WO2019139131A1 - 電源及び制御装置 - Google Patents

電源及び制御装置 Download PDF

Info

Publication number
WO2019139131A1
WO2019139131A1 PCT/JP2019/000723 JP2019000723W WO2019139131A1 WO 2019139131 A1 WO2019139131 A1 WO 2019139131A1 JP 2019000723 W JP2019000723 W JP 2019000723W WO 2019139131 A1 WO2019139131 A1 WO 2019139131A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase shifter
power supply
separation
supply circuit
Prior art date
Application number
PCT/JP2019/000723
Other languages
English (en)
French (fr)
Inventor
松男 市橋
高義 藤本
近藤 武志
Original Assignee
株式会社Kaki
株式会社ブリッジ・マーケット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kaki, 株式会社ブリッジ・マーケット filed Critical 株式会社Kaki
Publication of WO2019139131A1 publication Critical patent/WO2019139131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to power supplies and control devices. More particularly, the present invention relates to a power supply and control apparatus capable of converting an AC power supply into a DC power supply.
  • JP-A-2014-217257 describes a power supply circuit, a drive load, and illumination using the power supply circuit. In the lighting of this publication, the non-lighting period is eliminated.
  • an object of the present invention is to provide a power supply and control device with less variation in potential difference and a power supply and control device capable of effectively suppressing flicker.
  • the present invention basically relates to a power supply circuit.
  • the power supply circuit of the present invention is a power supply circuit for converting an AC voltage into a DC voltage, and includes a first separation unit for separating an AC voltage, and a first AC voltage separated by the first separation unit.
  • a first phase shifter for shifting the phase of the second AC voltage separated by the first separation unit, and a second full wave for rectifying the output voltage from the first phase shifter Includes a rectifier circuit.
  • the first combining unit for combining the output voltage of the first full wave rectification circuit and the output voltage of the second full wave rectification circuit and the output voltage from the first combining unit are separated.
  • a second phase shifter for shifting the phase of the first DC voltage separated by the second separation portion.
  • a second combining unit for combining the voltage separated by the second separation unit and the output voltage from the second phase shifter.
  • the amounts of phase change of the first phase shifter and the second phase shifter are different.
  • the power supply circuit of the present invention can convert an AC voltage into a DC voltage with less variation in potential difference.
  • a switch is further provided between the first multiplexer and the second phase shifter. Further, it includes an ON / OFF control unit for controlling the ON / OFF of the switch, and a flicker detection unit for detecting a flicker of illumination driven by the power supply circuit.
  • the ON / OFF control unit controls ON / OFF of the switch when the flicker is detected.
  • the second aspect of the present invention is a power supply circuit for converting an AC voltage to a DC voltage, which comprises a first full-wave rectifier circuit for rectifying an AC voltage and a first full-wave rectifier circuit. And a first phase-shifter for shifting the phase of one of the voltages separated by the first separation part.
  • the first combining unit for combining the first output voltage of the first full-wave rectifier circuit and the output voltage of the first phase shifter, and the output voltage from the first combining unit
  • a second separation unit for separation and a second phase shifter for shifting the phase of one voltage separated in the second separation unit are included.
  • a second combining unit is further included for combining the remaining voltage separated in the second separation unit and the output voltage from the second phase shifter.
  • the amounts of phase change of the first phase shifter and the second phase shifter are different.
  • the power supply circuit according to the second aspect of the present invention can convert an AC voltage into a DC voltage with less variation in potential difference.
  • a switch is further provided between the first multiplexing unit and the second phase shifter. Further, it includes an ON / OFF control unit for controlling the ON / OFF of the switch, and a flicker detection unit for detecting a flicker of illumination driven by the power supply circuit.
  • the ON / OFF control unit controls ON / OFF of the switch when the flicker is detected.
  • the present invention it is possible to provide a power supply circuit that converts an AC voltage into a DC voltage with less variation in potential difference. Moreover, the flicker of the illumination driven by the power supply circuit of the present invention can be effectively suppressed.
  • FIG. 1 is a diagram showing a basic configuration of a power supply circuit of the present invention.
  • FIG. 2 is a diagram showing a basic configuration of the power supply circuit of the present invention.
  • FIG. 3 is a diagram showing the basic configuration of the power supply circuit of the present invention.
  • FIG. 4 is a diagram showing an example of a circuit of the multiplexing unit in the power supply circuit of the present invention.
  • FIG. 5 is a diagram for explaining the process of converting AC voltage into DC voltage in the power supply circuit of the present invention.
  • FIG. 1 is a diagram showing a basic configuration of a power supply circuit according to a first embodiment of the present invention.
