WO2019138914A1 - Virtual image display device and head-up display device - Google Patents

Virtual image display device and head-up display device Download PDF

Info

Publication number
WO2019138914A1
WO2019138914A1 PCT/JP2018/048322 JP2018048322W WO2019138914A1 WO 2019138914 A1 WO2019138914 A1 WO 2019138914A1 JP 2018048322 W JP2018048322 W JP 2018048322W WO 2019138914 A1 WO2019138914 A1 WO 2019138914A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual image
screen
display device
moving
belt
Prior art date
Application number
PCT/JP2018/048322
Other languages
French (fr)
Japanese (ja)
Inventor
中村 彰宏
瑛士 関口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019564641A priority Critical patent/JPWO2019138914A1/en
Publication of WO2019138914A1 publication Critical patent/WO2019138914A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a virtual image display device and a head-up display device.
  • a conventional head-up display (hereinafter also referred to as "HUD") generally generates a virtual image at a position away from the driver by a certain distance, and the display content by the HUD is the vehicle speed, car navigation information Etc was limited.
  • the purpose of mounting the HUD on the vehicle is to support safer driving by minimizing the driver's eye movement, but in the sense of supporting safe driving, the display contents such as the vehicle speed It is not enough alone.
  • the distance to an object to be detected as danger is not constant.
  • a danger signal is displayed and superimposed on a virtual image that appears 2 m ahead for a danger 50 m ahead, a difference in focal position occurs, so that there is a problem that the human eye feels strange.
  • a scanning type image forming means such as a MEMS (Micro Electro Mechanical Systems) mirror, a diffusion screen, a projection means, and a diffusion screen Moving means for changing the position of, and changing the position of the diffusion screen changes the distance of the virtual image.
  • MEMS Micro Electro Mechanical Systems
  • a diffusion screen a diffusion screen
  • a projection means a diffusion screen Moving means for changing the position of, and changing the position of the diffusion screen changes the distance of the virtual image.
  • the present invention has been made to solve such a problem, and provides a virtual image display device and a head-up display device capable of displaying virtual images substantially simultaneously at a plurality of projection distances for each position of an actual object.
  • the purpose is to
  • a screen for forming an image a moving mechanism for moving the screen in a predetermined one direction, and converting the image sequentially formed while the screen is moved in the predetermined one direction
  • a virtual image forming optical system that forms a virtual image at a projection distance corresponding to the position of the screen on the optical axis.
  • the moving mechanism is a belt rotating mechanism in which an endless belt is stretched around at least two rollers and the belt is rotated by the rotation of the roller, and is installed vertically on the surface of the belt.
  • a display device and a projection optical system for enlarging and projecting the image displayed on the display device, the screen being a diffusion screen for forming the image by being projected The virtual image display device according to any one of the above (1) to (3).
  • the moving mechanism is provided at an upper end and a lower end of the screen with an outer cylinder having two helical grooves extending helically along the side surface while penetrating the side surface, and the two helical grooves respectively Helicoid that moves the inside of the spiral groove along the spiral groove by rotating the outer cylinder around the central axis in the engaged state, and translates the screen in the predetermined direction in the outer cylinder.
  • the virtual image display device which is a helicoid mechanism having a pin.
  • the moving speed measuring unit that measures the moving speed of the screen in the predetermined one direction, the motor that drives the roller, and the measured moving speed fall within a predetermined threshold range.
  • the virtual image display device according to any one of the above (1) to (6) and an object detection unit that detects an object present in a detection area and determines the distance to the object
  • a control unit configured to cause the virtual image display device to form a virtual image at the projection distance corresponding to the distance to the object.
  • the sequentially formed image is converted to form a virtual image at a projection distance corresponding to the position of the screen on the optical axis.
  • virtual images can be displayed substantially simultaneously at a plurality of projection distances for each position of the real thing.
  • the vertical direction is the Z direction
  • the state in which the virtual image display device is mounted on the vehicle is the Y direction
  • the direction orthogonal to the Z and Y directions is the X direction.
  • FIG. 1 is a schematic view of a head-up display device mounted on a vehicle as viewed from the side.
  • FIG. 2 is a schematic view of a vehicle equipped with a head-up display device as viewed from the inside.
  • a user (driver) 900 holds a steering wheel 813 and sits in a driver's seat 816.
  • the virtual image display device 20 included in the head-up display device 10 displays an image displayed on the display element 21 described later toward the user 900 as a virtual image through the display screen 243.
  • the configuration other than the display screen 243 of the virtual image display device 20 is arranged in the dashboard 814 of the vehicle body 811 so as to be embedded behind a display 815 such as a car navigation.
  • the virtual image display device 20 emits display light D1 corresponding to a virtual image including driving related information and the like toward the display screen 243.
  • the display screen 243 is also called a combiner, and is a semitransparent concave mirror or a plane mirror.
  • the display screen 243 is erected on the dashboard 814 by the support of the lower end, and reflects the incident display light D1 toward the rear side (Y direction) of the vehicle body 811.
  • the illustrated virtual image display device 20 is a stand-alone type in which the display screen 243 is installed separately from the front window 812.
  • the display light D1 reflected by the display screen 243 is guided to the pupil 910 of the user 900 sitting on the driver's seat 816 and an eye box (not shown) corresponding to the peripheral position thereof.
  • the user 900 can observe the display light D1 reflected by the display screen 243, that is, the virtual image i2 as a display image separated by a predetermined distance as if it were in front of the vehicle body 811.
  • the user 900 can observe external light transmitted through the display screen 243, that is, a front view, a real image of a car or the like.
  • the user 900 can observe the virtual image i2 formed by the reflection of the display light D1 on the display screen 243, superimposed on the external image behind the light transmitted through the display screen 243, that is, the see-through image.
  • FIG. 3 is a schematic view showing the configuration of the virtual image display device.
  • the virtual image display device 20 includes a display element 21, a projection optical system 22, an imaging device 23, a virtual image forming optical system 24, an imaging device drive unit 25, a display control unit 26, and a housing 27.
  • the imaging device 23 has diffusion screens 23a and 23b and a belt rotation mechanism 23t.
  • the diffusion screens 23a and 23b constitute a screen.
  • the belt rotation mechanism 23t constitutes a moving mechanism.
  • the virtual image forming optical system 24 includes mirrors 241 and 242 and a display screen 243. In the housing 27, components of the virtual image display device 20 other than the display screen 243 are accommodated.
  • optical axes AX up to the mirror 241 of the virtual image forming optical system 24 through the display element 21, the projection optical system 22 and the imaging device 23 are set to the same height in the Z direction.
  • the display element 21 has a two-dimensional display surface 21 a.
  • the image formed on the display surface 21a is enlarged by the projection optical system 22 and projected on one of the two diffusion screens 23a and 23b on the optical axis AX. Thereby, an image is formed on the diffusion screens 23a and 23b.
  • the display device 21 may be a reflective device such as a digital micromirror device (DMD) or a liquid crystal on silicon (LCOS), or a transmissive device such as a liquid crystal.
  • DMD digital micromirror device
  • LCOS liquid crystal on silicon
  • the display element 21 forms an image at a frame rate sufficient to perform display at a sufficient frame rate for each virtual image distance to be displayed.
  • each virtual image distance operates at a frame rate of 30 fps or more, preferably 90 fps. This makes it easy to make it appear as if a plurality of virtual images i2 are simultaneously displayed at different virtual image distances.
  • the projection optical system 22 is a fixed focus lens system and has a plurality of lenses (not shown).
  • the projection optical system 22 enlarges and projects the image formed on the display surface 21a of the display element 21 as an intermediate image i1 on the diffusion screens 23a and 23b on the optical axis AX at an appropriate magnification.
  • a projected intermediate image (image) i1 is formed on the diffusion screen (for example, 23a) located on the optical axis AX among the two diffusion screens 23a and 23b.
  • the formation of the intermediate image i1 on the diffusion screens 23a and 23b is premised on the display operation of the display element 21.
  • the projection optical system 22 has a stop 221 disposed on the side of the diffusion screens 23 a and 23 b of the projection optical system 22.
  • the belt rotation mechanism 23t of the imaging device 23 has cylindrical rollers R1 and R2 disposed at one end and two ends of the two end sides, respectively, and an endless belt B wound around the rollers R1 and R2. .
  • Two diffusion screens 23a and 23b are installed on the surface of the belt B so as to be perpendicular to the surface of the belt B and to be separated from each other.
  • one of the two diffusion screens 23a and 23b (for example, 23a) is parallel to a predetermined one direction on the optical axis AX (hereinafter, referred to as "specific direction") indicated by solid arrows.
  • the other for example, 23b) moves in a direction other than the specific direction (the direction indicated by the dashed arrow).
  • One of the diffusion screens 23a and 23b moves in a specific direction and reaches one end e1 to the other end e2 of the belt B, and the other moves in a direction other than the specific direction and reaches the one end e1 of the belt B
  • the diffusion screens 23a and 23b moving in the specific direction are switched. That is, the diffusion screens 23a and 23b moving on the optical axis AX switch from one of the diffusion screens 23a and 23b to the other.
  • the rotation axes are provided on the same plane as the rotation axes of the rollers R1 and R2. , Carrier rollers which rotate in a subordinate to the rollers R1, R2 may be used.
  • the diffusion screens 23a and 23b are diffusion plates for controlling the light distribution angle to a desired angle, and the intermediate image i1 is formed at the imaging position (that is, within the planned imaging position of the intermediate image i1 or in the vicinity thereof). Form As a result, by moving the diffusion screens 23a and 23b in the optical axis AX direction, the position of the intermediate image i1 is also moved in the optical axis AX direction.
  • ground glass, a lens diffusion plate, and a microlens array can be used as the diffusion screens 23a and 23b.
  • the imaging device drive unit 25 includes a motor 251 and an encoder 252.
  • the imaging device drive unit 25 rotationally drives the rotation axes of the rollers R1 and R2 by the motor 251 to rotate the rollers R1 and R2 at a constant rotational speed.
  • the encoder 252 may be configured of a slit disc (not shown) connected to the drive shafts of the rollers R1 and R2, and a photo sensor (not shown) that detects light passing through the slits of the slit disc.
  • the light passing through the slit per unit time corresponds to the rotational speed of the rollers R1, R2. Therefore, the encoder 252 outputs a signal including information on the rotational speeds of the rollers R1 and R2.
  • the output of the encoder 252 is transmitted to the display control unit 26, and is used to measure the moving speed of the diffusion screens 23a and 23b moving in a specific direction, as described later.
  • the virtual image distance can be changed.
  • the virtual image i2 is changed while changing the virtual image distance, and a series of projected images is obtained.
  • Virtual image i2 can be made three-dimensional.
  • the movement range of the diffusion screen 23a, 23b in the specific direction along the optical axis AX is the planned imaging position of the intermediate image i1 or its vicinity, but the focal point on the diffusion screen 23a, 23b side of the projection optical system 22 It is desirable to be within the range of depth. As a result, the virtual image i2 can be formed in a relatively well-focused good state.
  • the moving speed of the diffusion screen 23a, 23b in the specific direction is set to a speed that can make it appear as if the virtual image i2 is simultaneously displayed at a plurality of places or a plurality of distances. For example, assuming that the virtual image i2 is sequentially projected in three steps of far distance, middle distance, and near distance, when displaying on the display element 21 at a frame rate of 90 fps, the virtual image i2 of each distance is displayed at 30 fps Will be switched. As a result, in the human eye, the virtual images i2 at far, middle and near distances are performed in parallel, and the switching is recognized as continuous. As apparent from the above, the movement of the diffusion screens 23a and 23b is controlled to be synchronized with the display operation of the display element 21.
  • the virtual image forming optical system 24 enlarges the intermediate image i1 formed on the diffusion screens 23a and 23b in cooperation with the display screen 243 to form a virtual image i2 in front of the user 900.
  • the virtual image forming optical system 24 includes at least one mirror, but includes two mirrors 241 and 242 in the illustrated example.
  • the display control unit 26 controls the display element 21 and the imaging device drive unit 25. As a result, the formation timing of the intermediate image i1 on the diffusion screens 23a and 23b is controlled, and a three-dimensional virtual image i2 of which the virtual image distance changes is sequentially displayed behind the display screen 243.
  • the position of the intermediate image i1 i.e., the positions of the diffusion screens 23a and 23b is close to the virtual image forming optical system 24 on the optical axis AX, the virtual image distance decreases.
  • the positions of the diffusion screens 23a and 23b are far from the virtual image forming optical system 24 on the optical axis AX, the virtual image distance becomes large.
  • the display control unit 26 forms an image corresponding to the positions of the diffusion screens 23 a and 23 b on the display element 21. Specifically, an image corresponding to the near virtual image distance is formed on the display element 21 when the positions of the diffusion screens 23a and 23b are close to the virtual image forming optical system 24 on the optical axis AX. Conversely, an image corresponding to a distant virtual image distance is formed on the display element 21 when the positions of the diffusion screens 23a and 23b are far from the virtual image forming optical system 24 on the optical axis AX. Images formed on the diffusion screens 23a and 23b are converted by the virtual image forming optical system 24 and formed as a virtual image i2 at a virtual image distance corresponding to the position of the diffusion screens 23a and 23b on the optical axis AX.
  • the display control unit 26 sequentially displays images according to the positions of the diffusion screens 23a and 23b as display elements 21. To form. That is, for example, as the diffusion screens 23a and 23b move in the specific direction, the distances between the diffusion screens 23a and 23b and the virtual image forming optical system 24 become close, middle, and far, respectively.
  • the formed images are sequentially formed on the display element 21. Therefore, on the display element 21, the images corresponding to the virtual image distance are always formed in the order of the images corresponding to the near distance, the middle distance, and the long distance virtual image distance.
  • the order of the images formed on the display element 21 according to the positions of the diffusion screens 23a and 23b becomes constant, so the control of the display order of the images formed on the display element 21 is simplified. it can.
