WO2019138503A1 - User equipment and radio communication method - Google Patents

User equipment and radio communication method Download PDF

Info

Publication number
WO2019138503A1
WO2019138503A1 PCT/JP2018/000502 JP2018000502W WO2019138503A1 WO 2019138503 A1 WO2019138503 A1 WO 2019138503A1 JP 2018000502 W JP2018000502 W JP 2018000502W WO 2019138503 A1 WO2019138503 A1 WO 2019138503A1
Authority
WO
WIPO (PCT)
Prior art keywords
wus
signal
block
coreset
unit
Prior art date
Application number
PCT/JP2018/000502
Other languages
French (fr)
Japanese (ja)
Inventor
和晃 武田
大樹 武田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201880086210.3A priority Critical patent/CN111567007B/en
Priority to PCT/JP2018/000502 priority patent/WO2019138503A1/en
Publication of WO2019138503A1 publication Critical patent/WO2019138503A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Rel. 8, 9
  • LTE successor system for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel. 14 or 15).
  • a user terminal (UE: User Equipment) is synchronized with an initial access procedure (also called cell search etc.) (SS: Synchronization Signal), for example.
  • SS Synchronization Signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • eNB base station
  • identification of connected cells are performed. (Eg, identify by cell ID (Identifier)).
  • the operation of discontinuous reception is supported in the idle state (idle mode).
  • the idle user terminal controls RSRP / RSRQ measurement for cell reselection, monitoring / reception of a paging channel (PCH), etc. based on the DRX cycle.
  • An incoming call, a change in broadcast information (system information), an ETWS, etc. are notified to the user terminal by a paging channel (Paging channel).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • synchronization signals also referred to as SS, PSS and / or SSS, or NR-PSS and / or NR-SSS, etc.
  • broadcast channels broadcast signals, PBCH
  • a signal block also referred to as SS / PBCH block or SS / PBCH block or the like
  • radio resource also referred to as a control resource block, CORESET, etc.
  • This invention is made in view of this point, and it aims at providing the user terminal and radio
  • a user terminal is periodically time-multiplexed or frequency-multiplexed on at least one of a downlink shared channel, a control resource set including a downlink control channel for scheduling the downlink shared channel, and a synchronization signal block.
  • a control unit configured to control reception of the downlink control channel according to the reception of the predetermined signal using one of the wireless resources.
  • FIGS. 2A to 2C are diagrams showing an example of arrangement patterns of the SS block, CORESET, and PDSCH. It is a figure which shows an example of arrangement
  • FIG. It is a figure which shows an example of the multiplexing method 1-1.
  • FIG. 18 is a diagram illustrating an example of multiplexing method 1-2.
  • 6A-6D illustrate some examples of multiplexing method 1-2. It is a figure which shows an example of the multiplexing method 1-3. It is a figure which shows an example of the multiplexing method 1-4. It is a figure which shows an example of the multiplexing method 1-5.
  • 10A to 10D are diagrams showing an example of a method of multiplexing WUS on pattern 1 in the case where SS blocks and CORESET continue in the time domain. It is a figure which shows an example of the method of multiplexing WUS to the pattern 1 in case SS block and CORESET are separated in a time-domain. 12A to 12D illustrate an example of the WUS multiplexing method for pattern 2.
  • FIG. It is a figure which shows an example of schematic structure of the radio
  • a user terminal in an RRC idle state detects downlink control information (DCI) transmitted in a common search space (Common SS) of a downlink control channel (PDCCH) at a predefined paging timing. Then, based on the scheduling (DL assignment) information included in the DCI, the paging message transmitted on the downlink shared channel (PDSCH) is acquired.
  • DCI downlink control information
  • DCI format 1A or DCI format 1C scrambled by a paging identifier (P-RNTI: Paging-Radio Network Temporary Identifier) is used.
  • the paging message transmitted by the wireless base station includes a paging record (Paging Record) for each user terminal, change indication information of system information (for example, SystemInfoModification), ETWS (Earthquake and Tsunami Warning System), CMAS (Commercial Mobile Alert Service) And notifications such as EAB (Extended Access Barring) can be included.
  • system information for example, SystemInfoModification
  • ETWS Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert Service
  • notifications such as EAB (Extended Access Barring) can be included.
  • Paging timing at which a user terminal detects a paging channel is a paging occasion (PO: Paging Occasion) indicating a subframe in which DCI scrambled with P-RNTI is transmitted and a radio frame (PO: Paging Frame) including PO. And is set based on.
  • the user terminal detects (monitors) a paging channel based on PO and PF.
  • the user terminal in the idle state can reduce power consumption by performing the reception operation (DRX) only during a period in which the paging channel needs to be monitored, and putting it in the sleep state or the power saving state in the other periods.
  • the paging channel may be considered to include a downlink control channel for transmitting DCI scrambled by P-RNTI, and a downlink shared channel for which allocation is instructed by the DCI and for transmitting a paging message.
  • the UE consumes power by monitoring the downlink control channel each time PO.
  • a wake-up signal for the purpose of power saving of IoT (Internet of Things) UE (for example, NB (Narrow Band) -IoT, eMTC (enhanced Machine Type Communication)) It is being considered.
  • the UE controls the reception of other signals in response to the reception of WUS.
  • WUS may be called an activation signal, an awakening signal, a start instruction signal, a reception instruction signal, a paging instruction signal, a PDCCH monitoring trigger signal, or the like.
  • WUS may be supported for idle mode UEs and may be supported for RRC connected mode UEs.
  • WUS is also considered in NR.
  • the NW eg, a radio base station
  • the NW configures periodic WUS resources in the UE.
  • the UE enters the power saving state (sleep state) in a period other than the WUS resource.
  • the UE monitors WUS in WUS resources.
  • the NW transmits WUS using WUS resources.
  • the UE receives the downlink control channel and / or the downlink shared channel upon detecting the WUS. For example, upon detecting WUS, the UE receives a PDCCH in a control resource set for paging (CORESET (Control Resource Set) for paging), and receives a paging message in a PDSCH scheduled by the PDCCH.
  • CORESET Control Resource Set
  • the UE does not monitor the PDCCH when WUS is not detected (Discontinuous Transmission: DTX).
  • the process of WUS detection may be simpler than the process of downlink control channel detection. Therefore, when WUS is monitored periodically, power consumption can be reduced as compared with the case where the downlink control channel is monitored periodically.
  • future wireless communication systems for example, 5G, NR
  • 5G Fifth Generation
  • NR New Radio
  • future wireless communication systems are expected to realize various wireless communication services so as to satisfy different requirements (for example, ultra high speed, large capacity, very low delay, etc.) It is done.
  • BF Beam Forming
  • Digital BF can be classified into digital BF and analog BF.
  • Digital BF is a method of performing precoding signal processing (for digital signals) on a baseband.
  • parallel processing of Inverse Fast Fourier Transform (IFFT) / Digital to Analog Converter (DAC) / Radio Frequency (RF) is required as many as the number of antenna ports (RF chains). Become.
  • IFFT Inverse Fast Fourier Transform
  • DAC Digital to Analog Converter
  • RF Radio Frequency
  • Analog BF is a method that uses a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration is simple and can be realized at low cost, but a plurality of beams can not be formed at the same timing. Specifically, analog BF can only form one beam at a time per phase shifter.
  • a base station for example, called eNB (evolved Node B), BS (Base Station), etc.
  • eNB evolved Node B
  • BS Base Station
  • one beam can be formed at a certain time. Therefore, when transmitting a plurality of beams using only analog BF, it is not possible to transmit simultaneously on the same resource, and it is necessary to temporally switch or rotate the beams.
  • Synchronization signals also referred to as SS, PSS and / or SSS, or NR-PSS and / or NR-SSS, etc.
  • a signal block also referred to as SS block (SSB), SS / PBCH block or the like
  • SSB SS block
  • PBCH broadcast signal
  • NR-PBCH NR-PBCH
  • a set of one or more signal blocks is also referred to as a signal burst (SS / PBCH burst or SS burst).
  • a plurality of signal blocks in the signal burst are transmitted with different beams at different times (also referred to as beam sweep etc.).
  • the SS / PBCH block is composed of one or more symbols (eg, OFDM symbols). Specifically, the SS / PBCH block may be composed of a plurality of consecutive symbols. In the SS / PBCH block, PSS, SSS and NR-PBCH may be arranged in one or more different symbols. For example, the SS / PBCH block is also considered to constitute an SS / PBCH block with four or five symbols including one symbol PSS, one symbol SSS, and two or three symbols PBCH.
  • a set of one or more SS / PBCH blocks may be referred to as SS / PBCH bursts.
  • the SS / PBCH burst may be composed of SS / PBCH blocks in which frequency and / or time resources are continuous, and may be composed of SS / PBCH blocks in which frequency and / or time resources are non-consecutive.
  • the SS / PBCH burst may be set with a predetermined period (which may be called an SS / PBCH burst period) or may be set with a non-period.
  • one or more SS / PBCH bursts may be referred to as an SS / PBCH burst set (SS / PBCH burst series) or as an SS block period.
  • the SS / PBCH burst set is set periodically.
  • the user terminal may control reception processing assuming that SS / PBCH burst sets are transmitted periodically (with SS / PBCH burst set period).
  • Each SS / PBCH block in the SS / PBCH burst set is identified by a predetermined index (SS / PBCH index).
  • the SS / PBCH index may be any information uniquely identifying the SS / PBCH block in the SS burst set, and may correspond to the time index.
  • the user terminal is able to set spatial, average gain, delay and Doppler parameters between SS / PBCH burst sets and between SS / PBCH blocks having the same SS / PBCH index. Quasi-collocation (QCL) for at least one may be assumed.
  • QCL Quasi-collocation
  • pseudo co-location refers to space (beam) used for transmission of different SS / PBCH blocks, and at least one of average gain, delay and Doppler parameters between the multiple SS / PBCH blocks is identical.
  • the user terminal may perform at least one of space, average gain, delay, and Doppler parameters between SS / PBCH blocks and SS / PBCH blocks having different SS / PBCH indexes within the SS / PBCH burst set. Pseudo colocation may not be assumed.
  • CORESET for PDCCH scheduling PDSCH carrying Remaining Minimum System Information may be referred to as CORESET for RMSI (CORESET for RMSI, RMSI CORESET).
  • the UE may read the PBCH in the SS block, read the PDCCH from the CORESET for RMSI configured based on the PBCH, and read the RMSI from the PDSCH scheduled for the PDCCH.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • the SS block and CORESET are TDM. Furthermore, CORESET and PDSCH are TDM. In the time direction, the first is the SS block, the second is CORESET, and the second is PDSCH.
  • the SS block and PDSCH are FDM, and CORESET and PDSCH are TDM.
  • the SS block and the CORESET do not overlap in the time direction, and the SS block and the CORESET do not overlap in the frequency direction.
  • the first is CORESET and the next is SS block and PDSCH.
  • SS block and CORESET are FDM. Furthermore, SS block and PDSCH are FDM, and CORESET and PDSCH are TDM. In the temporal direction, the first is CORESET and the next is PDSCH.
  • CORESET for PDCCH scheduling PDSCH carrying paging messages may be referred to as CORESET for paging (Paging CORESET).
  • the CORESET for RMSI and the CORESET for paging may be a common CORESET.
  • the PDSCH associated with a particular CORESET may carry the RMSI and paging messages.
  • the present inventors examined a method of frequency multiplexing and / or time multiplexing WUS in at least one of SS block, CORESET, and PDSCH, and reached the present invention.
  • WUS is associated with PDSCH carrying RMSI and / or paging messages, CORESET for PDCCH scheduling that PDSCH, and SS block associated with CORESET.
  • the UE may receive WUS using one of the periodic radio resources time-multiplexed or frequency-multiplexed in at least one of PDSCH, CORESET, and SS block, and may receive PDCCH in response to WUS reception. You may control the reception of
  • Radio resources can be efficiently utilized by frequency multiplexing and / or time multiplexing WUS to at least one of SS block, CORESET, and PDSCH. Since the UE can decode the PDCCH and PDSCH associated with the WUS in response to the detection of the WUS, the power consumption of the UE can be reduced and the increase in UE operation can be suppressed.
  • PDSCH may refer to PDSCH carrying RMSI and / or paging messages simply as PDSCH.
  • CORESET for PDCCH scheduling its PDSCH may be simply referred to as CORESET.
  • FIG. 3 is a view showing an example of the arrangement of the pattern 3.
  • a set (signal set) of two patterns continuous in the time direction is periodically arranged.
  • the two patterns in one signal set may be separated in the time direction (may be discontinuous).
  • different beams may be applied to two patterns in one signal set.
  • the time length of the SS block is 4 symbols.
  • the time length of CORESET is one symbol, and FDM is performed on the first symbol of the SS block.