  • This power supply circuit includes a first separation unit 5, a second separation unit 21, a first multiplexing unit 17, a second multiplexing unit 29, a first full wave rectification circuit 9, and a second full wave rectification.
  • the circuit 15 is configured to include the first phase shifter 13 and the second phase shifter 25.
  • the AC voltage 3 input to the power supply circuit of the present invention is separated into a first separation voltage 7 and a second separation voltage 11 in the first separation unit 5.
  • the first separated voltage 7 is input to the first full-wave rectifier circuit 9.
  • the second separated voltage 11 is input to the first phase shifter 13 and is further input to the second full-wave rectifier circuit 15.
  • the voltages respectively output from the first full wave rectification circuit 9 and the second full wave rectification circuit 15 are combined in the first combining unit 17.
  • the voltage combined in the first combining unit 17 is a DC voltage (a current at which the voltage does not drop to 0). As will be described later, if a smoothing capacitor is not used, the DC voltage at this point may not be sufficiently small in fluctuation of the potential difference.
  • the voltage combined in the first combining unit 17 is separated into a third separation voltage 23 and a fourth separation voltage 27 in the second separation unit 21. Then, the third separated voltage 23 is input to the second phase shifter 25. The voltage output from the second phase shifter 25 and the fourth separated voltage 27 are combined in the second combining unit 29.
  • the AC voltage can be converted to a DC voltage with a smaller potential difference, even without using a smoothing capacitor.
  • the full wave rectification circuits 9 and 15 full wave rectify each input voltage and output.
  • the full wave rectification circuits 9 and 15 can use a general full wave rectification circuit. For example, by using a diode bridge in which four diodes are combined, the waveform on the negative side of the AC voltage is inverted to make all waveforms DC. Further, as the full wave rectification circuits 9 and 15, other types of full wave rectification circuits such as a bridge circuit may be used.
  • the full wave rectifier circuit does not include a smoothing capacitor for stabilizing the output.
  • a smoothing capacitor may be arranged for the purpose of charging and discharging charges in order to maintain the output at a certain level or more.
  • an electrolytic capacitor generally used as a smoothing capacitor is one of the elements that tends to deteriorate. If it is operated for more than the time specified in the specifications, it may deteriorate over time. This makes it possible to extend the life of the power supply circuit.
  • the phase shifter is an element that makes it possible to shift the phase of the voltage waveform by a predetermined angle.
  • the phase shifters 13 and 25 general ones can be used.
  • the first phase shifter 13 and the second phase shifter 25 are phase shifters for delaying the phase of the voltage input to each of them by different angles. More preferably, it is desirable to delay the phase of the voltage input to each of the first phase shifter 13 and the second phase shifter 25 by 85 to 95 degrees and 40 to 50 degrees, respectively. Optimally, it is desirable for the first phase shifter 13 and the second phase shifter 25 to set the phase of the input voltage to 90 degrees and 45 degrees, respectively. This is because the variation of the potential difference of the output DC voltage is minimized.
  • the multiplexing units 17 and 29 may be portions where wiring is simply connected, and for example, a circuit shown in FIG. 4 can be used.
  • the voltages respectively output from the first full-wave rectifier circuit 9 and the second full-wave rectifier circuit 15 are input from the input terminals 9In and 15In, respectively, and merge via the resistors 9R and 15R.
  • the combined voltage passes through the operational amplifier OP in which the resistor 21R is connected in parallel, and is output from the output terminal 21Out.
  • Vout -21 RV ⁇ (V1 / 9 RV + V2 / 15 RV)
  • the power supply circuit of the present invention can output an arbitrary voltage by appropriately adjusting the resistance values of the resistors 9R, 15R, 21R according to the application.
  • FIG. 5 is a figure for demonstrating the process of conversion from alternating current voltage to direct current voltage by the power supply circuit of this invention, and its effect.
  • the vertical axis represents voltage and the horizontal axis represents time.
  • the waveform of the thick curve portion is the waveform of the voltage 17out output from the first multiplexing section 17, and the thin curve is the waveform of the voltage 9out output from the first full-wave rectifier circuit 9.
  • a curve drawn by a broken line shows the waveform of the voltage 15out outputted from the second full-wave rectifier circuit 15, respectively.
  • the waveform of the voltage 9 out shows a state in which the voltage of the negative electrode is inverted to the positive electrode and rectified in the first full-wave rectifier circuit 9.
  • the waveform of voltage 15 out indicates that the phase is shifted by 90 degrees in the first phase shifter 13 and that the voltage of the negative electrode is inverted to the positive electrode in the second full-wave rectifier circuit 15 and rectified. ing.
  • the waveform of the voltage 17 out is such that the voltage 9 out output from the first full wave rectification circuit 9 and the voltage 15 out output from the second full wave rectification circuit 15 are combined in the first combining unit 17 It shows the state. Here, it can not be said that the potential difference PD1 of the voltage 17 out is still sufficiently small.