  • the intermediate image i1 formed on the diffusion screens 23a and 23b while the diffusion screens 23a and 23b move in the specific direction is displayed as a virtual image i2.
  • the variation in moving speed of the diffusion screens 23a and 23b moving in the specific direction is smaller than that in the case where the diffusion screens 23a and 23b are reciprocated, etc.
  • the fluctuation of the frame rate of the virtual image i2 can be suppressed.
  • the display control unit 26 receives the output of the encoder 252 from the imaging device drive unit 25.
  • the output of the encoder 252 includes information on the rotational speeds of the rollers R1 and R2 of the belt rotation mechanism 23t as described above.
  • the display control unit 26 calculates the rotational speeds of the rollers R1 and R2 based on the output of the encoder 252, and calculates the moving speeds of the diffusion screens 23a and 23b from the rotational speeds of the rollers R1 and R2 to calculate the moving speeds. taking measurement.
  • the display control unit 26 performs feedback control of the rotational speed of the motor 251 driving the rollers R1 and R2 such that the moving speeds of the diffusion screens 23a and 23b fall within a predetermined threshold range.
  • the predetermined threshold range is determined based on the frame rate of the display element 21 and the specification of the variation range set for the frame rate.
  • the diffusion screens 23a and 23b movable on the optical axis AX not only can an intermediate image i1 movable in the direction of the optical axis AX can be formed, while securing a viewing angle and an eye box size.
  • the light utilization efficiency of the optical system can be increased. If the light distribution angle of diffusion by the diffusion screens 23a and 23b is too large, it is necessary to reduce the F value of the virtual image forming optical system 24 in order to increase the light utilization efficiency, so the depth of focus becomes shallow and display It should be noted that the range of possible distances is narrowed.
  • FIG. 4 is a block diagram showing a hardware configuration of an arithmetic control system of the head-up display device.
  • the head-up display device 10 includes a driver detection unit 71, an environment monitoring unit 72, and a main control unit 60 in addition to the virtual image display device 20 described above.
  • the environment monitoring unit 72 constitutes an object detection unit.
  • the main control unit 60 three-dimensionally displays a virtual image i2 corresponding to an object such as an oncoming vehicle or a pedestrian by controlling the entire head-up display device 10.
  • the driver detection unit 71 detects the presence of the user 900 in the vehicle 800 and the viewpoint position, and includes an internal camera 71a directed to the driver's seat 816, an image processing unit 71b for the driver's seat, and a determination unit 71c. .
  • the internal camera 71a is installed on the dashboard 814 in the vehicle body 811 so as to face the driver's seat 816 (see FIG. 2), and takes images of the head of the user 900 who sits on the driver's seat 816 and its surroundings Do.
  • the driver's seat image processing unit 71 b performs various types of image processing such as brightness correction on the image captured by the internal camera 71 a to facilitate the processing in the determination unit 71 c.
  • the determination unit 71c detects a head or an eye (pupil 910) of the user 900 by extracting or extracting an object from the driver's seat image processed by the driver's seat image processing unit 71b, and is attached to the driver's seat image From the depth information, the spatial position of the eyes of the user 900 (as a result, the direction of the line of sight) is calculated together with the presence or absence of the head of the user 900 in the vehicle body 811.
  • the environment monitoring unit 72 identifies an object such as a car, a bicycle, or a pedestrian approaching in front, and determines the distance to the object.
  • the environment monitoring unit 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c.
  • the external camera 72 a is installed at an appropriate position inside or outside the vehicle body 811 and captures an external image of the user 900 or the vehicle 800 in front of or in the side.
  • the external image processing unit 72b performs various image processing such as brightness correction on the image captured by the external camera 72a, and facilitates the processing in the determination unit 72c.
  • the determination unit 72c detects the presence or size of an object such as a car, a bicycle, or a pedestrian by extracting or extracting an object from the external image processed by the external image processing unit 72b, and is attached to the external image.
  • the spatial position of the object in front of the vehicle 800 is calculated from the depth information.
  • the internal camera 71a and the external camera 72a include, for example, a compound eye three-dimensional camera. That is, both cameras 71a and 72a are camera elements in which a lens for image formation, a complementary metal-oxide semiconductor (CMOS) sensor, and other imaging elements are arranged in a matrix. Have respective drive circuits. A plurality of camera elements constituting each camera 71a, 72a are designed to focus on different positions in the depth direction, for example, or to be able to detect relative parallax, and obtained from each camera element By analyzing the state of the image (focus state, position of object, etc.), the distance to each region or object in the image is determined.
  • CMOS complementary metal-oxide semiconductor
  • a combination of a two-dimensional camera and an infrared distance sensor may be used instead of or in addition to the compound-eye type cameras 71a and 72a as described above. Thereby, distance information in the depth direction can be obtained for each part in the photographed screen. Further, instead of the compound-eye type cameras 71a and 72a, distance information in the depth direction can be obtained for each part (area or object) in the photographed screen by a stereo camera in which two two-dimensional cameras are separately arranged. In addition, distance information in the depth direction may be obtained for each part in the photographed screen by performing imaging while changing the focal distance at high speed with a single two-dimensional camera.
  • LIDAR Light Detection And Ranging
  • LIDAR technology Light Detection And Ranging technology
  • scattered light for pulsed laser irradiation can be measured, and the distance to an object at a long distance and the spread can be measured to obtain information on the distance to the object in the field of view and the spread of the object.
  • the combination of radar sensing technology such as LIDAR technology and technology for detecting the distance of an object from image information can improve the object detection accuracy.
  • the display control unit 26 operates the virtual image display device 20 under the control of the main control unit 60 to display a three-dimensional virtual image i2 of which the virtual image distance changes behind the display screen 243.
  • the display control unit 26 generates a virtual image i2 to be displayed on the virtual image display device 20 based on the information including the distance to the object received from the environment monitoring unit 72 via the main control unit 60 and the size.
  • the virtual image i2 is, for example, of a frame F (see FIG. 5) located in the periphery with respect to the depth position direction of a car, a bicycle, a pedestrian or other object OB (see FIG. 5 described later) existing behind the display screen 243. It becomes such a sign.
  • the display control unit 26 receives, from the driver detection unit 71 via the main control unit 60, a detection output regarding the presence of the user 900 and the position of the eyes. This enables automatic start and stop of the projection of the virtual image i2 by the virtual image display device 20. Also, it is possible to project the virtual image i2 only in the direction of the line of sight of the user 900. Furthermore, it is also possible to make an enhanced projection such as brightening or blinking only the virtual image i2 in the direction of the line of sight of the user 900.
  • FIG. 5 is a perspective view for explaining a display state of a virtual image.
  • the front of the user 900 who is the driver is a detection area DF corresponding to the observation field of view.
  • the detection area DF that is, on the road and its periphery, objects OB1 and OB3 of people who are pedestrians or the like, and objects OB2 of mobile objects such as automobiles are present.
  • the main control unit 60 of the head-up display device 10 causes the virtual image display device 20 to project a three-dimensional virtual image i2 (i21 to i23) to the respective objects OB1, OB2, and OB3 as related information images. Add frames F1, F2 and F3.
  • the environment monitoring unit 72 determines the virtual image distances of the virtual images i21, i22, and i23 for displaying the frame F (F1, F2, and F3). It corresponds to the distance from the user 900 or the vehicle 800 to each object OB1, OB2, OB3. Note that the projection distances of the virtual images i21, i22, i23 are discrete and may not exactly match the actual distances to the objects OB1, OB2, OB3.
  • Second Embodiment A second embodiment of the present invention will be described.
  • the difference between the present embodiment and the first embodiment is that the imaging device 23 is configured by a diffusion screen 23 c and a helicoid mechanism 23 t ′. Since the present embodiment is the same as the first embodiment in the other points, the overlapping description will be omitted or simplified.
  • FIG. 6A and FIG. 6B are schematic diagrams for explaining an operation of moving the diffusion screen in a specific direction by the helicoid mechanism.
  • the helicoid pins P1 and P2 in order to clarify the movement operation of the diffusion screen 23c, only a portion seen from the front (the front side of the drawing) of the diffusion screen 23c, the helicoid pins P1 and P2, and the spiral grooves G1 and G2 is indicated by a solid line The shape is shown by a broken line.
  • the helicoid mechanism 23t has an outer cylinder 23d and helicoid pins P1 and P2 provided on the upper end and the lower end of the disk-shaped diffusion screen 23c.
  • the outer cylinder 23d has two spiral grooves G1 and G2 on the side surface.
  • the spiral grooves G1 and G2 extend along the side surfaces of the outer cylinder 23d while penetrating the side surfaces.
  • the helicoid pins P1 and P2 are engaged with the spiral grooves G1 and G2, respectively.
  • the helicoid pins P1 and P2 are engaged with the spiral grooves G1 and G2, respectively, and the state in which the diffusion screen 23c is closest to the virtual image forming optical system 24 is shown. From this state, when outer cylinder 23d is rotated in the direction (forward direction) of the solid arrow in the figure about the central axis indicated by the alternate long and short dash line, helicoid pins P1 and P2 spiral along spiral grooves G1 and G2, respectively. It moves in the grooves G1 and G2. As a result, the diffusion screen 23c can be translated in the specific direction indicated by the white arrow.
  • FIG. 6B shows a state in which the diffusion screen 23c is moved in the specific direction and is most distant from the virtual image forming optical system 24.
  • helicoid pins P1 and P2 spiral along spiral grooves G1 and G2, respectively, by rotating outer cylinder 23d in the direction (reverse direction) of the solid arrow in the figure (reverse direction), as a center It moves in the grooves G1 and G2.
  • the diffusion screen 23c can be translated in the opposite direction to the specific direction indicated by the white arrow.
  • the diffusion screen 23c moves in the opposite direction to the specific direction and comes closest to the virtual image forming optical system 24, the diffusion screen 23c returns to the position shown in FIG. 6A.
  • the moving speed for moving the diffusion screen 23c in the opposite direction to the specific direction may be set to be less than one frame time of the intermediate image i1. That is, as for the moving speed, the time required for the diffusion screen 23c to return from the position farthest to the virtual image forming optical system 24 (the position in FIG. 6B) to the closest position (the position in FIG. 6A) is intermediate image i1. It may be set to be less than one frame time. Thereby, it is possible to form the virtual image i2 substantially based on only the intermediate image i1 formed on the diffusion screen 23c while the diffusion screen 23c moves in the specific direction.
  • the embodiment according to the present invention has the following effects.
  • the sequentially formed image is converted to form a virtual image at a projection distance corresponding to the position of the screen on the optical axis.
  • virtual images can be displayed substantially simultaneously at a plurality of projection distances for each position of the real thing.
  • control of the image formation order according to the projection distance can be simplified, and fluctuation of the moving speed of the screen can be suppressed to suppress fluctuation of the frame rate of the virtual image.
  • the screen moving mechanism is a belt rotating mechanism in which an endless belt is stretched around at least two rollers and the belt rotates by the rotation of the roller, and the screen vertically installed on the surface of the belt is a belt Move in a specific direction by rotation of. Thereby, the screen can be moved in a specific direction with a simple configuration.
  • a plurality of screens are installed vertically on the surface of the belt of the belt rotation mechanism so as to be separated from each other. Then, by moving the plurality of screens by rotating the belt, any one screen moving in the specific direction is moved in the specific direction from the screen reaching one end to the other end of the belt in a direction other than the specific direction Move to another screen that has reached one end of the belt. Thereby, the time when the screen is not present on the optical axis can be effectively shortened, and the time when the virtual image is not formed can be suppressed.
  • a display element and a projection optical system for enlarging the image displayed on the display element and projecting the image onto a screen are provided, and the screen is a diffusion screen. This can simplify the screen moving mechanism.
  • the screen moving mechanism is engaged with a helicoid pin provided on the upper and lower ends of the screen with a spiral groove provided on the side surface of the outer cylinder, and the screen is rotated in the specific direction in the outer cylinder by rotating the outer cylinder. It is a helicoid mechanism that moves in parallel. This makes the movement of the screen smoother and improves the image quality of the virtual image.
  • the moving speed of the screen moving in the specific direction is measured, and the rotational speed of the motor driving the roller of the belt rotating mechanism is controlled based on the measured moving speed of the screen.
  • the precision of the virtual image distance of each virtual image can be improved.
  • the present invention is not limited to the embodiments described above.
  • an LED display instead of the diffusion screen, an LED display, a liquid crystal display, or an organic EL display that forms an image with a plurality of pixels may be used as the screen.
  • the display element and the projection optical system can be omitted, the apparatus can be simplified.
  • the number of diffusion screens transported by the belt rotation mechanism may be one or three or more.
  • the number of rollers on which the belt is wound by the belt rotation mechanism may be three or more.
  • a helical groove of the helicoid mechanism in addition to a helical groove for moving the screen in a specific direction, another helical groove connected to the helical groove for moving the screen in a direction opposite to the specific direction is provided. It is also good. Thereby, the screen moved in the specific direction can be returned to the position before movement without changing the rotation direction of the outer cylinder.
  • the screen moved in the specific direction by the helicoid mechanism is not limited to the disk shape, and may be a square plate shape.
  • 10 head-up display devices 20 virtual image display devices, 21 display elements, 21a Display surface, 22 Projection optics, 23 imaging devices, 23a, 23b, 23c diffuse screen, 23d outer cylinder, 23t belt rotation mechanism, 23t 'helicoid mechanism, 24 virtual imaging optics, 241, 242 mirror, 243 display screen, 25 imaging device driver, 26 display control unit, 27 housing, 60 main control unit, 71 Driver Detection Unit, 72 Environmental Monitoring Department, 800 vehicles, 811 car body, 812 front window, 813 handle, 814 dashboard, 815 display, 816 driver's seat, 900 users, 910 eyes, AX, AX0, AX1 light axis, D1 indicator light, DF detection area, F, F1, F2, F3 frames, G1, G2 spiral groove, OB object, P1, P2 helicoid pin, i1 intermediate image, i2, i21, i22, i23 Virtual image.

