WO2019137685A1 - Structure de matériaux élastocaloriques - Google Patents

Structure de matériaux élastocaloriques Download PDF

Info

Publication number
WO2019137685A1
WO2019137685A1 PCT/EP2018/082560 EP2018082560W WO2019137685A1 WO 2019137685 A1 WO2019137685 A1 WO 2019137685A1 EP 2018082560 W EP2018082560 W EP 2018082560W WO 2019137685 A1 WO2019137685 A1 WO 2019137685A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
elastocaloric
balls
elastocaloric material
material according
Prior art date
Application number
PCT/EP2018/082560
Other languages
German (de)
English (en)
Inventor
Holger Wuest
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019137685A1 publication Critical patent/WO2019137685A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like

Definitions

  • the invention relates to a structure of elastocaloric material which is designed as a cubic primitive spherical packing.
  • the use of the latticed structure of elastocaloric material in a refrigeration cycle or a heating circuit is proposed.
  • the elastocaloric effect describes an adiabatic temperature change of a material when the material is subjected to a mechanical force and deforms, for example.
  • the mechanical force or the deformation causes a transformation of the crystal structure, also called phase, in the material.
  • the phase transformation leads to an increase in the temperature of the material. If the released heat is dissipated, the temperature is lowered and the entropy decreases. If then the mechanical force is removed, in turn, a reverse phase transformation (reverse transformation) is caused, which leads to a lowering of the temperature of the material. When heat is applied to the material, entropy increases again.
  • the temperature is above the starting temperature.
  • the resulting heat can be dissipated, for example, to the environment and the material then decreases
  • elastocaloric materials Materials that show the elastocaloric effect are called elastocaloric materials.
  • elastocaloric materials are, for example, shape memory alloys which have superelasticity. Superelastic alloys are characterized by the fact that they return to their original shape even after strong deformation.
  • Superelastic shape memory alloys have two distinct phases (crystal structures): austenite is the room temperature stable phase and martensite is stable at lower temperatures. Mechanical deformation causes a phase transformation of austenite to martensite, which results in adiabatic temperature rise. The increased temperature can now be released into the environment in the form of heat, which leads to a decrease in entropy. When the elastocaloric material is relieved again, martensite-to-austenite is reconverted, accompanied by adiabatic temperature reduction.
  • Elastocaloric materials can be used in the operation of circular process based systems. These systems include a
  • Hot side reservoir and a cold side reservoir for a fluid and at least one heat transfer unit made of a Elastokalorischen material The elastocaloric material is disposed in operative communication with the fluid such that heat is transferable between the fluid and the elastocaloric material.
  • these systems have means for generating a stress in the elastocaloric material, so that the elastocaloric material is in an interaction region of a mechanical
  • a mechanical stress is generally a mechanical force, a pressurization, a tensile or compressive load, a twist, a shear or a corresponding
  • the heat generated in the elastocaloric material can be removed by means of the fluid and the elastocaloric material cools down to the ambient temperature. Now, if the mechanical tension is removed, it comes from the Phase-to-phase conversion to further cool the material so that the associated fluid is cooled.
  • the invention relates to a structure of a cubic primitive spherical packing in which the elastocaloric material is in spherical form and the centers of the spheres are located on the nodes of a cubic lattice, i. a cubic grid, lying.
  • the lattice-shaped structure is designed to be flowed through by a fluid. Due to the predetermined grid-shaped structure, the elastocaloric material is uniform and distributed along the grid at a defined distance.
  • the use of the ball-shaped elastocaloric material offers the advantage of a large surface area in conjunction with a stable connection between the balls. Furthermore, it is ensured that a sufficient gap between the balls for the flow of fluid remains.
  • the elastocaloric material of such structure can be used in a refrigeration cycle or a heating circuit.
  • the fluid is cooled or heated by the elastocaloric material and then serves for cooling or for heating a component arranged in the cooling circuit or heating circuit.
  • the elastocaloric material of such structure can be used in a combined refrigeration and heating cycle.
  • the balls are designed as hollow balls. This has a particularly positive effect on the ratio between the resulting surfaces and the mass of the elastocaloric material used and the mass of the elastocaloric material which does not come into contact with the fluid is reduced.
  • the balls can be connected at the contact points to the adjacent balls cohesively.
  • connection of high quality can be realized, for example, via an in-line.
  • balls of a given diameter are used for the lattice-shaped structure of the elastocaloric material.
  • Diameter can be chosen so that the lattice-shaped structure for the fluid used is sufficiently permeable to a desired
  • the grid is formed in layers which lie in a plane which is perpendicular to the flow direction of the fluid. Furthermore, a plurality of these layers can be arranged one behind the other in the flow direction of the fluid.
  • This multilayer arrangement offers the advantage that a large contact surface is created between the elastocaloric material and the fluid. This promotes effective heat exchange between the elastocaloric material and the fluid.
  • the structures described above are described as three-dimensional cells, as is common in the description of latticed structures. In other words, multilayer structures are described. To obtain a location of the grid-like structures, only one plane of the cell can be considered.
  • Figures la and lb each show a schematic representation of a
  • Figure la a relaxed state
  • Figure lb a state with voltage application
  • Figures la and lb each show a schematic representation of an embodiment of the structure of elastocaloric material as a cubic primitive spherical packing.
  • the structure of the elastocaloric material is flowed through by a fluid in the direction of flow q and the fluid is in
  • Figure la shows a
  • the balls 1 may be hollow in their interior, that is, be formed as a hollow sphere. In addition, the balls 1 to the
  • the balls 1 lie on grid points of a cubic lattice and together form a cubic lattice.
  • the elastocaloric material is uniform and distributed along the grid at a defined distance.
  • the balls 1 are present in layers 3 of the grid, which lie in a plane which is perpendicular to the flow direction q of the fluid. There are a plurality of such layers 3 in the flow direction q of the fluid arranged one behind the other.
  • the diameter d of the balls 1 used in the undeformed state is chosen so that free spaces 4 between the balls 1 are large enough to a sufficiently high flow rate of the fluid, for example in the
  • Figure lb shows a state in which the balls 1 are deformed due to an applied force F.
  • the applied force F can be realized on the one hand as compressive stress and on the other hand as tensile stress. Due to the applied force F and the resulting deformation, the balls 1 of elastocaloric material heat up due to the elastocaloric effect. The fluid flowing in the direction of flow q comes into contact with the elastocaloric material and absorbs heat therefrom.
  • Cooling circuit or heating circuit (not shown), the fluid then release this heat to a component, not shown, or to the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Structure de matériau élastocalorique. Ladite structure est un empilement cubique primitif de sphères, dans lequel le matériau élastocalorique est présent sous forme sphérique (1) et les centres des sphères (1) forment un réseau cubique. Cette structure est parcourue par un fluide.
PCT/EP2018/082560 2018-01-11 2018-11-26 Structure de matériaux élastocaloriques WO2019137685A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018200372.6 2018-01-11
DE102018200372.6A DE102018200372A1 (de) 2018-01-11 2018-01-11 Struktur von elastokalorischen Materialien

