制备的液体中,以转速2000转/分钟高速搅拌30分钟,即制得动力锂电池用浸没式散热冷却液;
5、将步骤4制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
本具体实施方式的冷却液组合物除满足高比热、低膨胀、低毒性、高绝缘、阻燃等性能要求外,还具备惰性、材料兼容性强等特征,不会使电池电芯、壳体及浸没在冷却液内的零部件和材料发生化学反应,能够直接有效地解决动力锂电池的发热问题。
实施例1:一种动力锂电池用浸没式散热冷却液,由以下重量配比的配方组成:1,1,2,2-四氟乙基-2,2,2-三氟乙基醚(HFE-347):55份;1,1-二氯乙烷:42份;甲醇:2份;苯酚:0.05份;苯并三唑:0.1份;纳米二氧化钛:0.02份;纳米氧化铝:0.03份。
上述所述的动力锂电池用浸没式散热冷却液的制备方法如下:
1、在装有搅拌装置的反应器中加入55份1,1,2,2-四氟乙基-2,2,2-三氟乙基醚(HFE-347),保持室温25℃左右。
2、开启搅拌装置,边搅拌边分别加入42份1,1-二氯乙烷和2份甲醇,搅拌大约15分钟,形成氢氟醚类共沸物。
3、待步骤2制备好氢氟醚类共沸物后,再依次加入0.05份苯酚和0.1份苯并三唑,分别搅拌约15分钟。
4、将0.02份纳米二氧化钛和0.03份纳米氧化铝加入到步骤3中制备的液体中,以转速2000转/分钟高速搅拌30分钟,即制得动力锂电池用浸没式散热冷却液。
5、将步骤4制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
实施例2:一种动力锂电池用浸没式散热冷却液,由以下重量配比的配方组成:1,1,2,2-四氟乙基乙基醚:65份;1,1-二氯乙烷:32份;甲醇:2.5份;苯酚:0.05份;苯并三唑:0.1份;纳米氧化锌:0.2份;纳米氧化铝:0.15份。
上述所述的动力锂电池用浸没式散热冷却液的制备方法如下:
1、在装有搅拌装置的反应器中加入65份1,1,2,2-四氟乙基乙基醚,保持室温25℃左右。
2、开启搅拌装置,边搅拌边分别加入32份1,1-二氯乙烷和2.5份甲醇,搅拌大约15分钟,形成氢氟醚类共沸物。
3、待步骤2制备好氢氟醚类共沸物后,再依次加入0.05份苯酚和0.1份苯并三唑,分别搅拌约15分钟。
4、将0.2份纳米氧化锌和0.15份纳米氧化铝加入到步骤3中制备的液体中,以转速2000转/分钟高速搅拌30分钟,即制得动力锂电池用浸没式散热冷却液。
5、将步骤4制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
实施例3:一种动力锂电池用浸没式散热冷却液,由以下重量配比的配方组成:1,1,1,2,3,3-六氟-3-甲氧基丙烷(HFE-356mec):75份;1,1-二氯乙烷:22份;甲醇:2.8份;苯酚:0.05份;苯并三唑:0.1份;纳米二氧化钛:0.02份;纳米氧化铝:0.03份。
上述所述的动力锂电池用浸没式散热冷却液的制备方法如下:
1、在装有搅拌装置的反应器中加入75份1,1,1,2,3,3-六氟-3-甲氧基丙烷(HFE-356mec),保持室温25℃左右。
2、开启搅拌装置,边搅拌边分别加入22份1,1-二氯乙烷和2.8份甲醇,搅拌大约15分钟,形成氢氟醚类共沸物。