Abstract

A virtual image display device and a head-up display device comprise: screens (23a, 23b) for forming an image; a moving mechanism (23t) for moving the screens (23a, 23b) in one given direction; and a virtual image formation optical system (24) for forming a virtual image (i2) with a projection distance along an optical axis corresponding to the position of the screens (23a, 23b) by converting images sequentially formed while the screens (23a, 23b) move in the one given direction. Thereby, the virtual images (i2) can be displayed substantially at the same time with a plurality of projection distances for each real position.

Description

虚像表示装置およびヘッドアップディスプレイ装置Virtual image display device and head-up display device
 本発明は虚像表示装置およびヘッドアップディスプレイ装置に関する。 The present invention relates to a virtual image display device and a head-up display device.
 従来のヘッドアップディスプレイ(以下、「HUD」とも称する)は、虚像を運転者からある一定の距離だけ離れた位置に生成するのが一般的であり、HUDによる表示内容は、車速、カーナビゲーション情報などに限られていた。しかし、そもそもHUDを車両に搭載する目的は、運転者の視線移動を最小限に抑えることで、より安全な運転を支援するものであるが、安全運転支援という意味においては、車速などの表示内容だけでは不十分である。たとえば、前方の車、歩行者、障害物などをカメラやセンサーで検知し、HUDを通じて運転者に事前に危険を察知させて事故を未然に防ぐようなシステムの方がより好ましい。こういったシステムを実現するためには、たとえば車、人、障害物などの危険を察知させる対象となるシースルー像に対して虚像としての危険信号を重畳させて表示させることが考えられる。 A conventional head-up display (hereinafter also referred to as "HUD") generally generates a virtual image at a position away from the driver by a certain distance, and the display content by the HUD is the vehicle speed, car navigation information Etc was limited. However, the purpose of mounting the HUD on the vehicle is to support safer driving by minimizing the driver's eye movement, but in the sense of supporting safe driving, the display contents such as the vehicle speed It is not enough alone. For example, it is more preferable to use a camera or sensor that detects vehicles ahead, pedestrians, obstacles, etc., and allows the driver to detect danger in advance through the HUD to prevent an accident in advance. In order to realize such a system, for example, it is conceivable to superimpose and display a danger signal as a virtual image on a see-through image to be detected as a danger of a car, a person, an obstacle or the like.
 このような虚像を表示させる際に、危険を察知させる対象となる物との距離は一定ではない。たとえば50m先の危険に対して2m先に見える虚像に危険信号を表示して重畳させると焦点位置の違いが生じるため、人間の目には、違和感が生じるという問題がある。このような問題を解決する手法として、実物に対して適切な奥行き方向の位置に虚像を重畳させることが考えられる。 When displaying such a virtual image, the distance to an object to be detected as danger is not constant. For example, when a danger signal is displayed and superimposed on a virtual image that appears 2 m ahead for a danger 50 m ahead, a difference in focal position occurs, so that there is a problem that the human eye feels strange. As a method for solving such a problem, it is conceivable to superimpose a virtual image at a position in the depth direction appropriate for the real thing.
 このように、虚像に奥行きを持たせる手法として、特許文献1に開示されたHUDでは、MEMS(Micro Electro Mechanical Systems)ミラーのような走査型の像形成手段、拡散スクリーン、投影手段、および拡散スクリーンの位置を変える可動手段を備え、拡散スクリーンの位置を変化させることで虚像の距離を変化させている。これにより、車の速度に伴って人間が注視する距離が変わることに鑑み、虚像位置を近づけたり遠ざけたりして、運転者の視線移動を少なくしている。 Thus, as a method of giving depth to a virtual image, in the HUD disclosed in Patent Document 1, a scanning type image forming means such as a MEMS (Micro Electro Mechanical Systems) mirror, a diffusion screen, a projection means, and a diffusion screen Moving means for changing the position of, and changing the position of the diffusion screen changes the distance of the virtual image. As a result, in view of the fact that the distance at which a human gazes on changes according to the speed of the vehicle, the virtual image position is brought closer or further away, and the driver's gaze movement is reduced.
特開2009-150947号公報JP, 2009-150947, A
 しかし、特許文献1のように運転時の速度に伴って、虚像の位置を一律に遠ざけたり近づけたりした場合には、運転者が顔を横方向に動かして目の位置をずらした場合に実物の位置と危険信号などの虚像の位置がずれてしまい、運転者が危険信号を誤認してしまう可能性があるという問題がある。 However, according to the speed at the time of driving as in Patent Document 1, when the position of the virtual image is uniformly moved away or brought close, the driver moves the face in the lateral direction to shift the position of the eyes. There is a problem that the position of a virtual image such as a danger signal may be displaced, and the driver may misidentify the danger signal.
 本発明は、このような問題を解決するためになされたものであり、実物の位置ごとに複数の投影距離に虚像を実質的に同時に表示させることができる虚像表示装置およびヘッドアップディスプレイ装置を提供することを目的とする。 The present invention has been made to solve such a problem, and provides a virtual image display device and a head-up display device capable of displaying virtual images substantially simultaneously at a plurality of projection distances for each position of an actual object. The purpose is to
 本発明の上記課題は、以下の手段によって解決される。 The above problems of the present invention are solved by the following means.
 (1)像を形成するスクリーンと、前記スクリーンを、所定の一方向へ移動させる移動機構と、前記スクリーンが前記所定の一方向に移動している間に順次形成される前記像を変換して、光軸上の前記スクリーンの位置に対応した投影距離で、虚像を形成する虚像形成光学系と、を有する虚像表示装置。 (1) A screen for forming an image, a moving mechanism for moving the screen in a predetermined one direction, and converting the image sequentially formed while the screen is moved in the predetermined one direction A virtual image forming optical system that forms a virtual image at a projection distance corresponding to the position of the screen on the optical axis.
 (2)前記移動機構は、少なくとも2つのローラーに無端状のベルトが掛架され、前記ローラーが回転することで前記ベルトを回転させるベルト回転機構であり、前記ベルトの表面に垂直に設置された前記スクリーンを、前記ベルトの回転により前記光軸上の前記所定の一方向に移動させる、上記(1)に記載の虚像表示装置。 (2) The moving mechanism is a belt rotating mechanism in which an endless belt is stretched around at least two rollers and the belt is rotated by the rotation of the roller, and is installed vertically on the surface of the belt The virtual image display device according to (1), wherein the screen is moved in the predetermined one direction on the optical axis by rotation of the belt.
 (3)前記スクリーンを複数有し、前記移動機構は、互いに離隔するように前記ベルトの表面に垂直に設置された複数の前記スクリーンを前記ベルトの回転により移動させることにより、前記所定の一方向へ移動させるいずれか一つの前記スクリーンを、前記所定の一方向へ移動して前記ベルト回転機構の一端のローラー側から他端のローラー側に達した前記スクリーンから、前記所定の一方向以外の方向へ移動して前記ベルトの前記一端のローラー側に達した他の前記スクリーンに切り換える、上記(2)に記載の虚像表示装置。 (3) A plurality of the screens, and the moving mechanism moves the plurality of screens vertically installed on the surface of the belt so as to be separated from each other by rotating the belt, the predetermined one direction Any one of the screens to be moved to the predetermined direction is moved from the roller side of one end of the belt rotation mechanism to the roller side of the other end of the belt rotation mechanism in a direction other than the predetermined one direction The virtual image display device according to (2), wherein the screen is moved to the other screen that has reached the roller side of the belt at one end.
 (4)表示素子と、前記表示素子に表示された前記像を拡大して投影する投影光学系と、をさらに有し、前記スクリーンは、投影されることで前記像を形成する拡散スクリーンである、上記(1)~(3)のいずれかに記載の虚像表示装置。 (4) A display device and a projection optical system for enlarging and projecting the image displayed on the display device, the screen being a diffusion screen for forming the image by being projected The virtual image display device according to any one of the above (1) to (3).
 (5)前記移動機構は、側面を貫通しつつ前記側面に沿って螺旋状に延伸する二つの螺旋溝を有する外筒と、前記スクリーンの上端および下端に設けられ、前記二つの螺旋溝とそれぞれ掛合した状態で前記外筒が中心軸を中心に回転することで前記螺旋溝に沿って前記螺旋溝内を移動して、前記スクリーンを前記外筒内で前記所定の一方向へ平行移動させるヘリコイドピンと、を有するヘリコイド機構である、上記(1)に記載の虚像表示装置。 (5) The moving mechanism is provided at an upper end and a lower end of the screen with an outer cylinder having two helical grooves extending helically along the side surface while penetrating the side surface, and the two helical grooves respectively Helicoid that moves the inside of the spiral groove along the spiral groove by rotating the outer cylinder around the central axis in the engaged state, and translates the screen in the predetermined direction in the outer cylinder. The virtual image display device according to (1) above, which is a helicoid mechanism having a pin.
 (6)前記スクリーンの前記所定の一方向への移動速度を測定する移動速度測定部と、前記ローラーを駆動するモーターと、測定された前記移動速度が所定の閾値範囲内になるように、前記モーターの回転速度を制御する制御部と、をさらに有する、上記(2)または(3)に記載の虚像表示装置。 (6) The moving speed measuring unit that measures the moving speed of the screen in the predetermined one direction, the motor that drives the roller, and the measured moving speed fall within a predetermined threshold range. The virtual image display device according to (2) or (3), further including: a control unit that controls a rotational speed of the motor.
 (7)上記(1)~(6)のいずれかに記載の虚像表示装置と、検出領域内に存在するオブジェクトを検出するとともに、前記オブジェクトまでの距離を判定するオブジェクト検出部と、判定された前記オブジェクトまでの距離に対応した前記投影距離で、前記虚像表示装置に虚像を形成させる制御部と、を有するヘッドアップディスプレイ装置。 (7) It is determined that the virtual image display device according to any one of the above (1) to (6) and an object detection unit that detects an object present in a detection area and determines the distance to the object A control unit configured to cause the virtual image display device to form a virtual image at the projection distance corresponding to the distance to the object.
 像を形成するスクリーンを所定の一方向へ移動させる間に順次形成された像を変換して、光軸上のスクリーンの位置に対応した投影距離で虚像を形成する。これにより、実物の位置ごとに複数の投影距離に虚像を実質的に同時に表示させることができる。 While moving the screen to form an image in a predetermined direction, the sequentially formed image is converted to form a virtual image at a projection distance corresponding to the position of the screen on the optical axis. Thus, virtual images can be displayed substantially simultaneously at a plurality of projection distances for each position of the real thing.
ヘッドアップディスプレイ装置を車両に搭載した状態を側方から見た概略図である。It is the schematic which looked at the state which mounted the head up display apparatus in the vehicle from the side. ヘッドアップディスプレイ装置を搭載した車両を内側から見た概略図である。It is the schematic which looked at the vehicle carrying a head-up display apparatus from inner side. 虚像表示装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a virtual image display apparatus. ヘッドアップディスプレイ装置の演算制御系のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the calculation control system of a head-up display apparatus. 虚像の表示状態を説明するための斜視図である。It is a perspective view for demonstrating the display state of a virtual image. ヘリコイド機構により拡散スクリーンを特定方向へ移動させる動作を説明するための模式図である。It is a schematic diagram for demonstrating the operation | movement which moves a diffusion screen to a specific direction by a helicoid mechanism. ヘリコイド機構により拡散スクリーンを特定方向へ移動させる動作を説明するための模式図である。It is a schematic diagram for demonstrating the operation | movement which moves a diffusion screen to a specific direction by a helicoid mechanism.
 以下、図面を参照して、本発明の実施形態に係る虚像表示装置およびヘッドアップディスプレイ装置について説明する。なお、図面において、同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。図面において、上下方向をZ方向、虚像表示装置を車両に搭載した状態において、車両の進行方向に平行な方向をY方向、これらのZ、Y方向に直行する方向をX方向とする。 Hereinafter, a virtual image display apparatus and a head-up display apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same elements will be denoted by the same reference symbols, without redundant description. The dimensional proportions of the drawings are exaggerated for the convenience of the description, and may differ from the actual proportions. In the drawings, the vertical direction is the Z direction, the state in which the virtual image display device is mounted on the vehicle, the direction parallel to the traveling direction of the vehicle is the Y direction, and the direction orthogonal to the Z and Y directions is the X direction.