  • the first aspect of the present invention is to provide a power supply circuit in which the variation of the potential difference is significantly reduced without using a smoothing capacitor.
  • FIG. 2 is a diagram showing a basic configuration of a power supply circuit according to a second embodiment of the present invention.
  • This power supply circuit is further connected to a switch 31 disposed between the second separation unit 21 and the second phase shifter 25 and to the switch in addition to the configuration described in the first embodiment.
  • the on / off control unit 33 and the flicker detection unit 35 connected to the on / off control unit 33 are provided.
  • the ON / OFF control unit 33 transmits an electric signal indicating that the flicker is detected.
  • the ON / OFF control unit 33 turns on the switch 31 when receiving an electric signal indicating that flicker is detected.
  • the third separated voltage 23 is phase-shifted, for example, 45 degrees by the second phase shifter 25.
  • the voltage 25 out output from the second phase shifter 25 and the fourth separated voltage 27 are multiplexed in the second multiplexing 29.
  • the power supply circuit according to the second embodiment provides a power supply circuit capable of selectively reducing the potential difference in response to the occurrence of flicker. It is needless to say that, for example, the switch 31 can be selectively opened as a normally closed switch according to the application of the power supply circuit of the present invention.
  • the flicker detection unit 35 may be formed of, for example, a photosensitive device such as a photodiode, a phototransistor, or a photo resistor, and can be appropriately selected according to the application of the power supply circuit of the present invention. If flicker occurs in the light received by the photosensitive device, any mechanism may be used as long as the mechanism detects the flicker and transmits an electrical signal, and those skilled in the art can appropriately configure using known techniques. Further, the ON / OFF control unit 33 can use a general device such as a photo MOS relay.
  • the switch 31 may be a general one such as a junction type FET.
  • FIG. 3 is a diagram showing a basic configuration of a power supply circuit according to a third embodiment of the present invention.
  • This power supply circuit includes a first full-wave rectifier circuit 9, a first separation unit 5, a second separation unit 21, a first combining unit 17, a second combining unit 29, and a first phase shifter. 13 and the second phase shifter 25 are configured.
  • the AC voltage 3 input to the power supply circuit of the present invention is converted to a DC voltage by the first full-wave rectifier circuit 9. Then, in the first separation unit 5, the first separation voltage 7 and the second separation voltage 11 are separated. Then, the second separated voltage 11 is input to the first phase shifter 13. The first separation voltage 7 and the DC voltage output from the first phase shifter 13 are combined in the first combining unit 17.
  • the voltage combined in the first combining unit 17 is separated into a third separation voltage 23 and a fourth separation voltage 27 in the second separation unit 21. Then, the third separated voltage 23 is input to the second phase shifter 25. The voltage output from the second phase shifter 25 and the fourth separated voltage 27 are combined in the second combining unit 29.
  • the other matters are the same as those described in the first embodiment.
  • the AC voltage can be converted to a DC voltage with a smaller potential difference, even without using a smoothing capacitor.
  • a third embodiment of the present invention is to provide a power supply circuit in which the variation of the potential difference is significantly reduced without using a smoothing capacitor. Furthermore, as compared with the first embodiment, the present invention is excellent in that the number of full wave rectification circuits can be reduced.
  • FIG. 3 is also a diagram showing the basic configuration of the power supply circuit according to the fourth embodiment of the present invention. Therefore, the fourth embodiment will be described subsequently using FIG.
  • This power supply circuit is further connected to a switch 31 disposed between the second separation unit 21 and the second phase shifter 25 and to the switch in addition to the configuration described in the third embodiment.
  • the on / off control unit 33 and the flicker detection unit 35 connected to the on / off control unit 33 are provided.
  • the ON / OFF control unit 33 transmits an electric signal indicating that the flicker is detected.
  • the ON / OFF control unit 33 turns on the switch 31 when receiving an electric signal indicating that flicker is detected.
  • the third separated voltage 23 is phase-shifted, for example, 45 degrees by the second phase shifter 25.
  • the voltage 25 out output from the second phase shifter 25 and the fourth separated voltage 27 are multiplexed in the second multiplexing 29.
  • the power supply circuit according to the fourth embodiment provides a power supply circuit capable of selectively reducing the potential difference in response to the occurrence of flicker.
  • the other matters are the same as those described in the second embodiment.
  • the fourth embodiment is superior to the second embodiment in that the number of full wave rectification circuits can be reduced.
  • the present invention can be utilized in the electronics industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