3、待步骤2制备好氢氟醚类共沸物后,再依次加入0.05份苯酚和0.1份苯并三唑,分别搅拌约15分钟。
4、将0.02份纳米二氧化钛和0.03份纳米氧化铝加入到步骤3中制备的液体中,以转速2000转/分钟高速搅拌30分钟,即制得动力锂电池用浸没式散热冷却液。
5、将步骤4制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
实施例4:一种动力锂电池用浸没式散热冷却液,由以下重量配比的配方组成:甲基九氟丁醚(HFE-7100):53份;1,2-二氯乙烯:45份;乙醇:2份;苯酚:0.05份;苯并三唑:0.1份;纳米二氧化钛:0.02份;纳米氧化铝:0.03份。
上述所述的动力锂电池用浸没式散热冷却液的制备方法如下:
1、在装有搅拌装置的反应器中加入53份甲基九氟丁醚(HFE-7100),保持室温25℃左右。
2、开启搅拌装置,边搅拌边分别加入45份1,2-二氯乙烯和2份乙醇,搅拌大约15分钟,形成氢氟醚类共沸物。
3、待步骤2制备好氢氟醚类共沸物后,再依次加入0.05份苯酚和0.1份苯并三唑,分别搅拌约15分钟。
4、将0.02份纳米二氧化钛和0.03份纳米氧化铝加入到步骤3中制备的液体中,以转速2000转/分钟高速搅拌30分钟,即制得动力锂电池用浸没式散热冷却液。
5、将步骤4制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
实施例5:一种动力锂电池用浸没式散热冷却液,由以下重量配比的配方组成:1,1,2,2-四氟乙基-2,2,2-三氟乙基醚(HFE-347):55份;1,1-二氯乙烷:42份;甲醇:2份;苯酚:0.05份;苯并三唑:0.1份;纳米二氧化钛:0.02份;纳米氧化铝:0.03份;纳米氧化锌:0.05份。
上述所述的动力锂电池用浸没式散热冷却液的制备方法如下:
1、在装有搅拌装置的反应器中加入55份1,1,2,2-四氟乙基-2,2,2-三氟乙基醚(HFE-347),保持室温25℃左右。
2、开启搅拌装置,边搅拌边分别加入42份1,1-二氯乙烷和2份甲醇,搅拌大约15分钟,形成氢氟醚类共沸物。
3、待步骤2制备好氢氟醚类共沸物后,再依次加入0.05份苯酚和0.1份苯并三唑,分别搅拌约15分钟。
4、将0.02份纳米二氧化钛、0.03份纳米氧化铝和0.05份纳米氧化锌加入到步骤3中制备的液体中,以转速2000转/分钟高速搅拌30分钟,即制得动力锂电池用浸没式散热冷却液。
5、将步骤4制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
1、本发明所使用氢氟醚类化合物其沸在50℃-60℃,与卤代烃、醇类等形成的共沸物沸点在40℃-60℃,对于用于动力锂电池组浸没式散热为相变式散热,散热效率高。使电池组可以在极端环境下使用都保持在一个最适合电池工作的温度。
2、本发明冷却液材料兼容性强,对电池电芯、壳体及浸没在冷却液内的零部件和材料不会发生化学反应。
3、本发明使用的不导电纳米金属氧化物作为添加剂,其分散在冷却液中,提高冷却液比表面和比热容量,增加粒子间碰撞机会,改善导热性能,增强液体乱流及湍流效果,提升热分布性能,减少热梯度和消除热极化。
4、本发明冷却液具有高比热、低膨胀、低毒性、高绝缘、阻燃、惰性、材料兼容性强等特征。