Publications (1)

Publication Number Publication Date
WO2019137685A1 true WO2019137685A1 (fr) 2019-07-18

Family

ID=64500394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/082560 WO2019137685A1 (fr) 2018-01-11 2018-11-26 Structure de matériaux élastocaloriques

Country Status (2)

Country Link
DE (1) DE102018200372A1 (fr)
WO (1) WO2019137685A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655804B2 (en) 2020-04-16 2023-05-23 Carrier Corporation Thermally driven elastocaloric system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160084544A1 (en) * 2012-03-27 2016-03-24 University Of Maryland, College Park Solid-state heating or cooling systems, devices, and methods
US9612040B2 (en) * 2011-12-02 2017-04-04 Commissariat à l'énergie atomique et aux énergies alternatives Device and method for generating a second temperature variation from a first temperature variation
DE102016100596A1 (de) * 2015-12-11 2017-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Betrieb kreisprozessbasierter Systeme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9612040B2 (en) * 2011-12-02 2017-04-04 Commissariat à l'énergie atomique et aux énergies alternatives Device and method for generating a second temperature variation from a first temperature variation
US20160084544A1 (en) * 2012-03-27 2016-03-24 University Of Maryland, College Park Solid-state heating or cooling systems, devices, and methods
DE102016100596A1 (de) * 2015-12-11 2017-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Betrieb kreisprozessbasierter Systeme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655804B2 (en) 2020-04-16 2023-05-23 Carrier Corporation Thermally driven elastocaloric system

Also Published As

Publication number Publication date
DE102018200372A1 (de) 2019-07-11

Similar Documents

Publication Publication Date Title
DE102006008786B4 (de) Adsorptions-Wärmepumpe, Adsorptions-Kältemaschine und darin enthaltene Adsorberelemente auf Basis eines offenporigen wärmeleitenden Festkörpers
DE102015121657A1 (de) Verfahren und Vorrichtung zum Betrieb kreisprozessbasierter Systeme
EP2646590A1 (fr) Verres métalliques à surface structurée et leur procédé de fabrication
EP1305561A1 (fr) Dispositif de transfert de chaleur
DE102018200376A1 (de) Vorrichtung zum Wärmetausch
WO2019228789A1 (fr) Dispositif d'échange de chaleur
WO2006042825A1 (fr) Procede de commande de soupapes lors de la thermocyclisation d'une substance a des fins de reaction en chaine de la polymerase (pcr), et dispositif correspondant
WO2019137685A1 (fr) Structure de matériaux élastocaloriques
DE112004002839T5 (de) Vorrichtung für den Wärmetransport und Verfahren zu dessen Herstellung
DE112012005909B4 (de) Expansionsventil
WO2019166251A1 (fr) Élément élastocalorique pourvu de trois couches de matériau
DE2146869C3 (de) Wärmetauscher für Gase
EP0129691B1 (fr) Pièce profilée à partir d'un matériau composite et procédé de fabrication
DE4432340C1 (de) Verfahren zur Herstellung eines Verdampfers für ein Kompressorkühlgerät
EP2926073A1 (fr) Échangeur thermique
DE102019119124A1 (de) Kombinationswärmetauscher mit einem Chiller und einem inneren Wärmetauscher sowie Kühl-Kälte-Kreislaufsystem und Kraftfahrzeug mit einem solchen
DE102014006370A1 (de) Wasserstoffspeicher mit einem hydrierbaren Material und ein Verfahren
DE102017203506A1 (de) Regenerator für Kryo-Kühler mit Helium als Arbeitsgas, ein Verfahren zum Herstellen eines solchen Regenerators sowie einen Kryo-Kühler mit einem solchen Regenerator
DE102012209765A1 (de) Steuerung von Wärme in einem System mithilfe intelligenter Materialien
WO2012163739A1 (fr) Dispositif de refroidissement d'une machine supraconductrice et procédé de fonctionnement de ce dispositif
DE102011082204A1 (de) Thermoelektrische Einheit
DE102021204547B4 (de) Verdampfer für einen Kühlkreislauf
EP3009780A1 (fr) Fluide caloporteur
EP3242048B1 (fr) Dispositif comprenant un contact de friction et procédé de fonctionnement d'un dispositif comprenant un contact de friction
DE102022120022A1 (de) Regenerator für einen magnetischen Wärmetauscher und Wärmetauscher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810991

Country of ref document: EP

Kind code of ref document: A1