  • the time length of PDSCH is 3 symbols, and FDM is applied to the 2nd to 4th symbols of the SS block and is TDMed to CORESET.
  • Two SS blocks consecutive in the time direction may be referred to as SS bursts or SS burst sets.
  • the pattern 3 can suppress the time length of the pattern. For example, WUS can be placed in the symbol of the SS block. Therefore, since many patterns can be arranged in a short time, many beams can be swept in a short time.
  • WUS resources may be multiplexed to pattern 3 by any of the following multiplexing methods 1-1 to 1-4.
  • WUS resources may be FDM to CORESET.
  • the WUS resource may be allocated to a part or all of the bands other than the CORESET among the PDSCH bands.
  • WUS may be transmitted on WUS resources in the signal set including the RMSI and / or the paging message. Also, if WUS is transmitted periodically, the period of WUS may be longer than the period of signal set.
  • the WUS resource may be adjacent to CORESET in the frequency domain or may be separate from CORESET.
  • WUS resources may or may not be contiguous in the frequency domain.
  • the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
  • WUS resources may be FDM into SS blocks.
  • WUS resources may be placed across symbols of SS blocks.
  • the WUS of the multiplexing method 1-2 is shorter in the frequency direction and longer in the time direction than the multiplexing method 1-1.
  • the UE may hold CORESET for 4 symbols until detecting WUS, holds PDSCH for 3 symbols, and receives CORESET and PDSCH after WUS is detected. You may go. The UE may determine the detection of WUS before receiving all WUS.
  • FIG. 6 is a diagram illustrating some examples of WDM resources and FDM methods of SS blocks.
  • WUS resources may be placed in a band outside the SS block for the pattern.
  • the WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block.
  • WUS resources may be allocated in the band between PDSCH and SS blocks.
  • the WUS resource may be allocated to a band adjacent to the PDSCH and the SS block, or may be allocated to a band apart from at least one of the PDSCH and the SS block.
  • WUS resources may be placed in a band outside the PDSCH for the pattern.
  • the WUS resources may be allocated to a band adjacent to the PDSCH or may be allocated to a band separate from the PDSCH.
  • WUS resources may be arranged in multiple bands.
  • the plurality of bands may be bands outside the SS block with respect to the pattern and bands between the PDSCH and the SS block.
  • the plurality of bands may be a band outside the PDSCH with respect to the pattern and a band between the PDSCH and the SS block.
  • the plurality of bands may be a band outside the PDSCH for the pattern and a band outside the SS block for the pattern.
  • WUS resources may be TDM into SS blocks.
  • WUS resources may be placed before SS block in the time domain.
  • the WUS resources may be allocated to symbols adjacent to the SS block or may be allocated to symbols distant from the SS block.
  • multiplexing methods 1-3 may be used.
  • the band of WUS may be the same as the band of SS block, or may be different from at least a part of the band of SS block.
  • the UE decodes PDCCH in CORESET after detecting WUS. This sequential process can reduce the load on the UE.
  • WUS resources may be TDM to CORESET.
  • WUS resources may be placed before CORESET in the time domain. WUS resources may be located on symbols adjacent to CORESET, or may be located on symbols away from CORESET.
  • multiplexing method 1-4 may be used.
  • the WUS band may overlap with the CORESET band or may be different from at least a portion of the SS block band.
  • the UE decodes PDCCH in CORESET after detecting WUS. This sequential process can reduce the load on the UE.
  • WUS resources may be TDM to SS block and CORESET.
  • a plurality of different WUS resources may be collectively allocated (the number of resources is two in FIG. 9) before repeatedly transmitting the SS block, the CORESET, and the PDSCH.
  • the number of resources of WUS may be the same as the number of SS blocks, or different values may be set by higher layer signaling.
  • WUS resources may be allocated to part or all of the SS block, CORESET, and PDSCH bands, and WUS resources may be allocated to frequency positions not overlapping these bands. .
  • WUS multiplexing can prevent an increase in beam sweeping time.
  • FIG. 10 is a diagram showing an example of a method of multiplexing WUS on pattern 1 in the case where the SS block and CORESET continue in the time domain.
  • WUS resources may be FDM into SS blocks.
  • the WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block.
  • WUS resources may be FDM to CORESET.
  • WUS resources may be located in a band adjacent to CORESET or may be located in a band away from CORESET.
  • the bands of WUS resource and CORESET may be in the band of PDSCH.
  • the band of WUS resource and CORESET may be the same as the band of the SS block, or may be different from at least a part of the band of the SS block.
  • WUS resources may be TDM into SS blocks and may be placed before SS blocks in the time domain.
  • the WUS resources may be allocated to symbols adjacent to the SS block or may be allocated to symbols distant from the SS block.
  • WUS resources may be TDM to PDSCH and may be placed after PDSCH in the time domain. WUS resources may be allocated to symbols adjacent to PDSCH or may be allocated to symbols distant from PDSCH.
  • FIG. 11 is a diagram showing an example of a method of multiplexing WUS on pattern 1 when the SS block and CORESET are separated in the time domain.
  • WUS resources may be TDM into SS blocks and may be placed between SS blocks and CORESET in the time domain.
  • the WUS resources may be located in symbols away from the SS block and CORESET, or may be located in symbols adjacent to at least one of the SS block and CORESET.
  • the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
  • WUS can be multiplexed to pattern 1.
  • WUS resources may be FDM to CORESET and TDM to PDSCH.
  • WUS resources may be located in a band adjacent to CORESET or may be located in a band away from CORESET.
  • the WUS resource and the CORESET band may be part of the PDSCH band or may be identical to the PDSCH band.
  • WUS resources may be FDM into SS blocks.
  • the WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block.
  • the plurality of symbols in which the WUS resource is arranged may be identical to the plurality of symbols in which the SS block is arranged, or may be part of a plurality of symbols in which the SS block is arranged.
  • WUS resources may be FDM to CORESET and TDM to SS block.
  • the bandwidth of the WUS resource may be the same as the bandwidth of the SS block, or may be part of the bandwidth of the SS block.
  • the WUS resource may be located in a zone separate from CORESET or may be located in a zone adjacent to CORESET.
  • WUS resources may be TDM on PDSCH and FDM on SS block.
  • the bandwidth of the WUS resource may be identical to the bandwidth of PDSCH or may be part of the bandwidth of PDSCH.
  • the WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block.
  • the WUS resources may be located after the PDSCH or may be located before the PDSCH in the time domain.
  • the UE can perform WUS detection and PDCCH decoding in the CORESET in one symbol.
  • WUS can be multiplexed without increasing the time length (number of symbols) of pattern 2 because WUS is multiplexed into the time resource and frequency resource of pattern 2.
  • WUS multiplexing or beam sweeping time can be prevented from increasing.
  • the arrangement of WUS, SS block, CORESET, PDSCH is not limited to the example of the figure.
  • the amount of time resources and the amount of frequency resources in WUS resources may be changed as long as WUS resources to which WUS (for example, a predetermined sequence) can be allocated can be secured.
  • the time resource (number of symbols) may be halved and the frequency resource (bandwidth) may be doubled.
  • the UE may detect SS blocks (or only PSS and SSS of SS blocks), then detect WUS and then decode PDCCH in CORESET . In this case, the UE establishes synchronization using PSS and SSS in the SS block.
  • the UE may detect WUS in a state where synchronization has not been established. Also, the UE may establish coarse synchronization using WUS. If the UE can detect WUS in a non-synchronized state, it detects WUS, then detects SS block (or only PSS and SSS of SS block), and then decodes PDCCH in CORESET You may The UE may establish fine synchronization using the PSS and SSS in the SS block when establishing coarse synchronization using WUS.
  • the UE may establish synchronization using WUS.
  • the UE may detect WUS and then decode the PDCCH in CORESET if it can establish synchronization using WUS, or if synchronization is already established. In this case, the UE may not detect the SS block.
  • the UE may assume that the CORESET time position and / or frequency position relative to the WUS resource associated with the CORESET is fixed within the PBCH TTI. Alternatively, the UE may assume that the time and / or frequency position of the CORESET relative to the WUS resource associated with the CORESET is fixed in the specification.
  • the UE that has decoded the PDCCH decodes the RMSI and / or the paging message in the PDSCH scheduled by the PDCCH.
  • WUS resources may be configured by broadcast information (eg, RMSI) or higher layer signaling (eg, RRC signaling).
  • WUS resources for UEs in idle mode may be configured by the RMSI.
  • WUS resources for grouped UEs may be configured by RRC signaling.
  • WUS resources for UEs in RRC connected mode may be configured by RRC signaling.
  • the bandwidth of the WUS may not be dependent on the channel bandwidth (network bandwidth).
  • the bandwidth of WUS may be a fixed value according to the specification. Also, the bandwidth of WUS may be dependent on subcarrier spacing.
  • wireless communication system Hereinafter, the configuration of the radio communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any one of the above aspects of the present invention or a combination thereof.
  • FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th Generation mobile communication system), 5G It may be called (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR or the like, or it may be called a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 5G It may be called (5th generation mobile communication system)
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • NR Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 by CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs). For example, in DC, MeNB (MCG) applies an LTE cell, and SeNB (SCG) performs communication using NR / 5G-cell.
  • MCG MeNB
  • SCG SeNB
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection Can be configured.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink shared channels (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel, NR-PBCH), downlink L1 / L2 A control channel or the like is used.
  • User data, upper layer control information, at least one of SIB (System Information Block), etc. are transmitted by PDSCH.
  • a MIB Master Information Block
  • a common control channel that reports the presence or absence of a paging channel is mapped to a downlink L1 / L2 control channel (for example, PDCCH), and data of a paging channel (PCH) is mapped to a PDSCH.
  • a downlink reference signal, an uplink reference signal, and a physical downlink synchronization signal are separately arranged.
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, or ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and / or upper layer control information is transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information etc.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a downlink reference signal As a downlink reference signal, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation). Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. Further, in the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals.
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Also, reference signals to be transmitted are not limited to these.
  • FIG. 14 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Also, with regard to the downlink control signal, transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the transmission / reception unit 103 may use a downlink shared channel (for example, a PDSCH carrying an RMSI and / or a paging message), a control resource set (CORESET including a PDCSI scheduling a PDSCH carrying an RMSI and / or a paging message), and a synchronization signal block
  • a predetermined signal eg, WUS
  • WUS wireless local area network
  • TDM time-multiplexed
  • FDM frequency-multiplexed
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs at least one of setting of a communication channel, call processing such as releasing, status management of the wireless base station 10, and management of a wireless resource.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • FIG. 15 is a diagram showing an example of a functional configuration of a radio base station according to the present embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • the baseband signal processing unit 104 has a digital beamforming function of providing digital beamforming.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • control unit 301 generates a signal by the transmission signal generation unit 302 (including a signal corresponding to at least one of synchronization signal, RMSI, MIB, paging channel, system information, and broadcast channel (broadcast signal)), and a mapping unit Control at least one of allocation of signals by 303 and the like.
  • a signal by the transmission signal generation unit 302 including a signal corresponding to at least one of synchronization signal, RMSI, MIB, paging channel, system information, and broadcast channel (broadcast signal)
  • a mapping unit Control at least one of allocation of signals by 303 and the like.
  • control unit 301 may set, for the user terminal 20, the downlink shared channel, the control resource set including the downlink control channel for scheduling the downlink shared channel, and the synchronization signal block.
  • the transmission signal generation unit 302 generates a downlink signal (eg, at least one of a downlink control signal, a downlink data signal, a downlink reference signal, and an SS / PBCH block) based on an instruction from the control unit 301, and the mapping unit 303.
  • a downlink signal eg, at least one of a downlink control signal, a downlink data signal, a downlink reference signal, and an SS / PBCH block
  • Output to The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 For example, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information. Also, coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
  • CSI Channel State Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103.
  • the mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 may, for example, receive power of a received signal (for example, reference signal received power (RSRP)), reception quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR)) and / or Or, it may measure channel conditions and the like.
  • RSRP reference signal received power
  • RSS reference signal received quality
  • SINR signal to interference plus noise ratio
  • the measurement result may be output to the control unit 301.
  • FIG. 16 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting and receiving unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beamforming unit comprises an analog beamforming circuit (eg, phase shifter, phase shift circuit) or an analog beamforming apparatus (eg, phase shifter) described based on common recognition in the technical field according to the present invention can do.
  • the transmitting and receiving antenna 201 can be configured by, for example, an array antenna.
  • the transmission / reception unit 203 may use a downlink shared channel (for example, a PDSCH carrying an RMSI and / or a paging message), a control resource set including a downlink control channel for scheduling the downlink shared channel (a PDSCH carrying an RMSI and / or a paging message).
  • a downlink shared channel for example, a PDSCH carrying an RMSI and / or a paging message
  • a control resource set including a downlink control channel for scheduling the downlink shared channel (a PDSCH carrying an RMSI and / or a paging message).