Claims (15)

  1. 一种动力锂电池用浸没式散热冷却液,其特征在于,包括以下重量配比的组分:氢氟醚类化合物30份-70份,卤代烃30份-50份,醇类化合物1份-10份,抗氧化剂0.01份-0.5份,防腐剂0.01份-0.5份,纳米金属氧化物0.01份-0.5份。
  2. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的氢氟醚类化合物、卤代烃和醇类化合物混合形成氢氟醚类共沸物。
  3. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的氢氟醚类化合物包括1,1,2,2-四氟乙基-2,2,2-三氟乙基醚,1,1,2,2-四氟乙基醚,1,1,1,2,3,3-六氟-3-甲氧基丙烷和甲基九氟丁醚。
  4. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的卤代烃包括1,1-二氯乙烷和1,2-二氯乙烯。
  5. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的醇类化合物包括甲醇和乙醇。
  6. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的抗氧化剂为双酚类化合物。
  7. 根据权利要求6所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的抗氧化剂为苯酚。
  8. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的防腐剂为咪唑类化合物。
  9. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的防腐剂为苯并三唑。
  10. 根据权利要求1所述的动力锂电池用浸没式散热冷却液,其特征在于,所述的纳米金属氧化物为纳米二氧化钛、氧化铝、氧化锌中至少一种。
  11. 一种动力锂电池用浸没式散热冷却液的制备方法,其特征在于,包括以下步骤:
    在装有搅拌装置的反应器中加入一定量氢氟醚类化合物,保持室温;
    开启搅拌装置,边搅拌边分别加入适当比例的卤代烃和醇类化合物,形成氢氟醚类共沸物;
    在氢氟醚类共沸物中依次加入抗氧化剂和防腐剂,搅拌均匀;
    加入纳米金属氧化物添加剂,并搅拌均匀,制得动力锂电池用浸没式散热冷却液;
    将制得的动力锂电池用浸没式散热冷却液成品液装入塑料桶中,密封保存。
  12. 根据权利要求11所述的动力锂电池用浸没式散热冷却液的制备方法,其特征在于,在装有搅拌装置的反应器中加入一定量氢氟醚类化合物,保持室温的步骤中,室温为25℃左右。
  13. 根据权利要求11所述的动力锂电池用浸没式散热冷却液的制备方法,其特征在于,开启搅拌装置,边搅拌边分别加入适当比例的卤代烃和醇类化合物,形成氢氟醚类共沸物的步骤中,加入卤代烃和醇类化合物后需进一步搅拌大约15分钟。
  14. 根据权利要求11所述的动力锂电池用浸没式散热冷却液的制备方法,其特征在于,在氢氟醚类共沸物中依次加入抗氧化剂和防腐剂,搅拌均匀的步骤中需搅拌大约15分钟。
  15. 根据权利要求11所述的动力锂电池用浸没式散热冷却液的制备方法,其特征在于,加入纳米金属氧化物添加剂,并搅拌均匀,制得动力锂电池用浸没式散热冷却液的步骤中,加入纳米金属氧化物添加剂后,以转速2000转/分钟高速搅拌30分钟。
PCT/CN2018/095114 2018-01-22 2018-07-10 一种动力锂电池用浸没式散热冷却液及其制备方法 WO2019140871A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18901355.0A EP3741824B1 (en) 2018-01-22 2018-07-10 Immersion-type heat-dissipation cooling liquid for power lithium battery and preparation method therefor
US16/961,692 US20210079281A1 (en) 2018-01-22 2018-07-10 Immersion type heat dissipation cooling liquid for power lithium battery and method for preparing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810057912.0A CN110055037A (zh) 2018-01-22 2018-01-22 一种动力锂电池用浸没式散热冷却液及其制备方法
CN201810057912.0 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019140871A1 true WO2019140871A1 (zh) 2019-07-25

Family

ID=67301947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095114 WO2019140871A1 (zh) 2018-01-22 2018-07-10 一种动力锂电池用浸没式散热冷却液及其制备方法

Country Status (4)

Country Link
US (1) US20210079281A1 (zh)
EP (1) EP3741824B1 (zh)
CN (1) CN110055037A (zh)
WO (1) WO2019140871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058713A1 (en) * 2020-09-17 2022-03-24 Mexichem Fluor S.A. De C.V. Composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777996B (zh) * 2020-07-16 2021-07-27 杭州师范大学 一种含相变组分的有机硅冷却液及其制备方法和应用
CN112812756B (zh) * 2020-12-31 2022-05-06 兰洋(宁波)科技有限公司 低油性冷却液
MX2023007912A (es) * 2021-01-05 2023-08-21 Honeywell Int Inc Éteres asimétricos sustituidos con flúor, y composiciones, métodos y usos que incluyen los mismos.
CN113861948B (zh) * 2021-08-30 2023-11-24 杭州云酷智能科技有限公司 一种冷却液及其制备方法和应用
CN113969141A (zh) * 2021-11-22 2022-01-25 卓聪(上海)环保科技发展有限公司 It通信设备浸没式冷却液及其制备方法
CN118251475A (zh) * 2021-11-23 2024-06-25 科慕埃弗西有限公司 全氟庚烯和氟代醚的共沸和类共沸组合物及其用途
CN114106787B (zh) * 2021-12-02 2024-01-23 中国石油化工股份有限公司 一种冷却介质组合物及其制备方法
CN115322753A (zh) * 2022-09-14 2022-11-11 杭州云酷智能科技有限公司 一种冷却液及其制备方法和应用
EP4389849A1 (en) * 2022-12-21 2024-06-26 Arkema France Use of hydrofluoroethers in heat transfer applications
CN116565390A (zh) * 2023-06-06 2023-08-08 广州东湾新能源科技有限公司 一种浸没式冷却储能电池包
CN116731689B (zh) * 2023-08-14 2023-10-27 南方电网调峰调频(广东)储能科技有限公司 电子元器件的基于硅油的浸没式冷却液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007602A (ja) * 1998-06-18 2000-01-11 Agency Of Ind Science & Technol ヒドロフルオロエーテルを含む共沸組成物および共沸様組成物
CN101400756A (zh) * 2006-03-14 2009-04-01 旭硝子株式会社 热循环用工作介质、朗肯循环系统、热泵循环系统及制冷循环系统
CN101970597A (zh) * 2008-01-17 2011-02-09 3M创新有限公司 含有1,1,1,2,3,3-六氟-3-甲氧基-丙烷和反式-1,2-二氯乙烯的三元类共沸组合物
CN102181270A (zh) * 2011-04-28 2011-09-14 华南理工大学 一种用于锂电池散热的复合相变材料及装置
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体
CN106816564A (zh) * 2017-03-08 2017-06-09 苏州安靠电源有限公司 全浸泡式液冷安全电池包
US20170346134A1 (en) * 2016-03-18 2017-11-30 Colorado State University Research Foundation Multi-functional electrolyte for thermal management of lithium-ion batteries