 (第1実施形態)
 図1は、ヘッドアップディスプレイ装置を車両に搭載した状態を側方から見た概略図である。図2は、ヘッドアップディスプレイ装置を搭載した車両を内側から見た概略図である。ユーザー(運転者)900は、ハンドル813を握って運転席816に座っている。
First Embodiment
FIG. 1 is a schematic view of a head-up display device mounted on a vehicle as viewed from the side. FIG. 2 is a schematic view of a vehicle equipped with a head-up display device as viewed from the inside. A user (driver) 900 holds a steering wheel 813 and sits in a driver's seat 816.
 ヘッドアップディスプレイ装置10に含まれる虚像表示装置20は、後述する表示素子21に表示された画像を、表示スクリーン243を介してユーザー900に向けて虚像として表示する。 The virtual image display device 20 included in the head-up display device 10 displays an image displayed on the display element 21 described later toward the user 900 as a virtual image through the display screen 243.
 虚像表示装置20の表示スクリーン243以外の構成は、車体811のダッシュボード814内にカーナビゲーションなどのディスプレイ815の背後に埋め込むように配置されている。虚像表示装置20は、運転関連情報などを含む虚像に対応する表示光D1を表示スクリーン243に向けて射出する。表示スクリーン243は、コンバイナーとも呼ばれ、半透過性を有する凹面鏡、または平面鏡である。表示スクリーン243は、下端の支持によってダッシュボード814上に立設され、入射する表示光D1を車体811の後方側(Y方向)に向けて反射する。図示される虚像表示装置20は、表示スクリーン243がフロントウィンドウ812とは別体で設置される独立型のものである。表示スクリーン243で反射された表示光D1は、運転席816に座ったユーザー900の瞳910、およびその周辺位置に対応するアイボックス(図示せず)に導かれる。ユーザー900は、表示スクリーン243で反射された表示光D1、すなわちあたかも車体811の前方にあるかのように所定距離離れた表示像としての虚像i2、を観察できる。一方、ユーザー900は、表示スクリーン243を透過した外界光、すなわち前方景色、自動車などの実像を観察できる。結果的に、ユーザー900は、表示スクリーン243を透過した背後の外界像、すなわちシースルー像に重ねて、表示スクリーン243での表示光D1の反射によって形成される虚像i2を観察できる。 The configuration other than the display screen 243 of the virtual image display device 20 is arranged in the dashboard 814 of the vehicle body 811 so as to be embedded behind a display 815 such as a car navigation. The virtual image display device 20 emits display light D1 corresponding to a virtual image including driving related information and the like toward the display screen 243. The display screen 243 is also called a combiner, and is a semitransparent concave mirror or a plane mirror. The display screen 243 is erected on the dashboard 814 by the support of the lower end, and reflects the incident display light D1 toward the rear side (Y direction) of the vehicle body 811. The illustrated virtual image display device 20 is a stand-alone type in which the display screen 243 is installed separately from the front window 812. The display light D1 reflected by the display screen 243 is guided to the pupil 910 of the user 900 sitting on the driver's seat 816 and an eye box (not shown) corresponding to the peripheral position thereof. The user 900 can observe the display light D1 reflected by the display screen 243, that is, the virtual image i2 as a display image separated by a predetermined distance as if it were in front of the vehicle body 811. On the other hand, the user 900 can observe external light transmitted through the display screen 243, that is, a front view, a real image of a car or the like. As a result, the user 900 can observe the virtual image i2 formed by the reflection of the display light D1 on the display screen 243, superimposed on the external image behind the light transmitted through the display screen 243, that is, the see-through image.
 図3は虚像表示装置の構成を示す模式図である。 FIG. 3 is a schematic view showing the configuration of the virtual image display device.
 虚像表示装置20は、表示素子21、投影光学系22、結像デバイス23、虚像形成光学系24、結像デバイス駆動部25、表示制御部26、およびハウジング27を有する。結像デバイス23は、拡散スクリーン23a、23b、およびベルト回転機構23tを有する。拡散スクリーン23a、23bはスクリーンを構成する。ベルト回転機構23tは移動機構を構成する。虚像形成光学系24には、ミラー241、242、および表示スクリーン243が含まれる。ハウジング27内には、表示スクリーン243以外の虚像表示装置20の構成要素が収納される。 The virtual image display device 20 includes a display element 21, a projection optical system 22, an imaging device 23, a virtual image forming optical system 24, an imaging device drive unit 25, a display control unit 26, and a housing 27. The imaging device 23 has diffusion screens 23a and 23b and a belt rotation mechanism 23t. The diffusion screens 23a and 23b constitute a screen. The belt rotation mechanism 23t constitutes a moving mechanism. The virtual image forming optical system 24 includes mirrors 241 and 242 and a display screen 243. In the housing 27, components of the virtual image display device 20 other than the display screen 243 are accommodated.
 表示素子21、投影光学系22、および結像デバイス23を通り、虚像形成光学系24のミラー241に至るまでの光軸AXは、Z方向で同じ高さに設定される。 The optical axes AX up to the mirror 241 of the virtual image forming optical system 24 through the display element 21, the projection optical system 22 and the imaging device 23 are set to the same height in the Z direction.
 表示素子21は、2次元的な表示面21aを有する。表示面21aに形成された像は、投影光学系22で拡大されて2つの拡散スクリーン23a、23bのうち光軸AX上にあるいずれか一方に投影される。これにより、拡散スクリーン23a、23bにおいて像が形成される。この際、二次元表示が可能な表示素子21を用いることで、拡散スクリーン23a、23bへの投影像の切換えを比較的高速に行える。表示素子21は、DMD(Digital Micromirror Device)やLCOS(Liquid Crystal On Silicon)などの反射型の素子であっても、液晶などの透過型の素子であってもよい。特に、表示素子21としてDMDを用いると、明るさを維持しつつ画像を高速で切り換えることが容易になり、虚像i2が形成される、ユーザー900からの投影距離(以下、「虚像距離」と称する)を変化させる表示に有利である。なお、表示素子21は、表示しようとする虚像距離ごとに十分なフレームレートで表示を行えるだけのフレームレートで像を形成する。たとえば、各虚像距離において30fps以上、好ましくは90fpsのフレームレートで動作する。これにより、異なる虚像距離に複数の虚像i2が同時に表示されているように見せることが容易になる。 The display element 21 has a two-dimensional display surface 21 a. The image formed on the display surface 21a is enlarged by the projection optical system 22 and projected on one of the two diffusion screens 23a and 23b on the optical axis AX. Thereby, an image is formed on the diffusion screens 23a and 23b. At this time, by using the display element 21 capable of two-dimensional display, it is possible to switch the projection image to the diffusion screens 23a and 23b at relatively high speed. The display device 21 may be a reflective device such as a digital micromirror device (DMD) or a liquid crystal on silicon (LCOS), or a transmissive device such as a liquid crystal. In particular, when a DMD is used as the display element 21, it becomes easy to switch images at high speed while maintaining the brightness, and a virtual image i2 is formed, the projection distance from the user 900 (hereinafter referred to as "virtual image distance" It is advantageous to the display which changes). The display element 21 forms an image at a frame rate sufficient to perform display at a sufficient frame rate for each virtual image distance to be displayed. For example, each virtual image distance operates at a frame rate of 30 fps or more, preferably 90 fps. This makes it easy to make it appear as if a plurality of virtual images i2 are simultaneously displayed at different virtual image distances.
 投影光学系22は、固定焦点のレンズ系であり、複数のレンズ(図示せず)を有する。投影光学系22は、表示素子21の表示面21aに形成された画像を中間像i1として、光軸AX上にある拡散スクリーン23a、23bに適当な倍率で拡大投影する。これにより、2つの拡散スクリーン23a、23bのうち、光軸AX上にある拡散スクリーン(たとえば23a)において、投影された中間像(像)i1が形成される。拡散スクリーン23a、23bにおける中間像i1の形成は、表示素子21の表示動作が前提となる。なお、投影光学系22は、この投影光学系22の拡散スクリーン23a、23b側に配置された絞り221を有する。このように絞り221を配置することで、投影光学系22の拡散スクリーン23a、23b側のFナンバーの設定や調整が比較的容易になる。 The projection optical system 22 is a fixed focus lens system and has a plurality of lenses (not shown). The projection optical system 22 enlarges and projects the image formed on the display surface 21a of the display element 21 as an intermediate image i1 on the diffusion screens 23a and 23b on the optical axis AX at an appropriate magnification. Thereby, a projected intermediate image (image) i1 is formed on the diffusion screen (for example, 23a) located on the optical axis AX among the two diffusion screens 23a and 23b. The formation of the intermediate image i1 on the diffusion screens 23a and 23b is premised on the display operation of the display element 21. The projection optical system 22 has a stop 221 disposed on the side of the diffusion screens 23 a and 23 b of the projection optical system 22. By disposing the diaphragm 221 in this manner, setting and adjustment of the F-number on the diffusion screen 23 a, 23 b side of the projection optical system 22 becomes relatively easy.
 結像デバイス23のベルト回転機構23tは、2つの両端側の一端、他端にそれぞれ配置した円柱状のローラーR1、R2およびこれらのローラーR1、R2に掛架された無端状のベルトBを有する。ベルトBの表面には2つの拡散スクリーン23a、23bが、それぞれベルトBの表面に垂直で、かつ互いに離隔するように設置される。ベルトBが回転することで2つの拡散スクリーン23a、23bのいずれか一方(たとえば23a)が実線の矢印で示す、光軸AX上の所定の一方向(以下、「特定方向」と称する)へ平行移動し、他方(たとえば23b)が特定方向以外の方向(破線の矢印で示す方向)へ移動する。拡散スクリーン23a、23bのいずれか一方が、特定方向へ移動してベルトBの一端e1から他端e2に達し、他方が特定方向以外の方向へ移動してベルトBの当該一端e1に達することで、特定方向へ移動する拡散スクリーン23a、23bが切り換わる。すなわち、光軸AX上を移動する拡散スクリーン23a、23bが、拡散スクリーン23a、23bのいずれか一方から他方へ切り換わる。なお、拡散スクリーン23a、23bがベルトBにより特定方向へ搬送される際、拡散スクリーン23a、23bの移動をスムーズにするために、ローラーR1、R2の回転軸と同一平面上に回転軸を有し、ローラーR1、R2に従属して回転するキャリヤローラーを使用し得る。 The belt rotation mechanism 23t of the imaging device 23 has cylindrical rollers R1 and R2 disposed at one end and two ends of the two end sides, respectively, and an endless belt B wound around the rollers R1 and R2. . Two diffusion screens 23a and 23b are installed on the surface of the belt B so as to be perpendicular to the surface of the belt B and to be separated from each other. By rotating the belt B, one of the two diffusion screens 23a and 23b (for example, 23a) is parallel to a predetermined one direction on the optical axis AX (hereinafter, referred to as "specific direction") indicated by solid arrows. The other (for example, 23b) moves in a direction other than the specific direction (the direction indicated by the dashed arrow). One of the diffusion screens 23a and 23b moves in a specific direction and reaches one end e1 to the other end e2 of the belt B, and the other moves in a direction other than the specific direction and reaches the one end e1 of the belt B The diffusion screens 23a and 23b moving in the specific direction are switched. That is, the diffusion screens 23a and 23b moving on the optical axis AX switch from one of the diffusion screens 23a and 23b to the other. In addition, when the diffusion screens 23a and 23b are conveyed in the specific direction by the belt B, in order to smooth the movement of the diffusion screens 23a and 23b, the rotation axes are provided on the same plane as the rotation axes of the rollers R1 and R2. , Carrier rollers which rotate in a subordinate to the rollers R1, R2 may be used.
 拡散スクリーン23a、23bは、配光角を所望の角度に制御するための拡散板であり、結像位置(すなわち中間像i1の結像予定位置、またはその近傍の焦点深度内)において中間像i1を形成する。この結果、拡散スクリーン23a、23bを光軸AX方向へ移動させることにより、中間像i1の位置も光軸AX方向へ移動する。拡散スクリーン23a、23bとしては、たとえば摺りガラス、レンズ拡散板、マイクロレンズアレイを用い得る。 The diffusion screens 23a and 23b are diffusion plates for controlling the light distribution angle to a desired angle, and the intermediate image i1 is formed at the imaging position (that is, within the planned imaging position of the intermediate image i1 or in the vicinity thereof). Form As a result, by moving the diffusion screens 23a and 23b in the optical axis AX direction, the position of the intermediate image i1 is also moved in the optical axis AX direction. For example, ground glass, a lens diffusion plate, and a microlens array can be used as the diffusion screens 23a and 23b.