  • One of the periodic radio resources eg, WUS resources
  • TDM time multiplexed
  • FDM frequency multiplexed
  • the synchronization signal block eg, SS block
  • the CORESET that includes the PDCCH to be scheduled
  • a predetermined signal eg, WUS
  • FIG. 17 is a diagram showing an example of a functional configuration of a user terminal according to the present embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it is assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and assignment of signals by the mapping unit 403. Further, the control unit 401 controls reception processing of the signal by the reception signal processing unit 404 and measurement of the signal by the measurement unit 405.
  • control unit 401 may control reception of a downlink control channel (for example, PDCCH) in response to reception of a predetermined signal (for example, WUS).
  • a downlink control channel for example, PDCCH
  • a predetermined signal for example, WUS
  • control resource set and the downlink shared channel may be frequency-multiplexed to the synchronization signal block, and the downlink shared channel may be time-multiplexed to the control resource set (for example, pattern 3).
  • control resource set may be time multiplexed to the synchronization signal block, and the downlink shared channel may be time multiplexed to the control resource set (eg, pattern 1).
  • the time resource of the synchronization signal block is different from that of the synchronization signal block
  • the frequency resource of the synchronization signal block is different from the frequency resource of the synchronization signal block
  • the downlink shared channel is frequency-multiplexed to the synchronization signal block. It may be time multiplexed into the resource set (pattern 2).
  • radio resources eg, WUS resources
  • WUS resources may be frequency multiplexed into the control resource set (FIG. 4, FIG. 10B, FIG. 12A, FIG. 12C).
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information and / or channel state information (CSI) based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • the received signal processing unit 404 receives a synchronization signal and a broadcast channel that the radio base station applies beamforming to transmit based on an instruction from the control unit 401. In particular, it receives synchronization signals and broadcast channels that are assigned to at least one of a plurality of time domains (e.g., symbols) that make up a predetermined transmission time interval (e.g., a subframe or slot).
  • a predetermined transmission time interval e.g., a subframe or slot
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 may measure one or more serving cells and / or one or more neighboring cells using the SS / PBCH block transmitted from the radio base station 10.
  • the measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 405 may measure, for example, received power (for example, RSRP), received quality (for example, RSRQ, received SINR), and / or channel condition using the received SS / PBCH block.
  • the measurement result may be output to the control unit 401.
  • the measurement unit 405 performs RRM measurement using a synchronization signal.
  • each functional block is realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 18 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein may be used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier carrier
  • a base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, transmission / reception point, femtocell, small cell, and the like.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • the mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • the base station and / or the mobile station may be called a transmitting device, a receiving device, etc.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Abstract

The purpose of the present invention is to suppress power consumption of a user equipment in a future radio communication system. The user equipment has: a reception unit for receiving a predetermined signal by using one of periodical radio resources that is either time-multiplexed or frequency-multiplexed with at least one of a downlink shared channel, a control resource set including a downlink control channel for scheduling the downlink shared channel, and a synchronization signal block; and a control unit for controlling reception of the downlink control channel upon receipt of the predetermined signal.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In Universal Mobile Telecommunications System (UMTS) networks, Long Term Evolution (LTE) has been specified for the purpose of further high data rates, low delays, etc. (Non-Patent Document 1). In addition, LTE-A (LTE Advanced, LTE Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and upgrading the LTE (LTE Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 LTE successor system (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel. 14 or 15).
 既存のLTEシステム(例えば、LTE Rel.8-13)において、ユーザ端末(UE:User Equipment)は、初期接続(initial access)手順(セルサーチ等とも呼ばれる)によって同期信号(SS:Synchronization Signal。例えば、PSS(Primary Synchronization Signal)及び/又はSSS(Secondary Synchronization Signal)を含む。)を検出し、ネットワーク(例えば、基地局(eNB(eNode B)))との同期をとるとともに、接続するセルを識別する(例えば、セルID(Identifier)によって識別する)。 In the existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) is synchronized with an initial access procedure (also called cell search etc.) (SS: Synchronization Signal), for example. , PSS (Primary Synchronization Signal) and / or SSS (Secondary Synchronization Signal) are detected, and synchronization with the network (for example, base station (eNB (eNode B))) and identification of connected cells are performed. (Eg, identify by cell ID (Identifier)).
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末の電力消費を低減するために、アイドル状態(idle mode)において間欠受信(DRX:Discontinuous Reception)の動作がサポートされている。また、アイドル状態のユーザ端末は、セル再選択のためのRSRP/RSRQ測定、ページングチャネル(PCH)のモニタリング/受信等をDRXサイクルに基づいて制御する。ページングチャネル(Paging channel)によって着信、報知情報(システム情報)の変更、ETWS等がユーザ端末に通知される。 Moreover, in the existing LTE system (for example, LTE Rel. 8-13), in order to reduce the power consumption of the user terminal, the operation of discontinuous reception (DRX: Discontinuous Reception) is supported in the idle state (idle mode). There is. Also, the idle user terminal controls RSRP / RSRQ measurement for cell reselection, monitoring / reception of a paging channel (PCH), etc. based on the DRX cycle. An incoming call, a change in broadcast information (system information), an ETWS, etc. are notified to the user terminal by a paging channel (Paging channel).
 将来の無線通信システム(例えば、NR又は5G)においては、同期信号(SS、PSS及び/又はSSS、又は、NR-PSS及び/又はNR-SSS等をともいう)及びブロードキャストチャネル(ブロードキャスト信号、PBCH、又は、NR-PBCH等ともいう)を含む信号ブロック(SS/PBCHブロック又はSS/PBCHブロック等ともいう)を定義することが検討されている。また、下り制御チャネルのための無線リソース(制御リソースブロック、CORESET等ともいう)を定義することが検討されている。 In future wireless communication systems (for example, NR or 5G), synchronization signals (also referred to as SS, PSS and / or SSS, or NR-PSS and / or NR-SSS, etc.) and broadcast channels (broadcast signals, PBCH) Alternatively, it is considered to define a signal block (also referred to as SS / PBCH block or SS / PBCH block or the like) including NR-PBCH or the like. In addition, it is considered to define a radio resource (also referred to as a control resource block, CORESET, etc.) for the downlink control channel.
 ユーザ端末がこのような信号構成をモニタすることによって、ユーザ端末の消費電力が増大するおそれがある。 When the user terminal monitors such a signal configuration, power consumption of the user terminal may be increased.
 本発明はかかる点に鑑みてなされたものであり、将来の無線通信システムにおいて、ユーザ端末の消費電力を抑えることが可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。 This invention is made in view of this point, and it aims at providing the user terminal and radio | wireless communication method which can suppress the power consumption of a user terminal in the future radio | wireless communications system.
 本発明の一態様に係るユーザ端末は、下り共有チャネル、前記下り共有チャネルをスケジュールする下り制御チャネルを含む制御リソースセット、及び同期信号ブロック、の少なくとも1つに時間多重又は周波数多重される周期的な無線リソースの一つを用いて、所定信号を受信する受信部と、前記所定信号の受信に応じて、前記下り制御チャネルの受信を制御する制御部と、を有することを特徴とする。 A user terminal according to an aspect of the present invention is periodically time-multiplexed or frequency-multiplexed on at least one of a downlink shared channel, a control resource set including a downlink control channel for scheduling the downlink shared channel, and a synchronization signal block. And a control unit configured to control reception of the downlink control channel according to the reception of the predetermined signal using one of the wireless resources.
 本発明によれば、将来の無線通信システムにおいて、ユーザ端末の消費電力を抑えることができる。 According to the present invention, it is possible to suppress the power consumption of the user terminal in the future wireless communication system.
WUSリソースにおけるWUS送信の一例を示す図である。It is a figure which shows an example of WUS transmission in a WUS resource. 図2A-図2Cは、SSブロック、CORESET、PDSCHの配置のパターンの一例を示す図である。FIGS. 2A to 2C are diagrams showing an example of arrangement patterns of the SS block, CORESET, and PDSCH. パターン3の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the pattern 3. FIG. 多重方法1-1の一例を示す図である。It is a figure which shows an example of the multiplexing method 1-1. 多重方法1-2の一例を示す図である。FIG. 18 is a diagram illustrating an example of multiplexing method 1-2. 図6A-図6Dは、多重方法1-2の幾つかの例を示す図である。6A-6D illustrate some examples of multiplexing method 1-2. 多重方法1-3の一例を示す図である。It is a figure which shows an example of the multiplexing method 1-3. 多重方法1-4の一例を示す図である。It is a figure which shows an example of the multiplexing method 1-4. 多重方法1-5の一例を示す図である。It is a figure which shows an example of the multiplexing method 1-5. 図10A-図10Dは、SSブロックとCORESETが時間領域において連続する場合のパターン1にWUSを多重する方法の一例を示す図である。10A to 10D are diagrams showing an example of a method of multiplexing WUS on pattern 1 in the case where SS blocks and CORESET continue in the time domain. SSブロックとCORESETが時間領域において離れている場合のパターン1にWUSを多重する方法の一例を示す図である。It is a figure which shows an example of the method of multiplexing WUS to the pattern 1 in case SS block and CORESET are separated in a time-domain. 図12A-図12Dは、パターン2に対するWUSの多重方法の一例を示す図である。12A to 12D illustrate an example of the WUS multiplexing method for pattern 2. FIG. 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the radio | wireless communications system which concerns on this Embodiment. 本実施の形態に係る無線基地局の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the wireless base station which concerns on this Embodiment. 本実施の形態に係る無線基地局の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the wireless base station which concerns on this Embodiment. 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the user terminal which concerns on this Embodiment. 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user terminal which concerns on this Embodiment. 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the wireless base station which concerns on this Embodiment, and a user terminal.
 既存のLTEシステムでは、RRCアイドル状態のユーザ端末は、あらかじめ定義されたページングタイミングにおいて、下り制御チャネル(PDCCH)の共通サーチスペース(Common SS)で送信される下り制御情報(DCI)を検出する。そして、当該DCIに含まれるスケジューリング(DL割当て)情報に基づいて、下り共有チャネル(PDSCH)で送信されるページングメッセージを取得する。なお、DCIとしては、ページング用の識別子(P-RNTI:Paging-Radio Network Temporary Identifier)でスクランブルされたDCI(DCIフォーマット1A、又はDCIフォーマット1C)が用いられる。 In the existing LTE system, a user terminal in an RRC idle state detects downlink control information (DCI) transmitted in a common search space (Common SS) of a downlink control channel (PDCCH) at a predefined paging timing. Then, based on the scheduling (DL assignment) information included in the DCI, the paging message transmitted on the downlink shared channel (PDSCH) is acquired. As the DCI, DCI (DCI format 1A or DCI format 1C) scrambled by a paging identifier (P-RNTI: Paging-Radio Network Temporary Identifier) is used.
 無線基地局が送信するページングメッセージには、各ユーザ端末に対するページングレコード(Paging Record)、システム情報の変更指示情報(例えば、SystemInfoModification)、ETWS(Earthquake and Tsunami Warning System)、CMAS(Commercial Mobile Alert Service)、EAB(Extended Access Barring)等の通知を含めることができる。 The paging message transmitted by the wireless base station includes a paging record (Paging Record) for each user terminal, change indication information of system information (for example, SystemInfoModification), ETWS (Earthquake and Tsunami Warning System), CMAS (Commercial Mobile Alert Service) And notifications such as EAB (Extended Access Barring) can be included.
 ユーザ端末がページングチャネルの検出を行うページングタイミングは、P-RNTIでスクランブルされたDCIが送信されるサブフレームを示すページングオケージョン(PO:Paging Occasion)と、POが含まれる無線フレーム(PF:Paging Frame)と、に基づいて設定される。ユーザ端末は、PO及びPFに基づいてページングチャネルの検出(モニタ)を行う。アイドル状態のユーザ端末は、ページングチャネルをモニタする必要のある期間だけ受信動作(DRX)を行い、その他の期間はスリープ状態又は省電力状態とすることにより、消費電力を低減することができる。なお、ページングチャネルは、P-RNTIでスクランブルされたDCIを送信する下り制御チャネルと、当該DCIで割当てが指示され、ページングメッセージを送信する下り共有チャネルと、を含む構成と考えてもよい。 Paging timing at which a user terminal detects a paging channel is a paging occasion (PO: Paging Occasion) indicating a subframe in which DCI scrambled with P-RNTI is transmitted and a radio frame (PO: Paging Frame) including PO. And is set based on. The user terminal detects (monitors) a paging channel based on PO and PF. The user terminal in the idle state can reduce power consumption by performing the reception operation (DRX) only during a period in which the paging channel needs to be monitored, and putting it in the sleep state or the power saving state in the other periods. The paging channel may be considered to include a downlink control channel for transmitting DCI scrambled by P-RNTI, and a downlink shared channel for which allocation is instructed by the DCI and for transmitting a paging message.