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098595A (en) * 1990-07-23 1992-03-24 E. I. Du Pont De Nemours And Company Ternary azeotropic compositions of 1,1,1,2,3,3-hexafluoro-3-methoxypropane and cis-1,2-dichloroethylene with methanol or ethanol or isopropanol or n-propanol
US5182040A (en) * 1991-03-28 1993-01-26 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of 1,1,2,2-tetrafluoroethane
US5827812A (en) * 1995-05-16 1998-10-27 Minnesota Mining And Manufacturing Company Azeotrope-like compositions and their use
US5827446A (en) * 1996-01-31 1998-10-27 E. I. Du Pont De Nemours And Company Nonafluoromethoxybutane compositions
US5851436A (en) * 1996-06-13 1998-12-22 E. I. Du Pont De Nemours And Company Nonafluoromethoxybutane compositions
IT1293326B1 (it) * 1997-07-11 1999-02-16 Ausimont Spa Composizioni refrigeranti
US6432320B1 (en) * 1998-11-02 2002-08-13 Patrick Bonsignore Refrigerant and heat transfer fluid additive
US6699829B2 (en) * 2002-06-07 2004-03-02 Kyzen Corporation Cleaning compositions containing dichloroethylene and six carbon alkoxy substituted perfluoro compounds
JP2004075910A (ja) * 2002-08-21 2004-03-11 Asahi Glass Co Ltd 共沸溶剤組成物および溶剤組成物
WO2005007771A1 (en) * 2003-07-23 2005-01-27 Dupont Canada Inc. Coolant liquids having a low dielectric constant and high resistivity for use in fuel cells & other electrochemical reactor stacks
WO2005008819A2 (en) * 2003-07-23 2005-01-27 Dupont Canada Inc. Evaporative coolants having low dielectric constant for use in fuel cells & other electrochemical reactor stacks
EP1816413A4 (en) * 2004-11-22 2010-10-20 Asahi Glass Co Ltd SECONDARY CIRCULATION COOLING SYSTEM
US20080157023A1 (en) * 2006-11-14 2008-07-03 Samuels George J Fluorocarbon stabilizers
EP2025731A1 (en) * 2007-08-06 2009-02-18 Solvay Solexis S.p.A. Heat Transfer fluid
US8232235B2 (en) * 2009-09-11 2012-07-31 3M Innovative Properties Company Ternary azeotropes containing 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane 5 and compositions made therefrom
US20130244922A1 (en) * 2011-09-13 2013-09-19 E I Du Pont De Nemours And Company Azeotropic compositions comprising methyl perfluoropentene ethers for cleaning applications
US8845922B2 (en) * 2011-12-20 2014-09-30 Honeywell International Inc. Compositions and use of vinylidene fluoride and blends thereof
FR2989084B1 (fr) * 2012-04-04 2015-04-10 Arkema France Compositions a base de 2,3,3,4,4,4-hexafluorobut-1-ene
TW201437348A (zh) * 2012-12-21 2014-10-01 Solvay 不可燃性三元組成物及彼之用途
EP2876153A1 (en) * 2013-11-22 2015-05-27 Solvay SA Non-flammable compositions and use of these compositions
US20160023128A1 (en) * 2013-03-11 2016-01-28 Solvay Sa Non-flammable compositions and use of these compositions
EP2889355B1 (en) * 2013-12-26 2017-04-19 Central Glass Company, Limited Azeotropic mixture-like composition, heat transfer composition, cleaner, high-temperature heat pump device, and heat transfer method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007602A (ja) * 1998-06-18 2000-01-11 Agency Of Ind Science & Technol ヒドロフルオロエーテルを含む共沸組成物および共沸様組成物
CN101400756A (zh) * 2006-03-14 2009-04-01 旭硝子株式会社 热循环用工作介质、朗肯循环系统、热泵循环系统及制冷循环系统
CN101970597A (zh) * 2008-01-17 2011-02-09 3M创新有限公司 含有1,1,1,2,3,3-六氟-3-甲氧基-丙烷和反式-1,2-二氯乙烯的三元类共沸组合物
CN102181270A (zh) * 2011-04-28 2011-09-14 华南理工大学 一种用于锂电池散热的复合相变材料及装置
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体
US20170346134A1 (en) * 2016-03-18 2017-11-30 Colorado State University Research Foundation Multi-functional electrolyte for thermal management of lithium-ion batteries
CN106816564A (zh) * 2017-03-08 2017-06-09 苏州安靠电源有限公司 全浸泡式液冷安全电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3741824A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058713A1 (en) * 2020-09-17 2022-03-24 Mexichem Fluor S.A. De C.V. Composition