【解決課題】本発明は,より電位差の変動の少ない電源回路を提供することを目的とする。 【解決手段】本発明の電源回路は,交流電圧を分離する第1の分離部5と,第1の分離部5で分離された第1の分離電圧7を整流する第1の全波整流回路9と,第1の分離部5で分離された第2の分離電圧11の位相をずらす第1の移相器13と,第1の移相器13からの出力電圧を整流する第2の全波整流回路15と,第1の全波整流回路9の出力電圧と第2の全波整流回路15の出力電圧を合波する第1の合波部17と,第1の合波部17からの出力電圧を分離する第2の分離部21と,第2の分離部21で分離された第3の分離電圧23の位相をずらす第2の移相器25と,第2の分離部21で分離された第4の分離電圧27と,第2の移相器25からの出力電圧とを合波する第2の合波部29とを含む。第1の移相器13と第2の移相器25の位相変化量は異なる。

Description

電源及び制御装置
 本発明は電源及び制御装置に関する。より詳しく説明すると,本発明は交流電源を直流電源に変換できる電源及び制御装置に関する。
 特開2014-217257号公報には,電源回路,駆動負荷,及び電源回路を用いた照明が記載されている。この公報の照明は,無点灯期間が解消されている。
特開2014-217257号公報
 上記の公報に記載された照明は,無点灯期間が解消されているものの,電圧の変動があり,フリッカ(ちらつき)の原因となっていた。したがって,本発明は,より電位差の変動の少ない電源及び制御装置やフリッカを効果的に抑制できる電源及び制御装置を提供することを目的とする。
 本発明は,基本的には,電源回路に関する。本発明の電源回路は,交流電圧を直流電圧に変換するための電源回路であり,交流電圧を分離するための第1の分離部と,第1の分離部で分離された第1の交流電圧を整流するための第1の全波整流回路を含んでいる。
 そして,第1の分離部で分離された第2の交流電圧の位相をずらすための第1の移相器と,第1の移相器からの出力電圧を整流するための第2の全波整流回路を含んでいる。
 そして,第1の全波整流回路の出力電圧と第2の全波整流回路の出力電圧を合波するための第1の合波部と,第1の合波部からの出力電圧を分離するための第2の分離部と,第2の分離部で分離された第1の直流電圧の位相をずらすための第2の移相器とを含んでいる。
 そして,第2の分離部で分離された電圧と,第2の移相器からの出力電圧とを合波する第2の合波部をさらに含んでいる。
 そして,第1の移相器と第2の移相器の位相変化量は異なるものとなっている。
 これにより,本発明の電源回路は,交流電圧を,より電位差の変動の少ない直流電圧に変換することができる。
 また,本発明の好ましい側面では,更に,第1の合波部と第2の移相器との間に,スイッチが設けられている。そして,スイッチのON/OFFを制御するためのON/OFF制御部と,電源回路が駆動する照明のフリッカを検出するためのフリッカ検出部を含んでいる。
 そして,ON/OFF制御部は,フリッカを検出した際に,スイッチのON/OFFを制御する。これにより、本発明の好ましい側面によれば,本発明の電源回路により駆動される照明のフリッカを効果的に抑制することができる。
 また,本発明の第2の側面は,交流電圧を直流電圧に変換するための電源回路であり,交流電圧を整流するための第1の全波整流回路と,第1の全波整流回路からの出力電圧を分離するための第1の分離部と,第1の分離部で分離された一方の電圧の位相をずらすための第1の移相器を含んでいる。
 そして,第1の全波整流回路の第1の出力電圧と第1の移相器の出力電圧を合波するための第1の合波部と,第1の合波部からの出力電圧を分離するための第2の分離部と,第2の分離部で分離された一方の電圧の位相をずらすための第2の移相器を含んでいる。
 そして,第2の分離部で分離された残りの電圧と,第2の移相器からの出力電圧とを合波するための第2の合波部をさらに含んでいる。
 そして,第1の移相器と第2の移相器の位相変化量は異なるものとなっている。
 これにより,本発明の第2の側面である電源回路は,交流電圧を,より電位差の変動の少ない直流電圧に変換することができる。
 また,本発明の第2の側面の好ましい側面は,更に,第1の合波部と第2の移相器との間に,スイッチが設けられている。そして,スイッチのON/OFFを制御するためのON/OFF制御部と,電源回路が駆動する照明のフリッカを検出するためのフリッカ検出部を含んでいる。
 そして,ON/OFF制御部は,フリッカを検出した際に,スイッチのON/OFFを制御する。これにより、本発明の第2の側面の好ましい側面によれば,本発明の電源回路により駆動される照明のフリッカを効果的に抑制することができる。
 本発明によれば,交流電圧を,より電位差の変動の少ない直流電圧に変換する電源回路を提供することができる。また,本発明の電源回路により駆動される照明のフリッカを効果的に抑制することができる。
図1は,本発明の電源回路の基本構成を示す図である。 図2は,本発明の電源回路の基本構成を示す図である。 図3は,本発明の電源回路の基本構成を示す図である。 図4は,本発明の電源回路における合波部の回路の一例を示す図である。 図5は,本発明の電源回路における交流電圧から直流電圧への変換のプロセスを説明するための図である。
 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。
 (第1の実施の形態)