 結像デバイス駆動部25は、モーター251およびエンコーダー252を有する。結像デバイス駆動部25は、モーター251により、ローラーR1、R2の回転軸を回転駆動することで、ローラーR1、R2を所定の回転速度で定速回転させる。これにより、ベルトBが回転することで、2つの拡散スクリーン23a、23bのいずれか一方が光軸AX上の特定方向へ所定の移動速度で移動し、他方が特定方向以外の方向へ移動する。エンコーダー252は、ローラーR1、R2の駆動軸に連結されたスリット円板(図示せず)と、スリット円板のスリットを通過する光を検出するフォトセンサー(図示せず)により構成され得る。単位時間当たりにスリットを通過する光は、ローラーR1、R2の回転速度に対応する。したがって、エンコーダー252からは、ローラーR1、R2の回転速度の情報を含む信号が出力される。エンコーダー252の出力は、表示制御部26に送信され、後述するように、特定方向へ移動する拡散スクリーン23a、23bの移動速度の測定に用いられる。 The imaging device drive unit 25 includes a motor 251 and an encoder 252. The imaging device drive unit 25 rotationally drives the rotation axes of the rollers R1 and R2 by the motor 251 to rotate the rollers R1 and R2 at a constant rotational speed. Thus, when the belt B rotates, one of the two diffusion screens 23a and 23b moves in the specific direction on the optical axis AX at a predetermined moving speed, and the other moves in the direction other than the specific direction. The encoder 252 may be configured of a slit disc (not shown) connected to the drive shafts of the rollers R1 and R2, and a photo sensor (not shown) that detects light passing through the slits of the slit disc. The light passing through the slit per unit time corresponds to the rotational speed of the rollers R1, R2. Therefore, the encoder 252 outputs a signal including information on the rotational speeds of the rollers R1 and R2. The output of the encoder 252 is transmitted to the display control unit 26, and is used to measure the moving speed of the diffusion screens 23a and 23b moving in a specific direction, as described later.
 結像デバイス駆動部25により拡散スクリーン23a、23bを光軸AXに沿って特定方向に移動させることで、虚像距離を変化させることができる。このように、投影される虚像i2の位置を変化させるとともに、表示内容をその位置に応じたものとすることで、虚像距離を変化させつつ虚像i2を変化させることになり、一連の投影像としての虚像i2を3次元的なものとすることができる。ここで、拡散スクリーン23a、23bの光軸AXに沿った特定方向の移動範囲は、中間像i1の結像予定位置またはその近傍であるが、投影光学系22の拡散スクリーン23a、23b側の焦点深度の範囲内とすることが望ましい。これにより、虚像i2を比較的ピントが合った良好な状態に形成できる。 By moving the diffusion screens 23a and 23b in the specific direction along the optical axis AX by the imaging device drive unit 25, the virtual image distance can be changed. As described above, by changing the position of the projected virtual image i2 and making the display contents according to the position, the virtual image i2 is changed while changing the virtual image distance, and a series of projected images is obtained. Virtual image i2 can be made three-dimensional. Here, the movement range of the diffusion screen 23a, 23b in the specific direction along the optical axis AX is the planned imaging position of the intermediate image i1 or its vicinity, but the focal point on the diffusion screen 23a, 23b side of the projection optical system 22 It is desirable to be within the range of depth. As a result, the virtual image i2 can be formed in a relatively well-focused good state.
 拡散スクリーン23a、23bの特定方向への移動速度は、虚像i2が複数個所または複数距離に同時に表示されているかのように見せることができる速度に設定する。たとえば、虚像i2が遠距離、中距離、および近距離の3段階で順次投影されるものとして、表示素子21に90fpsのフレームレートで表示を行わせると、各距離の虚像i2は、30fpsで表示の切り換えが行われることになる。これにより、人間の目では、遠距離、中距離、および近距離の虚像i2が並列的に行われ、かつ切り換えが連続的なものとして認識される。なお、以上から明らかなように、拡散スクリーン23a、23bの移動は、表示素子21の表示動作と同期するように制御される。 The moving speed of the diffusion screen 23a, 23b in the specific direction is set to a speed that can make it appear as if the virtual image i2 is simultaneously displayed at a plurality of places or a plurality of distances. For example, assuming that the virtual image i2 is sequentially projected in three steps of far distance, middle distance, and near distance, when displaying on the display element 21 at a frame rate of 90 fps, the virtual image i2 of each distance is displayed at 30 fps Will be switched. As a result, in the human eye, the virtual images i2 at far, middle and near distances are performed in parallel, and the switching is recognized as continuous. As apparent from the above, the movement of the diffusion screens 23a and 23b is controlled to be synchronized with the display operation of the display element 21.
 虚像形成光学系24は、拡散スクリーン23a、23bに形成された中間像i1を表示スクリーン243と協働して拡大し、ユーザー900の前方に虚像i2を形成する。虚像形成光学系24は、少なくとも1つのミラーで構成されるが、図示の例では2つのミラー241、242を含む。 The virtual image forming optical system 24 enlarges the intermediate image i1 formed on the diffusion screens 23a and 23b in cooperation with the display screen 243 to form a virtual image i2 in front of the user 900. The virtual image forming optical system 24 includes at least one mirror, but includes two mirrors 241 and 242 in the illustrated example.
 表示制御部26は、表示素子21および結像デバイス駆動部25を制御する。これにより、拡散スクリーン23a、23b上への中間像i1の形成タイミングを制御し、表示スクリーン243の背後に虚像距離が変化する3次元的な虚像i2を順次表示させる。中間像i1の位置、すなわち拡散スクリーン23a、23bの位置が光軸AX上で虚像形成光学系24に近い位置にあるときは、虚像距離が小さくなる。逆に、拡散スクリーン23a、23bの位置が光軸AX上で虚像形成光学系24から遠い位置にあるときは、虚像距離が大きくなる。 The display control unit 26 controls the display element 21 and the imaging device drive unit 25. As a result, the formation timing of the intermediate image i1 on the diffusion screens 23a and 23b is controlled, and a three-dimensional virtual image i2 of which the virtual image distance changes is sequentially displayed behind the display screen 243. When the position of the intermediate image i1, i.e., the positions of the diffusion screens 23a and 23b is close to the virtual image forming optical system 24 on the optical axis AX, the virtual image distance decreases. On the contrary, when the positions of the diffusion screens 23a and 23b are far from the virtual image forming optical system 24 on the optical axis AX, the virtual image distance becomes large.
 表示制御部26は、拡散スクリーン23a、23bの位置に応じた像を表示素子21に形成する。具体的には、近距離の虚像距離に対応する像は、拡散スクリーン23a、23bの位置が光軸AX上で虚像形成光学系24に近い位置にあるときに表示素子21に形成する。逆に、遠距離の虚像距離に対応する像は、拡散スクリーン23a、23bの位置が光軸AX上で虚像形成光学系24から遠い位置にあるときに表示素子21に形成する。拡散スクリーン23a、23bに形成される像は、虚像形成光学系24により変換され、光軸AX上の拡散スクリーン23a、23bの位置に対応した虚像距離で、虚像i2として形成される。 The display control unit 26 forms an image corresponding to the positions of the diffusion screens 23 a and 23 b on the display element 21. Specifically, an image corresponding to the near virtual image distance is formed on the display element 21 when the positions of the diffusion screens 23a and 23b are close to the virtual image forming optical system 24 on the optical axis AX. Conversely, an image corresponding to a distant virtual image distance is formed on the display element 21 when the positions of the diffusion screens 23a and 23b are far from the virtual image forming optical system 24 on the optical axis AX. Images formed on the diffusion screens 23a and 23b are converted by the virtual image forming optical system 24 and formed as a virtual image i2 at a virtual image distance corresponding to the position of the diffusion screens 23a and 23b on the optical axis AX.
 より具体的には、表示制御部26は、拡散スクリーン23a、23bを特定方向(所定の一方向)に移動させている間に、拡散スクリーン23a、23bの位置に応じた像を順次表示素子21に形成する。すなわち、たとえば拡散スクリーン23a、23bが特定方向に移動することで、拡散スクリーン23a、23bと虚像形成光学系24との距離が近距離、中距離、遠距離となるにしたがい、これらの距離に応じた像を順次表示素子21に形成する。したがって、表示素子21には、虚像距離に対応した像が、常に、近距離、中距離、遠距離の虚像距離に対応する像の順で形成される。これにより、表示素子21に形成される像の、拡散スクリーン23a、23bの位置(すなわち虚像距離)に応じた順序が一定となるため、表示素子21に形成する像の表示順の制御を単純化できる。また、拡散スクリーン23a、23bが特定方向に移動する間に拡散スクリーン23a、23bに形成される中間像i1を虚像i2として表示する。これにより、特定方向に移動する拡散スクリーン23a、23bの移動速度の変動は、拡散スクリーン23a、23bを往復移動させる場合などと比較して小さくなるため、拡散スクリーン23a、23bの移動速度の変動による虚像i2のフレームレートの変動を抑制できる。 More specifically, while moving the diffusion screens 23a and 23b in a specific direction (predetermined one direction), the display control unit 26 sequentially displays images according to the positions of the diffusion screens 23a and 23b as display elements 21. To form. That is, for example, as the diffusion screens 23a and 23b move in the specific direction, the distances between the diffusion screens 23a and 23b and the virtual image forming optical system 24 become close, middle, and far, respectively. The formed images are sequentially formed on the display element 21. Therefore, on the display element 21, the images corresponding to the virtual image distance are always formed in the order of the images corresponding to the near distance, the middle distance, and the long distance virtual image distance. As a result, the order of the images formed on the display element 21 according to the positions of the diffusion screens 23a and 23b (that is, the virtual image distances) becomes constant, so the control of the display order of the images formed on the display element 21 is simplified. it can. Further, the intermediate image i1 formed on the diffusion screens 23a and 23b while the diffusion screens 23a and 23b move in the specific direction is displayed as a virtual image i2. As a result, the variation in moving speed of the diffusion screens 23a and 23b moving in the specific direction is smaller than that in the case where the diffusion screens 23a and 23b are reciprocated, etc. The fluctuation of the frame rate of the virtual image i2 can be suppressed.
 表示制御部26は、結像デバイス駆動部25からエンコーダー252の出力を受信する。エンコーダー252の出力には、上述したようにベルト回転機構23tのローラーR1、R2の回転速度の情報が含まれる。表示制御部26は、エンコーダー252の出力に基づいてローラーR1、R2の回転速度を算出し、ローラーR1、R2の回転速度から拡散スクリーン23a、23bの移動速度を算出することで、当該移動速度を測定する。表示制御部26は、拡散スクリーン23a、23bの移動速度が所定の閾値範囲内になるように、ローラーR1、R2を駆動するモーター251の回転速度をフィードバック制御する。所定の閾値範囲は、表示素子21のフレームレートおよび当該フレームレートに設定された変動範囲の仕様などに基づいて決定される。 The display control unit 26 receives the output of the encoder 252 from the imaging device drive unit 25. The output of the encoder 252 includes information on the rotational speeds of the rollers R1 and R2 of the belt rotation mechanism 23t as described above. The display control unit 26 calculates the rotational speeds of the rollers R1 and R2 based on the output of the encoder 252, and calculates the moving speeds of the diffusion screens 23a and 23b from the rotational speeds of the rollers R1 and R2 to calculate the moving speeds. taking measurement. The display control unit 26 performs feedback control of the rotational speed of the motor 251 driving the rollers R1 and R2 such that the moving speeds of the diffusion screens 23a and 23b fall within a predetermined threshold range. The predetermined threshold range is determined based on the frame rate of the display element 21 and the specification of the variation range set for the frame rate.
 このように、光軸AX上で移動可能な拡散スクリーン23a、23bを配置することにより、光軸AX方向に移動可能な中間像i1を形成できるだけでなく、視野角とアイボックスサイズを確保しつつ、光学系の光利用効率を高くできる。なお、拡散スクリーン23a、23bによる拡散の配光角を大きくしすぎると、光利用効率を高くするために虚像形成光学系24のF値を小さくする必要があるため、焦点深度が浅くなり、表示可能な距離範囲が狭まってしまうことに注意を要する。 Thus, by arranging the diffusion screens 23a and 23b movable on the optical axis AX, not only can an intermediate image i1 movable in the direction of the optical axis AX can be formed, while securing a viewing angle and an eye box size. The light utilization efficiency of the optical system can be increased. If the light distribution angle of diffusion by the diffusion screens 23a and 23b is too large, it is necessary to reduce the F value of the virtual image forming optical system 24 in order to increase the light utilization efficiency, so the depth of focus becomes shallow and display It should be noted that the range of possible distances is narrowed.