 しかしながら、UEは、POの度に下り制御チャネルをモニタすることによって、電力を消費する。 However, the UE consumes power by monitoring the downlink control channel each time PO.
 IoT(Internet of Things) UE(例えば、NB(Narrow Band)-IoT、eMTC(enhanced Machine Type Communication))の省電力化(power saving)を目的とするウェイクアップ信号(wake-up signal:WUS)が検討されている。UEは、WUSの受信に応じて、他の信号の受信を制御する。WUSは、起動信号、覚醒信号、開始指示信号、受信指示信号、ページング指示信号、PDCCHモニタリングトリガー信号などと呼ばれてもよい。WUSは、アイドルモードUEに対してサポートされてもよいし、RRCコネクテッドモードUEに対してサポートされてもよい。 A wake-up signal (WUS) for the purpose of power saving of IoT (Internet of Things) UE (for example, NB (Narrow Band) -IoT, eMTC (enhanced Machine Type Communication)) It is being considered. The UE controls the reception of other signals in response to the reception of WUS. WUS may be called an activation signal, an awakening signal, a start instruction signal, a reception instruction signal, a paging instruction signal, a PDCCH monitoring trigger signal, or the like. WUS may be supported for idle mode UEs and may be supported for RRC connected mode UEs.
 NRにおいても、WUSが検討されている。 WUS is also considered in NR.
 例えば、図1に示すように、NW(例えば、無線基地局)は、周期的なWUSリソースをUEに設定する。UEは、WUSリソース以外の期間において、省電力状態(スリープ状態)になる。UEは、WUSリソースにおいて、WUSをモニタする。 For example, as shown in FIG. 1, the NW (eg, a radio base station) configures periodic WUS resources in the UE. The UE enters the power saving state (sleep state) in a period other than the WUS resource. The UE monitors WUS in WUS resources.
 UEに対するページングメッセージが発生すると、NWは、WUSリソースを用いてWUSを送信する。UEは、WUSを検出すると下り制御チャネル及び/又は下り共有チャネルを受信する。例えば、UEは、WUSを検出すると、ページング用制御リソースセット(CORESET(Control Resource Set) for paging)においてPDCCHを受信し、そのPDCCHによってスケジュールされるPDSCHにおいて、ページングメッセージを受信する。UEは、WUSが検出されない場合(Discontinuous Transmission:DTX)において、PDCCHをモニタしない。また、WUSの検出の処理は下り制御チャネルの検出の処理よりも簡単であってもよい。したがって、周期的にWUSをモニタする場合は、周期的に下り制御チャネルをモニタする場合に比べて、消費電力を低減できる。 When a paging message for the UE occurs, the NW transmits WUS using WUS resources. The UE receives the downlink control channel and / or the downlink shared channel upon detecting the WUS. For example, upon detecting WUS, the UE receives a PDCCH in a control resource set for paging (CORESET (Control Resource Set) for paging), and receives a paging message in a PDSCH scheduled by the PDCCH. The UE does not monitor the PDCCH when WUS is not detected (Discontinuous Transmission: DTX). Also, the process of WUS detection may be simpler than the process of downlink control channel detection. Therefore, when WUS is monitored periodically, power consumption can be reduced as compared with the case where the downlink control channel is monitored periodically.
 ところで、将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延等)を満たすように実現することが期待されている。例えば、将来の無線通信システムでは、上述したように、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。 By the way, future wireless communication systems (for example, 5G, NR) are expected to realize various wireless communication services so as to satisfy different requirements (for example, ultra high speed, large capacity, very low delay, etc.) It is done. For example, in the future wireless communication system, as described above, it is considered to perform communication using beam forming (BF: Beam Forming).
 BFは、デジタルBF及びアナログBFに分類できる。デジタルBFは、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法である。この場合、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)/デジタル-アナログ変換(DAC:Digital to Analog Converter)/RF(Radio Frequency)の並列処理が、アンテナポート(RF chain)の個数だけ必要となる。一方で、任意のタイミングで、RF chain数に応じた数だけビームを形成できる。 BF can be classified into digital BF and analog BF. Digital BF is a method of performing precoding signal processing (for digital signals) on a baseband. In this case, parallel processing of Inverse Fast Fourier Transform (IFFT) / Digital to Analog Converter (DAC) / Radio Frequency (RF) is required as many as the number of antenna ports (RF chains). Become. On the other hand, it is possible to form as many beams as the number of RF chains at any timing.
 アナログBFは、RF上で位相シフト器を用いる方法である。この場合、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できるが、同じタイミングで複数のビームを形成することができない。具体的には、アナログBFでは、位相シフト器ごとに、一度に1ビームしか形成できない。 Analog BF is a method that uses a phase shifter on RF. In this case, since only the phase of the RF signal is rotated, the configuration is simple and can be realized at low cost, but a plurality of beams can not be formed at the same timing. Specifically, analog BF can only form one beam at a time per phase shifter.
 このため、基地局(例えば、eNB(evolved Node B)、BS(Base Station)等と呼ばれる)が位相シフト器を1つのみ有する場合には、ある時間において形成できるビームは、1つとなる。したがって、アナログBFのみを用いて複数のビームを送信する場合には、同じリソースで同時に送信することはできないため、ビームを時間的に切り替えたり、回転させたりする必要がある。 For this reason, when a base station (for example, called eNB (evolved Node B), BS (Base Station), etc.) has only one phase shifter, one beam can be formed at a certain time. Therefore, when transmitting a plurality of beams using only analog BF, it is not possible to transmit simultaneously on the same resource, and it is necessary to temporally switch or rotate the beams.
 将来の無線通信システム(例えば、LTE Rel.14以降、5G又はNRなど)では、同期信号(SS、PSS及び/又はSSS、又は、NR-PSS及び/又はNR-SSS等をともいう)及びブロードキャストチャネル(ブロードキャスト信号、PBCH、又は、NR-PBCH等ともいう)を含む信号ブロック(SSブロック(SSB)、SS/PBCHブロック等ともいう)を定義することが検討されている。一以上の信号ブロックの集合は、信号バースト(SS/PBCHバースト又はSSバースト)とも呼ばれる。当該信号バースト内の複数の信号ブロックは、異なる時間に異なるビームで送信される(ビームスィープ(beam sweep)等ともいう)。 Synchronization signals (also referred to as SS, PSS and / or SSS, or NR-PSS and / or NR-SSS, etc.) and broadcast in future wireless communication systems (for example, LTE Rel. 14 or later, 5G or NR, etc.) It is considered to define a signal block (also referred to as SS block (SSB), SS / PBCH block or the like) including a channel (also referred to as broadcast signal, PBCH, or NR-PBCH or the like). A set of one or more signal blocks is also referred to as a signal burst (SS / PBCH burst or SS burst). A plurality of signal blocks in the signal burst are transmitted with different beams at different times (also referred to as beam sweep etc.).
 SS/PBCHブロックは、一以上のシンボル(例えば、OFDMシンボル)で構成される。具体的には、SS/PBCHブロックは、連続する複数のシンボルで構成されてもよい。当該SS/PBCHブロック内では、PSS、SSS及びNR-PBCHがそれぞれ異なる一以上のシンボルに配置されてもよい。例えば、SS/PBCHブロックは、1シンボルのPSS、1シンボルのSSS、2又は3シンボルのPBCHを含む4又は5シンボルでSS/PBCHブロックを構成することも検討されている。 The SS / PBCH block is composed of one or more symbols (eg, OFDM symbols). Specifically, the SS / PBCH block may be composed of a plurality of consecutive symbols. In the SS / PBCH block, PSS, SSS and NR-PBCH may be arranged in one or more different symbols. For example, the SS / PBCH block is also considered to constitute an SS / PBCH block with four or five symbols including one symbol PSS, one symbol SSS, and two or three symbols PBCH.
 1つ又は複数のSS/PBCHブロックの集合は、SS/PBCHバーストと呼ばれてもよい。SS/PBCHバーストは、周波数及び/又は時間リソースが連続するSS/PBCHブロックで構成されてもよいし、周波数及び/又は時間リソースが非連続のSS/PBCHブロックで構成されてもよい。SS/PBCHバーストは、所定の周期(SS/PBCHバースト周期と呼ばれてもよい)で設定されてもよいし、又は、非周期で設定されてもよい。 A set of one or more SS / PBCH blocks may be referred to as SS / PBCH bursts. The SS / PBCH burst may be composed of SS / PBCH blocks in which frequency and / or time resources are continuous, and may be composed of SS / PBCH blocks in which frequency and / or time resources are non-consecutive. The SS / PBCH burst may be set with a predetermined period (which may be called an SS / PBCH burst period) or may be set with a non-period.
 また、1つ又は複数のSS/PBCHバーストは、SS/PBCHバーストセット(SS/PBCHバーストシリーズ)と呼ばれてもよいし、SSブロック周期と呼ばれても良い。SS/PBCHバーストセットは周期的に設定される。ユーザ端末は、SS/PBCHバーストセットが周期的に(SS/PBCHバーストセット周期(SS burst set periodicity)で)送信されると想定して受信処理を制御してもよい。 Also, one or more SS / PBCH bursts may be referred to as an SS / PBCH burst set (SS / PBCH burst series) or as an SS block period. The SS / PBCH burst set is set periodically. The user terminal may control reception processing assuming that SS / PBCH burst sets are transmitted periodically (with SS / PBCH burst set period).
 SS/PBCHバーストセット内の各SS/PBCHブロックは、所定のインデックス(SS/PBCHインデックス)により識別される。当該SS/PBCHインデックスは、SSバーストセット内のSS/PBCHブロックを一意に識別するどのような情報であってもよく、時間インデックスと対応してもよい。 Each SS / PBCH block in the SS / PBCH burst set is identified by a predetermined index (SS / PBCH index). The SS / PBCH index may be any information uniquely identifying the SS / PBCH block in the SS burst set, and may correspond to the time index.
 ユーザ端末は、SS/PBCHバーストセット間で、同じSS/PBCHインデックスを有するSS/PBCHブロック間において、空間(spatial)、平均ゲイン(average gain)、遅延(delay)及びドップラーパラメータ(Doppler parameters)の少なくとも一つについての疑似コロケーション(QCL:quasi-collocation)を想定してもよい。 The user terminal is able to set spatial, average gain, delay and Doppler parameters between SS / PBCH burst sets and between SS / PBCH blocks having the same SS / PBCH index. Quasi-collocation (QCL) for at least one may be assumed.
 ここで、疑似コロケーション(QCL)とは、異なる複数のSS/PBCHブロックの送信に用いられる空間(ビーム)と、当該複数のSS/PBCHブロック間の平均ゲイン、遅延及びドップラーパラメータの少なくとも一つが同一であると仮定できることをいう。 Here, pseudo co-location (QCL) refers to space (beam) used for transmission of different SS / PBCH blocks, and at least one of average gain, delay and Doppler parameters between the multiple SS / PBCH blocks is identical. Say that it can be assumed that
 また、ユーザ端末は、SS/PBCHバーストセット内及びSS/PBCHバーストセット間で、異なるSS/PBCHインデックスを有するSS/PBCHブロック間において、空間、平均ゲイン、遅延及びドップラーパラメータの少なくとも一つについての疑似コロケーションを想定しなくともよい。 Also, the user terminal may perform at least one of space, average gain, delay, and Doppler parameters between SS / PBCH blocks and SS / PBCH blocks having different SS / PBCH indexes within the SS / PBCH burst set. Pseudo colocation may not be assumed.
 RMSI(Remaining Minimum System Information、システム情報)を運ぶPDSCHをスケジュールするPDCCHのためのCORESETは、RMSI用CORESET(CORESET for RMSI、RMSI CORESET)と呼ばれてもよい。UEは、SSブロック内のPBCHを読み、そのPBCHに基づいて設定されるRMSI用CORESETからPDCCHを読み、そのPDCCHにスケジュールされたPDSCHからRMSIを読んでもよい。 CORESET for PDCCH scheduling PDSCH carrying Remaining Minimum System Information (RMSI) may be referred to as CORESET for RMSI (CORESET for RMSI, RMSI CORESET). The UE may read the PBCH in the SS block, read the PDCCH from the CORESET for RMSI configured based on the PBCH, and read the RMSI from the PDSCH scheduled for the PDCCH.
 SSブロックとRMSI CORESETとの間の、時間多重(Time Division Multiplexing:TDM)及び/又は周波数多重(Frequency Division Multiplexing:FDM)のために、次のパターン1~3が検討されている。 The following patterns 1 to 3 have been considered for time division multiplexing (TDM) and / or frequency division multiplexing (FDM) between SS block and RMSI CORESET.