 図1は,本発明の第1の実施の形態にかかわる電源回路の基本構成を示す図である。この電源回路は,第1の分離部5,第2の分離部21,第1の合波部17,第2の合波部29,第1の全波整流回路9,第2の全波整流回路15,第1の移相器13および第2の移相器25を含んで構成される。
 まず,本発明の電源回路に入力されてきた交流電圧が直流電圧に変換される流れを説明する。本発明の電源回路に入力されてきた交流電圧3は,第1の分離部5において,第1の分離電圧7と,第2の分離電圧11に分離される。そして,第1の分離電圧7は,第1の全波整流回路9に入力される。そして,第2の分離電圧11は,第1の移相器13に入力され,さらに,第2の全波整流回路15に入力される。第1の全波整流回路9と第2の全波整流回路15からそれぞれ出力された電圧は,第1の合波部17において合波される。第1の合波部17において合波された電圧は,直流電圧(電圧が0に落ちない電流)である。後述する通り,平滑コンデンサを用いないと,この時点での直流電圧は,電位差の変動が十分に少ないとはいえない場合がある。
 第1の合波部17において合波された電圧は,第2の分離部21において,第3の分離電圧23と,第4の分離電圧27に分離される。そして,第3の分離電圧23は,第2の移相器25に入力される。第2の移相器25から出力された電圧と,第4の分離電圧27は,第2の合波部29において,合波される。これにより,平滑コンデンサを用いなくても,交流電圧をより電位差が少ない直流電圧へ変換することができる。
 ここで,全波整流回路9,15は,それぞれの入力電圧を全波整流し,出力する。全波整流回路9,15は,一般的な全波整流回路を用いるこができる。例えば,4つのダイオードを組み合わせたダイオードブリッジを用いて,交流電圧のマイナス側の波形を反転させることで,全波形を直流にする。また、全波整流回路9,15として,ブリッジ回路などの他形式の全波整流回路を用いても良い。ただし,本実施の形態では,全波整流回路は,出力を安定させるための平滑コンデンサを含まない。通常は,出力を一定以上に維持し続けるため電荷を充放電する目的で平滑コンデンサを配置する場合があるが,一般的に平滑コンデンサとして用いられる電解コンデンサは,劣化しやすい素子の一つであり,その仕様で規定された時間以上稼働させると経年劣化する可能性があるからである。これにより,電源回路の長寿命化が可能となる。
 ここで,移相器は,電圧の波形の位相を所定の角度ずらすことを可能にする素子である。移相器13,25は,一般的なものを用いることができる。第1の移相器13および第2の移相器25は,それぞれに入力される電圧の位相を,それぞれが異なる角度分,遅らせるための移相器である。より好ましくは,第1の移相器13および第2の移相器25のそれぞれに入力される電圧の位相を,それぞれ,85~95度,40~50度,遅らせることが望ましい。最適には,第1の移相器13および第2の移相器25は,入力される電圧の位相を,それぞれ,90度,45度,とすることが望ましい。出力される直流電圧の電位差の変動が最も少なくなるからである。
 ここで,合波部17,29は,配線を単に接続した部分であってもよいし,例えば,図4に示す回路を用いることができる。第1の全波整流回路9と第2の全波整流回路15からそれぞれ出力された電圧は,それぞれ,入力端子9In,15Inから入力され,抵抗器9R,15Rを介して,合流する。合流された電圧は,抵抗器21Rが並列接続されたオペアンプOPを通過して,出力端子21Outから出力される。ここで,入力端子9In,15Inから入力される電圧をそれぞれV1,V2とし,抵抗器9R,15R,21Rの抵抗値をそれぞれ9RV,15RV,21RVとすると,出力端子21Outから出力される電圧Voutは,以下の式により求められる。
(数1)
 Vout = -21RV × (V1/9RV + V2/15RV)
 したがって,本発明の電源回路は,その用途に応じて,抵抗器9R,15R,21Rの抵抗値を適宜調整することで,任意の電圧を出力することが可能となる。
 図5は,本発明の電源回路による交流電圧から直流電圧への変換のプロセスとその効果を説明するための図である。図5の(1)~(4)のいずれも,縦軸が電圧を,横軸が時間を,それぞれ示す。
 図5の(1)において,太い曲線部分の波形が第1の合波部17から出力された電圧17outの波形を,細い曲線が第1の全波整流回路9から出力された電圧9outの波形を,破線で描かれた曲線が第2の全波整流回路15から出力された電圧15outの波形を,それぞれ示す。電圧9outの波形は,第1の全波整流回路9において,負極の電圧が正極に反転され,整流された状態を示している。電圧15outの波形は,第1の移相器13において,位相が90度移相され,かつ,第2の全波整流回路15において,負極の電圧が正極に反転され,整流された状態を示している。電圧17outの波形は,第1の全波整流回路9から出力された電圧9outと,第2の全波整流回路15から出力された電圧15outが,第1の合波部17において合波された状態を示している。ここで,電圧17outの電位差PD1は,まだ十分に少なくなったとはいえない。
 図5の(2)は,第4の分離電圧27の波形を示す。図5の(3)は,第3の分離電圧23の移相が第2の移相器25において,位相が45度移相され,第2の移相器25から出力された電圧25outの波形を示す。図5の(4)は,第4の分離電圧27と,第2の移相器25から出力された電圧25outが第2の合波部29において合波された,第2の合波部29から出力された電圧29outの波形を示す。ここで,電圧29outの電位差PD2は,電圧17outの電位差PD1に比べて,約半分になっていることがわかった。このように,本発明の第1の側面は,平滑コンデンサを用いることなく,電位差の変動が顕著に低減された電源回路を提供するものである。