Also Published As

Publication number Publication date
CN110055037A (zh) 2019-07-26
US20210079281A1 (en) 2021-03-18
EP3741824B1 (en) 2022-08-31
EP3741824A1 (en) 2020-11-25
EP3741824A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2019140871A1 (zh) 一种动力锂电池用浸没式散热冷却液及其制备方法
Chen et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review
Olabi et al. Battery thermal management systems: Recent progress and challenges
Weng et al. Safety issue on PCM-based battery thermal management: Material thermal stability and system hazard mitigation
Kalidasan et al. Nano additive enhanced salt hydrate phase change materials for thermal energy storage
US9151545B2 (en) Thermal management of an electrochemical cell by a combination of heat transfer fluid and phase change material
Ping et al. Experimental study on nano-encapsulated inorganic phase change material for lithium-ion battery thermal management and thermal runaway suppression
GB2595152A (en) Phase-Change emulsion heat-transfer medium, preparation method therefor, and battery heat management system
JP2020515652A (ja) 放熱流体組成物、その製造方法、それを含む電池モジュール及びバッテリーパック
TWI502060B (zh) Composite nano - graphite thermal phase change material
Zhao et al. A review of battery thermal management systems using liquid cooling and PCM
CN210430029U (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
Wu et al. Thermal runaway suppression of high-energy lithium-ion batteries by designing the stable interphase
CN113969141A (zh) It通信设备浸没式冷却液及其制备方法
CN112940685A (zh) 一种相变储能材料及制备方法
CN109943290A (zh) 一种低电导率的相变流体及其制备方法
Li et al. Phase change materials for lithium-ion battery thermal management systems: A review
CN113861944A (zh) 无机水合盐相变材料组合物、无机水合盐相变材料及其制备方法和应用
CN209515928U (zh) 一种自散热式应急电池组
CN115181555A (zh) 一种用于数据中心的固固相变冷却液及其制备方法
Gu et al. Experimental research on pipeless power battery cooling system using shape-stabilized phase change materials (SSPCM) coupled with seawater
TWM592605U (zh) 一種高穩定性散熱的電池包結構
CN203690445U (zh) 一种基于金属相变材料的动力电池热管理系统
CN115706279A (zh) 一种电池包的降温并阻燃方法及装置
KR100942787B1 (ko) 열흡수 시트 조성물 및 열흡수 시트 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901355

Country of ref document: EP

Effective date: 20200817