 図2Aに示すパターン1においては、SSブロックとCORESETがTDMされる。更に、CORESETとPDSCHがTDMされる。時間方向において、最初がSSブロックであり、次がCORESETであり、次がPDSCHである。 In pattern 1 shown in FIG. 2A, the SS block and CORESET are TDM. Furthermore, CORESET and PDSCH are TDM. In the time direction, the first is the SS block, the second is CORESET, and the second is PDSCH.
 図2Bに示すパターン2においては、SSブロックとPDSCHとがFDMされ、CORESETとPDSCHがTDMされる。時間方向においてSSブロックとCORESETは重ならず、且つ周波数方向においてSSブロックとCORESETは重ならない。時間方向においては、最初がCORESETであり、次がSSブロックとPDSCHである。 In pattern 2 shown in FIG. 2B, the SS block and PDSCH are FDM, and CORESET and PDSCH are TDM. The SS block and the CORESET do not overlap in the time direction, and the SS block and the CORESET do not overlap in the frequency direction. In the temporal direction, the first is CORESET and the next is SS block and PDSCH.
 図2Cに示すパターン3においては、SSブロックとCORESETがFDMされる。更に、SSブロックとPDSCHがFDMされ、CORESETとPDSCHがTDMされる。時間方向においては、最初がCORESETであり、次がPDSCHである。 In pattern 3 shown in FIG. 2C, SS block and CORESET are FDM. Furthermore, SS block and PDSCH are FDM, and CORESET and PDSCH are TDM. In the temporal direction, the first is CORESET and the next is PDSCH.
 また、ページングメッセージを運ぶPDSCHをスケジュールするPDCCHのためのCORESETは、ページング用CORESET(CORESET for paging、Paging CORESET)と呼ばれてもよい。RMSI用CORESET及びページング用CORESETは、共通のCORESETであってもよい。言い換えれば、特定のCORESETに関連付けられたPDSCHがRMSI及びページングメッセージを運んでもよい。 Also, CORESET for PDCCH scheduling PDSCH carrying paging messages may be referred to as CORESET for paging (Paging CORESET). The CORESET for RMSI and the CORESET for paging may be a common CORESET. In other words, the PDSCH associated with a particular CORESET may carry the RMSI and paging messages.
 しかしながら、SSブロック、CORESET、及びPDSCHと、WUSとの間の関係がまだ検討されていない。 However, the relationship between SS block, CORESET, and PDSCH and WUS has not yet been considered.
 そこで、本発明者らは、SSブロック、CORESET、及びPDSCHの少なくとも一つに、WUSを周波数多重及び/又は時間多重する方法を検討し、本発明に至った。 Therefore, the present inventors examined a method of frequency multiplexing and / or time multiplexing WUS in at least one of SS block, CORESET, and PDSCH, and reached the present invention.
 例えば、WUSは、RMSI及び/又はページングメッセージを運ぶPDSCHと、そのPDSCHをスケジュールするPDCCHのためのCORESETと、CORESETに関連付けられたSSブロックとに、関連付けられる。 For example, WUS is associated with PDSCH carrying RMSI and / or paging messages, CORESET for PDCCH scheduling that PDSCH, and SS block associated with CORESET.
 例えば、UEは、PDSCH、CORESET、及びSSブロック、の少なくとも1つに時間多重又は周波数多重される周期的な無線リソースの一つを用いて、WUSを受信し、WUSの受信に応じて、PDCCHの受信を制御してもよい。 For example, the UE may receive WUS using one of the periodic radio resources time-multiplexed or frequency-multiplexed in at least one of PDSCH, CORESET, and SS block, and may receive PDCCH in response to WUS reception. You may control the reception of
 WUSが、SSブロック、CORESET、及びPDSCHの少なくとも一つに、周波数多重及び/又は時間多重されることによって、無線リソースを効率よく利用できる。UEは、WUSの検出に応じて、そのWUSに関連付けられたPDCCH及びPDSCHを復号できるため、UEの消費電力を抑えると共に、UE動作の増大を抑えることができる。 Radio resources can be efficiently utilized by frequency multiplexing and / or time multiplexing WUS to at least one of SS block, CORESET, and PDSCH. Since the UE can decode the PDCCH and PDSCH associated with the WUS in response to the detection of the WUS, the power consumption of the UE can be reduced and the increase in UE operation can be suppressed.
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。以下において、PDSCHは、RMSI及び/又はページングメッセージを運ぶPDSCHを、単にPDSCHと呼ぶことがある。そのPDSCHをスケジュールするPDCCHのためのCORESETを、単にCORESETと呼ぶことがある。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following, PDSCH may refer to PDSCH carrying RMSI and / or paging messages simply as PDSCH. CORESET for PDCCH scheduling its PDSCH may be simply referred to as CORESET.
(第1の態様)
 第1の態様では、パターン3にWUSを多重する方法について説明する。
(First aspect)
In the first aspect, a method of multiplexing WUS on pattern 3 will be described.
 図3は、パターン3の配置の一例を示す図である。ここでは、時間方向に連続する2つのパターンのセット(信号セット)が周期的に配置される。1つの信号セットにおける2つのパターンは、時間方向に離れていてもよい(不連続であってもよい)。 FIG. 3 is a view showing an example of the arrangement of the pattern 3. Here, a set (signal set) of two patterns continuous in the time direction is periodically arranged. The two patterns in one signal set may be separated in the time direction (may be discontinuous).
 アナログBF(ビームスイーピング)が適用される場合、1つの信号セットにおける2つのパターンに対し、異なるビーム(送信ビーム又は受信ビーム)が適用されてもよい。 When analog BF (beam sweeping) is applied, different beams (transmit beam or receive beam) may be applied to two patterns in one signal set.
 SSブロックの時間長は4シンボルである。CORESETの時間長は1シンボルであり、SSブロックの1シンボル目にFDMされる。PDSCHの時間長は3シンボルであり、SSブロックの2~4シンボル目にFDMされ、CORESETにTDMされる。時間方向に連続する2つのSSブロックは、SSバースト又はSSバーストセットと呼ばれてもよい。 The time length of the SS block is 4 symbols. The time length of CORESET is one symbol, and FDM is performed on the first symbol of the SS block. The time length of PDSCH is 3 symbols, and FDM is applied to the 2nd to 4th symbols of the SS block and is TDMed to CORESET. Two SS blocks consecutive in the time direction may be referred to as SS bursts or SS burst sets.
 アナログBFを行う場合、パターン3は、パターンの時間長を抑えることができる。例えば、SSブロックのシンボルにWUSを配置することができる。したがって、短い時間に多くのパターンを配置することができるため、短い時間に多くのビームをスイープすることができる。 In the case of performing the analog BF, the pattern 3 can suppress the time length of the pattern. For example, WUS can be placed in the symbol of the SS block. Therefore, since many patterns can be arranged in a short time, many beams can be swept in a short time.
 WUSリソースは、以下の多重方法1-1~1-4のいずれかによってパターン3に多重されてもよい。 WUS resources may be multiplexed to pattern 3 by any of the following multiplexing methods 1-1 to 1-4.
<多重方法1-1>
 パターン3に対し、WUSリソースがCORESETにFDMされてもよい。
<Multiplexing method 1-1>
For pattern 3, WUS resources may be FDM to CORESET.
 図4に示すように、CORESETの帯域がPDSCHの帯域より狭い場合、PDSCHの帯域のうち、CORESET以外の帯域の一部又は全部に、WUSリソースが配置されてもよい。 As shown in FIG. 4, when the CORESET band is narrower than the PDSCH band, the WUS resource may be allocated to a part or all of the bands other than the CORESET among the PDSCH bands.
 RMSI及び/又はページングメッセージが発生した場合、RMSI及び/又はページングメッセージを含む信号セット内のWUSリソースにおいて、WUSが送信されてもよい。また、WUSが周期的に送信される場合、WUSの周期が信号セットの周期よりも長くてもよい。 When an RMSI and / or a paging message occurs, WUS may be transmitted on WUS resources in the signal set including the RMSI and / or the paging message. Also, if WUS is transmitted periodically, the period of WUS may be longer than the period of signal set.
 WUSリソースは、周波数領域においてCORESETに隣接していてもよいし、CORESETから離れていてもよい。 The WUS resource may be adjacent to CORESET in the frequency domain or may be separate from CORESET.
 WUSリソースは、周波数領域において連続であってもよいし、連続でなくてもよい。 WUS resources may or may not be contiguous in the frequency domain.
 パターンの先頭シンボルにWUSとCORESETが配置されることにより、UEは、1シンボルにおいて、WUSの検出とCORESET内のPDCCHの復号を行うことができる。 By arranging WUS and CORESET in the leading symbol of the pattern, the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
<多重方法1-2>
 パターン3に対し、WUSリソースがSSブロックにFDMされてもよい。
<Multiplexing method 1-2>
For pattern 3, WUS resources may be FDM into SS blocks.
 図5に示すように、WUSリソースは、SSブロックのシンボルにわたって配置されてもよい。多重方法1-2のWUSは、多重方法1-1に比べ、周波数方向に短くなり、時間方向に長くなる。 As shown in FIG. 5, WUS resources may be placed across symbols of SS blocks. The WUS of the multiplexing method 1-2 is shorter in the frequency direction and longer in the time direction than the multiplexing method 1-1.
 WUSリソースが4シンボルである場合、UEは、WUSを検出するまで、4シンボルにわたってCORESETを保持してもよいし、3シンボルにわたってPDSCHを保持し、WUSの検出後に、CORESET及びPDSCHの受信処理を行ってもよい。UEは、全てのWUSを受信する前に、WUSの検出を判定してもよい。 If the WUS resource is 4 symbols, the UE may hold CORESET for 4 symbols until detecting WUS, holds PDSCH for 3 symbols, and receives CORESET and PDSCH after WUS is detected. You may go. The UE may determine the detection of WUS before receiving all WUS.
 図6は、WUSリソースとSSブロックのFDM方法の幾つかの例を示す図である。 FIG. 6 is a diagram illustrating some examples of WDM resources and FDM methods of SS blocks.
 図6Aに示すように、WUSリソースは、パターンに対してSSブロックの外側の帯域に配置されてもよい。WUSリソースは、SSブロックに隣接する帯域に配置されてもよいし、SSブロックから離れた帯域に配置されてもよい。 As shown in FIG. 6A, WUS resources may be placed in a band outside the SS block for the pattern. The WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block.
 図6Bに示すように、WUSリソースは、PDSCH及びSSブロックの間の帯域に配置されてもよい。WUSリソースは、PDSCH及びSSブロックに隣接する帯域に配置されてもよいし、PDSCH及びSSブロックの少なくとも一つから離れた帯域に配置されてもよい。 As shown in FIG. 6B, WUS resources may be allocated in the band between PDSCH and SS blocks. The WUS resource may be allocated to a band adjacent to the PDSCH and the SS block, or may be allocated to a band apart from at least one of the PDSCH and the SS block.
 図6Cに示すように、WUSリソースは、パターンに対してPDSCHの外側の帯域に配置されてもよい。WUSリソースは、PDSCHに隣接する帯域に配置されてもよいし、PDSCHから離れた帯域に配置されてもよい。 As shown in FIG. 6C, WUS resources may be placed in a band outside the PDSCH for the pattern. The WUS resources may be allocated to a band adjacent to the PDSCH or may be allocated to a band separate from the PDSCH.
 図6Dに示すように、WUSリソースは、複数の帯域に配置されてもよい。複数の帯域は、パターンに対してSSブロックの外側の帯域と、PDSCH及びSSブロックの間の帯域と、であってもよい。複数の帯域は、パターンに対してPDSCHの外側の帯域と、PDSCH及びSSブロックの間の帯域と、であってもよい。複数の帯域は、パターンに対してPDSCHの外側の帯域と、パターンに対してSSブロックの外側の帯域と、であってもよい。 As shown in FIG. 6D, WUS resources may be arranged in multiple bands. The plurality of bands may be bands outside the SS block with respect to the pattern and bands between the PDSCH and the SS block. The plurality of bands may be a band outside the PDSCH with respect to the pattern and a band between the PDSCH and the SS block. The plurality of bands may be a band outside the PDSCH for the pattern and a band outside the SS block for the pattern.
<多重方法1-3>
 パターン3に対し、WUSリソースがSSブロックにTDMされてもよい。
<Multiplexing method 1-3>
For pattern 3, WUS resources may be TDM into SS blocks.
 図7に示すように、1つの信号セットにおける2つのパターンが互いに離れている場合、WUSリソースは、時間領域においてSSブロックの前に配置されてもよい。WUSリソースは、SSブロックに隣接するシンボルに配置されてもよいし、SSブロックから離れたシンボルに配置されてもよい。 As shown in FIG. 7, if two patterns in one signal set are separated from one another, WUS resources may be placed before SS block in the time domain. The WUS resources may be allocated to symbols adjacent to the SS block or may be allocated to symbols distant from the SS block.
 SSブロックが不連続に設定される場合、多重方法1-3が用いられてもよい。 If the SS block is set to be non-consecutive, multiplexing methods 1-3 may be used.