 図4は、ヘッドアップディスプレイ装置の演算制御系のハードウェア構成を示すブロック図である。ヘッドアップディスプレイ装置10は、上述した虚像表示装置20のほかに、運転者検出部71、環境監視部72、および主制御部60を有する。環境監視部72はオブジェクト検出部を構成する。 FIG. 4 is a block diagram showing a hardware configuration of an arithmetic control system of the head-up display device. The head-up display device 10 includes a driver detection unit 71, an environment monitoring unit 72, and a main control unit 60 in addition to the virtual image display device 20 described above. The environment monitoring unit 72 constitutes an object detection unit.
 主制御部60は、ヘッドアップディスプレイ装置10全体を制御することで、対向車両、通行者などのオブジェクトに対応させた虚像i2を3次元的に表示する。 The main control unit 60 three-dimensionally displays a virtual image i2 corresponding to an object such as an oncoming vehicle or a pedestrian by controlling the entire head-up display device 10.
 運転者検出部71は、車両800内のユーザー900の存在や視点位置を検出する部分であり、運転席816に向けた内部用カメラ71a、運転席用画像処理部71b、および判断部71cを有する。内部用カメラ71aは、車体811内のダッシュボード814に、運転席816に対向して設置されており(図2参照)、運転席816に座るユーザー900の頭部、およびその周辺の画像を撮影する。運転席用画像処理部71bは、内部用カメラ71aで撮影した画像に対して明るさ補正などの各種画像処理を行い、判断部71cでの処理を容易にする。判断部71cは、運転席用画像処理部71bで処理した運転席画像からオブジェクトの抽出、または切り出しを行うことによってユーザー900の頭部や目(瞳910)を検出するとともに、運転席画像に付随する奥行情報から車体811内におけるユーザー900の頭部の存否とともにユーザー900の目の空間的な位置(結果的に視線の方向)を算出する。 The driver detection unit 71 detects the presence of the user 900 in the vehicle 800 and the viewpoint position, and includes an internal camera 71a directed to the driver's seat 816, an image processing unit 71b for the driver's seat, and a determination unit 71c. . The internal camera 71a is installed on the dashboard 814 in the vehicle body 811 so as to face the driver's seat 816 (see FIG. 2), and takes images of the head of the user 900 who sits on the driver's seat 816 and its surroundings Do. The driver's seat image processing unit 71 b performs various types of image processing such as brightness correction on the image captured by the internal camera 71 a to facilitate the processing in the determination unit 71 c. The determination unit 71c detects a head or an eye (pupil 910) of the user 900 by extracting or extracting an object from the driver's seat image processed by the driver's seat image processing unit 71b, and is attached to the driver's seat image From the depth information, the spatial position of the eyes of the user 900 (as a result, the direction of the line of sight) is calculated together with the presence or absence of the head of the user 900 in the vehicle body 811.
 環境監視部72は、前方に近接する自動車、自転車、歩行者などのオブジェクトを識別するとともに、オブジェクトまでの距離を判定する。環境監視部72は、外部用カメラ72a、外部用画像処理部72b、および判断部72cを有する。外部用カメラ72aは車体811内外の適所に設置されており、ユーザー900または車両800の前方、側方などの外部画像を撮影する。外部用画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正などの各種画像処理を行い、判断部72cでの処理を容易にする。判断部72cは、外部用画像処理部72bで処理した外部画像からオブジェクトの抽出、または切り出しを行うことによって自動車、自転車、歩行者などのオブジェクトの存否および大きさを検出するとともに、外部画像に付随する奥行情報から車両800前方におけるオブジェクトの空間的な位置を算出する。 The environment monitoring unit 72 identifies an object such as a car, a bicycle, or a pedestrian approaching in front, and determines the distance to the object. The environment monitoring unit 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c. The external camera 72 a is installed at an appropriate position inside or outside the vehicle body 811 and captures an external image of the user 900 or the vehicle 800 in front of or in the side. The external image processing unit 72b performs various image processing such as brightness correction on the image captured by the external camera 72a, and facilitates the processing in the determination unit 72c. The determination unit 72c detects the presence or size of an object such as a car, a bicycle, or a pedestrian by extracting or extracting an object from the external image processed by the external image processing unit 72b, and is attached to the external image. The spatial position of the object in front of the vehicle 800 is calculated from the depth information.
 なお、内部用カメラ71aや外部用カメラ72aは、たとえば複眼型の3次元カメラを含む。すなわち、両カメラ71a、72aは、結像用のレンズと、CMOS(Complementary Metal-Oxide Semiconductor)センサー、その他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。各カメラ71a、72aを構成する複数のカメラ素子は、たとえば奥行方向の異なる位置にピントを合わせるようになっており、あるいは相対的な視差を検出できるようになっており、各カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置など)を解析することで、画像内の各領域、またはオブジェクトまでの距離を判定する。 The internal camera 71a and the external camera 72a include, for example, a compound eye three-dimensional camera. That is, both cameras 71a and 72a are camera elements in which a lens for image formation, a complementary metal-oxide semiconductor (CMOS) sensor, and other imaging elements are arranged in a matrix. Have respective drive circuits. A plurality of camera elements constituting each camera 71a, 72a are designed to focus on different positions in the depth direction, for example, or to be able to detect relative parallax, and obtained from each camera element By analyzing the state of the image (focus state, position of object, etc.), the distance to each region or object in the image is determined.
 なお、上述したような複眼型のカメラ71a、72aに代えて、またはこれとともに、2次元カメラと赤外距離センサーとを組み合わせたものを用いてもよい。これにより、撮影した画面内の各部に関して奥行方向の距離情報を得ることができる。また、複眼型のカメラ71a、72aに代えて、2つの2次元カメラを分離配置したステレオカメラによって、撮影した画面内の各部(領域、またはオブジェクト)に関して奥行方向の距離情報を得ることができる。その他、単一の2次元カメラにおいて、焦点距離を高速で変化させながら撮像を行うことによって、撮影した画面内の各部に関して奥行方向の距離情報を得てもよい。 A combination of a two-dimensional camera and an infrared distance sensor may be used instead of or in addition to the compound-eye type cameras 71a and 72a as described above. Thereby, distance information in the depth direction can be obtained for each part in the photographed screen. Further, instead of the compound-eye type cameras 71a and 72a, distance information in the depth direction can be obtained for each part (area or object) in the photographed screen by a stereo camera in which two two-dimensional cameras are separately arranged. In addition, distance information in the depth direction may be obtained for each part in the photographed screen by performing imaging while changing the focal distance at high speed with a single two-dimensional camera.
 さらに、複眼型の外部用カメラ72aに代えて、LIDAR(Light Detection And Ranging)技術を用いてもよい。これにより、検出領域内の各部(領域またはオブジェクト)に関して奥行方向の距離情報を得ることができる。LIDAR技術により、パルス状のレーザー照射に対する散乱光を測定し、遠距離にあるオブジェクトまでの距離や拡がりを計測して視野内のオブジェクトまでの距離情報やオブジェクトの拡がりに関する情報を取得できる。このLIDAR技術のようなレーダーセンシング技術と画像情報からオブジェクトの距離などを検出する技術と組み合わせることによって、オブジェクトの検出精度を高めることができる。 Furthermore, in place of the compound-eye type external camera 72a, LIDAR (Light Detection And Ranging) technology may be used. Thereby, distance information in the depth direction can be obtained for each part (area or object) in the detection area. With LIDAR technology, scattered light for pulsed laser irradiation can be measured, and the distance to an object at a long distance and the spread can be measured to obtain information on the distance to the object in the field of view and the spread of the object. The combination of radar sensing technology such as LIDAR technology and technology for detecting the distance of an object from image information can improve the object detection accuracy.
 表示制御部26は、主制御部60の制御下で虚像表示装置20を動作させて、表示スクリーン243の背後に虚像距離が変化する3次元的な虚像i2を表示させる。表示制御部26は、主制御部60を介して環境監視部72から受信したオブジェクトまでの距離および大きさなどを含む情報に基づいて、虚像表示装置20に表示させる虚像i2を生成する。虚像i2は、たとえば表示スクリーン243の背後に存在する自動車、自転車、歩行者その他のオブジェクトOB(後述の図5参照)に対してその奥行き位置方向に関して周辺に位置するフレームF(図5参照)のような標識になる。 The display control unit 26 operates the virtual image display device 20 under the control of the main control unit 60 to display a three-dimensional virtual image i2 of which the virtual image distance changes behind the display screen 243. The display control unit 26 generates a virtual image i2 to be displayed on the virtual image display device 20 based on the information including the distance to the object received from the environment monitoring unit 72 via the main control unit 60 and the size. The virtual image i2 is, for example, of a frame F (see FIG. 5) located in the periphery with respect to the depth position direction of a car, a bicycle, a pedestrian or other object OB (see FIG. 5 described later) existing behind the display screen 243. It becomes such a sign.
 表示制御部26は、主制御部60を介して運転者検出部71からユーザー900の存在や目の位置に関する検出出力を受け取る。これにより、虚像表示装置20による虚像i2の投影の自動的な開始や停止が可能になる。また、ユーザー900の視線の方向のみに虚像i2の投影を行うこともできる。さらに、ユーザー900の視線の方向の虚像i2のみを明るくする、点滅するなどの強調を行った投影もできる。 The display control unit 26 receives, from the driver detection unit 71 via the main control unit 60, a detection output regarding the presence of the user 900 and the position of the eyes. This enables automatic start and stop of the projection of the virtual image i2 by the virtual image display device 20. Also, it is possible to project the virtual image i2 only in the direction of the line of sight of the user 900. Furthermore, it is also possible to make an enhanced projection such as brightening or blinking only the virtual image i2 in the direction of the line of sight of the user 900.
 図5は、虚像の表示状態を説明するための斜視図である。運転者であるユーザー900の前方は観察視野に相当する検出領域DFとなっている。検出領域DF内、すなわち、道路およびその周辺に、歩行者などである人のオブジェクトOB1、OB3や、自動車などである移動体のオブジェクトOB2が存在する。この場合、ヘッドアップディスプレイ装置10の主制御部60は、虚像表示装置20によって3次元的な虚像i2(i21~i23)を投影させ、各オブジェクトOB1、OB2、OB3に対して関連情報像としてのフレームF1、F2、F3を付加する。この際、ユーザー900から各オブジェクトOB1、OB2、OB3までの距離が異なるので、フレームF(F1、F2、F3)を表示させる虚像i21、i22、i23の虚像距離は、環境監視部72が判定したユーザー900または車両800から各オブジェクトOB1、OB2、OB3までの距離に相当させている。なお、虚像i21、i22、i23の投影距離は離散的であり、オブジェクトOB1、OB2、OB3までの現実の距離に対して正確に一致しない場合がある。しかしながら、虚像i21、i22、i23の投影距離と、オブジェクトOB1、OB2、OB3までの現実の距離との差が大きくなければ、ユーザー900の視点が(X方向で)動いても視差が生じにくく、オブジェクトOB1、OB2、OB3とフレームF1、F2、F3との配置関係を略維持できる。 FIG. 5 is a perspective view for explaining a display state of a virtual image. The front of the user 900 who is the driver is a detection area DF corresponding to the observation field of view. In the detection area DF, that is, on the road and its periphery, objects OB1 and OB3 of people who are pedestrians or the like, and objects OB2 of mobile objects such as automobiles are present. In this case, the main control unit 60 of the head-up display device 10 causes the virtual image display device 20 to project a three-dimensional virtual image i2 (i21 to i23) to the respective objects OB1, OB2, and OB3 as related information images. Add frames F1, F2 and F3. At this time, since the distances from the user 900 to the objects OB1, OB2, and OB3 are different, the environment monitoring unit 72 determines the virtual image distances of the virtual images i21, i22, and i23 for displaying the frame F (F1, F2, and F3). It corresponds to the distance from the user 900 or the vehicle 800 to each object OB1, OB2, OB3. Note that the projection distances of the virtual images i21, i22, i23 are discrete and may not exactly match the actual distances to the objects OB1, OB2, OB3. However, if the difference between the projected distances of the virtual images i21, i22 and i23 and the actual distances to the objects OB1, OB2 and OB3 is not large, parallax does not easily occur even if the viewpoint of the user 900 moves (in the X direction) The arrangement relationship between the objects OB1, OB2, OB3 and the frames F1, F2, F3 can be substantially maintained.