 (第2の実施の形態)
 図2は,本発明の第2の実施の形態にかかわる電源回路の基本構成を示す図である。この電源回路は,第1の実施の形態で説明した構成に加えて,さらに,第2の分離部21と第2の移相器25の間に配置されるスイッチ31と,スイッチに接続されるON/OFF制御部33と,ON/OFF制御部33に接続されるフリッカ検出部35を有する。
 まず,フリッカ検出部35がフリッカを検出した場合,ON/OFF制御部33にフリッカが検出された旨の電気信号を送信する。ON/OFF制御部33は,フリッカが検出された旨の電気信号を受信した場合,スイッチ31をONにする。これにより,第1の合波部17から出力された電圧17outが,第2の分離部21において第3の分離電圧23と第4の分離電圧27に分離される。第3の分離電圧23は,第2の移相器25によって,例えば,45度移相される。第2の移相器25から出力された電圧25outと第4の分離電圧27は,第2の合波29において,合波される。
 これにより,第1の実施の形態と同様に,電源回路から出力された直流電圧の電位差が低減され,フリッカの発生を抑制することが可能となる。すなわち,第2の実施の形態にかかわる電源回路は,フリッカの発生に応じて,選択的に電位差を低減することを可能とする電源回路を提供するものである。なお,本発明の電源回路の用途に応じて,例えば,スイッチ31をノーマリークローズのスイッチとして,選択的にオープンにするという構成も可能であることはいうまでもない。
 ここで,フリッカ検出部35は,例えば,フォトダイオード,フォトトランジスタ,フォトレジスタ等の感光デバイスから構成されてもよいし,本発明の電源回路の用途に応じて,適宜選択することができる。感光デバイスが受光する光にフリッカが生じた場合,そのフリッカを検知して電気信号を発信する仕組みであればよく,当業者が公知技術を用いて適宜構成することができる。また,ON/OFF制御部33は,フォトモスリレー等,一般的なものを用いることができる。また,スイッチ31は,接合型FET等,一般的なものを用いることができる。
 (第3の実施の形態)
 図3は,本発明の第3の実施の形態にかかわる電源回路の基本構成を示す図である。この電源回路は,第1の全波整流回路9,第1の分離部5,第2の分離部21,第1の合波部17,第2の合波部29,第1の移相器13および第2の移相器25を含んで構成される。
 まず,本発明の電源回路に入力されてきた交流電圧が直流電圧に変換される流れを説明する。本発明の電源回路に入力されてきた交流電圧3は,第1の全波整流回路9により,直流電圧に変換される。そして,第1の分離部5において,第1の分離電圧7と,第2の分離電圧11に分離される。そして,第2の分離電圧11は,第1の移相器13に入力される。第1の分離電圧7と第1の移相器13から出力された直流電圧は,第1の合波部17において合波される。
 第1の合波部17において合波された電圧は,第2の分離部21において,第3の分離電圧23と,第4の分離電圧27に分離される。そして,第3の分離電圧23は,第2の移相器25に入力される。第2の移相器25から出力された電圧と,第4の分離電圧27は,第2の合波部29において,合波される。その他の事項については,第1の実施の形態における説明と同様である。これにより,平滑コンデンサを用いなくても,交流電圧をより電位差が少ない直流電圧へ変換することができる。
 本発明の第3の実施の形態は,平滑コンデンサを用いることなく,電位差の変動が顕著に低減された電源回路を提供するものである。さらに,第1の実施の形態に比べて,全波整流回路を少なくすることができる点において,優れている。
(第4の実施の形態)
 図3は,本発明の第4の実施の形態にかかわる電源回路の基本構成を示す図でもあるため,引き続き,図3を用いて第4の実施の形態について説明する。この電源回路は,第3の実施の形態で説明した構成に加えて,さらに,第2の分離部21と第2の移相器25の間に配置されるスイッチ31と,スイッチに接続されるON/OFF制御部33と,ON/OFF制御部33に接続されるフリッカ検出部35を有する。
 まず,フリッカ検出部35がフリッカを検出した場合,ON/OFF制御部33にフリッカが検出された旨の電気信号を送信する。ON/OFF制御部33は,フリッカが検出された旨の電気信号を受信した場合,スイッチ31をONにする。これにより,第1の合波部17から出力された電圧17outが,第2の分離部21において第3の分離電圧23と第4の分離電圧27に分離される。第3の分離電圧23は,第2の移相器25によって,例えば,45度移相される。第2の移相器25から出力された電圧25outと第4の分離電圧27は,第2の合波29において,合波される。
 これにより,第3の実施の形態と同様に,電源回路から出力された直流電圧の電位差が低減され,フリッカの発生を抑制することが可能となる。すなわち,第4の実施の形態にかかわる電源回路は,フリッカの発生に応じて,選択的に電位差を低減することを可能とする電源回路を提供するものである。その他の事項については,第2の実施の形態における説明と同様である。なお,第4の実施の形態は,第2の実施の形態に比べて,全波整流回路を少なくすることができる点において,優れている。
 本発明は,電器産業において利用されうる。
 5,21 分離部
 9,15 全波整流回路
 13,25 移相器
 17,29 合波部
 31 スイッチ
 33 ON/OFF制御部
 35 フリッカ検出部