 WUSの帯域は、SSブロックの帯域と同一であってもよいし、SSブロックの帯域の少なくとも一部と異なってもよい。 The band of WUS may be the same as the band of SS block, or may be different from at least a part of the band of SS block.
 時間領域において、WUSの後にCORESETが配置されることから、UEは、WUSを検出した後、CORESET内のPDCCHの復号を行う。この逐次処理は、UEの負荷を抑えることができる。 In the time domain, since CORESET is placed after WUS, the UE decodes PDCCH in CORESET after detecting WUS. This sequential process can reduce the load on the UE.
<多重方法1-4>
 パターン3に対し、WUSリソースがCORESETにTDMされてもよい。
<Multiplexing method 1-4>
For pattern 3, WUS resources may be TDM to CORESET.
 図8に示すように、1つの信号セットにおける2つのパターンが互いに離れている場合、WUSリソースは、時間領域においてCORESETの前に配置されてもよい。WUSリソースは、CORESETに隣接するシンボルに配置されてもよいし、CORESETから離れたシンボルに配置されてもよい。 As shown in FIG. 8, if the two patterns in one signal set are separated from one another, WUS resources may be placed before CORESET in the time domain. WUS resources may be located on symbols adjacent to CORESET, or may be located on symbols away from CORESET.
 SSブロックが不連続に設定される場合、多重方法1-4が用いられてもよい。 If the SS block is set discontinuously, multiplexing method 1-4 may be used.
 WUSの帯域は、CORESETの帯域と重なってもよいし、SSブロックの帯域の少なくとも一部と異なってもよい。 The WUS band may overlap with the CORESET band or may be different from at least a portion of the SS block band.
 時間領域において、WUSの後にCORESETが配置されることから、UEは、WUSを検出した後、CORESET内のPDCCHの復号を行う。この逐次処理は、UEの負荷を抑えることができる。 In the time domain, since CORESET is placed after WUS, the UE decodes PDCCH in CORESET after detecting WUS. This sequential process can reduce the load on the UE.
<多重方法1-5>
 パターン3に対し、WUSリソースがSSブロック、およびCORESETにTDMされてもよい。
<Multiplication method 1-5>
For pattern 3, WUS resources may be TDM to SS block and CORESET.
 図9に示すように、SSブロック、CORESET、およびPDSCHを繰り返し送信する前に、複数の異なるWUSリソースが纏めて配置されてもよい(図9では、リソース数は2となる)。この時WUSのリソース数はSSブロックの数と同じでも良いし、上位レイヤシグナリングによって異なる値を設定されても良い。 As shown in FIG. 9, a plurality of different WUS resources may be collectively allocated (the number of resources is two in FIG. 9) before repeatedly transmitting the SS block, the CORESET, and the PDSCH. At this time, the number of resources of WUS may be the same as the number of SS blocks, or different values may be set by higher layer signaling.
 図9に示すように、SSブロック、CORESET、およびPDSCHの帯域の一部又は全部に、WUSリソースが配置されてもよいし、これらの帯域と重ならない周波数位置にWUSリソースが配置されても良い。 As shown in FIG. 9, WUS resources may be allocated to part or all of the SS block, CORESET, and PDSCH bands, and WUS resources may be allocated to frequency positions not overlapping these bands. .
 繰り返し送信されるSSブロック、CORESET、およびPDSCHの前にWUSリソースが纏めて配置されることで、WUSリソースのみを短時間でモニタすることが可能となり、UEの消費電力を抑えることが出来る。 By collectively arranging WUS resources before SS blocks, CORESETs, and PDSCHs that are repeatedly transmitted, it is possible to monitor only WUS resources in a short time, and power consumption of the UE can be suppressed.
 第1の態様によれば、WUSの多重によってビームスイーピングの時間が増加することを防ぐことができる。 According to the first aspect, WUS multiplexing can prevent an increase in beam sweeping time.
(第2の態様)
 第2の態様では、パターン1にWUSを多重する方法について説明する。
(Second aspect)
In the second aspect, a method of multiplexing WUS on pattern 1 will be described.
 図10は、SSブロックとCORESETが時間領域において連続する場合のパターン1にWUSを多重する方法の一例を示す図である。 FIG. 10 is a diagram showing an example of a method of multiplexing WUS on pattern 1 in the case where the SS block and CORESET continue in the time domain.
 図10Aに示すように、WUSリソースがSSブロックにFDMされてもよい。WUSリソースは、SSブロックに隣接する帯域に配置されてもよいし、SSブロックから離れた帯域に配置されてもよい。 As shown in FIG. 10A, WUS resources may be FDM into SS blocks. The WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block.
 図10Bに示すように、WUSリソースがCORESETにFDMされてもよい。WUSリソースは、CORESETに隣接する帯域に配置されてもよいし、CORESETから離れた帯域に配置されてもよい。WUSリソース及びCORESETの帯域は、PDSCHの帯域内であってもよい。WUSリソース及びCORESETの帯域は、SSブロックの帯域と同一であってもよいし、SSブロックの帯域の少なくとも一部と異なってもよい。1シンボルにWUSとCORESETが配置されることにより、UEは、1シンボルにおいて、WUSの検出とCORESET内のPDCCHの復号を行うことができる。 As shown in FIG. 10B, WUS resources may be FDM to CORESET. WUS resources may be located in a band adjacent to CORESET or may be located in a band away from CORESET. The bands of WUS resource and CORESET may be in the band of PDSCH. The band of WUS resource and CORESET may be the same as the band of the SS block, or may be different from at least a part of the band of the SS block. By arranging WUS and CORESET in one symbol, the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
 図10Cに示すように、WUSリソースがSSブロックにTDMされ、時間領域においてSSブロックの前に配置されてもよい。WUSリソースは、SSブロックに隣接するシンボルに配置されてもよいし、SSブロックから離れたシンボルに配置されてもよい。 As shown in FIG. 10C, WUS resources may be TDM into SS blocks and may be placed before SS blocks in the time domain. The WUS resources may be allocated to symbols adjacent to the SS block or may be allocated to symbols distant from the SS block.
 図10Dに示すように、WUSリソースがPDSCHにTDMされ、時間領域においてPDSCHの後に配置されてもよい。WUSリソースは、PDSCHに隣接するシンボルに配置されてもよいし、PDSCHから離れたシンボルに配置されてもよい。 As shown in FIG. 10D, WUS resources may be TDM to PDSCH and may be placed after PDSCH in the time domain. WUS resources may be allocated to symbols adjacent to PDSCH or may be allocated to symbols distant from PDSCH.
 図11は、SSブロックとCORESETが時間領域において離れている場合のパターン1にWUSを多重する方法の一例を示す図である。 FIG. 11 is a diagram showing an example of a method of multiplexing WUS on pattern 1 when the SS block and CORESET are separated in the time domain.
 WUSリソースがSSブロックにTDMされ、時間領域においてSSブロックとCORESETの間に配置されてもよい。WUSリソースは、SSブロック及びCORESETから離れたシンボルに配置されてもよいし、SSブロック及びCORESETの少なくとも一つに隣接するシンボルに配置されてもよい。 WUS resources may be TDM into SS blocks and may be placed between SS blocks and CORESET in the time domain. The WUS resources may be located in symbols away from the SS block and CORESET, or may be located in symbols adjacent to at least one of the SS block and CORESET.
 図10A、図10C、図11においては、時間領域においてWUSの後にCORESETが配置されることから、UEは、WUSを検出した後、CORESET内のPDCCHの復号を行う。この逐次処理は、UEの負荷を抑えることができる。 In FIG. 10A, FIG. 10C, and FIG. 11, since CORESET is allocated after WUS in the time domain, the UE decodes PDCCH in CORESET after detecting WUS. This sequential process can reduce the load on the UE.
 図10Bにおいては、WUSリソースとCORESETが同一シンボルに配置されることから、UEは、1シンボルにおいてWUSの検出とCORESET内のPDCCHの復号とを行うことができる。 In FIG. 10B, since the WUS resource and CORESET are allocated to the same symbol, the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
 第2の態様によれば、パターン1にWUSを多重できる。 According to the second aspect, WUS can be multiplexed to pattern 1.
(第3の態様)
 第3の態様では、パターン2にWUSを多重する方法について説明する。
(Third aspect)
In the third aspect, a method of multiplexing WUS on pattern 2 will be described.
 図12Aに示すように、WUSリソースがCORESETにFDMされ、PDSCHにTDMされてもよい。WUSリソースは、CORESETに隣接する帯域に配置されてもよいし、CORESETから離れた帯域に配置されてもよい。WUSリソース及びCORESETの帯域は、PDSCHの帯域の一部であってもよいし、PDSCHの帯域と同一であってもよい。1シンボルにWUSとCORESETが配置されることにより、UEは、1シンボルにおいて、WUSの検出とCORESET内のPDCCHの復号を行うことができる。 As shown in FIG. 12A, WUS resources may be FDM to CORESET and TDM to PDSCH. WUS resources may be located in a band adjacent to CORESET or may be located in a band away from CORESET. The WUS resource and the CORESET band may be part of the PDSCH band or may be identical to the PDSCH band. By arranging WUS and CORESET in one symbol, the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
 図12Bに示すように、WUSリソースがSSブロックにFDMされてもよい。WUSリソースは、SSブロックに隣接する帯域に配置されてもよいし、SSブロックから離れた帯域に配置されてもよい。WUSリソースが配置される複数のシンボルは、SSブロックが配置される複数のシンボルと同一であってもよいし、SSブロックが配置される複数のシンボルの一部であってもよい。 As shown in FIG. 12B, WUS resources may be FDM into SS blocks. The WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block. The plurality of symbols in which the WUS resource is arranged may be identical to the plurality of symbols in which the SS block is arranged, or may be part of a plurality of symbols in which the SS block is arranged.
 図12Cに示すように、WUSリソースがCORESETにFDMされ、SSブロックにTDMされてもよい。WUSリソースの帯域は、SSブロックの帯域と同一であってもよいし、SSブロックの帯域の一部であってもよい。WUSリソースは、CORESETから離れた帯域に配置されてもよいし、CORESETに隣接する帯域に配置されてもよい。1シンボルにWUSとCORESETが配置されることにより、UEは、1シンボルにおいて、WUSの検出とCORESET内のPDCCHの復号を行うことができる。 As shown in FIG. 12C, WUS resources may be FDM to CORESET and TDM to SS block. The bandwidth of the WUS resource may be the same as the bandwidth of the SS block, or may be part of the bandwidth of the SS block. The WUS resource may be located in a zone separate from CORESET or may be located in a zone adjacent to CORESET. By arranging WUS and CORESET in one symbol, the UE can perform WUS detection and PDCCH decoding in CORESET in one symbol.
 図12Dに示すように、WUSリソースがPDSCHにTDMされ、SSブロックにFDMされてもよい。WUSリソースの帯域は、PDSCHの帯域と同一であってもよいし、PDSCHの帯域の一部であってもよい。WUSリソースは、SSブロックに隣接する帯域に配置されてもよいし、SSブロックから離れた帯域に配置されてもよい。WUSリソースは、時間領域において、PDSCHの後に配置されてもよいし、PDSCHの前に配置されてもよい。 As shown in FIG. 12D, WUS resources may be TDM on PDSCH and FDM on SS block. The bandwidth of the WUS resource may be identical to the bandwidth of PDSCH or may be part of the bandwidth of PDSCH. The WUS resources may be allocated to a band adjacent to the SS block or may be allocated to a band separate from the SS block. The WUS resources may be located after the PDSCH or may be located before the PDSCH in the time domain.
 図12A、図12Cにおいては、WUSリソースとCORESETが同一シンボルに配置されることから、UEは、1シンボルにおいてWUSの検出とCORESET内のPDCCHの復号とを行うことができる。 In FIG. 12A and FIG. 12C, since the WUS resource and the CORESET are arranged in the same symbol, the UE can perform WUS detection and PDCCH decoding in the CORESET in one symbol.
 第3の態様によれば、パターン2の時間リソース及び周波数リソースの中にWUSを多重するため、パターン2の時間長(シンボル数)を増やすことなく、WUSを多重できる。したがって、WUSの多重によって又はビームスイーピングの時間が増加することを防ぐことができる。 According to the third aspect, WUS can be multiplexed without increasing the time length (number of symbols) of pattern 2 because WUS is multiplexed into the time resource and frequency resource of pattern 2. Thus, WUS multiplexing or beam sweeping time can be prevented from increasing.