 (第2実施形態)
 本発明の第2実施形態について説明する。本実施形態と第1実施形態とで異なる点は、本実施形態は、結像デバイス23を拡散スクリーン23c、およびヘリコイド機構23t’により構成する点である。その他の点については、本実施形態は第1実施形態と同様であるため、重複する説明は省略または簡略化する。
Second Embodiment
A second embodiment of the present invention will be described. The difference between the present embodiment and the first embodiment is that the imaging device 23 is configured by a diffusion screen 23 c and a helicoid mechanism 23 t ′. Since the present embodiment is the same as the first embodiment in the other points, the overlapping description will be omitted or simplified.
 図6Aおよび図6Bは、ヘリコイド機構により拡散スクリーンを特定方向へ移動させる動作を説明するための模式図である。図においては、拡散スクリーン23cの移動動作を明確にするために、拡散スクリーン23c、ヘリコイドピンP1、P2、および螺旋溝G1、G2の正面(紙面手前)から見える部分のみ実線で示し、それ以外の形状は破線で示した。 FIG. 6A and FIG. 6B are schematic diagrams for explaining an operation of moving the diffusion screen in a specific direction by the helicoid mechanism. In the figure, in order to clarify the movement operation of the diffusion screen 23c, only a portion seen from the front (the front side of the drawing) of the diffusion screen 23c, the helicoid pins P1 and P2, and the spiral grooves G1 and G2 is indicated by a solid line The shape is shown by a broken line.
 ヘリコイド機構23t’は、外筒23d、および円板状の拡散スクリーン23cの上端および下端に設けられたヘリコイドピンP1、P2を有する。外筒23dは、側面に2つの螺旋溝G1、G2を有する。螺旋溝G1、G2は、それぞれ外筒23dの側面を貫通しつつ当該側面に沿って延伸している。ヘリコイドピンP1、P2は、それぞれ螺旋溝G1、G2と掛合される。 The helicoid mechanism 23t 'has an outer cylinder 23d and helicoid pins P1 and P2 provided on the upper end and the lower end of the disk-shaped diffusion screen 23c. The outer cylinder 23d has two spiral grooves G1 and G2 on the side surface. The spiral grooves G1 and G2 extend along the side surfaces of the outer cylinder 23d while penetrating the side surfaces. The helicoid pins P1 and P2 are engaged with the spiral grooves G1 and G2, respectively.
 図6Aを参照すると、ヘリコイドピンP1、P2がそれぞれ螺旋溝G1、G2と掛合し、拡散スクリーン23cが最も虚像形成光学系24に近づいた状態が示されている。この状態から、外筒23dを図の実線の矢印の方向(順方向)に、一点鎖線で示す中心軸を中心に回転させると、ヘリコイドピンP1、P2がそれぞれ螺旋溝G1、G2に沿って螺旋溝G1、G2内を移動する。その結果、拡散スクリーン23cを、白抜きの矢印で示す特定方向へ平行移動させることができる。 6A, the helicoid pins P1 and P2 are engaged with the spiral grooves G1 and G2, respectively, and the state in which the diffusion screen 23c is closest to the virtual image forming optical system 24 is shown. From this state, when outer cylinder 23d is rotated in the direction (forward direction) of the solid arrow in the figure about the central axis indicated by the alternate long and short dash line, helicoid pins P1 and P2 spiral along spiral grooves G1 and G2, respectively. It moves in the grooves G1 and G2. As a result, the diffusion screen 23c can be translated in the specific direction indicated by the white arrow.
 図6Bには、拡散スクリーン23cが特定方向に移動して、最も虚像形成光学系24から遠ざかった状態が示されている。この状態で、外筒23dを図の実線の矢印の方向(逆方向)に、一点鎖線で示す中心軸を中心に回転させると、ヘリコイドピンP1、P2がそれぞれ螺旋溝G1、G2に沿って螺旋溝G1、G2内を移動する。その結果、拡散スクリーン23cを、白抜きの矢印で示す、特定方向に対し逆方向へ平行移動させることができる。拡散スクリーン23cが特定方向に対し逆方向に移動して、最も虚像形成光学系24に近づいた状態になることにより、拡散スクリーン23cは、図6Aに示す位置に戻る。 FIG. 6B shows a state in which the diffusion screen 23c is moved in the specific direction and is most distant from the virtual image forming optical system 24. In this state, helicoid pins P1 and P2 spiral along spiral grooves G1 and G2, respectively, by rotating outer cylinder 23d in the direction (reverse direction) of the solid arrow in the figure (reverse direction), as a center It moves in the grooves G1 and G2. As a result, the diffusion screen 23c can be translated in the opposite direction to the specific direction indicated by the white arrow. When the diffusion screen 23c moves in the opposite direction to the specific direction and comes closest to the virtual image forming optical system 24, the diffusion screen 23c returns to the position shown in FIG. 6A.
 拡散スクリーン23cを、特定方向に対し逆方向に移動させる移動速度は、中間像i1の1フレーム時間未満になるように設定し得る。すなわち、当該移動速度は、拡散スクリーン23cが虚像形成光学系24に対し最も遠ざかった位置(図6Bの位置)から、最も近づいた位置(図6Aの位置)に戻るまでの時間が中間像i1の1フレーム時間未満になるように設定し得る。これにより、実質的に、拡散スクリーン23cが特定方向に移動する間に拡散スクリーン23cに形成される中間像i1のみに基づいて虚像i2を形成させることができる。 The moving speed for moving the diffusion screen 23c in the opposite direction to the specific direction may be set to be less than one frame time of the intermediate image i1. That is, as for the moving speed, the time required for the diffusion screen 23c to return from the position farthest to the virtual image forming optical system 24 (the position in FIG. 6B) to the closest position (the position in FIG. 6A) is intermediate image i1. It may be set to be less than one frame time. Thereby, it is possible to form the virtual image i2 substantially based on only the intermediate image i1 formed on the diffusion screen 23c while the diffusion screen 23c moves in the specific direction.
 本発明に係る実施形態は、以下の効果を奏する。 The embodiment according to the present invention has the following effects.
 像を形成するスクリーンを所定の一方向へ移動させる間に順次形成された像を変換して、光軸上のスクリーンの位置に対応した投影距離で虚像を形成する。これにより、実物の位置ごとに複数の投影距離に虚像を実質的に同時に表示させることができる。また、投影距離に応じた像の形成順の制御を単純化できるとともに、スクリーンの移動速度の変動が抑制されることで虚像のフレームレートの変動を抑制できる。 While moving the screen to form an image in a predetermined direction, the sequentially formed image is converted to form a virtual image at a projection distance corresponding to the position of the screen on the optical axis. Thus, virtual images can be displayed substantially simultaneously at a plurality of projection distances for each position of the real thing. Further, control of the image formation order according to the projection distance can be simplified, and fluctuation of the moving speed of the screen can be suppressed to suppress fluctuation of the frame rate of the virtual image.
 さらに、スクリーンの移動機構を、少なくとも2つのローラーに無端状のベルトが掛架され、ローラーが回転することでベルトを回転させるベルト回転機構とし、ベルトの表面に垂直に設置されたスクリーンを、ベルトの回転により特定方向へ移動させる。これにより、簡易な構成でスクリーンを特定方向へ移動できる。 Further, the screen moving mechanism is a belt rotating mechanism in which an endless belt is stretched around at least two rollers and the belt rotates by the rotation of the roller, and the screen vertically installed on the surface of the belt is a belt Move in a specific direction by rotation of. Thereby, the screen can be moved in a specific direction with a simple configuration.
 さらに、ベルト回転機構のベルトの表面に、互いに離隔するように垂直に複数のスクリーンを設置する。そして、ベルトの回転により複数のスクリーンを移動させることで、特定方向へ移動するいずれか一つのスクリーンを、特定方向へ移動してベルトの一端から他端に達したスクリーンから、特定方向以外の方向へ移動して当該ベルトの一端に達した他のスクリーンに切り換える。これにより、光軸上にスクリーンが存在しなくなる時間を効果的に短縮し、虚像が形成されない時間を抑制できる。 Further, a plurality of screens are installed vertically on the surface of the belt of the belt rotation mechanism so as to be separated from each other. Then, by moving the plurality of screens by rotating the belt, any one screen moving in the specific direction is moved in the specific direction from the screen reaching one end to the other end of the belt in a direction other than the specific direction Move to another screen that has reached one end of the belt. Thereby, the time when the screen is not present on the optical axis can be effectively shortened, and the time when the virtual image is not formed can be suppressed.
 さらに、表示素子と、表示素子に表示された像を拡大してスクリーンに投影する投影光学系と、を設け、スクリーンを拡散スクリーンとする。これにより、スクリーンの移動機構を簡素化できる。 Furthermore, a display element and a projection optical system for enlarging the image displayed on the display element and projecting the image onto a screen are provided, and the screen is a diffusion screen. This can simplify the screen moving mechanism.
 さらに、スクリーンの移動機構を、スクリーンの上端および下端に設けたヘリコイドピンを、外筒の側面に設けた螺旋溝と掛合させて当該外筒を回転することでスクリーンを外筒内で特定方向に平行移動させるヘリコイド機構とする。これによりスクリーンの移動がよりスムーズとなり、虚像の画質を向上できる。 Furthermore, the screen moving mechanism is engaged with a helicoid pin provided on the upper and lower ends of the screen with a spiral groove provided on the side surface of the outer cylinder, and the screen is rotated in the specific direction in the outer cylinder by rotating the outer cylinder. It is a helicoid mechanism that moves in parallel. This makes the movement of the screen smoother and improves the image quality of the virtual image.
 さらに、特定方向へ移動するスクリーンの移動速度を測定し、ベルト回転機構のローラーを駆動するモーターの回転速度を、測定されたスクリーンの移動速度に基づいて制御する。これにより、各虚像の虚像距離の精度を向上できる。 Furthermore, the moving speed of the screen moving in the specific direction is measured, and the rotational speed of the motor driving the roller of the belt rotating mechanism is controlled based on the measured moving speed of the screen. Thereby, the precision of the virtual image distance of each virtual image can be improved.
 本発明は、上述した実施形態に限定されない。 The present invention is not limited to the embodiments described above.
 たとえば、拡散スクリーンに代えて、スクリーンとして、複数の画素により像を形成するLEDディスプレイ、液晶ディスプレイ、または有機ELディスプレイを用いてもよい。これにより、表示素子および投影光学系を省略できるため装置を簡素化できる。 For example, instead of the diffusion screen, an LED display, a liquid crystal display, or an organic EL display that forms an image with a plurality of pixels may be used as the screen. As a result, since the display element and the projection optical system can be omitted, the apparatus can be simplified.
 また、ベルト回転機構により搬送される拡散スクリーンの数は1枚であっても3枚以上であってもよい。ベルト回転機構でベルトが掛架されるローラーの数は、3つ以上であってもよい。 In addition, the number of diffusion screens transported by the belt rotation mechanism may be one or three or more. The number of rollers on which the belt is wound by the belt rotation mechanism may be three or more.
 また、ヘリコイド機構の螺旋溝として、スクリーンを特定方向に移動させるための螺旋溝に加え、当該螺旋溝と連結した、スクリーンを特定方向に対し逆方向に移動させるための他の螺旋溝を設けてもよい。これにより、外筒の回転方向を変えずに、特定方向に移動したスクリーンを移動前の位置に戻すことができる。 Also, as a helical groove of the helicoid mechanism, in addition to a helical groove for moving the screen in a specific direction, another helical groove connected to the helical groove for moving the screen in a direction opposite to the specific direction is provided. It is also good. Thereby, the screen moved in the specific direction can be returned to the position before movement without changing the rotation direction of the outer cylinder.
 また、ヘリコイド機構により特定方向に移動されるスクリーンは円板状に限定されず四角板状であってもよい。 Further, the screen moved in the specific direction by the helicoid mechanism is not limited to the disk shape, and may be a square plate shape.
 本出願は、2018年1月11日に出願された日本特許出願(特願2018-002445号)に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application (Japanese Patent Application No. 2018-002445) filed on Jan. 11, 2018, the disclosure of which is incorporated by reference in its entirety.
  10  ヘッドアップディスプレイ装置、
  20  虚像表示装置、
  21  表示素子、
  21a  表示面、
  22  投影光学系、
  23  結像デバイス、
  23a、23b、23c  拡散スクリーン、
  23d  外筒、
  23t  ベルト回転機構、
  23t’  ヘリコイド機構、
  24  虚像形成光学系、
  241、242  ミラー、
  243  表示スクリーン、
  25  結像デバイス駆動部、
  26  表示制御部、
  27  ハウジング、
  60  主制御部、
  71  運転者検出部、
  72  環境監視部、
  800  車両、
  811  車体、
  812  フロントウィンドウ、
  813  ハンドル、
  814  ダッシュボード、
  815  ディスプレイ、
  816  運転席、
  900  ユーザー、
  910  瞳、
  AX、AX0、AX1  光軸、
  D1  表示光、
  DF  検出領域、
  F、F1、F2、F3  フレーム、
  G1、G2  螺旋溝、
  OB  対象物、
  P1、P2  ヘリコイドピン、
  i1  中間像、
  i2、i21、i22、i23  虚像。
 