Claims (4)

  1.  交流電圧(3)を直流電圧に変換する電源回路であって,
      前記交流電圧(3)を分離する第1の分離部(5)と,
     第1の分離部(5)で分離された第1の分離電圧(7)を整流する第1の全波整流回路(9)と,
      第1の分離部(5)で分離された第2の分離電圧(11)の位相をずらす第1の移相器(13)と,
     第1の移相器(13)からの出力電圧を整流する第2の全波整流回路(15)と,
    第1の全波整流回路(9)の出力電圧と第2の全波整流回路(15)の出力電圧を合波する第1の合波部(17)と,
     第1の合波部(17)からの出力電圧を分離する第2の分離部(21)と,
     第2の分離部(21)で分離された第3の分離電圧(23)の位相をずらす第2の移相器(25)と,
    第2の分離部(21)で分離された第4の分離電圧(27)と,第2の移相器(25)からの出力電圧とを合波する第2の合波部(29)と,
     を含み,
    第1の移相器(13)と第2の移相器(25)の位相変化量は異なる,
    電源回路。
  2.  請求項1の電源回路であって,
     第1の合波部(17)と,第2の移相器(25)との間に設けられたスイッチ(31)と,
     前記スイッチ(31)のON/OFFを制御するON/OFF制御部(33)と,
     前記電源回路が駆動する照明のフリッカを検出するフリッカ検出部(35)と,を更に備え,
     前記ON/OFF制御部(33)は,フリッカを検出した際に,前記スイッチ(31)のON/OFFを制御する,電源回路。
  3.  交流電圧(3)を直流電圧に変換する電源回路であって,
     前記交流電圧(3)を整流する第1の全波整流回路(9)と,
     第1の全波整流回路(9)からの出力電圧を,第1の分離電圧(7)と第2の分離電圧(11)に分離する第1の分離部(5)と,
      第1の分離部(5)で分離された第2の分離電圧(11)の位相をずらす第1の移相器(13)と,
     第1の全波整流回路(9)の第1の分離電圧(7)と,第1の移相器(13)の出力電圧を合波する第1の合波部(17)と,
     第1の合波部(17)からの出力電圧を第3の分離電圧23と第4の分離電圧(27)に分離する第2の分離部(21)と,
     第2の分離部(21)で分離された,第3の分離電圧23の位相をずらす第2の移相器(25)と,
    第2の分離部(21)で分離された第4の分離電圧(27)と,第2の移相器(25)からの出力電圧とを合波する第2の合波部(29)と,
     を含み,
    第1の移相器(13)と第2の移相器(23)の位相変化量は異なる,
    電源回路。
  4.  請求項3の電源回路であって,
     第1の合波部(17)と第2の移相器(25)との間に設けられたスイッチ(31)と,
     前記スイッチ(31)のON/OFFを制御するON/OFF制御部(33)と,
     前記電源回路が駆動する照明のフリッカを検出するフリッカ検出部(35)と,を更に備え,
     前記ON/OFF制御部(33)は,フリッカを検出した際に,前記スイッチ(31)のON/OFFを制御する,電源回路。
PCT/JP2019/000723 2018-01-11 2019-01-11 電源及び制御装置 WO2019139131A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-002289 2018-01-11
JP2018002289A JP7055640B2 (ja) 2018-01-11 2018-01-11 電源及び制御装置