 第1~第3の態様において、WUS、SSブロック、CORESET、PDSCHの配置は、図の例に限られない。WUS(例えば、所定の系列)を配置できるWUSリソースを確保できれば、WUSリソースにおける時間リソース量及び周波数リソース量が変更されてもよい。例えば、多重方法1-2のWUSリソースにおいて、時間リソース(シンボル数)を1/2倍、周波数リソース(帯域幅)を2倍にしてもよい。 In the first to third aspects, the arrangement of WUS, SS block, CORESET, PDSCH is not limited to the example of the figure. The amount of time resources and the amount of frequency resources in WUS resources may be changed as long as WUS resources to which WUS (for example, a predetermined sequence) can be allocated can be secured. For example, in the WUS resource of multiplexing method 1-2, the time resource (number of symbols) may be halved and the frequency resource (bandwidth) may be doubled.
(第4の態様)
 第4の態様においては、WUSに対するUE動作について説明する。
(Fourth aspect)
In a fourth aspect, UE operation for WUS will be described.
 UEが同期を確立していない場合、UEは、SSブロック(又は、SSブロックのうちPSS及びSSSのみ)を検出し、次にWUSを検出し、次にCORESET内のPDCCHを復号してもよい。この場合、UEは、SSブロック内のPSS及びSSSを用いて同期を確立する。 If the UE has not established synchronization, the UE may detect SS blocks (or only PSS and SSS of SS blocks), then detect WUS and then decode PDCCH in CORESET . In this case, the UE establishes synchronization using PSS and SSS in the SS block.
 UEは、同期が確立されていない状態において、WUSを検出してもよい。また、UEは、WUSを用いて粗い(大まかな)同期を確立してもよい。UEは、同期が確立されていない状態においてWUSを検出できる場合、WUSを検出し、次にSSブロック(又は、SSブロックのうちPSS及びSSSのみ)を検出し、次にCORESET内のPDCCHを復号してもよい。UEは、WUSを用いて粗い同期を確立した場合、SSブロック内のPSS及びSSSを用いて細かい同期を確立してもよい。 The UE may detect WUS in a state where synchronization has not been established. Also, the UE may establish coarse synchronization using WUS. If the UE can detect WUS in a non-synchronized state, it detects WUS, then detects SS block (or only PSS and SSS of SS block), and then decodes PDCCH in CORESET You may The UE may establish fine synchronization using the PSS and SSS in the SS block when establishing coarse synchronization using WUS.
 UEは、WUSを用いて同期を確立してもよい。UEは、WUSを用いて同期を確立できる場合、又は既に同期が確立している場合、WUSを検出し、次にCORESET内のPDCCHを復号してもよい。この場合、UEは、SSブロックを検出しなくてもよい。 The UE may establish synchronization using WUS. The UE may detect WUS and then decode the PDCCH in CORESET if it can establish synchronization using WUS, or if synchronization is already established. In this case, the UE may not detect the SS block.
 UEは、CORESETに関連付けられたWUSリソースに対するCORESETの時間位置及び/又は周波数位置がPBCH TTI内に固定される、と想定してもよい。或いは、UEは、CORESETに関連付けられたWUSリソースに対するCORESETの時間位置及び/又は周波数位置が仕様において固定される、と想定してもよい。 The UE may assume that the CORESET time position and / or frequency position relative to the WUS resource associated with the CORESET is fixed within the PBCH TTI. Alternatively, the UE may assume that the time and / or frequency position of the CORESET relative to the WUS resource associated with the CORESET is fixed in the specification.
 PDCCHを復号したUEは、PDCCHによってスケジュールされたPDSCH内のRMSI及び/又はページングメッセージを復号する。 The UE that has decoded the PDCCH decodes the RMSI and / or the paging message in the PDSCH scheduled by the PDCCH.
 WUSリソースは、ブロードキャスト情報(例えば、RMSI)又は上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されてもよい。アイドルモードのUEのためのWUSリソースは、RMSIによって設定されてもよい。グループされたUEのためのWUSリソースは、RRCシグナリングによって設定されてもよい。RRCコネクテッドモードのUEのためのWUSリソースは、RRCシグナリングによって設定されてもよい。 WUS resources may be configured by broadcast information (eg, RMSI) or higher layer signaling (eg, RRC signaling). WUS resources for UEs in idle mode may be configured by the RMSI. WUS resources for grouped UEs may be configured by RRC signaling. WUS resources for UEs in RRC connected mode may be configured by RRC signaling.
 WUSの帯域幅は、チャネル帯域幅(ネットワーク帯域幅)に依存しなくてもよい。WUSの帯域幅は、仕様によって固定された値であってもよい。また、WUSの帯域幅は、サブキャリア間隔(subcarrier spacing)に依存してもよい。 The bandwidth of the WUS may not be dependent on the channel bandwidth (network bandwidth). The bandwidth of WUS may be a fixed value according to the specification. Also, the bandwidth of WUS may be dependent on subcarrier spacing.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各態様のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the radio communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any one of the above aspects of the present invention or a combination thereof.
 図13は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment. The radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th Generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)又はNRなどと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th Generation mobile communication system), 5G It may be called (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR or the like, or it may be called a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。 The radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange | positioned at macro cell C1 and each small cell C2.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。例えば、DCにおいて、MeNB(MCG)がLTEセルを適用し、SeNB(SCG)がNR/5G-セルを適用して通信を行う。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 by CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs). For example, in DC, MeNB (MCG) applies an LTE cell, and SeNB (SCG) performs communication using NR / 5G-cell.
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.). On the other hand, between the user terminal 20 and the radio base station 12, a carrier having a wide bandwidth in a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) may be used. And the same carrier may be used. The configuration of the frequency band used by each wireless base station is not limited to this.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。 Between the wireless base station 11 and the wireless base station 12 (or between two wireless base stations 12), a wired connection (for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.) or a wireless connection Can be configured.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. Also, the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。 In the radio communication system 1, orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink. Frequency Division Multiple Access) is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication. SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel、NR-PBCH)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報及びSIB(System Information Block)の少なくとも一つなどが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。ページングチャネルの有無を通知する共通制御チャネルは下りL1/L2制御チャネル(例えば、PDCCH)にマッピングされ、ページングチャネル(PCH)のデータはPDSCHにマッピングされる。下りリンク参照信号、上りリンク参照信号、物理下りリンクの同期信号が別途配置される。 In the wireless communication system 1, as downlink channels, downlink shared channels (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel, NR-PBCH), downlink L1 / L2 A control channel or the like is used. User data, upper layer control information, at least one of SIB (System Information Block), etc. are transmitted by PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH. A common control channel that reports the presence or absence of a paging channel is mapped to a downlink L1 / L2 control channel (for example, PDCCH), and data of a paging channel (PCH) is mapped to a PDSCH. A downlink reference signal, an uplink reference signal, and a physical downlink synchronization signal are separately arranged.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, or ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH. The EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ及び/又は上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used. User data and / or upper layer control information is transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, etc. are transmitted by the PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the radio communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation). Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. Further, in the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. In addition, DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Also, reference signals to be transmitted are not limited to these.
<無線基地局>
 図14は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
<Wireless base station>
FIG. 14 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment. The radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化及び/又は逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 The baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data. Control) Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Also, with regard to the downlink control signal, transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal. The radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101. The transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention. The transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
 また、送受信部103は、下り共有チャネル(例えば、RMSI及び/又はページングメッセージを運ぶPDSCH)、制御リソースセット(RMSI及び/又はページングメッセージを運ぶPDSCHをスケジュールするPDCCHを含むCORESET)、及び同期信号ブロック(例えば、SSブロック)、の少なくとも1つに時間多重(TDM)又は周波数多重(FDM)される周期的な無線リソース(例えば、WUSリソース)の少なくとも一つを用いて、所定信号(例えば、WUS)を送信してもよい。 Also, the transmission / reception unit 103 may use a downlink shared channel (for example, a PDSCH carrying an RMSI and / or a paging message), a control resource set (CORESET including a PDCSI scheduling a PDSCH carrying an RMSI and / or a paging message), and a synchronization signal block A predetermined signal (eg, WUS) using at least one of periodic radio resources (eg, WUS resources) time-multiplexed (TDM) or frequency-multiplexed (FDM) in at least one of (eg, SS blocks) ) May be sent.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the uplink signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102. The transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定、解放などの呼処理、無線基地局10の状態管理、及び無線リソースの管理の少なくとも一つを行う。 The baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs at least one of setting of a communication channel, call processing such as releasing, status management of the wireless base station 10, and management of a wireless resource.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
 図15は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。 FIG. 15 is a diagram showing an example of a functional configuration of a radio base station according to the present embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 also has another functional block required for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。ベースバンド信号処理部104は、デジタルビームフォーミングを提供するデジタルビームフォーミング機能を備える。 The baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104. The baseband signal processing unit 104 has a digital beamforming function of providing digital beamforming.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 A control unit (scheduler) 301 performs control of the entire radio base station 10. The control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 制御部301は、例えば、送信信号生成部302による信号(同期信号、RMSI、MIB、ページングチャネル、システム情報、ブロードキャストチャネル(ブロードキャスト信号)の少なくとも一つに対応した信号を含む)の生成、マッピング部303による信号の割り当て等の少なくとも一つを制御する。 For example, the control unit 301 generates a signal by the transmission signal generation unit 302 (including a signal corresponding to at least one of synchronization signal, RMSI, MIB, paging channel, system information, and broadcast channel (broadcast signal)), and a mapping unit Control at least one of allocation of signals by 303 and the like.
 また、制御部301は、下り共有チャネル、下り共有チャネルをスケジュールする下り制御チャネルを含む制御リソースセット、及び同期信号ブロック、を、ユーザ端末20に設定してもよい。 Also, the control unit 301 may set, for the user terminal 20, the downlink shared channel, the control resource set including the downlink control channel for scheduling the downlink shared channel, and the synchronization signal block.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号及びSS/PBCHブロックの少なくとも一つなど)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (eg, at least one of a downlink control signal, a downlink data signal, a downlink reference signal, and an SS / PBCH block) based on an instruction from the control unit 301, and the mapping unit 303. Output to The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 For example, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information. Also, coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103. The mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103. Here, the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号、及び受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))及び/又はチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 may, for example, receive power of a received signal (for example, reference signal received power (RSRP)), reception quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR)) and / or Or, it may measure channel conditions and the like. The measurement result may be output to the control unit 301.
<ユーザ端末>
 図16は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
<User terminal>
FIG. 16 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などの少なくとも一つを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送される。 The baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information is also transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。 The transmitting and receiving unit 203 may further include an analog beam forming unit that performs analog beam forming. The analog beamforming unit comprises an analog beamforming circuit (eg, phase shifter, phase shift circuit) or an analog beamforming apparatus (eg, phase shifter) described based on common recognition in the technical field according to the present invention can do. Further, the transmitting and receiving antenna 201 can be configured by, for example, an array antenna.
 また、送受信部203は、下り共有チャネル(例えば、RMSI及び/又はページングメッセージを運ぶPDSCH)、当該下り共有チャネルをスケジュールする下り制御チャネルを含む制御リソースセット(RMSI及び/又はページングメッセージを運ぶPDSCHをスケジュールするPDCCHを含むCORESET)、及び同期信号ブロック(例えば、SSブロック)、の少なくとも1つに時間多重(TDM)又は周波数多重(FDM)される周期的な無線リソース(例えば、WUSリソース)の一つを用いて、所定信号(例えば、WUS)を受信してもよい。 In addition, the transmission / reception unit 203 may use a downlink shared channel (for example, a PDSCH carrying an RMSI and / or a paging message), a control resource set including a downlink control channel for scheduling the downlink shared channel (a PDSCH carrying an RMSI and / or a paging message). One of the periodic radio resources (eg, WUS resources) that are time multiplexed (TDM) or frequency multiplexed (FDM) in at least one of the synchronization signal block (eg, SS block) and the CORESET that includes the PDCCH to be scheduled One may be used to receive a predetermined signal (eg, WUS).
 図17は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。 FIG. 17 is a diagram showing an example of a functional configuration of a user terminal according to the present embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it is assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 制御部401は、例えば、送信信号生成部402による信号の生成、及びマッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、及び測定部405による信号の測定を制御する。 The control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and assignment of signals by the mapping unit 403. Further, the control unit 401 controls reception processing of the signal by the reception signal processing unit 404 and measurement of the signal by the measurement unit 405.
 また、制御部401は、所定信号(例えば、WUS)の受信に応じて、下り制御チャネル(例えば、PDCCH)の受信を制御してもよい。 Further, the control unit 401 may control reception of a downlink control channel (for example, PDCCH) in response to reception of a predetermined signal (for example, WUS).
 また、制御リソースセット及び下り共有チャネルは、同期信号ブロックに周波数多重され、下り共有チャネルは、制御リソースセットに時間多重されてもよい(例えば、パターン3)。 Also, the control resource set and the downlink shared channel may be frequency-multiplexed to the synchronization signal block, and the downlink shared channel may be time-multiplexed to the control resource set (for example, pattern 3).