10 head-up display devices,
20 virtual image display devices,
21 display elements,
21a Display surface,
22 Projection optics,
23 imaging devices,
23a, 23b, 23c diffuse screen,
23d outer cylinder,
23t belt rotation mechanism,
23t 'helicoid mechanism,
24 virtual imaging optics,
241, 242 mirror,
243 display screen,
25 imaging device driver,
26 display control unit,
27 housing,
60 main control unit,
71 Driver Detection Unit,
72 Environmental Monitoring Department,
800 vehicles,
811 car body,
812 front window,
813 handle,
814 dashboard,
815 display,
816 driver's seat,
900 users,
910 eyes,
AX, AX0, AX1 light axis,
D1 indicator light,
DF detection area,
F, F1, F2, F3 frames,
G1, G2 spiral groove,
OB object,
P1, P2 helicoid pin,
i1 intermediate image,
i2, i21, i22, i23 Virtual image.

Claims (7)

  1.  像を形成するスクリーンと、
     前記スクリーンを、所定の一方向へ移動させる移動機構と、
     前記スクリーンが前記所定の一方向に移動している間に順次形成される前記像を変換して、光軸上の前記スクリーンの位置に対応した投影距離で、虚像を形成する虚像形成光学系と、
     を有する虚像表示装置。
    A screen to form an image,
    A moving mechanism for moving the screen in a predetermined direction;
    A virtual image forming optical system that converts the image sequentially formed while the screen is moving in the predetermined direction, and forms a virtual image at a projection distance corresponding to the position of the screen on an optical axis; ,
    Virtual image display device having
  2.  前記移動機構は、少なくとも2つのローラーに無端状のベルトが掛架され、前記ローラーが回転することで前記ベルトを回転させるベルト回転機構であり、前記ベルトの表面に垂直に設置された前記スクリーンを、前記ベルトの回転により前記光軸上の前記所定の一方向に移動させる、請求項1に記載の虚像表示装置。 The moving mechanism is a belt rotating mechanism in which an endless belt is stretched around at least two rollers and the belt is rotated by the rotation of the roller, and the screen vertically installed on the surface of the belt is The virtual image display apparatus according to claim 1, wherein the virtual image display device is moved in the predetermined one direction on the optical axis by rotation of the belt.
  3.  前記スクリーンを複数有し、
     前記移動機構は、互いに離隔するように前記ベルトの表面に垂直に設置された複数の前記スクリーンを前記ベルトの回転により移動させることにより、前記所定の一方向へ移動させるいずれか一つの前記スクリーンを、前記所定の一方向へ移動して前記ベルト回転機構の一端のローラー側から他端のローラー側に達した前記スクリーンから、前記所定の一方向以外の方向へ移動して前記ベルトの前記一端のローラー側に達した他の前記スクリーンに切り換える、請求項2に記載の虚像表示装置。
    Have multiple screens,
    The moving mechanism moves any one of the screens in the predetermined one direction by moving the plurality of screens vertically disposed on the surface of the belt so as to be separated from each other by the rotation of the belt. And moving from the screen which has moved in the predetermined one direction to the roller at the other end of the belt rotation mechanism from the roller side of the belt rotation mechanism, moves in a direction other than the predetermined one direction, and The virtual image display apparatus according to claim 2, wherein the screen is switched to another screen that has reached the roller side.
  4.  表示素子と、
     前記表示素子に表示された前記像を拡大して投影する投影光学系と、をさらに有し、
     前記スクリーンは、投影されることで前記像を形成する拡散スクリーンである、
     請求項1~3のいずれか一項に記載の虚像表示装置。
    A display element,
    And a projection optical system that magnifies and projects the image displayed on the display element,
    The screen is a diffusing screen that is projected to form the image.
    The virtual image display device according to any one of claims 1 to 3.
  5.  前記移動機構は、側面を貫通しつつ前記側面に沿って螺旋状に延伸する二つの螺旋溝を有する外筒と、前記スクリーンの上端および下端に設けられ、前記二つの螺旋溝とそれぞれ掛合した状態で前記外筒が中心軸を中心に回転することで前記螺旋溝に沿って前記螺旋溝内を移動して、前記スクリーンを前記外筒内で前記所定の一方向へ平行移動させるヘリコイドピンと、を有するヘリコイド機構である、請求項1に記載の虚像表示装置。 The moving mechanism is provided at an upper end and a lower end of the screen and an outer cylinder having two spiral grooves extending helically along the side surface while penetrating the side surface, and in a state of being respectively engaged with the two spiral grooves. And a helicoid pin for moving the screen in the outer cylinder in parallel in the predetermined direction by moving the outer groove along the spiral groove by rotating the outer cylinder around the central axis. The virtual image display device according to claim 1, wherein the virtual image display device is a helicoid mechanism.
  6.  前記スクリーンの前記所定の一方向への移動速度を測定する移動速度測定部と、
     前記ローラーを駆動するモーターと、
     測定された前記移動速度が所定の閾値範囲内になるように、前記モーターの回転速度を制御する制御部と、
     をさらに有する、請求項2または3に記載の虚像表示装置。
    A moving speed measuring unit that measures the moving speed of the screen in the predetermined one direction;
    A motor for driving the roller;
    A control unit that controls the rotational speed of the motor such that the measured moving speed falls within a predetermined threshold range;
    The virtual image display device according to claim 2, further comprising:
  7.  請求項1~6のいずれか一項に記載の虚像表示装置と、
     検出領域内に存在するオブジェクトを検出するとともに、前記オブジェクトまでの距離を判定するオブジェクト検出部と、
     判定された前記オブジェクトまでの距離に対応した前記投影距離で、前記虚像表示装置に虚像を形成させる制御部と、
     を有するヘッドアップディスプレイ装置。
     
    A virtual image display device according to any one of claims 1 to 6;
    An object detection unit that detects an object existing in a detection area and determines a distance to the object;
    A control unit that causes the virtual image display device to form a virtual image at the projection distance corresponding to the determined distance to the object;
    Head-up display device having:
PCT/JP2018/048322 2018-01-11 2018-12-27 Virtual image display device and head-up display device WO2019138914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564641A JPWO2019138914A1 (en) 2018-01-11 2018-12-27 Virtual image display device and head-up display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018002445 2018-01-11
JP2018-002445 2018-01-11

Publications (1)

Publication Number Publication Date
WO2019138914A1 true WO2019138914A1 (en) 2019-07-18

Family

ID=67219704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048322 WO2019138914A1 (en) 2018-01-11 2018-12-27 Virtual image display device and head-up display device

Country Status (2)

Country Link
JP (1) JPWO2019138914A1 (en)
WO (1) WO2019138914A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289845A (en) * 1991-03-19 1992-10-14 Fujitsu Ltd Display device
JPH07270712A (en) * 1994-03-31 1995-10-20 Shimadzu Corp Head-up display
JP2013073229A (en) * 2011-09-29 2013-04-22 Seiko Epson Corp Display device, and method of driving the same
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System
JP2017015918A (en) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 Display device
JP2017129754A (en) * 2016-01-20 2017-07-27 パナソニックIpマネジメント株式会社 Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289845A (en) * 1991-03-19 1992-10-14 Fujitsu Ltd Display device
JPH07270712A (en) * 1994-03-31 1995-10-20 Shimadzu Corp Head-up display
JP2013073229A (en) * 2011-09-29 2013-04-22 Seiko Epson Corp Display device, and method of driving the same
US20140036374A1 (en) * 2012-08-01 2014-02-06 Microvision Inc. Bifocal Head-up Display System
JP2017015918A (en) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 Display device
JP2017129754A (en) * 2016-01-20 2017-07-27 パナソニックIpマネジメント株式会社 Display device

Also Published As

Publication number Publication date
JPWO2019138914A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP7078904B2 (en) Virtual image display optical system and image display device
US10882454B2 (en) Display system, electronic mirror system, and moving body
US11130404B2 (en) Head-up display apparatus
WO2019138970A1 (en) Projection distance measurement method and device
WO2019138914A1 (en) Virtual image display device and head-up display device
JP2019120891A (en) Virtual display device and head-up display device
JP2019191368A (en) Virtual image display device and head-up display device
JP2019197102A (en) Virtual image display device and head-up display device
WO2019151314A1 (en) Display apparatus
WO2020189258A1 (en) Display device, head-up display device, and head-mounted display device
WO2018180857A1 (en) Head-up display apparatus
WO2019107225A1 (en) Virtual-image display device and head-up display device
JP2020154027A (en) Display device
JP2020042155A (en) Head-up display device
JP7177397B2 (en) Display device
JP7121349B2 (en) Display method and display device
WO2020184506A1 (en) Head-up display device
JP2020056901A (en) Virtual image display device and head-up display device
WO2019124323A1 (en) Virtual image display device and headup display device
JP2020065125A (en) Display device
WO2020080007A1 (en) Display apparatus
JP2020042154A (en) Head-up display device
WO2020031415A1 (en) Display device
JPWO2019070079A1 (en) Display device and display method using this
JP2020071441A (en) Display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899529

Country of ref document: EP

Kind code of ref document: A1