Publications (1)

Publication Number Publication Date
WO2019139131A1 true WO2019139131A1 (ja) 2019-07-18

Family

ID=67219065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000723 WO2019139131A1 (ja) 2018-01-11 2019-01-11 電源及び制御装置

Country Status (2)

Country Link
JP (1) JP7055640B2 (ja)
WO (1) WO2019139131A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103973A (en) * 1980-01-21 1981-08-19 Victor Co Of Japan Ltd Load balancing circuit for power circuit
JPH09135570A (ja) * 1995-11-07 1997-05-20 Yaskawa Electric Corp 多重整流回路
JP2002010646A (ja) * 2000-06-15 2002-01-11 Toshiba Corp 整流器及び変圧器
JP2006081259A (ja) * 2004-09-08 2006-03-23 Mitsubishi Heavy Ind Ltd 整流回路
JP2011077009A (ja) * 2009-10-02 2011-04-14 Fujisaki Denki Kk トンネルの照明装置
JP2014217257A (ja) * 2013-04-30 2014-11-17 株式会社ブリッジ・マーケット 電源回路、駆動負荷及びled照明

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103973A (en) * 1980-01-21 1981-08-19 Victor Co Of Japan Ltd Load balancing circuit for power circuit
JPH09135570A (ja) * 1995-11-07 1997-05-20 Yaskawa Electric Corp 多重整流回路
JP2002010646A (ja) * 2000-06-15 2002-01-11 Toshiba Corp 整流器及び変圧器
JP2006081259A (ja) * 2004-09-08 2006-03-23 Mitsubishi Heavy Ind Ltd 整流回路
JP2011077009A (ja) * 2009-10-02 2011-04-14 Fujisaki Denki Kk トンネルの照明装置
JP2014217257A (ja) * 2013-04-30 2014-11-17 株式会社ブリッジ・マーケット 電源回路、駆動負荷及びled照明

Also Published As

Publication number Publication date
JP7055640B2 (ja) 2022-04-18
JP2021057926A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP4893251B2 (ja) マトリクスコンバータおよびそれを備えた装置
US6751107B2 (en) DC power supply device with constant power output level
WO2015025709A1 (ja) 電池監視装置
CN102570434A (zh) 电力变换装置
EP3242387A1 (en) Power control apparatus for sub-module of mmc converter
US10794938B2 (en) Voltage detecting circuit
JP2016208742A (ja) 電力変換装置
KR100578210B1 (ko) 아크 응용 기기 전원 장치
JP2012226839A (ja) 負荷制御システム
WO2019139131A1 (ja) 電源及び制御装置
JP2008187874A (ja) 三相交流電源の欠相検出装置
JP2009150762A (ja) 電流測定装置
US10715030B2 (en) Power converter having an input-side converter and first and second output-side converters
JP2012161185A (ja) 直流安定化電源装置
JP2014079055A (ja) 電源装置
JP5814009B2 (ja) インバータ装置の電圧バランス回路
WO2015162732A1 (ja) 電源装置及び制御装置
JP4543718B2 (ja) 電力変換装置
CN110190768B (zh) 直流交流换流装置及其并联均流控制方法
JP6482182B2 (ja) 制御回路およびスイッチング電源
JP2014217257A (ja) 電源回路、駆動負荷及びled照明
KR20150003425A (ko) Ac-오프 상태를 감지하는 전원공급장치
JP5278052B2 (ja) マトリクスコンバータ回路
JP2016127645A (ja) 多出力スイッチング電源装置
JP2020005333A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2020)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19738663

Country of ref document: EP

Kind code of ref document: A1