 また、制御リソースセットは、同期信号ブロックに時間多重され、下り共有チャネルは、制御リソースセットに時間多重されてもよい(例えば、パターン1)。 Also, the control resource set may be time multiplexed to the synchronization signal block, and the downlink shared channel may be time multiplexed to the control resource set (eg, pattern 1).
 また、同期信号ブロックの時間リソースは、同期信号ブロックの時間リソースと異なり、同期信号ブロックの周波数リソースは、同期信号ブロックの周波数リソースと異なり、下り共有チャネルは、同期信号ブロックに周波数多重され、制御リソースセットに時間多重されてもよい(パターン2)。 Also, the time resource of the synchronization signal block is different from that of the synchronization signal block, the frequency resource of the synchronization signal block is different from the frequency resource of the synchronization signal block, and the downlink shared channel is frequency-multiplexed to the synchronization signal block. It may be time multiplexed into the resource set (pattern 2).
 また、無線リソース(例えば、WUSリソース)は、制御リソースセットに周波数多重されてもよい(図4、図10B、図12A、図12C)。 Also, radio resources (eg, WUS resources) may be frequency multiplexed into the control resource set (FIG. 4, FIG. 10B, FIG. 12A, FIG. 12C).
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報及び/又はチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information and / or channel state information (CSI) based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203. The mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203. Here, the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10. The received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
 受信信号処理部404は、制御部401からの指示に基づいて、無線基地局がビームフォーミングを適用して送信する同期信号及びブロードキャストチャネルを受信する。特に、所定の送信時間間隔(例えば、サブフレーム又はスロット)を構成する複数の時間領域(例えば、シンボル)の少なくとも一つに割当てられる同期信号とブロードキャストチャネルを受信する。 The received signal processing unit 404 receives a synchronization signal and a broadcast channel that the radio base station applies beamforming to transmit based on an instruction from the control unit 401. In particular, it receives synchronization signals and broadcast channels that are assigned to at least one of a plurality of time domains (e.g., symbols) that make up a predetermined transmission time interval (e.g., a subframe or slot).
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号、及び受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401. The received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関するメジャメントを実施する。例えば、測定部405は、無線基地局10から送信されたSS/PBCHブロックを用いて、一以上のサービングセル及び/又は一以上の周辺セルのメジャメントを行ってもよい。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. For example, the measurement unit 405 may measure one or more serving cells and / or one or more neighboring cells using the SS / PBCH block transmitted from the radio base station 10. The measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
 測定部405は、例えば、受信したSS/PBCHブロックを用いて受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、受信SINR)及び/又はチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。例えば、測定部405は、同期信号を利用したRRMメジャメントを行う。 The measurement unit 405 may measure, for example, received power (for example, RSRP), received quality (for example, RSRQ, received SINR), and / or channel condition using the received SS / PBCH block. The measurement result may be output to the control unit 401. For example, the measurement unit 405 performs RRM measurement using a synchronization signal.
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
<Hardware configuration>
The block diagram used for the explanation of the above-mentioned embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation method of each functional block is not particularly limited. That is, each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention. FIG. 18 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially or using other techniques. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. Hardware may be included, and part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signaling. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard. Also, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency or the like.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Also, the radio frame may be configured by one or more periods (frames) in the time domain. Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe. Furthermore, a subframe may be configured by one or more slots in the time domain. The subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。 Furthermore, the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.). Also, the slot may be a time unit based on the neurology. Also, the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 A radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal. For radio frames, subframes, slots, minislots and symbols, other names corresponding to each may be used. For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as a TTI, and one slot or one minislot may be referred to as a TTI. May be That is, the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and a short TTI (eg, a shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms It may replace with TTI which has the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be configured by one or more resource elements (RE: Resource Element). For example, one RE may be one subcarrier and one symbol radio resource region.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Also, the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented. For example, radio resources may be indicated by a predetermined index.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in the present specification are not limited names in any respect. For example, since various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable names, various assignments are made to these various channels and information elements. The name is not limited in any way.
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods. For example, notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of "being X") is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be sent and received via a transmission medium. For example, software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server These or other wired and / or wireless technologies are included within the definition of the transmission medium, as transmitted from a remote source, or other remote source.
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms "system" and "network" as used herein may be used interchangeably.
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、送受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 As used herein, “base station (BS: Base Station)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component” The term "carrier" may be used interchangeably. A base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, transmission / reception point, femtocell, small cell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 A base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head). The terms "cell" or "sector" refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。 As used herein, the terms "mobile station (MS)," user terminal "," user equipment (UE) "and" terminal "may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 The mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び/又は移動局は、送信装置、受信装置などと呼ばれてもよい。 The base station and / or the mobile station may be called a transmitting device, a receiving device, etc.
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 Also, the radio base station in the present specification may be replaced with a user terminal. For example, each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the user terminal 20 may have a function that the above-described radio base station 10 has. Moreover, the wordings such as "up" and "down" may be read as "side". For example, the upstream channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, a user terminal herein may be read at a radio base station. In this case, the radio base station 10 may have a function that the above-described user terminal 20 has.
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present specification, the operation supposed to be performed by the base station may be performed by its upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. Moreover, as long as there is no contradiction, you may replace the order of the processing procedure of each aspect / embodiment, sequence, flowchart, etc. which were demonstrated in this specification. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on", as used herein, does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using the designation "first", "second" and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 The term "determining" as used herein may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as "determining". Also, "determination" may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as "determining" (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, "determination" may be considered as "determining" some action.
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。 As used herein, the terms "connected", "coupled", or any variation thereof, refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements "connected" or "connected" to each other. The coupling or connection between elements may be physical, logical or a combination thereof. For example, "connection" may be read as "access".
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 As used herein, when two elements are connected, using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-exclusive examples, the radio frequency domain It can be considered as "connected" or "coupled" with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 As used herein, the term "A and B are different" may mean "A and B are different from each other". The terms "leave", "combined" and the like may be interpreted similarly.
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 As used herein and in the appended claims, when "including", "comprising", and variations thereof are used, these terms as well as the term "comprising" are inclusive. Intended to be Further, it is intended that the term "or" as used herein or in the claims is not an exclusive OR.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。 Although the present invention has been described above in detail, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined based on the description of the claims. Therefore, the description in the present specification is for the purpose of illustration and does not provide any limiting meaning to the present invention.

Claims (6)

  1.  下り共有チャネル、前記下り共有チャネルをスケジュールする下り制御チャネルを含む制御リソースセット、及び同期信号ブロック、の少なくとも1つに時間多重又は周波数多重される周期的な無線リソースの一つを用いて、所定信号を受信する受信部と、
     前記所定信号の受信に応じて、前記下り制御チャネルの受信を制御する制御部と、を有することを特徴とするユーザ端末。
    Using one of periodic radio resources time-multiplexed or frequency-multiplexed in at least one of a downlink shared channel, a control resource set including a downlink control channel for scheduling the downlink shared channel, and a synchronization signal block A receiver for receiving a signal;
    A control unit configured to control reception of the downlink control channel according to reception of the predetermined signal.
  2.  前記制御リソースセット及び前記下り共有チャネルは、前記同期信号ブロックに周波数多重され、前記下り共有チャネルは、前記制御リソースセットに時間多重されることを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control resource set and the downlink shared channel are frequency-multiplexed to the synchronization signal block, and the downlink shared channel is time-multiplexed to the control resource set.
  3.  前記制御リソースセットは、前記同期信号ブロックに時間多重され、前記下り共有チャネルは、前記制御リソースセットに時間多重されることを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control resource set is time-multiplexed with the synchronization signal block, and the downlink shared channel is time-multiplexed with the control resource set.
  4.  前記同期信号ブロックの時間リソースは、前記同期信号ブロックの時間リソースと異なり、
     前記同期信号ブロックの周波数リソースは、前記同期信号ブロックの周波数リソースと異なり、
     前記下り共有チャネルは、前記同期信号ブロックに周波数多重され、前記制御リソースセットに時間多重されることを特徴とする請求項1に記載のユーザ端末。
    The time resource of the synchronization signal block is different from the time resource of the synchronization signal block,
    The frequency resource of the synchronization signal block is different from the frequency resource of the synchronization signal block,
    The user terminal according to claim 1, wherein the downlink shared channel is frequency-multiplexed to the synchronization signal block and time-multiplexed to the control resource set.
  5.  前記無線リソースは、前記制御リソースセットに周波数多重されることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 4, wherein the radio resource is frequency-multiplexed to the control resource set.
  6.  下り共有チャネル、前記下り共有チャネルをスケジュールする下り制御チャネルを含む制御リソースセット、及び同期信号ブロック、の少なくとも1つに時間多重又は周波数多重される周期的な無線リソースの一つを用いて、所定信号を受信する工程と、
     前記所定信号の受信に応じて、前記下り制御チャネルの受信を制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
    Using one of periodic radio resources time-multiplexed or frequency-multiplexed in at least one of a downlink shared channel, a control resource set including a downlink control channel for scheduling the downlink shared channel, and a synchronization signal block Receiving the signal;
    And d. Controlling reception of the downlink control channel in response to reception of the predetermined signal.
PCT/JP2018/000502 2018-01-11 2018-01-11 User equipment and radio communication method WO2019138503A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880086210.3A CN111567007B (en) 2018-01-11 2018-01-11 User terminal and wireless communication method
PCT/JP2018/000502 WO2019138503A1 (en) 2018-01-11 2018-01-11 User equipment and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000502 WO2019138503A1 (en) 2018-01-11 2018-01-11 User equipment and radio communication method

Publications (1)

Publication Number Publication Date
WO2019138503A1 true WO2019138503A1 (en) 2019-07-18

Family

ID=67218929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000502 WO2019138503A1 (en) 2018-01-11 2018-01-11 User equipment and radio communication method

Country Status (2)

Country Link
CN (1) CN111567007B (en)
WO (1) WO2019138503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000181A1 (en) 2020-06-29 2022-01-06 Zte Corporation Power saving techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051726A1 (en) * 2015-09-24 2017-03-30 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method
JP2017228814A (en) * 2014-11-06 2017-12-28 シャープ株式会社 Base station device, terminal device, and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003312A1 (en) * 2012-07-02 2014-01-02 Vadim Sergeyev Wake-up functionality for an lte enodeb
CN114340007A (en) * 2015-09-25 2022-04-12 中兴通讯股份有限公司 Method and equipment for multiplex sending and receiving of discovery signal and physical downlink shared channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228814A (en) * 2014-11-06 2017-12-28 シャープ株式会社 Base station device, terminal device, and method
WO2017051726A1 (en) * 2015-09-24 2017-03-30 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "WF on evaluation for wake- up signal", 3GPP TSG-RAN WG1 NR ADHOC R1-1700821, 20 January 2017 (2017-01-20), XP051203134 *
SAMSUNG: "Summary of offline discussion on RMSI CORESET configuration", 3GPP TSG RAN WG1 #91 R1- 1721709, 1 December 2017 (2017-12-01), XP051370786 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000181A1 (en) 2020-06-29 2022-01-06 Zte Corporation Power saving techniques
CN115699902A (en) * 2020-06-29 2023-02-03 中兴通讯股份有限公司 Power saving technique

Also Published As

Publication number Publication date
CN111567007A (en) 2020-08-21
CN111567007B (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP7140680B2 (en) Terminal, wireless communication method, base station and system
JP7254714B2 (en) Terminal, wireless communication method, base station and system
WO2019138499A1 (en) User terminal and wireless communication method
JP7337696B2 (en) Terminal, wireless communication method, base station and system
WO2019097633A1 (en) User terminal and wireless communication method
WO2019030929A1 (en) User terminal and wireless communication method
JP7121053B2 (en) Terminal, wireless communication method, base station and system
JPWO2018025946A1 (en) User terminal and wireless communication method
JP7107845B2 (en) Terminal, wireless communication method and wireless communication system
WO2019111301A1 (en) User equipment and radio communication method
WO2019021443A1 (en) User terminal and radio communication method
WO2018229952A1 (en) User equipment and wireless communication method
WO2018084138A1 (en) User terminal and radio communications method
WO2019069471A1 (en) User terminal and wireless communication method
WO2018143399A1 (en) User terminal and wireless communication method
WO2019111862A1 (en) User terminal and wireless communication method
WO2019159291A1 (en) User terminal and wireless communications method
CN110463304B (en) User terminal and wireless communication method
US20200145854A1 (en) User terminal and radio communication method
JPWO2018143388A1 (en) User terminal and wireless communication method
WO2019135287A1 (en) User terminal and wireless communication method
WO2019142272A1 (en) User terminal and wireless communication method
WO2019030871A1 (en) User terminal and radio communication method
WO2019030930A1 (en) User terminal and radio communication method
JP7163320B2 (en) Terminal, wireless communication method, base station and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP